[Note: with the publication of the Fifth Edition of AP-42, the Chapter and Section number for Chlor-Alkali changed to 8.11.] BACKGROUND REPORT AP-42 SECTION 5.5 CHLOR-ALKALI INDUSTRY Prepared for U.S. Environmental Protection Agency OAQPS/TSD/EIB Research Triangle Park, NC 27711 December 4,1992 Pacific Environmental Services, Inc. P.O. Box 12077 Research Triangle Park, NC 27709 919/941-0333 ------- This report has been reviewed by the Technical Support Division of the Office of Air Quality Planning and Standards, EPA. Mention of trade names or commercial products is not intended to constitute endorsement or recommendation for use. Copies of this report are available through the Library Services Office (MD-35), U.S. Environmental Protection Agency, Research Triangle Park, NC 27711. 1 ------- TABLE OF CONTENTS 1.0 INTRODUCTION 1 2.0 INDUSTRY DESCRIPTION 2 2.1 GENERAL 2 2.2 PROCESS DESCRIPTION 2 2.3 EMISSIONS AND CONTROLS 6 2.4 REVIEW OF SPECIFIC DATA SETS 6 2.5 REFERENCES FOR CHAPTER 2 9 3.0 GENERAL EMISSION DATA REVIEW AND ANALYSIS PROCEDURES 10 3 .1 LITERATURE SEARCH AND SCREENING 10 3.2 EMISSION DATA QUALITY RATING SYSTEM 11 3.3 EMISSION FACTOR QUALITY RATING SYSTEM 12 3 .4 REFERENCES FOR CHAPTER 3 14 4.0 POLLUTANT EMISSION FACTOR DEVELOPMENT 15 4.1 REVIEW OF SPECIFIC DATA SETS 15 4.2 CRITERIA POLLUTANT EMISSIONS DATA 17 4.3 NONCRITERIA POLLUTANT EMISSIONS DATA 18 4.4 DATA GAP ANALYSIS 34 4.5 REFERENCES FOR CHAPTER 4 36 APPENDIX A. AP-42 SECTION 5.5 37 ii ------- LIST OF TABLES TABLE 4.3-1 (METRIC UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS 19 TABLE 4.3-1 (ENGLISH UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS 21 TABLE 4.3-2 (METRIC UNITS) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS 24 TABLE 4.3-2 (ENGLISH UNITS) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS 28 TABLE 4.3-3 (METRIC UNITS) GLOBAL WARMING GASES: CARBON DIOXIDE 33 TABLE 4.3-3 (ENGLISH UNITS) GLOBAL WARMING GASES: CARBON DIOXIDE 33 TABLE 4.5-1 :LIST OF CONVERSION FACTORS 35 LIST OF FIGURES Figure 2.2-1 4 Figure 2.2-2 5 in ------- 1.0 INTRODUCTION The document "Compilation of Air Pollutant Emission Factors" (AP-42) has been published by the U.S. Environmental Protection Agency (the EPA) since 1972. Supplements to AP-42 have been routinely published to add new emission source categories and to update existing emission factors. AP-42 is routinely updated by the EPA to respond to new emission factor needs of the EPA, state, and local air pollution control programs and industry. An emission factor relates the quantity (weight) of pollutants emitted to a unit of activity of the source. The uses for the emission factors reported in AP-42 include: 1. Estimates of area-wide emissions; 2. Emission estimates for a specific facility; and 3. Evaluation of emissions relative to ambient air quality. The purpose of this report is to provide background information from process information obtained from industry comment and test reports to support revision of emission factors for chlor-alkali production. Including the introduction (Chapter 1) this report contains four chapters. Chapter 2 gives a description of the chlor-alkali industry. It includes a characterization of the industry, an overview of the different process types, a description of emissions, and a description of the technology used to control emissions resulting from chlor-alkali production. Chapter 3 is a review of emissions data collection and analysis procedures. It describes the literature search, the screening of emission data reports, and the quality rating system for both emission data and emission factors. Chapter 4 details criteria and noncriteria pollutant emission factor development. It includes the review of specific data sets and the results of data analysis. Particle size determination and particle size data analysis methodology are described when applicable. Appendix A presents AP-42 Section 5.5. 1 ------- 2.0 INDUSTRY DESCRIPTION 2.1 GENERAL12 The chlor-alkali electrolysis process results in the manufacture of chlorine, hydrogen and sodium hydroxide (caustic) solution. Of these three, the primary product is chlorine. Chlorine is one of the more abundant chemicals produced by industry and has a wide variety of industrial uses. Chlorine was first used to produce bleaching agents for the textile and paper industries and for general cleaning and disinfecting. Since 1950, chlorine has become increasingly important as a raw material for synthetic organic chemistry. Chlorine is an essential component of a multitude of end products including materials of construction, solvents, and insecticides, to name a few. In 1991, 52 chlor-alkali plants were in operation in 23 states around the country. Louisiana and Texas have the largest number of plants operating within their borders (9 and 6, respectively). Annual production from facilities in the U.S. was 9.9 million megagrams (10.9 million tons) in 1990 after peaking at 10.4 million megagrams (11.4 million tons) in 1989. 2.2 PROCESS DESCRIPTION13 The three basic processes for the electrolytic production of chlorine are 1) the diaphragm cell process (Griesheim cell, 1885), 2) the mercury cell process (Castner-Kellner cell, 1892), and 3) the membrane cell process (1970). In each process, a salt solution is electrolyzed by the action of direct electric current which converts chloride ions to elemental chlorine. The overall process reaction is: 2NaCl + 2H20 - Cl2 II, 2NaOH (1) Each process represents a different method of keeping the chlorine (Cl2) produced at the positive electrode (anode) separate from the caustic soda (NaOH) and hydrogen (H2) produced, directly or indirectly, at the negative electrode (cathode). Of the chlorine produced in the U.S. in 1989, 94 percent was produced either by the diaphragm cell or mercury cell process. Therefore, these will be the only two processes discussed in detail. 2 ------- Diaphragm Cell Process Figure 2.2-1 shows a simplified block diagram for the diaphragm cell process.Water and sodium chloride salt are first combined to create the starting brine solution. The brine next undergoes precipitation and filtration steps to remove any impurities. After the addition of heat and more salt, the nearly saturated, purified brine is heated again before entering the electrolysis portion of the process where direct electric current is applied. The anode area is separated from the cathode by a permeable asbestos-based diaphragm to prevent the reaction of caustic soda with chlorine. The chlorine produced at the anode is removed as the saturated brine flows through the diaphragm to the cathode chamber. The chlorine, which contains oxygen, is purified by liquefaction and evaporation to yield a dry, liquified product. The caustic brine produced at the cathode is freed from salt and concentrated in an elaborate evaporative process to produce commercial caustic soda. The salt separated from the caustic brine is recycled to saturate the dilute brine. The hydrogen removed in the cathode chamber is cooled and purified by removal of oxygen, then used in other plant processes or sold. Mercury Cell Process Figure 2.2-2 shows a simplified block diagram for the mercury cell process. The recycled brine from the electrolysis process (anolyte) first is dechlorinated and then purified by a straightforward precipitation-filtration process. The brine and liquid mercury (which is used as the cathode) enter the cell flowing concurrently. The electrolysis process creates chlorine at the anode and elemental sodium at the cathode. The chlorine is taken off to be cooled, dried, and compressed for sales. The sodium combines with mercury to form sodium amalgam. The amalgam is further reacted with water in a separate reactor called the decomposer to produce hydrogen gas and caustic soda solution. The caustic and hydrogen are then separately cooled and the mercury removed before proceeding to storage, sales or other processes. 3 ------- SALT WATER (BRINE) SALT PRECI PIT/ANTS PURIFIED BRINE CHLORINE GAS SALT HYDROGEN HYDROGEN SALT COOUNG COMPRESSION HEAT EXCHANGE ELECTROLYSIS BRINE SATURATION BRINE SATURATION l-EAT EXCHANGE CONCBSfTRATlON PRECIPITATION SODIUM HYDROXIDE HYDROGEN CHLORINE Figure 2.2-1. Simplified diagram of the diaphragm cell process 4 ------- ~LUTHDBRISE l-MDROCI-LORC hMDROQ-LCRCACID CH-ORISEG^S DKK.OR NATION EHHRlYaS PRECIPITATION COOLING PMPLGPM DBoavposmoN COOLING COOLING COOLING SODUMI-MDROXIDE l-MDRDGBM CI-LORISE Figure 2.2-2. Simplified diagram of the mercury cell process 5 ------- 2.3 EMISSIONS AND CONTROLS4 Emissions from mercury and diaphragm cell plants include chlorine gas, carbon dioxide, carbon monoxide, and hydrogen. Gaseous chlorine is present in the blow gas from liquefaction, from vents in tank cars and tank containers during loading and unloading, and from storage tanks and process transfer tanks. Carbon dioxide emissions result from the decomposition of carbonates in the brine feed when contacted with acid. Carbon monoxide and hydrogen are created by side reactions within the production cell. Other emissions include mercury vapor from mercury cathode cells and chlorine from compressor seals, header seals, and the air blowing of depleted brine in mercury-cell plants. Emissions from these locations are, for the most part, controlled through the use of the gas in other parts of the plant, neutralization in alkaline scrubbers, or recovery of the chlorine from effluent gas streams. 2.4 REVIEW OF SPECIFIC DATA SETS Pacific Environmental Services (PES) contacted the following sources to obtain the most up-to-date information on process descriptions and emissions for this industry: 1) Alabama Department of Environmental Management, Montgomery, AL. 2) Dow Chemical Corporation, Freeport, TX. 3) Elf-Atochem North America Inc., Portland, OR, and Tacoma, WA. 4) Florida Department of Environmental Regulation, Tallahassee, FL. 5) Georgia Department of Natural Resources, Atlanta, GA. 6) Kansas Department of Health and Environment, Topeka, KS. Michigan Department of Natural Resources, Lansing, MI. Missouri Department of Natural Resources, Jefferson City, MO. North Carolina Division of Environmental Management, Raleigh, NC. 10) Pennsylvania Department of Environmental Resources, Harrisburg, PA. 11) PPG Industries, Pittsburgh, PA, and New Martinsville, WV. 12) The Chlorine Institute, Washington, DC. Responses were received from Sources (1), (3), (11) and (12). No responses were received from the remaining sources. Source (1) provided a source test for mercury emissions that could not be used to update emission factors (See Section 4.1, Reference 2, for details). Sources (3) and (11) provided 6 ------- general process description information that was useful in confirming industry process descriptions. Source (12) provided a significant amount of both statistical data (production volumes, number of facilities, facility locations) and process description information. PES incorporated the information from these four sources into the AP-42 chapter revision. PES also travelled to Texas Air Control Board regional offices in Houston and Beaumont, Texas to obtain copies of any compliance test data or reports for chlor-alkali plants. Although a number of facilities are located in this part of the country, no data was available at either location. Although other States, such as Louisiana, may have valid chlor-alkali source tests, the States would not voluntarily review their files and provide PES with copies of the tests. Travel to each State to obtain the information was beyond the project scope of work. Pacific Environmental Services obtained information from References 1 through 3 through a literature search of the chlor-alkali industry. Reference 4 was obtained from the AP-42 Background File. Each reference was used to update Section 5.5 as discussed below. Reference 1: Ullmann's Encyclopedia ofIndustrial Chemistry Process diagrams and descriptions were updated utilizing Reference 1, which was obtained from a literature search. Reference 2: Pamphlets provided by The Chlorine Institute Reference 2 was obtained from Source (12) above. Data from this reference was used to update production volumes and define facility count and regional facility distribution. Reference 3: 1991 Directory of Chemical Producers: United States of America Reference 3 was obtained from a literature search and used to confirm the statistical data obtained from Reference 2. 7 ------- Reference 4: Atmosvheric Emissions from Chlor-Alkali Manufacture. Reference 4 was used to develop chlor-alkali emission factors as was done in the April 1981 Section 5.5 revision. 8 ------- 2.5 REFERENCES FOR CHAPTER 2 1. Ullmann's Encyclopedia of Industrial Chemistry. Volume A, VCH Publishers, New York, 1989. 2. Pamphlets provided by Arthur E. Dungan of The Chlorine Institute, Inc., Washington, D.C. January 1991. 3. 1991 Directory of Chemical Producers: United States of America. Menlo Park, California: Chemical Information Services, Stanford Research Institute, 1991. 4. Atmospheric Emissions from Chlor-Alkali Manufacture. U.S. EPA, Air Pollution Control Office. Research Triangle Park, N.C. Publication Number AP-80. January 1971. 9 ------- 3.0 GENERAL EMISSION DATA REVIEW AND ANALYSIS PROCEDURES 3.1 LITERATURE SEARCH AND SCREENING The first step of this investigation involved a search of available literature relating to criteria and noncriteria pollutant emissions associated with chlor-alkali production. This search included the following references: 1) AP-42 background files maintained by the Emission Factor and Methodologies Section. 2) Files maintained by the Emission Standards Division. 3) Handbook of Emission Factors, Parts I and II, Ministry of Health and Environmental Protection, The Netherlands, 1980/1983. 4) The EPA databases, including but not limited to the VOC/Particulate Matter (PM) Speciation Database Management System (SPECIATE), the Crosswalk/Air Toxic Emission Factor Data Base Management System (XATEF), and the Emission Measurement Technical Information Center's Test Methods Storage and Retrieval System (TSAR). 5) The mercury NESHAP background report and docket, as well as the 1987 Review of National Emission Standards for Mercury. To reduce the amount of literature collected to a final group of references pertinent to this report, the following general criteria were used: 1. Emissions data must be from a primary reference, i.e. the document must constitute the original source of test data. For example, a technical paper was not included if the original study was contained in the previous document. 2. The referenced study must contain test results based on more than one test run. 3. The report must contain sufficient data to evaluate the testing procedures and source operating conditions (e.g., one-page reports were generally rejected). If no primary data was found and the previous update utilized secondary data, this secondary data was still used and the Emission Factor Rating lowered, if needed. A final set of reference materials was compiled after a thorough review of the pertinent reports, documents, and information according to these criteria. The final set of reference materials is given in Chapter 4.0. 10 ------- 3.2 EMISSION DATA QUALITY RATING SYSTEM As part of Pacific Environmental Services' analysis of the emission data, the quantity and quality of the information contained in the final set of reference documents were evaluated. The following data were always excluded from consideration. 1. Test series averages reported in units that cannot be converted to the selected reporting units; 2. Test series representing incompatible test methods (i.e., comparison of the EPA Method 5 front-half with the EPA Method 5 front- and back-half); 3. Test series of controlled emissions for which the control device is not specified; 4. Test series in which the source process is not clearly identified and described; and 5. Test series in which it is not clear whether the emissions were measured before or after the control device. Data sets that were not excluded were assigned a quality rating. The rating system used was that specified by the OAQPS for the preparation of AP-42 sections. The data were rated as follows: A Multiple tests performed on the same source using sound methodology and reported in enough detail for adequate validation. These tests do not necessarily conform to the methodology specified in either the inhalable particulate (IP) protocol documents or the EPA reference test methods, although these documents and methods were certainly used as a guide for the methodology actually used. B Tests that were performed by a generally sound methodology but lack enough detail for adequate validation. 11 ------- c Tests that were based on an untested or new methodology or that lacked a significant amount of background data. D Tests that were based on a generally unacceptable method but may provide an order-of- magnitude value for the source. The following criteria were used to evaluate source test reports for sound methodology and adequate detail: 1. Source operation. The manner in which the source was operated is well documented In the report. The source was operating within typical parameters during the test. 2. Sampling procedures. The sampling procedures conformed to a generally acceptable methodology. If actual procedures deviated from accepted methods, the deviations are well documented. When this occurred, an evaluation was made of the extent such alternative procedures could influence the test results. 3. Sampling and process data. Adequate sampling and process data are documented in the report. Many variations can occur unnoticed and without warning during testing. Such variations can induce wide deviations in sampling results. If a large spread between test results cannot be explained by information contained in the test report, the data are suspect and were given a lower rating. 4. Analysis and calculations. The test reports contain original raw data sheets. The nomenclature and equations used were compared to those (if any) specified by the EPA to establish equivalency. The depth of review of the calculations was dictated by the reviewer's confidence in the ability and conscientiousness of the tester, which in turn was based on factors such as consistency of results and completeness of other areas of the test report. 3.3 EMISSION FACTOR QUALITY RATING SYSTEM The quality of the emission factors developed from analysis of the test data was rated utilizing the following general criteria: A (Excellent) 12 ------- Developed only from A-rated test data taken from many randomly chosen facilities in the industry population. The source category is specific enough so that variability within the source category population may be minimized. B (Above average) Developed only from A-rated test data from a reasonable number of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industries. As in the A-rating, the source category is specific enough so that variability within the source category population may be minimized. C (Average) Developed only from A- and B-rated test data from a reasonable number of facilities. Although no specific bias is evident, it is not clear if the facilities tested represent a random sample of the industry. As in the A-rating, the source category is specific enough so that variability within the source category population may be minimized. D (Below average) The emission factor was developed only from A- and B-rated test data from a small number of facilities, and there is reason to suspect that these facilities do not represent a random sample of the industry. There also may be evidence of variability within the source category population. Limitations on the use of the emission factor are noted in the emission factor table. E (Poor) The emission factor was developed from C- and D-rated test data, and there is reason to suspect that the facilities tested do not represent a random sample of the industry. There also may be evidence of variability within the source category population. Limitations on the use of these factors are always noted. The use of these criteria is somewhat subjective and depends to an extent on the individual reviewer. 13 ------- 3.4 REFERENCES FOR CHAPTER 3 1. Technical Procedures for Developing AP-42 Emission Factors and Preparing AP-42 Sections. U.S. Environmental Protection Agency, Emissions Inventory Branch, Office of Air Quality Planning and Standards, Research Triangle Park, NC, 27711, April, 1992. [Note: this document is currently being revised at the time of this printing.] 2. AP-42. Supplement A, Appendix C.2, "Generalized Particle Size Distributions." U.S. Environmental Protection Agency, October, 1986. 14 ------- 4.0 POLLUTANT EMISSION FACTOR DEVELOPMENT 4.1 REVIEW OF SPECIFIC DATA SETS Reference 1: Atmospheric Emissions from Chlor-Alkali Manufacture Reference 1 is a comprehensive study of the chlor-alkali industry from 1971 that provided the only acceptable source of emissions data to develop chlorine emission factors for Section 5.5. Reference 1 was also the only study used to generate emission factors for the April 1981 update of AP-42 Section 5.5. The reference has well-documented test procedures but no actual source tests to confirm the results. The numbers quoted in the April 1981 update are a combination of quotes from the text of Reference 1 and summary source test data contained in tables. Comments within the text and appendices of Reference 1 generally agree with the numbers quoted in the April 1981 update, but there is little data to back up the quoted ranges. Some factors are based on engineering judgement; others are based on telecons with industry representatives. The table below summarizes the data taken from the text and used in Section 5.5. The last column compares the factors found in this update with those used in the April 1981 update. Category Chlorine Emission Factor (except as noted) Reference 1 Page # Source April 1981 Section 5.5 Update Diaphragm cell 1000 - 5000 kg/100 Mg (2000 - 10000 lb/100 ton) 19 Unknown No change Mercury cell 2000 - 8000 kg/100 Mg (4000 - 16000 lb/100 ton) 19 Unknown No change Returned tank car vents 4.1 kg/Mg (8.2 lb/ton) 20 Telecon 2.25 kg/Mg (4.5 lb/ton) Air blowing of mercury brines 2.7 kg/Mg (5.4 lb/ton) 22 Engineering Estimate 2.5 kg/Mg (5.0 lb/ton) The first two categories have remained unchanged. The last two were changed due to errors in transfer of the data from Reference 1. New emission factors for mercury cell losses are discussed in Chapter 4.3. 15 ------- The emission factors for the remaining three emission categories found in Section 5.5 were based on the source test results tabulated in Reference 1. Average emission factors for these three categories are calculated below: Water absorber [(0.0003 + 0.0008 + 2.49)/3)] = 0.83 kg/Mg (1.66 lbs/ton) Caustic scrubbers [(0.0052 + 0.0002 + 0.0042 + 0.002 + 0.0027 + 0.0011 + 0.0038 + 0.034 + 0.0016 + 0.004)/10]= 0.006 kg/Mg (0.012 lb/ton) Shipping container vents (based on 19 sources') [(8.25 + 0.555 + 0.665 + 4.00 + 1.43 + 15.4 + 11.1 + 7.50 + 0.87 + 19.0 + 4.00 + 30.0 + 17.86 + 3.94 + 4.51 + 7.25 + 12.79 + 3.00 + 12.23)/19] = 8.66 kg/Mg (17.3 lb/ton) The average water absorber emission factor (0.83 kg/Mg) was used for this revision, versus an estimated range (0.125 to 5 kg/Mg; 0.25 to 10 lb/ton) quoted in the April 1981 update. Similarly, the caustic/lime scrubber value is now an average of the test results shown above. The emission factor was previously 0.5 kg/Mg (1 lb/ton), a number that PES was unable to verify. The "shipping container vents" category is now an average of 19 tests and was renamed (from "storage tank vents") to more closely represent the data. The April 1981 version quoted an emission factor of 6 kg/Mg (12 lbs/ton) for this category. This has been changed to 8.66 kg/Mg. The Reference 1 study has been rated "C"; the AP-42 emission factors using this data were downgraded to from "B" to "E." The drop in emission factor rating is due to the lack of primary source test data needed to confirm the study results. Reference 2: Stationary Source Samvlins Report, Reference No. 5593 Reference 2 is a mercury emissions source test report for the Linden Chemicals and Plastics, Inc. chlor-alkali plant located in Riegelwood, North Carolina. Based on the criteria set forth in Chapter 3.0 of this background report, the test was rejected for the following reasons: 1) Velocity measurements have conflicting documentation. 16 ------- 2) No calibration curve is reported. 3) Pitot tube documentation was not found. 4) No thermometer calibration data was found. 5) There is no record of a post-test calibration. Table 4.3-1 contains a summary of the test data. It has been included for information purposes only. Reference 3: B.F. Goodrich Chemical Company Reference 3 contains mercury emissions source tests for the B.F. Goodrich chlor-alkali plant in Calvert City, Kentucky. The tests were used to substantiate the 1973 mercury NESHAP. The tests have been rated "C" due to the use of non-standard methods to obtain the results as well as no calibration documentation. The data is contained in Table 4.3-1. Reference 4: Diamond Shamrock Corporation Reference 4 contains mercury emissions source tests for the Diamond Shamrock chlor- alkali plant in Delaware City, Delaware. The tests were used to substantiate the 1973 mercury NESHAP. The tests have been rated "C" due to the lack of calibration documentation as well as the use of non-standard methods to obtain the test results. The data is contained in Table 4.3-1. 4.2 CRITERIA POLLUTANT EMISSIONS DATA No data on emissions of volatile organic compounds, lead, sulfur dioxide, nitrogen oxides, or total suspended particulate and PM10 were found or expected for the chlor-alkali process. 17 ------- Carbon monoxide. Carbon monoxide (CO) is generated due to side reactions that occur in the chlor-alkali production cells. No test data were found to elaborate on these reactions or to quantify the emissions. Reference 1 estimates CO emissions in the blow gas to be 0.4 percent by volume. 4.3 NONCRITERIA POLLUTANT EMISSIONS DATA Hazardous Air Pollutants. Hazardous Air Pollutants (HAPs) are defined in the 1990 Clean Air Act Amendments. Both mercury and chlorine are HAPs and are known emissions from the chlor-alkali process. See Chapter 4.1 for a detailed discussion of the source tests included in Table 4.3-1. Mercury emission factors for mercury cell plants were calculated using the data from References 3 and 4. No other mercury emission data was found. The results utilizing the "B" and "C" data only, are shown below. Hydrogen Vent (Uncontrolled) [(0.003 + 0.0003)/2] = 0.0017 kg mercury/Mg chlorine produced (0.0033 lbs/ton) Hydrogen Vent (Controlled) [(0.001 + 0.0002)/2] = 0.0006 kg mercury/Mg chlorine produced (0.0012 lbs/ton) End Box [(0.004 + 0.006)/2] = 0.005 kg mercury/Mg chlorine produced (0.010 lbs/ton) These factors have replaced the previous engineering estimate of mercury cell loses (0.175 kg/Mg) quoted in the previous AP-42 Section 5.5. 18 ------- TABLE 4.3-1 (METRIC UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate3 Emission Rateb Emission Factor0 Facility 2. H ydrogen ventd None D 102 1 130 0.037 0.0003 2 130 0.047 0.0004 3 130 0.044 0.0003 Average 130 0.043 0.0003 Facility 2. End Boxd None D 102 1 130 0.015 0.0001 2 130 0.020 0.0002 3 130 0.020 0.0002 Average 130 0.018 0.0001 Facility 3. Hydrogen Vent None C Unknown 1 272 0.869 0.003 2 272 0.950 0.003 3 272 0.607 0.002 Average 272 0.809 0.003 Facility 3. Hydrogen Vent Demister C Unknown 1 272 0.282 0.001 2 272 0.374 0.001 3 272 0.508 0.002 Average 272 0.388 0.001 Facility 3. End Box None C Unknown 1 272 1.44 0.005 2 272 1.08 0.004 3 272 0.802 0.003 Average 272 1.107 0.004 aUnits in Mg chlorine/day. bUnits in kg mercury/day. 'Units in kg/Mg. dReference 2. 19 ------- TABLE 4.3-1 (METRIC UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS (Concluded) Control Equipment Test Rating Test Method Run # Production Rate3 Emission Rateb Emission Factor0 Facility 4. H ydrogen vent None C Unknown 1 363 0.285 0.0008 2 363 0.054 0.0002 3 363 0.080 0.0002 4 366 0.035 0.0001 Average 363 0.114 0.0003 Facility 4. Hydrogen Vent Carbon Absorber C Unknown 1 363 0.094 0.0003 2 363 0.029 0.0001 3 363 0.039 0.0001 4 363 0.089 0.0003 Average 363 0.063 0.0002 Facility 4. End Box None c Unknown 1 363 2.20 0.006 2 363 2.98 0.008 3 363 1.74 0.005 4 363 1.82 0.005 5 363 2.14 0.006 6 363 1.36 0.004 Average 363 2.04 0.006 'Units in Mg chlorine/day. bUnits in kg mercury/day. Units in kg/Mg. dReference 2. 20 ------- TABLE 4.3-1 (ENGLISH UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate3 Emission Rateb Emission Factor0 Facility 2. H ydrogen ventd None D 102 1 143.5 0.082 0.0006 2 143.5 0.104 0.0007 3 143.5 0.097 0.0007 Average 143.5 0.094 0.0007 Facility 2. End Boxd None D 102 1 143.5 0.033 0.0002 2 143.5 0.044 0.0003 3 143.5 0.043 0.0003 Average 143.5 0.040 0.0003 Facility 3. Hydrogen Vent None C Unknown 1 300 1.92 0.006 2 300 2.10 0.007 3 300 1.34 0.004 Average 300 1.79 0.006 Facility 3. Hydrogen Vent Demister C Unknown 1 300 0.622 0.002 2 300 0.826 0.003 3 300 1.12 0.004 Average 300 0.856 0.003 Facility 3. End Box None C Unknown 1 300 3.17 0.011 2 300 2.38 0.008 3 300 1.77 0.006 Average 300 2.44 0.008 aUnits in tons chlorine/day. bUnits in lb mercury/day. Units in lb/ton. dReference 2. 21 ------- TABLE 4.3-1 (ENGLISH UNITS) HAZARDOUS AIR POLLUTANTS: MERCURY EMISSIONS (Concluded) Control Equipment Test Rating Test Method Run # Production Rate3 Emission Rateb Emission Factor0 Facility 4. H ydrogen vent None C Unknown 1 400 0.629 0.002 2 400 0.120 0.0003 3 400 0.175 0.0004 4 400 0.077 0.0002 Average 400 0.333 0.0008 Facility 4. Hydrogen Vent Carbon Absorber C Unknown 1 400 0.206 0.0005 2 400 0.065 0.0002 3 400 0.086 0.0002 4 400 0.200 0.0005 Average 400 0.139 0.0004 Facility 4. End Box None c Unknown 1 400 4.84 0.012 2 400 6.58 0.016 3 400 3.84 0.010 4 400 4.02 0.010 5 400 4.72 0.012 6 400 2.98 0.007 Average 400 4.50 0.011 "Units in tons chlorine/day. bUnits in lb mercury/day. Units in lb/ton. dReference 2. 22 ------- Chlorine emissions from the previous AP-42 Section 5.5 were based solely on the results of Reference 1. Data for the water absorber and scrubber control devices, and uncontrolled shipping container loading emissions are shown in Table 4.3-2. The average emission factors are shown below: Water absorber 0.83 kg/Mg (1.66 lbs/ton) Caustic scrubbers 0.006 kg/Mg (0.012 lb/ton) Shipping container vents 8.66 kg/Mg (17.3 lb/ton) The data from Reference 1 has been rated "C." Each factor is rated "E." See Section 4.1 for a detailed discussion of Reference 1. 23 ------- TABLE 4.3-2 (METRIC UNITS) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility l.d SI lipping contaii icr vents None C Unknown Average 218 1814 8.35 Facility 2.d Shipping container vents None C Unknown Average 163 90.7 0.555 Facility 3.d Shipping container vents None c Unknown Average 316 90.7 0.665 Facility 4.d Shipping container vents None c Unknown Average 45 181.4 4.00 Facility 6.d Shipping container vents None c Unknown Average 64 90.7 1.43 Facility 7.d Shipping container vents None c Unknown Average 59 907.2 15.4 Facility 8.d Shipping container vents None c Unknown Average 163 1814.4 11.1 Facility 9.d Shipping container vents None c Unknown 1 45 226.8 5.00 2 45 453.4 10.00 Average 45 340.2 7.50 Facility 10.d Shipping container vents None c Unknown Average 209 181.4 0.87 Facility ll.d Shipping container vents None c Unknown 1 72 907.2 12.65 2 72 1814.4 25.3 Average 72 1360.8 19.0 aUnits in Mg/day. bUnits in kg/day. "Units in kg/Mg. dReference 1. 24 ------- TABLE 4.3-2 (METRIC UNITS) (.continued) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Ratea Emission Rateb Emission Factor0 Facility 12.d Shipping ct intaincr vents None C Unknown Average 227 907.2 4.00 Facility 13.d Shipping container vents None C Unknown Average 91 2721.6 30.00 Facility 14.d Shipping container vents None C Unknown Average 102 1814.4 17.86 Facility 15.d Shipping container vents None C Unknown Average 230 907.2 3.94 Facility 19.d Shipping container vents None C Unknown Average 201 907.2 4.51 Facility 20.d Shipping container vents None C Unknown Average 125 907.2 7.25 Facility 21.d Shipping container vents None C Unknown Average 172 2204.5 12.79 Facility 22." Shipping container vents None C Unknown Average 163 272.16 3.00 Facility 25.d Shipping container vents None C Unknown Average 415 5080.3 12.23 Facility l.d Liquefaction blow gases Caustic Scrubber C Unknown Average 218 1.13 0.0052 Facility 4.d Liquefaction blow gases Caustic Scrubber c Unknown Average 45 0.0084 0.0002 aUnits in Mg/day. bUnits in kg/day. 'Units in kg/Mg. dReference 1. 25 ------- TABLE 4.3-2 (METRIC UNITS) (.continued) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility 7.d L iquefaction bio w gases Water Absorber C Unknown Average 59 0.015 0.0003 Facility 9.d Liquefaction blow gases Caustic Scrubber C Unknown Average 45 0.188 0.0042 Facility 10.d Liquefaction blow gases Caustic Scrubber C Unknown Average 209 0.408 0.0020 Facility 12.d Liquefaction blow gases Caustic Scrubber C Unknown Average 236 0.628 0.0027 Facility 13.d Liquefaction blow gases Caustic Scrubber C Unknown Average 118 0.126 0.0011 Facility 14.d Liquefaction blow gases Caustic Scrubber C Unknown Average 102 0.387 0.0038 Facility 25.d Liquefaction blow gases Water Absorber C Unknown Average 279 0.211 0.0008 Facility 28.d Liquefaction blow gases Caustic Scrubber C Unknown Average 336 0.537 0.0016 Facility 29.d Liquefaction blow gases Caustic scrubber C Unknown Average 127 4.33 0.034 "Units in Mg/day. bUnits in kg/day. Units in kg/Mg. dReference 1. 26 ------- TABLE 4.3-2 (METRIC UNITS) (.concluded) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility 30.d Liquef actio n blow gases Water absorber C Unknown 1 163 1012 6.2 2 154 298 1.93 3 135 72 0.53 4 108 13 0.12 Average 141 349 2.49 Facility 31.d Liquefaction blow gases Caustic Scrubber C Unknown Average 287 1.17 0.004 aUnits in Mg/day. bUnits in kg/day. 'Units in kg/Mg. dReference 1. 27 ------- TABLE 4.3-2 (ENGLISH UNITS) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility l.d SI lipping contaii icr vents None C Unknown Average 240 4000 16.7 Facility 2.d Shipping container vents None C Unknown Average 180 200 1.11 Facility 3.d Shipping container vents None c Unknown Average 150 200 1.33 Facility 4.d Shipping container vents None c Unknown Average 50 400 8.00 Facility 6.d Shipping container vents None c Unknown Average 70 200 2.86 Facility 7.d Shipping container vents None c Unknown Average 65 2000 30.8 Facility 8.d Shipping container vents None c Unknown Average 180 4000 22.2 Facility 9.d Shipping container vents None c Unknown 1 50 500 10.00 2 50 1000 20.00 Average 50 750 15.00 Facility 10.d Shipping container vents None c Unknown Average 230 400 1.74 Facility ll.d Shipping container vents None c Unknown 1 79 2000 25.3 2 79 4000 50.6 Average 79 3000 38.0 aUnits in tons/day. bUnits in lb/day. cUnits in lb/ton. dReference 1. 28 ------- TABLE 4.3-2 (ENGLISH UNITS) (.continued) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility 12.d Shipping ct intaincr vents None C Unknown Average 250 2000 8.00 Facility 13.d Shipping container vents None C Unknown Average 100 6000 60.00 Facility 14.d Shipping container vents None C Unknown Average 112 4000 35.71 Facility 15.d Shipping container vents None C Unknown Average 254 2000 7.87 Facility 19.d Shipping container vents None C Unknown Average 222 2000 9.01 Facility 20.d Shipping container vents None C Unknown Average 138 2000 14.49 Facility 21.d Shipping container vents None C Unknown Average 190 4860 25.58 Facility 22.d Shipping container vents Average 180 600 6.00 Facility 25.d Shipping container vents None C Unknown Average 458 11200 24.45 Facility l.d Liquefaction blow gases Caustic Scrubber C Unknown Average 240 2.48 0.0104 Facility 4.d Liquefaction blow gases Caustic scrubber c Unknown Average 50 0.0185 0.0004 aUnits in tons/day. bUnits in lb/day. cUnits in lb/ton. dReference 1. 29 ------- TABLE 4.3-2 (ENGLISH UNITS) (continued) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Ratea Emission Rateb Emission Factor0 Facility 7.d L iquefaction bio w gases Water Absorber C Unknown Average 65 0.0335 0.0005 Facility 9.d Liquefaction blow gases Caustic Scrubber C Unknown Average 50 0.4154 0.0083 Facility 10.d Liquefaction blow gases Caustic Scrubber C Unknown Average 230 0.90 0.0039 Facility 12.d Liquefaction blow gases Caustic Scrubber C Unknown Average 260 1.39 0.0053 Facility 13.d Liquefaction blow gases Caustic Scrubber C Unknown Average 130 0.277 0.0021 Facility 14.d Liquefaction blow gases Caustic Scrubber C Unknown Average 112 0.854 0.0076 Facility 25.d Liquefaction blow gases Water Absorber C Unknown Average 308 0.466 0.0015 Facility 28.d Liquefaction blow gases Caustic Scrubber C Unknown Average 370 1.18 0.0032 Facility 29.d Liquefaction blow gases Caustic scrubber C Unknown Average 140 9.56 0.068 aUnits in Mg/day. bUnits in kg/day. "Units in kg/Mg. dReference 1. 30 ------- TABLE 4.3-2 (ENGLISH UNITS) (.concluded) HAZARDOUS AIR POLLUTANTS: CHLORINE EMISSIONS Control Equipment Test Rating Test Method Run # Production Rate1 Emission Rateb Emission Factor0 Facility 30.d Liquef actio n blow gases Water absorber C Unknown 1 180 2232 12.4 2 170 658 3.86 3 149 158 1.06 4 119 30 0.25 Average 155 770 4.98 Facility 31.d Liquefaction blow gases Caustic scrubber C Unknown Average 316 2.58 0.008 aUnits in tons/day. bUnits in lb/day. Units in lb/ton. dReference 1. 31 ------- Global Warming Gases. Pollutants such as methane, carbon dioxide, and N20 have been found to contribute to overall global warming. No data on emissions of methane and N20 were found for the chlor- alkali process. Carbon dioxide emissions were found for Plant 30 in Reference 1 and are listed in Table 4.3-3. The data has been rated "C." Reference 1 contains only C02 emission factors from plants that generate C02 from the oxidation of graphite anodes and the decomposition of feed brine (as discussed in Section 2.3). Conversations with industry members indicate that graphite anodes are no longer used, making this data obsolete. For this reason, no C02 emission factor was shown in the AP-42 update. 32 ------- TABLE 4.3-3 (METRIC UNITS) GLOBAL WARMING GASES: CARBON DIOXIDE Control Test Test Run Production Emission Emission Equipment Rating Method # Ratea Rateb Factor0 Facility 30.d None C Unknown 1 1.55 2 2.14 3 2.17 4 2.24 Average 2.03 aUnits in Mg/day. bUnits in kg/day. "Units in kg/Mg. dReference 1. TABLE 4.3-3 (ENGLISH UNITS) GLOBAL WARMING GASES: CARBON DIOXIDE Control Test Test Run Production Emission Emission Equipment Rating Method # Ratea Rateb Factor0 Facility 30.d None C Unknown 1 3.10 2 4.28 3 4.34 4 4.48 Average 4.05 "Units in tons/day. bUnits in lb/day. cUnits in lb/ton. dReference 1. 33 ------- 4.4 DATA GAP ANALYSIS As noted in Chapter 4.1, the data for developing emission factors for Section 5.5, Chlor- Alkali Industry is far from ideal. PES was unable to obtain any reliable and/or recent primary source test data for this industrial category. The existing information is out-of-date and, for the most part, unverifiable. A NESHAP is currently under development for this category which will include source testing to quantify current emissions. The results of this work should be available in 1993 and should be used to update the emission factors as well as provide the most up-to-date process descriptions. If source testing is dropped from the NESHAP scope of work, PES recommends that either the chlor-alkali industry be encouraged to supply their most recent source test data so that the emission factors can be updated for this section or a source testing program be undertaken to quantify emissions from the industry. Reliable data is needed to quantify emissions of chlorine, C02, CO and mercury. Closer inspection of State files, particularly in Louisiana, may also yield source tests that could be used to improve the quality of the emission factors. 34 ------- TABLE 4.5-1 LIST OF CONVERSION FACTORS Multiply: by: To obtain: mg/dscm 4.37 x 10"4 gr/dscf m2 10.764 ft2 acm/min 35.31 acfm m/s 3.281 ft/s kg/hr 2.205 lb/hr Kpa 1.45 x 101 psia kg/Mg 2.0 lb/ton Mg 1.1023 ton Temperature conversion equations: Fahrenheit to Celsius: oc = (°F-32) 1.8 Celsius to Fahrenheit: °F = 1.8(°C) + 32 35 ------- 4.5 REFERENCES FOR CHAPTER 4 1. Atmospheric Emissions from Chlor-Alkali Manufacture. U.S. EPA, Air Pollution Control Office. Research Triangle Park, N.C. Publication Number AP-80. January 1971. 2. Stationary Source Sampling Report. Reference No. 5593. Entropy Environmentalists Inc., Research Triangle Park, NC. September 1987. 3. B.F. Goodrich Chemical Company Chlor-Alkali Plant Source Tests. Calvert City. Kentucky. Roy F. Weston, Inc., EPA Contract No. CPA 70-132. May 1972. 4. Diamond Shamrock Corporation Chlor-Alkali Plant Source Tests. Delaware City. Delaware. Roy F. Weston, Inc., EPA Contract No. CPA 70-132. June 1972. 36 ------- APPENDIX A. AP-42 SECTION 5.5 [Not presented here. See instead current AP-42 Section 8.11.] 37 ------- |