ROUGE STEEL COMPANY
"C" COKE OVEN COMBUSTION STACK
PARTICULATE COMPLIANCE SURVEY
July 1, 1986
Conducted by
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
Survey & Compliance Assurance
SURVEY CONDUCTED BY:
REPORT PREPARED BY:
T. A, DeVulf
D. K. Russell
nd4«Q
-------
Pa%e
1
2
4
5
9
10
14
19
22
38
50
53
62
68
4
6
7
8
3
12
13
16
ROUGE STEEL COMPANY
"C" COKE OVEN COMBUSTION STACK
PARTICULATE COMPLIANCE SURVEY
Table of Contents
Subjects
INTRODUCTION
PROCESS DESCRIPTION
SUMMARY
RESULTS
DISCUSSION
USt Of. Appendices
Location of Sampling Pores and Points
Sampling Procedures
Analytical Procedures
Field Data Sheets
Process Operating Parameters Data Sheets...
Laboratory Data Sheets
Sample Calculations . .
Equipment Calibration
Opacity Data Sheets
LU.£-°f-T.able$.
Summary of Results • Particulate/Flow Data.
Stack Cas Velocity and Flow Results..
Particulate Sampling Results...
Individual Test Averages • Heater Room Data
List of Figures
Schematic of Koppers Coking Oven
Sampling Pore Location
Sampling Point Location
-------
I• INTRODUCTION
Three tests for particulate emissions and opacity were performed at the
*C" Coke Oven Combustion Stack on July 1, 1986. The survey was
conducted to fulfill requirements of operating condition 2d of
Installation Permit No. C-6562 issued to Rouge Steel Company on
December 10, 1984. Results of the test program are included herein.
The survey was performed by the Ford Motor Company Stationary Source
Environmental Control Office. Opacity readings were made by Mr.
D. O'Connor of Rouge Steel. The test was witnessed by Messrs.
S. Drielick, M. Farrell, and R. Niemi from the Wayne County APCD.
All testing was performed during active periods when ovens in the
battery were being pushed and charged. Included with the report are
Operating data pertaining to each test and analysis of the enriched
blast furnace gas used to heat the ovens.
-------
II- PROCESS DESCRIPTION
Coking is a process by which coal is destructively distilled in a
reducing atmosphere to produce a relatively nonvolatile coke residue
and a volatile gas byproduct. The Rouge Steel Company coking operation
utilizes a Koppera combination gun-flue type byproduct coke oven
battery.
On each side of a byproduct oven vail is a gas flue. Fuel gas is fired
on one side of the wall at a time. The other side is used to direct
exhaust flue gas into a regenerator. The regenerator acts to preheat
both combustion air and fuel gas. Every half hour the direction of
fuel gas and combustion air flows reverses over the entire battery. As
a result, the opposite flue contains the burning fuel gas. Refer to
Figure 1 for a schematic illustration of a typical Kopper's Coking
Oven.
The volatile byproduct from the coking chanber is drawn through an
ascension pipe into a collecting main. It is then transported to the
byproduct plant for processing and distribution. The waste flue gas
from both the coke and the pusher sides is directed through a 225-foot
tall combustion stack.
"C" Battery includes 63 coking chambers. During the survey all 63
ovens were in operation and functioning normally. Enriched blast
-------
FIGURE 1
SCHEMATIC OF TYPICAL KOPPERS COKING OVEN
COKE OVEN BATTERY C
FORD MOTOR COMPANY
Carryover
Coking
Oven
\P\
K
K
X
K
X
Coke Oven
Gas Nozzle
Regenerator
Flue
Dual-Purpose
Valve Box
Pinion Wall
Pinion Wal
This is a typical coke oven-flue diagram for Battery C showing three coking ovens, four
regenerators, and two pinion walls. Blast furnace gas and air are fed into their labeled
~I!SS2J°!3 ^ I #2-#3 sequence or reversal. The opposite flue 1s used for
transport of waste flue gas through the dual-purpose valve box and into the waste gas
-------
ill. sVMMflftY
Results from this survey are summarized below in Table I. The table
includes stack emission results and operating data obtained during cest
periods.
TABLE I
SUMMARY OF RESULTS
"C" COKE OVEN COMBUSTION STACK
PARTICULATE COMPLIANCE SURVEY
JULY 1, 1986
PARTICULATE EMISSIONS
VALUE
UNITS
Mass Flow rate
Concentration
•Stack Conditions
-Std. Conditions
4.6
.007
.012
Lb/Hr
GR/ACF
GR/DSCF
EXHAUST GAS
VALUE
UNITS
Flow rate
-Stack Conditions
-Std. Conditions
Temperature
Moisture
Excess Air
77,600
44,400
347
10.4
48.6
ACFM
DSCFM
°F
«
%
OPERATINC DATA
VALUE
UNITS
En. Blast Furnace Gas
-Integrator Flow
-Recorder Flow
-BTU Content
Ovens Pushed/Charged
per Test
1,279,000
1,285,000
116
5
CFH
CFH
BTU/CF
-------
IV. RESULTS
The individual test results from this survey are presented in the
tables which follow. The tables are listed below by tide.
TABLE NO. TITLE
II Stack Gas Velocity and Flow Results
III Particulate Sampling Results
IV Individual Test Avg, - Heater Room Data
-------
Table IT
¦c COMBUSTION STACK-COMPLIANCE tests
STACK CAS VELOCITY AMD FLOU RESULTS
UNITS
PHYSICAL OATA
TEST NUMBER
1
AVER ACE
DATE OF TEST
7-1-B6
7-1-86
7-1-06
TINE OF TEST
START
090B
1222
1425
FINISH
1B43
1333
1531
NUMBER OF TRAVERSE POINTS
13
12
12
PITOT TUBE COEFFICIENT
t .78
0.79
I.7B
MEASURED DATA
BAROMETRIC PRESSURE
INCHES HC
29.25
29.23
29.IB
STACK 01AMETER
INCHES
132.1
132.0
132.0
STAC* STATIC PRESSURE
INCHES H20
-i.se
-0.5B
-0.58
STACK CAS TEWERATURE
DEC F
343
347.
351.
347.
VOLUME X C02
DRY BASIS
IB.2
IB.4
19.0
1B.S
VOLUME X 02
ORY BASIS
4.6
4.B
4,0
4.5
VOLUME 1 CO
Dflf bASIS
I.I
0.0
1.0
1.0
VOLUME X N2
DRY BASIS
77.2
76.0
77.0
77.1
CALCULATED DATA
STACK CAS PRESSURE
INCHES HC
2V .21
29.19
29.14
MOISTURE
VOLUME X
19.1
11.4
10,7
10.4
EXCESS AIR
Z
50.4
53.2
42.3
48.6
DOT MOLECULAR HEIGHT
LB/LB-MOLE
II. II
31.14
31.20
31.14
UET MOLECULAR UCICHT
Lb/LB-HQLE
£9.77
29.77
29.78
29.78
AVERAGE SO. ROOT OF VELOCITY PRESSURE
IN.H20*i.5
1.221
1.199
1.214
a.2ii
STACK CROSS SECTIONAL AREA
SO. FT.
95.13
95. OJ
95.(3
STACK CAS VELOCITY - STACK COND.
FT/M1N
84B.
777.
826.
017.
STACK CAS VELOCITY - STD. COND.
FT/MIN
544.
496,
524.
521.
STACK CAS FLOW - STACK COND.
ACFM
81610.
73600.
7850),
77611.
STACK CAS FLOU - MY STD. CONO.
DSCfn
46581.
42208,
44400.
44406.
STACK CAS FLOU - VET STD. COND.
USCFN
51710.
47108.
49819.
49500.
ST ANIMAS CONDITIONS) 66 DEC F AND 29.92 IN, HC
-------
Table III
•C* COMBUSTION STACK-COMPLIANCE TESTS
PARTICULATE SAMPLING RESULTS
PHYSICAL DATA
UNITS
1
TEST NUMBER
2
3
DATE OF TEST
7-1-06
7-1-B6
7-1-1
TIKE OF TEST
START
FINISH
0906
1(43
1222
1333
1425
1531
NOZZLE DIAMETER
INCHES
o.siai
0.5000
0.5000
MEASURED DATA
METERED SAMPLE VOLUME
CU. FT.
39.800
36.26?
38.761
AVERAGE METER TEMPERATURE
DEC F
66. (
71.6
77.3
METES CORRECTION FACTOR
I.0020
1.(121
1.0020
AVERAGE ORIFICE PRESSURE DROP
INCHES H29
1.59
1.29
1.46
VOLUME OF H20 CONDENSATE
ML
76. (
74.0
93.0
UEICHT OF K20 ADSORBED
CRAMS
15.6
12.6
12.1
TOTAL SAMPLE TIME
MINUTES
60.0
60.0
61.1
PROBE HASH HEIGHT
CRAMS
0.0274
1.(275
1.(1(9
WtlCHT, FILTER CATCH
CRAMS
0,0176
1.1199
0.0052
CALCULATES DATA
METERED SAMPLE VOLUME - STB. COND.
CU, FT.
39,288
33,375
37.361
TOTAL SAMPLE CQRR. VOL. • STD. COND,
CU. FT.
43.716
39.472
41.849
AVERAGE
TOTAL PARTICULATE HEIGHT
PARTICULATE CQNC. - STACK COND,
¦'<«*
CRAMS 0.0350 0.0374 1.0161
CR/ACF 0.00793 1.11933 S.00377 0.00701
1 *VNMp
PARTICULATE CQNC. - UET STD, COND.
PARTICULATE FLOW RATE
MQ2ZLE AREA
ISOKINETIC RATIO
0.0)46 8.60594
5.0? 2.53
Gfi/ySCF 1.(134
L6/HR 5.47
SO. FT. 0,601364 0.001164 (.1(1364
1 98.2 77.3 97,7
(.(IK
4.63
97.7
ST AMMO CONDITIONS; 68 DEC F AMD 27.92 IN. HC
*~~~~~~~*~~~~~~~*~~~ ~~~~~~~~
-------
TABLE IV
INDIVIDUAL TEST AVERAGES
C" COKE OVEN HEATER ROOM DATA
JULY 1, 1986
OPERATING PARAMETERS
UNITS
T-l
T-2
T-3
Number of Ovens Pushed
Number of Ovens Charged
Avg. Weight of Coal Charge
11
A
5
35,200
6
6
35,300
5
5
35,300
En. Blast Furnace Gas
-Integrator Flow
-Recorder Flow
-BTU Content
CFH
CFH
BTU/CF
1,279,000
1,306,000
116
1,278,000
1,26^,000
116
1,280,000
1,284,000
116
Waste Heat Flue-Pusher Side
-Temperature
-Oxygen
-Pressure
°F
%
ODD H2O
370
2.0
•17.8
375
2.7
-17.7
370
2.2
-17.9
Waste Heat Flue-Coke Side
-Temperature
-Oxygen
-Pressure
oF
»
mm H2O
357
2.8
-16.3
363
3.2
-15.9
360
3.1
-16.2
-------
pigCUSSIQN
Three particulate tests were performed on the "C" Combustion Stack on
July 1, 1986. Emission results varied from 2.5 to 5.9 lb/hr, or
.007-.016 grains/DSCF. Approximately 27 percent of the particulate was
captured on the filter, and the remaining 73 percent was from the
nozzle and probe vash. Residue from the evaporation of the
nozzle/probe wash consisted of a brownish-yellow liquid in the bottom
of the evaporating dish.
In an attempt to determine the composition of the residue, distilled
water was added to the evaporating dish, and the water - soluble
portion of the remains was analyzed by ion chromatography, As
expected, SO^ was a major component of the residue. It was not
possible to accurately quantify results from the water rinse and IC
analysis, so no attempt was made to determine the sulfate contribution
to the overall nozzle/probe wash weight gain.
Opacity readings obtained during the three tests seldom varied from
2ero. During one-minute reversal periods each half hour (when the
direction of fuel gas and combustion air is reversed over the length of
the battery), the opacity registered 5-10 percent.
Emission testing was performed without incident. At least 30 cubic
feet of exhaust gas was sampled during each test, all sampling train
leak-checks were within the 0.02 cfm allowable limit, and isokinetic
sampling ratios were all vlthift the allowable range of 90 to 110
-------
APPENDIX A
LOCATION OF SAMPLING PORTS AND POINTS
-------
ftfPENPTX A
LOCATION OF SAMPLING PORTS AND POINTS
Figures 2 and 3 which follow show the locations of the sampling pores
and points for the "C" Combustion Stack. This location is more than
eight duct diameters upstream and more than two diameters downstream
from the nearest flow disturbances as shown in Figure 2.
Figure 3 shows the relative location of the twelve sampling points used
for this survey. Twelve points equals the number required for a
sampling location of this configuration according to the
September 30, 1983 Federal Register.
-------
Figure 2
Location of Sampling Ports
"C" Coke Oven Combustion Stack
Rouge Steel Company
225
100'
Ground Level
-------
Figure 3
Location of Sampling Points
"C" Coke Oven Combustion Stack
Rouge Steel Company
Sample
Point No.
1
2
3
Distance from
Stack Wall (In,)
5-3/4
19-1/4
39-1/8
-------
frPPEtro b
SAMPLING PROCEDURES
-------
APPENDIX, g
SAMPLING PROCEDURES
Three complete tests are run over an eight-hour period. During each
test the following parameters are measured:
o Exhaust gas velocity and flow
o Exhaust gas temperature
o Moisture content of exhaust gas
o Particulate Elowrate
o Exhaust gas composition
The sampling procedures used to measure the exhaust gas velocity and
particulate concentrations are consistent with EPA Test Methods 1, 2,
and 5.* Integrated Orsat measurements to determine excess air and dry
molecular weight of the stack gases are taken in accordance with EPA
Test Method U.*
A- Sampling Train
The sampling train used in this survey appears in Figure 4. As shown,
the front half consists of a stainless steel nozzle, glass probe liner,
cyclone bypass, and a 110mm glass fiber filter. This portion of the
train is heated to a maximum temperature of 250°F + 25°F.
The condenser portion of the train consists of four plastic
"impingers", connected in series with Tygon tubing, placed in an ice
15
-------
FIGURE 4
PARTICULATE SAMPLING TRAIN
110 mm Glass
Fiber Filter
TCIl
£
Heated Glass Probe TC#4
Calibrated
Orifice
Manometer
V
S-Type
Pitot Tube
Manometer
Uu/ Cyclone
Bypass
Heated
Sample
I Box
Implngers in Ice Bath
Calibrated
Orifice
TC#6 TC#5
egrated
M ooo B
/
Orsat
Pump
Orsat
Dry Gas
Meter
Vacuum
Gage
Pressure
c*j=(
Surge Tank
"Rotameter
Oxygen
-------
bath. The first two contain 150 ml distilled water, the third is empty
and the fourth contains approximately 200 grams of preweighed silica
gel.
The dry, filtered exhaust gas exits the condenser section and goes to
the metering portion of the sampling train. This consists of a
leakless vacuum pump, dry gas meter and orifice. After exiting the
orifice, the sample gas is split into two streams. One portion of the
gas goes to a previously evacuated bag to be analyzed at the end of the
test as an integrated Orsat sample. The second stream is analyzed
Instantaneously on a Sybron/Taylor Model OA 570 portable oxygen meter.
Oxygen readings are recorded at each sampling point.
Six thermocouples are located throughout the sampling train as shown in
Figure 4. They are connected to a multipoint potentiometer wich
digital readout, mounted on the face of the meter box. Also on the
face of the box is a twin-tube manometer which is used in measuring
stack velocity pressures and orifice pressure differentials.
B- Particulate Sampling Procedures
1. Stack Gas Velocity and Flow
Stack gas velocity is measured with a calibrated S-type pitot tube
on the probe assembly. The stack temperature is monitored using a
thermocouple at the tip of the probe.
-------
2, Particulate concentration
Particulate from the exhaust stream is captured in the front half
of the sampling train and the net gain of material is measured
gravimetrically after following a routine clean-up and evaporation
procedure.
3, Moisture Content
The moisture content of the exhaust gas is determined by measuring
the volume of the condensate in the first three 'impingers" and the
veight gain of silica gel In the fourth. Results are calculated
based on condensate and gas volumes measured during the test.
4, Exhaust Gas Composition
The exhaust gas composition is determined by one of two methods:
a) a continuous sample of exhaust gas from the orifice discharge is
collected in a pre-evacuated bag for later analysis using a Hays
Orsat, and b) a continuous sample of exhaust gas from the orifice
discharge is routed to a Sybron/Taylor oxygen meter and readings
are taken at each sample point. The integrated 0r3aC results are
incorporated into the gas density and heat input calculations for
this survey.
-------
APPENDIX C
ANALYTICAL PROCEDURES
-------
APPENDIX C
ANALYTICAL PROCEDURES
A. Field Procedures
AC the completion of each test the nozzle and probe liner are washed
with known quantities of acetone into a clean, appropriately labeled
sample bottle. The filter holder, cyclone bypass and flask from each
test are capped with rubber stoppers in the field and placed in a
protective glassware box for shipment to our laboratory.
All impinger liquids are measured for total volume after each test and
then discarded. Silica gel is removed from the fourth impinger and
placed in its original container for transport.
A blank acetone sample is collected at the site and returned to the
laboratory for processing with survey samples.
B. Laboratory Procedures
1. Particulate Concentration
In the laboratory, the acetone rinse from the sampling train nozzle
and probe wash is placed in a tared evaporating dish. Added to
this are acetone rinses from the corresponding cyclone bypass and
front filter half from the train.
-------
Dish contents are evaporated co dryness over a water bath maintained
ac 130°F, desiccated to constant weight at room temperature, and
weighed on a Torbal analytical balance with a sensitivity of 0.1
nig.
The glass fiber filter from each test is removed from its holder
and transferred to its original aluminum foil envelope. The filter
is oven-dried for two hours at 105°C, placed in a desiccator
overnight and weighed on a Torbal balance.
The weight gains of the acetone rinse and filter are added and
reported as particulate catch.
2. Moisture Content
The silica gel from the fourth impinger is weighed on an analytical
balance having a sensitivity of 0.1 gram. The resulting weight
gain is converted to volume and added to the volumes of water
condensate measured in the impingers after each test in order to
determine the moisture content of the exhaust gas.
3. Exhaust Gas Composition
Carbon dioxide, carbon monoxide and oxygen percentages in exhaust
gas are determined using a standard Orsat procedure. Then,
assuming the exhaust gas contains only four major constituents,
nitrogen can be determined by difference.
-------
APPENDIX D
FIELD DATA SHEETS
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OcTICE
SOURCE Ca»Js • I
PLANT
DATE
INITIALS"^)fJU?-'Tft&
TEST NO. I
£^C2>f 7
t- //
C i3(uTl ;v
NOTES
Kioizie. S'icf
STACK T6a*P JVC V
.• iOC
. r^1'
ORIFICE COEFFICIENT CHECK
SAMPLE
TIME
(M1 n.)
C7>
u x
<0 c
d? n
9 3/
/.
lb -t.t&
b!
START
30^.0
Jill
i.c
/
(,^/y b
tr/u<
AV6/NET
|O.0
t-O
S~. S'Vfc-
<*c?s~
* (0.03175) I'h) (Pbar)
^m-out+ 460)
iH = (0,03175K'°l*9-3')
(Tm-avg + 460) 8
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIROWENTAL
CONTROL OFFICE
Source: Co,A STcOt. c.
Plant: ^ocy..
Date: * ?/'/&/
Initials: p Test No.: )
Sampling Train Information
Filter Type
Sample Box No.
i
Nozzle Diameter
Filter No.
Probe No.
i
Nozzle Material
ss
Cyclone & Flask No.
i
Probe Material
fvec >
Meter Box No.
z.
Silica Gel No.
L
Probe Lenqth
7'
Meter Box &H
L1C,
Leak Test Data
Prelim.
Reading
lime
Date
Initial
Readinq
Time
Final
Readinq
Time
Meter and
Orifice
*5%o
cK jc'
?///*u
oJC
4k
Pump and
Surge Tank
Jt
l/f/K.
,/,/tL
Meter Box, Cord,
Sample Box, Probe
<«)>' C*»»
& '5 "^£_
<--Q0SCfl
£,cO*
i/f/db
Pi tot Tube
Total Pressure Line
cK
^ f-Lc
i/A*
Ac
P1tot Tube
Static Pressure Line
0* *l"f±C
k/rfe*
Wyt-
J*
>//"¦
Impinger Data
Impinger Number
1
2
3
4
Impinger Contents
MxO
/•L o
-
Silica G^.1
Final Volume (ml)
J 92.
fBO
U
iHO.i
Initial Volume (ml)
ifc
0
Volume Collected(ml)
ft-
JO
(,
24
Total
w
-------
FORD MOTOR COMPANY %
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
lO
NOMOGRAPH C FACTOR DETERMINATION
ro
v*
Instructions:
Draw line from AH to Tm to get A.
Draw line from A to ^HoO to get B.
Draw line from B to Ps/Pm to get C.
50
SOURCE
PLANT "
DATE
INITIALS-
TEST NO."
rwF
METER BOOCT Z~
&H ORIFICE /. -?(,
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE (*W)
STATIC PRESSURE (psp) -,?g
PS - Pbar + psp -
or
C FACTOR . 0?
PITOT TUBE Cp - n
CORRECTED
Ah/13.6=
(Assumed Ah) fj.
Pbar + Ah/13,6g r ~
Pm
Ps/Pm
RRECTED C FACTOR,(Cc)= ~~ _
c ~-n*/ (C)(cP/.85)z » _ .p? ( /vt y-
cc = «?Y1
-------
N.
vH
Cs
N»
V*
«v
\n
C
v.
"S»
<5
•\
%&
A
-si
Vl
VM
0
rsj
XI
V*
JO
3
¦Nl
s>
vi
<
c
*
yj
rv
s
*
D
Vj
N
r
"Sv
f
c,
i
V*i
£
*>
•o
V
Vi
»*
"A
M
Vi
sSf
V
S^S
V
*»<
N>
V
\
¦v
•i
0
N»
£
€"¦
V.
V
A
Kt
*si\
**
t*
s.
*\
V*
M
^
Vj
VJ
\
£
Ob
V
0
c
V4
sji
<
\M
V»
<5
K
M
A
\A
SO
N
t4
«N
Ci-
(3
r> ^
•^N
mI
-SB-
0
¦O
*
9
n-
X
A
C
A
§
M
r-
Ni
M
V
*
*\
¦<
>J
u
<
v\|
f4
N
A
M
[X
«v
1
-6
\
2L.
Ck
u
S
NT\
"\
oc
N
V.
vi
vi
ki
e-
V
"\
Vm
?
V
3
VM
Ci
Vj
J
Q.
$
Kft
*\
O
t?
«\
\»>
N.
r>
V^M
\H
Vm
Vj
-sJ
r\3
O
¦N>
o
«r
ac
M
O
>
n
>«
X
uQ
< w I lib
Nuirter
Clock
Time
Meter Box
Clock Time
Percent 0;
at Sample
Point
Velocity
Head, aP
i/IT
Nomograph
AH Orifice
Meter
Reading
Pump
Vacuum
Stack
Temperature
Sample Box
Temperature
Gas Temp.
Leaving Last
Impinger
IC
o
cc
a>
Probe
Temperature
Gas
Temperature
at
Meter
IjJ
tj\
? 5 §
>*>
t
H
3
O
z o
o©
3 3D
• TO
(/>
m o
-O >»
o o
tn
—I
>
>
;o
-<
t/>
o
c
TO
o
: O
I 35
A
t?
3
1/1
s
§¦
-t
CD
Q>
\r,
2
r>
o
m to
* o
c
30 S
1°
2 O
—I O
> 2
r- -o
o §
o ¦<
33
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
FIELD ORSAT DATA
SOURCE Comb STwck. -c
PLANT ~~
DATE Sg
INITIALS TEST NO.
ORSAT
TEST
NO.
TIME
READING
PERCENT BY VOLUME
DRY BASIS
TYPE OF SAMPLE
REMARKS
C02
°2
CO
FINAL
/S.z
Z2.. (,
2.2.0-
1
INITIAL
o
i 8-1
Z2C
DIFFERENCE
igl-
w.y
FINAL
Zi-0
2
INITIAL
0¦ /
ie.2.
23.«
DIFFERENCE
/6-z.
0
FINAL
3
INITIAL
DIFFERENCE
FINAL
4
INITIAL
DIFFERENCE
FINAL
5
INITIAL
DIFFERENCE
AVERAGE
/6.L
*4.(,
0
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
SOURCE /Ioim b VTftcfc. c
PLANT go. .. e.-
DATE ~
INITIALS
TEST NO. L
NOTES
njc zi>e. i. tc
.^cc staCK T> «tp ^ 3W fc-
W ^
. ^ J
ORIFICE CO
EFFICIENT CHECK
SAMPLE
TIME
(Mln.)
©>
ac
L.
<0 c
A •-«
v o
(J C\J
C-C -
f- < c
o ^
Meter
Reading
(ft3)
^ W •
1— e Lu
0) e a) o
£ _ |— w
I Meter
1 Outlet
3 Temp.
| ("F'
FINISH
START
AV6/NET
ah =
(0.03175) (&h) (Pbar)
Om-out+ 460)
(^m-avg + 460) 0
(Vm) (Pbar + ^h/T3.6j
n 2
AH = (0.03175)
28
AH ¦ I.
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL
CONTROL OFFICE
Source: demb Srxct C.
Plant: €,
Date: 7-' •
Initials: 2>S^ Test No.: &
Sampling Train Information
Filter Type ,ttf fife
Sample Box No.
z.
Nozzle Diameter
fQC>
Filter No.
/•?"*
Probe No.
2
Nozzle Material
is
Cyclone & Flask No.
Probe Material
Pits*
Meter Box No.
2,
Silica Gel No.
2.
Probe Length
1'
Meter Box &H
1-7 to
Leak Test Oata
Prelim.
Reading
Time
Date
Initial
Readinq
Time
Final
Readinq
Time
Meter and
Orifice
}'M
4.0 rl Cf-t
6 ts"
7/1/8 C
Pi tot Tube
Total Pressure Line
^ 1*)''
V'Av
y/t/iL
Pi tot Tube
Static Pressure Line
' H+O
?/A |
c-k
V'A*-
Impinger Data
Impinger Number
1
1
3
4
Impinger Contents
f*o
H»o
Silica Gel
Final Volume (ml)
no
nl
r
jA* A
Initial Volume (ml)
/5"<°
/
-------
w
o
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
NOMOGRAPH C FACTOR DETERMINATION
-f.
- 7 c
/*>
Instructions:
Draw line from aH to Tm to get A.
Draw line from A to XHgO to get D.
Draw line from B to Ps/Pm to get C.
% H?0
50
SOURCE S^cK C.
plant iKZ_ZZZZ
7j'Ve<>
DATE
INITIALS 'WsvO -T*T)
TEST NO. /
meter norm: z
aH ORIFICE i.Ma
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE (h>ar) J
STATIC PRESSURE (Psp) - *V/n.o ^ ,«»~
ps - pbar + psp = 11.2 1 »
(Assumed Ah) / Ah/13.6= «//
Pra - Pbar + Ah/13.6* *
Ps/Pm = vr>
C FACTOR •*?
PITOT TUBFTp
CORRECTED
(C)(cP/-B5)
Cc = y 7ty?^
t cp
c FACTOR,(cc)»
.B5)z =
-------
o
rr
ai
\f
S>1
J-
V
$
*£.
Srv
D •©
Su
*\
sj-
Vi
CP
s*
v-J
-c.
so
V,
<-t
A
>
Vl
A
a
CP
•"t
VM
ti
>A
O
X
X
v
o
yv
¦U
<
U
fv.
fs
VN
5
Vi
a-
C*
b-0
%
"A
M
Vj
^s
V3
kC
SJ
o
o
<
6
v
r^
NJ
A
>t
u
S#*
0
1
>4
V>
K
Vj
Vi
-C.
Si
5*
p
n
s.
Vi
Xj
<
c>
*
o
"Si
Ct>
v>i
Kl
Uj
Uj
v3
H.
SL
05\
sj
c.
oJ
Vi
V
W
c-
"
~>I
VA)
Nft
car,.
yj
-j
v»
K
•si
CO
<
V
A.
hJ
V» VJ
C4
c
•£
9^
Vi
p
Vj
•*
A
c
VI
Cft
s^i
>0
»
rt
B«
X
rsi
o
jr
S3
o
ijj
X
t£>
Point
Nuirber
Clock
Time
Meter Box
Clock Time
Percent 02
at Sample
Point
Velocity
Head, aP
Nomograph
iH Orifice
Meter
Readi ng
Pump
Vacuum
Stack
Temperature
Sample Box
Temperature
Gas Temp.
Leaving Last
Impinger
0
>e
1 r*
M#
rt>
Probe
Temperature
Gas
Temperature
at
Meter
M
tn
o>
rn S 55
'R
o
•«J ^
r\*
r-
I—4
2
—<
Z
MM
rn
Z l/>
-<
—I
•D
>
z
n -* o
L/)
•
b/
'V
>
N
H
oo
2 TO
> 73
W>
m o
2 ^
O r»
— -i
z o
•H X>
S)
9
rs
•+
p
•%
(/>
z
•o
CO
o>
T
II
nD
v
hi
2
o
—(
7>
1/1
O
c
3D
O
m ti
o
m jo
z o
55
1°
z o
-H O
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
FIELD ORSAT DATA
SOURCE 6Tfick "C
iwitHLs n* test no.
ORSAT
TEST
NO.
TIME
REA0IN6
PERCENT BY VOLUME
DRY BASIS
TYPE OF SAMPLE
REMARKS
C02
02
CO
1
FINAL
25./
zs.f
INITIAL
<0
/f.S
ISf
DIFFERENCE
y.s
2
FINAL
///
2 3.
?jz-
INITIAL
0
/?Y
23 S
DIFFERENCE
tr-i
3
FINAL
INITIAL
DIFFERENCE
4
FINAL
INITIAL
DIFFERENCE
5
FINAL
INITIAL
DIFFERENCE
AVERAGE
//.
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
SOURCE c
PLANT ftp.
DATE 7/1 (Mo
INITIALS
TEST NO. I
NOTES
*iozz> t bae- vrrtcf -—rKr~
¦ •foo )
, 5cc >.
. )
ORIFICE CO
EFFICIENT CHECK
SAMPLE
TIME
(M1n.)
cn
~c
w
«Q C
-O «
a. w
a> 0
U CM
C^= =
0 —
Meter
Reading
(ft3)
Meter
Inlet
Temp.
(•F)
Meter
Outlet
Temp.
CF)
FINISH
START
AVG/NET
&H =
(0.03175) (&h) (pbar)
^m-out+ ^60)
(^m-avg + 460) Q
AH = (0.03175)
AH = l.fO/l.tc
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL
CONTROL OFFICE
s°upce: Oo«U StwcK. -c_
Plant:
Date: 7 }/(&<*
Initials: j>s>N -T>T> Test No.: 2
Sampling Train Information
Filter Type
i/f«+ 4/e
Sample Box No.
i
Nozzle Diameter
Filter No.
C
Probe No.
/
Nozzle Material
Ss
Cyclone & Flask No.
Probe Material
fife* *
Meter Box No.
z
Silica Gel No.
3
Probe Length
7'
Meter Box aH
/.76
Leak Test Data
Prelim.
Reading
Time
Date
Initial
Reading
Time
Final
Reading
Time
Meter and
Orifice
c~k-
Y'A
Pimp and
Surge Tank
7/'Al
'/'/>*
Meter Box, Cord,
Sample Box, Probe
i .erf Cf«
0 «"*.
7jt/H
Pi tot Tube
Total Pressure Line
oM. "
HJD
'/'Afc
71'ln
Pitot Tube
Static Pressure Line
oit 7.1 "
M,0
i
'
arlC.
-}///&
Impinger Data
Impinger Number
1
2
3
4
Impinger Contents
//a. o
—
Silica Gel
Final Volume (ml)
/4 7
lit
to
Initial Volume (ml)
/5"*>
/
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
NOMOGRAPH C FACTOR DETERMINATION
r* 5
57/*^"
&
V*
A
7^
olM
Instructions:
Draw line from aH to Tm to get A.
Draw line from A to %HoO to get 8.
Draw line from B to Ps/Pm to get C.
50
0.8
SOURCE 5t»Jc -C
PLANT J.
fik.
jfidtL
DATE
INITIALS
TEST NO.
METER B0)TNO. £
AH ORIFICE
^7
AMBIENT TEMPERATURE
BAROMETRIC PRESSURE (Pbar)
STATIC PRESSURE (PSp) -¦•**/,$j *.W '
ps • pbar + psp * Q1.(h *¦ >'* - HSjEI
(Assumed ah) t, < flh/l3.6= jf
Pm = Pbar + Ah/13.6= r
C FACTOR >01
pitot tube Cp :ys
CORRECTED C FACTOR,(Cc}= ~ 0
(C)(cP/.85)Z * ft ( yrT)2
Cc «
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
:E Ccrtb ~c TEST NO. 3
INITIALS.
MOM. SET POINT
SpI
firfAr Svi
itch Num
hi>r
1
2
3
4
5 6
L.
01
z
Clock
Time
Meter Box
Clock Time
Percent C2
at Sample
• Point
Velocity
Head, aP
%
Nomograph
AH Orifice
Meter
Reading
Pump
Vacuum
Stack
Temperature
xt
o s
CO -M
JO
- 'L>$
lO
•>/£
rs^
-2T3
77
75^
if?2-
.
/•79
J&-S7C,
3M/
4.4*/
77
75-^
fyy?
.?>1 ?-
7
*3'C
3
-------
FORD MOTOR COWANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
FIELD ORSAT DATA
SOURCE STttcfc -C
PLANT gwa.
OATE 7 h tAL
INITIALS EM TEST no-
ORSAT
TEST
NO.
TIME
READING
PERCENT BY VOLWC
DRY BASIS
TYPE OF SAMPLE
REMARKS
C02
02
CO
FINAL
aa-y
«¦
1
/,
INITIAL
0
it?
7//x
DIFFERENCE
<0
FINAL
,?.o
a-3 >c
t 3-o
2
i'ht-
INITIAL
c/
I °l.t>
3-3 "
DIFFERENCE
/9rV
1*0
c
FINAL
3
INITIAL
DIFFERENCE
FINAL
4
INITIAL
DIFFERENCE
FINAL
5
INITIAL
DIFFERENCE
AVERAGE
/%*>
*/-.6
a
-------
PROCESS OPERATING PARAMETERS DATA SHEETS
-------
FOftO KOI OR COMPANNY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
ROUGE STEEL COMPANY
•C' COKE OVEN METER ROOM OATA
TEST NO. : DATE: 7/l/8k
PACE NO. : J INITIALS: JDEft.
| CLOCK
| TIME
|
| uoesE
| INOEK
FUEL
HEATER
GAS
TEW.
PRESSURE OF |
ENRICHED B.F. GAS |
COLLECTING MAIN
PUSHER SIDE
WASTE HEAT FLUE
PUSHER SIDE
aatniRmau
nanimn
PUSHER
MACHINE
•¦•¦¦¦¦¦¦¦¦nastiB
| UOME |
| INOEX |
1
1
1
I
| C. 0. GAS
BEFORE
AFTER
N. PUSHER |
StOE |
1
N. COKE |
SIDE |
PRESSURE
| TEMPERATURE
I
TEMPERATURE
| OXYGEN |
1 1
m SSURE 1
AMPERAGE
1 1
| ENR. B.F. CAS |
1 1
1
1
DEC. F
OEG. F
1
IN. N20 |
IN. WTO |
mo
H20
1
| OEG. f
OEG. F
1 * I
i * 1
m* H20 |
AMPS
1 I
1 (
' c905
1
71.4
97.7
1* 1
oiA 1
11.7
1 197
3L> 9
!424 I
-17.4 |
• <*o 1
1
• 0^30
1
Tl.i
*17.2
1
<2.3 1
C 1
1
' 1305
1
11. i
99.1
1.3 i
1.3 i
I/.9
] 'St
3Si
1 3.
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
ROUGE STEEL COMPANY
•C' COKE OVFM METER ROOM DATA
TEST n. : t + »2. BATE: V'/Eb
PACE HO. J INITIALS .D*!.3-
¦tnHHHaHa»uiaiiiH»ii«nHim«niuiniiuaamanntii«iiRrmziiie:s:niBiH>3U>miimnafiinaiiifH«H*HvnniHiHn*niii»tnmanaHit
CLOCK I PRESSURE | PRESSURE OF | COLLECTING MAIN | WASTE HEAT FLUE | STACK SMOKE | FLOW COKE OVEN
TIME | C.O. OAS | ENRICHED B.F. GAS | GOWt WOHCR SIDE | COKE SIDE | DENSITY | GAS ENRICMCNT
| PUSHER | COKE | S. PUSHER | S. COKE | PRESSURE | TEW. | TEW, | OXYGEN | PRESSURE | DIGITAL | CHART | | *1000
| SIOE | SIOE | SIDE | SIDE | | III I I I I
| >> *' | *** ** "" | I " I I * * *" I I * [ *•**"• • | *• •• I*" I" I
| IN. H20 I IN. H20 I «•*•* I IN. H20 | n* H» | DEC. F | DEC. f | X ) m HM | X | X | SCFH [ SCFH
¦•naifl J laraaiBan I •¦¦¦auna I aaaanaua I BBaauaBM I aaanaaaa I aaaaaaaxxa I anaatt I uaaaaa I >*¦¦¦¦¦¦¦ I mmmmmmm I aaaaaai I mmmmmmm I aaaaan
0Q1O I — 1 —; ' 3LA 1 ^ 1 l2.o I llo I 353 1 3.0 I - ife. 3 1 5 '5 1 life 1 llto
cA30 I I — I <2.3 I ^-4 I JI.& I II? I 34<) I A..1 I-14,.3 I S 18 1 HL I *-
I0JL0 ^ ' — J <33 I .2.} <\ j .5... [ JM»„ j
130b I I I a.-2 I <2.£ I 11.7 I M8 I 3k5 13.7 I -15.3 17 17 ' life I *—
| | j | | | | | j | | ...— | ...rr.. |
!^5 ' — I — I 2.3 I <2.3 I II.7 l aq 131*3 '2-9 1 ^ I H4a l «—
-------
FORD MOTOII CCMPANY
STAT IOMARY SOJtCE ERVIROMCrTAL OOHTROl OFFICE
ROUGE STEEL COMPANY
•o COKE OVEN METER ROOM DATA
TEST BO. : l + Z OATE: 7/l/fifc
PACE NO. i _3 INITIALS: X)^-S
¦ IIWWMWI——WmWMWMIWmMlllMHlWW—MllimSElf MMBMMMWl—¦MWWWWMIKHW-WWM
CLOCK I LEVEL C.O. | flOUC.O. | ENRICHED fl.F. I ENRICHED S.F. | TOTAL FLOW | TEMP. OfF- |
TINE | GAS NOLOER | CAS TO BAT. | CAS • MATH | CAS - SOUTH { ENR. B.F. GAS | TAKE MAIN |
I I I I I I I
| I 1 FLOW I TEMPERATURE | f LOU | TEMPERATURE | TO IATTERT | |
| CF I SCFH I SCFH I DEC. F | SCFN | OEG. F J KIOTO SCFH | DEC- F |
| ¦¦•¦¦Mntt* I ¦¦»¦••¦«¦>« | ¦saiuanaaa I Minsntusa I I aamaMim J ¦¦HUsavBisi I !¦¦««¦¦¦•¦«¦ |
.9.I.1.3...1 J.1*?...! ... 9. ' ..w??....1 ..zr 1 1 qz 1 1
0931 1 |I57 10 < loS5 1 — I W5 1 1 '32.7 ' '
ioii i n/oo i o i lofox i — i t>3& i qo.io < 1304 1 1
I I I | - | § TT.. I r.....'... I |
I045 ' 11 loS ' C> I U72. 1 — I ioJ9 1 OT.S" I I I
IA3I 1 ' O I JoM 1 1 ±>30 I 91.7 ' l^UoO
|253 [ J^73 I O I Zo78 I — j 590 I 5o ' 91.4 '
|32£> I I3.S2. 1 o 1 I — 1 k«20 I Q/.4 I IOSO
-------
FORD MOTOR COMPANY
STATIONARY SOURCE ENVIRONMENTAL CONTROL OffICE
ROUGE STEEL COM>ANY
TEST NO. :
l + Z
•C< COKE OVEN METER ROOM DATA
DATE:
T/i fRIfi
PAGE NO. :
A
INITIALS:
DkLZ
¦¦•iminzicuil
CLOCK |
TINE |
1
1
IHBB3BRCB4aBaB£BB:
miaaapaaa—¦¦
¦uisB3Esi3is3RsMEsaaBiJs:iiussc::rsttitfnumain
TOTALIZER DISPLAYS
BESzsxUKB^aaaa
(¦¦¦¦laasaiaxsu::
C.O. GAS TO I
BATTERY |
ENR. B.F. CAS
TO BATTERY-N.
ENR. a.r. GAS
TO BATTERY-t.
J TOTAL EMR. B.F. |
t CAS TO BATTERY |
TOTAL STN.
TO BATTERY
| C.O. CAS
| ENRICHMENT
1
I
Hi000 SCFH I
*1000 SCFH
*1000 SCFH
| XTOOO SCFH |
| BiaBBB«BBBXia£S>»:BBBaaiBaBBM«n |
! 4,*s j |
*100 LBS.
i
1 *1000 scrn
o<* 15 1
95(ot 1
5Aoq
¦4Io44q
4|49
• i.477
033.2. J
|
5394
48 QJo
i 450b i • !
4152.
1 *
| 4>5o9
1022 1
15U |
595(o
5339
! 557+. ! '
4lk2
1
QS&k> 1
t>225
5583
! 4,085 ! !
4lio6>
j &bS\
i
l
1011#
<*¦; \
1 1 1
1 1 1
, l>'1 . .
i
• i i i i i i
( 1 1 1 ! 1 1
12 <2.7 f
lol&Zl
! 8a5S ! !
4i 82
1 ^84-q
.254 J
feW 4
i egiq i i
4187
1
1 bQoo
J3pq |
— i
7824
7o45
I c,,3't 1 1
4J4I
| lo92$
1327 I
i
8o3lo
7J3
! ^533 ! 1
4
I
l J I i12"1* i f i
't**a**a>'*K>tS3«3«BSsBl>Haaa>aB3u»xassEK;iauauuu»i£SEBsilsil»laa*intu?l
-------
FORO NOTC* COMPANNT
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
ROUGE STEEL COMPANY
¦C' COKE OVEN METER ROOM DATA
"« • -J MTE: 7/>/flk
PACE NO. : _J INITIALS:
vaumntmiaiHHMVNNNmNatNmnnaiauamBauftfmntHiiuKaniiNiaBaaniHa'izcsiasuBsanasiiBQBaiitanaiinuRiinxaiiiuaDsnaiaaNtaiuvfMBBieamiNansmiiits:
CLOCK I UDBBE | FUEL CAS | PRESSURE OF | COLLECT INC MAIN | UASTC NEAT FLIC | TOSHER | W088E |
TIME | INOEN | HEATER TEMP. | ENRICHED B.F. GAS | PUSHER SIDE | PUSHER SIOE j MACHINE | INDEX |
I I I I I I I I
| C. 0. GAS I BEFORE | AFTER | N. PUSHER | N. COVE f PRESSURE | TEMPERATURE | TEMPERATURE | OXYGEN | PRESSURE | AMPERAGE | ENR. B.F. CAS |
I I I I SIOE | SIOE I I I I I I I I
I I I I I I ^ I *'• I I I I I «
| | OEG. F | DEC. F | IN. NZO | IN. H20 | *•. H?0 f DEC. F | DEC. F | X | ¦«» | AMPS | |
¦¦varaRiu | ainziscsi I tsiunnR I tanntna 1 auecaaii: I acaetessst I asxrisssn I I i«a«MBBua I amutss I auuuaia j »bs»»mk | ¦»•**«•••»¦¦¦¦ I
I ! [99..... | ! ..3:5 | J2.-Q | JS4 ... [ 37] 1 <2.4 j -f&o ] —- j J?8 j
1 11.1.9.9....1 1 *3 1 i<2.i i 180 1 1 <2.4 ' -it.? 1 1 Qb 1
..5599.. p..nr....1 ..7?.-.9.1..??!?..1 .f?.-.?.. 1 .£-.5 1 '3-.° 1 ,g£? 1 37s....1 .m? ..1 -[7.7 1 — 1 ^ 1
IS 18 I I 73.2. I loo I oi.4 I a.4 1 u.o I I8Z ' 3&>7 • <2.1 I -12. | I — ' QQ I
-------
FORO NOTCH COMPANY
stationary source environmental control office
ROUGE STEEL COMPANY
•C« COKE OVEN METER ROOM OATA
TEST NO. : ^ WE: ij-ljMx
PAGE NO. : 3b INITIALS JDfcK-
| CLOCK |
PRESSURE
PRESSURE OF
COLLECT INC MAIN
WASTE HEAT
FLUE
¦¦¦¦•¦ inimiaBu
STACK SMOKE
aaauMtinia
| FLOW *COKE
OVEN |
1 "* 1
C.O. CAS
ENRICHED B
.F. GAS
CGU PUWIC1
1 SIOE
COKE SIOE
DENSITY
| GAS EMMCWCttr |
i . I
1 1
1 1
PUSHER | COKE
S. PUSHER |
S. COKE
PRESSURE
TEMP.
TEMP.
| OXYGEN
t PRESSURE
OICITAL | CHART
1
t I
*1000 |
1 1
SIDE | SIDE
SIOE |
SIDE
1
1
1
i I
1 ....... 1
I
1 1
I 1
1
IN. M20 | IN. HZO
IN. N20
mm H20
DEC. F
DEC. F
1
i *
1
| m «20
1
X 1 *
1 1
( SCFH |
1
SCFN |
j
\
1
i
1
I i
I
1 1
i
\
1
1
t
1
I I
I |
1
I
1 i4<2J£l
1
23 '
a.4
J I.S
114
3
-------
FOND MOTOR CGMPANT
STATIONARY SOURCE ENVIRONMENTAL CONTROL OFFICE
ROUGE STEEL COMPANY
48 J — ]
io<2S | 93,4-
!3oi I
1 W45
J 1)^ io
k8q i — i
' S i 1 1
6,49 | Q 1.5
<<2.74 |
! i502
' As
1
i
* 1 1
Lolo O ] '
lo3\ " Qo. 1
iiq«a. i
i i » i i i i i i
i i i i i i i i ' 'y i
I I I l i i i l l
1
I
i i
i 1
1
i
I
I
1
1
I
* ** 1 f
1 1
1
I
1
1
|
* 1 1
1 1
I
1
1
1 1
1 1
I
I
1 * I
1 1
1
I
illtuls t:3=Brti aicttn;
-------
^SHZSSissrKsiBiasiatxssavaiDKSsiiszscsssaMsaiiiasactxBBiatmmtauMBtiiivaBmas
1 1 1 OHI1 1 1
I I I I l I I I
Lbi't ! "L\?V"! — ' ! "ojortV ! "'"tcW ! irvtb'"! " i^z""" | "ersi" ]
ssii""! , ess Yib' i ""eirV \ ""zrc'ib"!!' eosY \
bill"! "ow"" | '""Z—'" | iir'ib'! ! "Wbs" !| '"ofc'ti" !*
Vsol " ! "uDirb- ' | nil " | "ssi'ob | Hsl" ! " | "WtT |
iMs»»um | kmhbibhmim | I iiHiisnamu | | MB«nmaiMn { i«n»Htau |
HJ3S 000IX I "S01 00 IK I Hi3S 0001* I MJ3S 0001* I HJ3S 0001* I H«S 0001* 1 I
ItUMOlHAJ I AH311VB 01 I A«JX1*9 01 SOT | S1M11V8 01 I *iS31i¥B 01 | Adjliva | |
SOT '0*3 | HIS 1*101 I TB MM IVIOI I SOT *i B 'Ml I SOT *i"8 "IW1 I 01 SOT '0*3 | |
I 3MI1 I
SHUSIO HilMVlOl | >3013 I
*1*0 MOOS UJ13N N3AO 3303 >3>
AMVdMtt 1331S 39001
331 HO KM1N03 1V1N3HN0BIAH3 33WOS AHVNOllViS
-------
COKE OVENS REPORT OF BY-PRODUCTS
oate : JuL y IJ18C—Utf
T.ABQRATORY Klf^HKR Q7< BL ' J 7
next ou
*»omt 119000: wtj c**k K" liters
cm* Moouciie* nwi en »tui
somcE
TflUl
mrt
ruro
PM
*«C. Iliwer
»U# 1 *.«. TO M.».
•.C,
4*\t
n?u»
,
«,». "c
i ioo *e
M! » 0 I
* i?5 *c
f 150 *c
souicc
PPM
* no *c
&.». *i
*»C. •••(«
rtcldvt
HK> w»l I
SP. G".
ttmp f
P.H.
lion oil ii *eame« on
I»3 AFFft J*TU8*T«S
' yun »ro ioco cu. rr.
AWONM UQIK*
IIWT OIL Still
touts
»5»ct
tia*
1 *,». to !*.¦.
data
*•««•! Ii««
GAS ANALYSIS
SOURCE
KK BUI) J) INC
A & B BAIT.
H'JBCt
$». oumr
it./en
KIND
BUST F.
COKE OVEN
BLAST F.
COKE OVEA
DATE
V
V/
1 , mm
TIME
B.'JS
Silo
- ¦—
I h2
<1*3
so.fJ
S.^it
S3.7H
X 02
O-oS
o.fo
o.lZ
I n2
SI. Hi,
2./I
ch4
O.o)
iS.Zi
1, 7J
2L.JL
SEALAXT OIL
CO
39.43
S. <4R
S.HB
CO 2
fg.PS
2.23
/ 7.H*
ZQ*
- an gravity c H
2. Ml.
2JJ
« » > i y I, _ u
.Jour ooint C2HA ...
e.^(.
0.0J
O.H 7
Tern, 7, disc, fraction ®-T-U-
82.
S'ffH
H2.
L/onx/. MsDH/t /ic>
"?//
B:2S
Ht l.oS
Pz o.n
is 9
47 CO 19.1L
.
COi / 7 . JZ
CxMm 0' I "7
Citic 0. s 3
-------
COKE OVENS REPORT OF BY-PRODUCTS
o*t« ; J "IS Zst ISC Wf
T-AHOBATOBY mw»FBf/7J2.Vfe -
ItCHI OIL
*wem iiguoa: *) cue k* inns
OiitT mcjucuob uwi en rui
iou»cf
tO«l
f*n
rufo
«k
A.C. lUuar
S.SX1
,f*r£
2,C/S i
k.'f
« ».•. to i *,«.
*.C, vittl
.1 7Z
. SB J
/C.7J
riPTP -
»
•»* ffwllj
i.». "e
I 100 *c
'»l Ml
* l?5 *6
i 15b *c
SCURCC
»»¦
1 170 *C
*.C. nili
2- *7 '
0«f. "C
4t»p nl 1
fS 7
rt»ldw«
SP. c°.
.*} 7
TEMP £
26,
P.H.
LIBIT OIL !¦ Oil
mk inn suutiTORi
e»»r. pf« loco eo. n.
AMOmM lIQMI
uwT eu smu
tMiei
• *.¦. '« 1 M.
Sact
/.J
r a 6S.
/• 4?
ktnitlliW -
•
T(*p r
S2
tf«-b»n»»llt»4
CAS AKALYSIS
i • ¦
SOURCE
KK BUILDING
A 1 B BATT.
lomct
s». e»» "it
it./CU
i Hjt
KINO
BUST F.
COKE OVEN
BLAST P.
COKI OVEN
-
DATE
7/*/St
7/2
TIME
0:2 p
B:*e
. ..
X h2
i
iS, > '
£.3 1
Sf.
X 02
C.pS
c .f&
e. * 1
p. $ f
X NZ
SJ.01
J.J 6
V1.1 1
J.21
ch4
8. 0 )
l/.JS
/.* 1
X If • co
SEALANT OIL
CO
jo.e>Z
S.Ji
/9.7V
S.f2
CO 2
l 7.
/*. 72
2. /
- Sp sravuy —,C2»U
2,*SB
o.'i5
2.f 7
Pour ppiflt 2 *
*
9,HS
0. OH
C. V«
- ?)i *rfWatinn Tpnp. % dist. fraction B-T#U"
18
S't
) 13
S2 Z
.• ... p ¦¦-
k,*nas itff
m
7/2
hi 0.1 &
i' * 9, t 1
t.^2
Ce «¦*>
.
CJ(. 9. 11
e*nt p. 93
-------
COKE OVENS REPORT OF BY-PRODUCTS
lit*' DI L
C*I11 MC3UCM0* IISM oil tTill
tOiUCt
TOTil
mnt
riifo
m
*.C. Ilqvar
li.l. TP •».»,
*.C. •••(•
<»(•
nptp
•-
.8* 7
-
*t
7 It
f 100 K
% 175 *c
mi in
i iy> *c
yj
SOUICJ
Mt
t 170 K
74/
*«C, Mill
o.». H
2J2
tf««e vtl 1
fllldttl
3.
SP. G».
TEMEL -F_.
P,H.
o*T« "• iMLX^JUk Z±s
iawqratory number r7cj§u-2ti
iMOHI tX) GM"5 »t« llU*J
lien on ta*B»moa on
Mi *nt» S*TuS»TO»S
©m* *n loco cu. n,
iMiOHit uqua
KOHT til ttlU
tout a
tlx
• 1.1. TO 1 ».«.
k«ni«Mi»4
dwbtucl li*4
.0C,
CAS ANALYSIS
SOURCE
KK BUD.DINC
A 4 B BATT.
JCJ>CC
s». o>»tir?
«1./CU
I HjC
KIND
BUST F.
COKE OVEN
BUST F.
COKE OVE
DATE
A/S* b//*AjT/*
3-, J
TIME
% h2
H.-bl
ff.Jt
f.or
f7. 7 3
' * A J* *"
fC'Z6
V, &
I o2
c.cZ
o> 11
0.2 Z
D, 2C
X «2
Sf.*ig
I. vf
Ht.tZ
2,£ 0
ch4
p. 01
2U I 1
7./ f
Z
SEALANT OIL
CO
2C.Z?
f. Jf
10.
S. -7 J
CO 2
11. ?J
2. / 7
t 7¦ a>
2.fC
• 5P gravirs ¦—,C2Hi
y
i,Ji
O f "
X
Pour do int C2H»
s
c>. vi
c- els
c, v V
$ f
s /.«.
}J o
SI o
• ¦¦ —
zzZI
G*aD/i/& HO —
JLi-L
±i.
/. SsJ
Vi
CP*
CO
49
i. ->c
JL&-
.(iPj.
MR
2JLJJL.
f-'i
tir
-------
APPENDIX F
LABORATORY DATA SHEETS
-------
-
*n fn
lmrg»-r«no
? B fc
2 is
00 6 o
-j .
* b w
M
§S£
(P r +
'? fc *
N
oo
OQ
-J X
8 # S
r B B
3 J 8
•*> "V
rr» Oj fj —
VP V -
4>
i" —. C **<
N> -J -r>
in
I?
« m r Mf
mv o»*
jon-'r- -n
K
P-> U)
A -r>
'— J> 1_
X> jo *,
o; -. F
•J -J o
w
S $
* K
x> -
r o
-» N
*» £
r ** k>
358
^ 10
^ ^ JU
- -D •
Cu
,X>
£ £
— fo CU
*r % *
_ X)
00 G\
* i
S
E
t- I
-j
r
JU
"o o
OJ ut
lA CM
O N>
¥
2
on
%
N»
X> -
-e> N>
- 6"
Ui
fc
_ X) -
«?> G" 9
-fc ¦*
W fj V\
~ >
° &
Cm
N
"J K
^ gl lw
r £ K B
? J) i W
xi in in iu
in t»
£ (U Uj
6- £ -r>
K
E s 5 &
-J Lw UI jS>
(T x> -j tr
- Vj
— K> ui N
f ^ X NJ
5 s it >u
c( w &
O O o
S ^ K
U| UI UJ
O o o o
«n I S I
8 8
k» ^ r
ttsr Mc
FiwfE8.<£
S^LSSk
sm*m
XV
pj
3>
r
z.
pi
3,
2
J>
r
£
m
3
H
C:
f
ft z.
- Q
z -<
c*
3 o &
Sf?"
fp IP
13 s
- n
? r
s*
^ 2, v* $
r M *¦
c » ¦»
» O K
r a <.
o
en
- S
S
fsj
-------
LABORATORY ANALYSIS
FORD SSECO
SAMPLES: Two 250 ml samples of quench tower water from
Rouge Steel Company "C" Coke Oven Battery
DATE OF SAMPLE: July 1, 1986
ANALYSIS REQUIRED: Total dissolved solids
METHOD OF ANALYSIS: Filterable Residue, Method 160.1,
RESULTS: Sample 1 - 205 mg/1 Sample 2 - 207 mg/1
ANALYST: A. V. Haga
Storet No. 70300
-------
APPENDIX G
SAMPLE CALCULATIONS
-------
SAMPLE CALCULATIONS
CAS FLOU ANALYSIS
SOURCE - "C" COMBUSTION STACK-COMPLIANCE TESTS
TEST - 1
MEASURED DATA
STACK DIAMETER
DS
132.0
IN.
STACK CAS TEMPERATURE
TS
343.
DEC F
STACK STATIC PRESSURE
PSP
-0.58
INCHES H20
BAROMETRIC PRESSURE
PBAR
29.25
INCHES HC
PITOT TUBE COEFFICIENT
CP
0.78
AVERAGE SO. ROOT OF VELOCITY PRESSURE
DELPU
0.221
IN.H20**.5
VOLUME X C02 (DRY BASIS)
XC02
18.2
Z
VOLUME I 02 (DRY BASIS)
Z02
4, &
X
VOLUME Z CO (DRY BASIS)
ICO
0.0
X
VOLUME Z N2 (DRY BASIS)
ZN2
77.2
X
-------
SAMPLE CALCULATIONS
GAS FLQU ANALYSIS
SOURCE - "C COMBUSTION STACK-COMPLIANCE TESTS
TEST - 1
MEASURED DATA
STACK DIAMETER
DS
132.0
IN.
STACK CAS TEMPERATURE
TS
343.
DEC F
STACK STATIC PRESSURE
PSP
-0.58
INCHES H20
BAROMETRIC PRESSURE
P6AR
29.25
INCHES HC
PITOT TUBE COEFFICIENT
CP
0.73
AVERAGE SO. ROOT OF VELOCITY PRESSURE
DELPV
0.221
IN.H28*».5
VOLUME X COS (DRY BASIS)
5X02
IB.2
Z
VOLUME Z 02 (DRY BASIS)
Z02
4.6
X
VOLUME X CO (DRY BASIS)
ZCO
O.O
X
VOLUME X N2 (DRY BASIS)
ZN2
77.2
7.
-------
SAMPLE CALCULATIONS
MOLECULAR UEICHT OF DRY EXHAUST CAS MUD
MUD = 0,44 > ZC02 + 0.2B • ( ZCO ~ 7.H2 ) ~ 0.32* X02
MUD = 0.44 » IB.20 + 0.28 * ( 18. + 77.20 ) + 0.32# 4.600
MUD = 31,10 LB/LB-MOLE
MOLECULAR UEICHT OF UET EXHAUST GAS MWU
MUU = ( MUD /100.) * ( 100.- XM ) + 0,18* ZH
MUU = ( 31,10 /100.) » < 100.- 10.11 ) + 0.18* 10.11
MUU = 29.77 LB/LB-MOLE
STACK GAS PRESSURE PS
PS = PBAR * < PSP / 13.6 )
PS = 29.25 + C -0.5800 / 13.h >
PS = 29,21 IN, HC,
STACK GAS VELOCITY AT STACK CONDITIONS
V S
VS = 5128.0 * CP • DELPU » SQRTUTS + 460.) / < PS • HUU ))
VS = 5120.0 * 0.7800 • 0.2206 * SQRT<< 343.2 ~ 468.) / ( 29.21 # 29.77 ))
VS * 848.0 FT./MIN.
STACK GAS VELOCITY AT STANDARD CONDITIONS VSTD
VSTD = 17.647 * VS # PS I ( TS + 460. )
VSTD = 17.647 * 848.0 * 29.21 / ( 343.2 +460. )
VSTD » 544.2 FT./MIN.
-------
SAMPLE CALCULATIONS
STACK AREA - BOUND AS
AS = PI * ( DS **2 ) / 4. i 12.**2
AS « 3.142 * ( 132,0 ««2 ) / 4. / 12.**2
AS = 95.03 SO. FT.
STACK GAS FLOU OS
OS = VS * AS
OS - 948.0 • 95.03
OS = 00560. ACFH
STACK CAS FLOW AT WET STANDARD CONDITIONS QUSTD
QUSTD = VSTD * AS
QUSTD = 544.2 « 95.03
OWSTD ¦ 51710. WSCFH
STACK GAS FLOW AT DRY STANDARD CONDITIONS ODSTD
ODSTD = OWSTD • < 1. -( XH /100.))
ODSTD = 51710. #(!.-( 10.11 /100.))
ODSTD = 46490. DSCFM
-------
SAMPLE calculations
particulate analysis
SOURCE - »C- COMBUSTION STACK-COMPLIANCE TESTS
TEST - J
MEASURED DATA
METERED SAMPLE VOLUME
METER CORRECTION FACTOR
AVERAGE METER TEMPERATURE
AVERAGE ORIFICE PRESSURE DROP
VOLUME OF H20 CONDENSATE
WEIGHT OF H20 ADSORBED
NOZZLE DIAMETER
TOTAL SAMPLE TIME
WEIGHT QF PROBE CATCH
HEIGHT OF FILTER CATCH
VM
39.800
ACT. CU. FT
DGMCF
1.0020
TM
66.
DEC F
DELH
1.59
INCHES H2tt
VI
78.0
HL
VSG
15.6
GRAMS
DN
0.5000
INCHES
THETA
60,
MINUTES
UPROBE
0.0274
CRAMS
UF
0.0076
CRAMS
58
—* —— i m —
VTSTD = 43.71 CU. FT.
PERCEN^MQisruftE IN EXHAUST CAS
W = 100. • vuSTD / VTSTD
01 s * 4.418 / 43.71
** ¦ 10.11 X
nozzle area
"" - " " ' ON »2 , / 4. ,
* I l« • I 0.5000 ..2 ,l4i, 1? ,tJ
= 0.00136 so. FT.
-------
SAMPLE CALCULATIONS
ISOKINETIC RATIO I
I = 100. * VTSTD / ( THETA » AN * VSTD )
I = 100. » 43.71 / ( 60.00 » I.00136 « 544.2 )
I = 99.17 I
TOTAL HEIGHT OF PARTICULATE HATTER COLLECTED W»T
UPT = UPROBE + MF
UPT = 0.02740 ~ 0.00760
UPT = 0.83580 CRAMS
PARTICULATE CONCENTRATION AT STACK CONDITIONS CSTK
CSTK " 15.43 « 17.647 » PS « UPT / ( UTSTD « ( TS + 460. ) )
CSTK = 15.43 * 17.647 # 29,21 # 0.03500 / ( 43.71 « ( 343.2 * 460. ) )
CSTK = 0.08793 CR/ACF
PARTICULATE CONCENTRATION AT DRY STANDARD CONDITIONS CDSTD
CDSTD = t5.43 » UPT / VhSTD
CDSTD = 15.43 » 0.03500 / 39.29
CDSTD = 0.01375 GR/DSCF
PARTICULATE CONCENTRATION AT UET STANDARD CONDITIONS UCSTD
UCSTD * 15.43 » UPT / VTSTD
UCSTD = 15.43 « 0.03500 / 43.71
'JCS7S r Sf/USCF
PARTICULATE FLOU RATE UR
UR » 0.132 * UPT * OVSTD / VTSTD
UR => 0.132 # 0.03500 » 51710. / 43.71
-------
•c- COKE OVEN COMBUSTION STACK
EXCESS AIR DETERMINATION
CALCULATION BASED UPON THEORETICAL COMBUSTION REACTIONS
COMPOSITION BATA YIELD;
NAME OF TEST;
1
i
3
DATE OF TEST i
7/I/B4
7/1/86
7/1/86
PERCENT EXCESS AIR:
50.39
53.23
42.27
PERCENT C02i
10.20
18.40
19.00
PERCENT 02:
4.to
4.60
4.01
PERCENT CO:
0.00
O.00
o.eo
BASIS FOR EXCESS AW DETERMINATION — EXAMPLE ; TEST NAME — I
COWOSITIM OF COMBUSTION CAS IS: 0.99 1 COKE OVEN CAS: 100.69 X BLAST FURNACE CAS; (.00 X NATURAL U
REACTIONS OF COMBUSTION/COMPONENT BALANCES
COMBUSTION
COMPONENT QUANTITY SUPPLIED
COMPONENT
NAME
COMBUSTION REACTION
EQUATION
PRODUCTS OF
COMBUSTION
COKE OVEN BLAST
CAS FURNACE CAS
NATURAL
CAS
COAL
H2
H2 ~ 0,5*03
H20
0. 00
9.05
0.01
O.OB
02
-1.0*02
NONE
0.00
0.17
0.10
0.00
N!
NONE — INERT
N2
0.00
48.10
0. BO
0.00
CO
CO * 0.5*02
C02
0.00
21.26
0.B0
O.OO
CH4
CH4 * 2.9*02
C02.H20
O.OO
1,88
0.00
0.09
_C02 "
NONE — INERT
C02
0.08
17.32
0.00
0.09
C2H4
C2HI t 3.1*02
2.0*CO2 >2.0*K2O
o .00
0.40
0.00
0.00
C2H4
C2H* * 3.0*02
2.0*C02,2.0*H20
0.00
C346
C2H6 ~ 3.5*02
2.0*CO2,3,0*H20
o.ot
0.10
0.09
0.99
C3H8
C3H0 ~ 5.9*02
3.O*CO2,4.0*K2Q
0.00
o.ig
O.OO
1.99
BTU
VALUE SUPPLIED FROM FUEL ANALYSIS
0.00
116.09
0.9«
I.
S
S * 1.0*02
502
0.00
O.OO
0.00
9.09
C
C ~ 1.0*02
COS
O.H
D.00
0,00
0.90
-------
APPENDIX H
EQUIPMENT CALIBRATION
-------
ssfco neTio nox no. « r.ALTf«niroN dma
-T—«*-
DATt >6-4-86 IiTD. HFTFR no.: 916592
IN17 l*VL5:PKU MK-HFTER WO.: 7I65B1
bAR . PRESS.: ?9 4? »0 OF TRIAL Si 9
Tfi 1 Al. YIHF £TftNDr.eD WTER DAT A (COSH. FACTOR 1.0035)
TENP DFL P START FINISH MET WX..K1P CORB . UOL
NO. NIN. DC F IN. H?0 CU.FT. CU.FT.' CU.FT. 6CF SCF
1
u 0
76 1
-1.230
502.3*2
SOB.76?
6.400
6, 1V6
6.JI7
'!
M.I
?6.0
-0.240
SOB.7L2
5I5.6IO
6. 846
6.629
6.652
3
15 1
76.0
-0.270
SIS.610
524.126
B.5I6
8.245
B.274
4
15.0
74.0
-0.300
524.128
533.410
9.290
8.9V2
9.023
5
1 a. 0
7fc,e
-0.330
531.418
540.220
6.602
6.583
6.606
6
it.o
7A.0
-0.350
54 0.220
347.616
7.396
7.158
7. 1P3
7
u.o
76.0
-0.M0
547.616
S55.H3
7.907
7.652
7.676
S
5, D
76, «
-0.4*0
535. at
559.905
4.432
4.2HP
4 .303
9
5.0
7 a. a
-0.CIO
559.955
564.782
4.827
4.670
4.66fi
UAL
in.
T* IN
DC F
T-OUT
DC F
NETFR £0I DATA
Dfl P start finish
1N.K30 CU.FT. CU.FT.
stp utn .
SCF
OCLTA
H
COIR .
DEL .H
)
76.3
76.3
0 .500
42.373
46.804
6 . ?24
1 .79
1 .611
¦a
63,7
60.7
0 750
48.804
55.747
6 664
I .76
1 .79
3
68.0
83. 0
1 . 000
55.747
64.412
e ,:*7«
1 .7o
1 .76
4
91 .7
H6 .0
1 .250
64.412
73.914
9.024
1. b 4
I .84
S
93.3
96.0
1 .500
73.914
B0.B7I
6.590
1 64
1 .63
6 ' "
*4.-0 '
-fT7 7—
—t.7SB-
- BP BT1 9B74T?
7.TTT-
T.91
1 .RO-
7
95.0
69, 0
2. 000
an.437
96.524
7.653
1 .01
1 ,K n
B
96.0
90,0
3.500
96.524
111 .043
4.276
1.61
1 ,7V
9
96.3
90.7
3. 900
101.(43
105.965
4.660
1 .83
1 .61
*
AVERAGE NETEa CORRECTION FACTOR 1 1.0020
AUFRACC CORRFCTED CALIBRATION CONSTANT (DELTA Hit 1,80
r > ¦
calibration eboat ions,
r.DSRFCTEl NETFS UQLUW (SCF)'
•( (PtAB* ( DF.lTA P/13. 6) )/??. 92)
CALIBRATION CON6TANT (DELTA H)>
B.131T3»DELTA P*PtA*/ AVI*460UTIHf/(CU.FT.»1)»»2.0»
• •WQOTNOTEl STANDARD CONDITIONS (STP)i
-------
•s
h-
i
T> - **,
— __
.3" V "* -
° f
Fnbi "l °f
fv.-br- '•
3c 8 o
jrf
2 79.C
??9
J2- 7/
0- 7Q>0
^ 7^
2 7^
w>o
>r/
7r/
M<0
>9?¦ 0
'
/3?
/3S
/3J-
/io
/7 7
/^5~
//7V
//5
//7
/9- i
//o
/o?
/C/.-i
/ 0 2-
/CO
: f/"/
<71
?o
73-g
1 <7
^7
: 6*8
6 C
4*/
: £7. o
r /
5~C
HQ.I.
^c,
j?g
33
-------
INITIALS JIB<-
3
Tax
sum
FORD MOTOR COKPAOT
STATIONARY SOURCE DfVJR0Ny.EN7AL CONTROL
TOW) VIKD TUKNEL • FJTOT TUBE CALIBRATION
PROBE m. 1* tl Per AS. D*TE *c
S~-Zg-g^
VT1
rOZZLE
SIZE
Cy " Trfc
RLHARKS
LCV
> yy'7
2CS
2i? ^
20 5
J.O
t
JLL
2G
AlH
Y
^3
V..' 1,3v Ls??
¦ 77
7?
±52
»/»• Lill£3j
¦ 23
asl
'/V UyjLsgz
12.
«VV7
3S IS^
_2^-
^3.
JtL
'33 lS7«J
iz
4£2
Vifc* L 3£ Ugp
74
^2
v1
Ml
lib" 1 AgC 1.71S
•3Cg
WO
IhL
.IcO I • T'S
,Cr 16?
'/v I.I Ml
.M
iei
'j£ I .<-fll-H5
Jc&
V* ucZAJll
31.
.GO
.-7^ 'AT I. g? Uy;
* ^
, 5
fe L 3Vt,w>
Jill
12m
2L^
dA Li£2
79
2X
7 1
90
21
79
sj?
't
c
0
M
, 0 Cp
s
*3
1
— -r
FAX
mint .1!
!E
SFIED
/la
/*'
% "
LOV
*11
.IS
KICIVM
.13
.19
.n
HIGH
. 7*f
. 73
.7* •
average
,7f
'77
-------
IKJTI,
TkS
JLLLL2.
rota hotor eoKPA?nr
STAT1PKAKV lO'JRCt tWlUDSttSTAL COPTROL
row V1K5 TWKtL - UTOI TVIt CaLIUUTJON
AUWOBl IP. 7*Ptote *2
¦ —* nwi—f i ¦ ^igr*i'i|ygiy
bate.
^Jj
1 MB
AE_b55.
33351
111.
A>
vsi
{» • ?P.~
KDUNCS
u>v
/£
£L
iJ Uil
JlJa Ldi.
*ui
.v>
513
21 |-3>
-Jl
.2,1 I hS9
y? ^3
Sli
AO
S7H|
,«D
iiis: -wfeH
,21 I .HSS
^ Uh
m
2L
H%
•fi ">5
7.1 t-HSg
'4
J5L
33l
ill
1£L
TL
10
,11
Ul I ^
it
Jl
SM
B6
,57V
SO
^Ua
^6 I
,72?
7^
37S
, 325 LmlL.
i75Zl
J2iL
?7 llcfr
Uzi Uil
37 L&sg
LJ7 .&<&?
,37 \,bct
V* \<$9
2L
9C
'/¥ LAO ."3 .7?
'J±
a
1,60
62.
1» L Q
!Li Las
v^- Lm:
~?7<
2^
7"J Sj
."Pi
- 74:
21
, 79
7£_
2 £
ye
VICH
,S5 1 ,~)h £
3k.
-ID
3*L
¦ it
¦11 l.ns
V'fc r>c»
ifi.
so
Sk LM
JsS
55 I TU
¦U I if?
Sk I 1m8
.St LjjlZ
.V2, I Qkl
Vm L
w
ikl
.19
//
53
yy I .<&*>
v*
Si
j3&
5H3i
% 1 js
•CH3
01
!
-eJl
¦jS
• SSI
.*1
Fan
E
SFELD
^/t,
*/v
10V
.<0
.Ti
.3D
KEPIUM
, 74
f 7?
»7?
MICH
.H
.rj
V •
averam
.IS
.Ti
.^c
c
0
h
?c'
!6
T
C
.T1
-------
WGIIVJO
Visible Emissions Evaluation
(usEPA REGION v) Ja 7 15 -i->os_ ,
w. e. a. ?. c.d. cenT.p.c^r- -i or t
OF-OPERA^OiJ COH?U4*ICtT
facility: C CQKc oaxe; \ *
observer: "P-V O'co*in^
START: amXpm— ,,,.,¦ .,,,,, _
FINISH * 1.0 'Ot , .|»m pm B
MM
0
15
30
45
¦ EMAAKS
MM.
15
30
45
¦ E MARKS
Srturr* * CoMB<*STiOd STACK
0
0
Q
O
O
30
Q
O
a
1
2!
D
P
a
.
31
O
o.
2
a
0
o
0
32
E
9
o
Observation *oin*:NW 0^
3
1UL_J
c>
0.
O
0
33
o
3
Q
ftirf **oAfc 'B'R'Pfcf
4
0
0
Xi
0
34
0
0
2
S
0
Q
»
0
35
c
a.
Q
distance from; ,1^0 tf{
6
Oj
Q
5
S'
36
r*
o
O
direction frr>m; . SW
7
5
£
0
0
.stout
37
/J
*
0
source height;
8
D
Q
c>
d
38
/o
jT
.r
wind direction
9
0
O
CP
o
39
O
a
o
1
10
C
o
0
o
40
H
0
D
f
II
o
D
o
d
41
E
o
0
wind speed . H?M
12
Q
0
0
o
«2
H
a
0
sky condition
background
•mb. temp. °F kQ!
13
o
0
0
0
43
B
S
A
sJ
0
01M4M2
~snara
44
loVT
E S0f
45
TdWiR
rel.hum. %
C3HHHE
46
- "*"•
color of emissions ...
BH
ffl
0
H
47
£T&* i*
»
other;
EnrcEE
48
EEHEH
49
1,11
EEM05!H
50
EDHSKR]
51
EEHSEE
52
23
H
53
Remarks
24
ft)W6R.
54
25
I—
TO
55
26
O
0
jl
£Q*>P.
56
27
0.
o
o
57
•
26
£>
Q
3
58
D
0
0
29
G.
O
o
59
5
•Ml
0
"W
Jj
0
-------
Visible Emissions Evaluation Form
(USEPA REGION V) ^ ^
FACILITY: C CO KB 3ATT
START ;
FINISH :
iOifil
J&LOI
.am
Xpm—
date: .
observer: \
A. Cycodncut
-am^tfpm—.
Source: Co*B*STk>w s*rA.C<
Observation Point: ^ Qr
1>nC HoAE frt.PfcC
urn
IS
30
45
N(MA*KX
31
300
32
33
34
a
[1
15
30
00 &
£2
o
45
«CIU*U
35
a
distance from;
direction from;
source height;.
6
gnl> 36
*>W
10
5im37
/o
8
38
0&
9
10
Q
390 0 0 O
EEEBH
wind direction .
wind speed
sky condit ion .CX * jfcAgl
background
•mb. tamp. °F .
••I.hon^«
color of emissions.
"|Op
12
13
£>
14
15
16
Di
17 O
18
other;
19
20
Remarks;....
21
22
a
23
24
25
26
27
5b
28
29
iai&id[[>iei
EHHRH
£*t> •*
0
Q
a
51
52
CD
ooo
a
a
Q
53
54
55
56
57
58
59
Observer! 5iari»lur»C>»gS[GJ?Gc*~£) L«sl C«rt. Dele..
¥¦ $(,
• Wm « •
-------
Emissions Evaluation Form
(US EPA REGION V)
3 OF fe
It
FACILITY:
j
date: 1 ~
observer: D.A. o'cqwoQ.
¦fV-*V
START!
FINISH
Source; STftfA0
I • *1
.am pmX
.am—pm2L
Observation Point: K3UJ of
C* x Roaq feata&f
Mm
0_
15
So
45
KMMU
M
0.
15
30
45
Diiultu
O
o
3
o1
D
O
o
Q
l
o
c>
(3
o
«
2
O
o
o
_2
o
0
0
0
32
O
O
0.
0
3
o
o
o
o
33
Q_
Ql
a
S2.
4
g_
o
Q
o
34
O
a
0
Q.
5
0
0
O
9
35
0
a
o
a.
6
a
o
Q
o
36
O
0
o
0
7
&
5
5
o
37
O
5
I
0
8
£
lo
5
o
38
_s
5
o
p
9
o o
o
o
39
O
o
o
10
olo
0
©
40
O
o
o
1
II
o
o
b
o
41
0
o
0
12
o
0
o
42
o
o
o
13
o_
O
o
43
0
o
o
14
o
o
44
0
o
o
15
o
o
o
o
16
o
o
o
0
17
O
0
5
47
o
0
o
18
o
0
0
48
o
0
o
19
0
O
0
0
49
o
o
Ql
20
—
-
o
a
1
50
0
0
o
21
o
o
0
1
0
5|_
0
0
0
22
o
b
c_
o
WS0.T
52
0
0
23
o
o
o
o
S3
o
o
24
o
o
o
54
o
©
25
£>
o
o
0_
55
o
o
26
Q.
o
Cl
56
o
o
27
Ql
o
Ql
3J3HI3E
26
o
O
0
Q
EEESK
[29]
o|
[01
o
l2l
distance from;,
direction from;
source height;.
Ho m
^us)
wind direction "
wind speed 5_-.L^l ,
Bky condition ..
background ..
•mb. temp. °F ...7Q
re I. hum. %
color of emissions
other;
Remarks;
©W*fc*H. ATWA-.
-------
Emissions Evaluation Form
(US EPA REGION V)
A b
facility: C,' COKC date: "1"
FINI$M * | ' ^ ffrn._Pf*|?^
Ml*
0
IS
30
45
•l»UO
15
E5J
45
• tlUMI
Sn.,r*.- C.«H*i* R*AB WD*c
4
§
5
o
rfistane* fmm; |^0
6
01
7
a
Tft-t
Source height-
8
Hid
ol
wind direction .
9
sasas
10
E31SH3
II
313335!
wind spaed ^.1 ..J
12
42
©
o
sky condition
13
43
background
14
44
amb. temp. °F .Til...............
15
rel. hum. %
16
color of emissions
%
other;
17
47
18
48
19
I—
49
20
50
21
si
•
22
0
333
bntSLl
23
o
aaa
i
Remarks; __ „
~I3HEH
25
3
H
a
a
B
55
26
K
3
H
«
SJE1H3E3
57
•
Easas
58
SH00E
59
Observers Signature^
Last Cert. Date.
-------
Visible Emissions Evaluation Form
(US EPA REGION V)
5 of fc
facility: "c" cpkx fcATTW date: 7- l-8fe
OBSERVER; 0.A, Q'COMfsJOR
START: Z'y'S am__pm£, , , ¦ , ,
FINISH I 3 . * mm __ m X
HID.
0
IS
30
45
HEM4MMS
MM
~ass
MMM
Soured* COK&ulT.OU AlfccK
0
o
o
0
Q.
• -
30
assp?
•
1
o
0
O
0
sMSEE
2
0
o
0
0
EBHBB
I
Observation Paint „
3
o
o
0
o
Etsrasa
|4 OF
4
o
o
0
o
23HEH
t«t*r
5j
o
0
o
$
35
HHHH
distance fmm; 1^0
6
10
5
5
—
1
36
SEHR
7
6
5
o
37
KRflH
source heioht?
8
0
0
0
0
38
E0HH
wind direction .. 5>?.
0
o
p
0
o
39
SlFlfSlKl
10
0
0
p
0
40
0f IHH
1
II
0
0
0
0
41
'MP
wind speed
12
©
o
o
0
bhx>
42
BFIBIE
~
sky condition
13
0
0
STAStT
background
¦mb. temp. °F
14
Q
Q
o
5.
3R IN
15
o
o
0
&
•J3HEI
rel. hum. %
16
o
O
a
0
sasa
color of emissions.... ......
o
o
0
0
47
BH30i
*
ot he r; _ _ _ _
18
0
0
0
0
48
t] vj
_
19
a
0
Q.
0
49
3030
20
5
o
0
a
S1ART
50
0SE3I
21
o
o
Q
o
7«T
51
30EP1:
22
§
3.
£
Q.
52
B3[I3
23
0
Q_
J&
O
S3
fflSHHi
Remarks; I _ ...
_ Ax _ ...
24
T7
Q_
c
LO
54
0HBE
25
£
o
0
£
55
HEHEi
26
0
Q_
0
A
56
BHEEJI
27
£
0
0
Q_
57
SE3E2I
IJ
3
5
JU
58
EEEHI
** « a /i /
T7i
o
5
5
/
59
EBBEI
WW M---W tmmmmmmm
-------
Visible Emissions Evaluation Form
(US EPA REGION V)
(o OT
------- |