United States	Office of Water	EPA 440/5-84-026
Environmental Protection	Regulations and Standards	January 1985
Agency	Criteria and Standards Division
Washington, DC 20460
Water
Ambient
Water Quality
for
Mercury -1984

-------
AMBIENT AQUATIC LIFE WATER QUALITY CRITERIA FOR
MERCURY
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
ENVIRONMENTAL RESEARCH LABORATORIES
DULUTH, MINNESOTA
NARRAGANSETT, RHODE ISLAND

-------
DISCLAIMER
This report has been reviewed by che Criteria and Standards Division,
Office of Wacer Regulations and Standards, U.S. Environmental Proceccion
Agency, and approved for publication. Mencion of trade natnes or coiuraerc. ial
products does not constitute endorsement or recommendation for use.
AVAILABILITY NOTICE
This document is available to che public through the MacionaL TechnicaL
Information Service (NTIS) , 5285 Port Royal Road, Springfield, VA 22161.
11

-------
FOREWORD
Seccion 304(a)(1) of che Clean Water Acc of 1977 (P.L. 95-217) requires
the Administrator of che Environmental Protection Agency co publish criceria
for water qualicy accurately refleccing che lacesc sciencific knowledge on
che kind and extent of all identifiable effeccs on healch and welfare which
may be expected from che presence of pollucancs in any body of wacer,
including ground wacer. This document is a revision of proposed criceria
based upon a conaideracion of conniencs received from ocher Federal agencies,
Scace agencies, special inceresc groups, and individual scientiscs. The
criceria contained in chis documenc replace any previously published EPA
aquacic life criceria.
The cenn "wacer qualicy criceria" is used in cwo seccions of che Clean
Wacer Acc, seccion 304(a)(1) and seccion 303(c)(2). The cerm has a differenc
program impacc in each seccion. In section 304, che cerra represencs a
non-regulatory, scientific assessment of ecological effeccs. The criteria
presented in chis publication are such sciencific assessments. Such water
qualicy criceria associaced wich specific scream uses when adopced as Scate
wacer qualicy scandards under seccion 303 become enforceable maximum
accepcable levels of a pollucanc in ambienc waters. The water quality
criceria adopced in che Scate water quality standards could have che same
numerical liraics as che criceria developed under seccion 304. However, in
many situations Scates may want co adjusc wacer qualicy criceria developed
under seccion 304 co reflecc local environmencal condicions and human
exposure paccerns before incorporation into water quality scandards. Ic is
noc uncil cheir adopcion as pare of che Scate water quality standards chac
che criceria become regulatory.
Guidelines to assist the States in the modification of criceria
presenced in chis document, in the development of water quality scandards,
and in ocher wacer-relaced programs of chis Agency, have been developed by
EPA.
Edwin L. Johnson
Director
Office of Wacer Regulacions and Scandards
i i i

-------
ACKNOWLEDGMENTS
J. Howard McCormick
(freshwater author)
Environmental Research Laboratory
Duluch, Minnesoca
John H. Gencile
(salcwacer auchor)
Environmencal Research Laboratory
Narragansecc, Rhode Island
Charle9 E. Scephan
(document coordinator)
Environmental Research Laboratory
Duluch, Minnesoca
David J. Hansen
(salcwacer coordinator)
Environmencal Research Laboratory
Narragansecc, Rhode Island
Judy L. Crane
University of Wisconsin-Superior
Superior, Wisconsin
Clerical Support: Terry L. Highland
iv

-------
CONTENTS
Page
Foreword		iii
Acknowledgments 		iv
Tables			vi
Incroduccion 		1
Acuce Toxicicy co Aquaeic Animals 		6
Chronic Toxicicy co Aquacic Animals 		8
Toxicicy co Aquatic Planes 		9
Bioaccumui ac ion				 .	10
Other Data			17
Unused Data					18
Summary ..... 		20
Nacional Criceria 		21
Re ferences
76

-------
TABLES
Page
1.	Acuce Toxicicy of Mercury co Aquacic Animals 		26
2.	Chronic Toxicicy of Mercury co Aquacic Animals 		36
3.	Ranked Genus Mean Acuce Values wich Species Mean Acuce-Chronic
Racios		3d
4.	Toxicicy of Mercury co Aquacic Planes 		44
5.	Bioaccumulacion of Mercury by Aquacic Organisms 		46
6. Ocher Data on Effects of Mercury on Aquacic Organisms 	 48
vi

-------
Incroduct ion*
Mercury has long been recognized as one of che most toxic of che heavy
mecals, buc only recently was ic idencified as a serious pollucanc in che
aquatic environment (National Research Council, 1978; National. Research
Council Canada, 1979; Nriagu, 1979). Elemental mercury is a heavy liquid ac
room temperature and was considered relatively inert, because it was assumed
chat it would quickly settle to che bottom of a body of wacer and remain
there in an innocuous scate. However, elemental mercury is oxidized to
mercury(II) under natural conditions (Wood, 1974). Furthermore, mercury(II) ,
whether discharged directly or produced from elemencal mercury, can be
mechylated by both aerobic and anaerobic bacteria (Akagi, 1979; Beijer and
Jernelov, 1979; Callahan, et al. 1979; Jernelov, 1971, 1972; Jernelov, ec al.
1975; Nacional Research Council, 1978; Summers and Silver, 1978; Thayer and
Brinckman, 1982; Wright and Hamilton, 1982). Mercury(II) can also be
methylated in the slime coac, liver, and incescines of fish (Jernelov, 1968;
Matsumura, ec al. 1975; Rudd, ec al. 1980b), buc mechylacion apparently does
noc occur in other tissues (Huckabee, et al. 1978; Macida, ec al. 1971;
Pennacchioni, ec al. 1976) or in planes (Czuba and Morcimer, 1980). (The
certn "mechylmercury" is used herein co refer only to monomechyIraercury, and
not to dimethylmercury or any other monoorganomercury salt or diorganomercury
compound. Inorganic tnercury( II) will be referred to as "mercury(II)".)
The imporcance of methylation may be reduced by demethylation (Bisogni,
1979; Raraamoorthy, et al. 1982). Demethylation might provide a feedback
*An understanding of che "Guidelines for Deriving Numerical Nacional Wacer
Qualicy Criteria for che Protection of Aquatic Organisms and Their Uses"
(Scephan, et al., 1985), hereafter referred to as the Guidelines, is
necessary in order to understand the following text, tables, and calculations.
1

-------
mechanism chac controls che concencracion of raechylmercury in sedimenc and in
water. Jernelov, et al. (1975) ciced a case in which low levels of raechyl-
mercury in fish from a highly conearainaced area coincided with scrong
raechylmercury degrading accivity in che sedimenc. Demechylacion also occurs
in fish (Burrows and Krenkel, 1973; de Freicas, ec al. 1981; Gage, 1964;
Olson, ec al. 1978), probably as pare of che depuration mechanism.
Numerous faccors such as alkalinicy, ascorbic acid, chloride, dissolved
oxygen, hardness, organic coraplexing agencs, pH, sedimenc, and cemperacura
probably affecc the acuce and chronic coxicicy and bioaccurauLacion of che
various forms of mercury (Amend, ec al. 1969; Baker, ec al. 1983; Feich, ec
al. 1972; Hahne and Krooncje, 1973; Jernelov, 1980; Ramamoorchy and
Blumhagen, 1984; Ribeyre and Boudou, 1982; Rogers and Beamish, 1981, 1983;
Rudd, ec al. 1980a; Rudd and Turner, 1983a,b; Sharma, ec al. 1982; Scokes, ec
al. 1983; Tsai, ec al. 1975; Wren and MacCrimraon, 1983; Wright and Harailcon,
1982).
A variecy of scudies have been conducced on the effecc of selenium on
che acuce coxicicy of mercury (e.g., Birge, ec al. 1981; Bowers, ec al. 1980;
De Filippis, 1979; Heisinger, 1981; Heisinger, ec al. 1979; Klaverkamp, ec
al., 1983a; Lawrence and Holoka, 1983; Sharma and Davis, 1980c) and on che
accumulation of mercury from food and wacer (e.g., Beijer and Jernelov, 1978;
Chang, ec al. 1983; Heisinger, et al. 1979; Klaverkamp, ec al. 1983b; Rudd,
ec al. 1980a; Sharma and Davis, 1980c; Speyer, 1980; Turner and Swick, 1983).
Available data do not, however, show chat quanticacive relationships are
consiscenc enough for a variety of aquatic species co enable relating wacer
quality criteria to any of these variables.
Because of the variety of forms of inorganic and organic mercury and
lack of definitive information about their relative coxicicies, no available
2

-------
analytical measurement is known co be ideal for expressing aquatic life
criteria for mercury. Previous aquacic life criteria for mercury (U.S. EPA,
1980) were specified in terras of cocal recoverable mercury, which would
probably be measured as cocal mercury (U.S. EPA, 1983a), buc boch of chese
measureraencs are probably coo rigorous in some sicuacions. Acid-soluble
mercury (operacionally defined as che mercury chac passes through a 0.43 jm
membrane filcer afcer che sample is acidified co pH ¦ 1.5 Nco 2.0 wich nicric
acid) is probably che besc measuremenc ac che present for che following
reasons:
1.	This measuremenc is compacible wich all available daca concerning
coxicicy of mercury co, and bioaccumulacion of mercury by, aquacic
organisms. No cesc resulcs were rejecced jusc because ic was likely chac
chey would have been subscancially differenc if chey had been reporced in
cerms of acid-soluble mercury. For example, resulcs reporced in cerms of
dissolved mercury would noc have been used if che concencracion of
precipicaced mercury was subscancial.
2.	On samples of ambienc wacer, measuremenc of acid-soluble mercury should
measure all forms of mercury chac are coxic co aquacic life or can be
readily converted co coxic forms under natural condicions. In addition,
this measuremenc should noc measure several forms, such as mercury chac
is occluded in minerals, clays, and sand or is scrongly sorbed co
particulate maccer, chac are noc coxic and are noc likely to become coxic
under natural conditions. Although this measurement (and many ochers)
will measure soluble, complexed forms of mercury, such as che EDTA
complex of mercury(II), chac probably have low coxicicies co aquacic
life, concentrations of chese forms probably are negligible in most
ambient wacer.

-------
3.	Although wacer quality criceria apply co ambienc water, the measurement
used CO express criteria is likely co be used co measure mercury in
aqueous effluencs. Measurement of acid-soluble mercury should be
applicable co effluencs because ic will measure precipicates, such as
carbonate and hydroxide precipitates of raercury(II), that might exisc in
an effluent and dissolve when che effluenc is diluced with receiving
wacer. If desired, dilution of effluent with receiving water before
measurement of acid-soluble mercury mighc be used co determine whether
che receiving wacer can decrease che concentration of acid-soluble
mercury because of sorption.
4.	The acid-soluble measurement should be useful for raosc niecals, chus
minimizing che number of samples and procedures chat are necessary.
5.	The acid-soluble neasuremenc does not require filcracion ac che cime of
collection, as does che dissolved measurement.
6.	The only treatment required ac che time of collection is preservation by
acidification co pH ¦ 1.5 co 2.0, similar co chac required for the cotal
measuremenc.
7.	Durations of 10 minuces co 24 hours between acidification and filtration
probably will not affect che resulc substantially.
8.	The carbonate system has a much higher buffer capacity from pH = 1.5 co
2.0 chan it does from pH = 4 co 9 (Weber and Scumm, 1963).
9.	Differences in pH wichin che range of 1.5 co 2.0 probably will noc affect
the resulc substantially.
10.	After acidification and fiLcracion of che sample co isolate the acid-
soluble mercury, the analysis for cocal acid-soluble mercury can be
performed using permanganate and persulfate oxidation and cold vapor
atomic absorption (U.S. CPA, 1983a), as with the total measuremenc.

-------
Acid-soluble inorganic mercury can be measured by noc breaking down che
organoraercury compounds before using cold vapor atomic absorpcion.
Mechylmercury has been measured using gas chromatography (Cappon, 1984;
Hildebrand, ec al. 1980; Paasivirta, ec aL. 1981), chin layer chromato-
graphy (Kudo, ec al. 1982), and liquid chromatography (Gast and Kraak,
1979; MacCrehan and Dursc, 1978).
Thus, expressing aquacic life criceria for mercury in cerms of che acid-
soluble measurement has boch coxicological and praccical advantages. On the
ocher hand, because no measurement is known to be ideal for expressing
aquacic life criteria for mercury or for measuring mercury in ambienc wacer
or aqueous effluencs, measurement of both total acid-soluble mercury and
total mercury in ambienc wacer or effluenc or boch mighc be useful. For
example, there might be cause for concern if total mercury is much above an
applicable limit, even chough total acid-soluble mercury is below the limit.
Unless otherwise noted, all concentrations reported herein are expected
co be essentially equivalent co acid-soluble mercury concencracions. All
concencracions are expressed as mercury, noc as che chemical cesced. The
criceria presented herein supersede previous aquacic life water quality
criceria for mercury (U.S. EPA, 1976, 1980) because these new criteria were
derived using improved procedures and addicionaL information. Whenever
adequately justified, a national cricerion may be replaced by a sice-specific
criterion (U.S. EPA, 1983b), which may include noc only sice-specific
cricerion concencracions (U.S. EPA, 1983c), buc also site-specific durations
of averaging periods and sice-specific frequencies of allowed exceedences
(U.S. EPA, 1985). The lacesc liceracure search for informacion for chis
document was conducced in May, 1984; some newer information was also used.
5

-------
Acuce Toxicicy to Aquatic Animals
Table 1 concains che primary acute toxicicy data for three classes of
mercury compounds: mercury(II), methylmercury, and other mercury compounds,
chiefly organic. The latter information exists principally because many of
chese compounds were considered for use in treatment of diseases and control
of parasites in fish culture, although their source for environmental concern
is from industrial and agricultural uses for fungus control. Both phenyl-
mercuric acetate and pyridylmercuric acetate have been called PMA. Tests
have been conducted on different formulations which contain various
percentages of active ingredient and the percentages of active ingredient
given by the authors were used to calculate mercury concentrations. When the
percentage of active ingredient was not given for pyridylmercuric acetate, 80
percent was assumed (Allison, 1957).
The freshwater acute toxicity values indicate that the difference in
sensitivity between different species to a particular mercury compound is far
greater than the difference in sensitivity of a particular species to various
mercury compounds. For example, the reported acute values for mercury(II)
range from 2.217 ;jg/L for Daphnia pulex to 2,000 ,Jg/L for the aquatic stages
of certain insects, with a continual gradation in sensitivity among
intermediate species (Table 3). On the other hand, Joshi and Rege (1980),
Lock and van Overbeeke (1981) and Macida, ec al. (1971) found that various
species were 4 co 31 times more sensicive to various organic mercury
compounds than Co mercuric chloride (Table 1).
MacLeod and Pessah (1973) studied che effect of temperacure on the acute
toxicity of mercuric chloride to rainbow crout. At 5, 10, and 15 C, the
LC50s were 400, 280, and 220 Jg/L, respectively (Tables I and 6). Clemens
and Sneed (1958b) found a similar effect of cemperature on coxicicy to
6

-------
juvenile channel catfish; ac 10, 16.5, and 24 C the acute values for phenyl-
raercuric acecace were 1,960, 1,360, and 233 ;jg/L, respectively (Table 6).
The 28 Genus Mean Acuce Values in Table 3 were calculaced as geometric
means of Che available Species Mean Acuce Values (Tables 1 and 3). Acute
values are available foe more chan one species in each of cwo genera, and the
range of Species Mean Acuce Values wichin each genus is less chan a faccor of
1.6. On che ocher hand, a midge was among che mosc sensitive species,
whereas ocher insects were che mosc resiscanc species. The raosc sensitive
genus, Daphnia, is 756 cimes more sensitive chan the most resiscanc,
Acroneuria (Table 3). A freshwacer Final Acuce Value of 4.857 ^ig/L was
obtained for mercury(II) using che Genus Mean Acuce Values in Table 3 and the
calculacion procedure described in che Guidelines. Noc enough daca are
available co calculace a Final Acuce Value for mechylmercury, but che
available daca indicace chac ic is more acucely toxic chan mercury(II).
Saltwater fishes and invertebrates both show wide ranges of sensicivi-
cies co raercury(II). Acuce values for fishes range from 36 ;Jg/L for spoc co
1 ,678 yg/L for wincer flounder (Tables 1 and 3). Among invercebrates a -nysid
has an acute value of 3.5 ;jg/L, whereas che value for the sofc-shell clam is
400 >Jg/L.. Of che 29 saltwater genera for which acute values are available,
che mosc sensitive, Mysidopsis, is 479 times more sensicive than the mosc
resiscanc, Pseudopleuronecces. Acuce values are available for more chan one
species in each of three genera and che range of Species Mean Acuce Values
wichin each genus is less chan a faccor of 1.7. The saltwater Final Acute
Value of 4.125 jJg/L was calculaced for raercury(II) from che Genus Mean Acute
Values in Table 3.
7

-------
Chronic Toxicicy co Aquacic Animals
Chronic coxicicy cescs wich Daphnia magna have been conducted on chree
mercury compounds (Table 2). The renewal and flow-through techniques
produced similar results for mercury(Il), but che renewal technique produced
much higher resulcs £or mechylraercury, presumably because of volacilicy. In
addicion, a chronic cesc wich brook trout on mechylmercuric chloride yielded
a chronic value of 0.5193 pg/L. Boch an early life-acage cest and a
life-cycle cesc on mercuric chloride found adverse effeccs on che fachead
minnow ac all concencracions cested including che lowesc of 0.23 Jg/L. For
mercuric chloride che acuce-chronic racio wich Daphnia magna is less chan 6,
whereas chac wich che fachead minnow is greacer chan 600. For mechylmercury
che acuce-chronic racio wich brook crouc is 142.3.
A chronic value of 1.131 ug/L was obcained in a flow-chrough life-cycle
exposure of a mysid co mercuric chloride (Table 2). Groups of 30 juvenile
mysids were reared in each of 5 concencracions for 36 days ac 21 C and a
salinity of 30 g/kg. Effeccs examined included cime co firsc spawn and
produccivicy (total number of young/number of available female spawning days
and cocal number of spawns/number of available female spawning days). No
spawning occurred ac 2.5 ,Jg/L. Time co spawn and produccivicy ac 1.6 ,Jg/L
were significancly differenc from che concrols. The highesc concentration at
which no scaciscically significanc effect on reproductive processes was
dececced was 0.8 Jg/L. Therefore, che chronic limics are 0.8 and 1.6 yg/L
and che chronic value is 1.131 ;Jg/L. The 96-hr LC50 for chis species in che
same scudy was 3.5 'Jg/L, giving an acuce-chronic racio of 3.095 (Table 2).
The species mean acuce-chronic racio for Daphnia magna is 4.498, whereas
chac for che mysid is 3.095 (Table 3). These are sensitive species in fresh
and sale wacer, respectively, and che four mosc sensicive species in each
8

-------
wacer are invercebraces. Thus, it seems reasonable co use che georaecric mean
of chese cwo values as che Final Acute-Chronic Racio (Table 3). Division of
che Final Acuce Values by 3.731 resulcs in freshwacer and salcwacer Final
Chronic Values of 1.302 and 1.106 jJg/L, respectively. Even though che
fachead minnow was considerably less sensitive than Daphnia magna in acuce
tests, che acuce-chronic racio for che fachead minnow is so high that ics
chronic value is below che Final Chronic Value and probably below the Final
Residue Value (see below). If che acute-chronic ratio of greater chan 649
for che fachead minnow is represencacive of racios for ocher freshwacer and
salcwacer fishes, chen cwelve of fourteen cesced fish species, including che
rainbow crouc, coho salmon, blue<;ill, and haddock, would have chronic values
below che Final Chronic Value. Various values for vertebrates in Table 6 are
below che Final Chronic Value or are indicacive of large acuce-chronic racios.
Toxicicy co Aquatic Planes
'.Whereas some freshwacer plane values for mercury(II) are about 1,000
ug/L (Table 4), effeccs of mercury(II) and mechyImercury have been observed
ac concencracions below 10 >Jg/L, respeccively (Table 6). Some organomercury
compounds have affecced algae ac concencracions less chan 1.0 Mg/L (Table 6).
Alchough freshwacer planes are relatively insensicive co mercury(II) and
sensitive to methylmercury, they do not appear to be more sensitive co
meChylmercury than freshwater animals.
Data concerning che coxicicy of mercuric chloride co salcwacer planes
are from four scudies wich eighc species of algae. The EC50s (Table 4)
indicace reduction in growth ac concencracions ranging from 10 co 160 ^g/L.
No daca are available concerning che toxicities of organomercury compounds co
salcwacer planes.

-------
Bioaccumulacion
Bioconcencracion is a funccion of che relative races of uptake and
depuracion. The bioconcencracion Eaccor (BCF) of mercury is high for fish
because upcake is relatively fasc and depuracion is very slow. Thus, che
bioLogical half-life of mercury in fish is approximacely 2 to 3 years (de
Freicas, ec al. 1974, 1977; Jarvenpaa, ec al. 1970; Lockharc, ec al. 1972;
McKira, ec al. 1976; Mellinger, 1973; Ruohcula and Mieccinen, 1975; Sharpe, ec
al. 1977). Depuracion of mercury is so slow chat, even in che absence of
exposure co mercury, long-cerm reduccion in che cancencracion of mercury in
fish cissue is largely due co dilucion by cissue addicion from growch.
Usually less chan 60 percenc of mercury in invercebraces is mechylaced, but
in fish, excepc for young fish, usually more chan 70 percenc is raechylaced
(Bache, ec al. 1971; Baluja, ec al. 1983; 3usch, 1983; Cappon, 1984; Cappon
and Smich, I982a,b; Haccula, ec al. 1978; Hildebrand, ec al. 1980; Huckabee,
ec al. 1979; Kudo, ec al. 1982; Lucen, ec al. 1980; Paasivirca, ec al.
1983).
The discribucion of mercury wichin a fish is che resulc of che movement
of mercury from che absorbing surfaces (gills, skin, and gascroincescinal
cracc), inco che blood, chen co che incernal organs, and evencually either co
che kidney or bile for recycling or elimination or co muscle for long-cerm
storage. As che cissue concencracion approaches sceady-scace, nec
accumulation race is slowed either by a reduccion in upcake race, possibly
due co inhibicion of membrane cransporc, or by an increase in depuracion
race, possibly because of a sacuraciort of scorage sices, or boch.
High concentracions of mercury in che slime coac of cercain freshwater
fishes, such as burbot, eels, and norchern pike, and in che skin of acuuely-
exposed fishes are believed co be due co che mechylacing accivicy of bacceria

-------
prevalenc in che mucous coac (Jernelov, 1968). In addicion, acutely coxic
concencraciona of mercury have been reported co scimulace secrecion of mucus
(Baker, 1973; Lock, et al. 1981; McKone, ec al. 1971). When acucely exposed
fish are placed in mercury-free wacer, che skin quickly loses mercury,
probably because of elimination of raercury(H) and sloughing of che slime
coac (Burrows and Krenkel, 1973; Burrows, ec al. 1974). The skin and mucous
coac are in direcc contacc wich mercury in water and can accumulate
proportionately more mercury during short exposure than muscle. During long
exposure chere is sufficient time for mercury to reach more permanent storage
s i tes.
Because sorption at che gill surface is a major pachway of mercury into
aquatic organisms (Fromm, 1977), increases in cemperacure and activity cause
increases in mecabolic race and ventilacion race and, cherefore, uptake rate
(de Freicas and Hare, 1975; Rogers and Beamish, 1981). The relationship
between cemperacure and cissue residues seems co apply primarily before
sceady-scace is reached (Reinerc, ec al. 1974) buc also co some excenc ac
sceady-state (Boudou, et al. 1979; Cember, ec al. 1978; Harcung, 1976). The
laccer is difficulc co underscand if sceady-scace resulcs from sacuracion of
available binding sices. Apparencly noc only are upcaka and depuracion
acceleraced by cemperacure (Ruohcula and Mieccinen, 1975), buc higher cissue
residues also occur ac higher cemperacures, posibly because che upcake race
increases proporcionacely more than che depuracion rate.
Similarly, low concentrations of dissolved oxygen are likely to increase
both respiracion race and upcake race. Larson (1976) found that the low
concentration of dissolved oxygen in a eucrophic lake forced fishes into
warmer surface waters to secure adequate oxygen. The warmer surface wacer
apparently scimulaced mecabolic race and increased mercury upcake.
11

-------
Increased metabolic race increases noc only vencilacion race but also
energy demand and chus increases food consumption and exposure co mercury
chrough the food chain. Upcake chrough boch che gills and che digescive
trace is significanc for fish, and some daca suggest chac cissue residues are
higher in organisms exposed via boch rouces chan via either separately
(Boudou, ec al. 1979; Phillips and Buhler, 1978). The relacive iniporcance of
uptake from food for various fish species depends on such things as
assimilation efficiency (Phillips and Gregory, 1979), body size, growth rate,
and life span (Sharpe, ec al. 1977), and diet (Murray, 1978). Although
Murray (1978) did find differenc concencracions of mercury in different fish
species, Huckabee (1972) and Huckabee, ec al. (1974) found similar concentra-
tions in both forage and game fish in the same environment.
Haines (1981) reported chac acid rain tends Co scour more mercury from
che air. Acidificacion of a body of wacer mighc also increase mercury
residues in fish even if no new input of mercury occurs, possibly because
lower pH increases vencilacion race and membrane permeability, accelerates
the races of methylacion and uptake, affects partitioning between sedimenc
and wacer, or reduces growth or reproduction of fish (Akielaszek and Haines,
1981; Fromm, 1980; Hahne and Kroontje, 1973; Jernelov, 1980; Miller and
Akagi, 1979; Ribeyre and Boudou, 1982; Rudd and Turner, 1983b; Scheider, ec
al. 1979; Scokes, ec al. 1983; Tsai, ec al. 1975; Wrenn and MacCrimmon,
1983). However, Heiskary and Helwig (1983) did noc find a relation becween
pH and mercury in fish.
The available information (e.g., Boudou and Ribeyre, 1981; Boudou, ec
al. 1977, 1980; de Freicas, ec al. 1981; Hamdy and Prabhu, 1979; Hamelink, ec
al. 1977; Herrick, ec al. 1982; Huckabee, ec al. 1979; Jernelov and Lann,
1971; Klaverkamp, ec al. 1983c; MacCrimmon, ec al. 1983; Norscrom, ec al.

-------
1976; Phillips, et al. 1980; Ribeyre, ec al. 1980; Rogers and Beamish, 1982;
Rogers and Qadri, 1982) indicates chac che importance of upcake from food
probably depends on che form and concencracion of mercury in che diec and on
che size and mecabolic race of che fish. Transfer of mercury from fish co
wildlife predacors has also been observed (Heinz, ec al. 1980; Kucera, 1983;
Wren, ec a 1. 1983).
The available freshwater BCFs are lisced in Tables 5 and 6. Table 5
concains BCFs only from chose scudies in which che exposure concencracions
were adequately measured and che cissue residues reached sceady-scace or che
cesc lasted longer Chan 27 days. Alchough che BCFs presenced in Table 6 do
noc meec all chese conditions, chey do provide infortnacion on BCFs for planes
and illuscrace che very imporcanc influence of cemperacure on
bioconcencracion.
McKim, ec al. (1976) scudied che upcake of mechylraercury inco various
cissues of brook crouc. Ac concencracions in wacer of 0.93, 0.29, 0.09 and
0.03 'ris/L che resulcing concencrac ions in muscle afcer 273 days were 10,000,
5,000, 1,900, and 1,000 iJg/kg and che corresponding BCFs were 11,000, 17,000,
21,000, and 33,000, respectively. Because che concencracion of mercury in
che muscle did noc decrease as much as che concencracion in wacer, che BCFs
increased as the concencracion in wacer decreased. A possible explanation
for an inverse relationship becween concencracion in wacer and BCF is chac
sceady-scace resulcs from sacuracion of available binding sices (Cember, ec
al. 1978). The maximum concencracion in cissue wouLd chen be dependenc on
che number of available binding sices and would be independenc of che concen-
cracion of mercury in wacer. If che concencracion in cissue were conscanc,
che BCF would be inversely proporcional co the concencracion in wacer.
However, neicher the concencracion in cissue nor che BCF was conscanc. The
13

-------
comparable BCFs for che whole body were 10,000, 12,000, 12,000, and 23,000
and are lower than chose for muscle. The fish were adversely affected ac
0.93 ug/L, buc for boch muscle and whole body, che BCF ac chis concencracion
is in line wich che ocher BCFs. Even chough concencracions up co 0.29 \i%/L
did noc cause scaciscical ly significanc adverse effeccs, che concencracion of
mercury in fish exposed co 0.03 jg/L were ac che FDA accion level.
Olson, ec al. (1975) obtained much higher BCFs for mechylmercury wich
che fachead minnow, and che BCF was also concencracion-dependenc. As che
concencracion in che wacer decreased from 0.247 :jg/L co 0.018 (Jg/L, che
concencracion in che fish decreased from 10,900 gg/kg co 1,470 Mg/kg, buc che
BCF decreased from 44,100 co 81,700. The concrasc becween che resulcs wich
che fachead minnow ac 25 C (Olson, ec al. 1975) and brook crouc ac 9 co 15 C
(McKim, ec al. 1976) is one of considerable inceresc and pocencial
importance. The crouc were fed pelleced feed, and so had liccle opporcunicy
for food chain inpuc. In concrasc, che fachead minnow is a browser and
probably fed noc only on che incroduced food buc also on che Aufwuchs growing
in che cesc solucion co which mercury had been added. Thus che higher BCFs
for che fachead minnow mighc be more represencacive of field sicuacions in
which fish are exposed co mechylmercury via boch che wacer and food (Phillips
and Buhler, 1978; Phillips and Gregory, 1979; Rogers and 3eamish, 1982).
Also, because cemperacure affeccs bioconcencracion, che fachead minnow mighc
be more represencacive of coranonly consumed warmwacer fishes.
In a 75-day cest, Niimi and Lowe-Jinde (1984) found 12 mg/kg in che
whole body of rainbow crouc exposed co 0.15 >ig mechylmercury/L (0.14 ,jg
mercury/L) in wacer and 18 Mg mercury/kg in food. The BCF of 85,700 is
higher chan che highesc BCF obcained by Olson, ec al. (1975). However, ac
0.012 |Jg/L and 18 'Jg/kg, chey found 0.053 mg/kg in che crouc. This BCF of

-------
4,077 is lower chan the lowesc BCF obtained by McKim, ec al. (1976). Also,
alchough boch McKitn, ec al. (1976) and Olson, ec al . (1975) found higher SCFs
ac lower concencracions in wacer, Niimi and Lowe-Jiade (1984) found jusc che
opposice.
The FDA accion level for mercury in fish and shellfish is 1.0 mg/kg
(Table 5), and now only applies co the mechylmercury in consumed cissues
(U.S. FDA, 1984a,b). In cheir cesc on mechylmercury, McKim, ec aL. (1976)
found chac brook crouc exposed co 0.03 ug/L concained I mg/kg in muscle
cissue. However, in cheir cesc on mechylmercury wich che fachead minnow,
Olson, ec al. (1975) found chat exposure co 0.018 ^g/L resulced in 1.47 rag/kg
in che fish and a BCF of 81,700. Use of chis BCF wich che FDA accion level
resulca in a Final Residue Value of 0.012 ,Jg/L for mechylmercury (Table 5).
The concentracion in che fachead minnow is for whole body, buc Heisinger, ec
al. (1979) found no significanc difference becween various body comparcmencs.
Furcher, Huckabee, ec al. (1974) found chac all fishes in a parcicular
environraenc acquired about che same concencracions of mercury in boch che
whole body and muscle cissue when chey were chronically exposed co low
concencracions of mercury. On che ocher hand, Heiskary and Helwig (1983) and
McKim, ec al. (1976) found higher concencracions of mercury in che edible
porcion of fish chan in che whole body. Thus che concencracion of mercury in
che muscle of some edible species is likely co exceed che FDA accion level
when exposed co mechylmercury ac a concencracion of 0.012 ug/L.
Alchough che FDA accion level only aoplies co raechylnier<_ury in fish and
shellfish, ic can be used co derive a wacer qualicy cricerion for mercury(Il)
because mosc of che mercury in fish is mechylmercury even if che organisms
were exposed co inorganic mercury (de Freicas, ec al. 1974; Jernelov and
Lann, 1971). A BCF of 4,994 was obcained for mercuric chloride in a

-------
Life-cycle cesc wich che fachead minnow (Snarski and Olson, 1982). This BCF
is based on che concencracion of mercuric chloride in che wacer and che cocal
concencracion of organic and inorganic mercury in che tissue. Even chough
all concencracions cesced caused adverse effeccs and che higher concencra-
cions caused more severe effeccs, che BCFs were similar ac aLl concencracions
and were lower chan chose obcained wich mechyImercury by McKira, ec al. (1976)
and Olson, ec al. (1975). Use of che BCF of 4,994 wich che FDA accion level
of 1.0 mg/kg resulcs in a freshwacer Final Residue Value of 0.20 Jg/L for
raercury(II) (Table 5). This value of 0.20 |J?/L derived for raercury(II)
would, however, be coo low if field BCFs are higher chan laboracory BCFs, if
wacers concain subscancial concencracions of mechylmercury, or if mechylacion
processes are accelerated in sediment.
Informacion on che bioconcencracion of various mercury compounds by
salcwacer animals and planes is included in Tables 5 and 6 and by salcwacer
plankcon in Table 6. For mercuric chloride, BCFs ranged from 853 co 10,920
wich aljae. In cescs wich che eascern oyscer, BCFs of 10,000, 40,000, and
40,000 were obcained for -nercuric chloride, mechylmercuric chloride and
phenylmercuric chloride, respectively (Kopfler, 1974). These are similar co
che BCFs obcained wich freshwacer fish, buc che BCF of 129 obcained for
mercuric chloride in Cail muscle of che American lobster is much lower.
To protect che marketability of saltwater shellfish for human
consumption, Final Residue Values can be calculated based on che BCFs for che
oyscer and che FDA accion level of 1.0 rag/kg. Accordingly, che Final Residue
Values for mercuric chloride, mechylmercuric chloride, and phenylmercuric
chloride are 0.10, 0.025, and 0.025 ~Jg/L, respeccively. However, ac chese
concencracions fifcy percenc of che exposed oyscers would probably exceed the
16

-------
FDA action level if all the mercury in the body were present as mechyl-
mercury.
Ocher Daca
Mosc of che significant freshwater and saltwater results in Table 6 have
already been discussed in connection wich data in Tables 1-5, but a few
additional items deserve special mencion. Comparable tests with four species
showed that mercuric cyanide was 0.67 to 50 times as toxic as mercuric
chloride. Also, 3irge, et al. (1979) reported that flow-through tests gave
EC50s nearly two orders of magnitude lower than static tests wich rainbow
crouc, cacfish, goldfish, and largemouch bass (Table 6). Bouquegneau (1979)
found thac preexposure induced mecallochionein produccion, which then
protected che fish.
Molybdenum (Yamane and Koizumi, 1982) and vitamin E (Ganther, 1978,
1980) affects the toxicity of mercury co mammals, and probably many consumers
of aquatic organisms, as does selenium (e.g., Alexander, et al. 1979; Berlin,
1978; National Research Council, 1978; Nacional Research Council Canada,
1979; Stopford and Goldwacer, 1975; Strom, et al. 1979). Wobeser, ec al.
(1976a,b) found raethylmercury to be much less coxic to mink when they were
fed freshwater drum, Aplodinolus grunniens, containing high mercury tissue
residues than when they were fed a diet co which methylmercury chloride had
been added. On che ocher hand, Albanus, ec al. (1972) and Charbonneau, et
al. (1974) found similar coxicicy to cats when fed similar dietary
concentrations of methylniercury, one as a tissue residue in pike and che
ocher wich mechylmercury added co che racion.
Finley and Scendell (1978) and Heinz (1979a) fed black and mallard
ducks, respeccively, food contaminated wich methylmercuric dicyandiamide.
17

-------
These feeding studies extended over two and chree generations, respectively,
and demonstrated reduced hatching success and juvenile survival at mercury
concentrations chat were escimated to be equivalent to 0.5 and 0.1 mg/kg,
respectively, in the natural succulent food of the wild ducks. These resulcs
were not used to estimate a Final Residue Value based on food for wildlife
because the dicyandiamide compound might not represent the toxicity of
methylmercury alone. Nevertheless, these tests suggest chac the Final
Residue Value might be an order of magnitude too high because at lease one of
these authors believes chat the anion had little effect on che results
(Heinz, 1979b) .
Unused Data
Some data on the effects of mercury on aquatic organisms were noc used
because the studies were conducted with species that are not resident in
North America (e.g., Ahsanullah, 1982; Akiyama, 1970; Dial, 1978a,b;
Heisinger and Green, 1975; Jones, 1939a, 1940, 1973, 1975; Khangaroc, et al.
1982; Kihlstrom and Hulth, 1972; Krishnaja and Rege, 1982; Mathur, ec al.
1981; McClurg, 1984; Murci and Shukla, 1984; Nagashima, ec al. 1983; Saxena
and Parashari, 1983; Shaffi, 1981; Srivastava, 1982; van den Broek and
Tracey, 1981; Verma, et al. 1984), or because the test species was noc
obtained in North America and was not identified well enough to determine if
it is resident in North America (Hannerz, 1968). Brown and Ahsanullah (1971)
conducted tests with brine shrimp, which species is too atypical co be used
in deriving national criteria. Reviews by Chapman, ec al. (1968), Eisler
(1981), Eisler, et al. (1979), Phillips and Russo (1978), and Thompson, et
al. (1972) only contain data chac have been published elsewhere.
18

-------
The 96-hr values reported by Buikeraa, ec al. (1974a,b) were subject to
error because of possible reproductive interactions (Buikema, et al. 1977).
Applegate, et al. (1957) exposed only one or two organisms. Data were not
used if the mode of exposure was inappropriate for deriving water quality
criteria (Giblin and Massaro, 1973; Lucu and Skreblin, 1981; Schmidt-Nielson,
et al. 1977; Weisbart, 1973). In addition, data were not used if mercury was
a component of an effluent (Wong, et al. 1982) or if the test organisms were
cultured in one water and tested in another (Bringmann and Kuhn, 1982).
Bills, et al. (1977) and Passino and Cotant (1979) did not report any usable
results. Jones (1935, 1938, 1939b, 1947), Miller (1980, 1981), and Nuzzi
(1972) did not report a clearly defined endpoint.
Results of some laboratory tests were not used because the cesc was
conducted in distilled water (McKone, et al. 1971), the quality of the
dilution water or medium was questionable (Brkovic-Popovic and Popovic,
1977a,b; Carter and Cameron, 1973; Kim, et al. 1977a,b; Stary and Kratzer,
1982; Stary, et al. 1982, 1983), or because the test solution or culture
medium contained too much EDTA which would probably complex mercury
(Gutierrez-Galindo, 1981; Knowles and Zingmark, 1978; Stracton and Corke,
1979; Stratton, et al. 1979).
Data concerning concentrations of mercury in wild organisms (e.g.,
Abernathy and Curabie, 1977; Armstrong and Scott, 1979; Bodaly, ec al. 1984;
Copeland and Ayers, 1972; DiNardi, et al. 1974; Flegal, et al. 1981; Helwig
and Hora, 1983; Hildebrand, et al. 1980; Jensen, et al. 1981; Leonzio, et al.
1982; Martin, et al. 1984; May and McKinney, 1981; Mitchell, et al. 1982;
Moore and Sutherland, 1980; Murray, 1978; Pennington, et al. 1982; Phillips
and Buhler, 1980; Price and Knight, 1978; Ray, et al. 1984; Sheffy, 1978;
Tsui and McCart, 1981; Wachs, 1982; Watling, et al. 1981) were not used to

-------
calculate bioaccumulacion faccors if the concencracions of mercury in che
ambient water during the period of exposure was noc adequately measured.
Studies using isocopic mercury (e.g., Cunningham and Tripp, 1975;
Glooschenko, 1969) were not used because of che possibility of isocopic
d iscrirainac ion.
Results of bioconcentracion tescs were not used if the cests were
conducted in distilled water, were noc long enough, were not flow-chrough, or
if che concentration of mercury in che cest solution was not adequately
measured (e.g., Cunningham and Tripp, 1973; Kim, et al. 1977a,b; McKone, ec
al. 1971; Medeiros, ec al. 1980; Middaugh and Rose, 1974; Phillips and
Gregory, 1980; Ribeyre, ec al. 1980; Sharma and Davis, 1980a; Scary and
Kraczer, 1980, 1982; Scary, ec al. 1980, 1981, 1982, 1983; Vernberg and
O'Hara, 1972).
Summary
Daca are available on che acuce coxicicy of mercury(II) co 28 genera of
freshwater animals. Acuce values for invertebrate species range from 2.2
,jg/L for Daphnia pulex co 2,000 Jg/L for three inseccs. Acuce values for
fishes range from 30 ug/L for che guppy to 1,000 rig/L for che Mozambique
cilapia. Few daca are available for various organomercury compounds and
mercurous nicrace, and chey all appear co be 4 co 31 cimes more acutely toxic
chan raercury(II).
Available chronic daca indicace chac mechylraercury is che most
chronically coxic of che cesced mercury compounds. Tescs on mechyIraercury
with Daphnia magna and brook crouc produced chronic values less chan 0.07
ug/L. For niercury(II) the chronic value obtained with Daphnia magna was
about 1.1 fJg/L and che acuce-chronic racio was 4.5. In boch a life-cycle

-------
test and an early life-stage test on mercuric chloride with che fathead
minnow, che chronic value was less chan 0.26 ;jr/L and che acuce-chronic racio
was over 600.
Freshwacer planc3 show a wide range of sensicivicies co mercury, buc che
raosc sensicive planes appear co be less sensicive chan che most sensitive
freshwacer animals co boch mercury(II) and mechylmercury. A bioconcencracion
faccor of 4,994 is available for mercury(II), buc che bioconcencracion
faccors for mechylmercury range from 4,000 co 85,000.
Daca on che acuce coxicicy of mercuric chloride are available for 29
genera of salcwacer animals including annelids, molluscs, cruscaceans,
echinoderms, and fishes. Acuce values range from 3.5 ;Jg/L for a mysid co
1,678 jg/L for wincer flounder. Fishes cend co be more resiscanc and
molluscs and crustaceans cend co be more sensicive co che acuce coxic effeccs
of mercury(II). Resulcs of a life-cycle cesc wich che mysid show chac
mercury(ll) ac a concencracion of 1.6 Jg/L significantly affecced cime of
firsr spawn and produccivicv; che resulcing acuce-chronic racio was 3.1.
Concencracions of mercury chac affecced growch and phocosynchecic
accivicy of one salcwacer diacom and six species of brown al
-------
possible cause of acute toxicity and the Cricerion Maximum Concentrations can
be based on the acute values for mercury(II).
The best available data concerning long-terra exposure of fish to
mercury(Il) indicates that concentrations above 0.23 pg/L. caused statisti-
cally significant effects on the fathead minnow and caused the concentration
of total mercury in the whole body to exceed 1.0 mg/kg. Although it is not
known what percent of the mercury in the fish was methylmercury, it is also
not known whether uptake from food would increase the concentration in the
fish in natural situations. Species such as rainbow trout, coho salmon, and
especially the bluegill, might suffer chronic effects and accumulate high
residues of mercury about the same as the fathead minnow.
With regard to long-term exposure to methylmercury, McKim, et al. (1976)
found that brook trout can exceed the FDA action level without suffering
statistically significant adverse effects on survival, growth, or reproduc-
tion. Thus for methylmercury the Final Residue Value would be substantiaLLy
lower than the Final Chronic Value.
Basing a freshwater criterion on the Final Residue Value of 0.012 jg/L
derived from the bioconcentration factor of 81,700 for methylmercury with the
fathead minnow (Olson, et al. 1975) essentially assumes that all discharged
mercury is mechylmercury. On the other hand, there is the possibility that
in field situations uptake from food might add to the uptake from water.
Similar considerations apply to the derivation of the saLtwater criterion of
0.025 Mg/L using the BCF of 40,000 obtained for methylmercury with the
Eastern oyster (Kopfler, 1974). Because the Final Residue Values for methyl-
mercury are substantially below the Final Chronic Values for mercury(ll), it
is probably not too important that many fishes, including the rainbow trout,
22

-------
coho salmon, bluegill, and haddock might not be adequately procecced by the
freshwater and saltwater Final Chronic Values for mercury(II).
In contrast to all the complexities of deriving numerical criteria for
mercury, monitoring for unacceptable environmental effects should be
relatively straightforward. The most sensitive adverse effect will probably
be exceedence of the FDA action level. Therefore, existing discharges should
be acceptable if the concentration of methylmercury in the. edible portion of
exposed consumed species does not exceed the FDA action level.
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, freshwater aquatic organisms and their uses should not be
affected unacceptably if the four-day average concentration of mercury does
not exceed 0.012 ug/L more than once every three years on the average and if
the one-hour average concentration does not exceed 2.4 ug/L more than once
every three years on the average. If the four-day average concentration
exceeds 0.012 gg/L more than once in a three-year period, the edible portion
of consumed species should be analyzed to determine whether the concentration
of methylmercury exceeds the FDA action level.
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, saltwater aquatic organisms and their uses should not be
affected unacceptably if the four-day average concentration of mercury does
noc exceed 0.025 iJg/L more than once every three years on the average and if
the one-hour average concentration does not exceed 2.1 Mg/L, more than once
every three years on the average. If the four-day average concentration

-------
exceeds 0.025 jg/L mora than once in a three-year period, the edibLe portion
of consumed species should be analyzed to determine whether che concentration
of methylinercury exceeds che FDA accion level.
EPA believes chac a measurement such as "acid-soluble" would provide a
more sciencifically correct basis upon which co escablish criceria for
necals. The criteria were developed on chis basis. However, ac this time,
no EPA approved methods for such a measuremenc are available co implement che
criteria through che regulacory Drograras of che Agency and che Scates. The
Agency is considering development and approval of methods for a measureraenc
such as "acid-soluble". Until available, however, EPA recommends applying
che criceria using che cocal recoverable mechod. This has cwo impacts: (1)
cercain species of some metals cannoc be analyzed directly because the cocal
recoverable mechod does not distinguish between individual oxidacion scaces,
and (2) chese criceria may be overly proceccive when based on che cocal
recoverable mechod.
The recommended exceedence frequency of chree years is che Agency's best
sciencific judgment of che average amounc of cime ic will cake an unscressed
syscem co recover from a pollution evenc in which exposure co mercury exceeds
che criterion. Stressed systems, for example, one in which several outfalls
occur in a limiced area, would be expected co require more time for recovery.
The resilience of ecosystems and their ability to recover differ greatly,
however, and sice-specific criteria may be established if adequate justifica-
tion is provided.
The use of criteria in designing waste treatment facilities requires the
selection of an appropriate wasteload allocation taodel. Dynamic models are
preferred for the application of these criceria. Limited data or ocher
factors may make their use impractical, in which case one should rely on a
24

-------
steady-scate model. The Agency recommends che interim use of 1Q5 or 1Q10 for
Criterion Maximum Concentration (CMC) design flow and 7Q5 or 7Q10 for che
Criterion Continuous Concentration (CCC) design flow in steady-acace models
for unstressed and scressed systems respectively. These matters are
discussed in more decail in che Technical Support Document for Wacer Quality-
Based Toxics Control (U.S. EPA, 1985).
25

-------
Table t
Species
TubI field worm.
Branch Iura sowerbyl
Tublfield worm,
LImnodr11 us hof fmeIsterI
Tublfield worm,
Quistadr11 us wultlsetosus
Tublflcld worm,
RhyacodrlI us montana
Tublflcld worm,
Splrosperma ferox
Tublfield worm,
tsj	Splrosperma nlkolskyl
ON
Tublfield worm,
Stylodrllus herlnglanus
Tublflcld worm,
Tublfax tublfex
Tublflcld worm,
Varlchaeta pad flea
Worm,
Nals sp.
Snail (embryo),
AmnIcola sp.
Snail (adult),
Amnlcola sp.
Snail,
Method*
R,	U
R,	U
R,	U
R,	U
R,	U
R,	U
R,	U
R,	U
R,	U
S,	M
S,	M
S,	M
S,	U
Acute Toxicity of Mercury to Aquatic Animals
LC50	Species Mean
or EC50	Acute Value
Chew lea I (itq/L)**	(mo/D**
FRESHWATER SPECIES
Mercury( 11)
Mercuric	80	00
chloride
Mercuric	180	180
chloride	I
Mercuric	250	250
chloride
Mercuric	240	240
chI or Ide
Mercuric	330	330
chloride
MercurIc	500	500
chloride
Mercuric	140	140
chloride
Mercuric	140	140
chlorlde
Mercuric	100	100
ch I or I de
Mercuric	1,000	1,000
nitrate
Mercuric	2,100***
nitrate
Mercuric	80	80
nltrate
Mercuric	370	370
chl orlde
Reference
Chapman, et ai. 1982a
Chapman, et al. 1982a,b
Chapman, et al. 1982a
Chapman, et al. 1982a
Chapman, et al. 1982a
Chapman, et al. 1982a
Chapman, et al. 1982a
Chapman, et al. 1982a,b
Chapman, et al. 1982a
Rehwoldt, et al. 1973
Rehwoldt, et al. 1973
Rehwoldt, et al. 1973
Hoi combe, et al. 1983

-------
Table 1. (Continued)
Species
Method*
Chemical
Cladoceran,	S, U
Daphnla magna
Cladoceran,	S, U
Daphnla magna
Cladoceran,	S, U
Daphnla magna
Cladoceran,	S, U
DaphnI a magna
Cladoceran,	S, U
Daphnla magna
Cladoceran (<6 hr old),	S, U
Daphnla magna
Cladoceran (<24 hr old), S, U
Daphnla magna
Cladoceran (1-9 day old), S, U
Daphnla magna
Cladoceran,	S, U
Daphnla pulox
Amphlpod,	S, M
Gammarus sp.
Crayfish (male,	R, M
mixed ages),
Faxonella clypeatus
CrayfIsh,	S, M
Orconectes llmosus
Mayfly,	S, U
Ephemera I la subvarla
Damsel fly,	S, M
(UnIdentlfled)
Mercuric
chlori de
MercurIc
chlorIde
MercurIc
chlor Ide
Mercuric
chlorIde
Mercuric
chI or Ide
Mercuric
chloride
Mercur Ic
chloride
Mercuric
chI or Ide
Mercuric
chlori de
MercurIc
nitrate
MercurIc
chlorIde
Mercur I c
chlorIde
Mercuric
chloride
Mercuric
nitrate
LC50	Species Mean
or EC50	Acute Value
(wq/L)**	(liq/L)**	Reference
<4.4****	-	Anderson, 1948
t>	-	Bleslnger &
Chrlstensen, 1972
3.177	-	Canton & Adema, 1978
1.478	-	Canton & Adema, 1978
2.180	-	Canton & Adema, 1978
4.4	-	Barera & Adains, 1983
4.4	-	Barera & Adams, 1983
5.2-14.8***	3.157	Barera & Adams, 1983
2.217	2.217	Canton & Adema, 1978
10	10	Rehwoldt, et al. 1973
20	20	Helt & Flngerman,
1977; Helt, 1981
50	50	Boutet 4
Chalsemartln, 1973
2,000	2,000	Warnlck & Bel I, 1969
1,200	1,200	Rehwoldt, et al. 1973

-------
Table 1. (Continued)
Spooles
Method*
Chemical
N>
oo
Stonefly,	S, U Mercuric
Acroneurla lycorlas	chloride
Caddlsfly,	S, U Mercuric
Hydropsyche batten I	chloride
Caddlsfly,	S, M Mercuric
(Unidentified)	nitrate
Midge,	S, M Mercuric
Chlronomus sp.	nitrate
Coho salmon (juvenile),	R, M Mercuric
Oncorhynchus Klsutch	chloride
Rainbow trout (juvenile),	R, U Mercuric
Salmo galrdnerl	chloride
Rainbow trout (juvenile),	FT, U Mercuric
Sat mo galrdnerl	chI or Ide
Rainbow trout (juvenile),	FT, U Mercuric
Salmo galrdnerl	chloride
Rainbow trout,	FT, U Mercuric
Salmo galrdnerl	chloride
Rainbow trout (juvenile),	FT, M Mercuric
Salino galrdnerl	chloride
Fathead minnow,	FT, M Mercuric
Plmephales promelas	chloride
Fathead minnow,	FT, M Mercuric
Plmophales promelas	chloride
Mosqultoflsh (female),	S, U Mercuric
Gambusla afflnls	chloride
Guppy (116-157 mg),	R, U Mercuric
PoeclI la reticulata	chloride
LC50	Species Mean
or EC50	Acute Value
(yg/L),#	(wg/L)**	Reference
2,000	2,000	Warnlck & Bell, 1969
2,000	2,000	warnlck & Bel I, 1969
1,200	1,200	Rehwoldt, et al. 1973
20	20	Rehwoldt, et al. 1973
240	240	Lorz, et al. 1978
155.1	-	Mat I da/.et al., 1971
280	-	MacLeod & Pessah,
1973
220	-	MacLeod & Pessah,
1973
420	-	Daoust, 1981
275	275	Lock & van Overbeeke,
1981
168	-	Snarskl & Olson, 1982
150	158.7	CalI, et al. 1983
180	180	Joshi & Rege, 1980
30	-	Deshmukh & Marathe,
1980

-------
Table 1. (Continued)
Species	Method* Chewlea I
Guppy (362-621 mg),	R, U Mercuric
Poecllla reticulata	chloride
Blueglll (juvenile),	S, U Mercuric
Lepomls macrochlrus	chloride
Mozambique tilapla,	S, U Mercuric
Tllapla mossamblca	chloride
LC50
or EC50
(lig/L)**
53.5**
160
1,000
Me thy Imercury
Rainbow trout (juvenile), R, U
Salmo qalrdnerl
Rainbow trout (larva),	R, U
Sal mo galrdnerI
Rainbow trout (juvenile), R, U
Salmo qalrdnerl
Rainbow trout (juvenile), FT, M
Sal mo qalrdnerl
Brook trout (juvenile), FT, M
Salvellnus fontlnails
Brook trout (yearling), FT, M
Salvellnus fontlnalis
Methylmercurlc
chloride
MethyImercuric
chloride
MethyImercurIc
chloride
Methylmercurlc
chloride
MethyImercurIc
chlori de
MethyImercuric
chloride
25
24
42
24
84
65
Rainbow trout (juvenile), R, U
Sal mo qalrdnerl
Rainbow trout (2 mos),	FT, M
Sal mo qalrdnerl
Goldfish,	S, U
Carasslus auratus
Other Mercury Compounds
5
Phenyl mercuric
acetate
Mercurous
nitrate
PhenyImercurIc
lactate
33.0
82
Species Mean
Acute Value
(lig/L)**
30
160
. 1,000
24
73.89
Reference
Deshmukh & Marathe,
1980
Holcombe, et al. 1983
Qureshl & Saksena,
1980
Matlda, et al. 1971
Wo baser, 1973
Wobeser, 1973
Lock & van Overbeeke,
1981; Lock, et al. 1981
McKIm, et al. 1976
McKIm, et al. 1976
5
33.0
82
Matlda, et al. 1971
Hale, 1977
Ellis, 1947

-------
Table 1. (Continued)
Species	Method*
Common carp,	R, U
Cyprlnus carplo
Fathead minnow,	S, M
Plmephales promelas
Fathead minnow,	S, M
Plmephales promelas
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Channel catfish (juvenile), S, U
Ictalurus punctatus
Mosqultoflsh (female),	S, U
Gambusla affinis
Mosqultoflsh (female),	S, U
Gambusla af finis
Mosqultoflsh (female),	S, U
Gambusla affinls
Chemical
2-Methoxy ethyl
mercuric chloride
Mercuric
acetate
Mercur1c
thlocyanate
EthylmercurIc
p-toluene
sulfonanllIde
EthyImercuric
phosphate
PhenyImercur Ic
acetate
PhenyImercurIc
acetate
PyrIdyImercur Ic
acetate
PyrIdyImercurIc
acetate
PyrIdyImercuric
acetate
Methoxy ethyl
mercuric chloride
Pheny I mercur Ic
acetate
PhenyImercurIc
acetate (Ceresan)
LC50	Species Mean
or EC50	Acute Value**
(liq/l-)**	(ua/L)	Reference
139	139	Das & Mlsra, 1982
40	40	Curtis, et al. 1979;
Curtis & Ward, 1981
115	115	Curtis, et al. 1979;
Curtis & Ward, 1981
51	51	Clemens & Sneed, 1959
49	49	Clemens & Sneed, 1959
1,966	1,966	Clemens t. Sneed,
1959
28	28	Clemens & Sneed,
1958a, 1959
<176	-	Clemens & Sneed,
1958b
224	-	Clemens & Sneed,
1958 b
<153	<182	Clemens & Sneed,
1958b
910	910	Joshl & Rege, 1980
37	37	Joshl & Rege, 1980
44	44	Joshl & Rege, 1980

-------
Table 1. (Continued)
Species
Method"
Polychaete worm (adult), S, U
Noanthes arenaceodentata
Polychaete worm (juvenile), S, U
Neanthes arenaceodentata
Sand worm (adult).
Nereis vlrens
Pacific oyster,
Crassostrea qlqas
PaclfIc oyster,
Crassostrea glgas
PacIfIc oyster,
Crassostrea qI gas
S, U
Polychaete worm (larva), S, U
Capltella capltata
Ollgochaete worm,	R, U
Llmnodrlloldes verrucosus
Ollgochaete worm,	R, U
Monopylephorus cutlculatus
Ollgochaete worm,	R, U
Tublflcoldes qabrlellae
Northern horse mussel,	S, M
Modiolus modiolus
Blue mussel,	S, U
MytlI us edulIs
Bay scallop (juvenile),	S, U
Argopecten Irradlans
S, U
S, M
S, M
Chemical
LC50
or EC 50
(lig/L)**
SALTWATER SPECIES
Mercur1c
chloride
MercurIc
chI or Ide
Mercur I c
ch I or I de
Mercuric
chloride
Mercuric
chloride
MercurIc
chloride
Mercur ic
chlori de
Mercur ic
chloride
MercurIc
chloride
MercurIc
ch lor ide
Mercuric
chloride
MercurIc
chloride
MercurIc
nitrate
Mercury(11)
96
100
70
14
120
230
98
230
5.8
89
6.7
5.7
5.5
Species Mean
Acute Value**
(ug/L)	Reference
Reish, et al. 1976
97.98	Relsh, et al. 1976
70	Elsler & Hennekey,
1977
14	Relsh, et al. 1976
120	Chapman, et al. 1982a
230	Chapman, et al. 1982a
98	Chapman, et al. 1982a
230	HI I my, et al. 1981
5.8	Martin, et al. 1981
89	Nelson, et al. 19 76
Martin, et al. 1981
G11ckstei n, 1978
5.944	Gl Ickstein, 1978

-------
Table 1. (Continued)
Species
Method*
Cheaical
Eastern oyster,
Crassostrea vlrqlnlca
S, U
MercurIc
chloride
Eastern oyster,
Crassostrea vlrqlnlca
s, u
Mercur Ic
chloride
Common rangla (adult),
Ranqia cuneata
s, u
MercurIc
chlorIde
Common rangla (adult),
Ranqia cuneata
s, u
Mercuric
chloride
Common rangla (adult),
Ranqia cuneata
S, M
Mercuric
chloride
Common rangla (adult),
Ranqia cuneata
S, M
Mercuric
chloride
Quahog clam,
Mercenarla mercenarla
S, U
MercurIc
chloride
Soft-shell clam (adult),
Mya arenarla
S, U
Mercuric
chlor ide
Copepod,
Pseudod1aptomus coronatus
S, U
Mercurfe
ch1 or 1de
Copepod,
Eurytemora affinis
S, U
MercurIc
chlor 1de
Copepod,
Acartla clausl
s, u
Mercuric
chloride
Copepod (adult),
Acartla tonsa
s, u
Mercur1c
ch1 or 1de
Copepod (adult),
Acartla tonsa
s, u
Mercur Ic
chloride
Copepod (adult),
Acartla tonsa
s, u
Mercuric
chloride
LC50	Species Mean
or EC50	Acute Value
(uq/L)**	(ug/L)**	Reference
5.6	-	Calabrese & Nelson, 1974
Calabrese, at al. 1977
10.2	7.556	Maclnnes & Calabrese,
1978
10,000	-	Olson & Barrel, 1973
8,700	-	Olson & Harrel, 1973
58	-	Dillon, 1977
122	«**»*	Oil Ion, 1977
4.8	4.8	Calabrese & Nelson, 1974
Calabrese, et al. 1977
400	400	Elsler & Hennekey,
1977
79	79	Gentile, 1982
158	158	Gentile, 1982
10	10	Gentile, 1982
10	-	Sosnowskl & Gentile,
1978
14	-	Sosnowskl & Gentile,
1978
15	-	Sosnowskl & Gentile,
1978

-------
Table t. (Continued)
Species
Method*
ChenleaI
Copepod (adult),
Acartla tonsa
Copepod,
Nltocra splnlpes
Mysld,
Mysldopsls bah I a
S, U
S, U
FT, M
MarcurIc
chloride
MercurIc
chloride
MercurIc
chI or Ide
White shrimp (adult),
Penaeus set Iterus
American lobster (larva),
Homarus amerlcanus
Hermit crab (adult),
Paqurus long I carpus
Dungeness crab (larva).
Cancer mag I star
Dungeness crab (larva).
Cancer magister
Green crab (larva),
Carclnus maenas
Starfish (adult),
Asterlas forbesi
Haddock (larva),
Melanogrammus aeqleflnus
Mummlchog,
Fundulus heteroclItus
Mummlchog,
Fundulus heteroclItus
Mummlchog,
Fundulus heterocl Itus
S, U
S, U
s, u
s, u
S, M
s, u
s, u
s, u
s, u
s, u
s, u
Mercuric
chloride
MercurIc
chI or Ide
Mercur Ic
chloride
MercurIc
chloride
Mercuric
chloride
Mercuric
chlor ide
Mercuric
chlorIde
MercurIc
chloride
MercurIc
chloride
MercurIc
chlorIde
Mercur Ic
chloride
LC50	Species Mean
or EC50	Acute Value
(lig/L)**	Cuq/L)**	Reference
20	14 . 32	Gentile, 1982
230	230	Bengtsson, 1978
3.5	3.5	Gentile, et al. 1982
1983; Lussler, et al
Manuscript
17	17	Green, et al. 1976
20	20	Johnson & Gentile,
1979
50	50	Elsler 4 Hennekey,
1977
8.2	-	Martin, et al. 1981
6.6	7.357	Gllckstein, 1978
14	14	Connor, 1972
60	60	Elsler & Hennekey,
1977 >
98	98	Cardin, 1982
300	-	Dorfman, 1977
200	-	Dorfman, 1977
300	-	Dorfman, 1977

-------
Table 1. (Continued)
Species
Method*
Chemical
Mummlchog,	S, U
Fundulus heteroclltus
Mummlchog (adult),	S, II
Fundulus heteroclltus
Mummlchog (adult),	S, II
Fundulus heteroclltus
Mummlchog (embryo),	S, M
Fundulus heteroclltus
Atlantic sllverslde	S, II
(larva),
Menldla men Id I a
Atlantic sllverslde	S, U
(larva),
Menldla menldla
Atlantic sllverslde	S, U
(juvenlle),
Menldla menldla
Tidewater sllverslde	S, U
(juvenlle),
Menldla penlnsulae
Four spine stickleback	S, U
(adu It),
Apeltes quadracus
Spot (juvenile),	S, U
Leiostonus xanthurus
Winter flounder (larva), S, U
Pseudopleuronectes
amerlcanus
Mercur Ic
chI or Ide
Mercuric
chI or Ide
MercurIc
chloride
Mercuric
chloride
MercurIc
chloride
Mercur Ic
chloride
Mercur ic
chI or Ide
MercurIc
chloride
MercurIc
chloride
Mercur Ic
chlorIde
Mercuric
chloride
Winter flounder (larva), S, U
PseudopIeuronectes
amerIcanus
Mercuric
chlor ide
LC50	Species Mean
or EC50	Acute Value
(ug/L)**	(ug/L)**	Reference
300	-	Dorfman, 1977
800	-	Elsier & Hennekey,
1977
2,000	. *****	Klaunlg, et al. 1975
67.4	67.4	Sharp & Neff, 1982
144	-	Cardln, 1982
125	-	Cardln, 1982
86	115.7	Cardln, 1982
71	71	Hansen, 1983
315	315	Cardln, 1982
36	36	Hansen, 1983
1,820	-	Cardin, 1982
1,560	-	Cardln, 1982

-------
Table 1. (Continued)
Species	Method* Chemical
Winter flounder (larva),	S, U Mercuric
PseudopIeuronectes	chloride
amerIcanus
Winter flounder (larva),	S, U Mercuric
PseudopIeuronectes	chloride
amerIcanus
Winter flounder (larva),	S, U Mercuric
PseudopIeuronectes	chI or Ide
amerIcanus
LC50
or EC50
(liq/L)**
1,810
1,320
1,960
Species Mean
Acuta Value
(liq/L)"
1,678
Reference
Card in, 1982
Cardln, 1982
Card In, 1982
Amphlpod (adult),	S, U
Gammarus duebenl
Mummichog (embryo),	S, M
Fundulus heteroclltus
Methy liner cur y
Methylmercuric
chloride
Methyl mercuric
chlorIde
150
51.1
150	Lockwood & Inman,
1975
51.1	Sharp 4 Neff, 1982
Other Mercury Compounds
Grass shrimp (adult),	S, M
Palaemonetes puqlo
Grass shrimp (adult),	S, M
Palaemonetes puqlo
Mummichog,	S, U
Fundulus heteroclltus
Mummichog,	S, U
Fundulus heteroclltus
Mercuric
acetate
Mercuric
thiocyanate
Marcurous
sulfate
Mercurous
sulfate
47
76
6,800
300
47
76
Curtis, et al. 1979;
Curtis 4 Ward, 1981
Curtis, et al. 1979;
Curtis 4 Ward, 1981
Dorfman, 1977
Dorfman, 1977
* S = static, R = renewal, FT = flow-through, U = unmeasured, M = measured.
** Results are expressed as mercury, not as the chemical.
*** Not used In calculation of Species Mean Acute Value because data are available for a more sensitive life stage.
»**• "Less than" values were not used In calculations.
*****No Species Mean Acute Value calculated because acute values are too divergent for this species.

-------
Species
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Brook trout,
Salvellnus fontlnalls
Cladoceran,
Daphnla magna
Mys Id,
Mysldopsls bah I a
Table 2. Chronic Toxicity of Mercury to Aquatic Animals
Llalts Chronic Value
Test*	Chewlea I	(nq/L)**	(iiq/L)**
FRESHWATER SPECIES
Mercury(11)
LC*"	Mercuric	0.72-1.28	0.96
chI or I de
LC"" Mercuric	0.91-1.82	1.287
chlorIde
LC	Mercuric	<0.26""*	<0.26
chI or Ide
ELS	Mercuric	<0.23""* <0.23
chloride
Methyl mercury
LC*** MethyImercurIc <0.04***** <0.04
chI or Ide
LC**** MethyI mercuric 0.52-0.87	0.6726
chloride
LC	MethyImercurIc 0.29-0.93	0.5193
chI or Ide
Other Mercury Compounds
LC**** PhenyImercur Ic 1.12-1.90	1.459
acetate
SALTWATER SPECIES
Mercuryt11)
LC	Mercur I c	0.8-1.6	1.131
chlorIde
Reference
Bleslnger, et al.
1982
Bleslnger, et al.
1982
Snarski & Olson,
1982
CalI, et al. 1983
Bleslnger, et al.
1982
Bleslnger, et al.
1982
McKIm, et al.
1976.
Bleslnger, et al.
1982
Gentile, et al.
1982, 1983;
Lussler, et al.
Manuscript

-------
Table 2. (Continued)
* LC * life cycle or partial life cycle, ELS = early life stage.
** Results are expressed as mercury, not as the chemical.
444 Flow-through
Renewal
44*44Adverse effects occurred at this concentration, which was the lowest concentration tested.
Acute-Chronic Ratio
Species
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla magna
Fathead minnow,
Plmephales promelas
Fathead minnow,
Plmephales promelas
Mysld,
Mysldopsls bahla
Brook trout
Salvellnus fontlnalls
Acute Value
(ua/L)
Mercury(11)
5
168
150
3.5
MethyImercury
73.89f
Chronic Value
(ug/D
0.96
1.287
<0.26
<0.23
1.131
0.5193
Ratio
5.208
3.885
>646.2
>652.2
3.095
142.3
* Geometric mean of 2 values from McKlra, et al. (1976) In Table I.

-------
Table 3* Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
CD
Rank*
28
27
26
25
24
23
22
21
20
19
IB
17
Gonus Mean
Acute Value
(liq/L)
2,000
2,000
2,000
1,200
1,200
1,000
1,000
406.2
370
275
250
240
Species
FRESHWATER SPECIES
Mercury(11)
Stonefly,
Aeroneurla lycorlas
Mayfly,
Ephemeral la subvarla
Caddlsfly.
Hydropsyche batten I
Caddlsf I y,
(Unidentified)
Damsel fly,
(Unidentified)
Worm,
Ma I s sp.
Mozambique tllapla,
Tllapla mossamblca
Tub)field worm,
Splrosperma ferox
Tublfield worm,
Splrosperma nlkolskyl
Snal I,
Aplexa hypnorum
Rainbow trout,
Salmo qalrdnerl
Species Mean
Acute Value
(ug/L)
2,000
2,000
2,000
1,200
1,200
1,000
1,000
330
500
370
275
Species Mean
Acute-Chronic
Ratio
Tublfield worm,	250
Qulstadrllus multlsetosus
Tublfield worm,	240
Rhyaeodr11 us montana

-------
Table 3.
Rank*
16
15
14
13
12
II
10
9
8
7
6
5
4
3
(Continued)
Genus Mean
Acute Value
(ug/L)
240
180
180
160
158.7
140
140
100
80
80
50
30
20
20
Species
Species Mean
Acute Value
	WU	
Species Mean
Acute-Chronic
Ratio
Coho salmon,	240
Oncorhynchus klsutch
Tub IfIcId worm,	180
Llmnodrllus hoffmelsterl
MosqultofIsh,	180
Gambusla afflnls
Bluegl 11,	160
Lepomls macrochlrus
Fathead minnow,	158.7	>649.2"*
Pltnephales promelas
Tublfield worm,	140
Tubltax tublfax
Tublfield worm,	140
Stylodrllus her IngI anus
Tublfield worm,	100
Varlchaeta paclflca
Tublfield worm,	80
Branch Iura sowerby I
Snail,	80
Amnlcola sp.
Crayfish,	50
Orconectes IImosus
Guppy,	30
Poecilla reticulata
Crayfish,	20
Faxonella clypeatus
Midge,
Chlronomus sp.
20

-------
Table 3. (Continued)
Genus Mean
Acute Value
Rank*	(ng/L)
2	10
2.646
29
1,678
4>
O
28
27
26
25
24
400
315
230
230
230
23
22
158
120
Species Mean Species Mean
Acute Value	Acute-Chronic
Species	(tig/L)	Ratio
Amphlpod,
Gammarus sp.
Cladoceran,
Daphnla magna
Cladoceran,
Daphnla pulex
SALTWATER SPECIES
Mercury(11)
Winter flounder,
PseudopIeuronectas
amerIcanus
Soft-she I I clam,
Hya arenarla
Foursplne stickleback,
Ape Ites quadracus
Northern horse mussel.
Modiolus modiolus
Copepod,
Nltocra splnipas
Oligochaete worm,
Monophylephorus
cutlculatus
Copepod,
Eurytemora affinis
Oligochaete worm,
Llmnodrlloldes
verrucosus
10
3.157	4.498**
2.217
1,678
400
315
230
230
230
158
120

-------
Table 3. (Continued)
Genus Mean
Acute Value
Rank*	(uq/L)
21	98
20	98
19	97.98
18	90.63
17
16
15
14
13
12
11
10
9
89
79
70
67 .4
60
50
36
20
17
Species Mean Species Mean
Acute Value Acute-Chronic
Species	(iig/L)	Ratio
Oligochaete worm,	98
Tubiticoides gabrlellae
Haddock,	98
Melanoqrammus aeqletlnus
Polychaete norm,	97.98
Neanthes arenaceodentata
Atlantic sllverslde,	115.7
Men IdI a men IdI a
Tidewater sllverslde,	71
Menldla penlnsulae
Bay scallop,	89
Arqopecten Irradlans
Copepod,	79
Pseudodlaptowus coronatus
Sand worm,	70
Nereis vIrons
Mummichog,	67.4
Fundulus heteroclltus
Starfish,	60
ArterI as forbesl
Herml t crab,	50
Paqurus lonqlcarpus
Spot,	36
Lelostowus xanthurus
American lobster,	20
Homarus amerlcanus
White shrimp,
Penaeus setiferus
17

-------
Table 3. (Continued)
Rank*
8
7
6
Genus Mean
Acute Value
(uq/L)
14
14
11.97
7. 357
6.703
5.8
4.8
3.5
Species
Green crab,
Carclnus maenas
Polychaete worm.
Capital la capltata
Copepod,
Acartla clausl
Copepod,
Acartla tonsa
Dungeness crab.
Cancer maqlster
Pacific oyster,
Crassostrea glgas
Eastern oyster,
Crassostrea vlrglnlca
Blue mussel,
MytlI us edu11s
Quahog clam,
Mercenarla mercenarla
MysId,
Mysldopsls bah I a
Species Mean
Acute Value
14
14
10
14.32
7.357
5.944
7.558
5.8
4.8
3.5
Species Mean
Acute-Chronic
Ratio
3.095
* Ranked from most resistant to most sensitive based on Genus Mean Acute Value.
"Geometric mean of two values In Table 2.

-------
Table 3. (Continued)
Hercury(11)
Final Acute-Chronlc Ratio = 3.731 (see text)
Fresh water
Final Acute Value = 4.857 pg/L
Criterion maximum concentration = (4.857 pg/L) / 2 = 2.428 pg/L
Final Chronic Value = (4.857 pg/L) / 3.731 = 1.302 pg/L
Salt water
Final Acute Value- 4.125 pg/L
Criterion iraxlmum concentration = (4.125 pg/L) / 2 = 2.062 pg/L
Final Chronic Value = (4.125 pg/L) / 3.731 = 1.106 pg/L
¦F-
u>

-------
Table 4. Toxicity of Mercury to Aquatic Plants
Species

Chealcal
Effect



FRESHWATER SPECIES



Mercury(11)
Alga,

MercurIc
33-day EC50
Chlorella
vu 1 gar1s
chloride
(eel 1 dl vlsloi


InhIbltlon)
Alga,

Mercuric
LC50
Chlorella
vulgar Is
ch 1 or 1 de

Alga,

MercurIc
LC50
Chlorella
vulqarls
chloride

Alga,

Mercur1c
15-day EC50
Chlorella
vulgarls
chloride
(growth)
Alga,

Mercuric
EC50 (growth)
Anabaena f
1os-aquae
chloride

Blue alga.
Microcystis aeruginosa
Green alga,
Scenedesmus quadrlcauda
Mercur Ic
chloride
MercurIc
chloride
8-day Incipient
Inhibition
8-day Incipient
Inhibition
Result
(iig/L)*
1,030
100-1,000
148-296
443-592
53
5
70
Alga,	Mercuric
Selenastrum caprIcornuturn	chloride
Eurasian watermlIfolI,	Mercuric
MyrlophyIlum spI caturn	chloride
Inhibited
growth
32-day EC50
(root weight)
59
3,400
Alga,
Anabaena flos-aquae
Alga,
Chlorella vulgaris
Methyl mercuric
chlorIda
MethylmercurIc
chloride
Methyl mercury
EC50 (growth)
15-day EC50
(growth)
6.0
0.8-4.0
Reference
RosKo & Rachlln,
1977
Glpps & Biro, 1978
Ral, 1979; Ral, et al.
1981
Ral, et al. 1981
Thomas & Montes, 1978
Brlngmann, 1975; Brlngmann &
Kuhn, 1976, 1978a,b
Brlngmann, 1975; Brlngmann &
Kuhn, 1976, 1978a,b, 1979,
1980b
Slooff, et al. 1983
Stanley, 1974
Thoinas & Montes, 1978
Ral, et al. 1981

-------
Table 4. (Continued)
Species
Chemical
Effect
Alga,
Anabaena fIos-aquae
Phenyl mercuric
acetate
Other Mercury Compounds
EC50 (growth)
Alga,
Thalassloslra aestevalls
Seaweed,
Ascophy11um nodosum
Diatom,
Dltylum brlghtwellll
Seaweed,
Fucus serratus
Seaweed,
Fucus spiral Is
Seaweed,
Fucus veslculosus
Giant kelp,
Macrocystls pyrlfera
Seaweed,
Pelvetla canal leu lata
Mercuric
chlorIde
Mercuric
chloride
Mercuric
chloride
Mercur1c
chloride
Mercuric
chloride
MercurIc
chlorIde
MercurIc
chlorIde
Mercur Ic
chloride
SALTWATER SPECIES
Mercury!11)
Reduced
chlorophyll a
10-day EC50
(growth)
5-day EC50
(growth)
10-day EC50
(growth)
10-day EC50
(growth)
10-day EC50
(growth)
4-day EC50
(growth)
10-day EC50
(growth)
* Results are expressed as mercury, not as the chemical.
Result
jKa/kii
Reference
2.8 Thomas & Montes, 197B
10	Holllbaugh, et al.
1980
100	Stramgren, 1980
10	Canter ford &
Canter ford, 1980
160	Stramgren, 1980
80	Stramgren, 1980
45	Stramgren, 1980
50	Clendennlng & North,
1959
130	Stramgren, I960

-------
Table 5. BloaccumulatIon of Mercury by Aquatic Organisms
Species
Rainbow trout,
Sal mo qalrdnerl
Fathead minnow,
Plmephales promelas
Tissue
Whole body
Whole body
Chmlcal
Duration
(days)
FRESHWATER SPECIES
Mercury( 11)
Mercuric chloride	60
Mercuric chloride
287
BloconcentratIon
Factor*	
1,800
4,994**
MethyIwercury
on
Rainbow trout,
Sal mo qalrdnerl
Rainbow trout,
Sal mo qalrdnerl
Brook trout,
Salvellnus fontlnalls
Brook trout,
Salvellnus fontlnalls
Brook trout.
Salve I Inus fontlnalIs
Fathead minnow,
Plmephales promelas
Whole body
Whole body
Muscle
Whole body
Muscle and
whole body
Whole body
MethyImercurIc
chI or Ide
MethyImercurIc
ch I or I de
MethyImercur Ic
chloride
MethyImercurIc
chloride
MethyImercurIc
chloride
MethyImercurIc
ch I or I de
60
75
273
273
756
336
11,000
85,700
11,000-
33,000
10,000-
23,000
12,000
44,130-
81,670
SALTWATER SPECIES
Mercury(I I)
Eastern oyster (adult).	Soft parts	Mercuric chloride	74	10,000
Crassostrea vlrglnlca
American lobster (adult), Tall muscle Mercuric chloride	30	129
Homarus amerlcanus
Reference
Boudou & RI bey re, 1984
Snarskl & Olson, 1982
Boudou & Rlbeyre, 1984
NlIml & Lowe-JInde,
1984
McKIm, et al. 1976
McKIm, et al. 1976
McKIm, et al. 1976
Olson, et al. 1975
Kopfler, 1974
Thurberg, et al. 1977

-------
Table 5. (Continued)
Duration Bloconcentratlon
Species	Tissue	Chemical	(days) 	Factor*	Reference
Methyl mercury
Eastern oyster (adult).	Soft parts	MethyI mercuric	74	40,000	Kopfler, 1974
Crassostrea virgin lea	chloride
Other Mercury Compounds
Eastern oyster (adult).	Soft parts	Phenyl mercuric	74	40,000	Kopfler, 1974
Crassostrea virgin lea	chloride
* Results are based on mercury, not the chemical.
••From concentrations that caused adverse effects In a life-cycle test.
Consumer
Man
Mink,
Mustela vlson
Brook trout,
Salvellnus fontlnalls
Maximum Permissible Tissue Concentration
Concentration
Action Level or Effect	(mg/kg)
Action level for edible
fish or she I IfIsh
Histological evidence
of Injury
Death (700 days)
1.0
<.1.1
5-7
Reference
U.S. FDA, 1984a,b
Wobeser, 1976a,b
McKIm, et al. 1976
MethyImercury
Freshwater Final Residue Value = (1.0 mg/kg) / 81,700 =» 0.000012 mg/kg = 0.012 ug/L (see text)
Saltwater Final Residue Value = (1.0 mg/kg) / 40,000 = 0.000025 mg/kg = 0.025 ug/L
Mercury(11)
Freshwater Final Residue Value = (1.0 mg/kg) / 4,994 = 0.00020 mg/kg = 0.20 ug/L (see text)
Saltwater Final Residue Value = (1.0 mg/kg) / 10,000 = 0.00010 mg/kg = 0.10 ug/L (see text)

-------
Table 6. Other Data on Effects of Mercury on Aquatic Organ!sas
Species
Alga,
(Spring assemblages,
predominately diatoms)
Alga,
Anklstrodosmus braunlI
Alga,
Anklstrodesmus braunlI
Alga,
Anklstrodesmus sp.
Alga,
Synedra ulna
Green alga,
Sconedesmus quadrlcauda
Green alqa,
Scenedesmus quadrlcauda
Bacteria,
Escherichia coll
Bacteria,
Escherlchla col I
Bacterla,
Pseudomonas put!da
Protozoan,
Entoslphon sulcatum
Protozoan,
Chilomonas Paramecium
Protozoan,
Uronema parduczI
ResuIt
Chewlcal	Duration	Effect	(pg/L)* Reference
FRESHWATER SPECIES
Hercury( 11)
Mercuric	2 hrs	EC50 (reduced	80	Blinn, et al. 1977
chloride	photosynthesis)
Mercur ic
chloride
MercurIc
chloride
Mercuric
chloride
Mercuric
chloride
Mercur ic
chloride
Mercuric
cyan!de
Mercuric
ch I or i de
Mercuric
cyan)de
Mercuric
chlor Ide
Mercuric
chI or ide
Mercuric
chloride
Mercuric
chloride
168-240 hrs
24 days
10 days
0.29 days
96 hrs
96 hrs
EC50 (Inhibited	2,590
lipid biosynthesis)
16 hrs
72 hrs
48 hrs
20 hrs
Inhibited growth
More toxic at pH
5 than pH = 7
BCF=29,000
Inci pient
inhlbi tion
Inci pi ent
inhibition
Inci pient
Inhlbi tion
IncI pi ent
inhibition
Inci pient
I nhlbi tion
Inci pi ent
Inhibition
Inci pi ent
i nhl bi tion
Inci pi ent
i nhlbi tion
74
30**
150**
200
200
10
18
15
67
Matson, et al. 1972
Trevors, 1982
Baker, et al. 1983
Fujita & Hashizume,
1972
Brl ngmann & Kuhn, 1959a,b
Bringmann & Kuhn, 1959a,b
Bri ngmann & Kuhn, 1959a
Bringmann & Kuhn, 1959a
Bri ngmann & Kuhn,
1976, 1977a, 1979, 1980b
Bringmann, 1978; Bringmann
& Kuhn, 1979, 1980b, 1981
Bringmann, et al. 1980;
Bringmann & Kuhn, 1981
Bringmann 4 Kuhn, 1980a,
1981

-------
Table 6. (Continued)
Result
Species
Chealcal
Duration
Effect
(ug/L)*
Reference
Protozoan,
Mlcroreqma heterostoma
Mercuric
chloride
28
hrs
Inci pi ent
inhibition
150
Brlngmann & Kuhn, 1959b
Protozoan,
Mlcroreqma heterostoma
Mercuric
cyanlde
28
hrs
1nclpient
1nhlbi tlon
160
Brlngmann & Kuhn, 1959b
Hydra,
Hydra oliqactls
Mercuric
chloride
48
hrs
LC50
56
Slooff, 1983; Slooff,
et al. 1983
Planarlan,
Ouqesla luqubrls
Mercuri c
chloride
48
hrs
LC50
55
Slooff, 1983
Tublfield worm,
Tublfex tublfex
Mercuric
chloride
48
hrs
LC50
3,200
Qureshl, et al. 1980
Snal1,
Lvmnaea staqnalla
Mercur1c
chloride
48
hrs
LC50
443
Slooff, 1983; Slooff,
et al. 1983
Mussel,
Marqar1tltera marqarltlfera
Mercur1c
ni trate
39
days
BCF=302
-
Mel 1 i nger, 1973
Cladoceran,
Dlaphanosoma sp.
Mercuric
chloride
3
wks
Reduced population
density
2.8
Marshal 1, et al.
1981
Cladoceran,
Daphnla qaleata mendotae
Mercuri c
chlori de
3
wks
Reduced population
denslty
2.2
Marshal 1, et al.
1981
Cladoceran,
Daphnla magna
Mercuric
chloride
3
wks
Reproducti ve
Impalrment
3.4
Bleslnger &
Christensen, 1972
Cladoceran,
Daphnla magna
Mercuric
chloride
48
hrs
EC 50
30"
Brlngmann & Kuhn, 1959a,b
Cladoceran,
Daphnla magna
Mercuric
cyanide
48
hrs
EC50
20"
Brlngmann & Kuhn, 1959a,b
Cladoceran,
Daphnla magna
Mercur1c
chloride
24
hrs
LC50
13
Brlngmann & Kuhn, 1977b
Cladoceran,
Bosmina lonqlrostrls
Mercuric
chloride
3
wks
Reduced population
denslty
2.8
Marshal 1, et al .
1981

-------
Table 6. (Continued)
Species
ChewleaI
Natural cope pod	Mercuric
assemblages	chloride
AmphI pod,	MercurIc
Gammarus sp«	chloride
Amphlpod,	Mercuric
Gammarus sp»	nitrate
Crayfish (male, mixed ages).	Mercuric
F axone11 a clypeatus	chI or Ide
Crayfish (0.2 g).	Mercuric
Faxonella clypeatus	chloride
Crayfish (1.2 g),	Mercuric
Faxonella clypeatus	chloride
Crayfish (adult).	Mercuric
Orconectes llmosus	chloride
Crayfish (juvenile),
Orconectes llmosus
Mercuric
chloride
Crayfish (Juvenile),
Orconectes IImosus
Mercur Ic
ch I or I de
Crayfish (male, mixed ages),
Procambarus dark I
MercurIc
chloride
Freshwater community
(primary producers,
herbivores and
carnivorous midges)
Mosqulto,
Aedes aeqyptl
Mosquito,
Aedes aeqyptI
Mercuric
chloride
MercurIc
chloride
Mercuric
chloride
Result
Duration	Effect	(tig/L)*
7 days	Reduced growth	28.3
rate
7 days	BCF=2,500
7 days	BCF=2,500
72 hrs	LC50 ,	200
24 hrs	LC50	1,000
672 hrs	LC50	1,000
96 hrs	LC60	740
30 days	LC50 (unfed)	2
30 days	LC50 (fed)	<2
72 hrs	LC50	200
I yr Reduced algal standing	0.1
stock and diversity;
no evidence of effects
on midges
48 hrs	LC50	4,100
Reference
Borgmann, 1980
Zubarlk 1 O'Connor,
1978
Zubarlk & O'Connor,
1978
Kelt 1 Flngerman,
1977
He It 1 Flngerman,
1977
Helt & Flngerman,
1977
Doyle, et al. 1976
Boutet &
Chalsemartln, 1973
Boutet &
Chalsemartln, 1973
Helt & FIngerman,
1977
Slgmon, et al. 1977
SI oof f, et al. 1983
48 hrs	LC50
776
Slooff, et al. 1983

-------
Table 6. (Continued)
Species
Pink salmon (embryo),
Oncorhynchus qorbuscha
Chewlcal
Mar cur Ic
sulfate
Pink salmon (pre-eyed embryo). Mercuric
Oncorhynchus qorbuscha	sulfate
Pink salmon (larva).	Mercuric
Oncorhynchus qorbuscha	sulfate
Sockeye salmon (embryo).	Mercuric
Oncorhynchus nerka	sulfate
Sockeye salmon
(pre-eyed embryo),
Oncorhynchus nerka
Sockeye salmon (larva),
Oncorhynchus nerka
Sockeye salmon (juvenile),
Oncorhynchus nerka
Rainbow trout (juvenile),
SaImp qalrdnerI
Rainbow trout (juvenile),
Sal mo qalrdnerI
Rainbow trout (juvenile),
Sal mo qalrdnerI
Rainbow trout,
Sal mo qalrdnerI
Rainbow trout,
Salmo qalrdnerI
Rainbow trout (embryo, larva),
Salmo qalrdnerI
MercurIc
sulfate
Mercur Ic
sulfate
MercurIc
sulfate
MercurIc
chlorIde
Mercur I c
chI or Ide
Mercur I c
chloride
Mercuric
chloride
MercurIc
chI or I de
Mercuric
ch lor I de
Duration
Effect
2 days »
5.2
140
Reference
Servlzl & Martens,
1978
8.5 Servlzl & Martens,
1978
Servlzl & Martens,
1978
4.3 Servlzl & Martens,
1978
9.3 Servlzl & Martens,
1978
290	Servlzl & Martens,
1978
190	Servlzl & Martens,
1978
903 Wobeser, 1973
2 hrs Depressed olfactory 74
bulber response
hara, et al. 1976
Growth Inhibition 2.1-21 Matlda, et al. 1971
I wk
80 ml n
28 days
Effected osmo-
regulation
Avol dance
threshold
EC50 (death and
deformity)
100
Lock, et al. 1981
0.2 Black & Blrge, 1980
4.7 Blrge, et al. 1979,
5.0 1980

-------
I
Table 6. (Continued)
Species
Chealcal
Duration
Rainbow trout (embryo, larva),
Sal mo qalrdnerl
Rainbow trout (embryo, larva),
Sal mo qalrdnerl
01
N>
Rainbow trout,
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
Goldfish (embryo, larva),
Carasslus auratus
Goldfish (embryo, larva),
Carasslus auratus
Common carp,
Cyprlnus carp Io
Fathead minnow,
Plmephales promelas
White sucker (adult),
Catostomus commersonl
White sucker (adult),
Catostomus commersonl
Channel catfish (embryo, larva),
Ictalurus punctatus
Channel catfish (embryo, larva),
Ictalurus punctatus
Channel catfish (embryo, larva),
Ictalurus punctatus
Channel catfish (embryo, larva),
Ictalurus punctatus
MercurIc
chloride
Mercur Ic
chloride
Mercur Ic
chI or Ide
MercurIc
chI or Ide
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercur Ic
chloride
Mercuric
chloride
MercurIc
chloride
MercurIc
chloride
28 days
28 days
5, 18 mo
48 hrs
7 days
7 days
60-72 hrs
48 hrs
36 mln
46 mln
10 days
10 days
10 days
Effect
EC50 (death and
deformity)
EC 10 (death and
deformity)
Substantial
mortalIty
LC50
EC50 (death and
deformity)
EC50 (death and
deformity)
Reduced hatching
success
UC50
Blood enzyme (LDH)
Inhibition 20*
Blood enzyme (GOT)
Inhibition 20*
EC50 (death and
deformity)
EC50 (death and
deformity)
Increased
albinism
BCF=441-2071
Result
(|iq/L)a Reference
<0.1 Blrge, et al. 1979,
1980
0.9 Blrge, et al. 1981
0.12-0.24 Blrge, et al. 1979
480 Slooff, et al. 1983
121.9 Blrge, 1978; Blrge,
et al. 1979
0.7 Blrge, 1978; Blrge,
et al. 1979
>3,000	Huckabee & Griffith,
—	1974
37	Slooff, et al. 1983
8,000	Chrlstensen, 1972
10,000	Chrlstensen, 1972
30	Blrge, et al. 1979
0.3	Blrge, et al. 1979
0.5 Westerman & Blrge,
1978
Blrge, et al. 1979

-------
Table 6. (Continued)
Species
Cheatcal
Duration
m
u>
Channel catfish (embryo, larva). Mercuric
I eta Iurus punctatus	chloride
MosqultofIsh,	Mercuric
Gambusla affinis	chI or Ide
Guppy,	Mercuric
Poecllla reticulata	chloride
Guppy,	Mercuric
Poecllla reticulata	chloride
Blueglll (embryo, larva).	Mercuric
Leponils macrochlrus	chloride
Redear sunflsh (embryo, larva).	Mercuric
Lepomls mlcrolophus	chloride
Largemouth bass (embryo, larva). Mercuric
Mlcropterus sal moIdes	chI or Ide
Largemouth bass (embryo, larva). Mercuric
Mlcropterus salmoldes	chloride
Largemouth bass,
Mlcropterus salmoldes
Mozambique tllapla.	Mercuric
Tllapla mossamblca	nitrate
Mozambique tllapla.	Mercuric
Tllapla mossamblca	chloride
Pig frog (embryo, larva).	Mercuric
Rana qry Ilo	chloride
River frog (embryo, larva).	Mercuric
Rana heckscherl	chloride
Leopard frog (embryo, larva),	Mercuric
Rana plplens	chloride
10 days
>10 days
24 hrs
48 hrs
7-8 days
7-8 days
8 days
8 days
24 hrs
35 days
48 hrs
7 days
7 days
7 days
Result
Effect	(uq/L)*
BCF-4.4-353
LC50	500
LC50	13
UC50	303
EC50 (death and	88.7
deformity)
EC50 (death and	137,2
deformity)
EC50 (death and	130
deformity)	140
EC50 (death and	5.3
deformity)
Affected opercular	10
rhythm
Clinical symptoms	310
LC50	1,000
EC50 (death and	67.2
deformity)
EC50 (death and	59.9
deform!ty)
EC50 (death and	7.3
deformity)
Reference
Qlrge, et al. 1979
Boudou, et al. 1979
Hamdy, 1977
Slooff, et al. 1983
Blrge, et al. 1979
Blrge, et al. 1979
Blrge, et al. 1978,
1979
Blrge, et al. 1979
Morgan, 1979
Pan Igrah I & Mlsra,
1980
Menezes & Qaslm, 1983
Blrge, et al. 1979
Blrge, et al. 1979
Blrge, et al. 1979

-------
Table 6. (Continued)
Speclas
Chemical
Duration

Narrow-mouthed toad	Mercuric
(embryo, larva),	chloride
Gastrophryne carolInensls
Green toad (embryo, larva).	Mercuric
Bufo deblI Is	chI or Ide
Fowler's toad (embryo,	larva). Mercuric
Bufo fowler I	chloride
Red-spotted toad	Mercurlf
(embryo, larva),	chloride
Bufo punctatus
Northern cricket frog	Mercuric
(embryo, larva),	chloride
Acrls crepitans
Southern gray treefrog	Mercuric
(embryo, larva),	chloride
Hyla chrysoscelIs
Spring peeper (embryo,	larva). Mercuric
Hyla cruelfer	chloride
Barking treefrog	Mercuric
(embryo, larva),	chloride
Hyla gratlosa
Squirrel treefrog	Mercuric
(embryo, larva),	chloride
Hyla squlrella
Gray treefrog (embryo,	larva). Mercuric
Hyla versicolor	chI or Ide
African clawed frog.	Mercuric
Xenopus laevls	chloride
African clawed frog.	Mercuric
Xenopus Iaev1s	chI or Ide
7 days
7 days
7 days
7 days
7 days
7 days
7 days
7 days
7 days
7 days
11 mos
48 hrs
Effect
EC50 (death and
deformity)
Result
1
1.3
Reference
Blrge, et al. 1978,
1979
EC50 (death and
deformity)
EC50 (death and
deformity)
EC50 (death and
deform!ty)
40.0 Blrge, et al. 1979
65.9 Blrge, et al. 1979
36.8 Blrge, et al. 1979
EC50 (death and
deformity)
10.4 Blrge, et al. 1979
EC50 (death and
deformlty)
2.4 Blrge, et al. 1979
EC50 (death and
deformity)
EC50 (death and
deformity)
2.8 Blrge, et al. 1979
2.5 Blrge, et al. 1979
EC50 (death and
deformity)
2.4 Blrge, et al. 1979
EC50 (death and
deformlty)
Substantial
mortalIty
LC50
2.6 Blrge, et al. 1979
0.16-0.2 Blrge, et al. 1978
74	Slooff & Baerselman
1980; Slooff, et al
1983

-------
Table 6. (Continued)
Species
Marbled salamander
(embryo, larva),
Ambystoma opacum
Chan lea I
Mercurlc
chloride
Alga,
Anklstrodesmus braunll
Alga,
Coelastrum mlcroporum
Alga,
Scenedesmus obllquus
Alga,
Microcystis Incerta
PlanarI an,
Duqesla dorotocephaI a
Mussel,
MarqarItlfera marqarItIfera
Amphlpod,
Gammarus sp.
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
MethyImercurlc
chloride
MethyImercuric
chloride
MethyImercurlc
ch I or I de
MethyImercurlc
chloride
MethyImercurlc
chloride
MethyImercuric
chloride
MethyImercurIc
chI or Ide
MethyImercurlc
chI or Ide
MethyImercurlc
chloride
MethyImercurlc
chloride
MethyImercurlc
chlorlde
Rainbow trout,
Salmo qalrdnerl
Methy I mercur lc
chI or Ide
Result
Pur at I on	Effect	(iig/L)*	Reference
7-8 days EC50 (death and	108	Blrge, et al. 1978,
deformity)	107.5	1979
MethyImercury
168-240 hrs Lipid biosynthesis,	1,598	Matson, et al. 1972
>EC50
EC50 (growth	>2.4-<4.8 Holderness, et al.
Inhibition) 1975
14 days 8CF=2,I00 (Maxl-	-	Hav I Ik, et al. 1979
mum by third day)***
14 days 8CF=990 (Maximum	-	HavI Ik, et al. 1979
by third day)***
4 days LC50	200-500 Best, et al. 1981
57 days BCF=2,463	-	Mel linger, 1973
7 days BCF-8,000 (approx.) -	Zubarlk & O'Connor,
1978
84 days**** BCF=4,530 (whole	-	Relnert, et al. 1974
fish, 5 C)
84 days**** BCF=6,620 (whole	-	Relnert, et al. 1974
fish, 10 C)
84 days**** BCF=8,049 (whole	-	Relnert, et al. 1974
fish, 15 C)
Inhibited growth 0.0037-0.037 Mat Ida, et al. 1971
14 days
approximate LC80	8	Blanc, 1973

-------
Table 6. (Continued)
Species
Chenlea I
Rainbow trout,
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
Rainbow trout
(embryo, larva),
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
Brook trout (embryo),
Salvellnus fontlnalls
Brook trout (a lev In),
Salvellnus fontlnalls
HathyI mercuric
chlorIde
Methylmercuric
chloride plus
Inorganic
mercury
Methy Inter cur lc
chloride plus
Inorganic
mercury
MethyI mercuric
chI or I de
MethyImercuric
chloride
MethyI mercuric
chloride
Brook trout (alevlns),
Salvellnus fontlnalls
Brook trout (juvenile),
Salvellnus fontlnalls
MethyImercurlc
chI or Ide
MethyImercurlc
chI or Ide
Brook trout,
Salvellnus fontlnalls
MethyI mercuric
chI or Ide
Common carp,
Cyprlnus carplo
MosqultofIsh,
Gambusla affinis
MethyImercurlc
chloride
MethyImercurlc
chloride
Duration
1 wk
120 days
24 days
269 days
30 mln
16-17 days
IncubatIon
period
+ 21 days
30 days
14 days
8 days
16 days
<24 hrs
Effect
Effected osmo-
regulation
Loss of appetite
Result
(uq/L)*
Reference
Lock, et al. 1981
48 mg/kg Matlda, et al. 1971
In food
EC50 (death and
deformity)
Blrge i Black, 1977
Loss of nervous
control
48 mg/kg Matlda, et al. 1971
In food
EC50 (Reduced
vlablIIty of sperm)
Decreased enzyme
(GOT) activity
Reduced growth
1,000 Mclntyre, 1973
0.88 Chrlstensen, 1975
0.7 Chrlstensen, 1975
Increased enzyme
(GOT) activity
Increased blood
plasma chloride
Increased cough
frequency
Reduced protein
synthesis
0.79 Chrlstensen, 1975
2.93 Chrlstensen, et al.
1977
>3
Orummond, et al.
1974
0.05 Sharma & Davis, 1980b
LC50
500
Boudou, et al. 1979

-------
TabI* 6. (Continued)
Species
ChoMlcal
MosqultofIsh,
Gambusla afflnls
Methyl mercuric
chloride
Mosqultof I sh,
Gambusla afflnls
Methyl mercuric
chloride
MosqultofIsh,
Gambusla afflnls
Methylmercuric
chloride
Mosqultof I sh,
Gambusla afflnls
Methylmercuric
chloride
Blueglll (juvenile),
Lepomls macrochlrus
Methyl mercuric
chloride
Blueglll (juvenile),
Lepomls macrochlrus
Methyl mercuric
chloride
Bluegl11 (juvenlle),
Lepomls macrochlrus
Methy(mercuric
chI or Ide
Leopard frog (tadpole),
Rana pi pi ens
Leopard frog,
Rana plplens
Leopard frog
(blastula embryo),
Rana plplens
MethyI mercuric
chloride
MethyI mercuric
chlor Ide
MethyImercuric
chloride
Duration
30 days
30 days
30 days
30 days
28.5 days
28.5 days
28.5 days
48 hrs
4	mos
5	days
Effect
BCF=2,500
(whole fish,
10 C)
BCF=4,300
(whole, fIsh,
18 C)
BCF=3,000
(whole fish,
164 mg/kg In
food, 10 C)
BCF=27,000
(whole fish,
238 mg/kg In
food, 26 C)
BCF=373*****
(whole fish,
9 C)
Result
(lig/L)* Reference
Boudou, et al. 1979
Boudou, et al. 1979
Boudou, et al. 1979
Boudou, et al. 1979
Ceoiber, et al. 1978
BCF=921"***
(whole fish,
21 C)
Camber, et al. 1978
BCF»2,400«M«
(whole fish,
33 C)
Camber, et al. 1978
LCI 00
50-100 Chang, et al. 1974
Failure to	1-10 Chang, et al. 1974
metamorphose
LC50	12-16 Dial, 1976

-------
Table 6. (Continued)
Species
Leopard frog
(gastrula embryo),
Rana plplens
Leopard frog
(neural plate embryo),
Rana plplens
Leopard frog
(blastula embryo),
Rana plplens
Leopard frog
(gastrula embryo),
Rana plplens
Leopard frog
(neural plate embryo),
Rana plplens
Newt,
Trlturus vlrldescens
Newt,
Trlturus vlrldescens
Newt,
Trlturus vlrldescens
Mink (adul t),
Mustela vlson
Mink (aduIt),
Mustola vlson
Chemical
MethyImercurIc
chloride
MethyImercur1c
chloride
MethyImercurIc
chloride
MethyImercurIc
chloride
MethyImercurIc
chloride
MethyImercurlc
chloride
Methylmercuric
chI or Ide
MethyImercurIc
chloride
MethyImercurIc
chI or Ide
MethyImercurlc
chloride
Alga,	MethyImercurlc
(Florida Lake assemblage) dlcyandI amide
Duration	Effect
5 days LC50
Result
(liq/l.)*
8-12
Reference
Dial, 1976
5 days LC50
12-16 Dial, 1976
96 hrs EC50
(teratogenesls)
96 hrs EC50
(teratogenesls)
96 hrs
>2 days
17 days
8 days
EC 50
(teratogenesls)
Delayed limb
regeneration
Death
Death
0-4	Dial, 1976
8-12	Dial, 1976
12	Dial, 1976
8	Chang, et al. 1976
300	Chang, et al. 1976
1,000	Chang, et al. 1976
93 days Histologic evidence 1,100
of Injury
93 days LC50 In brain
tissue
11,000
Wobeser, 1973
Wobaser, 1973
Other Mercury Compounds
125 hrs Reduced blomass
0.8
(approx.)
Harrlss, et al. 1970

-------
Tabla 6. (Continued)
vo
SpecI as
Alga,
(Florida Lake assemblage)
Alga,
Cladophoraceae
Alga,
UlothrIchaceae
Alga,
(Florida Lake assemblage)
Alga,
(Florida Lake assemblage)
Alga,
Scenedesmus obllquus
Alga,
Microcystis Incerta
Sponge,
Ephydatla (luvlatills
Sponge,
Ephydatla f luvlatills
Amphi pod,
Gammarus sp.
Crayfish (juvenile),
Procambarus clarkl
Sockeye salmon (juvenile),
Oncorhynchus nerka
Sockeye salmon (juvenile),
Oncorhynchus nerka
Chenical
Duration
N-MethyImercuric- 125 hrs
I,2,3,6-tetrahydro-
3,6-methano-3,4,5,6,
7,7,-hexachloro-
phthalIralde
EthyImercuri c
phosphate
EthyImercuric
phosphate
PhenyImercuric
acetate
01phenyI
mercury
PhenyImercuric
chI or Ide
PhenyI mercuric
chloride
Mercury
Mercury
Phenylmercuric
acetate
MethyImercur ic
dicyandimide
Pyri dyImercurIc
acetate
Pyri dyImercurIc
acetate
1 hr
1 hr
125 hrs
125 hrs
14 days
14 days
30 days
30 days
7 days
120 hrs
1.5 hrs
1 hr
Result
Effect	(n
-------
Table 6. (Continued)
ON
o
Species
Sockeye salmon (juvenile),
Oncorhynchus nerka
Chinook salmon (fingerling),
Oncorhynchus tshawytscha
Chinook salmon,
Oncorhynchus tshawytscha
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout (alevln),
Salmo qalrdnerl
Rainbow trout (juvenile),
Salmo qalrdnerl
Rainbow trout,
Salmo qalrdnerl
Chemical
Duration
Rainbow trout (juvenile),
SaImo galrdnerI
Rainbow trout (juvenile),
Salmo galrdnerI
Rainbow trout (juvenile),
Salmo galrdnerI
Rainbow trout (juvenile),
Salmo qalrdnerl
Pyrldylmercurlc 1 hr
acetate
EthyImercuric	I hr
phosphate
EthyImercuric 20 hrs
phopshate
Pyrldylmercurlc I hr
acetate
Pyrldylmercurlc I hr
acetate
Pyrldylmercurlc I hr
acetate
Pyridyimercuric 1 hr
acetate
Pyrldylmercurlc I hr
acetate
PhenyImercurlc 12 wks
acetate
EthyImercuric 48 hrs
phosphate
EthyImercuric
p-toluene
sultonanl11de
Pyridyimercuric 24 hrs
acetate
Phenylmercuric 48 hrs
acetate
Effect
Safe for disease
control
01 stress
Safe for disease
control
LCI00
Result
(mq/L)*
<4,752
77
39
1,030
Reference
Rucker & Whipple,
1951
Burrows & Combs, 1958
Burrows & Combs, 1958
Al 11 son, 1957
LCO
LC33 ( 8.3 C)
(13.3 C)
967	Al11 son, 1957
4,750
4,750
Safe for disease <4,750
control
LC60
Rodgers, et al. 1951
Rucker & Whipple,
1951
517	Al 11 son, 1957
Growth Inhibition 0.11-1.1 Mat I da, et al. 1971
LC50
43	Matida, et al. 1971
Retarded learning 5 ug/g in Hartman, 1978
feed da Ily
or 10 ug/g
feed every
fifth day
LC50
LC50
25	MacLeod & Pessah,
1973
1 ,780	WiI I ford, 1966

-------
Table 6. (Continued)
Species
Rainbow trout (juvenile),
SaImp qalrdnerl
Brown trout (juvenile),
Sal mo trutta
Brown trout (juvenile),
Salmo trutta
Chemical
Merthlolate
Duration
48 hrs
Pyridylmercuric 1 hr
acetate
Pyridylmercuric 48 hrs
acetate
Effect
LC50
LC50
Result
10,500
Sate for disease 4,750
control
2,950
Reference
Ml I I ford, 1966
Rodgers, et al. 1951
Nil I ford, 1966
Brown trout (juvenile),
Salmo trutta
Merthlolate
48 hrs
LC50
26,800	Ml II ford, 1966
Brook trout (juvenile),
Salvellnus font I nails
Brook trout (juvenile),
Salvellnus fontlnalls
Brook trout (juvenile),
Salvellnus fontlnalls
Pyridylmercuric 1 hr
acetate
Pyridylmercuric I hr
acetate
Pyridylmercuric 48 hrs
acetate
Safe for disease
control
Safe for disease
control
LC50
2,070	Al lison, 1957
4,750	Rodgers, et al. 1951
5,080	Will ford, 1966
Brook trout (juvenile),
SaIvelInus font InaI Is
Lake trout (juvenile),
Salvellnus namaycush
Lake trout (juvenile).
Salve 11nus namaycush
Channel catfish (juvenile),
Ictalurus punctatus
Channel catfish (juvenile),
Ictalurus punctatus
Merthlolate
48 hrs
Pyridylmercuric 48 hrs
acetate
Merthlolate
48 hrs
Pyridylmercuric 72 hrs
acetate
Pyridylmercuric 48 hrs
acetate
LC50
LC50
LC50
LC50
LC50 (10 C)
(16.5 C)
(24 C)
36,900
3,610
1,060
232
1,960
1,340
234
Will ford, 1966
Mil I ford, 1966
Will ford, 1966
Clemens & Sneed,
1958a, 1959
Clemens & Sneed,
1958b
Channel catfish (yolk sac fry), Pyridylmercuric 48 hrs
Ictalurus punctatus	acetate
Channel cattish (1 wk-old),
I eta Iurus punctatus
Pyridylmercuric 48 hrs
acetate
LC50 (23 C)
LC50 (23 C)
178	CIemens & Sneed,
1958b
<148	Clemens & Sneed,
1958b

-------
Table 6. (Continued)
Species
Channel catfish,
Ictalurus punctatus
Channel catfish,
Ictalurus punctatus
Bluegl 11 (juvenl le),
Lepowls macrochlrus
BlueglI I (juvenile),
Lepomls macrochlrus
Largemouth bass,
Mlcropterus sal moIdes
Chemical
Duration
PyrIdyImercurIc 48 hrs
acetate
Merthlolate
48 hrs
Pyrldylinercurlc 48 hrs
acetate
Merthlolate
Mercury
48 hrs
Effect
LC50
LC50
LC50
LC50
21 days Threshold of
effect opercu-
lar rhythm
Result
(iig/L)* Reference
1,370	Ml I I ford, 1966
2,800	Ml I I ford, 1966
7,600
32,000
10
Ml I I ford, 1966
Ml I I ford, 1966
Morgan, 1979
o
N>
Red alga.	Mercuric
Antlthamnlon plumula	chloride
Alga,	Mercuric
Chaetoceros qI aves tonensIs	chloride
Alga,	Mercuric
Chaetoceros galvestonensls	chloride
Alga,	Mercuric
Chaetoceros gaIvestonensls	chloride
Alga,	Mercuric
Chroomonas sallna	chloride
Alga,
Cyclotella sp.
Alga,
Puna I lei la sp.
Mercuric
chloride
Mercuric
chlori de
SALTWATER SPECIES
Mercury(11)
30 min LC50 after 7 days 5,000
4 days About 30? reduction 10
in growth
4 days No growth of
cuIture
4 days BCF=10,920
2 days BCF=853
3 days No growth of
culture
100
100
75t reduction in 2,500
C0o
Boney & Corner, 1959
Hannan, et al. 1973b
Hannan, et al. 1973b
Hannan, et al. 1973b
Parrish & Carr, 1976
Hannan & PatouiI let,
1972
Mi lis & Co I we I I, 1977

-------
Table 6. (Continued)
Species
Chemical
Duration
Alga,
Dunallella tertlolecta
Mercur ic
chlorIde
8 days
Alga,
Dunallella tertlolecta
Mercuric
chloride
8 days
CT>
Diatom,
Nltzchla aclcularls
Diatom,
Skeletonema costatum
Alga,
Dunallella tertlolecta
Alga,
Dunallella tertlolecta
Alga,
Isochrysls qalbana
Alga,
Isochrysls galbana
Alga,
Isochrysls gaIbana
Mercuric
chloride
MercurIc
chloride
MercurIc
chloride
Mercuric
chlori de
MercurIc
chlori de
Mercuric
chloride
Mercuric
chloride
7	days
15 days
3 days
8	days
15 days
15 days
28 days
Kelp (zoospores, gametophytes,	Mercuric
sporophytes),	chloride
Laminarla hyperborea
Kelp (zoospores, gametophytes,	Mercuric
sporophytes),	chloride
laminarla hyperborea
Kelp (zoospores, gametophytes,	Mercuric
sporophytes),	chloride
laminar I a hyperborea
28 days
22 hrs
28 hrs
Effect
Result
(iiq/l)* Reference
About 101 Increase 100	Qetz, 1977
in maximum chloro-
phyl I _a_ concentra-
tion
About 45% increase 220	Betz, 1977
in maximum chloro-
phyll ^ concentra-
tion
Prevented growth 150-200 Mora & Fabregas, 1980
Reduced cell	0.08 Cloutier-Mantha &
density	Harrison, 1980
About 15£ reduction	10 Davles, 1976
In growth
No effect on growth	2 Davles, 1976
About 101 reduction	5.1 Davles, 1974
In growth
About 601 reduction 10.5 Davles, 1974
In growth
Growth rate recovery 10.5 Davles, 1974
to near normal
after day 5
Lowest concentration 10	Hopkins & Kain, 1971
causing growth
I nhi bi tlon
EC50 respiration about 450 Hopkins & Kain, 1971
About 80} reduc- 10,000	Hopkins & Kain, 1971
tion In
respi ration

-------
Table 6. (Continued)
Species
Chemical

Alga,	Mercuric
PhaeodactyIurn trlcornutuw	chloride
Alga,	Mercuric
PhaeodactyI um trlcornutuw	chloride
Alga,	Mercuric
PhaeodactyIum trlcornutun	chloride
Red alga (sporllng),	Mercuric
Plumarla elegans	chloride
Red alga (sporllng), *	Mercuric
Plumarla elegans	chloride
Red alga (sporllng).	Mercuric
Plumarla elegans	chloride
Red alga.	Mercuric
Plumarla elegans	chloride
Red alga.	Mercuric
Polyslphonla lanosa	chloride
Alga (mixed).	Mercuric
Asterlonella japonlca plus	chloride
Diogenes sp.
5 seaweed species.	Mercuric
Ascophyllum nodosum.	chloride
Fucus spiralis.
F. verslculosus,
T. serratus,
"Po I vet I a cana 11 cu I ata
Algae,
(eighteen species)
Mercur Ic
chloride
Duration
4 days
4 days
4 days
24 hrs
I hr
18 hrs
Result
Effect	(ug/L)"
About 50< reduction	50
In growth
No growth of	120
culture
BCF=7,120
40t reduction In	120
growth over 21 days
40% reduction In 1,000
growth over 21 days
LC50 after 7 days 3,170
Reference
Hannan, et al. 1973b
Hannan, et al. 1973a
Hannan, et al. 1973b
Boney, 1971
Boney, 1971
Boney, et al. 1959
30 mln LC50 after 7 days 6,700	Boney & Corner, 1959
30 mln LC50 after 7 days 8,000	Boney & Corner, 1959
8 days BCF=3,467
Laumond, et al. 1973
10 days 10—303t reduction In 10
growth
Strangren, 1980
17 days
Growth Inhibition
<5-15
Berland, et al. 1976

-------
Table 6. (Continued)
Species
Chen leal
Duration
Algae,
(eighteen species)
MercurIc
chloride
17 days
Algae,
(three species)
Mercuric
chloride
168 hrs
Algae,
(three species)
Mercuric
chloride
168 hrs
Algae,
(three species)
Mercuric
chloride
168 hrs
Natural phytoplankton
populations
Mercuric
chlorIde
120 hrs
Natural phytoplankton
populations
Mercur Ic
chloride
96 hrs
Phytoplankton,
(Natural assemblages)
Mercuric
chloride
21 days
Protozoan,
Crlstlqera sp.
Mercur1c
chloride
12 hrs
Protozoan,
Euplotes vannus
Mercur Ic
chloride
48 hrs
Sand worm (adult).
Nereis vlrens
MercurIc
ch1 or 1de
168 hrs
Sand worm (adult).
Nereis vlrens
Mercuric
chloride
168 hrs
Polychaete worm (adult),
Ophryotrocha dladema
Mercur Ic
chlorIde
96 hrs
Polychaete worm (adult),
Ophryotrocha dladema
Mercuric
chloride
96 hrs
Polychaete worm (adult),
Ophryotrocha dladema
Mercuric
chloride
96 hrs
Polychaete worm,
Ophryotrocha dladema
MercurIc
chloride
48 hrs
ResuIt
Effect	(iiq/l)*
Death	10-50
Depressed growth	30-350
No further	40
bloaccumulatlon
Changes In cell	30-350
chemistry
Reduced chlorophyll	6
a
Reduced bl amass	2
Inhibited growth	I
Reduced growth	2.5-5
Inhibition of	1,000
reproduction
LC50	60
LC100	125
LCI 3	50
LC60	100
LCI 00	500
Reference
Borland, et al. 1976
Sick & Mlndom, 1975
Sick & WIndom, 1975
Sick & Wlndom, 1975
Hoi 11baugh, et al.
1980
Hoi IIbaugh, et al.
1980
Thomas, et al. 1977
Gray & Ventllla, 1973
Persoone &
Uyttersprot, 1975
Elsler & Hennekey,
1977
Elsler & Hennekey,
1977
Relsh & Carr, 1978
Relsh & Carr, 1978
Relsh & Carr, 1978
LC50
30-100
Parker, 1984

-------
Table 6. (Continued)
Species
Chemical
Blue mussel (larva).
Mercuric
Mytllus edulIs
chloride
Pacific oyster (larva).
Mercuric
Crassostrea qlqas
chloride
Eastern oyster (embryo),
Mercur 1c
Crassostrea virgin lea
chloride
Eastern oyster (embryo).
Mercur 1c
Crassostrea vlrqlnlca
chloride
Eastern oyster (embryo).
MercurIc
Crassostrea vlrqlnlca
chloride
Clam,
Mercuric
MulIna lateral Is
chloride
Common rang la.
Mercur lc
Ranqla cuneata
ch 1 or 1de
Common rang la,
Mercuric
Ranqla cuneata
chloride
Quahog clam (larva).
Mercur Ic
Mercenarla mercenarla
c h1 or 1de
Quahog clam (larva).
Mercuric
Mercenarla mercenarla
chloride
Soft-shell clam (adult).
Mercurlc
Mya arenarla
chlorIde
Soft-shell clam (adult).
Mercur Ic
Mya arenarla
chloride
Soft-shell clam (adult).
MercurIc
Mya arenarla
chloride
Copepods (adult).
MercurIc
(5 genera)
chloride
Copepods (adult),
MercurIc
(5 genera)
chloride
Duration
24 hrs
24 hrs
12 days
48 hrs
19 days
72 hrs
96 hrs
14 days
8-10 days
42-48 hrs
168 hrs
168 hrs
168 hrs
10 days
10 days
Result
Effect	(iiq/L)*
Abnormal development 32
AbnormaI	32
development
LC50	12
UCO	1
Trace metal upset	50
Reduced calcium	26.3
uptake
LC50 (<1 g/kg	5,100
salInlty)
BCF=I,130
(whole animal)
LC50	14
LC0	2.5
LC0	1
LC50	4
LC100	30
90jt decrease In egg	10
production
lOf decrease In	10
fecal pellet
Reference
Okubo & Okubo, 1962
Okubo & Okubo, 1962
Calabrese & Nelson, 1974
Calabrese, et al. 1977
Calabrese, et al.
1973
Kopfler, 1974
Ming-Shan & Zubkoff,
1982
Olson & Harrel, 1973
Oil Ion & Nell, 1978
Calabrese & Nelson, 1974
Calabrese, et al. 1977
Calabrese, et al.
1973
Elsler & Hennekey, 1977
Elsler & Hennekey, 1977
Elsler & Hennekey,
1977
Reeve, et al. 1977
Reeve, et al. 1977

-------
Table 6. (Continued)
Species
Cope pods (adult),
(5 genera)
Copepod (adult),
Pseudocalanus mlnutus
Copepod (adult).
Pseudocalanus mlnutus
Copepod (adult),
Acartla clausl
Copepod (adult),
Acartla clausl
Barnacle (adult),
Balanus balanoldes
Barnacle (cyprld),
Balanus balanoldes
ChewlcaI
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chlorlde
Mercuric
chloride
MercurIc
chlorlde
Mercuric
chloride
Barnacle (cyprld),
Balanus balanoldes
Barnacles (naupllus),
BaI anus crenatus
Barnacle (cyprld),
Balanus Improvlsus
White shrimp (adult),
Penaeus setlferus
Mercuric
ch lorlde
MercurIc
chloride
Marcur1c
chlorlde
Mercuric
chlor Ide
Grass shrimp (larva),	Mercuric
Palaemonetes vulgaris	chloride
Grass shrimp (larva).	Mercuric
Pa Iaemonetes vulgaris	chloride
Grass shrimp.	Mercuric
Pa Iaemonetes puglo	chloride
Result
Duration	Effect	(pg/L)*
48 hrs Hq-Cu Interactions	17
on LC50	(Hg in
mixture)
70 days No growth of culture	5
70 days No growth Inhibition	I
1.9 hrs LC50	50
24 hrs BCF=7,500
48 hrs LC90	1,000
6 hrs About 1 OS reduciton 10
In substrate attach-
ment over 19 days
6 hrs LC50	90
6 hrs LC50	60
48 hrs About 502 abnormal 16,600
developaent
60 days No ef feet on	I
respiration, growth,
or molting
<24 hrs LCI 00	56
48 hrs LC0	<5.6
120 hrs LC50	148
Reference
Reeve, et al. 1977
Sonntag & Greve, 1977
Sonntag & Greve, 1977
Corner & Sparrow,
1956
Relich iro, et al.
1963
Clarke, 1947
Pyeflnch & Mott, 1948
Pyefinch & Mott, 1948
Pyeflnch & Mott, 1948
Clarke, 1947
Green, 'at al . 197b
Shea Iy & Sand Ifer,
1975
Shea Iy & Sand Ifer,
1975
Barthalmus, 1977

-------
Table 6. (Continued)
Species
Chealcal
Grass shrimp.
Pa Iaamonetes puqlo
Mercuric
chloride
o>
oo
Grass shrimp (larva).
Pa Iaamonetes vulgaris
Grass shrimp (larva).
Pa Iaamonetes vulgaris
Hermit crab (adult),
Paqurus longIcarpus
Hermit crab (adult),
Paqurus longI carpus
Hermit crab (adult),
Pagurus longIcarpus
Green crab (adult),
Carclnus maenas
Green crab (adult),
Carclnus maenas
MercurIc
chlorIde
Mercuric
ch I or Ide
Mercuric
chlorIde
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Green crab (larva),
Carclnus maenas
Mercur lc
chloride
Green crab (larva),
Carclnus maenas
Mercur Ic
chloride
Green crab (larva),
Carclnus maenas
Mercurlc
chI or Ide
Green crab (larva),
Carclnus maenas
Mercuric
chloride
Green crab (larva),
Carclnus maenas
Mercuric
chloride
Green crab (larva),
Carclnus maenas
MercurIc
chloride
Result
Duration Effect	(tig/L)*
24 hrs Impaired condl-	37
tloned avoidance
response
48 hrs LC50	10
48 hrs Abnormal	10-18
development
168 hrs LCO	10
168 hrs LC50	50
168 hrs LCI00	125
48 hrs LC50	1,000
48 hrs LC50	1,200
47 hrs LC50	10
20-30 hrs LC50	33
4.3-13.5 hrs LC50	100
2.7 hrs LC50	1,000
0.5 hrs LC50	3,300
0.22 hrs LC50	10,000
Reference
Barthalmus, 1977
Shea Iy & Sandlfer
1975
Shea Iy & Sandlfer
1975
Elsler 1 Hennekey
1977
Elsler & Hennekey
1977
Elsler & Hennekey
1977
Portmann, 1968
Connor, 1972
Connor, 1972
Connor, 1972
Connor, 1972
Connor, 1972
Connor, 1972
Connor, 1972

-------
Table 6. (Continued)
Species
Fiddler crab (adult),
Uca pugllator
CheatcaI
Mercur 1c
chlor Ide
Duration
26 days
Fiddler crab (adult),
Uca pug 11ator
Fiddler crab (adult).
Ilea pug I I ator
Fiddler crab (adult),
Uca pugllator
Fiddler crab (zoea),
Uca pug 11ator
Fiddler crab (zoea),
Uca pug 11ator
Mercur Ic
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chI or Ide
Mercuric
chloride
6 days
6 days
24 hrs
8 days
24 hrs
Fiddler crab (zoea),
Uca pug 11ator
Mercuric
chlorlde
5 days
Starfish (adult).	Mercuric
Aster I as forbesl	chloride
Starfish (adult).	Mercuric
Aster I as forbesl	chloride
Starfish (adult).	Mercuric
Asterlas forbesl	chloride
Sea urchin (spermatazoa),	Mercuric
Arbacla punctulata	chloride
Sea urchin (spermatazoa),	Mercuric
Arbacla punctulata	chloride
Sea urchin (embryo).	Mercuric
Arbacla punctulata	chloride
Haddock (embryo).	Mercuric
Melanogrammus aegleflnus	chloride
168 hrs
168 hrs
168 hrs
8 mln
24 mln
13 hrs
96 hrs
Effect
Result
(yg/U*
Reference
Low survIvaI,
Inhibited limb
regeneration
20-251 reduction
In percent survival
20-25i reduction
In percent survival
Increased oxygen
consumption
LC50
20-100J Increase In
metabolic rate
after stage I zoea
About 40t Increase
In swimming activity
of stage V zoea
LC0
LC50
LCI 00
About 150| Increase
In swimming speed
About 80S decrease
In swimming speed
Abnormal development
Nels, 1976
Vernberg & Vernberg,
1972
Vernberg & Vernberg,
1972
Vernberg & Vernberg,
1972
OeCoursey & Vernberg
1972
OeCoursey & Vernberg
1972
OeCoursey & Vernberg
1972
Elsler & Hennekey,
1977
Elsler & Hennekey,
1977
Elsler & Hennekey,
1977
Young & Nelson, 1974
Young & Nelson, 1974
Waterman, 1937
1,000
180
180
180
1.8
1.8
1.8
10
20
125
20
2,000
92
LC50
918
Cardln, 1982

-------
Table 6. (Continued)
Species
Chemical
Duration
Mummlchog (adult),
Fundulus heteroclItus
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (embryo
Fundulus heterocl
Mummlchog (embryo
Fundulus heterocl
Mummlchog (embryo
Fundulus heterocl
Mummlchog (embryo
Fundulus heterocl
Mummlchog (larva)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
Mummlchog (adult)
Fundulus heterocl
tus
tus
tus
tus
tus
tus
tus
tus
tus
tus
tus
tus
tus
Mercuric
chloride
MercurIc
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
MercurIc
chloride
Mercuric
ch I or Ida
Mercuric
chloride
Mercuric
chloride
Mercur Ic
chloride
Mercurlc
chloride
Mercuric
chloride
Mercuric
chloride
168 hrs
168 hrs
168 hrs
24 hrs
96 hrs
28 days
3	days
3	days
12	hrs
32	days
96 hrs
48 hrs
Effect
LCO
LC50
LCI 00
Disrupted osmoreg-
ulation
Affected liver
enzymes
Up to 40# reduction
In enzyme activity
before recovery
Result
(lig/L)* Reference
100	Elsler & Hennekey,
1977
800	Elsler & Hennekey,
1977
1,000	Elsler & Hennekey,
1977
125 Renfro, et al. 1974
200	Jacklm, et al. 1970
12	Jacklm, 1973
Many developmental 30-40
abnormal I ties
Some developmental 10-20
abnorma1111es
Some developmental 30-40
abnorma1111es
Weis & Weis, 1977
Wels & Wels, 1977
Weis & Wels, 1977
EC50
67.4 Sharp & Neff, 1980
No effect
50
Wels & Wels, 1983
Mercury red Is-	1,000 ug Hg/ She line & Schmidt-
tr I but Ion organs	kg body *t NIelson, 1977
following Se	plus 400 ug
pretreatment	Se/kd body wt
Ce11uIar
degeneration
250-5,000 Gardner, 1975
LCI 00
2,000
Elsler, et al. 1972

-------
Table 6. (Continued)
Species
Mummlchog (adult),
Fundulus heteroclitus
Shiner perch,
Cymatoqaster aqqregata
Striped bass (adult),
Morone saxatllls
Winter flounder (adult),
Pseudopleuronectes amerlcanus
Alga,
Ounallella tertlolecta
Alga,
Phaeodactylum trlcornutum
Red alga (sporllng),
Plumarla elagans
Alga,
Tetraselmls succlca
Alga,
Chaetoceros sp.
Alga,
Cyclotella sp.
Al ga,
PhaeodactyIum sp.
Red alga (sporllng),
Plumarla eleqans
01 atom,
NItzchia aclcularIs
Chemical
MercurIc
chloride
Mercuric
chloride
Mercuric
chloride
Mercuric
chloride
Methylmercurlc
chloride
MethyImercurIc
chloride
Methylmercurlc
chloride
MethyImercurIc
chloride
Dimethy Imercury
01methyImercury
OlmethyImercury
MethyImercurIc
chloride
MethyImercur ic
chloride
Duration
96 hrs
Effect
Result
(Mfl/L)* Reference
Sluggish, uncoor- 1,150
dlnated swimming
45$ reduction of 33,900
brain chollnester-
ase activity
30 days Decreased respira-
tion 30 days post
exposure
60 days Decreased respira-
tion
MethyImercury
10 mln EC50
(photosynthesis)
25 days EC50 •
(photosynthesis)
18 hrs LC50 after 7 days
10
Klaunlg, et al. 1975
Abou-Donla & Menzel,
1967
Dawson, et al. 1977
Calabrese, et al.
1975
about 170 Overnell, 1975
about 190 Overnell, 1975
44	Boney, et al. 1959
3 days Inhibited growth	25
3 days About 75$ reduction 100
In growth
3 days About 15$ reduction 500
In growth
3 days About 45$ reduction 500
In growth
25 mln EC50 (growth over	40
21 days
3 days Inhibited growth	25
Mora & Fabregas, 1980
Hannan & Patoulllet,
1972
Hannan & Patoulllet,
1972
Hannan & Patoulllet,
1972
Boney, 1971
Mora & Fabregas, 1980

-------
Table 6. (Continued)
Species
Chemical
Dlnoflagel late.
Mercuric
Scrlppslella faeroense
acetate
Alga,
Ethylmercurlc
Chloral la sp.
phosphate
Alga,
EthylmercurIc
Chloral la sp.
phosphate
Alga,
Ethylmercurlc
Dunallella euchlora
phosphate
Alga,
Ethylmercurlc
Dunallella euchlora
phosphate
Alga,
EthylmercurIc
Monochrysls lutherl
phosphate
Alga,
Ethylmercurlc
Monochrysls lutherl
phosphate
Alga,
EthylmercurIc
Phaeodacty1um trlcornutum
phosphate
Alga,
EthylmercurIc
Phaeodactylum trlcornutum
phosphate
Alga,
EthylmercurIc
Protococcus sp.
phosphate
Alga,
Ethylmercurlc
Protococcus sp.
phosphate
Red alga (sporl)ng).
MarcurIc
Plumarla eleqans
lodIde
Red alga (sporllng).
Ethylmercur Ic
Plumarla eleqans
chloride
Red alga (sporlIng),
Phenylinercur Ic
Plumarla eleqans
chloride
Duration
Effect
Result
(ua/L)*
Reference
14 days
No growth of
culture
1,000
Kayser, 19 76
10 days
22% reduction In
growth
0.6
Ukeles, 1962
10 days
100t lethal to
culture
6
Ukeles, 1962
10 days
36% reduction In
growth
0.6
Ukeles, 1962
10 days
100^ lethal to
culture
60
Ukeles, 1962
10 days
No reduction In
growth
0.6
Ukeles, 1962
10 days
100J( lethal to
culture
6
Ukeles, 1962
10 days
45t reduction In
growth
0.6
Ukeles, 1962
10 days
100t lethal to
culture
6
Ukeles, 1962
10 days
14t reduction In
growth
0.6
Ukeles, 1962
10 days
100t lethal to
culture
6
Ukeles, 1962
18 hrs
LC50 after 7 days
156
Boney, et al.
18 hrs
UC50 after 7 days
26
Boney, et al.
18 hrs
LC50 after 7 days
54
Boney, et al.

-------
Table 6. (Continued)
U)
Species
01 atom,
Nltzchla del Icatlsslma
Blue mussel (adult),
Mytl I us edulIs
Eastern oyster (adult),
Crassostrea vlrglnlca
Copepod (adult),
Acartla clausl
AmphI pod (adu11),
Gammarus duebenl
Fiddler crab (adult),
Uca sp.
Fiddler crab (adult),
Uca sp.
Mummlchog (adult),
Fundulus heteroclItus
Mummlchog (embryo),
Fundulus heteroclItus
Mummlchog (larva),
Fundulus heteroclItus
Mummlchog (embryo),
Fundulus heteroclItus
StrIped mullet.
Mug 11 cephalus
Chemical
MethyImercurIc
dlcyandiamide
MethyImercurIc
chloride
MethyImercuric
chlor Ide
MethyImercurIc
chloride
Methylmercuric
chloride
MethyImercuric
chloride
MethyImercuric
chI or Ide
Methyimercuri c
chloride
MethyI mercuric
chlori de
Methylmercurie
chloride
Methylmercuric
chloride
Methylmercuric
chloride
Duration
24 hrs
24 hrs
19 days
24 hrs
3 days
32 days
32 days
24 hrs
7 days
Effect
EC50
(photosynthesi s)
About 90S reduced
feeding rate
Trace metal upset
BCF=56,000-350,000
Induced diuresis
No Iimb
regeneration
Melanin absent in
regerated limbs
Disrupted
osmoregulation
Teratologlcal
effects
Reduced LT50s
Result
(iig/L)*
0.4
400
50
56
300-500
100
125
50
50
13 days
Developed resistance
i n a pond
InhIbi ted fin
regenerati on
50
Dinoflagellate,
Gymnodlnlum spendens
Dinof lagel late,
Scrlppsiella faeroense
Mercurlc
acetate
Mercur i c
acetate
Other Mercury Compounds
11 days
551 reduction in	10
growth
25 days 451 reduction in	10
growth, morphological
variation
Reference
Harrlss, et al. 1970
Dorn, 1976
Koptier, 1974
ReiIchiro, et al.
1983
Lockwood & Inman,
1975
Wels, 1977
Weis, 1977
Renfro, et al. 1974
Wei s, et al . 1981
Weis & weis, J983
Wei s & Wei s, 1984
Weis & Weis, 1978
Kayser, 1976
Kayser, 1976

-------
Table 6. (Continued)
Species
Chemical
Duration
Red alga (sporllng),
PIumarIa elagans
Red alga (sporllng),
Plumarla eleqans
Red alga (sporllng),
Plumarla eleqans
Red alga (sporllng),
Plumarla eleqans
Red alga (sporllng),
Plumarla eleqans
Red alga (sporllng),
Plumarla eleqans
Diatom,
Nltzchla delIcatlsslma
Diatom,
Nltzchla delIcatlsslma
Phenylmercur 1c	18 hrs
Iodide
I soamy I mercuric 18 hrs
chloride
n-amyImercur Ic	18 hrs
chloride
I sopropy I mercuric 18 hrs
chloride
n-propyImercurIc 18 hrs
chI or Ide
n-buty I mercuric 18 hrs
chloride
N-methyImercurlc- 24 hrs
I,2,3,6-tetrahydro-
3.6-methano-3,4,5,6,
7.7-hexachloro-
phthalImlne
PhenylmercurIc	24 hrs
acetate
Diatom,
Nltzchla delIcatlsslma
Diatom,
Nltzchla aclcularls
Eastern oyster (adult),
Crassostrea virgin lea
Eastern oyster (adult),
Crassostrea virgin lea
Eastern oyster (adult),
Crassostrea virgin lea
D1 phenyImercury 24 hrs
Pheny Imercur Ic
acetate
Mercuric
acetate
MercurIc
acetate
PhenylmercurIc
chI or Ide
7 days
12 hr s da 11y
for 15 days
60 days
19 days
Effect
LC50 after 7 days
LC50 after 7 days
LC50 after 7 days
LC50 after 7 days
LC50 after 7 days
LC50 after 7 days
EC50
(photosynthes! s)
EC50
(photosynthesIs)
EC50
(photosynthesis)
Inhibited growth
331 reduction In
shelI growth
UC55
Trace metal upset
Result
(liq/L)*	Reference
104	Boney, et al. 1959
19	Boney, et al. 1959
13	Boney, et al. 1959
28	Boney, et al. 1959
13	Boney, et al. 1959
13	Boney, et al. 1959
0.3	Harrlss, et al. 1970
1.5	Harrlss, et al. 1970
18	Harrlss, et al. 1970
25	Mara & Fabregas, 1980
10	Cunningham, 1976
100	Cunningham, 1976
50	Kopfler, 1974

-------
Table 6. (Continued)
Species
Copepod (adult),
Acartla clausl
Chemical
MercurIc
acetate
Duration
Effect
1.9 hrs LC50
Result
50
Reference
Corner & Sparrow,
1956
Copepod (adult),
Acartla clausl
Coho salmon (adult),
Oncorhynchus klsutch
Sockeye salmon (juvenile),
Oncorhynchus nerka
Sockeye salmon (adult),
Oncorhynchus nerka
Ethylmercurlc
chloride
Pyr Idylmercuric
acetate
Pyrldylmercurlc
acetate
Pyrldylmercurlc
acetate
1.9 hrs
12-15 wks,
I hr wkly
as juven-
I les
12-15 wks,
I hr wkly
12-15 wks,
I hr wkly
as juven-
I les
LC50	50
0.03 mg Hg/kg wet 1,000
«rt muscle 2 yrs
post-exposure
1.2 mg Hg/kg wet 1,000
wt muscle 12 weeks
post-exposure
0.24 mg Hg/kg wet
wt muscle 3 yrs
post-exposure
1,000
Corner & Sparrow,
1956
Amend, 1970
Amend, 1970
Amend, 1970
Sockeye salmon (adult),
Oncorhynchus nerka
Pyrldylmercurlc
acetate
12 1-hr
exposures
as juven-
I les
0.04 mg Hg/kg wet
wt muscle 4 yrs
post-exposure
1,000
Amend, 1970
Chinook salmon (adult),
Oncorhynchus tshawytscha
Threesplne stickleback,
Gasterosteus aculeatus
Pyr Idyl mercuric
acetate
Pheny I mercur Ic
acetate
35 wks, 1
hr wkly as
j uven11es
370 mln
up to 0.12 mg Hg/kg 1,000
muscle 4 yrs later
LCI 00
100
Amend, 1970
Boetlus, I960
* Results are expressed as mercury, not as the chemical.
** In river water.
*** Static, continual loss over time.
««»* N0t steady-state.
»»»**BCF Independent of concentration In water over range tested.

-------
REFERENCES
Abernachy, A.R. and P.M. Curabie. 1977. Mercury accuraulacion by Largeraouch bass
(Micropcerus salmoides) in recently impounded reservoirs. BulL. Environ.
Concara. Toxicol. 17: 595.
Abou-Donia, M.B. and D.B. MenzeL. 1967. Fish brain cholinescerase—ics in-
hibicion by carbamaces and aucomaci'c assay. Corap. Biochem. Physiol. 21: 99.
Ahsanullah, M. 1982. Acuce coxicicy of chromium, mercury, molybdenum and
nickel co che amphipod Allorchesces compressa. Ausc. Jour. Mar. Freshwacer Res.
33: 465.
Aka
-------
Alexander, J., et al. 1979. The influence of selenium on methyl mercury
toxicity in rat hepatoma cells, human anbryonic fibroblasts and human
lymphocytes in culture. Acta Pharmacol. Toxicol. 45: 379.
Allison, L.M. 1957. Variation tn strength of pyridylmercuric acetate tech-
nical and its effect on rainbow trout. Prog. Fish-Cult. 19: 108.
Amend, D.F. 1970. Retention of mercury by salmon. Prog. Fish-Cult. 32: 192.
Amend, D.F., et al. 1969. Some factors influencing susceptibility of rainbow
trout to the acute toxicity of an ethyl mercury phosphate formulation (Tirasan).
Trans. Am. Fish. Soc. 98: 419.
Anderson, fl.G. 1948. The apparent thresholds of toxicity to Daphnia magna for
chlorides of various metals when added to Lake Erie water. Trans. Am. Fish.
Soc. 78: 96,
Applegate, V.C., et al. 1957. Toxicity of 4,346 chenicals to larval lampreys
and fishes. Special Scientific Report — Fisheries No. 207. U.S. Fisn and
Wildlife Service, Washington, D.C.
Armstrong, F.A.J, and D.P. Scott. 1979. Decrease tn raercury content of fishes
in Ball Lake, Ontario, since imposition of controls on mercury discharges.
Jour. Fish. Res. Board Can. 36: 670.
77

-------
Bache, C.A., aC al. 1971. Residues of total mercury and methylaiercury salts in
lake trout as a function of age. Science 172: 951.
Baker, D.H, 1973. Mercury: uptake by the goldfish, Carassius auratus. from low
concentrations in water and its tissue distribution. PB 227462. National
Technical Information Service, Springfield, Virginia.
Baker, M.D., et al. 1983. toxicity of pH, heavy metals and bisulfite to a
freshwater green algae. Chemosphere 12: 35.
Baluja, G., et al. 1983. Mercury distribution in an ecosystem of the "Parque
Nacional de Donana," Spain. Bull. Environ. Contain. Toxicol. 30: 544,
Barera, Y. and W.J. Adams. 1983. Resolving some practical questions about
Daphnia acute toxicity tests. ^_n: W.E. Bisnop, et al. (eds.), Aquatic
Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802, American
Society for Testing and Materials, Philadelphia, Pennsylvania, p. 509.
Barthalmus, G.T. 1977. Behavioral effects of mercury on grass shrimp. Mar.
Pollut. Bull. 8: 87.
Beijer, K. and A. Jernelov. 1978. Ecological aspects of raercury-sel eniura
interactions in the marine environment. Environ. Health Perspect. 25: 43.
78

-------
Beijer, K. and A. Jernelov. 1979. Mechylation of mercury tn aquatic
environments. I_n: J.O. Nriagu (ed.), The Biogeocheraistry of Mercury in Che
Environment. Elsevier, New York. p. 203.
Bengtsson, V.E. 1978. Use of a harpacticoid copepod in toxicity tests.
Mar. Pollut. Bull. 9: 238.
Berland, B.R., et al. 1976. Action toxique de quatre raetaux lourds sur la
croissance d'algues unicellulaires marines. C.R. Acad. Sci. Paris, t. 282,
Ser. D: 633.
Berlin, M. 1978. Interaction between selenium and inorganic mercury. Environ.
Health Perspect. 25: 67.
Best, J.B., ec al. 1981. Acute toxic responses of the freshwater planarian,
Dugesia dorotecephala. to methylraercury. Bull. Environ. Contam. Toxicol. 27:
49.
Betz, M. 1977. Investigations on the sicnul ataneous uptake and release of
mercury by Dunaliella tertiolecta. Mar. Biol. 41: 89.
Bieslnger, K.E. and G.M. Chris tens en. 1972. Effects of various metals on
survival, growth, reproduction, and metabolism of Daphnla magna. Jour.
Fish. Res. Board Can. 29: 1691.
79

-------
Bteslnger, K.E., ec al. 1982. Chronic effects of inorganic and organic mercury
on Daphnia magna: toxicity, accumulation, and loss. Arch. Environ. Contain.
Toxicol. 11: 769.
Bills, T.D., et al. L977. Effects of residues of the polychlorinated biphenyl
Aroclor 1254 on the sensitivity of rainbow trout to selected environmental
contaminants. Prog. Fish-Cult. 39: 150.
Birge, W.J. 1978. Aquatic toxicology of trace elements of coal and fly ash.
In: J.H. Thorp and J.W. Gibbons (eds.), Energy and Environmental Stress in
Aquatic Systems. C0NF-771114. National Technical Information Service,
Springfield, Virginia. p. 219.
Birge, W.J. and J.A. Black. 1977. A continuous flow system using fish and
amphibian eggs for bioassay determinations on embryonic mortality and
teratogenesis. EPA-560/5-77-002. National Technical Information Service,
Springfield, Virginia.
Birge, W.J., et al. 1978. Embryo—1arval bioassays on inorganic coal elements
and in situ biomonjtoring of coal-waste effluents. _In: D.E. Samuel, et al.
(eds.), Surface Mining and Fish/Wildlife Needs in the Eastern United States.
PB 298353. National Technical Information Service, Springfield, Virginia. p. 9
Birge, W.J., et al. L979. The effects of mercury on reproduction of fish and
amphibians. In: J.O. Nriagu (ed.), The Biogeochemistry of Mercury in the
Environment. Elsevier, New York. p. 629.

-------
Birge, W. J., ec al. 1980. Aquacic coxicicy cescs on inorganic elements
occurring in oil shale. _In! C. Gale (ed.), Oil Shale Symposium: Sampling,
Analysis and Qualicy Assurance. EPA-600/9-80-022. Nacional Technical
Information Service, Springfield, Virginia. p. 519.
Birge, W.J., ec al. 1981. The reproductive coxicology of aquacic concaminancs.
In: J. Saxena and F. Fisher (eds.), Hazard Assessment of Chemicals: Current
Developments. Vol. I. Academic Press, New York. p. 59.
Bisogni, J.J., Jr. 1979. Kinetics of mechylmercury formacion and decomposition
in aquacic environments. In: J.O. Nriagu (ed.), The Biogeochemistry of Mercury
in the Environment. Elsevier, New York. p. 211.
Black, J.A. and W.J. Birge. 1980. An avoidance response bioassay for aquacic
pollutants. PB80-180490. Nacional Technical Information Service, Springfield,
Virginia.
Blanc, J. 1973. Genetic aspects of resiscance co mercury poisoning in
steelhead trout (Salmo gairdneri). M.S. Thesis. Oregon State Universicy,
Corvallis, Oregon.
Blinn, D.W., et al. 1977. Mercury inhibition of primary productivity using
large volume plastic chambers in situ. Jour. Phycol. 13: 58.
81

-------
Bodaly, R.A., ec al. 1984. Increases in fish mercury levels in lakes flooded
by the Churchill River Diversion, Northern Manitoba. Can. Jour. Fish. Aquae.
Sci. 41: 682.
Boecius, J. 1960. Lethal action of mercuric chloride and phenylmercuric
acetate on fishes. Medd. Koran. Havundersog•, Kbh. 3: 93.
Boney, A.D. 1971. Sub-lechal effects of mercury on marine algae. Mar.
Polluc. Bull. 2: 69.
Honey, A.D. and E.D.S. Corner. 1959. Application of toxic agents in the scudy
of che ecological resistance of intercidal red algae. Jour. Mar. Biol. Assoc.
U.K. 38: 267.
Boney, A.D. , ec al. 1959. The effeccs of various poisons on the .^rowch and
viability of sporelings of che red alga Plumaria elegans (Bonnem.). Biochem.
Pharmacol. 2: 37.
Borgmann, U. 1980. Inceraccive effects of metals in mixtures on biomasa
production kinetics of freshwacer copepods. Can. Jour. Fish. Aquat. Sci. 37:
1295.
Boudou, A, and F. Ribeyre. 1981. Comparative scudy of che crophic cransfer of
two mercury compounds - HgCl2 ant* CHjHgCl - between Chlorella vulgaris and
Daphnia magna. Influence of cemperacure. Bull. Environ. Concam. Toxicol. 27:
624.
82

-------
Boudou, A. and F. Ribeyre. 1984. Influence of exposure length on the direct
bioaccumulat ion of two mercury compounds by Salmo gairdneri (fry) and the
relationship between organism weight and mercury concentrations. Water Res. 18:
81.
Boudou, A., et al. 1977. Modeles experimentaux en ecotoxicologie: chaines
trophiques en milieu limnique. Bull. Ecol. 8: 401.
Boudou, A., et al. 1979. Bioaccumulation and b ioatnpl i f icat ion of mercury
compounds in a second level consumer, Gambusia affinia—temperature effects.
Bull. Environ. Contam. Toxicol. 22: 813.
Boudou, A., et al. 1980. Bioaccunulacion et bioamplification des derives du
mercure Dar 
-------
Bowers, M.A., et al. 1980. Failure of selenice co procecc against mercuric
chloride in early developmental scages of che Japanese ricefish (Oryzias
latipes). Comp. Biochera. Physiol. 66C: 175.
Bringmann, G. 1975. Decerminacion of che biologically harmful effecc of wacer
pollucancs by means of che recardacion of cell proliferation of che blue al^ae
Microcysc is. Gesundheics-Ing. 96: 238.
Bringmann, G. 1978. Decerminacion of che biological coxicity of wacerbound
subscances cowards procozoa. I. bacceriovorous flagellaces (model organism:
Encosiphon sulcatum Scein). Z. Was ser Abwa9ser For sch. 11: 210.
Bringmann, G. and R. Kuhn. 1959a. The coxic effeccs of waste wacer on aquacic
bacceria, algae, and small cruscaceans. Gesundheics-Ing. 80: 115.
i
Bringmann, G. and R. Kuhn. 1959b. Wacer coxicology scudies wich procozoans as
cesc organisms. Gesundheics-Ing. 80: 239.
Bringmann, G. and R. Kuhn. 1976. Comparacive resulcs of che damaging effeccs
of wacer pollucancs againsc bacceria (Pseudomonas pucida) and blue algae
(Microcyscis aeruginosa). Gas-Wasserfach, Wasser-Abwasser 117: 410.
Bringmann, G. and R. Kuhn. 1977a. Limiting values for che damaging action of
wacer pollucancs co bacceria (Pseudomonas pucida) and green algae (Scenedesmus
quadricauda) in the cell multiplication inhibicion cesc. Z. Wasser Abwasser
Forsch. 10: 87.
84

-------
Bringmann, G. and R. Kuhn. 1977b. Resulcs of che damaging effecc of wacer
pollucancs on Daphnia magna. Z. Wasser Abwasser Forsch. 10: 161.
Bringmann, G. and R. Kuhn. 1978a. Limicing values for che noxious effeccs of
water pollucanc macerial Co blue algae (Microcystis aeruginosa) and green algae
(Scenedesmus quadricauda) in cell propagation inhibition cescs. Void Wasser 50:
45.
Bringraann, G. and R. Kuhn. 1978b. Testing of subscances for their coxicicy
chreshold : model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus
quadricauda. Mice. Int. Ver. Theor. Angew. Limnol. 21: 275.
Bringmann, G. and R. Kuhn. 1979. Comparison of toxic limicing concentrations
of wacer concaminancs coward bacceria, algae, and procozoa in che cell-growch
inhibition cesc. Hauscech. Bauphys. Umwelccech. 100: 249.
Bringmann, G. and R. Kuhn. 1980a. Decerminacion of the harmful biological
effecc of water pollucants on procozoa. II. bacceriovorous ciliates. Z. Wasser
Abwasser Forsch. 13: 26.
Bringmann, G. and R. Kuhn. 1980b. Comparison of the toxicity thresholds of
water pollutancs to bacteria, algae, and protozoa in che cell multiplication
inhibition test. Water Res. 14: 231.
85

-------
3ringraann, G. and R. Kuhn. 1981. Comparison of che effects of harmful
substances on flagellates as well as ciliaces and on halozoic bacceriophagous
and saprozoic protozoa. Gas-Wasserfach, Wasser-Abwasser 122: 308.
Bringmann, G. and R. Kuhn. 1982. Results of toxic action of water pollutants
on Daphnia magna Straus tested by an improved standardized procedure. Z. Wasser
Abwasser Forsch. 15: 1.
Bringmann, G., ec al. 1980. Determination of biological damage from water
pollutants to protozoa. III. saprozoic flagellates. Z. Wasser Abwasser Forsch.
13: 170.
Brkovic-Popovic, I. and M. Popovic. 1977a. Effects of heavy metals on sur-
vival and respiration rate of tubificid worms: Part I-effects on survivaL.
Environ. Pollut. 13: 65.
Brkovic-Popovic, I. and M. Popovic. 1977b. Effects of heavy metals on survival
and respiration rate of tubificid worms: Part II-effects on respiration rate.
Environ. Pollut. 13: 93.
Brown, B. and M. Ahsanullah. 1971. Effect of heavy metals on mortality and
growth. Mar. Pollut. Bull. 2: 182.
Buikema, A.L., Jr., et al. 1974a. Rotifers as monitors of heavy metal
pollution in water. Bulletin 71. Virginia Water Resources Research Center,
Blacksburg, Virginia.
86

-------
Buikema, A.L., Jr., et al. 1974b. Evaluation of Philodlna acutlcornis
(Rotifera) as a bioassay organism for heavy metals. Water Resources Bull. 10:
648.
Buikema, A.L., Jr., et al. 1977. Rotifer sensitivity to combinations of
inorganic water pollutants. Bulletin 92. Virginia Water Resources Research
Center, Blacksburg, Virginia.
Burrows, R.E. and B.D. Combs. 1958. Lignasan as bactericide and algaecide.
Prog. Fish-Cult. 20: 143.
Burrows, R.E. and D.D. Palmer. 1949. Pyridylmercuric acetate: its toxicity to
fish, efficacy in disease control, and applicability to a simplified treatment
technique. Prog. Fish-Cult. 11: 147.
Burrows, W.D. and P.A. Kreokel. 1973. Studies on uptake and loss of methyl-
mercury—203 by bluegills (Lepomis macrochirus Raf.). Environ. Sci. Technol. 7:
1127.
Burrows, W.D., et al. 1974. The uptake and loss of methyl mercury by freshwater
fish. I. Congreso Internacional del Mercurio, Barcelona. Tomo II. 283.
Busch, W.N. 1983. Decline of mercury in young fishes from western Lake Erie
between 1970-71 and 1974 . Prog. Fish-Cult. 45: 202.
87

-------
Calabrese, A. and D.A. Nelson. 1974. Inhibicion of embryonic development of
che hard clam, Mercenaria mercenaria, by heavy mecals. Bull. Environ. Concam.
Toxicol. 11: 92.
Calabrese, A., ec al. 1973. The coxicicy of heavy mecals co embryos of che
American oyscer Crassoscrea virginica. Mar. Biol. 18: 162.
Calabrese, A., ec al. 197S. Sublethal physiological scress induced by cadmium
and mercury in wincer flounder, Pseudopleuronecces americanus. In: J.H. Koeman
and J.J.T.W.A. Scrik (eds.), Sublechal Effeccs of Toxic Chemicals in Aquacic
Animals. Elsevier, New York. p. 15.
Calabrese, A., ec al. 1977. Survival and growch of bivalve larvae ufider
heavy-mecal scress. Mar. Biol. 41: 179.
Call, D.J., ec al. 1983. Toxicicy and mecabolisra scudies wich EPA prioricy
pollucancs and relaced chemicals in freshwater organisms. PB83-263665.
Nacional Technical Informacion Service, Springfield, Virginia.
Callahan, M.A., ec al. 1979. Wacer-relaced environmencal face of 129 prioricy
pollucancs. Vol. I. EPA-440/4-79-029a. Nacional Technical Informacion
Service, Springfield, Virginia.
Cancerford, G.S. and D.R. Cancerford. 1980. Toxicicy of heavy mecals co che
marine diacom Dicylum brighcwellii (Wesc) Grunow: correlacion becween coxicicy
and mecal soeciacion. Jour. Mar. Biol. Assoc. U.K. 60: 227.
88

-------
Cannon, H. and D.M.M. Adema. 1978. Reproducibility of shore-term and
reproduction toxicity experiments with Daphnia magna and comparison of che
sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in
shore-terra experiments. Hydrobiologia 59: 135.
Cappon, G.J. 1984. Content and chemical form of mercury and selenium in Lake
Ontario salmon and trout. Jour. Great Lakes Res. 10: 429.
Cappon, C.J. and J.C. Smith. 1982a. Chemical form and distribution of mercury
and selenium in canned tuna. Jour. Appl. Toxicol. 2: 181.
CapDon, C.J. and J.C. Smith. 1982b. Chemical form and distribution of mercury
and selenium in edible seafood. Jour. Anal. Toxicol. 6: 10.
(
Cardin, J.A. 1982. Memorandum to John H. Gentile. U.S. EPA, Narragansett,
Rhode Island.
Carter, J.W. and I.L. Cameron, 1973. Toxicity bioassay of heavy metals in
water using Tecrahymena pyriformis. Water Res. 7: 951.
Cember, H., ec al. 1978. Mercury bioconcentrat ion in fish: temperature and
concentration effects. Environ. Pollut. 17: 311.
Chang, L.W., et al. 1974. Effects of mechylmercury chloride on Rana pipiens
cadpoles. Environ. Res. 8: 82.
89

-------
Chang, L.W., ec al. 1976. Dose-deDendent effeces of methylroercury on limb
regeneration of newts (Tricurus viridescens). Environ. Res. 11: 305.
Chan?, P.S.S., et al. 1983. The effects of low pH, selenium and calcium on the
bioaccumulacion of ^03^ seven cissues of the crayfish, Orconectes
virili s. In: N.K. Kaushik and K.R. Solomon (eds.), Proceedings of che Eighth
Annual Aquatic Toxicicy Workshoo. Can. Tech. Rept. Fish. Aquae. Sci. No. 1151.
Dept. of Fisheries and Oceans, Ottawa, Ontario, Canada. p. 45.
Chapman, P.M., ec al. 1982a. Relative tolerances of selected aquatic
oli^ochaetes co individual pollutants and environmental faccors. Aquat.
Toxicol. 2: 47.
Chapman, P.M., et al. 1982b. Effects of species interactions on the survival
and respiration of Limnodrilus hoffmeisteri and Tubifex tubifex (Oligochaeta,
Tubificidae) exposed to various pollutants and environmental factors. Wacer
Res. 16: 1405.
Chapman, V.H., et al. 1968. Concentration factors of chemical elements in
edib]e aquatic organisms. UCRL-50564. National Technical Information Service,
Springfield, Virginia.
Charbonneau, S.M., et al. 1974. Subacute toxicity of mechylmercury in che
adulc cac. Toxicol. Appl. Pharmacol. 27: 569.
Christensen, G.M. 1972. Effects of metal cations and other chemicals upon
che in vitro activity of two enzymes in che blood plasma of che whice
sucker, Catostomus commersoni (Lacepede). Chera.-Biol. Interactions 4: 351.
90

-------
Christensen, G.M. 1975. Biochemical effects of mechylraercucic chloride,
cadmium chloride, and lead nicrace on embryos and alevins of che brook crouc ,
Salvelinus fontinalis. Toxicol. Appl. Pharmacol. 32: 191.
Chriscensen, G. , ec al. 1977. The effecc of mechylmercuric chloride, cadmium
chloride, and lead nicrace on six biochemical faccors of che brook crouc
(Salvelinus foncinalia). Toxicol. Appl. Pharmacol. 42: 523.
Clarke, G.L. 1947. Poisoning and recovery in barnacles and mussels. Biol.
Bull. 92: 73.
Clemens, H.P. and K.E. Sneed. 1958a. The chemical concrol of some diseases and
parasites of channel cacfish. Prog. Fish-Culc. 20: 8.
Clemens, H.P. and K.E. Sneed. 1958b. Effecc of cemperacure and physiological
condicion on colerance of channel cacfish co pyridylmercuric acecace (PMA).
Prox. Fish-Culc. 20: 147.
Clemens, H.P. and K.E. Sneed. 1959. Lechal doses of several commercial
chemicals for fingerling channel cacfish. Special Scientific Report - Fisheries
No. 316. U.S. Fish and Wildlife Service, Washington, D.C.
Clendenning, K.A. and W.J. Norch. 1959. Effects of wastes on che gianc
kelp, Macrocystic pyrifera. In: E.A. Pearson (ed.), Proc. 1st Conf. Wasce
Disposal Marine Environ. Berkely, California, p. 82.
91

-------
Cloucier-Mancha, L. and P.J. Harrison. 1980. Effects of sublethal
concencracions of mercuric chloride on amnionium-Iimiced Skeleconema coscacum.
Mar. Biol. 56: 219.
Connor, P.M. 1972. Acute toxicicy of heavy mecals co some marine larvae. Mar.
Polluc. Bull. 3: 190.
Copeland, R.A. and J.C. Ayers. 1972. Trace eleraenc distributions in water,
sediment, phycoplankton, zooplankcon and benchos of Lake Michigan: a baseline
study with calculations of concentration factors and buildup of radioisotopes in
the food web. Special Report No. 1. Environmental Research Group, Inc.
Corner, E.D.S. and B.W. Sparrow. 1956. The modes of action of toxic agents.
I. observations on che poisoning of certain cruscaceans by copper and mercury.
Jour. Mar. Biol. Assoc. U.K. 35: 531.
Cunningham, P.A. 1976. Inhibition of shell growch in the presence of mercury
and subsequent recovery of juvenile oysters. Proc. Natl. Shellfish. Assoc. 66:
1.
Cunningham, P.A. and M.R. Tripp. 1973. Accumulation and depuration of mercury
in the American oyster Crassostrea virginica. Mar. Biol. 20: 14.
Cunningham, P.A. and M.R. Tripp. 1975. Accumulation, tissue distribution and
elimination of ^®^HgCl2 and C^^-^HgCl in the cissues of the
American oyster Crassostrea virginica. Mar. Biol. 31: 321.
92

-------
Curtis, M.W. and C.H. Ward. 1981. Aquatic toxicicy of forcy industrial
chemicals: tescing in support of hazardous subscance spill prevention
regulation. Jour. Hydrol. 51: 359.
Curcis, M.W. , ec al. 1979. Acuce coxicicy of 12 induscrial chemicals to
freshwacer and salcwacer organisms. Water Res. 13: 137.
Czuba, M. and D.C. Mortimer. 1980. Scabilicy of methylmercury and inorganic
mercury in aquacic planes (Elodea densa). Can. Jour. Bot. 58: 316.
Daoust, P. 1981. Acute pathological effects of mercury, cadmium and copper in
rainbow crouc. Ph.D. Thesis. University of Saskatchewan, Saskatoon, Canada.
Das, A.K. and B.N. Misra. 1982. Toxicity of MEMC (2-mechoxy echyl mercuric
chloride) an organomercurial fungicide co fish, Cyprinus carpio (L.). Jour.
Environ. Biol. 3: 19.
Davies, A.G. 1974. The growth kinetics of Isochrysis galbana in cultures
containing sublethal concentrations of mercuric chloride. Jour. Mar. Biol.
Assoc. U.K. 54: 157.
Davies, A.G. 1976. An assessment of the basis of mercury tolerance in
Dunaliella tertialecta. Jour. Mar. Biol. Assoc. U.K. 56: 39.
93

-------
Dawson, M.A., et al. 1977. Physiological response of juvenile striped bass,
Morone saxarilis, to low levels of cadmium and mercury. Chesapeake Sci. 18:
353.
DeCoursey, P.J. and W.B. Vernberg. 1972. Effect of mercury on survival,
metabolism and behavior of larval Uca putilator (Brachyura). Oikos 23: 241.
De Filippis, L.F. 1979. The effect of sub-lethal concentrations of mercury and
zinc on Chlorel1 a. V. The concentration of metal toxicity by selenium and
sulphhydryl compounds. Z. Pfhanzenphysiol. 93: 63.
de Freitas, A.S.W. and J.S. Hart. 1975. Effect of body weight on uptake of
methyl mercury by fish. In: S. Barabas (ed.), Water Quality Parameters. ASTM
STP 573. American Society for Testing and Materials, Philadelphia,
Pennsylvania. p. >.
de Freitas, A.S.W., et al. 1974. Origins and fate of mercury compounds in
fish. I_n: Proceedings of the International Conference on Transport of
Persistent Chemicals in Aquatic Ecosystems. Part III. National Research Council
of Canada, Ottawa. p. 31.
de Freitas, A.S.W., et al. 1977. Factors affecting whole-body retention of
methyl mercury in fish. _In: H. Drur.ker and R.E. Wildung (eds.), Biological
Implications of Heavy Metals in the EnvLronraent. CONF-750929. National
Technical Information Service, Springfield, VA. p. 441.
94

-------
de Freitaa, A.S.W., et al. 1981. Mercury bioaccuraulacion in che detritus-
feeding benthic invertebrate, Hyalella azteca (Saussure). Proc. N.S. Inst. Sci.
31: 217.
Deshmukh, S.S. and V.B. Marathe. 1980. Size related toxicity of copper and
mercury to Lebistea reticulatus (Peter), Labeo rohita (Ham.) and Cyprinus carpio
(Linn.). Indian Jour. Exp. Biol. 18: 421.
Dial, N.A. 1976. Methylmercury: teratogenic and Lethal effects in frog
embryos. TeratoLogy 13: 327.
Dial, N.A. 1978a. Methylmercury: some effects on embryogenesis in the Japanese
medaka, Oryzias latipes. Teratology 17: 83.
Dial, N.A. 1978b. Some effects of methylmercury on development of the eye in
medaka fish. Growth 42: 309.
Dillon, T.M. 1977. Mercury and the. estuarine marsh clam, Rangia cuneata Gray.
I. toxicity. Arch. Environ. Contain. Toxicol. 6: 249.
Dillon, T.M. and J.M. Neff. 1978. Mercury and the estuarine raarsh clara,
Rangia cuneata Gray. II. uptake, tissue distribution and depuration. Mar.
Environ. Res. 1: 67.
DiNardi, S.R., et al. 1974. Mercury concentrations in tissues of fish from the
Connecticut River. Jour. Environ. Health 36: 547.

-------
Dorfraan, D. 1977. Tolerance of Fundulus heceroclicus co differenc mecaLs in
sale waters. Bull. New Jersey Acad. Sci. 22: 21.
Dorn, P. 1976. The feeding behaviour of Mycilus edulis in che presence of
mechylmercury acecace. Bull. Environ. Concam. Toxicol. 15: 174.
Doyle, M., ec al. 1976. Acuce coxicological response of che crayfish
(Orconecces limosus) co mercury. Bull. Environ. Concam. Toxicol. 16: 422.
Druramond, R.A., ec al. 1974. Cough response and upcake of mercury by brook
crouc, Salvelinus. foncinalis, exposed co mercuric compounds ac differenc hy-
drogen-ion concencracions. Trans. Am. Fish. Soc. 103: 244.
Eisler, R. 1981. Trace Mecal Concencracions in Marine Organisms. Pergamon
Press, New York.
Eisler, R. and R.J. Hennekey. 1977. Acuce toxicities of Cd+^, Cr+^,
Hg^, Ni and ZnTi co escuarine macrofauna. Arch. Environ.
Concam. Toxicol. 6: 315.
Eisler, R., ec al. 1972. Acute coxicology of sodium nicrolocriacecic acid
(NTA) and NTA-concaining decergencs co marine organisms. Wacer Res. 6: 1009.
Eisler, R., ec al. 1979. Fourth annocaced bibliography on biological effaces
of mecals in aquatic environments. EPA-600/3-79-084. Nacional Technical
Information Service, Springfield, Virginia.
96

-------
Ellis, M.M. 1947. Toxicity of phenyl-raercuric lactate for fish. Special.
Scientific Report No. 42. U.S. Fish and Wildlife Service.
Feick, G., et al. 1972. Release of mercury from concarainaced freshwater
sediments by the runoff of road deicing salts. Science 175: 1142.
Finley, M.T. and R.C. Scendell. 1978. Survival and reproductive success of
black ducks fed methyl mercury. Environ. Polluc. 16: 51.
Flegal, A.R., et al. 1981. Elevaced concentrations of mercury in mussels
(Mytilua californianus) associated with pinniped colonies. Mar. Biol. 65: 45.
Fromm, P.O. 1977. Toxic effect of water soluble pollutants on freshwater fish.
EPA-600/3-77-057. National Technical Information Service, Springfield,
Virginia.
Fromm, P.O. 1980. A review of some physiological and toxicological responses
of freshwater fish to acid scress. Environ. Biol. Fish. 5: 79.
Fujita, M. and K. Hashizurae. 1972. The accumulation of mercury by freshwater
planktonic diatom. Cheraosphere 5: 203.
Gage, J.C. 1964. Distribution and excretion of methyl and phenyl mercury
salts. Br. Jour. Ind. Med. 21: 197.
97

-------
Gancher, H.E. 1978. Modificacion of mechylmercury coxicicy and mecabolism by
selenium and vicarain E: possible mechanisms. Environ. Healch Perspecc. 25: 71.
Gancher, H.E. 1980. Inceraccions of vicarain E and selenium wich mercury and
silver. Ann. New York Acad. Sci. 355: 212.
Gardner, G.R. 1975. Chemically induced lesions in escuarine or narine
celeoscs. Iji_: W.E. Ribelin and G. Migaki (eds.), The Pachology of Fishes.
University of Wisconsin Press, Madison, Wisconsin, p. 657.
Gasc, C.H. and J.C. Kraak. 1979. Phase syscems and posc-column dichizone
reaccion dececcion for che analysis of mercurials by HPLC. Inc. Jour. Environ.
Anal. Chem. 6: 297.
Gencile, J.H., ec al, 1982. The use of life-cables for evaluating che chronic
coxicicy of pollucancs co Mysidopsis bahia. Hydrobiologia 93: 179.
Gencile, J.H., ec al. 1983. The effeccs of a chronic mercury exposure on
survival, reproduccion and populacion dynamics of Mysidopsis bahia. Environ.
Toxicol. Chem. 2: 61.
Giblin, F.J. and E.J. Massaro. 1973. Pharmacodynamics of raechyl mercury in che
rainbow crouc (Salmo gairdneri): cissue uptake, discribucion and excrecion.
Toxicol. Appl. Phamacol. 24: 81.
98

-------
Gipps, J.F. and P. Biro. 1978. The use of Chlorella vulgaris in a simple
demonscracion of heavy mecal coxicicy. Jour. Biol. Educ. 12: 207.
Glickscein, N. 1978. Acuce coxicicy of mercury and selenium co Cra3soscrea
gigas embryos and Cancer raagiscer larvae. Mar. Biol. 49: 113.
Glooschenko, W.A. 1969. Accumulacion of ^"^Hg by che marine diacora
Chaecoceros coscacura. Jour. Phycol. 5: 224.
Gray, J.S. and R.J. Vencilla. 1973. Growth races of sediraenc-living marine
procozoan as a coxicicy indicacor for heavy mecals. Ambio 2: 118.
Green, p.A., Jr., ec al. 1976. Effecc of mercury on che survival, respiracion
and growch of posclarval whice shrimp, Penaeus seciferus. Mar. Biol. 37: 75.
Gucierrez-Galindo, E.A. 1981. Effec de l'EDTA sur 1'accuraulacion ec
1'elirainacion du mercure par la tnoule Mycilus edulis. Cheraosphere 10: 971.
Hahne, H.C.H. and W. Krooncje. 1973. Significance of pH and chloride
concentration on behavior of heavy mecal pollucancs: mercury(II), cadraium(II),
zinc(ll), and lead(II). Jour. Environ. Qual. 2: 444.
Haines, T.A. 1981. Acidic precipicacion and its consequences for aquacic
ecosysceras. Trans. Am. Fish. Soc. 110: 669.
99

-------
Hale, J.G. 1977. Toxicity of mecal raining wasces. Bull. Environ. Concam.
Toxicol. 17: 66.
Harody, M.K. 1977. Biochemical transformacion and decoxificacion of mercury in
aquatic environment. PB 267926. Nacional Technical. Information Service,
Springfield, Virginia.
Handy, M.K. and N.V. Prabhu. 1979. Behavior of mercury in biosyscems III.
biocransference of mercury chrough food chains. Bull. Environ. Concam. Toxicol.
21: 170.
Hamelink, J.L., ec al. 1977. Mechanisms of bioaccumulacion of mercury and
chlorinated hydrocarbon pesticides by fish in lencic ecosystems.	I.H.
Suffer (ed.), Face of Pollutants in che Air and Water Environments. Part II.
Chemical and 3iological Face of Chemicals in che Environment. Wiley, .New York,
p. 261.
Hannan, P.J. and C. Patouillec. 1972. Effecc of mercury on algal races.
Biocechnol. Bioeng. 14: 93.
Hannan, P.J., ec al. 1973a.	as tracer on pigmencs of Phaeodaccylum
tricornutum. Inc. Jour. Appl. Radiat. Isocopes 24: 665.
Hannan, P.J., ec al. 1973b. Measurements of mercury sorpcion by algae. Reporc
7628: 1. U.S. Naval Research Laboracory, Washingcon, D.C.
100

-------
Hannerz, L. 1968. Experimental investigations on che accumulacion of mercury
in wacer organisms. Report No. 48. Institute of Freshwater Research,
Drottningholm, Sweden, p. 120.
Hansen, D.J. 1983. Memorandum to William A. Brungs on results of acute
toxicicy cests with metals. U.S. EPA, Narragansett, Rhode Island.
Hara, T.J., et al. 1976. Effects of mercury and copper on the olfactory
response in rainbow trout, Salmo gairdneri. Jour. Fish. Res. Board Can. 33:
15 58.
Harriss, R.C., et al. 1970. Mercury compounds reduce photosynthesis by
plankcon. Science 170: 736.
Harcman, A.M. 1978. Mercury feeding schedules: effeccs on accumulation,
retention, and behavior in trout. Trans. Am. Fish. Soc. 107: 369.
Hartung, R. 1976. Pharmacokinetic approaches to the evaluation of
raethylraercury in fish. Iti: R.W. Andrew, et al. (eds.), Toxicity co Bioca of
Metal Forms in Natural Water. International Joint Commission, Windsor, Ontario,
p. 233.
Hactula, M.L., et al. 1978. Total mercury and methyl mercury contents in fish
from Lake Paijanne. Environ. Pollut. 17: 19.
101

-------
Havlik, B., et al. 1979. Mercury circulation in aquatic environment. Pare 2:
mecabolisra of methyl and phenyl mercury in Dhytoplankton. Acca Hydrochim.
Hydrobiol. 7: 401.
Heinz, G.H. 1979a. Methylmercury: reproductive and behavioral effeccs on chree
generations of mallard ducks. Jour. Wildl. Manage. 43: 394.
Heinz, G. 1979b. Letter to H. McCormick. U.S. Fish and Wildlife Service,
Laurel, Maryland. May 4.
Heinz, G.H., et al. 1980. Organochlorine and mercury residues in snakes from
Pilot and Spider Islands, Lake Michigan - 1978. Bull. Environ. Contam. Toxicol.
25: 738.
Heisinger, J.F. 1981. Antagonism of selenium and cadmium pretreacmencs to
subsequent embryotoxic doses of mercury and cadmium in fish embryos.
PB82-256645. National Technical Information Service, Springfield, Virginia.
Heisinger, J.F. and W. Green. 1975. Mercuric chloride upcake by eg^s of the
ricefish and resulting teratogenic effects. Bull. Environ. Contam. Toxicol. 14:
665.
Heisinger, J.F., et al. 1979. Effect of selenium dioxide on the accumulation
and acute toxicity of mercuric chloride in goldfish. Arch. Environ. Contam.
Toxicol. 8: 279.
102

-------
Heiakary, S.A. and D.D. Helwig. 1983. Acid rain incensive scudy lake program.
Scacus reporc for che 1981 study lakes. Minnesoca Pollution Concrol Agency,
Roseville, Minnesota.
Heic, M. 1981. Leccer co J.H. McCormick. U.S. EPA, Duluch, Minnesoca.
January 27.
Heic, M. and M. Fingerman. 1977. The influences of size, sex and cemperacure
on che coxicicy of mercury co cwo species of crayfishes. Bull. Environ. Concam.
Toxicol. 18: 572.
Helwig, D.D. and M.E. Hora. 1983. Polychlorinaced biphenyl, mercury, and
cadmium concentrations in Minnesoca snapping curcles. Bull. Environ. Concam.
Toxicol. 30: 186.
Hendrick, R.D. and T.R. Everecc. 1965. Toxicicy co che Louisana red crawfish
of some pescicides used in rice culcure. Jour. Econ. Encomol. 58: 953.
Herrick, C.J., ec al. 1982. A model of mercury concaminacion in a woodland
scream. Ecol. Model. 15: 1.
Hildebrand, S.G., ec al. 1980. Mercury accumulation in fish and invertebrates
of che Norch Fork Holscon River, Virginia and Tennessee. Jour. Environ. Qual.
9: 393.
103

-------
HiLmy, A.M., ec al. 1981. A comparative study of mercury poisoning on Aphanius
dispar (Teleostei), Sergestes lucens (Crustacea) and Modiolus modiolus
(Mollusca) of che Red Sea. Comp. Biochera. Physiol. 68C: 199.
Holcorabe, G.W., ec al. 1983. Toxicicy of selecced priority pollutants co
various aquacic organisms. Ecocoxicol. Environ. Safety 7: 400.
Holderness, J., ec al. 1975. The effecc of mechyl mercury on che growch of che
green alga, Coelascrum microporum Naeg. scrain 280. Bull. Environ. Concam.
Toxicol. 13: 348.
Hollibaugh, D.L., ec al. 1980. A comparison of che acuce coxicicies of cen
heavy mecals co che plankton from Sasnick Inlec, B.C., Canada. Escuarine
Coascal Mar. Sci. 10: 93.
HoDkins, R. and J.M. Kain. 1971. The effecc of marine pollucancs on Laminarea
hvperboria. Mar. Polluc. Bull. 2: 75.
Huckabee, J.W. 1972. Mercury concencracions in fish of che Greac Smoky
Mouncains Nacional Park. ORNL-TM-3908. Nacional Technical Informacion Service,
Springfield, Virginia.
Huckabee, J.W. and N.A. Griffich. 1974. Toxicicy of mercury and selenium
co che eggs of carp (Cyprinus carpio). Trans. Am. Fish. Soc. 103: 822.
104

-------
Huckabee, J.W., et al. 1974. Mercury concentrations in fish from che Greac
Smoky Mouncains National Park. Anal. Chiraica Acta 70: 41.
Huckabee, J.W., er al. 1978. Methylated mercury in brook crout (Salve 1 inus
foncinalis: absence of an in vitro raethylating process. Trans. Am. Fish. Soc.
107: 848.
Huckabee, J.W., ec al. 1979. Accumulation of mercury in freshwacer bioca. In:
J.O. Nriagu (ed.), The Biogeochemiscry of Mercury in che Environment Elsevier,
New York. p. 277.
Jackim, E. 1973. Influence of lead and ocher mecals on fish delta-amino-
levulinate dehydrase accivicy. Jour. Fish. Res. Board Can. 30: 560.
Jackim, E., ec al. 1970. Effects of metal poisoning on five liver enzymes in
che killifish (Fundulus heceroc1icus). Jour. Fish. Res. Board Can. 27: 383.
Jarvenpaa, T,, ec al. 1970. Mechylmercury: haLf-cime of elimination in
flounder, pike and eel. Suom. Kemiscil. B43: 439.
Jensen, K., et al. 1981. Heavy metal pollucion from a poinc source
demonstrated by means of mussels, Mycilus edulis. Chemosphere 10: 761.
Jernelov, A. 1968. Laboratory experiments on che change of mercury compounds
from one into anocher. Vaccen 24: 360. (Translation Series No. 1352. 1970.
Freshwacer Institute, Winnipeg, Manitoba, Canada.)
105

-------
Jernelov, A. 1971. Mercury - a case study of marine poLLucion. In_: D. Dyrsaen
and D. Jagner (eds.), The Changing Chemistry of the Oceans. Wiley, New York,
p. 161.
Jernelov, A. 1972. Faccors in che transformation of mercury co methyImercury.
In: R. Hartung and B.D. Dinman (eds.), Environmental Mercury Contamination. Ann
Arbor Science Publishers, Ann Arbor, Michigan, p. 167.
Jernelov, A. 1980. The effeccs of acidicy on the uptake of mercury in fish.
Environ. Sci. Res. 17: 211.
Jernelov, A. and H. Lann. 1971. Mercury accumulation in food chains. Oikos
22: 403.
Jernelov, A., ec al. 1975. Swedish perspectives on mercury pollution. Jour.
Water Pollut. Control. Fed. 47: 810.
Johnson, M.W, and J.H. Gentile. 1979. Acute toxicity of cadmium, copper, and
mercury to larval American lobster Homarus americanus. Bull. Environ. Contain.
Toxicol. 22: 258.
Jones, J.R.E. 1935. The toxic action of heavy metal sales on che chree-spined
stickleback (Gastrosteus aculeatus). Jour. Exp. Biol. 12: 165.
106

-------
Jones, J.R.E. 1938. The relacive coxicicy of sales of lead, zinc and copper co
che scickleback (Gascerosceus aculeacus L.) and che eEfecc of calcium on che
coxicicy of lead and zinc sales. Jour. Exp. Biol. 15: 394.
Jones, J.R.E. 1939a. Ancagonism becween sales of che heavy and alkaline-earch
mecal9 in cheir coxic accion on che cadpole of che coad, Bufo bufo bufo (L.).
Jour. Exp. Biol. 16: 313.
Jones, J.R.E. 1939b. The relacion becween che eleccrolycic solucion pressures
of che mecals and cheir coxicicy co che scickleback (Gascerosceus aculeacas L.),
Jour. Exp. Biol. 16: 425.
Jones, J.R.E. 1940. A furcher scudy of che relacion between coxicicy and
solucion pressure, wich Polycelis nigra as tesc animal. Jour. Exp. Biol. 17:
408.
Jones, J.R.E. 1947. The oxygen consumpcion of Gascerosceus aculea:us L. in
coxic solutions. Jour. Exp. Biol. 23: 298.
Jones, M.B. 1973. Influence of salinicy and cemoeracure on che coxicicy of
mercury Co marine and brackish wacer isopods (Cruscacea). Escuarine Coascal
Mar. Sci. 1: 425.
Jones, M.B. 1975. Synergiscic effeccs of salinicy, cemperacure, and heavy
mecals on morcalicy and osmoregulacion in marine and escuarine isopods
(Cruscacea). Mar. Biol. 30: 13.
107

-------
Joshi, A.G. and M.S. Rege. 1980. Acuce coxicicy of some pescicides and a few
inorganic sales co the tnosquico fish Gambusia affinis (Baird and Girard).
Indian Jour. Exp. Biol. 18: 435,
Kayser, H. 1976. Wasce-wacer assay wich concinous algal cultures: the effect
of mercuric acecace on che growch of some marine dinoflagellaces. Mar. 3iol.
36: 61.
Khangaroc, B.S., ec al. 1982. Comparative coxicicy of heavy mecala and
inceraccion of mecals on a freshwater pulmonace snail Lymnaea acuminata
(Lamarck). Acca Hydrochim. HydrobioL. 10: 367.
Kihlscrom, J.E. and L. Hulth. 1972. The effecc of phenylmercuric acecace upon
che frequency of hacching of eggs from che zebrafish. Bull. Environ. Concam.
Toxicol. 7: 111.
Kim, J.H., ec al. 1977a. Proceccive accion of selenium against mercury in
norchern creek, chubs. Proc. South Dakota Acad. Sci. 55: 176.
Kira, J.H., et al. 1977b. Proceccive accion of selenium againsc mercury in
norchern creek chubs. Bull. Environ. Concam. Toxicol. 17: 132.
Klaunig, J., et al. 1975. Acuce coxicicy of a native mummichog population
(Fundulus heceroc1icus) co mercury. Bull. Environ. Concam. Toxicol. 14: 534.
108

-------
Klaverkamp, J.F., ec al. 1983a. Joinc coxicicy of mercury and selenium on
salraonid eggs. Arch. Environ. Concam. Toxicol. 12: 415.
Klaverkamp, J.F., ec al. 1983b. Selenice coxicicy and mercury-selenium
inceraccions in juvenile fish. Arch. Environ. Concam. Toxicol. 12: 405.
Klaverkamp, J.F., ec al. 1983c. Faces of mecal radiotracers added co a whole
lake: accuraulacion in slimy sculpin (Coccus cognacus) and whice sucker
(Cacoscomus commersoni). Sci. Tocal Environ. 28: 119.
Knovrles, S.C. and R.G. Zingmark, 1978. Mercury and cemperacure inceraccions on
che growch races of chree species of fre9hwacer phycoplankcon. Jour. Phycol.
14: 104.
Kopfler, F.C. 1974. The accumulacion of organic and inorganic mercury com-
pounds by che eascern oyscer (Craasoscrea virginica). Bull. Environ. Concam.
Toxicol. 11: 275.
Krishnaja, A.P. and M.S. Rege. 1982. Induccion of chromosomal aberracions in
fish Boleophchalmus dussumieri afcer exposure in vivo co micomycin C and heavy
mecals mercury, selenium and chromium. Mucac. Res. 102: 71.
Kucera, E. 1983. Mink and occer as indicacors of mercury in Manicoba wacers.
Can. Jour. Zool. 61: 2250.
109

-------
Kudo, A., ec al. 1982. Proportion of mechylmercury co che total amount of
mercury in river wacers in Canada and Japan. Wacer Res. 16: 1011.
Larson, D.W. 1976. Enhancement of mechylmercury uptake in fish by lake
temperature, pH, and dissolved oxygen gradients: hypochesis. Northwesc Sci. 51:
131.
Lauraond, F., ec al. 1973. Experimental invescigacions, ac laboratory, on che
cransfer of mercury in marine crophic chains. Rev. Inc. Oceanogr. Med. 31-32:
47-53.
Lawrence, S.G. and M.H. Holoka, 1983. Effecc of selenium on impounded
zooplankcon in a mercury contaminated lake. In: N.K. Kaushik and K.R. Solomon
(eds.), Proceedings of che Eighth Annual Aquaeic Toxicicy Workshop. Can. Tech.
Reot. Fish. Aquae. Sci. No. 1151. Depc. of Fisheries and Oceans, Occawa,
Oncario, Canada. p. 83.
Leonzio, C., ec al. 1982. Complementary accumulation of selenium and mercury
in fish muscle. Sci. Total Environ. 24: 249.
Lock, R.A.C. and A.P. van Overbeeke. 1981. Effects of mercuric chloride and
mechylmercuric chloride on mucus secrecion in rainbow trout, Salmo gairdneri
Richardson. Comp. Biochem. Physiol. 69C: 67.
110

-------
Lock, R.A.C., ec al. 1981. Effects of mercuric chloride and raechylmercuric
chloride on the osmoregulatory funccion of the gills in rainbow trouc, Salmo
gairdneri Richardson. Comp. Biochem. Physiol. 68C: 151.
Lockharc, W.L., ec al. 1972. Mechylmercury in northern pike (Esox lucius):
distribution, elimination, and some biochemical characteristics of contami-
nated fish. Jour. Fish. Res. Board Can. 29: 1519.
Lockwood, A.P.M. and C.B.E. Inman. 1975. Diuresis in che araphipod, Gammarus
duebeni, induced by mechylmercury, D.D.T., lindane and fenichrochion. Comp.
Biochem. Physiol. 52C: 75.
Lorz, H.W., et al. 1978. Effects of several metals on 9molcing of coho salmon.
EPA-600/3-78-090. National Technical Information Service, Springfield,
Virginia.
Lucu , C. and M. Skreblin. 1981. Evidence on che inceraccion of mercury and
selenium in che shrimp Palaemon elegans. Mar. Environ. Res. 5: 265.
lussier, S.M., ec al. Manuscript. Acute and chronic effects of heavy tnecals
and cyanide on Mysidopsis bahia (Crustacea: Mysidacea). U.S. EPA, Marragansecc,
Rhode Island.
Lucen, J.B., ec al. 1980. Mercury and selenium in marine and freshwater fish.
Jour. Food Sci. 45: 416.
Ill

-------
MacCrehan, W.A. and R.A. Dursc. 1978. Measurement of organomercury species in
biological samples by liquid chromatography with differencial pulse
electrochemical detection. Anal. Chem. 50: 2108.
MacCriramon, H.R., et al. 1983. Mercury upcake by lake crout, Salvelinus
namaycush, relative to age, growth, and diet in Tadenac Lake wich comparative
data from ocher Precambrian Shield Lakes. Can. Jour. Fish. Aquae. Sci. 40:
114.
Maclnnes, J.R. and A. Calabrese. 1978. Response of the embryos of che American
oyster, Crassoscrea virginica, to heavy metals at different temperatures. In:
D.S. McLuaky and A.J. Berry Ceds.), Physiology and Behaviour of Marine
Organisms. Pergamon Press, New York. p. 195.
MacLeod, J.C. and E. Pessah. 1973. Temperature effects on mercury accumu-
lation, toxicity, and metabolic rate in rainbow trout (Salmo gairdneri). Jour.
Fish. Res. Board Can. 30: 485.
Marshall, J.S., et al. 1981. An in situ study of cadmium and mercury stress in
the plankton community of lake 382, Experimental Lakes Area, northwestern
Ontario. Can. Jour. Fish. Aquat. Sci. 38: 1209.
Martin, M., et al. 1981. Toxicity of ten metals to Crassoscrea gigas and
Mytilus edulis embryos and Cancer magister larvae. Mar. Polluc. Bull. 12: 305.
112

-------
Marcin, M., et al. 1984. Relationships becveen physiological stress and crace
coxic substances in the bay mussel, Mycilus edulis, from San Francisco Bay,
California. Mar. Environ. Res. 11: 91.
Machur, S., ec al. 1981. Acuce coxicicy of mercury, copper and zinc co a
freshwacer pulmonace snail, Lymnaea luteola (Lamarck). Acta Hydrochim.
Hydrobiol. 9: 381.
Macida, Y., et al. 1971. Toxicicy of mercury compounds Co aquatic organisms
and accumulation of che compounds by che organisms. Bull. Freshwacer Fish. Res.
Lab. 21: 197.
Macson, R.S., ec al. 1972. Mercury inhibicion of lipid biosynthesis in
freshwater algae. Environ. Sci. Technol. 6: 158.
Macsumura, F. , ec al. 1975. Incorporac ion of ^03^ inco mechylmercury in
fish liver: scudies on biochemical mechanisms in vicro. Environ. Res. 10: 224.
May, T.W. and G.L. McKinney. 1981. Cadmium, lead, mercury, arsenic, and
selenium concencracions in freshwacer fish, 1976-77 — national pescicide
monitoring program. Pestic. Monic. Jour. 15: 14.
McClur
-------
Mclncyre, J.D. 1973. Toxicicy of mechyl mercury for sceelhead crouc sperm.
Bull. Environ. Concam. Toxicol. 9: 98.
McKira, J.M., ec al. 1976. Long-cerm effeccs of mechylraercuric chloride on
three generacions of brook crouc (Salvelinus foncinalis): coxicicy, accumu-
lacion, discribucion, and eliminacion. Jour. Fish. Res. Board Can. 33: 2726.
McKone, G.E., ec al. 1971. Rapid upcake of mercuric ion by goldfish. Environ.
Sci. Techno 1. 5: 1138.
Medeiros, D.M., ec al. 1980. A possible physiological upcake mechanism of
rsiechylmercury by the marine bloodworm (Glycera dibranchiaca) . Bull. Environ.
Concam. Toxicol. 24: 97.
Mellinger, P.J. 1973. The comparacive mecabolism of cwo mercury compounds as
environmencal concaminancs in che freshwacer mussel, Margarici fera
-nart>aricifera. In: D.D. Hemphill (ed.), Trace Subscances in Environmencal
Healch-VI. Universicy of Missouri, Columbia, Missouri. p. 173.
Menezes, M.R. and S.Z. Qasim. 1983. Decerminacion of acuce coxicicy levels of
mercury co che fish Tilapia mossambica (Pecers). Proc. Indian Acad. Sci.
(Animal Sci.) 92: 375.
Middaugh, D.P. and C.L. Rose. 1974. Recencion of cwo mercuricals by scriped
mullec, Mugil cephalus. Wacer Res. 8: 173.
114

-------
Miller, D.R. and H. Akagi. 1979. pH affeccs mercury discribucion, aoc
tnechylacion. Ecocoxicol. Environ. Safecy 3: 36.
Miller, D.S. 1980.	inhibicion of nucrienc cransporc in celeosc fish
small incescine. Jour. Pharmacol. Exp. Ther. 216: 70.
Miller, D.S. 1981. Heavy mecal inhibicion of p-aminohipDurace cransporc in
flounder renal cissue: sices of HgC^ accion. Jour. Pharmacol. Exp. Ther.
219: 428.
Mills; A.L. and R.R. Colwell. 1977. Microbiological effeccs of tnecal ions in
Chesapeake Bay wacer and serlinienc. Biol. Environ. Concam. Toxicol. 18: 99.
Ming-Shan, H. and P.L. Zubkoff. 1982. The effeccs of mercury, copper, and zinc
on calcium upcake by larvae of che clam, Mulinia laceralis. Wacer Air Soil
Polluc. 17: 409.
Micchell, J.W., ec al. 1982. Mercury in cakeaway fish in New Zealand. New
Zealand Med. Jour. 95: 112.
Mora, B. and J. Fabregas. 1980. The effecc of inorganic and organic mercury on
growch kinecics of Niczchia acicularis W. Srn. and Tecraselmis suecica Bucch,.
Can. Jour. Microbiol. 26: 930.
Moore, J.W. and D.J. Sucherland. 1980. Mercury concencracions in Eish
inhabicing cwo polluced lakes in norchern Canada. Wacer Res. 14: 903.
115

-------
Morgan, W.S.G. 1979. Fish locomotor behavior patterns as a monicoring cool.
Jour. Wacer Polluc. Concrol Fed. 51: 580.
Murray, A.R. 1978. An analysis of mercury concaminacion of fish from norchern
Saskatchewan Lakes, 1969-76. Technical Report No. 2. Department of Norchern
Saskatchewan Fisheries.
Murci, R. and G.S. Shuka. 1984. Acute coxicicy of mercuric chloride and
cadmium chloride Co freshwacer prawn, Macrobrachium lamarrei (H. Milne Edwards).
Acca Hydrochim. Hydrobiol. 12: 689.
Mysing-Gubala, M. and M.A. Poirrier. 1981. The effeccs of cadmium and mercury
on gemmule formation and gemmosclere morphology in Ephydatia fluviacilis
(Porifera: SpongiLlidae). Hydrobiologia 76: 145.
Nagashima, J., et al. 1983. Accumulacion of mercury by tissues in che
shorc-necked clam Tapes japonica. Bull. Jap. Soc. Sci. Fish. 49: 801.
Nacional Research Council. 1978. An assessment of mercury in che environ-
ment. National Academy of Sciences, Washingcon, D.C.
National Research Council of Canada. 1979. Effeccs of mercury in che Canadian
environment. NRCC No. 16739. Ottawa, Oncario, Canada.
116

-------
Nelson, D.A., ec al. 1976. Biological effects of heavy metals on juvenile bay
scallops, Argopeccen irradians, in shorc-term exposures. Bull. Environ. Concam.
Toxicol. 16: 275.
Niitni, A.J. and L. Lowe-Jinde. 1984. Differencial blood cell ratios of rainbow
trouc (Salmo gairdneri) exposed to mechylmercury and chlorobenzenes. Arch,
Environ. Concam. Toxicol. 13: 303.
Norscrom, R.J., ec al. 1976. A bioenergecics-based model	for pollucanc
accumulacion by fish. Simulation of PCB and mechylmercury	residue levels in
Occawa River yellow perch (Perca flavescens). Jour. Fish.	Res. Board Can. 33:
248.
Nriagu, J.O. (ed.). 1979. The Bio°eochemiscry of Mercury in che Environment
Elsevier, New York.
Nuzzi, R. 1972. Toxicicy of mercury co phycoplankcon. Nacure 237: 38.
Okubo, X. and T. Okubo. 1962. Scudy on che bioassay mechod for che evalua-
tion of wacer pollution - II. use of che fercilized eggs of sea urchins and
bivalves. Bull. Tokai Reg. Fish. Res. Lab. 32: 131.
Olson, G.F., ec al. 1975. Mercury residues in fathead minnows, Pimephales
promelas Rafinesque, chronically exposed to mechylmercury in wacer. Bull.
Environ. Contam. Toxicol. 14: 129.
117

-------
Olson, K.R. and R.C. Harrel. 1973. Effect of sal.ini.cy on acute toxicity of
mercury, copper, and chromium for Rangia cuneata (Pelecypoda, Mactridae).
Concrib. Mar. Sci. 17: 9.
Olson, K.R., ec al. 1978. Tissue uptake, subcellular distribution, and
metabolism of ^cHjHgd and CH^^^^HgCl by rainbow trout, Salmo
gairdneri. Jour. Fish. Res. Board Can. 35: 381.
Overnell, J. 1975. The effect of heavy netals on photosynthesis and loss of
cell potassium in two species of marine algae, Dunaliella tertiolecta and
Phaeodactylum rricornutum. Mar. Biol. 29: 99.
Paasivirta, J., et al. 1981. Recent trends of biocides in pikes of the Lake
Paijanne. Chemosphere 10: 405.
Paasivirta, J., et al. 1983. Food chain enrichment of organochlorine compounds
and mercury in clean and polluted lakes of Finland. Chemosphere 12: 239.
Panigrahi, A.K. and B.N. Misra. 1980. Toxicological effects of a sub-lethal
concentration of inorganic mercury on the fresh water fish, Tilapia mossambica,
Pecers. Arch. Toxicol. 44: 269.
Parker, J.G. 1984. The effects of selected chemicals and water quality on the
marine polychaete Ophryotrocha diadema. Water Res. 18: 865.
118

-------
Parrish, K.M. and R.A. Carr. 1976. Transport of mercury chrough a Laboratory
two-level marine food chain. Mar. Polluc. Bull. 7: 90.
Passino, D.R.M. and C.A. Cocanc. 1979. Allancoinase in Lake crout (Salvelinus
namaycush): in vicro effeccs of PC3s, DDT and mecals. Comp. Biochem. Physiol.
62C: 71.
Pennacchioni, A,, ec al. L976. Inability of fish co methylate mercuric
chloride in vivo. Jour. Environ. Qual. 5: 451.
Pennington, C.H., ec al. 1982. Contaminant levels in fishes from Brown's Lake,
Mississippi. Jour. Mississippi Acad. Sci. 27: 139.
Persoone, G. and G. live cersprot. L975. The influence of inorganic and organic
pollutants on the race of reproduccion of a marine hypocrichous ciliace:
Euploces vannus MuLLer. Rev. Inc. Qceanogr. Med. 37-38: L25.
PhilliDS, G.R. and D.R. Buhler. 1978. The relative contributions of methyl-
mercury from food or water co rainbow trouc (Salmo gairdneri) in a controlled
laboratory environment. Trans. Am. Fish. Soc. 107: 853.
Phillips, G.R. and D.R. Buhler. 1980. Mercury accumulation in and growth race
of rainbow crouc, Salmo gairdneri, stocked in an eastern Oregon reservoir.
Arch. Environ. Contain. Toxicol. 9: 99.
119

-------
Phillips, G.R. and R.W. Gregory. 1979. Assimilation efficiency of dietary
mechylmercury by northern pike (Eaox lucius) . Jour. Fish. Res. Board Can. 36:
1516.
Phillips, G.R. and R.W. Gregory. 1980. Accumulation of selected elements (As,
Cu, Hg, Pb, Se, Zn) by northern pike (Esox lucius) reared in surface coal mine
decant water. Proc. Montana Acad. Sci. 39: 44.
Phillips, G.R. and R.C. Russo. 1978. Metal bioaccumulation in fishes and
aquatic invertebrates: a licerature review. EPA-600/3-78-103. National
Technical Information Service; Springfield, Virginia.
Phillips, G.R., ec al. 1980. Relation between trophic position and mercury
accumulation among fishes from the Tongue River Reservoir, Montana. Environ.
Res. 22: 73.
Portmann, J.E. 1968. Progress report on a programme of inseccicide analysis
and t oxic icy-t es t ing in relation co che marine environment. Helgol. Wiss.
Meeresunters. 17: 247.
Price, R.E. and L.A. Knight, Jr. 1978. Mercury, cadmium, lead, and ar9enic in
sediments, plankton, and clams from Lake Washington and Sardis Reservoir,
Mississippi, October 1975 - May 1976. Pestic. Monit. Jour. 11: 182.
Pvefinch, K.A. and J.C. Mott. 1948. The sensitivity of barnacles and their
larvae to copper and mercury. Jour. Exp. Biol. 25: 296.
120

-------
Qureshi, S.A. and A.B. Saksena. 1980. The acute coxicicy of some heavy raecaLs
CO Tilapia mossamble a (Peters). Aqua 1: 19.
Qureshi, S.A. , et al. 1980. Acuce coxicicy of four heavy mecals co benchic
fish food organisms from the River Khan, Ujjain. Inc. Jour. Environ. Scudies
15: 59.
Rai, L.C. 1979. Mercuric chloride effect on Chlorella. Phykos 18: 105.
Rai, L.C., ec al. 1981. Protective effects of certain environmental factors on
the coxicicy of zinc, mercury, and rnethylrnercury to Chlorella vulgaris.
Environ. Res. 25: 250.
Raraamoorthy, S. and K. Blurahagen. 1984. Uptake of Zn, Cd, and by fish in
the presence of compecing compartments. Can. Jour. Fish. Aquat. Sci. 41: 750.
Ranamoorchy, S., ec al. 1982. EfEect of microbial life stages on che fate of
Tiethylraercury in nacural wacers. Bull. Environ. Concatn. Toxicol. 29: 167.
Ray, S., et al. 1984. Mercury and polychlorinated biphenyls in striped bass
(Morone saxacilis) from two Nova Scocia rivers. Wacer Air Soil Pollur. 21: 15.
Reeve, M.R., ec al. 1977. Evaluation of potential indicators of sub-lethal
toxic stress on marine zooplankcon (feeding, fecundicy, respiration and
excretion): controlled ecosyscera pollucion experiment. Bull. Mar. Sci. 27:
105.
121

-------
Rehwoldc, R., ec al. 1973. The acuce coxicicy of some heavy mecal ions toward
benchic organisms. Bull. Environ. Concam. Toxicol. 10: 291.
Reiichiro, H., ec al. 1983. Accuraulacion of mercury by che marine copepod
Acarcia clausi. Bull. Jap. Soc. Sci. Fish. 49: 1249.
Reinert, R.E., ec al. 1974. Effecc of cemperacure on accumulacion of raechyl-
mercuric chloride and o.p'DDT by rainbow crouc (Salmo gairdneri). Jour. Fish.
Res. Board Can. 31: 1649.
Reish, D.J. and R.S. Carr. 1978. The effecc of heavy mecals on che survival,
reproduccion, developmenc, and life cycles for cwo species of polychaecous
annelids. Mar. Polluc. Bull. 9: 24.
Reish, D.J., ec al. 1976. The effecc of heavy mecals on laboracory popula-
cions of cwo polychaeces wich comparisons co che wacer qualicy condicions and
standards in souchern California marine wacers. Wacer Res. 10: 299.
Renfro, J.L., ec al. 1974. Mechylmercury and inorganic mercury: upcake,
discribucion, and effecc on osmoregulacory mechanisms in fishes. £n: F.J.
Vernberg and W.B. Vernberg (eds.), Pollucion and Physiology of Marine Organisms.
Academic Press, New York p. 101.
Ribeyre, F. and A. Boudou. 1982. Scudy of che dynamics of che accumulacion of
cwo mercury compounds - HgCl2 and CH^HgCl - by Chlorella vulgaris: effecc of
122

-------
ceraperacure and pH faccor of the environroenc. Inc. Jour. Environ. Scudles 20:
35.
Ribeyre, F., ec al. 1980. Transfer of mechylmercury in an experimental
freshwater crophic chain - cemperacure effeccs. Environ. Polluc. (Series B) 1:
259.
Rodgers, D.W. and F.W.H. Beamish. 1981. Upcake of wacerborne mechylmercury by
rainbow crouc (Salmo qairdneri) in relacion co oxygen consutnpcion and
mechylmercury concencracion. Can. Jour. Fish. Aquae. Sci. 38: 1309.
Rodders, D.W. and F.W.H. Beamish. 1982. Dynamics of diecary mechylmercury in
rainbow crouc, Salmo qairdneri. Aquae. Toxicol. 2: 271.
Rodgers, D.W. and F.W.H. Beamish. 1983. Wacer qualicy modifies upcake of
wacerborne mechylmercury by rainbow crouc, Salmo gairdneri. Can. Jour. Fish.
Aquae. Sci. 40: 824.
Rodgers, D.W. and S.U. Qadri. 1982. Growth and mercury accumulation in
yearling yellow perch, Perca flavescens, in che Occawa River, Oncario. Environ.
Biol. Fish. 7: 377.
Rodgers, E.O., ec al. 1951. The coxicicy of pyridyImercuric acecace tech-
nical (PMA) co rainbow crouc (Salmo gairdnerii). Prog. Fish-Culc. 13: 71.
123

-------
Rosko, J.J- and J.W. Rachlin. 1977. The effect of cadmium, copper, mercury,
zinc and Lead on cell division, growth, and chlorophyll concent of c'ne
chlorophyce Chlorella vulgaris. Bull. Torrey Boc. Club 104: 226.
Rucicer, R.R. 1948. New compounds for che control of bacterial gill disease.
Prog. Fish-Cult. 10: 19.
Rucker, R.R. and W.J. Whipple. 1951. Effecc of bactericides on steelhead trout
fry. Prog. Fish-Culc. 13: 43.
Rudd, J.W.M. and M.A. Turner. 1983a. The English-Wabigoon River System: II.
suppression of mercury and selenium bioaccumulation by suspended and bottom
sediments. Can. Jour. Fish. Aquat. Sci. 40: 2218.
i
Rudd, J.W.M. and M.A. Turner. 1983b. The English-Wabigoon River Syscera: V.
mercury and selenium bioaccumulation as a function of aquatic primary
productivity. Can. Jour. Fish. Aquat. Sci. 40: 2251.
Rudd, J.W.M., ec al. 1980a. Dynamics of selenium in mercury-contaminated
experimental freshwater ecosystems. Can. Jour. Fish. Aquat. Sci. 37: 848.
Rudd, J.W.M., et al. 1980b. Mercury mechylacion by fish intestinal contencs.
Appl. Environ. Microbiol. 40: 777.
Ruohtula, M. and J.K. Mieccinen. 1975. Retention and excretion of ^-^Hg-
labelled methylmercury in rainbow trout. Oikos 26: 385.
124

-------
Saxena, O.P. and A. Parashari. 1983. Comparacive scudy of che coxicicy of six
heavy metals co Channa punccacus. Jour. Environ. Biol. 4: 91.
Scheider, W.A., ec al. 1979. Effeccs of acidic precipicacion on precambrian
freshwacers in souchern Oncario. Jour. Greac Lakes Res. 5: 45.
Schmidt-Nielsen, B,, ec al. 1977. Effect of mechyImercury upon osmoregulacion,
cellular volume, and ion regulacion in winter flounder, Pseudopleuronecces
americanus. In: F.J. Vernberg, ec al. (eds.), Physiological Responses of Marine
Bioca co Pollucancs. Academic Press, New York. p. 105.
Servizi, J.A. and D.W. Martens. 1978. Effeccs of selecced heavy mecals on
early life of sockeye and pink salmon. Progress Reporc No. 39. Incernacional
Pacific Salmon Fisheries Commission, Mew Westminister, B.C., Canada.
Shaffi, S.A. 1981. Mercury coxicicy: biochemical and physiological alceracions
in nine freshwacer celeoscs. Toxicol. Leccers 8: 187.
Sharma, D.C. and P.S. Davis. 1980a. Behavior of some radioaccive compounds of
mercury and selenium in aquarium wacer and cheir direcc upcake by che goldfish
Carassius auracus. Indian Jour. Exp. Biol. 18: 69.
Sharma, D.C. and P.S. Davis. 1980b. Effecc of mechylmercury on procein
synchesis in liver of che European carp Cyprinus carpio. Indian Jour. Exp.
Biol. 18: 1054.
125

-------
Sharma, D.C. and P.S. Davis. 1980c. Effect of sodium selenice and seleno-
methionine on che accumulation and acuce coxicicy of mercuric and mechyImercuric
chloride in che goldfish Carassius auracus. Indian Jour. Exp. Biol. 18: 82.
Sharma, D.C., ec al. 1982. Effecc of ascorbic acid on biocransforraacion and
modification of che coxicicy of mercurials in goldfish (Carassius auracus).
Experiencia 38: 565.
Sharp, J.R. and J.M. Neff. 1980. Effeccs of che duracion of exposure co
mercuric chloride on che embryogenesis of che escuarine celeosc, Fundulus
heceroclicus¦ Mar. Environ. Res. 3: 195.
Sharp, J.R. and J.M. Neff. 1982. The coxicicy of mercuric chloride and
mechylmercuric chloride Co Fundulus heceroclicus embryos in relacion co exposure
condicions. Environ. Biol. Fish. 7: 277.
Sharpe, M.A., ec al. 1977. The effecc of body size on mechylmercury clearance
by goldfish (Carassius auracus). Environ. Biol. Fish. 2: 177.
Shealy, M.H. and P.A. Sandifer. 1975. Effeccs of mercury on survival and
development of che larval grass shrimp, Palaetiionetes vulgaris. Mar. Biol. 33:
7.
Sheffy, T.B. 1978. Mercury burdens in crayfish from che Wisconsin River.
Environ. Polluc. 17: 219.
126

-------
Sheline, J. and B. Schmidt-Nielsen. 1977. Methylraercury-seleniura: interac-
tion in the killifish, Fundulus heteroc1itus. In: F.J. Vernberg, et al. (eds.),
Physiological Responses of Marine Bioca to Pollutants. Academic Press, New
York. p. 119.
Sick, L.V. and H.L. Windom. 1975. Effects of environmental levels of mercury
and cadmium on rates of metal uptake and growth physiology of selected genera of
marine phytoplankton. In: Mineral Cycling in Southeastern Ecosystems.
C0NF-740513. National Technical Information Service, Springfield, Virginia.
Sigraon, C.F., et al. 1977. Reductions in biomass and diversity resulting from
exposure to mercury in artificial streams. Jour. Fish. Res. Board Can. 34: 493.
Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some
toxicological considerations. Aquat. Toxicol. 4: 73.
Slooff, W. and R. Baerselraan. 1980. Comparison of the usefulness of the
Mexican axolotl (Ambystoma mexicanum) and the clawed coad (Xenopus laevis) in
the toxicological bioassays. Bull. Environ. Contain. Toxicol. 24: 439.
Slooff, W., ec al. 1983. Comparison of the susceptibility of 22 freshwater
species to 15 chemical compounds. I. (sub)acute toxicity tests. Aquat. Toxicol.
4: 113.
127

-------
Snarski, V.M. and G.F. Olson. 1982. Chronic toxicity and bioaccuraulacion of
mercuric chloride in che fachead minnow (Pimephales promelas). Aquae. Toxicol.
2: 143.
Sonncag, N.C. and W. Greve. 1977. Invescigacion of che impact of mercury on
enclosed wacer columns using a zooplankcon simulation mode. Jour. Fish. Res.
Board Can. 34: 2295.
Sosnowski, S.L. and J.H. Gencile. 1978. Toxicological comparison of nacural
and cultured populations of Acarcia tonsa co cadmium, copper, and mercury.
Jour. Fish. Res. Board Can. 35: 1366.
Speyer, M.R. 1980. Mercury and selenium concentrations in fish., sediments, and
water of two northwestern Quebec lakes. Bull. Environ. Contain. Toxicol. 24:
427.
Srivastava, O.K. 1982. Comparative effeccs of copper, cadmium and mercury on
tissue glycogen of the catfish, Heteropneustes fossilis (Sloch). Toxicol.
Letters 11: 135.
Stanley, R.A. 1974. Toxicity of heavy metals and salts to Eurasian water-
milfoil (MyriophyHum spicacum L.). Arch. Environ. Concam. Toxicol. 2: 331.
Scary, J. and K. Kraczer. 1980. Theory of che cumulation of mercury species in
fish. Radiochem. Radioanal. Letters 44: 37.
128

-------
Scary, J. and K. KraCzer. 1982. The cumulation of coxic mecals on alga. Inc.
Jour. Environ. Anal. Chem. 12: 65.
Scary, J., ec al. 1980. The cumulacion of mechylmercury in fish (PoeciLia
reeiculaca)¦ Inc. Jour. Environ. Anal. Chem. 8: 189.
Scary, J., ec al. 1981. Mercury circulacion in aquacic environmenc. Pare 4:
che cumulation of inorganic mercury and phenylmercury by fish (Poecilia
reciculaca (Peters)). Acca Hydrochim. Hydrobiol. 9: 545.
Scary, J., ec al. 1982. The cumulacion of mechylmercury and phenylmercury
species on alga. Jour. Indian. Chera. Soc. 59: 1329.
Scary, J., ec al. 1983." Cumulacion of zinc, cadmium, and mercury on che alga
i
Scenedesmus obliquus. Acca Hydrochim. Hydrobiol. 11: 401.
Scephan, C.E., ec al. 1985. Guidelines for deriving numerical national wacer
qualicy criteria for che proceccion of aquacic organisms and cheir uses.
Nacional Technical Infonnacion Service, Springfield, Virginia.
Scokes, P.M., ec al. 1983. Mercury accumulation by filamencous algae: a
promising biological monicoring syscem Eor mechyl mercury in acid-scressed
lakes. Environ. Polluc. (Series B) 5: 255.
Scopford, W. and L.J. Goldwacer. 1975. Mechylmercury in che environment: a
review of currenc underscanding. Environ. Healch Perspecc. 12:x 115.
129

-------
Scratcon, G.W. and C.T. Corke. 1979. The effecc of mercuric, cadmium, and
nickel ion corabinacions on a blue-green alga. Chemosphere 10: 731,
Scraccon, G.W., ec al. 1979. Effecc of mercuric ion on che growch,
phocosynchesis, and nicrogenase accivicy of Anabaena inaequalis. Appl. Environ.
Microbiol. 38: 537.
Scrom, S., ec al. 1979. Mercury toxicity co heraopoiecic and cumor
colony-forming cells and ics reversal by selenium in vicro. Toxicol. Appl.
Pharmacol. 49: 431.
Scromgren, T. 1980. The effecc of lead, cadmium, and mercury on che increase
in lengch of five incercidal fucales. Jour, Exp. Mar. Biol. Ecol. 43: 107.
Summers, A.O. and S. Silver. 1978. Microbial cransformacions of mecals. Ann.
Rev. Microbiol. 32: 637.
Thayer, J.S. and F.E. Brinckman. 1982. The biological mechylacion of mecals
and mecalloids. In: F.G. Scone and R. Wesc (eds.), Advances in OrganomecaL1ic
Cheraiscry, Vol. 20. Academic Press, New York. p. 313.
Thomas, D.L. and J.G. Monces. 1978. Speccrophocomecrica1Ly assayed inhibicory
effeccs of mercuric compounds on Anabaena flos-aquae and Anacyscis nidulans
(Cyanophyceae). Jour. Phycol. 14: 494.
130

-------
Thomas, W.H., ec al. 1977. Controlled ecosystem pollution experiment: effect
of mercury on enclosed wacer columns. III. phytoplankton copulation dynamics
and production. Mar. Soc. Comraun. 3: 331.
Thompson, S.E., et al. 1972. Concentration factors of the chemical elemencs in
edible aquatic organisms. UCRL-50564. Rev. 1. National Technical Information
Service, Springfield, Virginia.
Thurberg, P.P., et al. 1977. Response of the lobster, Homarus americanus, to
sublechal levels of cadmium and mercury. In: F.J. Vernberg, et al. (eds.),
Physiological Responses of Marine Bioca to Pollutants. Academic Press, New
York. p. 185.
Trevors, J.T. 1982. A comparison of methods for assessing toxicant effects on
algal growth. 3iotechnol. Letters 4: 243.
Tsai, S., et al. 1975. Importance of water pH in accumulation of inorganic
mercury in fish. Bull. Environ. Contam. Toxicol. 13: 188.
Tsui, P.T.P. and P.J. McCart. 1981. Chlorinated hydrocarbon residues and heavy
metals in several fish species from the Cold Lake Area in Alberta, Canada. Int.
Jour. Environ. Anal. Chem. 10: 277.
Turner, M.A. and A.L. Swick. 1983. The English-Wabigoon River System: IV.
interaction between mercury and selenium accumulated from waterborne and dietary
sources by northern pike (Esox lucius) . Can. Jour. Fish. Aquat. Sci. 40: 2241.
131

-------
Ukeles, R. 1962. Growth of pure cultures of marine phytoplankton in the
presence of toxicants. Appl. Microbiol. 10; 532.
U.S. EPA. 1976. Quality criteria for water. EPA-440/9-76-023, National
Technical Information Service, Springfield, Virginia.
U.S. EPA. 1980. Anibienc water quality criteria for mercury. EPA-440/5-80-058.
National Technical Information Service, Springfield, Virginia.
U.S. EPA. 1983a. Methods for chemical analysis of water and wastes.
EPA-600/4-79-020 (Revised March 1983). Nacional Technical Information Service,
Springfield, Virginia.
U.S. EPA. 1983b. Water quality standards regulation. Federal Register 48:
51400. November 8.
U.S. EPA. 1983c. Water quality standards handbook. Office of Water
Regulations and Standards, Washington, D.C.
U.S. EPA. 1985. Technical support document for water quality-based toxics
concrol. Office of Wacer, Washington, D.C.
U.S. Food and Drug Administration. L984a. Guide 7108.07. Compliance Policy
Guide. Compliance Guidelines Branch, Washington, D.C. November 6.
132

-------
U.S. Food and Drug Adminiscracion. 1984b. Accion level for mechyl mercury in
fish. Federal Register 49: 45663. November 19.
van den Broek, W.L.F. and D.M. Tracey. 1981. Concencracion and distribution of
mercury in flesh of orange roughy (Hoploscechus aclancicus). New Zealand Jour.
Mar. Freshwacer Res. 15: 255.
Verraa, S.R., ec al. 1984. Mercuric chloride scress on serum transaminase
accivicy in Nocopcerus nocopcerus. Toxicol. Leccera 20: 49.
Vernber;, W.B. and J. O'Hara. 1972. Temperacure-salinicy scress and mercury
uptake in che fiddler crab, Uca puqilacor. Jour. Fish. Res. Board Can. 29:
1491.
Vernberij, W.B. and J. Vernberg. 1972. The synergiscic effeccs of cemperacure,
salinicy, and mercury on survival and mecabolism of che adulc fiddler crab, Uca
pugilacor. Fish. Bull. 70: 415.
Wachs, B. 1982. Concencracion of heavy mecals in fishes from che River Danube.
Z. Wasser Abwasser Forsch. 15: 43.
Warnick, S.L. and H.L. Bell. 1969. The acuce coxicicy of some heavy mecals co
differenc species of aquacic inseccs. Jour. Wacer Polluc. Concrol Fed. 41: 280.
Wacerraan, A.J. 1937. Effecc of sales of heavy mecals on developmenc of che
sea urchin, Arbacia puncculaca. Biol. Bull. 73: 401.
133

-------
Wacling, R.J., ec al. 1981. Relation becween mercury concencracion and size in
the Mako shark. Bull. Environ. Concara. Toxicol. 26: 352.
Weber, W. J. , Jr., and W. Scumm. 1963. Mechanism of hydrogen ion buffering in
natural wacers. Jour. Am. Wacer Works Assoc. 55: 1553.
Weis, J.S. 1976. Effeccs of mercury, cadmium, and lead sales on regeneracion
and ecdysis in che fiddler crab, Uca pugilacor. Fish. Bull. 74: 464.
Weis, J.S, 1977. Limb regeneracion in fiddler crabs: species differences and
effeccs of nechylraercury. Biol. Bull. 152: 263.
Weis, J.S. and P. Weis. 1984. A rapid change in mechylmercury colerance in a
populacion of killifish, Fundulus heceroclicus, from a golf course oond. Mar.
Environ. Res. 13: 231.
Weis, J.S., ec al. 1981. Mechylmercury colerance of killifish (Fundulus
heceroclicus) embryos from a polluced vs non-polluced environment. Mar. Biol.
65: 283.
Weis, P. and J.S. Weis. 1977. Effeccs of heavy mecals on developmenc of che
killifish, Fundulus heceroclicus. Jour. Fish Biol. 11: 49.
Weis, P. and J.S. Weis. 1978. Mechylmercury inhibicion of fin regeneracion in
fishes and ics inceraccion wich salinicy and cadmium. Escuarine Coascal Mar.
Sci. 6: 327.
134

-------
Weis, P. and J.S. Weis. 1983. Effects of embryonic pre-exposure co
mechylmercury and Hg^+ on larval colerance in Fundulus heteroclicus. Bull.
Environ. Concam. Toxicol. 31: 530.
Weisbart, M. 1973. The distribution and tissue retention of raercury-203 in che
goldfish (Carasaius auratus). Can. Jour. Zool. 51: 143.
Wescerman, A.G. and W.J. Birge. 1978. Acceleraced race of albinism in channeL
cacfish exposed co metals. Pro)?. Fish-Culc. 40: 143.
Willford, W.A. 1966. Toxicicv of 22 cherapeucic compounds to six fishes.
Investigations in fish concrol: 18. U.S. Fish and Wildlife Service, Washington,
D. C.
Wobeser, G.A. 1973. Aquatic mercury pollution. Scudies of its occurrence and
pachologic effeccs on fish and mink. Ph.D. Thesis. Universicy of Saskatchewan,
Canada.
Wobeser, G., ec al. 1976a. Mercury and mink. I. the use of mercury
concaminaced fish as a food for ranch mink. Can. Jour. Comp. Med. 40: 30.
Wobeser, G., et al. 1976b. Mercury and mink. II. experimental meciiyl mercury
incoxicacion. Can. Jour. Comp. Med. 40: 34.
Won«», P.T.S., ec al. 1982. Physiological and biochemical responses of several
freshwater algae co a mixture of metals. Chemosphere 11: 367.
135

-------
Wood, J.M. 1974.
Science 183: 1049.
Biological cycles for coxic elemencs in che environment
Wren, C.D. and H.R. MacCriramon. 1983. Mercury levels in che sunfish, Lepotnis
gibbosus, relacive co pH and ocher environmental variables of precambrian shield
lakes. Can. Jour. Fish. Aquae. Sci. 40: 1737.
Wren, C.D., ec al. 1983. Examinacion of bioaccumulacion and biomagnificacion
of mecals in a precambrian shield lake. Wacer Air Soil Politic. 19: 277.
Wrighc, D.R. and R.O. Hamilton. 1982. Release of methyl mercury from
sedimencs: effeccs of mercury concencration, low cemperacure, and nucrienc
addition. Can. Jour. Fish. Aquae. Sci. 39: 1459.
Yamane, Y. and T. Koizumi. 1982. Proceccive effecc of molybdenum on che acute
toxicity of mercuric chloride. Toxicol. Appl. Pharmacol. 65: 214.
Young, L.G. and L. Nelson. 1974. The effeccs of heavy mecal ions on the
mocilicy of sea urchin spemacozoa. Biol. Bull. 147: 236.
Zubarik, L.S. and J.M. O'Connor. 1978. A radioisocopic scudy of mercury uptake
by Hudson River bioca. ^n: J.H. Thorp and J.W. Gibbons (eds.), Energy and
Environmencal Scress in Aquacic Syscems. CONF-771114. Nacional Technical
Informacion Service, Springfield, Virginia.
136

-------
TECHNICAL REPORT DATA
(Please read Instructions or. the re verse be fore completing/
i. RbPOH ! '¦*C.
EPA 440/5-84-026
4. r I I LL AMU SU3I1IU
Ambient Water Quality Criteria.for
Mercury-1984
! 3. KbCIPlfcN PS ACCESS'ON NO.
PB8 5 227 k 52 /AS
l>. REPORT DATE
Jan. '85-dato of approval
7 AUTHOR(S)
0 P£ R'ORMING ORGANIZATION NAVE A.N O ADDRFSS
US EPA
Office of Research & Development
Washington, D.C. 20460
6. PERFORMING ORGANIZATION COHF
S. PERFORMING ORGANIZATION REPORT NO.
!10 fHCGRAM EUMFNT NO
'11. CONIHACI/GHAH1 NO.
12. SPONSORING AGENCY NAiV.E AND AUCH.
US EPA
Office of Water Regulations & Standards
Criteria & Standards Division
401 M St., S.W.; Washington, D. C. 20460
13. lYPt OF RfcPORF AND.-'URICD COVERED
14. SPONSORING AGCNCY CODE
1b. SUPPLEMENTARY NOitl
16. ASSTRAC1
Document provides a suranary of irrtporLant aquatic toxicological data pertaining to
mercury. Criterion Maximum and Criterion Continuous Concentrations (CMC and CCC)
are calculated. Any necessary adjustments to the criterion are discussed. An
extensive bibliography is provided.
KEY WORDS AN J "JOCUMEN1 ANALYSIS
DESCRIPTORS
Aquatic Toxicology
Mercury
Criterion
Water Quality
b.KvFNTi^lEr'S/OPLN fc.NDLD I t H \Y.
cos a 11 I :eld/Group
R. •' * H'H'. :T ON STAT' Mi '
Unrestricted
» 19. SECURITY CLASS ///./, AV/a >rt j
N/A
no. or rAti^
70 Sf-CUK'TY C1 AS"-, ¦ !'/:• \

-------