EPA-600/R-94~ 198
Novembe r 1994
THE RAETRAD MODEL
OF RADON GAS GENERATION, TRANSPORT,
AND INDOOR ENTRY
by
Kirk K. Nielson, Vern C. Rogers, Vern Rogers, and Rodger B. Holt
Rogers and Associates Engineering Corporation
P. 0. Box 330
Salt Lake City, UT 84110-0330
EPA Interagency Agreement RWFL 933783-01
Contract 68-DO-0097 to
Sanford Cohen & Associates. Inc., McLean. VA
DCA Project Officer: Richard Dixon
Florida Department of Community Affairs
2740 Centerview Drive
Tallahassee, FL 32399
EPA Project Officer: David C. Sanchez
U.S.Environmental Protection Agency
Air and Energy Engineering Research Laboratory
Research Triangle Park, NC 27711
Prepared for:
State of Florida
Department of Community Affairs
2740 Centerview Drive
Tallahassee, FL 32399
and
U.S. Environmental Protection Agency
Office of Research and Development
Washington, DC 20460
-------
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify thai the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EXECUTIVE SUMMARY
The RAETRAD (RAdon Emanation and TRAnsport into Dwellings) model has been developed to
provide a simple, inexpensive means of estimating the rates of radon gas entry into dwellings from
underlying soils. It can represent slab-on-grade houses of different sizes and shapes on soils with any
distribution of radon source strengths, physical properties, water contents, and gas transport
properties. It was developed in part under the Florida Radon Research Program (FRRP), which has
been co-sponsored by the Florida Department of Community Affairs (DCA) and the U.S.
Environmental Protection Agency (EPA). It has been used in the FRRP to characterize the effects
of foundation soil and fill properties on indoor radon entry, to characterize the modes of radon entry,
to characterize soil radon potentials for mapping of their geographic distributions, to develop
simplified lumped-parameter models, and to support development of radon-protective building
construction standards.
RAETRAD computes radon production from radium decay, radon interactions in the solid, liquid,
and gas phases of soils and concretes, and radon gas transport and indoor entry by both diffusion
(concentration-driven) and advection (with pressure-driven air flow). It solves LaPlace's equation
in steady state to define air pressure distributions under and near the house and to obtain air flow
velocities that are used in the radon calculations. The radon differential equation also is solved in
steady state, and incorporates the air velocity field in computing simultaneous diffusive and advective
radon transport. The equations are solved numerically in elliptical-cylindrical geometry to represent
houses of different sizes and with varying rectangular aspect (length/width) ratios. Radon entry rates
into a house are computed by integrating the total radon transport across the floor surface area.
Indoor radon concentrations also are estimated from the computed entry rates by dividing by the
house volume and its air ventilation rate.
Several analytical functions are used in RAETRAD to enhance its computational efficiency and to
simplify its user interface. The numerical calculations of air flow and radon transport through floor
cracks are accelerated by use of analytical functions to estimate the mesh-equivalent permeabilities
and radon diffusion coefficients for the specified cracks rather than using finely-graded numerical
meshes to represent them. Analytical functions also are used to define soil radon diffusion
coefficients and air permeabilities for cases in which measured values are unavailable. These use
soil porosities, water contents, and textures to define the radon transport properties from empirical
correlations with measured data. In addition to modeling symmetric cracks in the floor slab,
RAETRAD also accommodates asymmetric openings such as utility penetrations that do not match
the elliptical symmetry computed for the equivalent rectangular house shape. These are represented
by multiple numerical calculations that determine transverse leakage terms for the discrete-point floor
openings.
The numerical-analytical calculations are performed by computing all finite-difference coefficients
for each model mesh unit and solving the equations simultaneously by a non-iterative matrix inversion
technique. The resulting computer code is relatively small and efficient, and operates on an IBM"-
compatible personal computer. Typical execution times are on the order of 1-2 minutes or longer,
depending on the complexity of the problem being solved and the speed of the computer. A user
interface provides queries for definition of an input file and selection of appropriate input parameters.
i i i
-------
The RAETRAD code was validated and benchmarked by several comparisons with analytical
calculations and with empirical radon data. The analytical validations included comparison with a
2-dimensionaJ air pressure field calculated for a simple uniform 15 ft. x 31 ft. soil space with two
different pressures applied at its top surface. Relative standard deviations of less than 1 % were
obtained between the RAETRAD calculations and the analytical pressure field at the 1-, 2-, 4-, 8-,
and 15-ft. depths below the pressure boundary.
Analytical validations with 1-dimensional radon generation and diffusion from an open soil and a
concrete-covered soil suggested the utility of defining a small (0.1-ft) mesh unit at the top of the soil
profile to minimize the effects of mesh spacing. In these comparisons, both soil radon profiles and
surface radon fluxes agreed consistently within less than 1%. Additional 1-dimensional validations
included a uniform soil with radon generation, diffusion, and advective transport. In this case, the
air flow velocities were forced by an external definition of a uniform pressure gradient, since
RAETRAD is designed to compute only realistic, 2-dimensional pressure profiles. Again, agreement
was within less than 1 % for all cases of air flowing into the soil profile. When air was drawn from
the profile, a depletion of the profile was observed that caused a maximum error of 4% for the case
that was analyzed. This error was reduced by considering a thicker soil profile, and was exaggerated
if a thin soil layer was considered.
Comparisons of RAETRAD calculations with empirical radon measurements utilized two test-cell
structures (6 m x 6 m) constructed in South-Central Florida and monitored primarily by Southern
Research Institute (SRI). One of these structures (test cell 1) utilized floating-slab floor construction
with concrete-block stem walls over a concrete footing. The other structure had similar footings and
stem walls, but its floor slab was poured to extend into a course of chair blocks at the top of the stem
wall. Both cells had identical wood-frame superstructures, without windows, that were sealed with
2-3 cm of polyurethane foam to minimize air infiltration. Soil densities, radium concentrations,
radon emanation coefficients, and moistures were measured in this project from numerous cores
collected around and under the test cells. SRI provided measured soil radon and air permeabilities,
and indoor pressures, air"ventilation, and radon concentrations.
Field soil sampling at the test cell site extended only to 4-7 ft. depths for most cores; hence deeper
soil regions were extrapolated from existing moisture and radium data. Calculated radon
concentration profiles were within 4.4% of the means of measured values under test cell 1, compared
to a 34% root-mean-square uncertainty among the measured values. Calculated radon profiles were
within 18% of the means of measured values under test cell 2, compared to a 42% root-mean-square
uncertainty among the measured values. Measured soil air permeabilities differed from values
calculated from soil density, moisture and texture by 42%sbased on composite averages at four
different depths. Excluding a heterogeneous, low-permeability layer under part of the site, the
agreement was improved to 24% relative standard deviation.
Indoor radon in the test cells was analyzed by RAETRAD to compare with measurements before and
after drilling a center hole in each of their slabs. For the initial slab conditions, RAETRAD
computed 97 pCi L"1 in test cell 1, only 2% above the mean of the measured values, 95 ± 44 pCi
L'1. The radon computed by RAETRAD for test cell 2 was 20 pCi L"1, which was 10% below the
mean of the measured values, 22 + 7 pCi L"\ With a 10-cm center hole in each slab, test cell 1 was
computed to have an indoor radon concentration of 212 pCi L"1, which was 17% below the mean of
the measured values, 255 ± 78 pCi L1. Test cell 2 with a center hole had a computed radon
concentration of 87 pCi L'\ which was 18% above the mean of the measured values, 74 + 33 pCi
i v
-------
LComputed air pressure and radon concentration profiles under test cell 1 had relative standard
deviations from measured values of 11 % and 12% respectively, which were smaller than the standard
deviations among the replicate measurements. Computed air pressure and radon concentration
profiles under test cell 2 had relative standard deviations from measured values of 25% and 20%
respectively, which also were smaller than the standard deviations among the replicate measurements.
Additional comparisons of RAETRAD calculations with radon measurements in the test cells were
performed with test cell 2 at indoor pressures of -10 Pa and -20 Pa instead of its passive-condition
pressure of -0.6 Pa. For the -10 Pa condition, test cell 2 was computed to have an indoor radon
concentration of 51.5 pCi L', which was 3% higher than the measured 50 pCi L'1 value. For the -
20 Pa condition, an indoor radon concentration of 42.9 pCi L1 was computed by RAETRAD, 14%
lower than the measured value of 50 pCi L"1. Collectively, the six model comparisons with indoor
radon measurements in the test cells had an average difference of 11 %, with an average bias of -3%.
Comparisons of RAETRAD calculations with indoor radon measurements in 50 FRRP demonstration
houses exhibited much larger variations (geometric standard deviations of 2.8), and a bias of a factor
of 0.56 below the measured values. This was attributed to the much less detailed characterization
of the houses, primarily with respect to the concrete slab integrity and diffusivity. Significant
unobserved holes or cracks (>50 cm2) near utility penetrations or by walls, bathtubs, or other
features could cause this much bias, as could a 3-fold higher radon diffusion coefficient than was used
for the floor (0.001 cm2 s'1)- Observations and measurements support either of these possibilities.
ABSTRACT
The report describes the theoretical basis, implementation, and validation of the RAdon Emanation
and TRAnsport into Dwellings (RAETRAD) model, a conceptual and mathematical approach for
simulating radon (222Rn) gas generation and transport from soils and building foundations to the
indoor environment. It has been implemented in a computer code of the same name to provide a
relatively simple, inexpensive means of estimating indoor radon entry rates and concentrations.
RAETRAD uses the complete, multi-phase differential equations to calculate radon generation, decay,
and transport by both diffusion and advection (with pressure-driven air flow). The equations are
implemented in a steady-state, 2-dimensional finite-difference mode with elliptical-cylindrical
geometry for maximum efficiency and modeling detail. For validation, the air flow part of
RAETRAD was compared with a 2-dimensional analytical calculation of air flow through a uniform
field. Variations of
-------
CONTENTS
Page
Executive Summary i l i
Abstract v
Figures vii
Tables lx
1. INTRODUCTION 1-1
1.1 Background and Purpose 1-1
1.2 Scope 1-2
2. THEORETICAL BASIS 2-1
2.1 Multiphase Theory and Parameters 2-1
2.2 Two-Dimensional Numerical-Analytical Modeling 2-7
2.3 Foundation Cracks and Utility Penetrations 2-15
2.3.1 Symmetric Crack Calculations 2-16
2.3.2 Calculations for Asymmetric Slab Openings 2-17
2.4 Code Structure and Numerical Calculations 2-19
2.5 Code Input Structure 2-30
3. MODEL VALIDATION AND BENCHMARKING 3-1
3.1 Comparisons with Analytical Algorithms 3-1
3.1.1 2-D Pressure Field Comparison 3-1
3.1.2 1-D Radon Profile with Generation and Diffusion 3-5
3.1.3 1-D Radon Profile with Generation, Diffusion
and Advection 3-9
3.2 Comparisons with Empirical Radon Measurements 3-12
3.2.1 Analyses of Test-Cell Houses at the FIPR Site 3-12
3.2.2 Analyses of FRRP Study Houses 3-30
3.2.3 Empirical Data Summary 3-35
3.3 Model Validation Summary 3-35
4. LITERATURE REFERENCES 4-1
APPENDIX A LISTINGS OF REFERENCE DATA USED TO VALIDATE THE
RAETRAD CODE A-l
APPENDIX B RAETRAD PRINTED OUTPUT FROM THE INDOOR RADON
COMPARISONS IN SECTION 3.2.1 B-l
APPENDIX C LISTING OF THE RAETRAD SOURCE CODE C-I
vi
-------
FIGURES
2-1 Two-dimensional grid and boundaries used to define slab anil soil regions
for indoor radon and air entry calculations 2-8
2-2 Parameters used to define numerical mesh units and boundary conditions
for RAETRAD calculations 2-9
2-3 Definitions of mesh units subscripts for use in the finite-difference
equations 2-12
2-4 Geometry of symmetric floor-slab cracks and asymmetric utility
penetrations for calculation of radon entry through each of the different
slab and crack regions 2-18
2-5 Simplified flowchart of the main RAETRAD Code 2-20
2-6 Simplified flowchart of subroutine RSYS 2-22
2-7 Simplified flowchart of subroutine PREDEF 2-24
2-8 Matrix representation of equation (25) 2-26
2-9 Simplified flowchart of subroutine CONDEF 2-28
2-10 Simplified flowchart of subroutine COMBINE 2-29
2-11 Simplified flowchart of the RAETRAD data input structure 2-31
3-1 Illustration of the boundary conditions and properties for the
2-dimensional pressure field validation case 3-2
3-2 Comparison of numerical pressure fields computed by RAETRAD to
analytical pressure fields computed from equations (33) - (35) 3-4
3-3 Comparison of numerical radon concentration profiles computed by
RAETRAD to analytical radon profiles computed by the RAECOM code
for a bare soil with a radon source 3-7
3-4 Comparison of numerical radon concentration profiles computed by
RAETRAD to analytical radon profiles computed by the RAECOM code
for a concrete-covered soil with radon sources 3-8
3-5 Comparisons of numerical and analytical radon profiles for a bare,
radon-generating soil with combined advective and diffusive transport 3-11
vi i
-------
FIGURES
(Continued)
Page
3-6 Foundation details for the floating slab (Test Cell 1) and slab in stem
wall (Jest Cell 2) 3-13
3-7 Soil and radon sampling locations around the test cells 3-14
3-8 Measured radon emanation coefficients and their trend with radium
concentration for the FIPR soils 3-17
3-9 Illustration of soil gas radon measurement locations and results at
different depths beneath and around the FIPR test cells 3-19
3-10 Comparison of measured and calculated soil gas radon depth profiles in
open soils at the FIPR site 3-20
3-11 Comparison of measured soil air permeabilities with permeabilities
calculated from soil moisture, porosity, and particle diameter 3-21
3-12 Comparison of measured and computed soil radon concentrations near
test cell 1 3-26
3-13 Comparison of measured and computed soil air pressure distributions
near test cell 1 3-27
3-14 Comparison of measured and computed soil radon concentrations near
test cell 2 3-28
3-15 Comparison of measured and computed soil air pressure distributions near
test cell 2 3-29
v i i i
-------
TABLES
3-1 Radium concentrations and radon emanation coefficients measured by
RAE on the SRI center core samples 3-15
3-2 Radium concentrations and water contents measured by RAE on the
supplementary samples 3-16
3-3 Depth-averaged radium concentrations, emanation coefficients, and
water contents from all available analyses for the test cells 3-17
3-4 Air ventilation measurements by SRI at the FIPR test cells 3-23
3-5 Radon measurements by SRI at the FIPR test cells 3-24
3-6 Comparison of RAETRAD calculations with FRRP houses studies by Geomet 3-31
3-7 Comparison of RAETRAD calculations with FRRP houses studied by SRI 3-34
A-l Analytical pressure profiles computed from equations in Section 3.1.1 A-3
A-2 Analytical radon profiles computed by the RAECOM code and corresponding
RAETRAD profiles A-4
A-3 Analytical radon profiles computed by the RAETRAD code A-5
-------
Section 1
INTRODUCTION
1.1 BACKGROUND AND PURPOSE
Radiation doses from inhaled radon (^Rn) decay products are a significant cause of lung
cancer,(12) and are the dominant source of natural radiation exposure in the U.S. population.P)
Most radon exposure occurs indoors, where concentrations usually are about five times greater
than outdoors/1"2' but in some cases reach hundreds to thousands of times the typical outdoor
levels of 0.2-0.5 picocuries per liter (pCi L'1). Indoor radon comes mainly from decay of
naturally-occurring radium (226Ra) in underlying soils, although contributions from water,
building materials, outdoor air, and other sources sometimes are important.(4) Radon gas
accumulates upon entry through the foundation because it is diluted more slowly indoors than
radon that diffuses directly into the atmosphere from outdoor soil surfaces. If sufficient radon
enters a building and if its dilution by outside air is small, it can accumulate to levels that pose
significant health risks with chronic exposure. Highly elevated indoor radon levels usually result
from elevated soil radium concentrations, foundation cracks, openings or pores that permit radon
entry, negative indoor pressures that draw soil gas indoors from foundation soils, low dilution
rates of indoor air by outdoor air, and combinations of these effects. The U.S. Environmental
Protection Agency (EPA) suggests that indoor levels averaging 4 pCi L"1 or higher warrant
remedial action.(1'2)
To help reduce public health risks from indoor radon, the Florida Department of Community
Affairs (DCA) is developing standards for construction of radon-resistant buildings.(5"7) The
technical basis for the standards is being developed under the Florida Radon Research Program
(FRRP), co-sponsored by the DC A and EPA. The FRRP addresses both buildings (designs,
materials, dynamics, and basic processes) and radon source potentials, and uses supporting
mathematical models to efficiently estimate the complex effects of various soil conditions, water
tables, foundation and house design and construction details, and occupant habits. The
RAETRAD model (RAdon Emanation and TRAnsport into Dwellings) was developed in part
1-1
-------
under the FRRP to characterize the effects of foundation soil and fill properties on indoor radon
entry.(S_10) It also has been extended and used to characterize the modes of indoor radon entry/11'
l3) to characterize soil radon potentials to map their geographic distributions/14"110 to develop
simplified lumped-parameter models/19) to support the development of radon-protective building
construction standards,ao"21) and under another program, to estimate soil cleanup requirements for
radium-contaminated sites.C2)
The RAETRAD model was developed to provide a simple, inexpensive means of estimating the
rates of radon gas entry into dwellings from underlying soils. It can represent slab-on-grade
houses of different sizes and shapes on soils with any distribution of radon source strengths,
physical properties, water contents, and gas transport properties. It uses a complete, unified
theoretical basis03"24' that includes radon production from radium decay, radon interactions in the
solid, liquid, and gas phases of soils and concretes, and radon transport and indoor entry by both
diffusion (concentration-driven) and advection (with pressure-driven air flow). The RAETRAD
computer code uses a 2-dimensional, steady-state numerical-analytical algorithm with elliptical-
cylindrical geometry for efficient calculations. The code is small and simple enough to operate
on an IBM'-Compatible personal computer under Windows* Format.
1.2 SCOPE
This report describes in detail the theoretical basis and modeling approach used in the RAETRAD
computer code (Section 2), including the underlying multiphase radon generation and transport
equations, their implementation in 2-dimensional finite-difference equations, the representation
of multiple foundation cracks and penetrations, and the overall structure of the computer code
and its input. Because of the interactions of soil and house parameters, RAETRAD characterizes
the complete radon cycle, including initial emanation from soil particles, transport through the
soil, and indoor entry. The RAETRAD code is benchmarked and validated (Section 3) by
comparisons of RAETRAD calculations with analytical results and
ith empirical radon measurements. A listing of the Fortran and Basic source codes comprising
version 3.1 of the RAETRAD code for IBM*-compatible personal computers is presented in the
Appendix.
1-2
-------
Section 2
THEORETICAL BASIS
The radon modeling in RAETRAD characterizes radon from its points of origin, as emanated
from radium-bearing minerals, to its entry into the indoor environment through pores and
openings in the foundation slab. Using multiphase theory, the fundamental equations describing
radon generation and radon diffusive and advective transport are presented to define the basis of
the model. Its implementation in 2-dimensional elliptical-cylindrical geometry then is defined,
along with the supporting numerical equations and analytical functions used to enhance its speed
and input flexibility. Calculation of radon entry through slab cracks and penetrations then is
described, along with the possible model configurations allowed by the RAETRAD v3.1 code.
The code structure and operation to solve the various equations finally are described, along with
the code input structure and logic. The radon entry modeling in this report addresses only slab-
on-grade house configurations, which are typical of most of the single-family residential housing
in Florida. The principles described by the multiphase theory and many aspects of the detailed
model development are general, however, and could be implemented equally well for houses with
other foundation configurations.
2.1 MULTIPHASE THEORY AND PARAMETERS
Conceptually, radon gas is emanated from decay of mostly solid-phase radium atoms, and it
moves most rapidly in air-filled pore spaces. However a more complete description is required
to represent its complex phase interactions and transport mechanisms to give an accurate estimate
of actual radon generation and transport rates. Radon generation and transport involve solid,
liquid, and gas phases in the simultaneous, interactive processes of radon emanation, diffusion,
advection, absorption, and adsorption. For example, radon is initially emanated with an
energetic recoil trajectory that may leave it deposited in either the air-filled pore space, in water
contained in the pores, or on the solid pore walls.R5) The emanated radon gas is further
distributed between the aqueous and gas phases of the soil pores (according to Henry's Law,
2-1
-------
when equilibrated), arid when dry surfaces are encountered, it may be adsorbed and desorbed on
the solid mineral phase.
Radon gas moves primarily by diffusion and advection mechanisms. Diffusion, driven by radon
concentration gradients, is significant in the aqueous as well as the gas phase because of frequent
intermittent blockages of soil pore segments by water. Advection, resulting from pressure-driven
flow of soil gas, carries radon at the interstitial soil gas velocity. Both mechanisms establish
along the transport route new equilibria of radon concentrations with local aqueous and solid
phases in a chromatograph-like process. The radon emanation fraction (or radon emanation
coefficient) is defined as the fraction of all radium (226Ra) decay events that produce radon atoms
in the pore space. This excludes the radon atoms whose originating recoil trajectories are
confined to the solid mineral phase, keeping them trapped until they decay to other, solid decay
products.
A detailed mathematical model of these processes and their interactions has been presented.p,'24)
It is summarized here to provide a basis to describe the multi-dimensional implementation of the
multiphase model as used in the RAETRAD computer code. Much of the same multi-phase
model also has been presented previously in an efficient, analytical one-dimensional computer
code, RAETRAN (RAdon Emanation and TRANsport), which computes radon generation and
transport in multi-region, layered systems. The RAETRAN source code has been published,a7)
and also serves as a prototypic example of the multiphase radon model.
The complete description of radon generation and transport is characterized by three coupled
differential equations describing radon changes with time in the solid, liquid, and gas phases.
With appropriate parameter definitions, these equations can be reduced to a single, multi-phase
differential equation^"24' that expresses radon concentrations in the air phase as they commonly
are measured. For the steady-state calculations performed here, this equation is written for the
radon concentrations in bulk soil space to accommodate the material differences in different
regions as:
dCJdt = Vf,DV(Cb/fs) + V((K//x)(Cb/fJ VP] - XCb + RpXE = 0 (1)
2-2
-------
where d/dt = time derivative (s1)
Cb = faCfl = 222Rn concentration in bulk soil space (pCi cm"3)
fs = ed-S+SM + pK
e = soil porosity (dimensionless: cm5 pore space per cm5 bulk space)
S = soil water saturation fraction (dimensionless)
kH = 222Rn distribution coefficient (water/air) from Henry's Law
(0.26 pCi cm"3 water per pCi cm"3 air at 20 °C)
p = soil bulk density (g cm"J, dry basis)
K = k,Q exp(-bS)
k^ = dry-surface adsorption coefficient for 222Rn (cm3 g"1)
b = adsorption-moisture correlation constant (g cm"3)
C„ = 222Rn concentration in air-filled pore space (pCi cm 3)
V = gradient operator
f. = cO-S + Skn)
D = diffusion coefficient for 222Rn in soil pores (cm2 s"1)
K = bulk soil air permeability (cm2)
H = dynamic viscosity of air (1.8x10 s Pa s)
VP = air pressure gradient (Pa cm"1)
X = mRn decay constant (2. lxlO"6 s'1)
R = soil 2MRa concentration (pCi g"1)
E — total 222Rn emanation coefficient (air+water) (dimensionless).
This equation applies to gas-phase advective transport of radon, and to combined gas-phase and
liquid-phase diffusive transport of radon. The four respective terms defining radon concentration
changes in equation (1) represent radon diffusion, advective transport of radon by soil gas
movement, radon decay, and radon generation by emanation from soil minerals. The factor fa
2-3
-------
physically corresponds to the effective porosity in which radon is distributed, including the
gas-phase and liquid-phase components. The factor f, similarly represents the effective porosity
containing radon, but includes also an equivalent pore volume for radon adsorbed on solid pore
surfaces.
The combined-phase diffusive transport is characterized by appropriate moisture- and
porosity-dependent values of the pore-average diffusion coefficient, d.°3,26"27) This approach is
important to correctly characterize radon diffusion in unsaturated soil pores that may have small
intermittent water blockages, but that still may transmit significant radon flux.*28' Liquid-phase
advective transport of radon is not addressed here because it generally is much smaller than the
other modes of transport. Radon fluxes between different soil layers or regions and at the top
surface or interface are calculated as
F = -DfaVC. - (K//z) VP C„, (2)
where F = bulk flux of 222Rn (pCi cm"2 s1).
The first (diffusive) term of equation (2) results from Fick's law, which describes radon flux in
a single phase.(29 30) The second (advective) term in equation (2) represents the radon flux from
bulk air movement in the air-filled pore space.
The soil air velocities, (K7/x)VP in equations (1) and (2), are calculated from corresponding air
pressure and flow equations that are applied to the same regions as the radon equations. The
differential equation that is solved to characterize steady-state pressure-driven air flow is obtained
from the equation of continuity and the equation-of-state for gases under isothermal expansion :(32)
d(P/P0)/dt = V
-------
v = -K/[/te(l-S)] VP
(4)
where v = soil gas velocity in the air filled pore space (cm s'1).
Diffusion coefficients for radon in soils for use in equations (1) and (2) may be obtained using
standard laboratory measurement methods.02 33) If representative measurements are unavailable,
values can be estimated for modeling purposes from specified values of the soil water content and
the soil porosity:a7)
D = D0 e exp(-6Se - 6SI4e), (5)
where D0 = diffusion coefficient for 222Rn in air (0.11 cm2 s"1).
This correlation is based on more than a thousand laboratory measurements of radon gas
diffusion ranging from 10"6 to 10"1 cm2 s"1 in recompacted soils at water contents ranging from
dryness to saturation. The soil textures ranged from sandy gravels to fine clays, and their
densities covered the range typical of Florida soils. ^ Equation (5) exhibits a geometric standard
deviation (GSD) between measured and calculated values of 2.0. Although the correlation is
based on predominantly western U.S. soils from Arizona, Colorado, Idaho, New Mexico,
Oregon, Pennsylvania, Texas, Utah, Washington, and Wyoming, twenty-two measurements of
radon diffusion coefficients in Florida soils were within GSD =2.7 of the values predicted by
equation (S).^
Air permeabilities of soils for use in equations (3) and (4) may be obtained from field
measurements with standard protocols.(33,36) When representative measurements are unavailable,
soil air permeabilities can be predicted for modeling purposes from specified values of the soil
water content, the soil porosity, and the average soil particle diameter as:a7)
K = 104 (e/500)2 d4'3 exp(-12S4), (6)
where d = arithmetic mean soil particle diameter, excluding >#4 mesh (m).
2-5
-------
This correlation is based on 137 in-situ soil air permeability measurements that included 37
measurements on Florida soils. The soils included a diverse range of types and textures ranging
from gravelly sands to fine clays. Their air permeabilities ranged from 1012 to 10"6 cm2, and
their water saturation fractions ranged from 0.06 to 0.97. The correlation in equation (6)
exhibits an overall GSD between measured and predicted values of 2.3.
Soil porosities for use in the radon and air pressure balance equations generally are estimated
from soil densities, which also are required for equation (1). Densities commonly are either
measured by standard methods03,37* or are estimated from data on similar soils in county soil
survey reports.0*41 Soil porosities are calculated from soil densities as:
e = 1 - p/pg, (7)
where pg = soil specific gravity (g cm"3).
Soil water contents are used explicitly in equations (1), (2), and (4), and also occur as the
dominant surrogates in defining soil radon diffusion coefficients and soil air permeabilities in
equations (5) and (6). The soil water contents are used in units of the fraction of saturation, S,
of the soil pore space. However they commonly are measured or reported in terms of the
percent water content on either a mass basis or a volumetric basis. The relations between the
water saturation fraction and the percent water contents are given by:
100 S = pMw/(pws) = Mv/(pwe) (8)
where Mw = soil water content (dry weight percent)
pw = density of water (g cm'3)
Mv = soil water content (volume percent).
Soil water contents are defined from measured values when suitable data are available.
Otherwise, they often can be estimated from the soil water drainage characteristics, which are
reported for many typical soils in county soil survey reports (e.g., reference 35). At depths
2-6
-------
within about l-2m of the water table, long-term average water contents often correspond to
drainage curve values at matric potentials that are equal to the distance to the water table.(38) For
deeper water tables, field capacity values give the maximum water contents that remain after
gravitational drainage, and commonly are represented by the water contents at matric potentials
of -10 kPa (-1 m H20) for sandy soils to -30 kPa (-3 m HzO) for loams and finer-textured
soils.^9) In wet climates such as Florida, field-capacity values are typically maintained at shallow
depths during much of the year. In the absence of more specific data, field-capacity values for
estimating water contents also can be estimated from soil textures and densities using
physico-empirical models of soil water drainage characteristics.(l0)
2.2 TWO-DIMENSIONAL NUMERICAL-ANALYTICAL MODELING
Two-dimensional numerical forms (2-dimensional gradient operators) of Equations (1) through
(4) are used in RAETRAD as a computationally-efficient alternative to 1-dimensional and 3-
dimensional algorithms that have been used elsewhere for other purposes. Clearly, the 1-
dimensional analytical solutions to Equations (1) through (4) are faster, and are available in
steady-state, multi-region, multi-phase forms.R6) However they are inadequate to represent the
simultaneous movement of radon and air upward toward the house foundation and radially
between the foundation soils and the surrounding soils. More detailed, 3-dimensional numerical
codes also have been used to characterize radon entry into houses/4^ but they require much
longer computation time and larger data sets to yield results that are very similar to those
obtained from two-dimensional calculations/40 Although 2-dimensional analytical solutions exist
for certain special cases (i.e., a 2-d, 1-region solution to Equation (3)), numerical methods are
required to solve equations (1) and (3) with enough generality to accurately represent a house
foundation and its underlying soils.
The RAETRAD algorithm to compute radon entry into a house represents the house foundation
and its vicinity soils by 2-dimensional arrays of properties for use in finite-difference
calculations. The arrays are oriented in the vertical and radial dimensions, with the origin being
at the house floor slab in the vertical dimension and at the horizontal center of symmetry in the
2-7
-------
radial dimension, as illustrated in Figure 2-1. The 2-dimensional equations are coupled with
analytical functions for modeling air and radon entry in certain discontinuity regions such as
floor cracks to increase computational speed and efficiency. Analytical functions as in equations
(5) and (6) also are used to define default values of input parameters for cases in which more
specific values are unavailable. The resulting numerical-analytical algorithm provides relatively
fast but detailed calculations on small, personal computers, and retains the operational simplicity
and minimal input requirements previously associated with 1-dimensional calculations.0^ The
RAETRAD algorithm assumes isothermal conditions except as thermal gradients affect the user
definitions of indoor air pressure and air exchange rate.
i
Pressurv-driwn
airflow,
Advactive radon
transport
Symmatiy nv
i
> Root Stab
iRadtel Dtmraton
Outdoor Boundary;
0vPO _
'ftadon Gas Diffusion
Figure 2-1. Two-dimensional grid and boundaries used to define slab
and soil regions for indoor radon and air entry
calculations.
The house floor slab, footings, foundation soils, and floor cracks are defined to have elliptical-
cylindrical symmetry so that their properties can be represented by 2-dimensional arrays in the
finite-difference calculations. The elliptical-cylindrical geometry represents the footprint of a
rectangular house by an ellipse of equal area. It thus considers the aspect ratio (length/width)
2-8
-------
of the rectangular house, thereby representing it more accurately than conventional, circular-
cylindrical or 2-dimensional cartesian geometries.
Depending on the amount of information available to characterize the house and its foundation
soils, RAETRAD can analyze either simple or relatively complex problems. It is designed to
represent as many discrete regions as desired (i.e., concrete slab, footings, fill soil, foundation
soil layers, etc.). Each region is assumed to be homogeneous, and may be comprised of one
or more contiguous numerical mesh units. For each defined region, individual values are
defined for the radium concentration, the radon emanation coefficient, the density, porosity,
water content, radon diffusion coefficient, air permeability, radon adsorption coefficient, and
anisotropics of the diffusion and permeability coefficients. Figure 2-2 illustrates the definitions
of these numerical mesh properties and related boundary conditions for the regions illustrated
in Figure 2-1.
I
indoor
•PlttSUf*
• Radon Ct
Outdoor:
• Prmun
• Radon Cone.
Spacing:
• V«rtlcaJ_L_L
• Horizontal..
_EJllpiical-CyUr>drtcai
' Axia of Symmetry '
• Oanaity • Rn Diffusion (van.)
• Porosity • Rn Diffusion (horte.)
• Wawr Ooittant • Rn Adsorption
• Pamela 8lxa • Air ParmaabliRy (van.)
**" "3 • Air Parmaa&HRy (hortx.)
. Ra-226 < ,
• Rn Emanation • SCS Tax&irs dUT ~
AAS-1MS26
Figure 2-2. Parameters used to define numerical mesh units
and boundary conditions for RAETRAD
calculations.
2-9
-------
For computational efficiency, the steady-state air pressures and velocities for a given problem
are defined by calculations separate from those for the radon concentrations and fluxes. For
both sets of calculations, the movement of air or radon from one mesh element to another is
calculated on a bulk-space basis, so that the numerical air velocity or radon flux leaving one
mesh element is equal to that entering the adjacent element. The corresponding boundary
conditions for air pressures and radon concentrations therefore require dividing by the air-filled
porosity (e(l-S)) or effective diffusion porosity (fs), respectively, to define the transport gradients
between mesh units. As shown by the following equations, the air and radon balance are
therefore defined on a bulk basis, while the transport factors are defined on a pore basis,
consistent with Darcy's and Fick's Laws, respectively.
The equation solved by RAETRAD to define air pressures and velocities is
V(K/M)V(Pb/€J = 0, (9)
where Pb = P e, = air pressure on a bulk-space basis (Pa)
P = air pressure on a pore-space basis (Pa)
ea = e(l-S) = air-filled porosity.
The bulk air velocities between mesh units are therefore
vb = -(K//0 V(Pb/0, (10)
where vh = «0 vp = air velocity from the mesh unit (cm s'1)
vp = air velocity in the air-filled pore space of the mesh unit (cm s"1).
For 2-dimensional elliptical-cylindrical coordinates, equation (9) is written as
dKV/i) dpjej/dzj/dz + d[(K,//z) dfPb/eJ/drJ/dr (11)
+ (g/r)(Kyfx) d(Pb/eJ/dr = 0,
2-10
-------
where d Idz — vertical derivative (cm'1)
Kv = bulk soil air permeability in the vertical direction (cm2)
d /dr = radial derivative (cm"1)
Kr = bulk soil air permeability in the radial direction (cm2)
g = V"[2/(l + r,2)]
rfl = house dimensional aspect ratio (length/width)
r = radial position from the house center of symmetry (cm).
The finite-difference equation used for the pressure calculations representing equation (11) has
the form
{(Kv//i)J+>i[(Pb/ea)j+ j - (Pb/ejJ/AVJ+ (12)
" (V/Oj.ilXPtAJj.i " (Pb/OjJ/AVj} / [(AVj+ + AVj)/2]
+ - (Pt/ejJ/Ar - - (Pb/ei)jiiJ/Ar} / Ar
+ (g/rj) (Kt//i)J-i+[(Pb/ea)j i+ - (Pb/eJj J/Ar = 0
where j = vertical mesh subscript (see Figure 2-3)
i = radial mesh subscript (see Figure 2-3)
AVj = vertical distance across mesh row j (cm)
Ar = radial distance across mesh column i (cm)
r< = radial distance from center of symmetry to element column i (cm).
The definitions of mesh subscripts are illustrated in Figure 2-3. Since the vertical mesh units
(av^ may have variable size, they are given the vertical subscript j. Radial mesh units are
constant; hence there are no subscripts on Ar. Once the pressure field has been solved using
equation (12), vertical and radial air velocities are computed and stored for the radon
calculations using the equations:
2-11
-------
OOj.i = -(Kv//i)j,i [(Pk/Oi,i - PVOjm,] / AVj
(Vbr)j.i = 'QV/*)jJ [PVOj.i " (Pl/Oj, J / Al">
(13)
where v
bv
"br
bulk vertical air velocity from the mesh unit j,i (cm s"1)
bulk radial air velocity from the mesh unit j,i (cm s"1).
Origin
(0,0) |
AV,
{
1,1+
hi
J-i
J+.I
M-
Ar
RAE-104S3E
Figure 2-3. Definitions of mesh unit subscripts for use in the finite-
difference equations.
The equation solved by RAETRAD to define radon concentrations utilizes the calculated air flow
velocities, and has the form:
V.f,DV(Cb/fi) + V.(K/M)(Cyf.)V(P,/€j - XQ, + RpXE = 0.
(14)
The bulk radon fluxes between mesh units are given by
f = -Df, vccyfj + C.vb
(15)
For 2-dimensional elliptical-cylindrical coordinates, equation (14) is written as
2-12
-------
a[Dvf.a(cyf,)/az]/az + atD^cyfj/ari/ar + (g/r^f.atcyf.yar (16)
- a(vbwcyfj/az - a^Ch/fj/ar - (g/r)vbrcyf. - xcb + r^xe = o,
where Dv = vertical diffusion coefficient for radon in soil pores (cm2 s'1)
Dr = radial diffusion coefficient for radon in soil pores (cm2 s'1).
The finite-difference equation used for finding the radon concentrations is obtained from equation
(16), and has the form
{(f.Dv)j+,i[(Cb/f.)j+.i - (CVfJjJ/AVj, (17)
- (f.Dv)j.i[(Cb/f1)j.r- (CVOj/AVj} / [(avj+ + aVj)/2]
+ {(f.Dr)jii+[(Cb/fJJil+ - (CVOj/Ar - (Wj.iUCb/Oj.i - (CVOj/Ar} / Ar
+ (g/rD (f.Dr),i+[(Cb/f1)jii+ - (CyfjJ/Ar
- [(VhvGh/fJj+.j - (v^Cb/fJj J / [(AVj+ + aVj)/2]
/
- [(Vb,Cb/fJjii+ - K.Ch/fjJ / Ar - (g/ri)(vbrCb/fJj,ii - X(Cb)j,1 = -(RpXE),,.
Once the radon concentration field has been solved using equation (17), vertical and radial radon
fluxes are computed using the equations: -
(Fvb = - (CVfJj,(KM, [(Pb/Oj.i - OVOj-J/AVj (18)
- (f.Dv)j.i[(Ch/f,)j.i - (Ch/fJ^J/AVj
(Fr)j,i = - (Q/fJj.i(KI//*)j.i [(P./Oj.i - (Ph/OiJ/^r
- (f.Dr)j.i[(Cb/0,, - (CVfJj, J/at,
where (FJj , = bulk vertical radon flux from the mesh unit j,i (cm s'1)
(Fr)ji = bulk radial radon flux from the mesh unit j,i (cm s"1).
2-13
-------
The total rates of soil gas and radon entry into the house are computed by summing the
contributions of each concentric, annular mesh area over the entire floor slab. Air entry rates
are computed as:
Oi, = Ei Ai (vbv)j Fu , (19)
where = flow of soil gas into the house (cfm)
A; = area of floor annulus i (ft2)
(vbv)j = air velocity from the floor through annular area i (cm s'1)
Fu = unit conversion factor (1.97 ft s cm"1 min"1)
Corresponding radon entry rates are computed as:
CV = Ei A; (Fv)0ii FUY (20)
where Q,^ = rate of radon entry into the house (pCi s'1)
(Fv)o,i = vertical radon flux from the floor through annular area i (pCi m"2 s'1)
Fu' = unit conversion factor (929 cm2 ft"2)
The indoor radon concentration can be estimated from the radon entry rate using models of
house air ventilation and air exchange. For estimating indoor radon genetically from the
calculated radon entry rates, RAETRAD utilizes a very simple model that represents the
superstructure as a uniform, well-mixed box with a constant ventilation rate from clean outdoor
air. The resulting indoor radon concentration is computed as
C*. = Qr, / (Vh XJ, (21)
where = indoor radon concentration (pCi L"1)
2-14
-------
Vh = house volume (L)
\ = house ventilation rate (s1).
The pressure-driven air flows and radon transport resulting from the two-dimensional
calculations have the general form illustrated in Figure 2-1. The generally-negative indoor
pressure relative to that occurring at the outdoor soil surface causes a low-velocity air flow from
the outdoor environment to any crack(s) in the floor slab. Radon in each soil element along the
air flow paths is carried at the velocity of the soil gas along the same route. Because of the
generally low permeabilities of concrete in the intact regions of the floor slab, air flow through
the intact slab is usually negligible with respect to its effect on radon entry.
Radon diffusion in the outdoor soils is predominantly vertical to the outdoor soil surface. Radon
diffusion under the floor slab similarly is nearly vertical toward the intact floor slab, with radial
diversion toward any cracks that allow higher diffusive fluxes. Typical radon diffusion
coefficients for concrete allow a small radon flux through the slab. Although much smaller than
the flux through floor cracks, the flux through the slab is multiplied by a much greater area for
the intact slab, making the diffusive radon entry through the concrete floor significant and
sometimes comparable to radon entry through floor cracks. Radon concentrations beneath the
slab exceed those at corresponding depths in the outside soil regions, causing outward radial
transport of radon that competes with and generally exceeds the inward advective transport near
the bottom of the foundation footing.
2.3 FOUNDATION CRACKS AND UTILITY PENETRATIONS
The presence of cracks and other openings in the concrete slab such as may result from utility
or remediation pipe penetrations is accommodated in the RAETRAD model by definition of
alternative diffusion and permeability properties of the affected concrete mesh spaces. If the
opening is a linear opening such as a crack, the calculation is performed with the same elliptical-
cylindrical symmetry as that for the house. This is suitable for openings such as a perimeter
shrinkage crack, and may approximate other openings of similar area if they are distributed over
similar distances and positions from the outside edge of the house. If the opening is a discrete
2-15
-------
opening that is not symmetric with the house such as a.utility penetration, it is calculated with
tangential leakage, as well as the radial and vertical leakage terms used in the RAETRAD
analyses that are explained in this section.
2.3.1 Symmetric Crack Calculations
The vertical diffusion and permeability properties of the concrete slab for the mesh elements in
which small cracks are defined are altered to reflect the increased diffusivity and permeability
of the cracked slab region. More than one crack may be defined for a given calculation;
however only one crack may be defined for a given radial mesh unit. The vertical permeability
of the concrete slab mesh unit in which the crack occurs is defined approximately as a weighted
geometric mean of the vertical permeabilities of the concrete and of the crack volume:
Kvn, = K.0"0 K«.c , (22)
effective vertical permeability of the slab mesh unit containing the crack
(cm2)
vertical permeability of the concrete slab (cm2)
vertical permeability of the crack region (cm2)
[1+3 exp(fc-l)] / (dimensionless)
ratio of (crack width / radial mesh dimension) (dimensionless)
where Kvm =
K. =
K, =
C
f. =
The vertical diffusion coefficient of the concrete slab mesh unit in which the crack occurs is
calculated approximately as a porosity-weighted average of the bulk diffusion coefficients of the
concrete and of the crack region as:
D„ = [f.(l-OD. + fcPcV(fJDj/[f.(l-0 + fcPj (23)
2-16
-------
effective vertical radon diffusion coefficient of the slab mesh unit
containing the crack (cm2 s*1)
vertical radon diffusion coefficient of the concrete slab (cm2 s"1)
porosity of the crack volume (dimensionless)
vertical radon diffusion coefficient of the crack volume (cm2 s1).
2.3.2 Calculations for Asymmetric Slab Openings
The assumptions used for developing the algorithms for calculating radon entry through slab
penetrations are that the penetration area is small compared to the house area and that the aspect
ratio of the penetration area is close to unity. The small size means that air and radon entry into
the penetration can be characterized with separable radial and transverse leakage terms. The
geometry used for the crack and penetration openings is illustrated in Figure 2-4. With these
approximations, the leakage terms in Equations (12), (17) and (18) are doubled to account for
the transverse transport of air and radon to the mesh element containing the penetration as well
as the radial transport. RAETRAD accomplishes this analysis by first determining the air and
radon leakage into the penetration from radial leakage. This calculation includes the effects of
interferences between the penetration and any symmetric cracks. A second RAETRAD analysis
then determines the magnitude of the transverse leakage into the penetration and sums it with
the penetration leakage from the first analysis. This approach includes the effects of the
interactions between the slab holes and all other cracks defined for the slab. However
interactions between different slab holes are not considered. Therefore if multiple slab holes are
represented, they are necessarily assumed to be at such distance from each other that they do
not interact.
where Dvm =
D, =
Pc =
Dc =
2-17
-------
Floor Slab Perimeter Wall
Cracks
and Footing
Utility Penetrations
RAH- 104528
Figure 2-4. Geometry of symmetric floor-slab cracks and
asymmetric utility penetrations for calculation of radon
entry through each of the different slab and crack
regions.
A further extension of the slab hole options also is employed in RAETRAD. This extension
permits application of different indoor pressure and radon boundary conditions to the floor slab
opening(s) than to the remainder of the slab and its cracks. With this option, pressures that are
more negative than the normal indoor pressures can be applied to a floor slab opening to
simulate, for example, the operation of a passive sub-slab ventilation system. The algebra in
RAETRAD that sums radon entry from the various parts of the floor area allows partitioning
of radon effluents from the various floor openings so that the effluent from a sub-slab ventilation
stack can be exhausted outside the house instead of being included with the radon that enters the
house.
2-18
-------
2.4 CODE STRUCTURE AND NUMERICAL CALCULATIONS
The basic structure of the RAETRAD computer code is summarized by several simplified
flowcharts of the main routines and their logical functions. The main RAETRAD program is
illustrated in Figure 2-5, which illustrates only the primary subroutines called and other principal
calculations. Upon startup, RAETRAD reads two input files that contain default parameters and
input parameters specified by the user to define the problem to be modeled. These files are
named RSYS.SYS and RSYS.INP. The program then initializes all crack and penetration
definitions for up to five different cracks (or four cracks and one set of penetration holes).
Subroutine RSYS then is called to perform a set of numerical pressure and radon calculations
on the system for which all specified cracks are considered simultaneously. Subroutine KEEP,
called immediately afterward, stores the resulting radon fluxes and entry rates for later use, if
needed, in computing the entry rates for the asymmetric penetrations. If no further numerical
analyses are required (for asymmetric penetrations), the code jumps to subroutine COMBINE,
which prints the results, and then ends.
If asymmetric penetration holes are being analyzed, two additional sets of analyses are
performed as illustrated in Figure 2-5. The first is performed for the case of an intact slab with
only one symmetric crack, located at the radius of the asymmetric penetrations. The second is
performed for the case of an intact slab with only the other specified cracks (if any) but none
at the radius of the asymmetric penetrations. The same RSYS routine performs all of the
numeric calculations, and the individual results of each analysis are saved by subroutine KEEP.
Subroutine COMBINE finally computes the transverse leakage terms and prints the final radon
entry rates for each area of the floor slab along with the corresponding indoor radon
concentration that would result from the specified combination of radon entry and ventilation
rates.
2-19
-------
Raad RSYS. fiiaa
Mttallza all Cracks A Panatrattona
(up to 8 cncka)
Call RSYS
Call KEEP
Panatraaona
N v 1
Initlmliza Crack Only
at Paoatration Radlua
<
C4IRSYS
<
t
CaIIKEEP
InltUUza Craeka Excapt
at Paoatration Radlua
ElllpUcal \n
Cncka
?
Call
RSYS
*
Call
KEEP
T
C4I COUBINE
RAE-104529
Figure 2-5. Simplified flowchart of the main RAETRAD Code.
2-20
-------
Subroutine RSYS, which controls and performs the actual numerical pressure and radon
calculations, is illustrated by the simplified flow chart in Figure 2-6. As illustrated, RSYS first
initializes the arrays of variables, and then reads the main input file defined by the user,
RSYS.INP. It next stores on the output file the output heading that lists most of the problem-
defining input parameters. RSYS next sets up all of the 2-dimensional arrays of defining
parameters (porosities, moistures, diffusion coefficients, permeabilities, radon source strengths,
etc.) that accompany each mesh unit, including units that require special definitions because of
cracks or penetrations. RSYS then calls subroutine PREDEF, which computes the air pressure
transport terms for the entire problem and stores them in a matrix to be solved by subroutine
SOLVE, which is called immediately afterward. Subroutine SOLVE returns an array of air
pressures, which then is used to compute air flow velocities between every mesh element in the
system. RSYS then writes the array of air pressures into the output file.
Subroutine RSYS next proceeds in a similar manner to compute all of the radon generation and
transport terms for the specified problem by calling subroutine CONDEF. CONDEF acts in an
analogous manner to PREDEF, but uses also the computed air flow velocities in computing the
simultaneous transport of radon by air-flow advection as well as concentration-driven diffusion.
After all of the radon generation and transport terms are computed and stored by CONDEF,
subroutine SOLVE is used to invert the resulting matrix for calculation of the array of radon
concentrations in the air filled pores of the entire system. Radon fluxes between each element
are then computed, and the array of concentrations is saved in the output file. Subroutine
FLUXIN finally is called to integrate the radon fluxes over the house floor boundary and thereby
estimate the total radon entry rates and fluxes for each region of the house. Subroutine RSYS
then returns to the main RAETRAD program.
2-21
-------
Start
Initialize Variables
Read RSYS.Inp
—*¦( Print Header
Calculata Mesh Properties
Including Crack Regions
Call PREDEF
Call SOLVE
Calculate
Radon Fluxes
Return
Call SOLVE
Call CONDEF
Call FLUXIN
Print Radon
Concentrations
RAE- 1W529
Figure 2-6. Simplified flowchart of subroutine RSYS.
2-22
-------
Subroutine PREDEF controls the detailed calculation of the air pressure and flow variables for
each mesh element, as illustrated by the flowchart in Figure 2-7. It initiates two loops over the
vertical and radial directions, respectively, originating at the center of the house at the floor
surface. The floor slab is always considered to be one mesh unit above the outside soil surface,
and can be raised any number of additional mesh units above it by defining a fill soil layer to
occur under the floor slab (Figure 2-1). For vertical mesh positions above the top mesh location
of the outdoor soil, PREDEF checks for radial location and proceeds to define the outdoor
surface pressures for vertical boundaries above the mesh units outside the house. For mesh units
under the house, the top row is assigned the indoor surface boundary pressures, and all deeper
rows are assigned pressure gradients based on neighboring mesh units. Subroutines LEFT,
RIGHT, and MID define the actual transfer of air from one mesh unit to another, with MID
being the general routine and LEFT and RIGHT being special cases for the left and right
boundaries of the system where a zero-flow boundary is defined.
Mesh elements below the yard elevation are computed similarly, with all rows above the bottom
row being defined by identical calls to subroutines LEFT, RIGHT, and MID. For the Bottom
row, beyond which no vertical air flow is allowed, other special cases of the routines are called,
BOTL, BOTR, and BOT, respectively. The subroutines LEFT, RIGHT, MID, BOTL, BOTR,
and BOT all serve to store the air transport coefficients between mesh units in the appropriate
elements of a large matrix that is later solved by subroutine SOLVE to find the air pressures in
each mesh element.
2-23
-------
tun
Caleulata Avaraga
Varticai MNh
RadlaJ Loop
Prom Canlar Out
Bottom
Row
Daflna Outdoor
Boundary Coatttdanla
CaB
BOT
Oanna Houaa
Boundary CoaHldanta
Abova \
Yard EJavaUon
UIO
Bound
^L/R>
Bound
Bound
Call
MO
Call
RIGHT
Cal
RIOKT
Figure 2-7. Simplified flowchart of subroutine PREDEF.
2-24
-------
Subroutine PREDEF and the six subroutines that it calls solves equation (12) in the following
manner. Equation (12) is re-arranged to group all coefficients of pressure according to their
mesh unit. This gives the equivalent equation for each mesh unit:
+ (Pb/Oj,i- {(K/Mk / Ar2}
+ (Pb/Oj.i{-(K^/i)j+.i/AVj+/AV, - (Ky^j/AVj/AV. - (KJfjL^j+Ui2 -
- (g/T.XWllhJiT}
+ (Pb/Oj.i+ { OVm^/at2 + fe/ri)(Kl/MWAr}
+ (Pb/Oj+.i {(Kv/^^./av^/av.} = 0
where av, = (Avj+ + aVj ) / 2.
If the coefficients of each pressure term in equation (24) are placed into a matrix format, they
comprise a matrix equation that can be directly solved for the pressures:
where C = coefficient matrix
P = solution matrix
B = boundary matrix.
Certain terms of equation (24) are excluded for mesh elements at the boundaries to correctly
define the zero air flow boundary conditions at the sides and on the bottom of the system.
Therefore subroutine MID includes all terms in equation (24), but subroutine LEFT excludes
those that represent air flow to a left-side element, RIGHT excludes those that represent air flow
to a right-side element, etc. The matrix form of equation (24) is illustrated in Figure 2-8. As
illustrated, the C matrix is a tri-diagonal matrix with two outlier bands. The distance of the
outlier bands from the central bands depends on the number of vertical mesh units defined for
(24)
C P = B
(25)
2-25
-------
the problem. The B matrix contains zeros for all elements except those for the top (house or
outdoor) boundary. Equation (25) has the solution
P = C 1 B, (26)
where C 1 is the inverse of the coefficient matrix C.
The matrix C is inverted by subroutine SOLVE, which is a specialized band-matrix solving
routine that was obtained from the BLT computer code.(42)
(CocfOdent Matrix)
jj j+j 0 ...
j-.i jj j+j 0
0 j-.» jj j+J
... 0
0
jj-
0
0
0
0
0
0
0
0
0
0
0
0
JJ-
0
jj+ o
0 jj+ o
... 0 jj+ 0 •
j-j jj j+j 0 ... 0 jj+ 0
0 j-j jj j+j 0 ... 0 ji* 0
... 0 j-j jj J+j 0 ... 0 jj+ 0
o ... 0 J-.I jj j+J 0 ... 0 JJ* 0
jj- 0 ... 0 j-j Jj j+J 0 ... 0 Jj+ 0
0 J-j jj j+J 0 ... 0 JJ+ 0
o j-j jj. J+j 0 ... 0 jj+ 0 ...
0 J-4 jj j+j 0 ... 0 jj* 0
.. 0 J-j jj j+J 0 ... 0 jj+
0 ... 0 j-j jj j+j 0 ... 0 jj+
0 ... 0 j-j jj J+J 0 ... 0
Jj- 0 ... 0 J-.i jj j+j 0 ...
0 jj- 0 ... 0 J-j jj J+j 0
... 0 jj- 0 ... 0 j-j JJ j+j
0 jj- 0 ... 0 J-J Jj
JJ-
0
0 ...
jj- o
0 jj.
... 0
0 ...
jj- 0
0 jj-
... 0
JJ-
0
p
(Solution
Matrix)
PU+JG-]))
PU+JO-D1
B
(Booadary
Matri*)
Figure 2-8. Matrix representation of equation (25).
Subroutine CONDEF controls the detailed calculation of the radon generation, concentration and
flux variables for each mesh element, as illustrated by the flowchart in Figure 2-9. It operates
analogously to subroutine PREDEF in all logic loops, but calls subroutines CLEFT, CRIGHT,
CMID, CBOT, CBOTL, and CBOTR to specifically define the radon generation and transport
2-26
-------
parameters. The subroutines also serve analogous functions to those called by PREDEF, which
were described previously. Subroutine CONDEF and the six subroutines that it calls solve
equation (17) by re-arranging it to group all coefficients of radon concentration according to
their mesh unit. This gives the equivalent equation for each mesh unit:
{(f.Dv)j,/AV, / iV.j (27)
+ (CVOy. {(f.DJj., / ar2}
+ (CVOi. {-C.D,)>»„/«. - (f.D.),./Av/Av. - (fAW*2 - (f.D,)).,/"2
- (g'rJ(f.D,W'r + K.)i,Av, + (vjjj/ir -
+ (Cb/f.),„. { (f.Dr)i.i+/«rJ + (g'ri)(f.D,)J W/ir - (vbr)i lt/4i - (g/r.Xvi,), ,,}
+ (Cb/Oj».i {(f.R.WaV/lv."
-------
VtotfcalLoop
Prom lirtDnm
From C«u«r Out
Above \
V«r* EJmatlon
Bottom
Boundary Co«fllci«nt»
Bound
OB
Bar
^U!«>
Bound
C»U
uo
DiIImHmn
Boundary CoMttctantt
CaB
fUOHT
RAE- 104534
Figure 2-9. Simplified flowchart of rub routine CONDEF.
2-28
-------
suit
^ Radial Loop ^
Calculate Annular Area
< Crack Loop \
e
Comblna Fluxaa From
Up to 3 Runa
)
< End Crack \
L°°p /
£
Accumulata Total Fluxaa
and Entry Rataa
3
°p /
Loop to Print Radon
Fluxaa and Entry Rataa
for Each Radial Poaition
andTotala
V
Raturn
RAE- 104537
Figure 2-10. Simplified flowchart of subroutine COMBINE.
2-29
-------
2.5 CODE INPUT STRUCTURE
The basic input logic structure for the RAETRAD code is illustrated in Figure 2-11. The input
is specified by the user in an interactive dialogue with RAETRAD at the computer terminal.
In creating an input file for a RAETRAD niodel analysis, the user first specifies the system
boundaries (maximum soil depth and maximum radial width) for the case to be modeled. The
house characteristics then are requested. A diagram of the house is graphically displayed on the
terminal as the house properties are entered to visually verify the numerical input being
specified. The foundation soil layers and characteristics then are requested and entered. For
each soil layer defined, the physical and radiological properties (Figure 2-2) are requested and
stored in the input file.
The properties of any cracks or openings in the concrete floor slab are defined next. Two types
of openings in two different geometries are allowed. Floor openings may be either standard
openings that interface directly into the house or remediation openings that are connected to an
external vent (not exhausting into the house, and not necessarily subject to the indoor pressure
as their driving force). The openings also can be specified as either cracks (having cylindrical
symmetry) or point openings (localized openings not symmetric around the house). For
remediation openings, the associated pressure and radon boundary conditions are requested as
an alternative to the indoor pressure and radon concentration. The number of openings (at
different radii from the center) then is specified, and the lengths of cracks are specified if they
are not completely symmetric around the house.
Upon completion of all foundation, soil, and crack descriptions, RAETRAD accepts a line of
text to describe the model analysis, its title, or other information. It also requests a name for
the data file that has been created, and then saves it on disk with the suffix .RAE. This file then
can be reviewed, modified, analyzed, or deleted under different main menu options of
RAETRAD.
2-30
-------
lput Scenari
Boundaries
Crack Definition
Remediation Penetration
ipenlng
Type
Floor Opening
Ellipse ?
Openings
RAE - 104539
Input
Number
Input Foundation
Characteristics
Input House
Characteristics
Input Penetration
Arc Length
Input Fill
Characteristics
Input Scenario
Title and File Name
Input Soli Layer
Definitions and
Characteristics
input Local
Pressure and
Radon Boundary
Figure 2-11. Simplified flowchart of the RAETRAD data input structure.
2-31
-------
Section 3
MODEL VALIDATION AND BENCHMARKING
The RAETRAD code was validated by comparisons with several analytical solutions to the
pressure and radon differential equations (Eq's. (1) and (3)). These validations necessarily
involved simple cases for which analytical results could be obtained. The RAETRAD code also
was benchmarked against empirical radon and pressure data measured in actual houses and
simplified test cells under other projects in the FRRP.
3.1 COMPARISONS WITH ANALYTICAL ALGORITHMS
The RAETRAD code was compared with analytical data from four validation test cases designed
to evaluate different aspects of the RAETRAD code. The validation cases included a 2-
dimensional steady-state pressure field, two cases of 1-dimensional diffusive radon transport with
radon generation (one for a homogeneous soil, and one for a soil region beneath a concrete
slab), and a set of 1-dimensional cases with combined diffusive and advective transport with
radon generation under various applied air pressure gradients.
3.1.1 2-D Pressure Field Comparison
The analytical pressure field computed for the 2-dimensional pressure validation of RAETRAD
was computed for a homogeneous, isotropic, rectangular, permeable region defined as illustrated
in Figure 3-1. The boundaries on both sides and on the bottom of the region were defined to
have no air flow, while the top boundary was defined to allow air flow as driven by two
different pressures, Pj and P„, applied to each half of the top boundary. The bulk air
permeability of the region is immaterial, since the steady-state pressure profiles are independent
of permeability. The dimensions of the permeable region, as illustrated, were defined to be X
and Y
3-1
-------
Constant Pressure
Pi
t
No-Flow
Boundary
Constant Pressure
Po
I
Homogenous Isotropic Continuous
Permeable Medium
No-Flow
No-Flow
Boundary
a
boundary
No-Flow
Boundary
RAE-104538
Figure 3-1. Illustration of the boundary conditions and properties for
the 2-dimp.n sional pressure field validation case.
The 2-dimensional, steady-state pressure distribution function, P(x,y), for the rectangular,
cartesian coordinate system is obtained from LaPlace's Equation, which is written as
^P/Sy2 + d^/ax2 « 0
(28)
where d2P / dy2 = second derivative of air pressure in the vertical direction (Pa cm'2)
c^P / dz2 « second derivative of air pressure in the horizontal direction (Pa cm'2).
The boundary conditions are written as:
[1] P(x,yBY) * Px for 0 £ x < a
P(xj=Y) = P0 for a < x £ X
(29)
3-2
-------
[2] dP(x=0,y) / dx = 0 (30)
[3] dP(x=X,y) / dx = 0 (31)
[4] dP(x,y=Y) / dy = 0 (32)
The general solution for equation (28) is obtained by separation of variables. For these boundary
conditions, the general solution has the form of an infinite sum for n £ 0:
P(x,y) = 2 A„ cos(nrcx/X) cosh(n7ty/X) , (33)
It is apparent that equation (33) satisfies boundary conditions [2], [3], and [4]. To satisfy
boundary condition [1], which prescribes the surface pressure conditions at y = Y for all x and
determine the An's, the orthogonality properties of equation (33) are employed, and the A^'s are
found to be:
An = 2 (P, - Pq) sin(n7ta/X) / [nit cosh(n7tY/X)] (34)
for n > 1 and
A0 = a(P0-P,)/X + P0 (35)
for n = 0.
The 2-dimensional pressure distribution P(x,y) was solved for the boundary conditions P] = -4
Pa and P0 = 0 using equation (33), with the A„ coefficients defined by equations (34) and (35).
The dimensions of the permeable region were defined to be X = 31 ft. and Y = 15 ft., with the
pressure boundary at a = 15.5 ft. The resulting pressure profiles are plotted as a function
of the x-position in Figure 3-2 (lines) for the 1-, 2-, 4-, 8-, and 15-ft. depths below the y = Y
pressure boundary.
3-3
-------
4
UJ
cc
3
(/]
E
a
<8
a
3
0
0
9
10
15
20
25 30
POSITION (tt.)
Figure 3-2. Comparison of numerical pressure fields computed by
RAETRAD to analytical pressure fields computed from
equations"(33) - (35).
Pressure profiles were computed with the RAETRAD computer code using a 1-ft square grid.
To approximate cartesian coordinates, a long house was defined to have a 28.4-ft. width and a
9999-ft. length. The resulting house had a, 16-ft. "radius", which defined the half-width of the
long house, corresponding to the desired 15.5-ft pressure boundary (no pressure nodes were
computed for the x=a inflection point). SoiTParameters were defined over the radial extent from
1 ft. to 32 ft., corresponding to the total 31-ft. analytical case. The house floor region normally
assigned for a concrete slab was defined identically to the permeable soil, and was given a
thickness of 0.01 ft, approximating the rectangular geometry of the analytical case analyzed
above.
The resulting pressure fields were compared with the analytical pressure fields along the
1-, 2-, 4-, 8-, and 15-ft. depth lines below the pressure boundary, and exhibited relative standard
deviations of 1.2%, 0.5%, 0.2%, 0.2%, and 0.4%, respectively between the analytical and
numerical calculations. A second numerical calculation also was performed in which the top row
3-4
-------
of 1 -ft. square grids was split into two rows of 0.1 -ft high and 0.9-ft high segments (short row
on top). The corresponding relative standard deviations between the numerical and analytical
pressure fields for this case were 0.9%, 0.4%, 0.2%, 0.2%, and 0.4%, respectively for the 1-,
2-, 4-, 8-, and 15-ft. depths from the pressure boundary. The numerical pressure calculations
from this case are illustrated (symbols) in Figure 3-2 for comparison with the analytical pressure
field calculations. Digital listings of the analytical pressure fields plotted in Figure 3-2 are
presented in Appendix A.
3.1.2 1-D Radon Profile with Generation and Diffusion
Radon concentration profiles were computed for two 1-dimensional steady-state validation cases
by an analytical algorithm that has been previously published and documented for use in
designing radon-attenuation covers for uranium mill tailings piles.(43) The analytical algorithm,
RAECOM (Radon Attenuation Effectiveness and Cover Optimization with Moisture effects), also
has been benchmarked and validated with experimental field data,(44J,5) and has been used as the
basis for the RADON code, which is used by the U.S. Nuclear Regulatory Commission for
licensing and regulatory compliance determinations.(46)
The two cases used for these radon validations consisted of a uniform soil containing 2 pCi g"1
radium located outside of and away from a structure and the same soil located beneath the
concrete floor slab of a large (114 ft. wide) structure. By defining both cases as horizontally-
uniform for distances that are large compared to the diffusion length of radon, the 1-dimensional
(vertical) analysis is appropriate.
The soil was defined as a 6-meter layer of sandy loam with a density of 1.6 g cm 3, and a
constant water content of 11.7% (dry mass basis) that corresponded to a matric potential of -0.3
bar (-30 kPa).(10) The radon emanation coefficient of the soil was defined as 0.4, and its porosity
was defined as 0.407. Radon diffusion coefficients were defined from the porosity and moisture
as 0.0137 cm2 sbased on the predictive correlation developed previously.(23) The concrete slab
for the second validation case was defined to have a density of 2.1 g cm"3, a porosity of 0.22,
3-5
-------
a thickness of 10.15 cm, a radium concentration of I pCi g"1, a radon emanation coefficient of
0.07, a radon diffusion coefficient of 8x10^ cm2s"\ and a water saturation fraction of 10%.
Radon concentration profiles computed by the RAECOM code are for concentrations in the total
pore space, and were converted to concentrations in the air-filled pore space by dividing by the
"mic" factor, which also is printed out by the RAECOM code. The resulting concentration
profiles, on an air-filled pore basis (Appendix A) are illustrated by the solid lines in Figures 3-3
and 3-4 for the soil and concrete-covered soil, respectively. Details of the input and use of
RAECOM have been described.<43) As illustrated, the radon flux computed analytically for the
top surface of the bare soil was 2.17 pCi m2 s'1, and that for the top of the concrete-covered soil
was 0.552 pCi nr2 s°.
RAETRAD calculations of radon concentration profiles in the soils for both cases utilized
identical definitions of the soils, their radium and emanation properties, their density, moisture,
and diffusion properties, and their depths. The house for the case of the bare soil profile was
defined as a small house (7 ft. wide), and the vertical radon profile was defined by the computed
values in the yard approximately 34 ft. away from the house. For the case of the concrete-
covered soil profile, the concrete slab was defined with identical properties as in the analytical
calculations, and the house was defined as a large house (>57 ft. wide). Air pressures inside
the house for this case were defined as equal to outdoor pressures.
Vertical soil mesh units were maintained at 1-ft. intervals to coincide with the analytical
calculations, except for the top row of mesh units. For the top row, separate calculations were
performed for a 1-ft. mesh, and for the same mesh divided into two regions to test the sensitivity
of the numerical calculations to this critical boundary mesh spacing. For the bare soil case, the
top mesh also was divided into two 0.5-ft. meshes, and in a separate case into a 0.1-ft. mesh
over a 0.9-ft. mesh. For the concrete-covered soil case, the top mesh similarly was also divided
into two 0.5-ft. layers and into a 0.02-ft. layer over a 0.98-ft. layer.
3-6
-------
The resulting radon concentration profiles computed for the bare-soil case by the various
numerical RAETRAD runs are illustrated in Figure 3-3. As illustrated, the radon concentrations
coincided nearly exactly with the values computed analytically by RAECOM. They also showed
no graphically-distinguishable differences between the cases of split meshes in the top row
compared to the whole, 1-ft. top mesh element. Examination of the radon fluxes computed for
each of the numerical cases revealed greater sensitivity to the top mesh spacing, however, with
numerically-computed surface radon fluxes of 1.80, 1.99, and 2.17 pCi nr2 s"1 for the 1-ft, 0.5-
ft., and 0.1-ft. top mesh dimensions, respectively. The 2.17 pCi m"2 s'1 flux is identical to the
200
Numerical Radon Fiuxaa: 1 JO, 1.89, 1 i.17 pCtW/i tor 1 J, OJ, & 0.1«. tap grtda
Analytical Radon Flux: 2.17 pCHrf/i
100 ¦
•100
E
o
•300
z
~-
•300
1 n. apaang tar all vartical and
horUonui gnat awapt top grid
o Numancai. 0.1 h. top grid
¦ Numarteal, 0 & ll. top gnd
' Numarteal. 1 tl. top grid
-500
— Analytical
•600
•700
2000
4000
9000
6000
3000
1000
0
RADON CONCENTRATION (pen.) ''
RAE-1IM4H
Figure 3-3. Comparison of numerical radon concentration profiles
computed by RAETRAD to analytical radon profiles
computed by the RAECOM code for a bare soil with a
radon source
3-7
-------
analytically-computed value, suggesting the advantage of using a finer mesh at the top (exposed-
surface) boundary where radon fluxes are computed. The bias for the coarser top soil meshes
again results expectedly from the finite-difference representation of the system by RAETRAD,
which becomes better as the mesh units become finer. Again, most of the bias from the finite-
differencing technique can be avoided by using a smaller mesh at the critical top layer of soil,
thus avoiding the need for a fine-mesh spacing throughout the entire system.
The radon concentration profiles computed for the concrete-covered soil case by the various
numerical RAETRAD runs are illustrated in Figure 3-4. As illustrated, the radon concentrations
again coincided nearly exactly with the values computed analytically by RAECOM for depths
greater than l-2m. However they showed a negative bias at shallow depths that was related to
the finite-difference representation of the system. Applying similar splitting of the surface soil
mesh layer into smaller increments gave radon concentrations that were graphically-
indistinguishable from the analytical results for the case where the top soil mesh was finest.
Variation of the mesh unit for the concrete also had some effects, but they were much smaller
than the effect of varying the size-of the top mesh row for the soil layer.
200
100
0
•100
?
a .200
£
a.
LU .JOO
o
•400
'500
•600
-700
0 1000 2000 3000 4000 SOOO 6000
RADON CONCENTRATION (pCI/L)
Figure 8-4. Comparison of numerical radon concentration profiles
computed by RAETRAD to analytical radon profiles
computed by the RAECOM code for a concrete-covered
soil with radon sources.
Numarieal Radon FWxm (pCt/m%s): .47* J14 .652
Analytical Radon Flu*; 0.352 pCVmto ^ ^ ^
Canerrasiab
1 n. spacing lor all vwtlcal ana hertcantal
grtda ainpt top grid wbar aiaft
° Numerical, 0X2 ft. tog grid
• Humartcal, CLS ft. top grid
* Numerical, i ft. top grid
Analytical
T
Sandy Loam Soli
2 pCVg Radium
3-8
-------
The radon fluxes computed for each of the numerical cases for the concrete-covered soil also
exhibited sensitivity to the top mesh spacing the numerically-computed surface radon fluxes of
0.479, 0.516, and 0.552 pCi m"2 s"1 for the 1-ft, 0.5 ft., and 0.02-ft. top mesh dimensions,
respectively again showed the approach to the 0.552 pCi m"2 s"' flux that was computed
analytically as a finer spacing was used for the top layer of soil. The bias for the coarser top
soil meshes again results expectly from the finite-difference representation of the system by
RAETRAD, which becomes better as the mesh units become finer. Again, most of the bias from
the finite-differcing technique can be avoided by using a smaller mesh at the critical top layer of
soil, thus avoiding the need for a find-mesh spacing throughout the entire system.
3.1.3 1-D Radon Profile with Generation, Diffusion and Advection
Radon concentration profiles were computed analytically for another 1-dimensional, steady-state
validation case that also consisted of a single region of homogeneous, radon-producing soil. In
this case, however, a steady vertical air velocity also was modeled through the soil system to
cause advective transport of radon as well as diffusive transport. The analytical algorithm used
for this reference calculation was the RAETRAN code (RAdon Emanation and TRANsport),
which has been published previously.(27) The RAETRAN code accommodates air flow caused
by any pressure gradient across a layered, 1-dimensional soil system. It incorporates the same,
unified theoretical framework that is used in the RAETRAD code.(24)
The corresponding numerical calculations by RAETRAD for this case required an alteration to
the computer code, since RAETRAD is designed to model only realistic, 2-dimensional house-
foundation systems. This reference case is technically unrealistic because the air flow driven by
an indoor-outdoor pressure difference must necessarily converge at the house foundation, and
cannot be represented in only one dimension. Accordingly, RAETRAD was temporarily
modified to read a user-defined pressure profile to override the profile normally computed by
RAETRAD. A linear, vertical, 1-dimensional pressure gradient was thus imposed on the house-
soil system for this comparison. The diffusion part of the calculation was readily made to
approximate a 1-dimensional case, as in section 3.1.2, by defining a very large house with a soil
3-9
-------
floor, and using the vertical radon profile computed near the center of the house. The
RAETRAD soil profile was extended to a 34-ft. depth to approximate an infinite vertical extent,
corresponding to the lower boundary condition of the analytical calculation.
Despite the physical unrealism of this validation case, it provides an important and meaningful
test of combined, numerical diffusive and advective transport calculations in the presence of a
radon source. This aspect of the model is probably in greater need of validation than is the
mathematical transformation to extend the calculations to two dimensions. The same kind of case
was also used recently in the FRRP as the only steady-state validation case for evaluating the
FSEC 3.0 code.(47>
The soil was defined as a sand with a density of 1.6 g cm-3, a porosity of 0.407, a radium
concentration of 1 pCi g-1, a radon emanation coefficient of 0.20, a moisture saturation fraction
of 0.213, a dry radon adsorption coefficient of 0.001 cm3 g-1, a radon diffusion coefficient of
2.71x10-2 cm2 s-1, and an air permeability of 2.18x10-7 cm2. Four different pressure-gradient
conditions were analyzed, corresponding to surface pressures of 5.0 Pa, 2.4 Pa, 0.0 Pa, and -2.4
Pa applied over the top 20-ft. layer of soil.
The analytical calculations of the radon concentration profiles for these cases are illustrated by
the solid lines in Figure 3-5. As shown, the negative pressure at the surface caused air to move
outward from the soil region, increasing the near-surface radon concentrations by mixing with
air from the deeper soil regions. Conversely, the positive pressures at the surface caused clean
(2 pCi L-l) air to move into the upper soil region, diluting and lowering the near-surface radon
concentrations. The zero-pressure case was expectedly intermediate between these cases.
3-10
-------
1000
Cm2 pCM. Boundary
P»P0 Baun6ary
800 '
ZaraRnFlui
ZarvAlrFtow —
Boundary** 34 R.
£
1 MO"
O
<
GC
V)
<
2 400"
o
V)
Pa
Nwnartaal Caleulatlona
Una* Show Analytical Caleulatlona
200
20
0
S
18
POSITION (ft.)
Figure 3-5. Comparisons of numerical and analytical radon profiles
for a bare, radon-generating soil with combined advective
and diffusive transport.
The numerical calculations of radon profiles are represented in Figure 3-5 by symbols for
comparison to the analytical calculations. The results are virtually identical for the cases of
positive to zero pressures applied at the soil surface. For the negative applied pressure, a slight
negative bias is seen in the numerical data (up to 4 percent). It was found to result from the
finite representation of the soil column in the numerical tests. Shallower soil layers and soils
with a greater outward air velocity were more quickly depleted by the outward air movement,
causing a greater bias. This is an expected result of the approximate representation of the
infinite-depth boundary of the analytical case by the finite-depth boundary in the numerical
calculations. Upward air velocities of the magnitudes considered here do not occur at depths
beyond several feet below foundation footings because the air flow lines tend to bend outward
and upward to the outside soil surface.
3-11
-------
3.2
COMPARISONS WITH EMPIRICAL RADON MEASUREMENTS
Several opportunities for comparison of model analyses with empirical data are being developed
presently under the FRRP in connection with well-instrumented research houses. Although some
of the pertinent data are now being collected and analyzed for the first time, they have not yet
been available in sufficiently complete and detailed form for detailed model comparisons.
However several model analyses have been performed in connection with the smaller test-cell
house modules located at the Florida Institute for Phosphate Research (FIPR) site in Bartow,
Florida. Less-detailed analyses also have been performed for other Florida houses characterized
under the FRRP.
3.2.1 Analyses of Test-Cell Houses at the FIPR Site
Two test-cell structures were constructed by Geomet Technologies for benchmark measurements
of radon parameters,(48) and have since been instrumented and monitored by Southern Research
Institute (SRI) for data collection.(49) The test cells consist of 6 m x 6 m (20-ft. by 20-ft.) slab-
on-grade single-story structures without subslab vapor barriers or indoor partitions. The
foundations have 20 cm x 40 cm reinforced concrete footings beneath two courses of unparged
concrete block stem walls (Figure 3-6). The stem wall of test cell 1 is topped by a 10 cm solid
block cap that is adjacent to the floating-slab concrete floor. The stem wall of test cell 2 is
topped with a shoe block (20 cm x 20 cm concrete block with the top 10 cm removed from the
inside wall), into which the concrete floor slab is poured. The concrete used for the floor slabs
was specified to have 3,000 psi compressive strength and a 10 cm slump. Identical wood frame
superstructures for the test cells are sealed on all inside surfaces with 2-3 cm of spray
polyurethane foam insulation to provide air-tight seals. A steel entry door on each cell is sealed
with positive magnetic seals on all edges. There are no windows or other openings in either cell
except for valved access ports for pressure and air flow control and monitoring.
3-12
-------
Stucco Ovtr
Ulh*1/2" Fly.
Grade
0 H> cV^cP"0 <>
VUrCVi*.'*- A .'_•
-1" Spray Urvthane Foam
¦ 2*4 Stud 16" O.C.
¦Caulk
¦Net*: No Bill Plata
¦Solid Black
¦4" Concrete Slab
-Nota: No Roly VB
°^n/> ~?>r> A« .<>>! (!'.•« •&*» -Ovo ito fc'-o ^ rt q : «5:
hQ^O0.^'
cj:0 .0 C5..0:^
Pp-o t>„
Sand Fill
: Sub-Bata
Concraia
Fooling
Existing SuMjrsd*
Test Cell 1
1" Spray Uralhana Foam
Sluoco Over
Lath & 1/2" Ply.
2x4 Stud 16" O.C.
Caulk
Nota: No SHI Plata
Shoa Block
Plug
vN»/x> f>d™^0sS>°*n e> t "yiit o^R Q «a o o o <*'o 5> « o °nn tt> o c
Grade
Sand Fill
Sub-Baaa
llllotfc
5 y* IkJkfei
4" Concrete Slab
Nota: No Poly VB
H#3
Concrete
Footing
Exlatlng Sub-Grade
Test Cell 2
RAE ¦ 104540
Figure 3-6. Foundation details for the floating slab (Test Cell 1) and
slab in stem wall (Test Cell 2).
3-13
-------
Two levels of model comparisons with empirical data were performed. First, the measured
outdoor soil radon profiles were compared with 1-dimensional diffusion model results to evaluate
the model agreement and to establish a reliable source term for use in the 2-dimensional
RAETRAD modeling. Second, the measured indoor radon concentrations and sub-slab radon and
pressure profiles were compared with model calculations using the same source terms evaluated
in comparisons with the simpler outdoor profiles.
3.2.1.1 F1PR Site Foundatioii Soil Modeling
Radon source information for the test cell site was measured from analyses of soil samples
collected by SRI and supplementary samples collected by SRI and Rogers & Associates
Engineering Corp. (RAE). Initial SRI soil cores were collected in June 1991 south of test cell
1 and north of test cell 2. These were analyzed for radium concentration, radon emanation
coefficient, and moisture content. Later shallow core samples were obtained from holes drilled
in the center of each slab, and were analyzed for radium concentration and emanation coefficient.
A subsequent supplementary set of shallow core samples was obtained in February 1992
primarily in the vicinity of test cell 2, and was analyzed for radium concentration, bulk density
and moisture. The approximate locations of each of these sample borings are illustrated in
Figure 3-7.
as
-------
The results of the radium, radon emanation, and moisture analyses on the first set of core
samples are reported in Table 3 of reference 49. Analyses of the radium and emanation from
the second pair of cores from the centers of the cells are presented in Table 3-1. The
supplementary analyses for radium and moisture are reported in Table 3-2. The results of all
of these analyses were aggregated by soil depth to provide a single, averaged data base for model
representation of the radon source profiles under each test cell. Depth increments of 30 cm were
used for the averaging. The resulting averaged data are presented in Table 3-3. The averaged
radium concentrations and moistures vary significantly with depth under both cells; however the
radon emanation coefficients are scattered and show no consistent trends with either depth or test
cell. The radon emanation coefficients therefore were plotted as a function of radium
concentration, and the trend illustrated in Figure 3-8 was used to estimate the emanation
coefficients for the radium averages in each depth increment. These emanation coefficients also
are presented in Table 3-3.
Table 3-1. Radium Concentrations and Radon Emanation
Coefficients Measured by RAE on the SRI Center Core
Samples.
Test Sample Depth Radium Rn Emanation
Cell No. (cm) (pCi g'1) (fraction)
1
1
0-4
6.5
±
0.2
0.19
+ 0.05
1
2
4-12
7.0
±
0.2
0.23
+ 0.05
1
3
12-20
7.5
±
0.2
0.23
+ 0.05
1
4
20-28
7.9
+
0.2
0.22
+ 0.05
1
5
28-36
9.7
±
0.3
0.22
+ 0.04
1
6
36-44
6.9
±
0.2
0.18
± 0.05
1
7
44-52
6.0
±
0.2
0.29
+ 0.06
1
8
52-60
6.1
±
0.2
0.21
+ 0.05
1
9
60-68
5.0
±
0.2
0.26
± 0.07
1
10
68-76
7.3
±
0.2
0.22
± 0.05
1
11
76-84
4.3
±
0.2
0.21
± 0.08
2
1
0-4
6.4
±
0.2
0.19
+ 0.05
2
2
4-12
5.8
±
0.2
0.14
+ 0.06
2
3
12-20
6.7
±
0.2
0.19
± 0.05
2
4
20-28
6.2
±
0.2
0.20
± 0.06
2
5
28-36
5.5
+
0.2
0.16
+ 0.06
2
6
36-44
4.2
±
0.2
0.21
+ 0.08
2
7
44-52
4.1
±
0.2
0.24
+ 0.08
2
8
52-60
4.0
±
0.2
0.22
+ 0.08
2
9
60-68
5.3
±
0.2
0.23
+ 0.06
2
10
68-76
6.7
+
0.2
0.29
+ 0.05
3-15
-------
Table 3-2.
Radium Concentrations and Water Contents Measured by
RAE on the Supplementary Samples.
Sample
Depth
(cm)
Moisture
(% dry wt.)
Radium
(pCi g"1)
Sample
Depth
(cm)
Moisture
(% dry wt.)
Radium
(pCi g"1)
Fl-1
0-30
7,0
7.0 ± 0.4
F5-1
0-30
6.0
7.8 x 0.4
Fl-2
30-61
5.0
9.8 ± 0.4
F5-2
30-61
5.3
8.6 * 0.4
Fl-3
61-91
5.2
6.8 x 0.4
F5-3
61-91
5.5
4.3 x 0.4
Fl-4
91-122
6.6
5.9 * 0.4
F5-4
91-122
6.1
6.7 a: 0.4
Fl-5
122-152
6.7
6.5 ± 0.4
F5-5
122-152
6.4
9.1 ± 0,4
Fl-6
152-168
8.7
14,4 t 0.4
F5-6
152-168
8.3
5.5 x 0.4
Fl-D
56-66
4.9
11.1 ± 0.4
F5-D
56-66
3.3
3.7 ± 0.4
F2-1
0-30
13.7
8.0 ± 0.4
F6-1
0-30
12.0
9.3 ± 0.4
F2-2
30-61
8.5
4.4 ± 0.4
F6-2
30-61
9.5
10.4 ± 0.4
F2-3
61-91
7.9
6.2 ± 0.4
F6-3
61-91
7.7
6.4 ± 0.4
F2-4
91-122
7.6
8.6 x 0.4
F6-4
91-122
6.8
6.4 ± 0,4
F2-5
122-152
6.6
7.6 ± 0.4
F6-5
122-152
7.5
10.1 ± 0.4
F2-6
152-168
5.9
6 J ± 0.4
F6-6
152-168
9.2
10.8 * 0.4
F2-D
56-66
11.1
4.9 ± 0.4
F6-D
56-66
3.5
3.3 ± 0.4
F3-1
0-30
9.2
6.9 ± 0.4
F7-1
0-30
8.6
9.1 ± 0.4
F3-2
30-61
2.8
4.6 ± 0.4
F7-2
30-61
6.0
4.5 ± 0.4
F3-3
61-91
6.3
6.8 ± 0.4
F7-3
61-91
9.9
5.2 ± 0.4
F3-4
91-122
5.2
7.3 * 0.4
F7-4
91-122
7.9
9.1 ± 0.4
F3-5
122-152
6.5
9.4 ± 0.4
F7-5
122-152
7.5
11.0 s 0.4
F3-6
152-168
4.6
5.1 ± 0.4
F7-6
152-168
5.1
5.1 * 0.4
F3-D
56-66
5.0
4.4 ± 0.4
F7-D
56-66
9.4
3.3 ± 0.4
F4-1
0-30
10.7
7.9 * 0.4
F8-1
0-30
12.3
9.8 ± 0.4
F4-2
30-61
7.0
8.5 ± 0.4
F8-2
30-61
4.6
11.5 ± 0.4
F4-3
61-91
5.1
6.0 ± 0.4
F8-3
61-91
9.9
4.8 ± 0.4
F4-4
91-122
5.5
6.8 ± 0.4
F8-4
91-122
8.1
7.7 ± 0.4
F4-5
122-152
7.2
8.7 x 0.4
F8-5
122* 152
7.7
10.2 ± 0.4
F4-6
152-168
7.1
4.5 ± 0.4
F8-6
152-168
4.9
4.1 ± 0.4
F4-D
56-66
3.0
3.8 ± 0.4
F8-D
56-66
6.7
3.2 x 0.4
3-16
-------
Table 3-3. Depth-Averaged Radium Concentrations, Emanation
Coefficients, and Water Contents from All Available
Analyses for the Test Cells.
Radium
Measured
Fitted
Test
Depth
Concentration
Rn Fmnnatinfl
Rn Emanation
Moisture
Cell
(ft)
(pCi g*1)
(fraction)
(fraction)
(% dry wt.)
0-1
6.7 ± 1.0 (8)
0.23 ± 0.09 (7)
0.23
8.7 ± 6.9 (4)
1
1-2
6.5 * 2.0 (11)
0.21 ± 0.04 (9)
0.23
5.0 ± 1.4 (6)
1
2-3
6.5 ± 1.7 (7)
0.26 ± 0.05 (6)
0.23
7.7 ± 1.5 (4)
1
3-4
10.4 ± 3.4 (6)
0.27 ± 0.05 (5)
0.31
8.9 ± 2.4 (6)
1
4-5
11.1 ± 8.9 (3)
0.29 ± 0.03 (2)
0.31
8.2 ± 2.4 (3)
1
5-6
7.3 ±2.6 (4)
0.23 ± 0.09 (3)
0.25
8.2 ± 2.4 (4)
1
6-7
5.8 ±1.1 (2)
0.18 ± 0.05 (2)
0.22
5.5 ± 0.7 (2)
>7
[19.]
0.31
12 to 27
2
0-1
7.5 ± 12 (15)
0.20 ± 0.03 (7)
0.25
9.8 ± 3.7 (11)
2
1-2
7.2 ± 2.8 (16)
0.22 ± 0.04 (8)
0.25
6.2 ± 2.0 (12)
2
2-3
6.0 ± 1.2 (13)
0.26 ± 0.04 (5)
0.22
7.0 ± 1.8 (11)
2
3-4
7.3 ± 1.0 (11)
0.24 ± 0.01 (3)
0.25
7^2 ± 1.2 (11)
2
4-5
10.2 ± 2.5 (11)
0.32 ± 0.04 (3)
0.30
8.2 ± 2.3 (11)
2
5-6
6.6 ± 3.3 (10)
0.19 ± 0.03 (2)
0.23
6.5 ± 1.7 (10)
2
6-7
5.0 ± 1.6 (2)
0.22 ± 0.09 (2)
0.20
7.0 ± 4.2 (2)
2
>7
6.3 ± 3.1 (12)
0.23
12 to 27
OJ
£ 0.4
£
tL
IL
UJ
O
o
§ OJ
<
2
OJ
0.1
0 f 10 18 SO
RADIUM CONCENTRATION
-------
The depth-averaged radium concentrations, radon emanation coefficients, and water contents in
Table 3-3 were used in 1-dimensional analytical radon diffusion calculations (using RAECOM)
to calculate soil gas radon profiles for comparison with values measured in the yard in the
vicinity of the FIPR test cells. A constant density for all of the soils was used in the
calculations, based on eight density samples collected at each of the supplementary soil boring
locations (Figure 3-7). The densities were sampled and measured according to FRRP protocol
Sec. 1.2,^ which is based on the ASTM drive cylinder method.^ The eight measured densities
were tightly grouped, averaging 1.54 ± 0.02 g cm"3. Soil porosities based on this density were
calculated from equation (7) using a specific gravity of 2.7 g cm"3.
Soil water contents for depths greater than 7 ft in Table 3-3 were defined for the calculations to
have an increasing value with depth, consistent with the profile that may result from an
underlying water table. Accordingly, water contents were defined to vary from 12% at the 8 ft.
depth to 27% (saturation) at the 25-ft. depth. Soil radium concentrations for the undefined region
below 7 ft. were initially estimated as an average of the two deepest measured depth increments
(5-7 ft.). Although ihe shallow soil layers dominated the computed radon profiles, their shape
at depth was better-represented by extending the \2% water content up to the 6-ft. depth,
replacing the lower values of the measured moisture profiles in Table 3-3.
Measured soil radon concentration profiles for all of the outdoor locations were averaged by
depth from individual measurement data provided by SRI and Geomet. The predominant SRI
data set is illustrated by location and depth in Figure 3-9, along with additional radon
measurements under the test cells, In order to correct for the small perturbation of the radon
profiles from their proximity to the test cells, a RAETRAD model analysis was used to estimate
the magnitude of radon elevation expected from proximity to the cells. These resulting radon
enhancements were computed to be 1.14, 1.18, 1.15, and 1.11 at 1-ft. from the test cells for the
respective 1-, 2-, 3-, and 4-ft. depths, 1.03 at all of these depths at 4-ft. from the test cells, and
1.02 for the 4-ft. depth at 5-ft. from the test cell. The measured outdoor radon profiles were
divided by these values for the comparisons with the 1-dimensional radon diffusion model.
3-18
-------
0
¦ Mwnrim. TC-1
o Measured, TC-2
Calculated, TC-1
Calculated, TC-2
•1
•2
-3
-4
•5
0
12000
4000
10000
2000
6000
8000
RADON IN SOIL GAS (pCI/L)
RAE-104482
Figure 3-10. Comparison of measured and calculated soil gas radon
depth profiles in open soils at the FIPR site.
For test cell 1, the 5-7 ft. average radium estimate for deep-soil radium levels yielded radon
concentrations that were well above the test cell 2 values, but were slightly lower than the
measured means in initial calculations. Higher deep-soil radium concentrations therefore
were tried, resulting in selection of the 19 pCi g"1 value in Table 3-3 to give the calculated
radon profile shown by the solid line in Figure 3-10. The deep-soil radium under test cell 1
was found to be a relatively insensitive parameter, probably because of the high water
content that prevented much of the radon from moving up toward the surface. The relative
standard deviation between the means of the measured soil radon concentrations and the
calculated values for test cell 1 was only 4.4%. Compared to the root-mean-square
uncertainty of 34.3% in the measured values, this comparison of model results to
measurements is excellent.
3-20
-------
Soil air permeabilities measured by SRI and Geomet(49) were compared with values predicted
from the measured soil densities and water contents, assuming a nominal sand particle diameter
of 0.44 mm in equation (6). The measured values exhibited large variations, as illustrated by
the standard deviations in Figure 3-11. The measured data are based on 8 to 15 measurements
at the indicated depth in different locations at the FIPR site. The comparison with calculated
values, also illustrated in Figure 3-11, resulted in an overall relative standard deviation between
the measured (means) and calculated air permeabilities of 42%. Although the calculated values
were similar to the measured values for the top three feet (24% standard deviation), the measured
permeabilities averaged much lower at the 4-ft. depth. This suggests the presence of a clayey
layer or shallow water table that was not identified in the soil sampling on which the calculated
values were based. Accordingly, the calculated values were accepted as reasonable input for
representing most of the soils in the 2-dimensional RAETRAD calculations, but for the 4-5 foot
increment a lower permeability of 3.8X10"8 cm2 was assigned. This corresponded to the
"substituted" permeability in Figure 3-11 for the 4-ft. depth.
E
u
0.
UJ
T&1CS1CUMM
•100
10^ 10
SOU. AIR PERMEABILITY (cm*)
Figure 3-11. Comparison of measured soil air permeabilities with
permeabilities calculated from soil moisture, porosity and
particle diameter.
3-21
-------
3.2.1.2 F1PR Test Cell Modeling
For comparisons of radon model calculations with measured values, several properties of the test
cells required characterization in addition to the underlying soils. These included the concrete
floor slabs, the foundation footings and stem walls, and the ventilation rates and properties of the
superstructure. These were compiled primarily from measured data.
For the concrete slabs, the required properties included the radium concentration, radon
emanation coefficients, air permeabilities, radon diffusion coefficients, porosities, and moistures.
Numerical values for these parameters were summarized from laboratory measurements on 10-cm
diameter core samples drilled from the slabs as part of the later SRI measurement program.(12)
The concrete radium concentration was 1.0 pCi g'1 for both cells, and their radon emanation
coefficient was 0.077 for both. The bulk density was 2.18 g cm"3 for both, and the porosity was
0.18 for test cell 1 and 0.17 for test cell 2. A 50% moisture saturation was estimated for both
slabs. Average measured radon diffusion coefficients of 4.3x10^ cm2 s1 for test cell 1 and
6.3x10^ cm2 s"1 for test cell 2 were used. Corresponding slab air permeabilities were estimated
to be 3.3xlO~12 cm2 for test cell 1 and 6.5xl0"12 cm2 for test cell 2.
The concrete block stem walls and their footings were estimated from design drawings to extend
approximately 2 ft. into the soil. No significant additional fill soil thickness was estimated to be
under the slab, based on the nominal floor height of 10 cm above the surrounding soil. The
concrete block stem walls were assumed to have identical radium concentrations and radon
emanation coefficients to the floor slabs, to have a nominal bulk density of 1.7 g cm'3, and a
corresponding porosity of 0.37. Their water content was estimated to be about 20% of
saturation. Air permeabilities of the concrete blocks were estimated as an intermediate value of
10"7 cm2, between the high values that have been reported in some instances(50) and concretes
measured in Florida slabs.ll2) Corresponding radon diffusion coefficients were estimated to be
10"2 cm2 s~l.
The indoor pressures of the test cells during passive conditions and under other applied pressures
also were needed, along with cell ventilation rates, to prescribe the correct pressure boundary
3-22
-------
conditions for RAETRAD. Although the indoor pressures generally were measured during
experiments in which pressures were controlled, the pressures under passive conditions were less
well understood. Indoor air ventilation ranges associated with near-ambient pressures are
presented in Table 3-4 as measured by SRI. These data illustrate the wide variation that can
occur in "passive" conditions. Although they potentially could be used to estimate the passive-
condition indoor pressure from a measured air ventilation rate, the two to three-fold uncertainty
in these data preclude obtaining a useful value by this approach.
Table 3-4. Air Ventilation Measurements by SRI at the FIPR Test
Cells.
Test Cell 1; Floating Slab
Test Cell 2:
Slab in Stem Wall
Indoor Pressure Ventilation Rate
Indoor Pressure
Ventilation Rate
(Pa) (air changes/hour)
(Pa)
(air changes/hour)
4 0.02 - 0.06
4
0.02 - 0.04
50 0.17 - 0.25
50
0.11 - 0.20
Instead, the sub-slab pressure field data reported by SRI(49> for passive conditions were used, on
the premise that the indoor pressure would be well-propagated through the 10-cm diameter center
hole into the underlying soil. The additional observation by SRI of a sub-slab gap between the
soil and concrete also is consistent with the radial uniformity of the sub-slab pressures away from
the center of the slabs. Based on this approach, the passive-condition indoor pressure in test cell
1 was estimated to be -1.6 Pa, and that for test cell 2 was estimated to be -0.6 Pa. Differences
in thermal and stack effects as well as in leakage areas of the two test cells may explain this
difference in passive-condition pressures.
The sub-slab gap observed by SRI when drilling the floor center holes was estimated for
modeling purposes to consist of a plenum region approximately 0.03 ft (9 mm) thick. It was
defined to have no radium, but to have a density of 1 g cm"3 and a porosity of 0.6 (assuming it
did not extend over the entire floor area), and a water saturation fraction of 0.1 Its radon
diffusion coefficient was defined as 0.1 cm2 s1, the value for air.^ Its air permeability was
defined to be 10"3 cm2.
3-23
-------
The perimeter crack in test cell 1 between the floating slab and the stem wall was estimated to
be approximately 0.5 cm thick. It contained a porous filler material that was covered over on
about half of the crack area by a thin skin of concrete (a remnant of slab Finishing). For
modeling purposes, this material was represented to have a porosity of 0.6, a radon diffusion
coefficient of 0.05 cm2 s"1, and an air permeability of 2x10^ cm2.
The main body of indoor radon concentrations and the associated passive-pressure and induced-
pressure ventilation rates for both of the test cells are summarized in Table 3-5. The first four
cases are essentially equivalent, and were averaged together for each of the test cells for the first
two sets of model comparisons. For these cases, the slabs had not yet been drilled for sub-slab
sampling or installation of sub-slab sensors. Hence they represent passive-condition performance
of floating-slab construction and slab-in-stem-wall construction, respectively. The mean indoor
radon concentration for test cell 1 for cases 1-4 was 95 ± 44 pCi L"1, and that for test cell 2 was
22.2 ± 7.3 pCi L1.
Table 3-5. Radon Measurements by SRI at the FIPR Test Cells.
Test Cell 1: Floating Slab Test Cell 2: Slab in Stem Wall
Case
Indoor
Soil
Indoor
Ventil.
Indoor
Soil
Indoor
Ventil.
No."
Radon
Radon
Pressure
Rate
Radon
Radon
Pressure
Rate
(pCi L1)
(PCi L1)
(Pa)
(ach)ft
(pCi L1)
(pCi L1)
(Pa)
(ach)"
1
60
unkc
d
0.028'
17
unk
d
0.024'
2
80
12,200
d
0.028'
20
unk
d
0.024'
3
160
4,300
d
0.028'
33
unk
d
0.024
4
80
unl^
d
0.028'
19
unk
d
0.024'
5
310
7,500
d
0.028'
97
6,700
d
0.024'
6
200
11,000
d
0.028'
50
unk
d
0.024'
7
160
2,300-4,300
-5
0.175
50
9.700
-20
0.161'
8
300
8,500
-40
0.247'
90
unk
-50
0.2'
9
50
unk
-20
0.161
10
50
unk
-10
0.081
b Indoor air changes per hour.
c Unknown, not measured.
d Passive conditions; no mechanical suction applied.
' Based on measured ventilation at other time under same pressure conditions.
3-24
-------
Analyses were performed with the RAETRAD model for cases 1-4 for test cells 1 and 2. The
results of the analyses are printed in Appendix B. Test cell 1 was computed to have an indoor
radon concentration of 97 pCi L"1, or 2% above the mean measured value. Since the relative
standard deviation among the measured values was 47%, the value computed by RAETRAD is
in excellent agreement. The sub-slab radon concentrations reported in Table 3-5 for test cell 1
ranged from 4,300 pCi L1 to 12,200 pCi L"1. This range easily includes the computed sub-slab
radon concentrations for test cell 1 that ranged from approximately 6,000 pCi L"1 to 7,400 pCi
L'1, depending on the position under the slab. Test cell 2 similarly was computed to have an
indoor radon concentration of 20 pCi L"1, or 10% below the mean measured value. In this case
the relative standard deviation among the measured values was 33%, again easily including the
value computed by RAETRAD in the range of the measured values. No sub-slab radon
concentrations were available for test cell 2 for these cases.
Cases 5 and 6 in Table 3-5 also were analogous, and were measured to have a mean indoor
radon concentration of 255 ± 78 pCi L'1 for test cell 1 and 73.5 ± 33.2 pCi L"1 for test cell 2.
For these cases, a 10-cm diameter hole had been drilled in the center of each slab. The hole was
represented in the RAETRAD model as being located 10.5 ft. from the outer wall (using a 0.5-ft.
radial mesh spacing) and consisting of a crack of 0.84-cm width. This small ring crack in the
center of the slab has an area equal to the 10-cm hole. Its porosity was defined as 1.0, and its
diffusion coefficient and permeability were defined as 0.1 cm2 s'1 and 500 cm2, respectively. The
RAETRAD analysis for test cell 1 included also the perimeter crack as used before in addition
to the drilled center hole.
The RAETRAD analyses for cases 5 and 6 gave an indoor radon concentration of 212 pCi L1
for test cell 1, which is about 17% below the mean measured value. The standard deviation
between the measured values was 31 %, however, easily including the modeled value within the
measured range. The soil radon concentrations for test cell 1 in these cases are reported in Table
3-5 as 7,500 pCi L"1 and 11,000 pCi L"1. The values calculated at 1-ft. beneath the slab range
from about 6,000 to 7,600 pCi L'1, and values for other depths range up to and exceeding 11,000
pCi L"1. A more detailed analysis of the sub-slab radon concentrations is presented in Figure 3-
12, which compares the values computed by RAETRAD for particular locations with the values
3-25
-------
measured by SRI(49) for the same locations. The relative standard deviation between the modeled
values and the measured means for all twelve of the comparisons shown in Figure 3-12 is 12%,
which is less than the relative standard deviation of 17% between the duplicate measured
concentrations for the 8 cases in Figure 3-12 for which two measurements are reported.
Outdoor Soil Slab-Covered Soil Center
Depth
(ft.)
r
••> V-
4.0
ik
6.1
7.3
7.2-9.5
1
[2.B]
[3.1]
'•£5*;
[4.6]
[7-2]
[7.6]
6.0-6.3
2
[4.3]
[4.9]
[6.0]
[8-2]
[0.6]
0.2-11.0
6.5-7.7
7.9
3
[6.4]
[7-2]
[7.7]
[9-7]
[10.2]
9.5-9.9 8.4-9.9
10.1-13.9
11.1-11.2
4
[0.9] 18.9]
[9.7]
[10.1]
[11.7]
112-2]
Figure 3-12. Comparison of measured and computed (in parentheses)
soil radon concentrations near test cell 1 (103 pCi L'1).
The air pressure distribution beneath and around test cell 1 also was measured for cases 5-6,(49)
and is compared with the distribution computed by RAETRAD in Figure 3-13. The relative
standard deviation between the modeled values and the measured means for all 22 of the
comparisons shown in Figure 3-13 is 11 %, which is less than the relative standard deviation of
24% between the pairs of pressure measurements for the 20 cases where duplicate numbers are
reported.
3-26
-------
Outdoor Soil
Depth
(ft.)
Slab-Covered Soil
Center
0.04-0.06
1 [0.04]
0.07-0.03
2 [0.07]
0.1-0.13
3 [0.10]
0.13-0.14
4 [0.24]
1.6-1.7 1.5
0.2-0.5
[°-4J
0.3-0.7
[0.5]
1.2-1.8
(1-2]
1.2-1.5
[1-0]
0.6^>.7 0.6-1.3
[0-S] [0.9]
0.4-0,6
10.5]
0.5-1.0
[0.7]
1.4-1.6
' [1-4]
1.4-1.8
[1.3]
1.2-1.5
[1.2]
0.8-1.0
|0.8]
1.6
[1.5]
[1-4]
[1.3]
1.1
11-0]
1.6-1.7
[1.5]
1.5-1.6
[1.4]
[1.4]
1.0-1.2
[1.1]
Figure 3-13. Comparison of measured and computed (in parentheses)
soil air pressure distributions near test cell 1 (Pa).
The RAETRAD analyses for test cell 2 for cases 5 and 6 gave an indoor radon concentration of
87 pCi Lwhich is about 18% above the mean measured value. The standard deviation between
the measured values was 45%, easily including the modeled value within the measured range.
The soil radon concentrations for test cell 2 in this case is reported in Table 3-5 as 6,700 pCi L"1.
The values calculated at 1-ft. beneath the slab range from about 5,000 to nearly 6,000 pCi L"1,
with values exceeding 7,000 pCi L"1 at depths of about 4 ft. A more detailed analysis of the sub-
slab radon concentrations is presented in Figure 3-14, which compares the values computed by
RAETRAD for particular locations with the values measured by SRI(49) for the same locations.
The relative standard deviation between the modeled values and the measured means for all
twenty of the comparisons shown in Figure 3-14 is 20%, which is less than the 42% standard
deviation between the duplicate measurements at the 20 points in Figure 3-14.
3-27
-------
Outdoor Soil
Depth
(ft.)
Slab-Covered Soil
Center
1.2-3.7
[2.5]
1.9-4.1
[3.7]
2.7-5.9
[4.6]
3.0-7.7
(5.6]
[2.9]
2.3-6.1
[4-2]
15.2]
5.1 -7.{
[6.0]
w,
* < ' t«r
¦m
A
3.1-5.6
3.1-6.5
If
[4.1]
[5.6]
m
m
4.9-6.3
5.0-5.2
[4.9]
[6.1]
5.1-6.9
4.7-6.7
[5-5]
[6.5]
5.1-7.4
5.6-8.0
[6.2]
[7-0]
5.4-7.7
[5.9]
3.7-5.6
[6.3]
2.1-6.4
[6.7]
3.B-7.9
[7 2)
Figure 3-14. Comparison of measured and computed (in parentheses)
soil radon concentrations near test cell 2 (103 pCi L'1).
The air pressure distribution beneath and around test cell 2 also was measured for cases 5-6,(49)
and is compared with the distribution computed by RAETRAD in Figure 3-15. The relative
standard deviation between the modeled values and the measured means for all 17 of the
comparisons shown in Figure 3-15 is 25%, which is slightly less than the standard deviation of
28% between the duplicate measurements for the 5 pairs in Figure 3-15.
3-28
-------
Outdoor Soil
Slab-Covered Soil
Center
[0.03]
0.1
[0.04]
(ft.)
r ¦
h
' ,r< . "
«! '*»<, >-•* >> - * -
A*
I
[0.6]
0.1
0.2
T
0.4
0.M.5
1
0.6
1 [0.02]
[0-2]
*.<
[0.4]
[0.5]
[0.6]
[0.6]
0.1
0.2
•i :
0.2-0.3
0.3-0.4
0.4
102)
10.3]
0.2 0.2-0.3
[0.2] 10.3]
10.5]
0.M.4
10.5]
[0.5]
[0.5]
[0.5]
0.3
[0.5]
0.1
[0.03]
0.2
[0-2]
0.3
[0.3]
0.3
[0.4]
0.3
[0.4]
Figure 3-15. Comparison of measured and computed (in parentheses)
soil air pressure distributions near test cell 2 (Pa).
Other comparisons of calculated radon concentrations to measured values were made for cases
7 and 9 for test cell 2. In this case, a -20 Pa pressure was maintained in the test cell until the
indoor radon level reached a steady state. The indoor radon measurements for both experimental
periods were about 50 pCi L"1. The indoor concentration calculated by RAETRAD for this case
was 42.9 pCi L'\ or about 14% lower than the measured value. Although no uncertainty is
estimated for the measured values, the agreement of the calculated value with the measured
values is well within the range of variation of all of the other replicate indoor radon
measurements for the test cells. The measured soil radon concentration of 9,700 pCi L"1 for case
7 is higher than the calculated 1-ft depth values of about 5,400 pCi L"1. Concentrations of 9,700
pCi L"1 were only calculated in this case for depths of 11 ft. and greater. Measurement
uncertainty could account for the discrepancy if it is as large as was observed for other cases
with test cell 1.
3-29
-------
The comparison of calculated radon concentrations to measured values for case 10 for test cell
2 involved an indoor pressure of -10 Pa. The indoor radon measurement was again 50 pCi L"1.
The indoor concentration calculated by RAETRAD for this case was 51.5 pCi L"1, or about 3%
higher than the measured value. Although no uncertainty is estimated for the measured values,
the agreement of the calculated value with the measured value in this case is excellent. No
measured soil radon concentration was available. The calculated soil radon concentrations at 1-
ft. below the slab ranged from 4,500 pCi L1 at the edge to about 5,600 pCi L1 in the center.
In summary, the RAETRAD calculations of air pressure fields, radon concentration fields, and
indoor radon concentrations in the test cells agree generally to well within the experimental
uncertainties in the measured data. Site-specific measured values were used for nearly all of the
input parameters for the RAETRAD analyses. Default or best-estimate values were used for
parameters for which site-specific data were not available.
3.2.2 Analyses of FRRP Study Houses
RAETRAD calculations also were compared with radon measurements and supporting house data
from two sets of houses studied under the FRRP. One of these sets was characterized by Geomet
Technologies, Inc., and included 20 houses. Indoor radon concentrations measured in connection
with house ventilation rates and supporting soil parameters are summarized in the first four
columns of Table 3-6. These radon measurements generally consisted of single 2-day charcoal
canister measurements. Sub-slab radon measurements, house ventilation measurements, and soil
radium concentrations and other data have been documented separately.'50 These data included
descriptions of visible cracks in only two cases, and these also were represented in the
RAETRAD analyses.
3-30
-------
Table 3-6. Comparison of RAETRAD Calculations with FRRP Houses
Studied by Geomet.
Measured Values Calculated Values
Indoor
Sub-Slab
House
Sub-Slab
Deep-Soil
Indoor
Indoor
House ID
Radon
Radon
Ventilation
Radon
Radium
Radon
. Radon
(pCi L"1)
(pCi L-')
(ach)
(pCi L"1)
(PCi g"1)
(pCi L1)
(calc/meas)
ASH60
1.1
268
0.24
270
0.3
0.3
0.31
BRP06
8.5
1586
0.48
3920
1.0
2.2
0.26
CS112
2.3
1921
0.21
1920
3.6
2.6
1.12
HAM47
1.0
295
0.35
290
0.2
0.3
0.27
IVY07
0.8
1567
0.49
1570
1.3
0.8
1.06
MR24C
1.8
896
0.34
1270
0.3
1.2"
0.67
MR24L
3.4
1493
0.48
1550
0.5
1.0
0.29
MR24R
2.2
1188
0.59
1270
0.3
0.6
0.30
RNB07
0.8
201
0.16
310
0.2
0.6
0.72
RNB15
1.1
741
0.19
750
1.5
1.1
0.97
RNB17
1.1
163
0.25"
470
0.2
0.6
0.52
RNB19
1.3
397
0.19
390
1.3
0.6
0.49
RNB20
1.6
429
0.15
420
1.5
0.8
0.53
RNB21
1.1
172
0.25
160
0.1 .
0.2
0.22
RNB22
0.9
271
0.22
270
1.1
0.4
0.43
RNB33
1.7
263
0.16
350
0.1
0.7
0.39
RNB60
1.4
801
0.26
800
1.8
0.8
0.60
SMO20
1.5
2233
0.65
2230
6.7
0.9
0.60
WEA04
1.9
803
0.35
680
18.5
0.7°
0.39
WLC09
0.1f
429
0.15
430
0.5
0.9
8.67
" Floor crack included in calculation.
b Assumed value; none reported.
c Assumed value for measurement of "zero".
Since most of the house data sets had no descriptions of significant cracking, the modeling of
radon entry was primarily through the intact concrete floors. Reported values were used for all
radium, emanation, moistures, soil textures, permeabilities, and other parameters as well as
house size and shape measurements. Where values were not specified, the following default
values were used: Soil was sand as classified by the Soil Conservation Service;001 soil moistures
corresponded to a 0.3-bar matric potential;"® radon emanation was 0.3, footings and stem walls
extended 2 ft. into the soil; soil densities were 1.6 g cm 3; house ventilation rates were 0.25 air
3-31
-------
changes per hour; and diffusion coefficients and permeabilities were predicted from default
correlations.08) Concrete floor slabs were defined to have a diffusion coefficient of 10"3 cm2 s"1
and an air permeability of 10"u cm2.
Site-specific data generally were provided to a depth of approximately 3 ft., below which radium
concentrations were allowed to vary until soil gas radon concentrations approached the measured
values. The extent of this source adjustment is reflected by the calculated values of deep-soil
radium in column 6 of Table 3-6, and the resulting sub-slab radon concentration is shown in
column 5. The RAETRAD calculation using this source characteristic yielded the indoor radon
concentrations shown in column 7, based on the measured (or assumed) air ventilation rates from
column 4. The last column in Table 3-6 shows the calculated/measured ratio of indoor radon
concentrations.
A summary of the data in Table 3-6 indicates an overall geometric standard deviation between
the calculated and measured radon concentrations of GSD=2.76 (GSD =2.49 excluding WLC09),
reflecting the large variability of predominantly single-sample radon monitoring and the large
number and uncertainties of model assumptions that had to be used to represent these houses.
The geometric mean bias of this 20-house data set is 0.55, indicating that the model analyses
accounted for just over half of the observed levels of radon entry. It is expected that the near-
total absence of significant floor openings may be unrealistic, since the openings typically occur
in hidden locations (i.e., utility penetrations in walls, perimeter cracks under walls or sills,
openings under bathtubs, etc.). Thus the observable cracks were indeed small and relatively
insignificant, consistent with previous empirical observations of radon leakage through observable
floor cracks.(52)
The second set of houses was characterized by SRI, and included 30 houses. Indoor radon
concentrations measured in these houses are reported with their soil radon concentrations in the
first three columns of Table 3-7. House ventilation data were not reported for these, and were
estimated to be 0.25 air changes per hour for the present calculations. These radon
measurements also generally consisted of single 2-day charcoal canister measurements. The sub-
slab radon measurements, house characterization measurements, and soil radium concentrations
3-32
-------
concentrations and other data have been documented separately. These data also included
descriptions of accessible cracks, as indicated, which were used in the RAETRAD analyses.
More of the house data sets had visible cracks described in this group, as indicated in Table
3-7. However the cracks were often minimal, and most of the radon entry still occurred
through the intact concrete floors. Reported values were used for all radium, emanation,
moistures, soil textures, permeabilities, and other parameters as well as house size and shape
measurements. Identical default values were used under the same conditions as for the
previous data set.
Site-specific data generally were provided to a depth of approximately 3 ft., and radium
concentrations for deeper layers again were allowed to vary until soil gas radon
concentrations approached the measured values. The extent of this source adjustment is
reflected by the calculated values of deep-soil radium in column 5 of Table 3-7, and the
resulting sub-slab radon concentration is shown in column 4. The RAETRAD calculation
using this source characteristic yielded the indoor radon concentrations shown in column 6,
based on the assumed air ventilation rate of 0.25 air changes per hour. The last column in
Table 3-7 shows the calculated/measured ratio of indoor radon concentrations.
A summary of the data in Table 3-7 indicates an overall geometric standard deviation
between the calculated and measured radon concentrations of GSD=2.78, again reflecting the
large variability of predominantly single-sample radon monitoring and the large number and
uncertainties of model assumptions that had to be used to represent these houses. The
geometric mean bias of this 30-house data set is 0.56, indicating that the model analyses
accounted for over half of the observed levels of radon entry. This again supports the
possibility of higher concrete diflusivity or larger floor openings in hidden, inaccessible
locations.
3-33
-------
Table 3-7. Comparison of RAETRAD Calculations with FRRP Houses
Studied by SRI.
Measured Values
Calculated Values
Indoor
Sub-Slab
Sub-Slab
Deep-Soil
Indoor
Indoor
Radon
Radon
Radon
Radium
Radon
Radon
House ID (pCi L )
(pCi L'1)
(pCi L"1)
(pCi g*1)
(pCi L"1)
(calc/meas)
A1
12.1
9,000.
9,000.
8.4
19.CP
1.57
A2
56.
19,300.
19,300.
19.0
22.8
0.41
A3
83.
17,400.
17,400.
16.4
21.9°
0.26
A4
8.7
4,250.
4,260.
4.0
9.4°
1.08
A5
15.4
6,780.
6,760.
6.4
7.5
0.49
A6
20.3
5,870.
5,870.
5.4
6.6
0.33
A7
65.
21,000.
21,000.
19.6
39.9°
0.62
AB
5.5
2,700.
2,700.
2.5
3.0
0.55
AS
2.3
3,190.
3,200.
3.0
3.6
1.55
A10
8.7
7,440.
7,440.
7.0
7.8
0.90
B2
61.
20,500.
20,500.
16.8
27.9°
0.46
B3
19.3
10,000.
10,000.
6.3
20.5°
1.06
B4
4.3
4,280.
4,290.
4.0
4.7
1.10
B6
5.3
1,740.
1,750.
1.7
2.0
0.38
B7
1.1
2,420.
2,410.
2.2
2.7
2.43
B8
36.
9,600.
9,610.
6.5
17.7°
0.49
B9
7.7
8,900.
8,900.
8.3
10.3
1.33
BIO
6.6
1,800.
1,800.
1.7
1.9
0.29
Bll
40.
7,167.
7,170.
6.7
14.7"
0.37
CI
70.
13,000.
13,000.
12.7
14.8
0.21
C2
21.4
18,700.
18,700.
15.5
28.0"
1.31
C3
45.
17,000.
17,000.
12.8
17.4
0.39
C4
103.
13,000.
13,000.
15.4
14.6°
0.14
C5
17.9
9,670.
9,610.
14.7
18.5°
1.03
C8
36.
17,600.
17,600.
17.4
19.9
0.55
C15
64.
8,220.
8,220.
8.7
10.1
0.16
C16
32.
10,500.
10,500.
9.9
11.9
0.37
C18
91.
5,900.
5,880.
5.5
6.7
0.07
C19
14.5
18,700.
18,700.
19.8
33.6°
2.32
C33
25.9
18,000.
18,000.
17.3
19.8
0.76
" Floor crack included in calculation.
3-34
-------
3.2.3 Empirical Data Summary
Because of the much more detailed characterization and documentation of the floor openings,
pressure distributions, ventilation rates, source distributions, and radon variations with time in
the test cells, these data are regarded as the primary validation data set for RAETRAD. The
much poorer comparisons with the study houses in section 3.2.2 is expected because of the much
smaller numbers of indoor radon measurements that were performed and the lower level of
characterization of each site, house, and test condition. The magnitude of variability (GSD of
2.5-2.8) is similar to the variability expected to result from all house variations combined/181 and
thus provides a relatively weak comparison for either validation or demonstration of differences.
The factor of 0.55-0.56 bias between RAETRAD calculations and the house data for the study
house sets did not occur with the better-controlled test cells, and is interpreted to result primarily
from less-effective concrete floors than were represented in the RAETRAD calculations. This
could result either from larger openings in many of the slabs in obscured locations or from higher
diffusion coefficients for the slabs. Both possibilities are consistent with observations of
construction practice and with the range of observed concrete diffusion coefficients.(13) For
example, the calculated rate of radon entry through concrete and the resulting indoor radon
concentration would more than double if the diffusion coefficient of the concrete were increased
from 1x10° cm2 s'1 to 3xl0'3 cm2 s'1. They also can more than double from a floor crack area
that totals approximately 50 cm2.
3.3 MODEL VALIDATION SUMMARY
The validation comparisons with analytical benchmark cases, summarized in section 3.1, provide
strong evidence that the basic mathematics and implementation in the present RAETRAD
computer code is accurate to within approximately 1 % or less in comparison with established
theoretical models. These data also suggest the use of a thin mesh element at the top of the soil
profile to avoid larger biases (up to about 15-20%) that can result from the finite-difference
representation used in RAETRAD. The validation cases separately confirm the accuracy of the
2-dimensional air pressure calculations, of radon diffusion from a radon-source region (1-
dimension), and of combined radon diffusion and advective flow from a radon-source region.
3-35
-------
The benchmark analyses of the test cell structures demonstrate that RAETRAD results also
correspond to the empirical data from the two well-characterized physical systems. These
RAETRAD analyses averaged within 11 % of measured indoor radon concentrations in the six
reference conditions analyzed for the two test cells. The average bias between RAETRAD and
the indoor radon concentrations was -3%. These cases evaluated passive conditions for both
floating-slab and slab-in-stemwall construction; the same cases with additional significant floor
openings, and the slab-in-stemwall case with two different mechanically-altered indoor pressures
and resulting higher ventilation rates. Higher variations and biases observed for the FRRP study
houses are consistent with less-effective concrete floor barriers to radon entry, either from
constructed openings in the slabs or from higher diffusivities of their concretes.
3-36
-------
Section 4
LITERATURE REFERENCES
1. EPA. A Citizen's Guide to Radon. Washington D.C.: U.S. Environmental Protection
Agency and U.S. Department of Health and Human Services; report OPA-86-004; 1986.
2. EPA. A Citizen's Guide to Radon (Second Edition). Washington D.C.: U.S.
Environmental Protection Agency, USDHHS, and USPHS report 402-K92-001, May
1992.
3. Nero, A.V., Radon and Its Decay Products in Indoor Air: An Overview. In: Radon and
Its Decay Products in Indoor Air, Nazaroff, W.W. and Nero, A.V., New York: Wiley
& Sons, p. 1-53, 1988.
4. Environmental Protection Agency, Technical Support Document for the 1992 Citizen's
Guide to Radon, Washington D.C.: U.S. Environmental Protection Agency report
EPA- 400-R-92-011,(NTIS PB92-218395), 1992.
5. Sanchez, D.C., Dixon, R., and Williamson, A.D., The Florida Radon Research
Program: Systematic Development of a Basis for Statewide Standards, Proceedings: the
1990 International Symposium on Radon and Radon Reduction Technology, Vol.3, EPA-
600/9-91-026c (NTIS PB91-234468), luly 1991.
6. SBCCI. Florida Code for Radon-Resistant Construction and Mitigation," Southern
Building Code Congress International, Inc., Rev. 1, January 1990.
7. Sanchez, D.C., Dixon, R., and Madani, M., The Florida Radon Research Program:
Technical Support for the Development of Radon Resistant Construction Standards. In:
The 1991 AARST National Fall Conference, Rockville, MD. Preprints, Vol. 1, pp. 77-
86, 1991.
8. Rogers, V.C., and Nielson, K.K., Benchmarkand Application of the RAETRAD Model,
Proceedings: the 1990 International Symposium on Radon and Radon Reduction
Technology, Vol. 2, EPA-600/9-91-026b (NTIS PB91-234450), July 1991.
9. Nielson, K.K., and Rogers, V.C., Radon Entry Modeling - Slab on Grade, Germantown,
MD: Proceedings of the 1991 Annual AARST National Fall Conference, Vol. 2, p. 399-
407, 1991.
10. Nielson, K.K., and Rogers, V.C., Radon Transport Properties of Soil Classes for
Estimating Indoor Radon Entry, in: Indoor Radon and Lung Cancer: Reality or Myth?,
F.T. Cross, ed., Richland, WA: Battelle Press, p. 357-372, 1992.
4-1
-------
11. Nielson, K.K. and Rogers, V.C., Radon Entry Into Dwellings Through Concrete Floors.
In Proceedings: The 1991 International Symposium on Radon and Radon Reduction
Technology, Vol.1, EPA-600/9-91-037a, (NTIS PB92-115351), November 1991.
12. Rogers, V.C., Nielson, K.K., Lehto, M.A., and Holt, R.B., Radon Generation and
Transport Through Concrete Foundations, Research Triangle Park, NC: U.S.
Environmental Protection Agency report, EPA-600/R-94-175, (NTIS unassigned),
September , 1994.
13. Rogers, V.C.and Nielson, K.K., Data and Models for Radon Transport Through
Concrete, in Proceedings: the 1992 International Symposium on Radon and Radon
Reduction Technology: Vol. 1, EPA-600/R-93-083a (NTIS PB-93-196194), May 1993.
14. Nielson, K.K. and Rogers, V.C., Feasibility and Approach for Mapping Radon Potentials
in Florida, Research Triangle Park, NC: U.S. Environmental Protection Agency report
EPA-600/8-91-046 (NTIS PB91-217372), July 1991.
15. Nielson, K.K. and Rogers, V.C., Development of a Prototype Map of the Soil Radon
Potentials in Alachua County Florida, Salt Lake City: Rogers & Associates Engineering
Corp. report RAE-9127/3-1, October 1991.
16. Nielson, K.K., Rogers, V.C., Brown, R.B., Harris, W.G., and Otton, J.K., Prototype
Mapping of Radon Potentials in Florida, Germantown, MD: Proceedings of the 1991
Annual AARST National Fall Conference, Preprints, Vol. 1, p. 145-162, 1991.
17. Nielson, K.K., Rogers, V.C., Otton, J.K., Brown, R.B., and Harris, W.G., Soil Radon
Potential Mapping and Validation for Central Florida, Research Triangle Park, NC: U.S.
Environmental Protection Agency, Proceedings of the 1992 International Symposium on
Radon and Radon Reduction Technology, Vol. 3, EPA-600/R-93-083c (NTIS PB93-
196210), p.8-3, 1993.
18 Nielson, K.K., Holt, R. B. and Rogers, V.C., Soil Radon Potential Mapping of Twelve
Counties in North-Central Florida, Reseach Triangle Park, NC: U.S.Environmental
Protection Agency Report, RAE-9226/1-1R1 (in press), 1994.
19. Nielson, K.K., Rogers, V.C., and Rogers, V., Modeling Radon Generation, Transport,
and Indoor Entry for Building Construction Standards, Salt Lake City, UT: Rogers &
Associates Engineering Corp. report RAE-9127/3-2, October 1991.
20. Rogers, V.C. and Nielson, K.K., Recommended Foundation Fill Materials Construction
Standard of the Florida Radon Research Program, Research Triangle Park, NC:
U.S. Environ mental Protection Agency Report EPA-600/8-91-206 (NTIS PB92-105865),
October 1991.
4-2
-------
21. Rogers, V.C. and Nielson, K.K., Technical Basis for the Recommended Foundation Fill
Materials Construction Standard, Germantown, MD: Proceedings of the 1991 Annual
AARST National Fall Conference, Preprints, Vol. 2, p. 429-440, 1991.
22. Rogers, V., Nielson, K.K., and Rogers, V.C., Foundation Soil Cleanup Depths and
Radium Limits for Avoiding Elevated Indoor Radon, Salt Lake City, UT: Rogers &
Associates Engineering Corp. report RAE-8964/18-2, May 1992.
23. Rogers, V.C. and Nielson, K.K., Multiphase Radon Generation and Transport in Porous
Materials. Health Physics 60:807-815; 1991.
24. Rogers, V.C. and Nielson, K.K., Generalized Source Term for the Multiphase Radon
Transport Equation, Health Physics, 64:324-326; 1993.
25. Thamer, B.J., Nielson, K.K., and Felthauser, K.M., The Effects of Moisture on Radon
Emanation, U.S. Bureau of Mines report OFR-184-82, 1982.
26. Rogers, V.C., Nielson, K.K., and Merrell, G.B., Radon Generation, Adsorption,
Absorption, and Transport in Porous Media, Washington D.C.: U.S. Department of
Energy report DOE/ER/60664-1, May 1989.
27. Rogers, V.C. and Nielson, K.K., Correlations for Predicting Air Permeabilities and
222Rn Diffusion Coefficients of Soils. Health Physics 61:225-230; 1991.
28. Nielson, K.K., Rogers, V.C., and Gee, G.W., Diffusion of Radon Through Soils: A
Pore Distribution Model. Soil Science Society of America Journal 48:482-487; 1984.
29. Fick, A., Ueber Diffusion. Annalen Physik 170, 59-86, 1855 (in German).
30. Crank, J., The Mathematics of Diffusion. 2nd edition. New York: Oxford University
Press, 1975.
31. Yuan, Y.C. and Roberts, C.J., Numerical Investigation of Radon Transport Through a
Porous Medium, Transactions of the American Nuclear Society 38, 108-110, 1981.
32. Nielson, K.K., Rich, D.C., Rogers, V.C., and Kalkwarf, D.R., Comparison of Radon
Diffusion Coefficients Measured by Transient-Diffusion and Steady-State Laboratory
Methods, Washington D.C.: U.S. Nuclear Regulatory Commission report NUREG/CR-
2875, 1982.
4-3
-------
33. Williamson, A.D., and Finkel, J.M., Standard Measurement Protocols, Florida Radon
Research Program, Research Triangle Park, NC: U.S. Environ mental Protection Agency
report EPA-600/8-91-212, (NTIS PB-92-115294), November 1991.
34. Thomas, B.P., Cummings, E., and Wittstruck, W.H., Soil Survey of Alachua County,
Florida. Gainesville, FL: U.S. Department of Agriculture, Soil Conservation Service;
1985.
35. Nielson, K.K., and Rogers, V.C., The Influence of Foundation Soils on Radon Entry into
Slab-on-Grade Houses, Salt Lake City, UT: Rogers & Associates Engineering Corp.
interim report RAE-8945-2, April 1990.
36. Nielson, K.K., Bollenbacher, M.K., Rogers, V.C., and Woodruff, G., Users Guide for
the MK-II Radon/Permeability Sampler, Salt Lake City, UT: Rogers & Associates
Engineering Corp. report RAE-8829/8-1, 1989.
37. ASTM, Standard Test Method for Density of Soil in Place by the Drive-Cylinder Method.
Philadelphia, PA: American Society for Testing and Materials, report D 2937-83, 1983.
38. Marshall, T.J. and Holmes, J.WSoil Physics. Cambridge: Cambridge University Press,
1979.
39. Papendick, R.l. and Campbell, G.S., Theory and Measurement of Water Potential, In:
Water Potential Relations in Soil Microbiology, Madison, WI: Soil Science Society of
America, p. 1-22, 1980.
40. Loureiro, C.O., Simulation of the Steady-State Transport of Radon from Soil into Houses
with Basements under Constant Negative Pressure, Berkeley, CA: Lawrence Berkeley
Laboratory report LBL-24378, 1987.
41. Revzan, K.L., Fisk, W.J., and Gadgil, A.J., Modeling Radon Entry into Houses with
Basements: Model Description and Verification. Berkeley, CA: Lawrence Berkeley
Laboratory, preprint, 1991.
42. Sullivan, T.M. and Suen, C.J., Low-Level Waste Shallow Land Disposal Source Term
Model: Data Input Guides, Washington D.C.: U.S. Nuclear Regulatory Commission
report NUREG/CR-5387, 1989.
43. Rogers, V.C., and Nielson, K.K., Radon Attenuation Handbook for Uranium Mill
Tailings Cover Design, Washington, D.C.: U.S. Nuclear Regulatory Commission report
NUREG/CR-3533, 1984.
4-4
-------
44. Nielson, K.K., Rogers, V.C., and Rich, D.C., Small Scale Field Test of Simple Earthen
Covers for Uranium Mill Tailings, Albuquerque, NM: U.S. Department of Energy report
UMTRA-DOE/ ALO-19, 1983.
45. Kalkwarf, D.R., Freeman, H.D., and Hartley, J.N., Validation of Methods for
Evaluating Radon-Flux Attenuation Through Earthen Covers, Washington D.C..: U.S.
Nuclear Regulatory Commission report NUREG/CR-3457, 1984.
46. Nuclear Regulatory Commission, Calculation of Radon Flux Attenuation by Earthen
Uranium Mill Tailings Covers, Washington D.C.: U.S. Nuclear Regulatory Commission,
Regulatory Guide 3.64, 1989.
47. Swami, M.V. and Gu. L., Integration of Radon and Energy Models for Buildings, Cape
Canaveral, FL: Florida Solar Energy Center report FSEC-CR-493-92, 1992.
48. Geomet, Test Module for Radon Entry Modeling, Germantown, MD: Geomet
Technologies, Inc. report IE-2334, 1990.
49. Fowler, C.S., McDonough, S.E., and Williamson, A.D., Polk County Research House
Project Test Cell Studies of Radon Entry, Birmingham, AL: Southern Research Institute
report SRI-ENV-92-1035-7000-020, (in review), 1994.
50. Ruppersberger, J.S., Recommendations to Reduce Soil Gas Radon Entry Based on an
Evaluation of Air Permeability of Concrete Blocks and Coatings, Oral Presentation at:
the 1991 International Symposium on Radon and Radon Reduction Technology,
Philadelphia, PA, 1991.
51. Geomet, Evaluation of Radon-Resistant Construction Practices in New Homes in Florida,
Germantown, MD: Geomet Technologies, Inc. report IE-2588, 1992.
52. Acres, Measurement of Crack and Opening Contribution to Radon Entry (Feasibility
Study). Vol. Ill of Radon Entry Through Cracks in Slabs-on-Grade, Acres International
Corp., report P09314, 1990.
4-5
-------
APPENDIX A
LISTINGS OF REFERENCE DATA USED TO
VALIDATE THE RAETRAD CODE
A-l
-------
This appendix presents the digital data computed by analytical equations and computer codes that
were used to validate the RAETRAD computer code, as described in section 3.1. The analytical
pressure-field data described in section 3.1.1 are presented in Table A-l. The analytical radon
profiles for the radon generation and diffusive transport cases, described in section 3.1.2, are
presented in Table A-2. The analytical radon profiles for the radon generation with diffusive and
advective transport cases, described in section 3.1.3, are presented in Table A-3.
A-2
-------
TABLE A-l. Analytical Pressure Profiles (-Pa) Computed From
Equations in Section 3.1.1.
Position
1 ft.
2 ft.
4 ft.
8 ft.
15 ft.
1
3.8947
3.7910
3.5940
3.2739
3.0457
2
3.8940
3.7895
3.5912
3.2696
3.0410
3
3.8916
3.7848
3.5827
3.2567
3.0269
4
3.8875
3.7769
3.5681
3.2349
3.0033
5
3.8816
3.7653
3.5470
3.2039
2.9704
6
3.8735
3.7495
3.5186
3.1632
2.9281
7
3.8627
3.7287
3.4816
3.1121
2.8764
8
3.8486
3.7015
3.4344
3.0498
2.8154
9
3.8300
3.6661
3.3745
2.9755
2.7455
10
3.8052
3.6194
3.2987
2.8882
2.6668
11
3.7711
3.5564
3.2022
2.7870
2.5801
12
3.7220"
3.4685
3.0783
2.6714
2.4859
13
3.6462
3.3402
2.9188
2.5415
2.3852
14
3.5160
3.1419
2.7142
2.3982
2.2792
15
3.2517
2.8200
2.4587
2.2439
2.1691
16
2.5905
2.3122
2.1590
2.0822
2.0567
17
1.4096
1.6878
1.8410
1.9178
1.9433
18
0.7483
< 1.1800
1.5413
1.7561
1.8309
19
0.4840
0.8581
1.2858
1.6018
1.7208
20
0.3538
0.6598
1.0812
1.4585
1.6148
21
0.2780
0.5315
0.9217
1.3286
1.5141
22
0.2289
0.4436
0.7978
1.2130
1.4199
23
0.1948
0.3806
0.7013
1.1118
1.3332
24
0.1700
0.3339
0.6255
1.0245
1.2545
25
0.1514
0.2985
0.5657
0.9502
1.1846
26
0.1373
0.2713
0.5184
0.8879
1.1236
27
0.1265
0.2505
0.4815
0.8368
1.0719
28
0.1184
0.2347
0.4530
0.7961
1.0296
29
0.1125
0.2231
0.4319
0.7651
0.9967
30
0.1084
0.2152
0.4174
0.7433
0.9731
31
0.1061
0.2105
0.4088
0.7304
0.9590
32
0.1053
0.2090
0.4060
0.7261
0.9543
-------
TABLE A-2. Analytical Radon Profiles Computed by the RAECOM Code
and Corresponding RAETRAD Profiles.
Depth
Analyt.
Numer."
Numer.4
Numer.'
Analyt.
Numer.e
Numer.6
Numer?
10.2
2.0
2.
2.
2.
2.0
2.
2.
2.
0.
3463.6
3439.
3212.
2983.
1501.2
1490.
1507.
1497.
-30.4
3874.7
3855.
3704.
3541.
2529.1
2515.
2526.
2519.
-61.0
4156.5
4141.
4037.
3925.
3233.9
3219.
3227.
3222.
-91.4
4349.8
4338.
4266.
4189.
3717.2
3704.
3709.
3706.
-122.0
4482.3
4473.
4424.
4371.
4048.5
4037.
4041.
4038.
-152.4
4573.1
4566.
4532.
4496.
4275.7
4266.
4269.
4267.
-182.8
4635.4
4630.
4607.
4581.
4431.5
4424.
4425.
4424.
-213.4
4678.2
4674.
4658.
4641.
4538.3
4532.
4533.
4532.
-243.8
4707.4
4704.
4693.
4681.
4611.6
4606.
4607.
4607.
-274.4
4727.5
4725.
4717.
4709.
4661.8
4658.
4658.
4658.
-304.8
4741.3
4739.
4734.
4728.
4696.2
4693.
4693.
4693.
-335.2
4750.7
4749.
4745.
4741.
4719.8
4717.
4717.
4717.
-365.8
4757.2
4756.
4753.
4750.
4735.9
4734.
4734.
4734.
-396.2
4761.6
4760.
4759.
4757.
4747.0
4745.
4745.
4745.
-426.8
4764.7
4763.
4762.
4761.
4754.6
4753.
4753.
4753.
-457.2
4766.7
4766.
4765.
4764.
4759.7
4758.
4758.
4758.
-487.6
4768.1
4767.
4767.
4766.
4763.2
4762.
4762.
4762.
-518.2
4769.1
4768.
4768.
4767.
4765.4
4764.
4764.
4764.
-548.6
4769.7
4769.
4769.
4768.
4766.9
4765.
4765.
4765.
-579.2
4770.1
4769.
4769.
4769.
4767.6
4766.
4766.
4766.
-609.6
4770.3
4770.
4769.
4769.
-640.0
4770.0
4770.
4769.
4769
Top mesh row split at 0.02 ft
b Top mesh row split at 0.5 ft.
f Top mesh row kept at 1 ft.
d Top mesh row split at 0.1 ft.
A-4
-------
TABLE A-3. Analytical Radon Profiles Computed by the RAETRAN
Code (pCi L'1).
Depth
ii
i
to
P=0.0
Po+2.4
P«+5.0
0.
2.
2.
2.
2.
1.
282.
221.
172.
132.
2.
478.
389.
310.
245.
3.
615.
617.
424.
341.
4.
710.
615.
517.
424.
5.
777,
690.
593.
495.
6.
824.
747.
655.
657.
7.
857.
791.
705.
609.
8.
880.
824.
747.
655.
10.
896.
850.
781.
694.
11.
907.
869.
809.
727.
12.
915.
884.
831.
756.
13.
920.
896.
850.
781.
14.
924.
904.
865.
802.
15.
927.
911.
877.
820.
16.
929.
916.
887.
836.
17.
930.
920.
896.
850.
18.
931.
923.
903.
861.
19.
931.
926.
908.
871.
20.
932.
927.
913.
880.
21.
932.
929.
916.
887.
A-5
-------
APPENDIX B
RAETRAD PRINTED OUTPUT
FROM THE INDOOR RADON COMPARISONS
IN SECTION 3.2.1
B-l
-------
SCENARIO TITLE: trit cell 1: Cases l-4:Run 5
FILE NftHE; run5
RUN DATE: 10/26/19,?2 t it:25
RAETRAD v3.1
RAdon Eaanation and TRAnsport into Duel linos
developed by Rogers 1 Associates Engineering Corporation
ssrssissrssssss
"*Sff?S?SSSSI3SSSS2SSS
=«: INPUT PARAMETERS :========"«==«™="="™««==«=""=======««=sr
HOUSE:
Diiensions
Area
Fill thickness
Footing depth
19,5 * 19.5 It.
3S0 sq. ft.
0 units ( .0
-------
SCENARIO TITLE: test cell 1: Cases l-4:Run 3
FILE NAME: run!
RAETRAO *3.1
RAdon Eaanation and TRAnsport into Duellings
developed by Rogers I Associates Engineering Corporation
:iii::it3T3t*rr*irezassitaiisuicari^f j ANALY5IS RESULTS I >ixc=rrrriErrrsr
ssisfsrsssi
RADON ENTRY PROFILE:
Air
Elf.
Radon
Radial
Entry
Radon
Entry
Positn
Rate
Flux
Rate
It
cfi
pCl/«2i
pCi/s
Cenler-
— ...
D
.SO
3.39E-0B
J.54E-01
2.60E-02
0
1.00
1.02E-07
3.53E-01
7.7BE-02
0
1.50
1.69E-07
3.55E-01
1.29E-01
0
2.00
2.37E-07
3.34E-01
1.B1E-01
a
2.50
3.05E-07
3.53E-01
2.32E-01
0
3.00
3.73E-07
3.51E-01
2.B2E-01
D
3.50
4.40E-07
3.49E-01
3.31E-0J
D
4,00
5.0BE-07
3.47E-01
3.B0E-01
0
1.50
5.76E-07
3.44E-01
4.27E-01
0
J.00
6.43E-07
3.41E-01
4.72E-01
0
9.30
7.11E-07
J.37E-01
5.16E-01
0
4.00
7.79E-07
3.33E-01
5.3BE-01
0
,, — _ 6.30
8.47E-07
3.28E-01
5.98E-01
0
- 7.00 '
9.14E-07
3.22E-01
6.35E-01
0
7.50
9.82E-07
-3.16E-01
6.69E-01
0
8.00
1.0SE-04 1
3.09E-01
6.99E-01
0
9.50
1.12E-06
3.01E-O1
7.21E-0I
0
9.00
1.19E-06
2.92E-01
7.45E-01
0
9.30
1.25E-06
2.B1E-OI
7.60E-01
D
10.00
1.32E-06
2.70E-01
7.68E-01
0
10.50
1.39E-06
2.37E-01
7.69E-01
Elliptical crick
11.00
2.13E-02
1.75E+0I
5.48E«01
-Qzszii
11.50
1.83E-06
B.15E-02
2.6BE-01
r
r
INDOOR TdlAL
2.13E-02
l.B4E*00
6.51E+01
V
12.00
-B.60E-O3
1.51E+00
5.18E+01
i
12.50
-2.37E-03
8.38E-01
3.OOE +01
r
13.00
-1.60E-03
7.B9E-01
2.94E«0I
r
13.50
-1.27E-03
7.77E-01
3.00E+01
r
14.00
-1.04E-O3
7.70E-01
3.09f«01
r
14.50
-8.80E-04
7.65E-01
J.1BE+01
r
13.00
-7.57E-04
7.62E-0I
3.28E+C1
*
13.50
-6.43E-04
7.60E-01
3.3BE«01
Y
It.09
-5.90E-04
7.5BE-01
3.49E+01
Y
16.50
¦5.33E-01
7.58E-01
3.39E»01
Y
17.00
-4.93E-04
7.57E-01
3.70E+01
Y
17.50
-4.61E-04
7.57E-01
3.B1E *01
Y
J 8.00
-4.39E-04
7.56E-0I
3.92E+01
Y
IB.50
M.24E-04
7.56E-01
4.03E+01
Y
19.00
-4.16E-04
7.56E-01
4.I4E*01
1
19.50
-4.HF-M
7.56E-01
4.25E+01
20.00
-4.19E-04
7.S6E-01
4.36E+01
1NDCQR RADON : 97.150 pCi/L (assuaing .C2S0 ich t 8.00 ft Height)
CPU Cal:. T:ie: BO.00 seconds _ _
-------
SCENARIO TITLE: ttit cell 2) Cues l-4:Run 9
FILE HABE: run?
RUN DATE! 10/26/1992 I 16:21
RAETRAD *3.1
RAdon Emanation ind TRAnsport into Duellinos
developed by Roger* t Associates Engineering Corporation
;;;;;ttnsi«nt»si«MMiiinnii»tiiiiessai»eaiiissa»ii; INPUT PARAMETERS issss:s3X3tiuctavi3Utt
-------
SCENARIO TITLE: test cell 2: Cisti 1-4jRu/i 9
FILE NAMEi run?
RAETRAD *3-1
RAdon Eaanition tnd IRAniport Into Dm I lings
developed by Rogers I Associates Engineering Corporition
>.»U.>I»U....UU..U......IIU3K3IIJ„II; ANALYSIS RESULTS
RADON ENTRY PROFILE:
Air
E f f.
ftidon
Radial
Entry
Ridon
Entry
Positn
Rate
Flux
Rite
ft
Cll
pCi/i2l
pCi/t
Center-
—
0
.30
3.24E-08
3.39E-01
2.42E-02
0
1.00
9.73E-0B
3.5BE-01
7.B5E-02
0
1.50
1.62E-07
3.5BE-01
1.31E-01
0
2.00
2.27E-07
3.57E-01
1.B2E-01
0
2.50
2.92E-07
3.54E-01
2.34E-01
0
3.00
3.57E-07
3.55E-01
2.B5E-01
0
. 3.50
4.22E-07
3.53E-01
3.35E-01
0
4.00
4.87E-07
3.51E-01
3.B4E-01
0
4-50
5.32E-07
3.48E-01
4.32E-01
0
3-00
6.16E-07
3.44E-01
4.79E-01
0
3.50
4.B1E-07
3.42E-01
3.25E-01
0
6.00
7.46E-07
3.39E-01
5.48E-01
0
b.SO
8.11E-07
3.35E-01
t.lOE-Ol
0
r- , 7.00 .
B.74E-07
3.30E-01
4.30E-01
0
7.50
9.41E-07
3.23E-01
4.87E-01
0
8.00
1.01E-06
3.19E-01
7.21E-01
0
B.JO
1.07E-06
?U2E-01
7.52E-01
0
9.00
1.14E-06
3.05E-O1
7.79E-01
0
9.50
1.20E-06
2.97E-01
8.03E-OI
0
10.00
1.27E-06
2.B9E-01
8.22E-01
0
10.30
1.J3E-04
2.80E-01
8.37E-01
0
-H.OO
1.40E-0&
2.71E-01
0.49E-O1
—(lUlt
11.50
1.46E-04
1.15E-01
3.74E-01
Y
Y
INDOOR TOTAL.
1.72E-05
3.27E-01
1.15E+01
Y
12.00
-7.45E-06
1.30E+OO
4.45E+01
Y
12.50
-1.89E-06
7.17E-01
2.54E+01
Y
13.00
-1.25E-0A
4.43E-01
2.47E+01
Y
13.50
-9.90E-07
6.44E-01
2.49E»01
14.00
•0.19E-O7
6.33E-01
2.54EM>1
Y
14.50
-4.93E-07
6.25E-01
2.60E+O1
Y
15.00
-5.99E-07
6.19E-01
2.67E+01
Y
15.50
-5.27E-07
6.15E-01
2.74EMH
Y
lfc.OO
-4.71E-07
6.12E-01
2.81E+01
Y
14.30
-4.2BE-07
6.09E-01
2.B9E+01
Y
17.00
-3.95E-07
4.Q8E-01
2.97E+01
Y
17.30
-3.71E-07
6.06E-01
3.03E+01
Y
18.00
-3.54E-07
6.05E-01
3.14E+01
18.50
-3.42E-07
6.05E-01
3.22E+01
Y
19.00
-3.34E-07
6.04E—01
3.J1E+01
Y
19.50
-3.35E-07
6.04E-01
3.39E+01
20.00
-3.39E-07
6.04E-01
3.4BE+01
INDOOR RADON : 20.106 pCi/L Ussuiing .0249 jch k 6.00 (t Height)
CPU Calc. Tiie: 79.00 seconds
B-5
-------
SCENARIO TITLE: tut cell 1: Cases 5-4:Run 6
FILE NflNE: run*
RUN DATE: 10/24/1992 I 14:30
RAETRAD v3.1
RAdon Eiamtion ind TRAnsport into D»ellinos
developed by Rogers 4 Associates Engineering Corporation
szixaaca::r:2r:rizcr:2:ssr::ciss::s:s:::::s::zs::3s:=:: • INFUT PARA METERS .'-ssssss-ssisssacAssxcasssssisutuiiiBSsauiussszrasss
HOUSE:
Diiensions
Area
Fill thickness
Footing depth
19,5 < 19-5 ft.
380 sq. (t.
0 units I .Oft.)
3 units ( 2.0ft.)
Equiv. ellipse ndius
Aspect ratio
Circumference
Indoor pressure
11 ft.
1.000
49.1 ft.
-1.4 Pa.
Outdoor Pressure
Indoor Rn Bnd.
Outdoor Rn Bnd.
Ridiil Nesh Units
.00 Pa
95.09 pCi/L
.00 pCi/L
.50 ft.
FLOOR 0PEHINS5:
Crick or
Penetration
Type
Elliptical Crack
Elliptic)! Crack
Loc. Fri Local Local Radial
Nuiber of Peratr Pressure Rn Bndry Width
Penetrations ft Pa pCi/L ci
.000
10.500
-1.40
-1.60
95.00
95.00
.50
.84
Arc
Length Porosity Pert. Diff.
ca c»2 ci2/s
.00 .600 2.00E-04 5.00E-02
.00 1.000 3.00E4-02 1.00E-01
FOUNDATION 4 SOILS:
Lyr
Thickness
Vrt.
Dens,
Eia/i.
Sat'n
P.Dial
Diff.Rad
Diff .Ver
Pen.Rad
Peri.Ver Kads
No.
ft
Div.
g/»3
fric. P
frac.
ca
ci2/s
. »2/s
ca2
ca2 cc/g
nateria)
FLR
.333
1
2.180
.077
.500
.000290
4.30E-04
4.30E-04
3.30E-12
3.30E-12 .000100
Cond
J
.030
1
1.000
.000
.100
.044200
1.00E-01
1.00E-01
1.00E-03
1.00E-03 .000100
Sand
2
.030
1
1.539
: .235
.310
.044200
2.15E-02.
2.15E-02
2.23E-07
2.23E-07 .000100
Sand
3
.970
1
1.539
.235
.310
.044200
2.15E-02
2.15E-02
2.23E-07
2.23E-07 .000100
Sand
4
1.000
1
1.539
.231
.180
.044200
3.03E-02
3.03E-02
2.44E-07
2.46E-Q7 .000100
Sand
5
1.090
1
1.539
.230
.280
.044200
2.33E-02
2.33E-02
2.31E-07
2.31E-07 .000100
Sand
6
1.000
1
1.539
.310
.320
.044200
2.10E-02
2.10E-02
3.B0E-0B
3.89E-OB .000100
5 and
7
1.000
1
1.539
.310
<320
.044200
2.10E-02
2.10E-02
2.20E-07
2.20E-07 .000100
Sand
8
1.000
I
1.539
.246
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07 .000100
Sand
9
1.000
1
1.539
.215
.430
.044200
I.531-02
1.53E-02
1.65E-07
1.65E-07 .000100
Sand
10
i.000
1
1.539
.310
•vu
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07 .000100
Sand
11
1.000
1
1.539
.310
.500
.044200
1.2IE-02
1.21E-02
1.1BE-07
1.18E-07 .000100
Sand
12
1.000
1
1.539
.310
.610
.044200
7.35E-03
7.35E-03
4.73E-08
4.73E-0B .000100
Sand
13
1.000
1
1.539
.310
.680
.044200
4.43E-03
4.63E-03
1.91E-0B
1.91E-0B .000100
Sand
14
2.000
2
1.539
.310
.750
.044200
2.41E-03
2.41E-03
5.59E-09
5.59E-09 .000100
Sand
15
2.000
1.539
.310
.790
.044200
1.47E-03
1.47E-03
2.32E-09
2.32E-09 .000100
Sand
16
2.000
2
1.53?
.310
.820
.044200
9.44E-04
9.44E-04
1.10E-09
1.10E-09 .000100
Sand
17
2.000
2
1.539
.310
.860
.044200
4.46E-04
4.66E-04
3.51E-10
3.51E-10 .000100
Sand
18
2.000
2
1.339
.310
.B90
.044200
2.47E-04
2.47E-04
1.34E-10
1.31E-10 .000100
Sand
19
2.000
1.539
.310
.930
.044200
9.06E-05
?.06E-05
3.15E-U
3.15E-11 .000100
Sand
20
5.000
5
1.53?
.310
.970
.044200
2.47E-03
2.67E-05
6.06E-12
6.06E-12 .000100
Sand
FTS
2.000
3
1.700
.077
.200
.000290
1.00E-02
1.00E-02
1.00E-07
1.00E-07 .000100
Cond
B-6
-------
SCENARIO TITLEi test till 1: Casei 3-6:Run 6
FILE MAKE; run6
RAETRAD v3.1
RAdon Eaanation and TRAniport into Dirllinoi
dfviloptd by Roger* 4 Associates Engineering Corporation
3UXUIUIj ANALYSIS RESULTS !""a"*,*a*I*«SM*s**»»*"*»»»»M»»ssssssasErsr=xsx«i
RADON ENTRY PROFILE:
Air
Eff.
Radon
Radial
Entry
Radon
Entry
Positn
Rate
Flux
Rate
It
da
pCi/»2s
pCi/i
Center-
—
Elliptical crick
.30
4.3JE-02
1.79E+03
1.30E+02
0
1.00
3.22E-09
2.8SE-01
6.31E-02
0
1.50
5.73E-09
2.BBE-01
1.05E-01
0
2.00
B.42E-09
2.B&E-01
1.4&E-01
0
2.50
1.12E-O0
2.B5E-01
1.B7E-01
0
3.00
1.41E-0B
2.B3E-01
2.27E-01
0
3.50
1.71E-0B
2.B1E-01
2.66E-01
0
4.00
2.01E-0B
2.7BE-01
3.05E-01
0
4.50
2.32E-0B
2.75E-01
3.41E-01
0
"5.00
2.64E-08
2.72E-01
3.76E-01
0
5.50
2.95E-0B
2.67E-01
4.10E-01
0
6.00
3.28E-0B
2.63E-01
4.41E-01
D
4.50
3.60E-0B
2.57E-01
4.70E-01
0
. "-j 7.00
3.93E-0B
2.52E-01
4.96E-01
0
7.50
4.25E-0B
. 2.45E-01
5.18E-01
0
6.00
4.5BE-0B
2.37E-01
5.37E-01
0
B.SO
4.92E-08
2.29E-01
5.51E-01
0
9.00
3.25E-OB
. 2.19E-01
5.60E-01
0
9.50
3.5BE-0B
2.08E-01
3.63E-01
0
10.00
5.91E-0B
1.94E-01
5.5BE-01
0
10.50
&.23E-08
I.82E-01
5.45E-01
Elliptical crack
- ,11.00
9.5BE-04
1.2B£+00
4.00E+00
11.50
1.36E-06
4.16E-02
1.37E-01
Y
Y
INOOOft TOTAL
4.63E-02
4.02E400
1.42E+02
r
12.00
-3.42E-02
7.44E-01
2.55E+01
Y
12.50
-9.96E-03
4.70E-01
1.68E+01
Y
13.00
-6.74E-03
5.16E-01
1.92E+01
Y
13.50
-5.35E-03
5.57E-01;
2.15E+01
14.00
-4.40E-03
3.86E-01
2.35E»01
r
14.50
-3.71E-03
6.0BE-01
2.53E+01
Y
15.00
-3.19E-03
6.25E-01
2.£»9E*01
Y
15.50
-2.79E-03
6.38E-01
2.B4E»01
Y
16.00
-2.49E-03
6.4BE-01
2.9BE+01
Y
16.50
-2.25E-03
6.37E-01
3.11E+01
r
17.00
-2.07E-03
6.63E-01
3.24E+01
Y
17.50
-1.94E-03
6.69E-01
3.37E+01
Y
IB.00
-1.B5E-03
6.73E-01
3.4BE+01
IB. 50
-1.79E-03
6.76E-01
3-60E+01
r
19.00
-1.73E-0J
6.78E-01
3.71E»01
Y
19.50
-1.75E-03
6.79E-01
3.82E*01
Y
20.00
-1.76E-03
6.B0E-01
3.92E+01
INDOOR RADON :
CPU Cilc. Tile!
212,
8? pCi/L tassuiing .0260 ich 4 8.00 ft Height)
60.00 seconds
B-7
-------
SCENARIO TITLE: test cell 1: Case! 5-6:Run 6
FILE NAKE: run6
RAETRAl) v3.1
RAdon Eaanition ind TRAnsport into Dwellings
developed by Rogers I Asiociites Engineering Corporation
Suction Pressures, (- .0010 Pi) depth (ft.| >
.0
.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17,0 1B.0 19.0 20.0 21.0 22.0 23.0
1 1566 1565 1491T429 1371 1069 1019
969
929
903
BB3
B63
642
810
79B
760
741
720
706
687
675
660
651
63B
630
2 1561
1561 1490 1429 1370 106B 1017
967
926
901
881
661
641
BOB
787
759
740
719
705
686
674
660
651
637
629
3 1556 155B 1433 1426 1368 1065 1014
963
925
696
97B
B58
838
606
764
757
738
717
703
6B5
673
658
649
636
62B
4 1556 1556 14B6 1424 1365 1061 1010
959
920
894
874
B54
834
602
781
753
735
714
701
682
670
656
647
634
626
5 1555 1555 1483 1420 1361 1055 1004
953
914
686
866
848
828
797
776
749
731
710
697
679
667
653
644
632
624
6 1553 1553 14B0 1416 135b 1047
996
945
906
BBO
860
B41
821
790
770
743
725
705
692
674
663
649
641
628
621
7 1552 1552 1477 1410 1349 103B
987
936
897
871
852
832
813
792
762
736
719
699
6B7
669
656
645
637
625
617
8 1551 1551 1472 1404 1341 1028
976
925
686
660
B4I
822
603
773
754
729
712
693
680
664
653
640
632
620
613
9 1550 1550 146B 1396 1331 1016
963
912
674
846
829
811
792
763
744
720
704
6B5
673
657
647
634
627
616
609
10 1549 1549 1462 1386 1319 1001
949
898
860
B3)
816
79B
7B0
752
734
710
695
677
666
650
640
62 B
621
610
604
11 1549 1549 1455 1375 1305
985
932
BB2
844
920
901
7B4
766
740
722
700
6B5
66B
657
642
633
622
615
604
596
12 1548 1540 1447 1361 1288
967
914
664
927
803
765
766
751
726
709
68B
674
658
648
634
625
614
60B
598
592
13 1548 1548 1437 1344
I26B
946
894
644
6Q9
7B5
766
752
736
712
696
676
663
648
63B
625
617
607
601
592
566
14 1547 1547
1425 1324
1243
924
B71
623
766
766
750
734
719
697
6B2
663
651
637
628
616
609
599
593
585
579
15 1547 1547 1410 1299 1214
898
B47
800
767
745
730
716
701
681
667
650
629
625
617
606
599
590
5B5
577
573
16 1546 1546
1391
1269 1179
B70
619
775
744
724
709
696
663
664
651
636
625
613
606
596
589
5B2
577
570
566
17 1546 1546 1367 1232 1136
836
790
749
719
701
6&
676
664
647
635
621
612
601
595
586
580
573
569
562
55B
18 1545 1545 1337 1186 1085
004
759
720
694
678
666
655
644
629
619
607
59 B
5B9
5B3
575
570
564
560
554
551
19 1545 1545 1296 1130 1024
766
725
691
66B
653
643
634
624
611
602
592
584
576
571
564
560
554
551
546
543
20 1545 1545 1240 1060
951
724
6B9
660
641
628
620
612
604
593
586
576
570
564
559
553
550
545
542
538
536
21 1545 1545 1160
974
864
680
652
629
613
603
596
590
584
575
569
561
556
551
547
543
540
536
534
530
52B
22 1544 1544 1036
674
761
633
613
597"
5ET6
578
573
56B
564
557
552
546
542
538
536
532
529
527
525
522
521
23 503
503
584
604
642
5B5
575
565
558
553
550
547
544
539
535
531
529
526
524
521
520
518
516
515
513
24 0
37
397
492
539
539
538
534
531
529
527
526
524
521
519
517
515
514
512
511
510
509
508
507
506
25 0
10
283
397
451
496
502
505
505
506
505
505
SOS
504
503
503
502
502
501
501
500
500
500
499
499
26 0
6
210
321
377
457
469
476
481
4B3
464
4B5
486
4B8
488
489
490
490
491
491
491
492
492
492
492
27 0
5
162
261
317
422
438
450
457
461
464
467
469
472
474
476
477
479
480
4B2
4B3
484
484
485
4B6
28 0
4
129
215
26B
391
410
426
435
441
445
449
452
457
460
464
466
469
470
473
474
476
477
479
480
19 0
3
105
130
229
364
IB6
403
415
423
428
432
437
443
447
452
455
459
461
464
466
469
470
473
474
30 0
3
87
152
19B
341
364
3B3
397
40)
411
417
422
430
435
441
445
450
453
457
459
462
464
467
46B
31 0
2
74
131
173
320
344
365
3B0
390
396
403
409
418
424
431
436
441
445
449
452
456
458
461
463
32 0
2
64
114
153
303
327
350
366
376
381
390
397
407
413
422
427
433
437
443
446
450
453
457
459
33 0
1
56
101
138
239
313
336
353
363
371
379
3B6
397
404
414
420
427
431
437
441
445
448
452
455
34 0
4
50
91
125
276
301
324
341
353
361
369
377
3B9
396
406
413
420
425
432
436
441
444
448
451
35 0
1
45
83
116
266
291
314
332
344
352
360
369
381
390
400
407
415
420
427
432
437
440
445
448
36 0
1
42
77
109
25B
2B2
306
324
336
345
354
362
375
3B4
395
402
411
416
423
428
434
437
442
445
37 0
1
40
73
103
251
276
300
318
330
337
348
357
370
379
391
399
407
413
420
425
431
435
440
443
38 0
1
39
70
99
247
271
295
313
326
335
344
353
367
376
3B6
396
405
410
41B
423
429
433
438
442
'9 0
1
37
6B
97
244
268
292
310
323
332
341
350
364
374
386
394
403
409
417
422
42B
432
437
441
40 0
1
36
67
96
242
266
291
309
321
331
340
349
363
373
3B5
393
402
409
416
421
427
431
437
440
Suction Pressures, (- .0010 Pi) depth (ft.) >
24.0 25.0 26.0 27.0 2B.0
1 612 599 5B9 5EJ 590
2 612 599 509 582 579
3 611 597 590 5B2 579
4 60? 596 5B6 590 577
5 607 594 585 579 576
6 604 592 5B3 577 574
7 6M 539 5B0 575 572
3 59B 586 577 572 569
9 594 582 574 569 566
10 5B9 579 571 566 563 B-8
11 5B5 574 567 562 560
!? 579 57? 5ij 55B 556
-------
12
J7y f 7
563 i58
556
IS
574 56
559 554
552
14
569 56
554 550
548
IS
562 55
549 546
544
16
956 54
544 541
539
J7
550 54
539 534
535
IB
544 53
534 531
530
1?
537 53
529 527
526
20
531 52
524 522
521
21
524 52
518 £17
516
22
SIB 51
513 512
511
23
511 50
508 507
507
24
505 50
503 503
502
25
49? 49
498 499
49B
26
493 49
493 494
494
27
487 4B
4B9 4B9
490
28
4B2 46
485 485
496
29
477 47
4B1 482
4B2
39
472 47
477 478
479
31
46B 47
473 475
476
32
464 46
470 472
473
33
460 46
467 469
470
34
457 46
465 467
468
35
454 45
463 465
466
36
452 45
461 463
464
37
450 456
459 462
463
30
449 45
458 461
462
3?
44B 45
458 460
461
40
443 43
457 460
461
-------
SCENARIO TITLE: test cell li Cuts 3-6:Run 6
FILE NflflE: run6
ioil Eas Radon Concentrations
1
10.00000 pCi/Literl
.0
.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0 8.0 9,0
1
607
407
763
042
1017
1214
1376
1578
1843 2241 2628
2
600
600
743
061 1016
1215
1377
1577
1842 2241 262B
3
607
607
762
040 1015
L214
1376
1576
1041 2240 2627
4
60S
605
760
85B
1013
1213
1374
J573
1840 2239 2626
5
602
402
757
B56 1011
1210
1372
1373
1038 2237 2623
6
598
59B
754
853 JOOB
1207
1369
1570
1036 2235 2623
7
593
593
750
049
1004
1204
1366
1567
1033 2233 2621
B
SB7
58B
745
B44
999
1199
1362
1563
1B30 2230 2610
9
581
531
739
030
994
1194
1357
1539
1025 2226 2615
10
574
574
732
832
907
1188
1351
1554
1821 2222 2612
11
345
565
724
824
971
1101
1344
1548
1815 2217 2608
12
555
555
715
815
970
1172
1336
1541
1B09 2212 2404
13
544
544
705
004
940
1143
1327
1533
1803 2206 2599
14
332
532
693
792
94 B
1131
1317
1324
1793 2200 2394
13
310
518
679
777
933
1139
1305
1514
1787 2193 25B9
16
302
503
662
760
917
1123
1293
1503
1776 2186 2503
17
4B5
485
643
741
898
1109
1279
1492
176B 2178 2577
IB
465
445
620
71B
B77
1091
1264
14B0
175B 2170 2570
19
443
443
593
692
054
1072
1240
1467
1W7 2141 2544
20
417
417
560
663
820
1052
1231
1453
1734 21-32 2337
21
339
3EB
317
632
800
1031
1214
1440
1723 2144 2550
22
354
334
442
600
771
1009
1197
1426
1714 2135 2543
23
96
96
341
524
740
9B8
1180
1413
1704 2127 2537
24
0
10
313
492
715
949
1163
1401
1694 2119 2531
23
0
6
296
470
496
952
1131
1389
1684 2L11 2523
24
0
7
2B5
455
6B1
9JS
1139
1379
1676 2104 2520
27
0
7
279
445
449
927
1129
1370
166B 2096 2515
2B
0
B
276
439
440
91B
1120
1362
1661 2092 2510
29
rt
B
274
434
454
910
1113
1355
1655 2087 2506
30
0
B
273
432
449
904
1107
1349
1650 2082 2502
31
0
B
27]
430
444
900
1102
1345
1645 2079 2499
32
0
B
273
429
443
096
I09B
1341
1641 2075 2496
33
0
8
273
42B
441
894
1095
1337
1638 2072 2494
34
0
a
273
420
640
692
1093
1335
1636 2070 2492
35
0
9
274
42B
639
B90
1091
1333
1634 206B 2490
36
0
9
274
42B
639
EB9
1089
1331
1632 2067 24B9
37
0
9
274
42B
630
888
1088
1330
1631 2066 24B8
33
0
9
274
423
638
BSB
10BB
1329
1630 2065 24B7
3?
0
9
275
428
63B
880
1087
1329
1630 2064 2487
49
0
9
275
42B
638
B3B
10B7
1329
1629 2064 24B7
>il Eas Radon Concentrations
(
10.00000 pCi/Liter)
24.0
25.0
26.0 27.0
28.0
1
7451
7461 7461 7461 7441
4
7451
7461 746]
7461
7441
V
J
7451
7441
7461 7461
7441
4
7451
74M
7462
7461
7441
j
7451
7461 7441 7461 7461
4 7451
7461
7441
7461
7441
7
7451
7441
7461 7441
7441
0 7451 7461 7461 7461 7441
? 7451 7441 7441 7441 7441
19 7451 7441 7441 7441 7461
II 745! 7441 7441 7451 74M
RAETRAD v3.1
RAdon Eaanition and TRAnsport into Duellings
developed by Rogers i Associate* Engineering Corporation
(ft.I >
12.0 13.0 14.0 15,0 14.0 17.0 1B.0 19.0 20.0 21.0 22.0 23.0
4311 4604 4930 5049 5293 5307 5730 5011 4134 6105 6729 6760
4311 4604 4930 5069 529J 5307 5730 SB11 4134 6105 6729 6760
4311 4404 4930 3069 5293 5387 5730 5011 4134 6105 6729 6760
4J1J 4404 4930 5049 5293 5307 5730 5011 6134 6185 6729 6740
4310 4404 4930 5049 5293 5387 5730 5011 6134 4105 6729 6740
4310 4404 4930 5049 5293 5387 5730 5011 4134 6105 6729 6760
4310 4603 4930 5069 5293 5387 5730 5011 6134 6105 6729 6760
4309 4403 4930 5069 5293 53B7 5730 5811 6134 6185 6729 6740
4308 4403 4930 5049 5293 5307 5730 5811 6134 6185 6729 6760
4308 4602 4930 5069 5293 5307 5730 3B11 6134 6105 6729 6760
4307 4602 4929 5069 5293 5307 5730 5811 6134 6185 6729 6760
4306 4601 4929 5069 5293 5307 5730 5B11 6134 6105 6729 6760
4305 4601 4929 5069 5293 5307 5730 5011 6134 6105 6729 6740
4304 4400 4929 5069 5293 5307 5730 5811 6134 6185 6729 6760
4303 4600 4929 506B 5293 5307 5730 5811 6134 6185 6729 6760
4301 4599 4920 5060 5293 5307 5730 5811 6134 6185 6729 6760
4300 4598 492B 5060 5293 5387 5730 5811 6134 6185 6729 6760
4299 459B 4920 5068 5293 5307 5730 5B11 6134 6185 6729 6760
4297 4597 4920 5068 5293 53B7 5730 5811 6134 6185 6729 6760
4296 4596 4927 5068 5293 5307 5730 5811 6134 6185 6729 6760
4295 4596 4927 5060 5293 33B7 5730 5011 6134 6185 6729 6760
4293 4395 4927 5068 5293 33B7 3730 3011 6134 61B5 6729 6760
4292 4594 4927 5048 5293 5307 5730 5811 6134 6185 6729 6760
4291 4394 4926 5067 5293 3307 5730 5811 6134 6185 6729 6760
4290 4593 4926 5067 5293 3307 3730 3811 6L34 6183 6729 4760
42B8 4393 4926 5067 5293 53B7 5730 5011 6134 6105 6729 6760
4287 4592 4926 5067 5293 5387 5730 3011 6134 61B3 6729 6760
4206 4592 4925 5067 5293 5307 5730 5011 6134 6105 6729 6760
4203 4591 4925 5067 5293 5307 5730 5011 6134 6105 6729 6760
4203 4391 4925 5067 5293 5307 5730 5B11 6134 61B5 6729 6760
42B4 4590 4925 5067 5293 5307 5730 5811 6134 6185 6729 6760
4203 4590 4925 5067 5293 53B7 5730 5811 6134 6185 6729 6760
4283 4590 4925 5067 5293 5387 3730 3811 6134 6185 6729 6760
4282 43B9 4923 5067 5293 3307 5730 3011 4134 6105 6729 6760
4282 4589 4925 5067 5293 53B7 5730 5B11 6134 6105 6729 6740
42B1 45B9 4924 5047 5293 33B7 5730 5011 6134 6185 6729 6760
4281 4589 4924 5067 5293 3387 3730 5811 6134 6185 4729 6760
4281 43B? 4924 5067 5293 5387 5730 5811 6134 61B5 67P9 6760
4201 45B9 4924 5067 5293 5387 3730 5811 6134 6183 6729 6760
4281 4589 4924 5067 5293 5387 5730 5B11 6134 6185 6729 6760
(ft.) >
0
depth
10.0 11.0
3130 3672
3130 3672
3129 3672
3129 3671
3128 3671
3126 3470
3125 3469
3123 3448
3121 3464
31XB 3443
3116 3663
3112 3441
3109 3659
3105 3454
3102 3654
3097 3451
3093 3640
30B9 3646
3004 3643
3079 3640
3075 3637
3070 3434
3045 3431
3041 342B
3057 3626
3033 3623
3050 3621
3044 3619
3043 3617
2ft>41 3615
3030 3614
3034 *612
3035 3611
3033 3610
3032 3609
3031 3609
3030 3608
3030 3608
3029 3607
3029 3607
depth
B-1
-------
12 7451 7461 7461 746
13 7431 7461 7461 746
14 7451 7461 7461 746
13 7431 7461 7461 746
16 7431 7461 7461 746
17 7431 7461 7461 746
IB 7431 7461 7461 746
1? 7431 7461 7461 746
20 7431 7461 7461 746
21 7431 7461 7461 746
22 7451 7461 7461746
23 7431 7461 7461 746
24 7451 7461 7461 746
23 7431 7461 7461 746
26 7431 7461 7461 746
27 7431 7461 7461 746
2B 7431 7461 7461 746
2? 7451 7461 7461 746
30 7451 7461 7461 746
31 7451 7461 7461 746
32 7451 7461 7461 746
33 7431 7461 7461 746
34 7431 7461 7461 746
35 7451 7461 7461 746
36 7451 7461 7461 746
37 7451 7461 7461 746
38 7451 7461 7461 746
39 7451 7461 7461 746
40 7451 7461 7461 746
-------
SCENARIO TITLE:
FILE NAME:
RUN DATE:
test cell 2: Cases 5-6:Run 8
run8
10/26/1992 9 16:35
RAETRAD v3.1
RAdon Eaanation and TRAniport into Dwellings
developed by Rogers I Associates Engineering Corporation
INPUT PARAMETERS :=
HOUSE:
Diimioni
Arti
Fill thickness
Footing depth
19.5 * 19.5 ft.
390 iq. ft.
0 units I .Oft.)
3 units ( 2.0ft.)
Equiv. ellipse radius : 11 ft.
Aspect ratio : 1.000
Circuiference : 69.1 ft.
Indoor pressure ; -.6 Pa.
Outdoor Pressure
Indoor tin find.
Outdoor Rn Bnd.
Radial Hesh Units
.00 Pa
22.00 pCi/L
.00 pCi/L
.50 ft.
FLOOR OPENINBS:
Crack or
Penetration
Type
Nuaber of
Penetrations
Elliptical Crack
Loc. Fra
Peretr
ft
10.500
Local
Pressure
Pa
-.60
Local
Rn Bndry
pCi/L
22.00
Radial
Nidth
ci
.84
Arc
Length
ca
Porosity
Peri.
ca2
Diff.
ci2/s
.00 1.000 5.00E+02 1.00E-01
FOUNDATION
Lvr
I SOILS:
Thickness
Vrt
Ra226 Dins. Enn. Tot. Sat'n P.Sin Diff.Rad Diff.Vir Pira.Rad Pera.Ver Cads
No.
ft Div
pCi/g
g/ca3
frac.
Poros
frac.
ca
ci2/s
ci2/s
c»2
ca2
cc/g
Hatiri
FLR
.333
1.0
2.100
-071
.170
.500 ¦
.000290
6.30E-O4
6.30E-04
6.50E-12
6.50E-12
.000100
Cond
1
.030
.0
1.000
.000
, .600
.100
.044200
1.00E-01
l.OOE-Ol
1.00E-03
1.00E-03
.000100
Sand
2
.030
7.5
1.539
.250
.430
.350
.044200
1.93E-02
1.93E-02
2.08E-07
2.08E-07
,000100
Sand
3
.970
7.5
1.539
.250
.430
.350
.044200
1.93E-02
1.9JE-02
2.0BE-07
2.0BE-07
.000100
Sand
4
1.000
7.2
1.539
.245
.430
.220
.044200
2.73E-02
2.73E-02
2.42E-07
2.42E-07
.000100
Sand
5
1.000
6.0
1.539
.220
.430
.250
.044200
2.52E-02-
2.52E-02
2.38E-07
2.3BE-07
.000100
Sand
6
1.000
7.3
1.539
.247
.430
.260
.044200
2.46E-02
2.46E-02
3.80E-08
3.80E-0B .000100
Sand
7
1.009
10.2
1.539
.304
.430
.290
.044200
2.27E-02
2.27E-02
2.29E-07
2.29E-07 .000100
Sand
B
1.000
6.6
1.539
.232
.430
-.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07
.000100
Sand
9
1.000
5.0
1.539
.200
.430
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07
.000100
Sand
10
1.000
6.3
1.539
.227
.430
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07
.000100
Sand
11
1.000
6.3
1.539
.227
.430
;50Q
.044200
1.21E-02
1.21E-02
1.18E-07
1.1BE-07
.000100
Sand
12
1.000
6.3
1.539
.227
.430
.610
.044200
7.35E-03
7.35E-03
4.73E-08
4.73E-08
.000100
Sand
13
1.000
6.3
1.539
.227
.430
.680
.044200
4.63E-03
4.63E-03
1.91E-08
1.91E-08
.000100
Sand
14
2.000
6.3
1.539
.227
.430
.750
.044200
2.41E-03
2.41E-03
5.59E-09
5.59E-09
.000100
Sand
15
2.000
6.3
1.539
.227
.430
.790
.044200
1.47E-03
1.47E-03
2.32E-09
2.32E-09
.000100
Sand
16
2.000
6.3
1.539
.227
,430
.820
.044200
9.44E-04
9.44E-04
1.10E-09
1.10E-09
.000100
Sand
17
2.000
6.3
1.539
.227
.430
.B60
.044200
4.66E-04
4.66E-04
3.51E-10
3.51E-10
.000100
Sand
16
2.900
6.3
1.539
.227
.430
.890
.044200
2.47E-04
2.47E-04
1.34E-10
1.34E-10
.000100
Sand
1?
2.000
6.3
1.539
.227
.430
.930
.044200
9.06E-05
9.06E-05
3.15E-11
3.15E-11
.000100
Sand
20
5.000
6.3
1.539
.227
.430
.970
.044200
2.67E-05
2.67E-05
6.06E-12
6.06E-12
.000100
Sand
FIS
2.000
1.0
1.700
.077
.370
.200
.000290
1.00E-02
1.00E-02
1.00E-07
1.00E-07
.000100
Cone I
B-12
-------
SCENARIO TITLE: leit cell 2: Cases 5-6:Run 0 RAETRAO v3.I
FILE NAHEj runB RAdon Eaanation ind TRAnsport into Dwellings
developed by Rogers I Associates Engineering Corporation
sr3iss:3i3ssKi3u:s£saii
"M3s*=ss**aB=3*®MS: ANALYSIS RESULTS i«="=S"*e*s-r«"3Sa3«a*S3sis*s*""«rs=sss=S22S«x;
RADON ENTRY PROFILE:
-House Center-
Elliptical crack
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
—{Jitass
Air
Elf.
Radon
Radial
Entry
Radon
Entry
Positn
Rate
Flux
Rate
ft
cfa
pCi/a2s
pCi/s
.SO
1.69E-02
5.43E+02
3.96EKM
1.00
1.80E-09
3.2BE-0]
7.19E-02
1.50
3.27E-09
3.28E-01
I.20E-01
2.00
4.B7E-09
3.2BE-01
1.67E-01
2.50
6.55E-09
3.27E-01
2.15E-01
3.00
B.31E-09
3.25E-01
2.61E-01
3.50
1.01E-08
3.23E-01
3.07E-OI
4.00
1.20E-0B
3.21E-01
3.51E-01
•.J'W
1.39E-09
3.18E-01
3.95E-01
5.00
1.5BE-0B
3.15E-01
4.37E-01
3.50
1.7BE-0B
3.12E-01
4.78E-01
6.00
1.97E-0B
3.0BE-01
3.17E-OJ
6.50
2.17E-0B
3.03E-01
3.53E-01
7.00.
2.3BE-0B
2.9BE-01
3:B7E-01
7.30
2.58E-0B
2.92E-01
6.19E-01
e.oo
2.78E-08
^2.B6E-01
6.47E-0I
0.50
2.99E-0B
, 2(79E-01
6.71E-01
9.00
3.19E-0B
— 2.70E-01
6.91E-01
9.30
3.40E-0B
2.61E-01
7.06E-01
10.00
3.60E-0B
J.51E-01
7.15E-01
10.50
3.81E-0B
2.40E-O1
7.17E-01
11.00
4.01E-0B
2.27E-OI
7.J3E-01
11.50
9.7BE-07
B.26E-02
2.71E-01
1ND0M TOTAL
1.69E-02
1.41E+00
4.98E«01
"TToo
-1.32E-02
9.4BE-01
3.25E401
12.50
-3.60E-03
5.62E-01
2.01E»01
13.00
-2.45E-03
5.51E-01
2.05E+01
13.50
-1.95E-03
5.56E-01
2.15E+01
14.00
-1.62E-03
5.61E-01
2.25E+01
14.50
-1.37E-03
5.63E-01
2.35E+01
15.00
-1.1BE-03
5.6BE-01
2.45E<01
15.50
-1.04E-03
5.71E-01
2.54 E*01
lb.00
-9.32E-04
5.73E-0J
2.63E *01
16.30
-B.4BE-04
5.75E-01
2.72E+0I
17.00
-7.B3E-04
5.76E-01
2.B2E+01
17.50
-7.35E-04
5.77E-01
2.91E+01
IB.00
-7.01E-04
5.7BE-01
2.99E+01
IB. 50
-6.79E-04
5.79E-01
3.0BE+01
19.00
-6.67E-04
5.79E-01
3.17E»01
19.50
-6.45E-04
5.79E-01
3.26E+01
20.00
-6.72E-04
5.B0E-01
3.34E«01
INDOOR RADON :
CPU Calc. Tiie:
84.7E3 pCi/L (assuaing .0240 ich I B.00 (t Height)
90.00 seconds B-1 3
-------
SCENARIO TITLE: tut till 2: Cisei 5-i:Run B
FILE runfl
RA£TRAD *3.1
RAdon EfMitioa tnd IBAniport into Dwellings
dfvetopefl by Sogers I Aissditei Engineering Corporation
Suction Pressures, I- .0010 Pi! depth (ft.) )
.0 ,0 1.0 2.0 1.0 4,0 5.0 4.0 7.0 fl.O 9.0 10.0 11.0 12.0 13.0 14.0 15.0 14.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0
1
591
590
540
534
515
401
382
363
349
339
332
324
316
304
296
286
27?
271
266
259
254
248
245
240
237
2
589
589
540
534
515
400
382
343
348
338
331
323
314
304
296
285
278
270
265
258
254
248
245
240
237
3
588
518
559
535
514
399
381
342
347
337
330
322
315
303
295
284
277
270
265
258
253
248
244
239
236
4
587
587
558
134
513
397
379
340
345
334
328
321
313
301
293
283
276
268
263
257
252
247
244
23?
236
5
587
587
55J
533
511
395
377
358
343
333
326
319
311
299
291
291
275
267
262
255
251
246
243
239
235
&
581
584
554
531
509
392
374
355
340
330
323
314
308
297
2B?
27?
273
265
260
254
250
244
241
237
234
7
584
584
555
52?
504
389
370
351
337
327
320
313
305
294
296
277
270
263
258
252
248
243
240
235
232
1
515
585
553
527
503
3B5
341
347
333
323
314
30?
302
291
283
274
268
261
256
250
246
241
238
234
231
9
585
585
551
524
500
380
341
342
329
319
311
305
297
237
2B0
271
245
258
253
247
244
239
236
232
22?
10
585
585
519
520
495
375
354
337
323
313
307
300
293
283
274
267
261
255
250
241
241
237
234
230
227
11
584
534
544
515
490
34?
350
331
317
308
301
294
288
278
271
263
258
251
247
242
238
234
232
228
225
12
584
584
543
510
483
342
313
324
311
302
2?5
289
282
273
247
259
254
248
244
239
235
231
229
225
223
13
584
584
539
504
475
354
335
317
304
295
289
283
277
268
262
254
249
244
240
235
232
22?
226
223
221
14
514
584
535
494
444
344
327
30?
296
288
282
274
270
242
256
250
245
240
236
232
229
226
223
220
21B
15
584
584
529
487
455
jj6
318
300
288
280'
274
249
264
256
251
245
240
235
232
228
226
222
221
218
214
14
513
583
522
475
442
324
301
291
280
272
267
242
257
250
245
239
235
231
228
221
222
21?
217
215
213
17
583
593
512
441
424
314
297
281
270
244
25T"
'254
250
243
239
234
230
227
224
221
218
216
214
212
210
11
583
563
501
444
407
301
285
271
241
255
251
244
243
237
233
228
225
222
220
217
215
212
211
209
208
19
583
583
4B5
422
384
287
272
240
251
244
242
238
235
230
227
223
220
217
215
213
211
209
208
206
205
20
5S3
583
444
394
354
272
25?
249
241
237
233
230
229
223
221
217
215
212
211
209
207
206
205
203
202
21
593
583
433
344
324
255
245
237
231
227
225
222
220
217
214
212
210
208
206
205
203
202
201
200
19?
22
513
583
384
327
284
238
231
225
"22r
219
214
214'
212
210
208
206
205
203
202
201
200
199
198
197
197
23
19B
198
225
229
242
220
217
213
210
*209
207
204
205
203
202
200
19?
198
19S
197
196
195
195
194
194
24
0
15
153
187
204
203
203
202
200
200
19?
198
199
197
196
m
194
194
193
193
192
192
192
191
191
25
0
4
10?
152
171
187
190
191
191
1?1
191
191
191
190
190
190
190
189
189
189
189
189
189
189
198
24
0
2
82
123
144
173
177
180
1B2
182
183
183
184
1B4
184
165
IBS
185
185
185
186
186
1B4
186
186
27
0
2
44
101
121
140
m
170
173
174
175
174
177
178
179
180
180
181
181
182
182
183
183
183
184
28
0
2
51
B3
103
14?
154
141
145
147
141
170
171
173
174
175
176
177
178
179
179
1B0
180
191
191
0
1
42
70
88
139
144
153
157
160
142.
164
145
147
16?
171
172
173
174
175
176
177
178
17?
179
30
0
1
35
59
74
130
138
145
150
154
154
158
160
163
164
167
168
170
171
173
174
175
175
176
177
31
0
1
30
51
47
122
131
139
144
148
150
153
155
159
160
163
145
167
169
170
171
172
173
174
175
32
0
1
24
45
5?
114
125
133
13?
143
145
:149
150
154
157
160
162
144
165
167
169
170
171
173
173
33
0
1
23
40
53
110
119
128
134
138
141
144
146
150
153
157
159
161
163
165
167
168
169
171
172
34
0
1
20
34
49
104
115
123
130
134
137
110
143
147
150
154
156
159
161
163
165
167
169
170
171
35
0
1
18
33
45
102
111
120
124
130
134
137
140
145
148
152
154
157
159
162
163
165
166
168
149
34
0
1
17
31
42
99
JOB
117
123
12B
131
134
137
142
144
150
152
154
159
160
162
144
165
167
163
37
0
0
14
2?
40
94
105
114
121
125
129
132
135
141
144
148
151
154
154
15?
161
143
164
166
168
38
0
0
15
28
39
95
103
112
119
124
127
131
134
139
143
147
150
153
155
159
160
142
164
166
147
39
0
0
15
27
38
93
102
111
118
123
126
130
133
138
142
146
149
153
155
158
160
162
163
145
147
40
0
0
15
27
37
93
102
111
119
122
124
129
133
139
141
146
149
152
154
157
159
162
163
165
166
Suction Pressures, {- .0010 Pi) depth |ft.l >
24.0 25.0 26.0 27.0 21.0
1 231 226 222 220 218
2 230 225 222 21? 211
3 230 225 221 21? 218
4 229 224 221 21? 219
5 229 224 220 2ia 217
6 228 223 220 217 214
7 224 222 219 217 216
S 225 221 2|fl 214 215
9 224 219 214 214 214
10 222 218 215 213 212 B-14
11 223 214 214 212 211
12 218 215 212 211 213
-------
13
216
213
211
209
20B
14
214
211
209
207
207
15
212
209
207
206
205
16
210
207
203
204
203
17
207
205
203
202
202
IS
203
203
201
201
200
19
203
201
200
199
19B
20
200
199
19B
197
197
71
19B
196
196
U3.
195
22
195
194
194
193
193
23
193
192
192
191
191
24
191
190
190
190
190
25
IBB
IBB
IBB
18B
IBB
24
1B&
186
1B6
196
186
27
1B4
184
185
IBS
185
2B
1B2
183
163
183
1B3
29
180
181
1B2
1B2
1B2
30
17B
179
180
1B1
iei
31
177
17B
179
179
180
32
175
177
178
178
179
33
174
175
177
177
178
34
173
174
176
176
177
35
172
174
175
176
176
36
171
173
174
175
175
37
170
172
174
175
175
3B
170
172
173
174
175
39
169
171
173
174
174
40
169
171
173
174
174
-------
SCENARIO TITLE: test cell 2: Caws 5-4:Run 8
FILE NAME: runB
RAETRAD v3.1
RAdon Eunitioft ind TRAnsport into D»ellingi
developed by Rogeri k Aciociitei Engineering Corporation
Soil Sis Ridon Concentrations ( 10.00000 pCi/liter)
.0 .0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 6.0 9.0
1
492
493
592
635
674
724
773
767
757
778
813
•>
L
495
495
591
634
674
724
773
766
757
778
813
3
495
495
591
634
673
723
772
766
757
776
812
4
494
494
590
633
672
722
771
765
756
778
B12
5
493
493
569
631
671
721
770
765
756
777
812
6
490
490
587
630
669
719
769
764
755
777
811
7
488
488
584
627
667
716
768
762
754
776
811
8
484
4B4
3B1
625
665
716
766
761
753
775
810
9
480
480
578
621
662
713
763
759
752
774
809
10
476
476
574
618
659
710
761
757
750
773
806
11
470
470
569
613
655
707
758
755
74B
771
807
12
464
464
564
608
650
703
755
752
746
770
806
13
457
457
553
603
645
696
751
750
744
768
803
14
450
450
351
596
639
693
746
746
742
767
804"
15
441
441
543
566
632
687
742
743
739
765
802
16
431
431
533
579
624
680
736
739
737
763
801
17
420
420
522
569
615
673
730
735
734
760
799
18
408
408
509
556
604
665
724
731
731
758
797
19
394
395
494
542
592
656
717
726
728"
756
796
20
379
379
474
526
579
646
710
721
724
'754
794
21
362
362
448
507
564
635
702
717
721
751
792
22
343
344
411
487
548
624
695
712
718
749
791
13
126
126
317
436
530
613
687
707
715
747
769
24
0
14
291
416
515
604
6B0
703
712
744
768
25
0
6
275
402
503
595
674
699
709
742
764
26
0
B
266
391
494
3B8
669
695
706
74]
785,
27
0
6
260
394
487
562
664
692
704
739
784
28
0
8
256
379
481
577
660
689
702
737
782
29
0
9
254
375
477
573
657
666
700
736
781
30
0
B
252
372
474
570
454
684
699
735
781*
31
0
B
251
370
472
567
452
683
697
734
760
J 2
0
9
251
369
470
565
650
681
696
733
779
33
0
9
250
368
466
564
649
630
695
732
778
34
0
9
250
347
467
563
647
679
695
732
778
35
0
9
250
367
467
562
647
678
694
731
778
36
0
9
250
366
466
561
646
678
694
731
777
37
0
9
249
366
466
561
645
677
693
730
777
38
0
9
249
366
465
560
645
677
£93
730
777
39
0
9
249
366
465
560
645
677
693
730
777
40
0
9
249
366
465
560
645
677
693
730
777
Soil Gat Radon Concentritions { 10.00000 pCi/Liter)
24.0 25.0 26.0 27.0 2B.0
1 1018 1020 1820 1020 1620
2 1610 1B20 1820 1B20 1620
3 1616 1620 IB20 1820 1620
4 1B1B 1B20 1B20 1B20 1620
5 1816 1620 1620 1620 1920
4 1818 1820 1820 1620 1B20
7 1916 1820 1820 1820 1820
5 181B 1820 1220 1620 1820
9 1816 1820 1620 1820 1820
10 1616 1820 1820 1820 1E20
depth (ft.) >
10.0 11.0 12.0 13.0 14.0 15.0 14.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0
877 942 1080 1134 1207 1238 1292 1314 1398 1418 1496 150? 1642 1649
077 942 1060 1136 1207 1236 1292 1314 1398 1416 1496 1509 1642 1649
877 962 1079 1134 1207 1238 1292 1314 1398 1416 1496 1509 1642 1649
877 962 1079 1136 1207 1238 1292 1314 1396 1416 1496 1509 1642 1649
874 942 1079 1134 1207 1236 1292 1314 1396 1418 1494 1509 1442 1649
874 942 1079 1134 1207 1236 1292 1314 1398 1418 1494 1509 1442 1649
874 941 1079 1134 1207 1238 1292 1314 1J98 1418 1494 1509 1642 1449
875 961 1079 U35 1207 1238 1292 1314 1398 1418 1494 1509 1442 1449
875 961 1079 1135 1207 1238 1292 1314 1398 1418 1494 1509 1642 1649
874 940 1079 1135 1207 1238 1292 1314 1398 141B 1496 1509 1442 1449
873 940 1079 1135 1207 1238 1292 1314 1398 1418 1496 1507 1642 1449
873 960 1078 1135 1207 1238 1292 1314 1398 1418 1496 1509 1642 1649
872 959 1078 1135 1207 1238 1292 1314 1398 1418 1496 1509 1642 1649
871 958 107B 1135 1207 1238 1292 1314 1398 1418 1496 1509 1642 1649
870 958 1070 1135 1207 1238 1292 1314 1396 1418 1496 1509 1642 1649
869 957 1077 1135 1207 1238 1292 1314 1398 1418 1496 1509 1642 1649
868 957 1077 1135 1207 1238 1292 1314 1398 1418 1496 1509 1642 1649
867 956 1077 1134 1206 1238 1292 1314 139B 1418 1496 1509 1642 1649
866 953 1077 1134 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
863 953 1076 1134 1206 1238 1292 1314 1398 1418 1496 1509 1442 1649
844 954 1076 1134 1^6 1238 1292 1314 1396 1418 1496 1509 1642 1649
862 954 1076 1134 1204 1238 1292 1314 1398 1418 1496 1509 1642 1649
861 953 1076 1134 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
860 952 1075 1134 1206 1238 1292 1314 1398 14IB 1496 1509 1642 1649
859 952 1075 1134 1206 123B 1292 1314 1398 1418 1496 1509 1642 1649
859 951 1075 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
858 951 1075 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
857 950 1074 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
856 950 1074 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
856 949 1074 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
855 949 1074 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
655 949 1074 1133 1206 1238 1292 1314 1398 141B 1496 1509 J442 1649
854 949 1074 1133 1206 123B 1292 1314 139B 1416 1496 1509 1642 1649
854 948 1074 1133 1206 1238 1292 1314 1398 1418 1496 1509 1442 1449
854 948 1073 1133 1204 1238 1292 1314 1398 1418 1496 1509 1642 1649
853 948 1073 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
853 948 1073 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
853 948 1073 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
853 948 1073 1133 1206 123B 1292 1314 1398 1418 1496 1509 1642 1649
853 946 1073 1133 1206 1238 1292 1314 1398 1418 1496 1509 1642 1649
depth (ft.) >
B-16
-------
12 IBIS
1B20
1620
1E20
1820
13 1018
1820
1B20
1820
1820
14 1818
1820
1620
1820
1820
13 1818
1820
1820
1820
1820
16 1818
1B20
1820
1820
1820
17 1B18
1820
1B20
1629
1620
19 1818
1820
1820
1820
1920
1? 1B19
1620
1B20
1820
1820
20 181B
1820
1820
1B20
1820
21 1818
1B20
1620
1620
1820
22 1818
1820
1820
1820
1820
23 1018
1820
1620
1620
1820
21 IBIS
1620
1620
1B20
1820
25 1818
1B20
1820
1820
1820
OD
GO
-a
-------
SCENARIO TITLE: test ctll 2: Cue* 7,9iRun 10
FILE NAME: runlO
RUN DATE: 10/26/1992 » 17:10
RAETRAD v3.I
RAdon Eaanation and TRAniport into Dwellings
develops by Rogers t Associates Engineering Corporation
:::s;::ss3osBsiiscziBisiBisifaisaiia>iiaaiiBSffSfficscs3 • |HPUT PARAMETERS • 'ss'uaBiisisssnciBcsisissiiisvicissssssasisssssascsss
HOUSE:
Diiensicns
Arei
Fill thickness
Footing depth
19.5 i 17.3 ft,
380 sq. ft.
0 units [ .Oft.)
3 units ( 2.0ft.)
Eqjjy. ellipse radius : 11 It.
Aspect ratio : 1.000
Circuiference : 69.1 ft.
Indoor pressure : -20.0 Pi.
Outdoor Pressure : .00 Pi
Indoor fin End, : 50.00 pCi/L
Outdoor Rn Bnd. : .00 pCi/L
Radial Mesh Units : .50 ft.
FLOOR OPENINGS:
Crack or
Penetration
Type
Elliptical Crack
Nuaber of
Penetrations
Loc. Frt
Pentr
ft
Local
Pressure
Pa
10.500 -20.00
Local
Rn Bndry
pCi/L
50.00
Radial
Nidth
ca
.64
Arc
Length
c»
Porosity
Peri.
c.2
Diff.
ca2/s
.00 1.000 1.00E-02 1.00E-01
ATION I SOILS:
Lvr
Thickness
Vrt.
Eaan.
Tot.
Sat'n
P.Diaa
Diff.Rid
Diff.Ver
Pera.Rad
Pera.Ver Kadi
No.
ft
Div.
frac.
Poros
frac.
ca
ca2/s
ci2/s
ca2
ci2 cc/g
Material
FLR
.333
.071
.170
.500 •
.000290
6.30E-04
6.30E-04
6.50E-12
6.30E-12 .000100
Cond
1
.030
.000
, .600
.100
.044200
1.00E-01
1.00E-01
1.00E-03
1.00E-03 .000100
Sand
2
.030
.250
.430
.330
.044200
1.93Er02
1.93E-02
2.0BE-07
2.08E-07 .000100
Sand
3
.970
.250
.430
.350
.044200
1.93E-02
-1.93E-02
2.0BE-07
2.08E-07 .000100
Sand
4
1.000
¦ 243
.430
.220
.044200
2.73E-02
2.73E-02
2.42E-07
2.42E-07 .000100
Sand
5
1.000
.220
.430
.250
.044200
2.52E-02
2.52E-02
2.3BE-07
2.3BE-07 .000100
Sand
6
1.000
.247
.430
.260
.044200
2.46E-02
2.46E-02
3.8OE-0B
3.BOE-08 .000100
Sand
7
1.000
.304
.430
.290
.044200
2.27E-02
2.27E-02
2.29E-07
2.29E-07 .000100
Sand
B
1.000
.232
.430
¦ -.430
.044200
1.J3E-02
1.53E-02
1.63E-07
1.65E-07 .000100
Sand
9
1.000
.200
,430
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.63E-07 .000100
Sand
10
1.000
.227
.430
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07 .000100
Sand
11
1.000
.227
.430
MOO
.044200
1.21E-02
1.21E-02
1.1EE-07
1.18E-07 .000100
Sand
12
1.000
.227
.430
.610
.044200
7.35E-03
7.35E-03
4.73E-08
4.73E-08 .000100
Sand
13
1.000
.227
.430
.680
.044200
4.63E-03
4.63E-03
1.91E-08
1.916-0B .000100
Sand
14
2.000
.227
.430
.750
.044200
2.41E-03
2.41E-03
5.59E-09
5.59E-09 .000100
Sand
15
2.000
.227
.430
.790
.044200
1.47E-03
1.47E-03
2.32E-09
2.32E-09 .000100
Sand
16
2.000
.227
.430
.820
.044200
9.44E-04
9.44E-04
1.10E-09
1.10E-O9 .000100
Sand
17
2.000
.227
.430
.860
.044200
4.64E-04
4.66E-04
3.51E-10
3.51E-10 .000100
Sand
ia
2.000
.227
.430
.690
.044200
2.47E-04
2.47E-04
1.34E-10
1.34E-10 .000100
Sand
19
2.000
.227
.430
.930
.044200
9.06E-05
9.06E-05
3.15E-11
3.15E-11 .000100
Sand
20
5.000
.227
.430
.970
.044200
2.67E-05
2.67E-05
6.06E-12
6.06E-12 .000100
Sand
FTG
2.000
.077
.370
.200
.000290
1.00E-02
1.00E-02
1.00E-07
1.00E-07 .000100
Cond
B-18
-------
SCENARIO TITLE: test ctlJ 2i Cues 7,9:Run 10
FILE NANE: runlO
RAETRAD *3.1
RAdon Eaanatisn ind TRAnsport into Daellinqs
developed by Rogers I Associates Engineering Corporation
ANALYSIS RESULTS
RADON ENTRY PROFILE:
House Center-
Elliptictl crick
0
0
0
0
0
0
0
D
0
0
0
0
0
0
0
0
0
0
0
0
0
| —•™geo*e*
INDOOR RADON
Air
EH.
Radon
Radial
Entry
Radon
Entry
Positn
Rate
Flux
Rite
It
ef»
pCi/i2s
pCi/s
.SO
8.6BE-02
2.I6E+03
1.57E+02
J.DO
2.75E-06
2.75E-01
6.02E-02
1.50
1.59E-06
2.71E-0I
1.00E-01
2.00
6.13E-06
2.73E-01
J-40E-01
2.50
B.26E-06
2.72E-01
1.79E-01
3.00
1.01E-05
2.70E-01
2.17E-01
3.50
1.19E-05
2.6BE-01
2.54E-01
1.00
1.3BE-0J
2.65E-01
2.91E-oi
—1.50
1.56E-05
2.62E-01
3.26E-01
.5.00
1.75E-05
2.59E-01
3.59E-01
-- 5.50
1.95E-05
2.55E-01
3.91E-01
6.DO
2.11E-05
2.50E-01
1.2OE-0I
6.50
2.30E-05
2.15E-01
1.47E-01
7.00
MBE-05
2.39E-01
1.72E-01
7.50
2.67E-05
2.33E-01
1.92E-01
6.00
2.85E-05
2.25E-01
5.09E-O1
B.SO
3.03E-05
2.16EHJ1
5.21E-01
9.00
3.22E-05 _
_¦ 2.06E-01
5.27E-01
9.50
3.10E-05
1.95E-01
5.25E-01
10.00
3.59E-05
. 1.81E-01
5.11E-01
10.50
3.77E-05
1.65E-01
4.92E-01
11.00
3.95E-05
1.15E-01
1.51E-01
iJ 11-50
1.62E-05
2.BBE-02
9.17E-02
lNMOfl TOTAL
8.73E-02
4.6BE*00
I.65E+02
¦ '12.00
-6.B2E-02
1.1SE-01
3.93E+00
^12.50
-1.66E-02
9.73E-02
3.18E+00
13.00
-1.26E-02
1.9BE-01
7.35E+00
13.50
-1.01E-02
2.70E-01
1.05E»01
11.00
-B.31E-03
3.22E-01
1.29EM)!
11.50
-7.07E-03
3.61E-01
l.SQE^Ol
15.00
-4.11E-03
3.9iE-01
1.6BE+01
15.50
-5.37E-03
1.11E-01
1-S4E+01
16.00
-4.B1E-03
1.33E-01
1.99E+01
16.50
-4.37E-03
4.47E-01
2.12EtQl
17.00
-1.01E-03
1.59E-01
2.24E*01
17.50
-3.77E-03
1.6BE-01
2.34E+01
IB.00
-3.62E-03
4.75E-OJ
2.16E+01
1S.50
-3.50E-03
1.80E-01
2.56E+01
19.00
-3.UE-03
4.B4E—01
2.65E+01
19.50
-3.13E-03
1.B6E-01
2.73E+01
20.00
-3.17E-03
4.BBE-01
2.B1E+01
ich 1 B.00 ft Height!
CPU Cak. Tiit:
79.00 seconds
B-15
-------
SCENARIO TITLE: test cill 2s Cm 10 :Run 11
FILE NANEi runll
RUN DATE: 10/26/1992 I 17: 3
RAETRAD v3.1
RAdon Eianation and TRAnspart into D»ellings
developed by Rogers i Associites Engineering Corporation
sssaotsviiitsistueassaiicsBicsssiucscBSSsmtsi
¦: INPUT PARAMETERS :«=
HOUSE:
Diieniions :
Area :
Fill thickness :
Footing depth :
19.5 i 19.5 ft.
380 sq. ft.
0 units ( .Oft.|
3 units ( 2.0ft.)
Eauiv. ellipse radius : 11 ft.
Aspect ratio : 1.000
Circuiference : 69.1 ft.
Indoor pressure : -10.0 Pa.
Outdoor Pressure
Indoor Rn Bnd.
Outdoor Rn Bnd.
Radial Hesh Units :
.00 Pa
50.00 pCi/L
.00 pCi/L
.50 ft.
FLOOR 0PEN1N6S:
Crick or
Penetration
Type
Loc. Fr« Local Local Radial
Nuiber of Peritr Pressure Rn Bndry Width
Penetrations ft Pa pCi/L ci
Elliptical Crack
10.500 -10.00
50.00
Art
Length
ci
.B4
Porosity
Peri.
ci2
Diff.
ci2/s
.00 1.000 1.00E-02 1.00E-01
FOUNDATION t SOILS:
Lyr
Thickness
Vrt.
Bins.
Eaan.
Tot.
Sat 'n
P.Dial
Dilf.Rad
Diff.Ver
Peri.Rad
Ptri.Ver tads
No.
ft
Dm.
g/c*3
frac.
Poros
frac.
CI
ci2/s
ci2/s
ci2
ci2 cc/g
naterial
FLR
.333
1
2.1B0
.077
.170
.500
.000290
6.30E-04
6.30E-04
6.50E-12
6.30E-12 .000100
Cond
1
.030
1
1.000
.000
.600
.100
.044200
l.OOE-Ol
1.00E-01
1.00E-03
1.00E-03 .000100
Sand
2
.030
1
1.339
.250
.430
.330
.044200
1.93E-02
1.93E-02
2.0BE-07
2.0BE-07 .000100
Sand
3
.970
1
1.539
.250
.430
.350
.044200
1.93E-03
J.93E-02
2.08E-07
2.0BE-07 .000100
Sand
4
1.000
1
1.539
.243
.430
.220
.044200
2.73E-02
2.73E-02
2.42E-07
2.42E-07 .000100
Sand
5
1.000
1
1.539
.220
.430
.250
.044200
2.52E-02
2.52E-02
2.3BE-07
2.3BE-07 .000100
Sand
6
1.000
1
1.339
.247
.430
.260
.044200
2.46E-02
2.4AE-02
3.80E-0B
3.B0E-0B .000100
Sand
7
1.000
1
1.53?
.304
.430
.290
.044200
2.27E-92
2.27E-02
2.29E-07
2.29E-07 .000100
Sand
8
1.000
1
1.539
.232
.430
=.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.45E-07 .000100
Sand
9
1.000
1
1.539
.200
.439
.430
.044200
1.53E-02
1.53E-02
1.65E-07
1.65E-07 .000100
Sand
10
1.000
1
1.539
.227
.430
.430
.044200
1.53E-02
1.53E-02
1.45E-07
1.45E-07 .000100
Sand
11
1.000
1
1.539
.430
:soo
.044200
1.21E-02
1.21E-02
1.1BE-07
1.18E-07 .000100
Sand
12
1.000
1
1.539
.227
.430
.610
.044200
7.35E-03
7.35E-03
4.73E-0B
4.73E-0B .000100
Sand
13
1.000
1
1.539
.227
.430
.6B0
.044200
4.63E-03
4.63E-03
1.91E-0B
1.91E-0B .000100
Sand
14
2.000
1.539
.227
.430
.750
.044200
2.41E-03
2.41E-03
5.59E-09
5.59E-09 .000100
Sand
15
2.000
1.339
.227
.430
.790
.044200
1.47E-03
1.47E-03
2.32E-09
2.32E-09 .000100
Sand
16
2.000
2
1.539
.227
.430
.B20
.044200
9.44E-04
9.44E-04
1.10E-09
1.1QE-09 .000100
Sand
J7
2.000
2
1.339
.227
.430
1B6O
.044200
4.66E-04
4.64E-04
3.51E-10
3.51E-10 .000100
Sand
IB
2.000
2
1.339
.227
.430
.890
.044200
2.47E-C4
2.47E-04
1.34E-10
1.34E-10 .000100
Sand
19
2.000
2
1.339
.227
.430
.930
.044200
9.06E-05
9.06E-05
3.15E-11
3.15E-11 .000100
Sand
20
3.000
5
1.539
.227
.430
.970
.044200
2.67E-05
2.47E-03
6.06E-12
6.06E-12 .000100
Sand
FTB
2.000
3
1.700
.077
.370
.200
.000290
1.00E-02
1.00E-02
1.00E-07
1.00E-07 .000100
Concl
B-20
-------
SCENARIO TITLE: teit cell 2i Cast 10 :Run 11
FILE NAHEi runll
RAETRAD v3.1
RAdon Eianation and TRAnsport into Dwellings
developed by Rogers I Associates Engineering Corporation
.iI».u».>...u>.u«..nn.Uc::,R:::zuc„ull„l. ANALYSIS RESULTS .'""sastisssiiMnn-wnuManasassussxssr
RADON ENTRT PROFILE:
-House Center-
Elliptical crick
D
0
D
0
0
0
D
0
0
0
0
0
0
0
0
D
0
0
0
0
0
INDOOR RADON
Air
EM.
Radon
Rid Lai
Entry
Radon
Entry
Positn
Rate
Flui
Rite
It
di
pCi/i2s
pCi/s
—
—-—...
———_
.SO
4.34E-02
1.24EKI3
9.09EKI1
1.00
1.38E-06
3.05E-01
6.67E-02
1.50
2.29E-06
3.01E-01
1.11E-01
2.00
3.21E-06
3.03E-01
1.55E-OJ
2.30
4.13E-0&
3.02E-01
1.9BE-01
3.00
5.O5E-06
3.00E-01
2.41E-0J
3.3D
5.97E-06
2.9BE-01
2.B3E-01
4.00
6.89E-06
2.96E-01
3.23E-01
14.50
7.81E-0A
2.93E-01
3.63E-01
J5.O0
B.73E-06
2.B9E-01
4.01E-01
3.30
9.65E-06
2.B3E-01
4.37E-01
6.00
1.C6E-05
2.B1E-0]
4.72E-01
6.50
1.15E-05
2.76E-01
5.01E-O1
7.00
1.24E-05
2.71E-01
3.33E-01
7.50
1.33E-05
2.64E-01
3.59E-01
e.oo
1.42E-05
2.37E-01
5.B1E-01
0.30
1.52E-05
1 2.19E-01
3.99E-01
9.00
1.61E-05
2.40E-01
6.12E-01
9.50
1.70E-03
2.29E-01
6.1BE-01
10.00
1.79E-05
2.17E-01
6.I7E-01
10.50
1.8BE-05
2.03E-01
6.07E-01
11.00
1.98E-05
1.B7E-01
5.86E-0I
" J 11.50
2.31E-03
3.33E-02
I.76E-0I
INDOOR TOTAL
4.36E-02
2.83E+00
9.9BE+01
12.00
-3.41E-02
3.33E-01
1.90E+01
12.50
-9.30E-03
3.39E-01
1.2BE+01
13.00
-6.JlE-03
3.99E-01
1.49E+01
13.30
-5.03E-03
4.33E-01
1.6BE+01
14.00
-4.17E-03
4.6JE-01
1.B5E+01
14.50
-3.53E-0J
4 .BOE-rOl
2.00E+01
IS.00
-3.05E-03
4.93E-01
2.13E+01
13.50
-2.69E-03
V07E-01
2.26E01
16.09
-2.40E-03
5.16E-01
2.37E+01
16.30
-2.19E-03
3.23E-01
2.4BE»0I
17.00
-2.02E-03
5.29E-OI
2.59E«01
17.50
-1.90E-03
5.33E-01
2.69E*01
IB.00
-1.01E-O3
5.37E-01
2.7BE+0I
18.50
-1.73E-03
5.40E-OJ
2.87E +01
If.00
-1.72E-03
5.41E-01
2.96E+01
19.30
-1.72E-03
5.43E-01
3.05E+01
20.00
-1.73E-03
5.43E-01
3.13E+01
ach t 0.00 ft Height)
CPU Calc. lite:
S0.00 seconds
B-21
-------
APPENDIX C
LISTING OF THE RAETRAD SOURCE CODE
C-1
-------
LISTING FORi RABTRAS.BXB
i RAETRAD vj.l Wlodova Control file
i
CR'itrctt (Humichar |13),»i*JCh*r(10>)
TABaNiA?Chart9)
If wioExlac fPrograa Manager") »»«TT>OE then wiaHidat'Prograa Manager')
i
RiBZoaaMal C I * Raya). «xe*, ¦ *)
i
¦CtartS
!
CKECK.FlleExiBC(SCrCaC4TRUE Chan goto cud
BEEP
Hilugtl'DROI REROUTE*-, -The Fllei R5Y51.EXE eu doc be located")
•xlc
¦ CUD
MealaScrCac(CR,CR,* Checking ayatan configuration . . .*)
BOXOPD4 CRAETRAC veralen l.l'.Mcal)
i
arr»"
wc'WinConflgO
If !(wc*l) than aode-'keal*
it wcllt than node>'Standard'
if wi32 than aodea'Enhanced*
If w*2 than cpu.2B6
If vc44 than cpualtc
It veil than cpu«4(6
if wct<4 than cpu»80«t
if «ctl2S theo cpuagOISS
Cyalnfo«atrcattcpu,' '.Bode.' window '.MlnVeralon)1),'.',WlnVaralon(O),CR)
each-"Ho Bath'
if wet 1024 than Mtha'Hach*
Bouaea'No Novae*
if WlnMecrlca (1») than Bouae-"Mouee"
Syainfoaacrcat(eyaiafo.Beth." co-procaaaor. '.bojm, 1 available.'.CR)
ayalDfo»atrcac(ayainfo,winMetrica<0),#WinHetrlca(l|,¦ video reaolutioo. a,WlnMecrlci(-l),• color*.CR)
ErrorMode I SOFT)
LaacErrori)
PlayMedia cscatua MavaForB Ready*I
ErrorMode(•CANCEL)
if LaatErrorU !*U91 than ayainfo-atrcatlayalnfo,"Nlndowa Bulclmedlt axcanalona preaanc. ',CR)
bug a Nat BeC Capa(2)
if bugaaO than BaCha'No n"
if bug!aQ then Batha'N"
if bug-a2S« than Batha'Hicroaofc n*
if bug»aSi2 chan nath.'Lar. Manager n"
if bug>a7tR chan t>ath-" Novell Netware n*
if buga-1024 chan Batha'Banyan vinaa n"
if bug>>12!0 chan aach-'io Nac n*
ayaiafo-acrcac (ay ilDfo.Bach, 'etwork inatal1ed.•,CR)
bugaWinRaaourcaa(O)/1024 / Coapute aaaory avail
Bathaacrlan(bug)
if aath>3 Chan bugaatrcac(acraublbug,1.aaCh-1).',•, atraub(bug.aath-2,)))
ayainfo.atrcat(ayalnfo,CR,bug,• KB Free MaBory',CR)
eyalnfoaecrcac(ayalnfo.winRaaourcea12),*tt Syataa Raaourcaa Free_
I'.WlnReaourcea(1),•tt GDI. '.Wlnlleeouxcea(4),•** Uaer)*,CR)
ayaiofo«atrcaC (ayalnfo. 'DOS *, DoaVaralon (1DoeVerelori 10), " uaiog *.apvlroi»aptf COMBPEC*),CR)
dlakaaDlakScam1)
if diakaia" chan •yalofoaacrcat (ayelofo. 'Flopplaa *,diaka.CR)
diaka-01aUcan(2)
if dlakat-" chan ayalnfo.acrcat layalnfo,'Hard Dlaka ".diaka.CR)
dlaka«DiakScan(41
11 dLieke!-" chan ayainfoaacrcat(ayalnfo, "Hatwork Dlaka ',diaka.CR)
ayainfoaacrcaciayainfo.'Windows Directory *.DlrWindaws(O),CR)
ayalnfoaacrcatlayaiofo,"Syiten Directory ¦,DirNindowa(1),CR)
if cpu>a28t Chen goto Bach
C-2
-------
If cpuaajtt than goto Bath
If cpu*«4>< than goto ralaaaa .
arraStrCatlarr,• Tlx CPU n«da to ba at laaat a 2»6*,CR)
¦ Bath
if aathaa'Dath* than goto rtluai
arraStrCat(arr," A Math coprocaaaor la rarwandad'.CR)
¦ralaaaa
If Wlnvaralotull-.'J* than goto DOS
• rr.StrCatlarr." WLndova varalon 3.1 la raqulrad*,CR)
• DOS
If Do«Varalon(l)>*3 Chan goto b«bz
• rr*StrCat («rr, * DOS varaloo J.O or graatar la raciw»ain RSYS1.EXE can not ba locatad.')
•xlt
• Con
RunZoosMalt ('Rayal.axa', ")
If FllaDclatl 'ray*.HBT*)a-«FALSE than goto ovar
Procaaa-FllaOpaol'raya.wbt*.'READ')
¦ top
llna'FilaRaad(Procaaa)
If Una aa "ESp*' th«i goto attj
lllnal
goto top
i^rar
•aaaagal'RAETRAD varalon 3.1•,¦Prograa tarainatad by uaar')
If WinExiatcPrograa Managar*).-«TRUE than wioShowCProgm Hanagar*)
axlt
C-3
-------
LISTING FOR: RSYS3.EXE
Pit OC RAM RAETRAD V3 .1
PROGRAM RAETRAD V3 .1
rattrad • RAdoe teasation 4 TRAnapori loco Dulling* (veraloo 3.11
RAETRAD coatvtea Air Mov«i«nt and Raton generation and aov*n*nt is
foundation *olla and alab-on-grade floor* and lntegratea cha rataa of
aoll gaa and radon entry into a dualling tzam uaer-deflned aourea and
cranaporc paraaecera. It uaaa aulci-phaae radon generation and cranaporc
equations a* defined In Healch Phyalea 60iS07-S15 (l»il>, and allowi
sultl-ragloe defialclona of foundation and aoll preparelaa Includingi
1. Molature (aac'n. trace.| 7. Particle Dlaaecer (far K)
2. Penalty Rn Dlffualon Coefficient
3. Radius Concentration 9. Air Peraeabillty
4. Radoa B&aaatlao coeff. 10. Rn Adaorption coefficient
5. Specific Gravity 11. Soil Claaalflcatlon
8. Vartlcal 4 Radial Extaoc 12. Vertical t Radial Na*h Unit*
RAETRAD v2 la a alBpllfled and aore rapid veralon of tha RAETRAD coda
that accelerate* numerical calculation cenvergance by precalculacing
pranura field* (or a aaaller grid araa. and Chen expanda cha araa ai
cha ealculaclon prograaaaa. The cosputed *teady-atat* Prenure profile*
around a houaa foundation ara uaed with Radon aourea and diffusion
properties In conputlng radon antry lnco cha houaa. RAETRAD uaaa
alllpcieal-cyllndrlcal aymmatry to aolve Cha cw-dlaenaional cy 1 Indr leal -
coordlnaca dlffuaiva-advective problaa by IInice-dlffcrenee sethod*.
Veralon 2.1 pemica user-defined nonunifora vartlcal meahe*. and uaer-
deflned unlfora radial aeahea.
varalon 2.2 uaaa analytical funcciona (or Rn cranaporc through floor
crack* and optlaliea claa unlca.
varalon 2.3 uaaa analyclcal funcciona for air cranaporc cbrough floor
cracka. (2-24-92)
Varalon 2.4 IBM varalon. Deletee apaclflc gravity.
Varalon 2.5 Solve* Praaaura Field and Radon Concentration Plaid with
1-acap aacrix calculation. Uaar friendly front and addad.
Varalon 3.0 Uaar friendly franc end clarified aa per cuatomr eonefit*.
Mulcplle cracka and penetration* allowed. Final print ouc
claaaed and updated.
Varalon 3.1 Bug* fixed from 3.0
variable diaanalening and definition
DIM OPTS (7), HLPlSiet, HLP2S (8), FILSSUSO), FttJCilSO. 31, RFLSS!30). DISPSOOO), CHECK (1201
DIM SOILS (20), nrl(40). m2(40). ndl(40). nd2H0). vvii40), ra<40), daat(40). ami 40), apgr(40)
DIM MSATI40), CRDIAI40), DRI40). DV(40>. KRI40). KV(40). RADS(40). 1*1(40), NTHICK(80)
DIM NF1 (30) , NF2I30), NF3I30). LADSI20I. LSATI20), LOU (20), FOOT(IOO) . MAKEEPI5), MIKEEP(S). EZKEEP(S)
DIM CTHICKIS), CPREES(S), UNUMI5), RNUM(S) , CPOft(S), CDIFTI5), CPERM15S. CVTDiS)
DT5 • * *
RSOIL • 4
BS02 L . 6
dacfllS • ••
ayafUS • "
RBUCKL • 0
START1 - TIMES
DELVAR ¦ 0
AGAIN:
DELVAR • DELVAR . 1
OVER! • TIMER
IF OVER.' < START! ~ 2 THEN GOTO AGAIN
DELOVER • DELVAR / S
' Display Hello ecreen and Initial nenu
COSUB HELLO
END
C-4
-------
KELIAi
SUBROUTINE HELLO ••«••••••••••••
...
'** flils subroutine displays the title page (or
tha progran and waits (or a key to be
preaaed.
* ••
' Dltplay boxes and clclaa
VIt> PRINT 1 TO 25
PERFORM • 0
COLOR 1. 0. 0
CLS
VPOS . li HPOS - li VLS«rm • 21 > KLWCTH • 78. BOXCOLR • 41 SHADOW ¦ Oi KLINE • 2i 00SUB KAXEBOX
VPOS • * > HPOS • •> VLENCTH > 2> HLENCTH • 64. BOXCOLR > li SHADOW ¦ li CHADCOLft • Oi KLINE • 1> GOSUB MP FTP"'
TITLES - 'RATTRAD - Varaloo J.l'i VPOS • 7i HPOS • 17. TXTCOUt ¦ 14i BAKOOLR • It OOSUB TITLETXT
COLOR 14, 4, 0
LOCATE 11, 17) PRINT *RAdon Sanation and TOAnsport Into Dwellings ¦»
LOCATE 12. 7¦ PRINT '(C)apyrlght 1992 by Rogers and Associate* Engineering Corporation *i
COLOR IS. 4. 0
LOCATE 11. 171 PRINT 'RA*i
LOCATE 11. 21i PRINT >E'i
LOCATE 11. 37i PRIWT •HlA,i
LOCATE 11, 52 t PRIWT 'D'I
COLOR 7, 4. 0
MESSAGES ¦ 'Preas any kay Co continue*. TXTCOLR ¦ 15. BAXCOU* ¦ Oi GOSUB IKJT*
RETURM
m •
SUBROUTINE INKY
• •
This subroutine prints the passed anssge ••
• •
co the bottose Una of the conputer screen ••
«•
• •
and waits
for s key to be preaaed. ••
• «
• •
Variable Table ••
• *
MESSAGES
¦ Tha text to be printed ••
• •
TXTCOLR
• Die color of text desired ••
• ¦
BAKCOLR
• The background color for taxt ••
• V
KEYS
• Tha key pushed by the user ••
»•
• •
' Sac color and display sea sage st center ot screen
k»y$ • ••
COLOR TXTCOLR. BAXCOU. 0
LOCATE 24. 40 - (LSI(MESSAGES) / 2)
PRINT MESSAGESi
* Await a kay to be praaaad
keyS ¦ ••
WHILE LEMIkaySl . 0
k«y$ • 1NXEYS
WQID
RETURN
IIUEKXi
............... SUBROUTINE HAIXBOX
nila aubroutlna draw* a box o( any color
*•» on tha cooputer screen. A shadow la
opt local.
* ••
' ••
» ••
KLINE
• *•
VPOS
HPOS
' ••
VLEHC™
* • •
HLDWTH
BOXCOLR
SHADOW
* ••
* ••
SHADCOL*
Variable Table
Nuaber of 11 Ma surrounding box
VI rt leal position of box
Horliootal poaitlon ot box
VIrtleal height of box
Horizontal halght of beat
Color of Box
Shadow Flag (layea, Oano)
Color of Shadow, If applicable
' Check Che passed parameters lor validity
C-5
-------
IP VPOS * VLBCTO > 34 OR VPOS * VLBWTH < 0 OR HPOS ~ XL&KTN > 74 OR HPQS ~ HLENC1H < 0 THEN BEEF¦ RETURN
IF VMS < 0 OR HPOS < 0 THEN BEEP. RETURN
IF EHADOM . l and (VMS * VLENCTO > 22 OR HPOS < 4) THEN BEEPi RETURN
t
' Sat color asd Dunbar of llnaa
COLOR IS, BOXCOLR. 0
IF KLINE ¦ 2 TKQJ LTC ¦ 201i RTC • 187. BLC . JOOi BRC • llli HL - 205i VL - 186
IF NLIHE ¦ 1 THQJ LTC • 21t: RTC ¦ 191. BLC . l»2i BRC • 2171 HL - l»«i VL ¦ 17»
'draw boa top
LOCATE VPOS. HPOSi PRINT CHRS(LTC)
FOR J - 1 TO KLBICTO - 1
LOCATE VPOS. HPOS . ]
PRINT CHRSIHL)
NDCT I
LOCATE VPOS. HPOS * HLENCTV: PRINT CHRS (RTC)
' Draw box aldaa
FOR I - 1 TO VLENCTH - 1
LOCATE VPOS * 1. HPOS
PRINT CHRS (VL) t SPCIHLBCTO - 1); CKRS(VL)
NEXT I
' Draw box bottcn
LOCATE VPOS * VLENCTH. HPOS. PRINT CHRS (BLC);
FOR I • 1 TO KLEN-3TH - 1
LOCATE VPOS * VLEN3TH. HPOS » I
PRINT CKR$!HL)i
NEXT I
LOCATE VPOS . VLEWTIV, HPOS . HLENCTO. PRINT CHRS (BRCI ,
' Draw ahadov 1( flag aat
IF SHADOW . 0 THEN RETVRH
COLOR SHADCOLR, SHADCOLR. 0
FOR I . 1 TO VLBWTH ~ 1
LOCATE VPOS « I, HPOS - 3
PRINT SPCI2) i
NEXT I
LOCATE VPOS * VLENSTM * 1, HPOS - 2
PRINT SPC (HLDVTH » 11 i
RETURN
TITLETXTi
.............. SUBROUTINE TITLETJCT
'»»
'*• Thli aubroutlna prints tha string paaaad It
"* froo right to laft 10 tha color daalgnatad.
Varlabla Tabla
i mm
VPOS
¦
virtlcal pos 111oq of atrioo
* mm
HPOS
¦
Laft horizontal position of
»mm
atrlng
• m m
TXTCOLR
•
Color of taxt
» m m
BJLKCOLR
¦
Background color tor atrlng
* mm
TITLES
•
String to ba prlntad aa tltla
'mm
ChacK tha paaaad parasatara for validity
IF VPOS > 20 OR VPOS « D OR HPOS « LEU (TITLES) > 19 THEN BEEPi RETURN
Sat colora and acoll out tltla
COLOR TXTCOLR. BXRCOLR, 0
FOR I • 1 TO LSI (TITLES)
LOCATE VPOS. HPOS
PRINT SPC(LD((TITLES) - I); LEFTS [TITLES. I)
FOR J • 1 TO DELOVERi NEXT J
KEXT I
RETURN
C-6
-------
LISTING FOR: R5YS1.EXB
'PROCRAM RAETKAD V3.1
FROG RAM RAETRAD V3.1 •••
'• RAETRAD ¦ RAdoc naaatlon * TRAnaport lace Dvalliaga (Version 3.1)
'» UTTRXD coaputaa Air »ov«aot and Raton generation and iovmi Id
'* foundation soils and alab-cn-grade tloora and Integrates cha rata* of
'* aoll gaa and rsdoo entry loco a dwelling Croa uaer-detined aourra and
'• transport paraaetera. It ua«a aultl-phaae radoo generation and transport
'• equationa aa da(load In Haalch Phyalca 40iJ07-JlJ 11991). and allow
'* aultl-regloo definitions of foundation and aoll propertlea including:
•• 1. Molature (aat'n. tract.) 7. Particle Diameter Ifor K)
" 2. Penalty • . Rn Diffusion Coefficient
'* J. Radius Concentration 9. Air Peraeabilicy
'* t. Radco banaclca Coaff. 10. Rn Adaorptiao Coefficient
'• 5. (pacific Gravity 11. Soil Clasailicatiee
'• (. vartlcal a Radial Extant 12. varcleal t Radial Meah unite
* *
•• RAETRAD v2 la a aiaplltled aad acre rapid veralon of cha RAETRAfi coda
'• that acceleratee niaerlcal calculatloo convergence by precalculatlng
'* praaaura Clalda for a anallar grid araa, and than expand* tha araa aa
'• tha calculation prograaaaa. Tha cenpgtad ataady-atate Praaaura profllaa
'• around a houaa foundatloo ara uaad with Radon aourea and dlffuaion
'• properties In ceoputlng radon antry Into tha houaa. RAETRAD uaaa
'* elliptical-cylindrical ayaaetry to aolva tha twdinanaxonal cylindrlcal-
'• coordinate dlffualva-advactlva problaa by finite-difference aethoda.
'* VaraIon 2-1 permita uaer-detined noounltora vartlcal Baahaa, and uaer-
'• dafioad unltorn radial aeahea.
•* Varaion 2.2 uaaa analytical Cunctlona for Rn transport through floor
" cracka and optlaixas tiae unlta.
'* Varaion 2.3 uaaa analytical funetlooa for air transport through floor
•* cracka. (2-24-92)
'* varaion 2.4 IBM version. Deletes apeclflc gravity.
'* varaion 2.5 Solve* Praaaura Fiald and Radon Concentration Flald with
'• 1-atap matrix calculatloo. Uaar friendly (root and added.
'• Varaion 3.0 Uaar friendly treat and clarltlad aa par cuateoer coenanta.
'* Nultplla cracka and pmatratlooa allowed. Final print out
'• cleaned and updated.
* «
'• Varaioo 3.1 Bug* fixed frea 1.0
'Variable diBaoaioolng and definition
DIM OPTS (7), HLPIS(I), HLP2$(8), FlLSSllJO), FLOC(1JO. 3). RFUS(30), DISPS(JOO). CHECKIJOl
DIM GOIL5(30), nrl(40), nr2(40), cdlUOl, nd2<40), vul40), ra(40), dene 140), en(40), apgr!40)
DIMKSAT140), CRDIAI40), DR(40), DV(40), KRI40), FV(40| , RACE (40). 1*1(40), NTKICXM0)
DIM KF1(30), MF2(30), KF3I30), LADS(20), L£AT(20), LDIA(20) , FOOT(IOO), MIKEEP(S)
DIM CTHICK(S), CPRESS(5) . UNUMtS), RNUMIS). CPORI5), CDIFF(S). CPERMIS), CWIDI5).iDtll1200.12),tXtS(3.121
DIM CTYPE15). R2IS). R1(5),VC{5)
DCTS • *
RSOIL • «
ESOIL • i
DATFILS"**
SYSFILS-"
GOSUB inaf
vt(l).7
vt(21-11
vtl3)-14
vt (4)al7
vt (5)«21
»
' Diaplay Hallo acreen and Initial aemi
REST* FTi
SOTO ICNUMAIN
END
KSNWAlHi
« %
ttile aubroutina diaplay* tha firat mm
for"'
' the prograa and nita for a key to be
99
preeaed.
9 9
• •
t
' Diaplay beocaa aad title*
ON ERROR SOTO 0
C-7
-------
TITLES • -KklN NQIU'
OPTIONS ¦ i
OPTS (1I • •INPUT FILE'
OPTS 12) • 'RAETRAD ANALYSIS'
OPTS 13) • ¦ RATTRAD OUTPUT-
OPTS III • "SYSTEM FILE*
OPTS (S> ¦ 'EXIT"
HLPlS111 • 'Preaa the numMc of the eelectlon. It will bee one highlighted.*
HLP2SI1) • 'Praia «ENTEX> Co proceed, «ESC» Co backup, or a new number.*
HLPlS(2) • 'ftla option allowa you to create. nodi [y, or delate as exlatlng*
HLP2SI2) - *RAETRAD Input data (11a. Preaa «ENTER>. or a new nuaber.*
HLP1SI3) ¦ 'Thla option pertorn* RAETRAD analyaia for apeciflad Input lilaa.*
HLP2S13) ¦ 'Praaa «ENTO> to proceed. ITQI>, cC5C> or a new BUBber.*
HLPIS(S) • 'Thla option allows you co ap«el(y DOS pacha ay¦tea tllea*
HLP2SIS) • 'and change the default aoil characteristic! (or RAETRAfi execution.*
HLPlSIt) • 'Thla option will exit the RAETRAD ayat«» and aave the work and*
KLP2SI4) • 'and cnaagea performed thla aeaaian.'
DELAY - 0
GOSUB HAKEHENU
:r choice.o twq» goto hewkain
ON CHOICE GOTO KENU1 , KENU2. MBfln , KDIU4. KDIU5
BID
HEMU1:
SUBROUTINE KEHU1
• • •
Thla aubroutina diaplaya the (11a
•• naintanencedrat nenu (or RAETRAD and waita
'** (or a aelection to be Bade.
Olaplay boxei and tlclea
TITLES . 'FILE KAINTAWENCE'
OPTIONS • 4
OPTS <11 • 'CREATE A NEW INPUT FILE'
OPTS <2 I • 'HOD I FY/REVIEW AN EXISTING INPOT TILE'
OPTS (3) • 'DELETE AN EXISTINC INPUT FILE'
OPTS (4) • 'RETURN TO MAIN MENU*
HLPlS(l) • 'Praaa the number of the CHOICE. It will bieae1
HLP2SI1) • 'highlighted. Praaa to proceed. , or a new nunber."
HLP1S12) • "Thla option allowa you co create a naw RAETRAfi input data (lie.*
HLP2SI2) • "Praaa . or a naw nuneer."
HLP1SI3) • *Thla opclon allowa you to »odl(y an exiatlng RAETRAD"
KLP2S13) • 'Input (lie. Preaa . , or a naw nuaber.*
HLPlS (S) • "Thla option retuma you to the main menu."
HLP2SIS) • 'Preaa «EWTE*», , or a new DU&ber.*
DELAY • 0
GOSUB MAJSKENU
IF CHOICE ¦ 0 OR CHOICE • 4 THEN GOTO KENUXAIN
ON CHOICE OOSUB KENU11, MENU12, KENU13
JOTO MENU1
DTUl i
SUBROUTINE ISHUU
Thla aubroutina pronpta the uaer (or Input
•• to create a data (lie (or RAETRAD.
' Inltlallte Varlablea
GOSUB INSOIL
FOR I • 1 TO 10
CHECK (11 • 0
NEXT I
lor 1-1 to 5
rnvB(l)*0
unva 11) "0
¦i keep!i)>0
cpreaail)-0
eradootll-0
cthlckill-0
CwldU) -0
cpera(l)-0
cporfl)-o
cdllf(i)-O
next 1
C-8
-------
FWT • 0
yuDt • 0
fdaptt* • 0
ydepth ¦ 0
KXXPD.O
YMAJC-0
RH.O
WID-0
UCaO
AJL.O
PH.O
CH.O
FW1D-0
CRA.O
CDENS.O
CDOi.O
CSPG-0
CISI.O
CMSAT-0
CCRDIA-0
CDK.O
CC7V.0
cn-o
crv.o
CMDS>0
pout-o
COUT.O
FU-0
FOR JK.l TO 40
tmiot{JX) -o
RA(JX) -0
DENSiJK)>0
IXiJKI >0
SPCRiJK).0
ISKJXI-0
MSAT(JK)>0
GRDIAtJX) -0
DR(JX)-0
nV(JK).0
KR 1
SCRBH 12
CLS 0
cu
• Ll«C BACarial cypas
LOCATE X, 751 PRINT "HATPL"
rOR I • 1 TO HSOIL
LOCATE I • 1. 72
PRINT STRid) i * •; LEFTS (SOILS 11) ,
NSCT I
* Draw aky
LINE (24. 0)-BTEP(SS2. S7). 9. BF
' Out Una HOUM
LINE (24. 3)-(384, 28), 0
LINE (24. 4)- (24, 57) , 0
LINE (24, S7)-(3B4, 57), 0
LINE <304, 2»)-(3»4, 57), 0
PAINT (128, 50), 0
' Brick Wall
LINE (384. 30)-STEP(6, 33). 12. BP
LINE (384, 35)-(390. 35). 4
LINE (3 04, 41)-(390, 41), 4
LINE (384, 47)-(390, 47). «
' floor
LINE (24, 54)-STEP!366, 41. ?, BF
FOR I • 2 4 TO 3(9
IP INT(RUDU) • 10 ~ .51 < I THIN
NEXT I
' Roof
5)
PSET II. 54 * 1NT(RND(2) « 3 ~ .5)), 9
C-9
-------
LINE (21. II-(393, 31). <
LIKE 127, 41 -(395. 30), 6
LOCATE 4. li PRINT ¦ O'i
LIKE (57«. 0)-(576, 325), 15
' (bara baglna tha diu input phiul
' Bali tha uxlaiB aoll depth
RED02i
QUEflt • 'Entar tha iu. aoil dapth (ft) to ba analysed (tiem - tare).'
IF KAXDP-0 WEN
OFAULTS - *20.0«
ELSE
DFA0LTS -CTKS(KXXDPI
ENDIF
IF CHECK! 1) ¦ 0 THEN
00SUB QUESBOX
IF anawarS • •• TKDt anawarS • OFAULTS
IF ASCIanawarS) ¦ 27 THEN RETURN
IF VALlanawarS) < 4 THEN arlS-'You Muac antar a value graatar than 4 (c.*iar2$«* " iCQSUB ERBOXiGOTO RED02
If VALfanswers) >50 THQ( ERlS«*You cannot antar a valua graatar than SO ft.'iar2S-* ':GOSUB ERBOX< goto rado2
Baxdp • VALfanawarS)
DELD • 258 / saxdp
END IF
LOCATE 8, li PRINT STRS(INT(ma*dp / 4 . .S))i
LOCATE 12, li PRINT STRS(INTtnaxdp / 2 » .5));
LOCATE K. li PRINT STRS i INTImaxdp / 4 • 3 . .5)!t
LOCATE 20, Is PRINT STRS1INTIBaxdp • .5)!;
CHECK[1) • 1
radol ¦
QUES1S ¦ 'tacar tha tax. radial axtantdt) to ba analyzad itraa houaa can tar) . ¦
IF YMAX.O THEN
OFAULTS ¦ "40*
ELSE
OFAULTS •fiTRS(YNAX)
ENDIF
IF CHECK(2) • 0 THB<
OOSUB QUESBOX
IF anawarS • " THDJ anawarS - D FAULTS
IF ASC(anawarS) • 27 THEN CHECK(l) • 0: OOTO RE301
IF VAL(aniwarS) <• 0 THEN arlS-'You Buat antar a valua graatar than 0 It.*iar2S«' *iGOSUB ERBOX:GOTO RED03
If valfanswers) >40 THEN ERIS-'You cannot antar a valua graatar than 40 (t.':ar2S>' 'iQOSUB ERBOX: goto rado3
ynax • VAX,(anawarS1
END IF
CHECK(2 I - 1
I
rado4i
quesis • 'Encar tha indoor roes haight(tt)."
IF RM>0 THEN
OFAULTS • 18.0•
ELSE
DFAULTS'STRS(DM)
ENDIF
IF CHECK (3) ¦ 0 THEN
GOSUB QUESBOX
IF anawerS ¦ TVB4 anawarS ¦ OFAULTS
IF ASC(anawarS) ¦ 27 THEN CHECK(2) * 0. GOTO REDOl
IF VALtanawerS) <• 0 THd arlS-'You auat antar a valua graatar than 0 (t.'iar2$a* 'iOOSUB ERBOXIOOTD RIX04
ra ¦ VAL(anawarS)
END IF
CHECK (3 J • 1
' Encar cba bouaa width
radoSi
QUES1S • "Entar tha width o( tha houaa (In (aat).'
IF WIO.O THEN
OFAULTS - *28.4*
ELSE
OFAULTS ¦STRS(WID)
ENDIF
' IF RBUCKL ¦ S THEN DFAULT5 • STRS(HIO)
IF CHECK f 4} • 0 THEN
00SUB QUESBOX
IF anawars - ¦¦ THEN inawarS • OFAULTS
IF ASC(anawarS) • 27 THEN CHECK!31 - 0. GOTO REDOl
IF VAL(anawarS) <• 0 THEN arlS-'You suat antar a valua graatar than 0 ft.'iar2S-' ':OOSUB ERBOXiQOTO REDOS
IF VAL(anawarS) >100 THEN arlS-'You suae antar a valua laaa than 100 ft.'iar2$-' '-.GOSUB ERBOX I GOTO REOOS
C-10
-------
kid • VALIanawarS)
aMIN « MID / SQR0.141SS26SI)
dalr ¦ 3 60 / UUN
END IF
CHECHI41 - 1
' dear Cha houaa laegth
REDO* i
QUES1S ¦ *EBt«r tha langth of tha houw I in faac).'
IF LNC.O 1HBJ
DFAULTS ¦ *54.1*
ELSE
DFAULTS-STRS (LNE)
EMCIF
' IF RBUCKL • S THEM DFAULTS • STRSIUCI
IP CHECK(5) . 0 THEN
00SUB QUESBOX
IF anawarS • •• HON anawarS - DFAULTS
IF ASC (anawarS) . J7 THEN CHECK141 . 0. ODTO ROOl
IF VAL(anawarS) «¦ 0 TXEN arlS*'You auac antar a valua graatar Chan 0 ft.'iarlS-* *>OOSUB DBOX:OOTD REDO<
IF VALIananrS) >1000 TWIX arlS>'You mat ancar a valua laaa Chan 1000 ft.*iar2S'* '.-OOSUB ERBOX:QOTO REDO*
IF VAL(aniMrJ} 'You auat ancar a valua graacar Chan Cha wldch*iar2S** *:COSUB ERBOXiGOTO REDO6
LNB - VAL!anawarS)
EMC IF
CHECK IS) • 1
' Entar cha Air axehanga raca ef cha houaa
REDO'! ¦
QUE*IS ¦ "Entar Cha air axehanga raca of cha houaa (1/hr)*
IF U-0 THEN
DFAULTS • "0.50"
ELSE
DFAULTS-SmS (AX)
END IF
' IF luxn, ¦ S THEN DFAULTS - STRS (ax)
IF CHECK (4) • 0 THEN
OOSUB QUESBOX
IF anawarS • •• 1MB) anawarS ¦ DFAULTS
IF ASCIanawarS) • 27 THEN CHECK(5) > 0i GOTO REDOl
IF VAL(anawarS) «. 0 THEN arlS«"You auat ancar ¦ valua graatar than 0 11/hx)•:ar2S>* 'iCOSUB ERBOX.GOTO RED07
IF VAL(aaawarS) >10 THEM arlS.'You muac ancar a valua laaa Chan 10 (1/hx) • >ar2S>" 'iCOSUB ERBOXiCCTTO RED07
ax • VAL (anawarS I
DID IF
CHECX(ft) • 1
• Entar cha Indoor praaaura
REDO* i
QUES1S • 'Encar cha indoor houaa praaaura (Fa).*
IF PH-0 THEN
DFAULTS •
ELSE
DFAULTS .STHS(PH)
ENDIF
' IF RBUCKL • S THEN DFAULTS • STRS(ph)
IF CHECK!!) • 0 THEN
OOSUB QUESBOX
IF aoawarS ¦ •• THEN anawarS - DFAULTS
IF ASC(ancwarS) - 27 THEN CHECK! 6) - 0. (SOTO REDOl
IF VAL(ancwarS) <• -SO THEN arlS>'You suae ancar a valua graacar Chan -SO.o (Pa)':ar2S«* ":GO£UB EftBOXiSOTO REDOl
IF VAL(anawarS) >50 THDJ arl$>*You auac ancar a valua laif Chao SO (P»)"* *:COSUB ERBOX:GOTO RED09
ph • VALIaniMrS)
END IF
LOCATE 2. It PRINT "Praaaura (Pal«"i ST*S(ph),
CHECK(81 • 1
' Encar tha indoor radon concantratlon
I
RIDOlOi
QUES1S • 'Entar cha indoor radon coocwcratloo boundary (pCl/L).*
IF CH.O THEN
DFAULTS ¦ -J-O*
ELSE
DFAULTS-STRS(CHI
ENDIF
' IF RBUCKL - S THEJJ DFAULTS • STRS (CHI
IF CHECK(9) - 0 THEN
OOSUB QUESBOX
IF anawarS • •• W&i anawvrS • DFAULTS
IF A£C(anawarS) • 27 THEN CHECK(81 . 0. GOTO REDOl
IF VAL(anawarS) < 0 THQJ arl$¦•Boundary cannot ba laaa Chan taro.'"j STRS(CH) i
CHECK(9) . 1
C-11
-------
CDttr the thlcfcneaa ot the floor
REDO60.
QUES1S • 'Enter the thickneaa tea) of the floor slab.¦
IF FVIO-O THEN
DFAULTS • *10.1&*
ELSE
DFAULTS •STRSIFWID]
ENDIF
' IF RBUCia ¦ S THEN DFAULTS ¦ STRSIFwld)
IF CHECK! 191 • 0 1W04
OOSUB QUESBOX
IF enawerS • " 'mix anawerS • DFAULTS
IF ASCIanawerS) • 27 THEN CHECK!9) - 0. GOTO REDOl
IF VALlanawerSI <• 0 THEN erlS-'You Buat enter a valid floor thiefcneea.•larJS-* •iOOSUB CTBOX.OOTO REDO60
IF VAL(anawarS) >31 WEM erlS-*You suae enter a value leaa Chan 11 <™)*ier2S»* 'iCCGUB ERBOX.GOTO REDO60
FxId • VAL(anawerS)
END IF
CHECKI19I • 1
' Biter tha concrete radlia concentration
RED061i
QUESIS • 'Eacer cna radlia concaitratlon (pciegl of tha floor Blab.*
IF CRA.O THEN
DFAULTS ¦ *1.0*
ELSE
DFAULTS-ST*J(CRA)
ENDIF
' IF RfiUCKL • S THEN DFAULTS • STRS(cra)
IF CHECK (2D) . 0 THQJ
GOSUB QUESBOX
IF anawarS • ** THEN anawerS • DFAULTS
IF ASCIanawarS) • 27 THEN CHECK(19) • 0: GOTO REDOl
IF VALIanawerS) < 0 THDJ eriS«*You muat cncar a valid radiuA_
concentration*ier2S«"for tha floor (>»0I.•:OOSUB EH BOX:GOTO REDOfl
IF VALfanawarS! >1D0 THEN erlS-*You Buat antar a value lasa than 100 (pel/L)-ier2$a* *iOOSUB EHBOXiOOTO REDOM
era • VAL(anawarS)
END IF
CKECK(20) • 1
' Entar tha floor danalty
KED062.
QUESIS • 'Biter tha danalty (g/ccl of the floor alab.*
IF CDQIS-O THEN
DFAULTS - 'J.!*
ELSE
DFAULTS.STRS (COWS)
ENDIF
' IF RBUCJU. • S THEN DFAULTS • STRS(edena)
IF CHECK 121) ¦ 0 THEM
OOSUB QUESBOX
IF anawerS • WQ» anawert • DFAULTS
IF ASC(anawerS) • 27 THEN CHECK 120) ¦ Oi GOTO REDOl
IF VALIanawerS! < 0 THO< erlS*'You nuac antar a valid floor aaterlal danalcy (g/cc) *>er2S>* •;OOSUB ERBOX;GOTO REDO(2
IF VAL(anaMrS) >10 THEH erlS**You auac enter a value leaa than 10 (g/cc)' >er2$'* VGOSUB ERBOXiGOTO REDOC2
cdena • VALIanawerS)
END IF
CHECK(21) • 1
' If chare la radius In the floor, then Input tha eaanation coefficient
IF era • 0 THEM SOTO R£DO(«
RED063:
QUESIS • 'Enter the animation coefficient of Cbe floor alab.*
IF CEXN.O THEN
DFAULTS ¦ *0.J*
ELSE
DFAULTS-STRS ICEWi
ENDIF
' IF RfiUCKL - S TKEM DFAULTS • CTRStcenn)
IF CHECK (22 > « 0 THEM
OOSUB QUESBOX
IF anewerS • " THZM aniwrS • DFAULTS
IF ASC(anewerS) • 27 THEN CHECK(21) • 0, GOTO REDOl
IF VALIanawerS) < 0 THEK erlS>*You Buat enter a valid eaanaclen coefflclenc*ier2S>* *iODSUB EXBOXiOOTO RED04J
IF VALIanawerS) >1 THEM erl$«'You auac enter a value leaa than or equal*ier2S«*co 1 for_
the radon aaanation coefficient*iOOSUB BLBOXtOOTO REDOC1
ceno ¦ VALIanawerS)
END IF
CHECK(22) - 1
' Eater the floor poroeicy
ROOM.
IF CSPG-0 THEN
DFAULTS - STRSUNTUl! - cdena / 2.7) • 1000 . .S) / 1000)
C-1 2
-------
ELSE
DFMJLTS-STRJtCSK;)
ENDIF
' IF RBUCKL • S THEN DFAULTS • STRSIcapg)
QUES1S ¦ "Enter the poroelty of the floor uteri*]'
IF CHECKI23) ¦ 0 THS4
COSUB OUESBOX
IF mmrt . " 1VB4 anawerS • DFAULTS
IF ASOanawerS) • 27 AND era <> 0 TKDI CHECK 132) > Oi SOTO RED01
IF ASC'You suae enter a valid poroelty (»0)'ier2$«* •ICOEUB ERBOXiCOTO REDO44
IF VfcHanawerSI >10 WEN erlta'You niet enter a valua leaa than or equal' iar2S«*to 10 for the_
floor aatarlal poroa1ty.•:OOSUB ERBOX.COTO RED044
capg • VXL( acrwar$)
DID IF
CHEOU21) > 1
' Entar tha material typa for tha foundation
REKXSi
IF CISI-0 THEN
DFAULTS - *13*
ELSE
DFAOLTS.CTRStCISI)
ENDIF
' IF RBUCIO. ¦ 5 THZM DFAULTS ¦ STRS(elal)
0UES1S • 'Entar tha aatarlal typa for tha floor.'
IF CWECR124) • 0 THEN
GOSUB OUESBOX
IF anawerS • " IHQt anawerS - DFAULTS
IF ASC(anawerS) • 21 THEM CHECK(23) • 0: COTO REDOl
IF VAL(anawerl) «• 0 THDJ erlS>'You must antar a valua greater than tero.¦ier2$«* 'iCOSUB ERBOXiCOTO REDOCS
IF VAL(anaverS) >naoll THEN erl$>'Yeu must antar a valua leaa than or equal¦ier2$»*to_
*»atr5 (naoil)*' for tha floor matarlil typa. • iCOSUB ERBOX.COTO REDCttS
elal • VAL(anavarS)
ENS IF
CHECK (2«) • 1
' Entar tha degree of aaturatlon of tha foundation
USMf >
DFAULTS • '(aatarlal typa default)'
' IF RBUCKL • S THEM DFAULTS • STRS(CMSAT)i IF CMSAT • 0 THD4 DFAULTS • '(Batarlal typa dafault)'
QUES1S • "Entar tha water aaturatlon fraction of tha floor aatarlal.'
ir CHECK(25) • 0 THEN
COSUB OUESBOX
IF anawerS • " THDi anawerS • *0'
IF ASC(anawarS) • 27 THIN CHECK 124) • 0i GOTO REDOl
IF VAL(anavarS) < 0 THEN erlS.'You auat antar a valua greater than *ero.'¦er2S«' • iOOSUB ERBOXiOOTO REDO(6
IF VAL(anawarS) >1 THZM erlSa'You auat ancar a valua laaa than or equal *ter2S>'to 1 for.
tha floor aaturatlon.*iCOSUB ERBOXiCOTO RED06C
CMSAT • VAL (anawerS l
END IF
CHECKI2S) ¦ 1
' Eoter eh* particle diaaeter of the foundation
REDO*7i
CCRDIA • (0)
' Enter the radial dlffualon coefficient of tha foundation
REDOtli
DFAULTS • '(coda calculatea)*
' IF RBUCKL • S TKEM DFAULTS • STRS(CDR)i IF CDR • 0 THOJ DFAULTS • '(code calculatea)•
QUES1S • 'Enter radial dlffualon coefficient (c*~2/a> of tha floor aatarlal*
IF CHECR127) • 0 THEN
GOSUB OUESBOX
IF anawerS • " THDI anawerS • *0*
IF ASC(anawerS) • 27 THEN CHECK(25) . 0> GOTO REDOl
IF VAL(anawerS) < 0 THEN erlS.'You auat enter a valua greater than lero. *ier2S«* "¦ OOSUB DlBOX:OOTO RQOCI
IF VALIanavarS) >1 THEN erlS.'You suit enter ¦ value lesa than or •qual'i«r2$«'to 1 for_
tha floor aaturatlon. 'iOOSUB ZRSOX-.OCV2 KEDOiB
CDR • VALianavarS)
DID IF
CHECK(27) • 1
' Enter the vertical dlffualon eoeffleet of tbe foundation
RED069i
DFAULTS ¦ '(code caleulateal¦
' IF RBUCKL ¦ S THEM DFAULTS • ST*S(CDV)i IF CDV « 0 TON DFAULTS • '(code calculatea)'
QUES1S • 'Qatar vertical dlffualon coefficient (a'2/a> of tha floor aaterial*
IF OfECK(2R) • 0 THDI
GOSUB QUESBOX
IF anawerS » " THEN anawerS • *0'
IF ASC(anavers) . 27 THEN CHECK(271 . 0. OOTO RESOl
IF VAL(anaverS) < 0 1KEM erlS.'You auat enter a valua greater than sero. • ier2$«* "
-------
IP VALIasavarS) >1 THD» erl$»'*ou suae entar a value leaa than or aqual'ier2S>'co 1 {or tha_
floor ((curatlon.' :ODCUB EXSOXiOOTO R£DO<9
cm m VALIanawarS)
END IF
CHECK(2«) • 1
' biter the radial per»«ablllty of the foundation
REDO70t
[FAULTS • *(cod* calculataa)*
' IP RBUCKL ¦ 5 THEM DFAULTS • ET*S (CKM) i IF CM • 0 1WZM DFAULTS > '(coda calculates)'
QUES1S • 'Eater radial pemeablllty (c=*2l of tha floor aatarlal'
IF CHECK(29) • 0 TOO)
GOSUB OUESBOX
IF antwerS - ¦¦ THEN anawerS - "0"
IP A£C(answerS) • 27 WB CHECK(211 • 0. GOTO RED01
IF VAL(ansverS) < 0 1XTN erlS>'You Bust «iter a value greater than lero.•ier2S«* •.-OOSUB ERBOXiOOTO REDO70
IF VAL(anawerS) >1 IKS' erlS«'Yo\j muat enter a value laaa than or equal*ier2S»'to 1 for tha_
floor aaturation.*iOOSUB ERBOX-.GOTO REDO70
CKR • VAL(anawerS)
end if
CHECK 129) • 1
' Enter the vertical permeability of the fomdatloo
RED0711
DFAULTS ¦ '(coda calculate!)•
' IF RBUCKL • S THEN DFAULTS ¦ STRS (CKV) i IF CFV ¦ 0 TV ED DFAULTS • '(cod* calculate!) •
QUES1S • "Enter vortical permeability (ca~2) of the floor material'
IF CHECK(30) ¦ 0 THEN
GOSUB QUESBOX
IF anawarS • " THEN answers - *0'
IF ASC(anawarS) • 27 THIU CHECK(29) • 0i GOTO REDOl
IF VAL(answerS) < 0 THEN erlS.'You Bust sneer a value greater than lero. • iar2$-' • iOOSUB EKBOXGOTO RED071
IP VAL(anawerS) >1 THEM erlS-'You Bust enter a value leaa than or equal *ier2S''to 1 for the_
floor aaturltlOQ.'i30SUE ERBOXiOOTO REB071
CKV . vaL< answers)
END IF
CHECK(30) • 1
' Biter Che adsorption coefficient of tha floor
MS0721
DFAULTS • *(material type default)'
' IF RBUCKL • 5 THEN DFAULTS • STRS(CHADS). IF CKADS • 0 THIN DFAULTS • '(code calculatea)'
CUESIS • 'Enter adaorption coefficient of the floor material*
IF CHECK (31) . 0 THE*
COSUB QUESBOX
IF answerS • " THEN answers • *0'
IF A£C (anawerS) • 27 THEN CHECK (30) • Oi GOTO KE301
IF VAL(ansverS) » 0 TK£H erlSa'You muat entar a value greater than zero.*ter2S>* 'iQOSUB EHBOX:OOTO RED072
IF VAL(anawart) >1 THEN erlS-'You Buat encar a value leaa than or equal•ier2S«'to 1 for the
floor saturation.•iOOSJB ERBOX>OOTO RED072
CKADS • VALlanawerS)
END IF
CHECK (31) • 1
' Eater the outdoor ataoepherlc preaaure
RED01S:
0'JESIS • 'Enter the outdoor ataoapharlc preaaure (Fa)."
IF POUT-O THEN
DFAULTS ¦ '0.0*
ELSE
0FAULTS«STRS(POUTI
ENDIF
' IF RBUCKL • S THEN DFAULTS ¦ STKS(pout)
IF CHECK(14) ¦ 0 THEN
OOSUB QUESBOX
IF anawarS • " THIH anawarS • DFAULTS
IF A£C(anawer$) • 27 THD» CHECK(31) ¦ Oi GOTO REDOl
IF VAL(answer}) < -100 THEN erlS>'You Buat enter a value greater than -100 (Fa)'>er2S>* '.OOCUB ERBOXiOOTO REB015
IF VAL(anawarS) »100 THEN erlta'You muat enter a value leee than or equal*ier2J.'to 100 (Pa) for the_
outdoor preaaure.*¦OOSUB ERBOXiOOTO REDOl5
pout ¦ VAL(answers I
END IF
LOCATE 2. S3¦ PRINT 'Preaaure (P»)-*i ETRSIpoutl;
CHECK 114) • 1
' Enter the outdoor radon eanantratlon boundary
ROOK i
0UES1S • 'Enter the outdoor radoo cooc. boundary (pCl/L).* "
' IF RBUCKL - 5 THEN DFAULTS ¦ STRS(cout) -
IF COUT.O THEN
DFAULTS - '0.0'
ELSE
DFAULTS'STRS (COUT)
C -14
-------
END IF
IF OIKKIISI • 0 WBI
006UB OUESBOX
IF answarS • " WBI answarS • DFAULTS
IF ASC(anawarSl • 27 THEN CHECK(14) • 0> GOTO REDOl
IF VAliiaoavarS) « 0 1MQ4 arlS-'You suit antar a valua graatar Chan 0 (pCl /g)' iar2Sa ¦ *iGQSUB ERBOXI GOTO REDOlt
If VAL(answarS) >100 THEN arlSa'You must antar s valua lasa Chan er aqual*iar2$a*to 100 (pCl/g) (or Cha_
outdoor Rn boundaryiCOSUB ERBOX.GOTO REDOlt
emit m VAL(anavarS)
ENS IF
LOCATE 1. 3*i PRINT • Radon Cooc. boundary (pCl/L|a'i STRS(cout) i
CHECK<15! a 1
' Snt«r tba radial unit of nuurwnt
REC017.
0UES1S • 'Entar tha radial ibIc of wawnt lbatw»ao 0.J5 ft t 1.0 ft) .•
IF RU-0 THEN
DFAULTS - '1.0'
ELSE
DFAULTS aSTR S (RUI
DTOIF
' IF RBUCXL • 5 THOI DFAULTS • STR$(RUI
IF CHECK! 1«I . 0 1HD(
OOSUB QUES80X
IF ans««r$ • " WO< aniwri • OFAULTS
IT AEC (anst^rSI • 27 THEN CHECK! 15) . Oi COTO REDO]
IT VALIanswarSI < 0.25 THEN arlSa'You Bust antar a valua graatar Chan 0.25 lft)*iar2Sa* 'iGOSUB ERBOXtODIO RIXOlt
IF VAL(anawarS) >1 TVEN arlSa'You Butt antar a valua laaa than or aqual•iar3S>"to 1 (ft) for tha radial unlta.•iOOSUB
ERBOXiSOTO REDOlt
IF ynax/VAL(AN5woS)>40 THEJJ ERlSa'rou say Dot axcaad a total of 40 radial units'iar2Sa'lo your seaaario. Chooaa a
lax gar radial unlt*:gosub arboxigoto radolt
RU • VAL(answsrS)
END IF
CHECKIl() • 1
' Now baglna tha aoll layar definition atagaa.
radolOi
FCOUNT ¦ 1
NDBT - 2
NLAYER . 0
natart a 0
RED021i
NLAYER a NLAYER « 1
IF CHECK (34 ~ NLAYBI) a 0 THEN
' En car tha thlclwaai of tha layar
RD022 ¦
lflag • 2
IF OTHICK(NLAYER)a0 TWBI
DFAULTS ¦ *1.0*
ELBE
DFAULTS -STRS (NTHIC* (NLAYER))
ENDIF
natart a INT[natart • 1000 ~ .S) I 1000
QUES1S a 'Entar tha thlctnaaa |fc) of layar I' ~ STRS(NIAYER) » " beginning below hauaa at ' * STRS(oatarcI * ¦ ft.*
' IF RBUCXL • 5 TKQ4 DFAULTS a STRS (NTH ICR I NLAYER))
GOSIJB QUESBOX
IF answers ¦ '* THEN answer* • DFAULTS
IF A5C(answarS) • 27 AND NLAYER <> 1 TOSH CHECX(34 * NLAYER - It ¦ OigotO REDOl
IF ASC(aniverS) • 27 AND NLAYE3< • 1 THEN CHECK(141 • 0. OOTO REDOl
IF VALtaniverS) « 0 THEN arl$-*You Buat enter a valua graatar than 0 (ft)'ior2Sa* *iGOSUB ERBOXaaxdp-nitart THEN arlSa'You luit antar a valua laaa than
¦»acr$Ilnt((miwdp-nicart) *1000*0.5)/1000) iar2$»"for tha layar thlcfcneaa."iGOSUB ERBOX iGOTO REC022
NTHICK(NLAYER) a INT(VAHanawerS) • 1000 * .J) / 1000
ndl (NLAYER) a NDET
' Botar tha vertical unlta for layar Ifraecioa of faat)
RED02«i
1fl«g>l
DFAULTS a STRS (INT (NTHICX (NLAYER) ))
IF I NT (NTH1 CXI NLAYER) ) < 1 THEN DFAULTS ¦ '1'
QUES1S • 'Entar cha nwber of varclcal Baah unlta Id layar I' * £"TRS(NLAYCT)
' IF RBUCKL • 5 THEH DFAULTS - STW I NTH I CXI NLAYER) / vu( NLAYER 11
OOSUB QUESBQX
IF answers a TMQ) answers a DFAULTS
IF ASC(answerS) - 27 TKEM GOTO rado22
IF VAL(answarS) < 0 THEN erl$-*You Bust enter a valua graatar Chan 0*iar2Sa' "tOOSU1 ERBOXiOOTO REDOl4
IF lDC (VALtanswerS)»0.51«>vsl (answrS) TOI> arlSa'You Bust aocar an lotegax valua* iar2Sa*for the_
varclcal Baah units.•iGOSUB EKBOXiCOTO RED024
IF ndl(nlayer)-l+lnt(val(answers)*0.51>30 THEX ERlta'You Bay not uaa ovar a total of 30 vertical Baah
unlta1 ier2S»" :goaub arboxigoto rado24
RMA1N - lNT(VAL(anawarS) ~ .S)
vu (NLAYER) • NTHICK (NLAYER) / RMAIN
C -1 5
-------
FOR I • FCOUNT TO FCOUWT ~ AMAIN - 1
FOOT!I) • vutKLAYER!
NEXT ]
FCOOWT ¦ FCOUWT ~ RHAIN
nd2INLAYER> • ndl (NLAYER) - 1 ~ RMAIN
IF ni2 INLAY ESI » 30 THQf nd2(NLAYER| - 30
IF ndllKLAYEX) > 30 THEN ndKNLATEJU >30
nri l NLAYER) - 1
nr2 (NIAYER) ¦ ymax/ru
KDST • DdJ (NLJlYCT) ~ 1
t
' filter the ridlia coocentratlon of the layer
RED02Ji
IF RA(NUkYER) .0 THEN
DFAULTS ¦ 'D.3*
ELSE
DFXULTS >ST1I S (RA (NLAYER) )
ENDIF
QUESIS • 'biter Radlusi concaocraclos (pCl/g) of layar I • ~ CTRJ [K1AYER)
' IF RBUCKL • 5 THEN DFAULTS - fTRS 1000 THEN erlS>'You Buat antar a valua leaa than 1000 (pCl/gl*ier2S>* VOOSUB ERBOXiOOTO RHXX23
ra(NLAYER) - VALtanawerS)
' Entar layar dsnaity
HED025:
IF DEVS(NIAYER) • 0 THEN
DFXULTS • '1.1*
ELSE
DFAULTS "SHIS (DQtS (NUYER) )
ENDIF
QUESIS • "Encar danalcy ' •¦COSUB ERBOX:GOTO RED025
IF VALtanawerS)>10 TV EX erlS-'You Buat antar a valua laaa than 10 (g/cc)' ter2S-* "1 COSUB EMOXiCOTO REDO 2 S
deoal NLAYER I • VALtanawerS)
' If there la radlia In tha layar. aak (or the sanation coefficient
IF ralNLAYZR) • 0 THEN • (NLAYER I ¦ 011 GOTO RED027
RED026i
IF DI(NIAYER) • 0 THEN
DFAULTS • '0.20'
ELSE
DFAULTS-STRS I EM (NLAYE*) )
ENDIF
QUESIS • 'Enter tha radon ananatlon coefficient of layer t* « CIVS(NLAYER)
' IF RBUCKL • 5 THEN DFAULTS ¦ STRS (en(NLAYER) >
COSUB QUESBOX
IF anawerS • " TKDt anawerS • DFAULTS
IF ASC(anawerS) • 27 IV EN GOTO RE DO25
IF VAL(anawerS) « 0 THEN erlS-'You Bust enter a value greater Chan 0':er2S>* VCOSUB ERBOXiGOTO REDO] 6
IF VAL(assverS) > 1 THEN erlS-'You Buat enter a value leaa than l'ier2S>* ¦ [COSUB ERBOXiGOTO RED02C
eel NLAYER) • VALtanawerS)
' Enter the poroelcy of che layer
RH»27i
DFAULTS ¦ STRSIINTII1! - dene(NLAYER) / 2.7) * 1000 ~ .5) / 1000)
QUESIS • "Enter the poroalty of layer <¦ * STRS(NLAYER)
' IF RBUCKL . S THEM DFAULTS • STRS(epgr(NLAYER))
COSUB QUESBOX
IF anawerS - •• THEN anawerS • DFAULTS
IF ASC(anawerS) ¦ 27 and Ra(Nlayer|sO Chen OOTD REDOJS
If aacjanawerS) • 27 and Ra0 Chen goto redo2t
IF VAL(anewerS) < 0 THEN erlS-'You Buac enter a value greater than 0'ierJS." 'iCOSUB EJIBOX: OOTO RED027
IF VALtanawerS j >10 THEN erlS-'You Buat alter a value leaa than 10*ier2S'* 'iOOCUB ERBOXiCOTO REDOJ7
apgr(NLAYER) • VAL(anawerS)
' Enter the material type for the layer
RED02 0:
IF ISKNLAYER) • 0 THEN
DFAULTS -
ELSE
DFAULTS-STRS(ISI(NLAYEF))
ENDIF
QUESIS ¦ 'Enter the aacerlal type for layer I • ~ STRS(NUYER)
' IF RBUCKL • S TOEN DFAULTS • ETRS (lal (NLAYER) )
COSUB QUE5BOX
C-16
-------
IP inmrt - •• THEM anawarS • DFAULTS
IF UCIVllvtlS] . 27 THQI 00T0 RED027
IF VUlumrS) <• 0 THEN arlSa'You Bust enter a value greater than aero.*ter2S«' ¦ naoll ihd* arlSa'You auat antar a value laaa than or equal' ier2S«*to '+atrS(naoil)»' tor tha_
floor aaterlal typa.'iOOSUB ERBOXiODTD RED021
lal(NLAYER) > VAi( anawarS)
' En car tha degree of aaturatloc for the layer
RES029i
DFAULTS • *(material type default)*
QUES1S - "Encar the water aaturatlon fraction for layar #• ~ STRS(NLAYER)
' IF RBUCTL . S TKBJ DFJOTLTS - STRS (MSAT(HLAYSl)) i IF NSAT (HLAYSt) • 0 TW» DFAULTS • -(aaterlal typa default)*
GOSUB QUESBOX
IF anawarS ¦ •• WEK anawarS ¦ *0*
IF innarS ¦ •• MID RBUCKL • S THEN anawarS • DFAULTS
IP ASC(anewerS) ¦ 27 THUJ SOTO RED02C
IF VALIanawarS) < 0 TOS4 aril •"You auat antar a valua greater than taro.*ier2S>* 'tQOSUB CTBOXiOOTO RED029
IF VALIanawarS) >1 TKQ4 arlSa'You auat antar a valua laaa than or equal"iar2S>'to 1 for the_
floor aaterlal aaturatlOD.'iOOSUB ERBOXiOOTO RD029
XSATtNLAYD*) • VALIanawarS)
#
' Estar cha particle dlaaeter for tha layar
UBOlOi
DFAULTS • *(material typa default)"
QUES1S • 'EUtar tha particle dlaaeter lot) for layar I* • STKJ(KLAYEFI
' IF RBUCKL • 5 THEN DFAULTS . BTRS (SRDIA (NLA YEP ] ) i IF GRDIA(NLAYCT) • 0 THDJ DFAULTS • • (material type dafaultl'
COS OB QUESBOX
IF anawarS • " THEN anawarS ¦ *o*
IF anawarS • " AND RBUCKL • 5 THEN anawarS • DFAULTS
IF ASC(anawarS) • 27 THQJ GOTO RED029
IF VALIanawarS) < 0 THEN erlS-'You auat antar a valua graatar than taro.'ier2S'' 'iQOSUB ERBOXiOOTO REDO30
IF VAL(anewerS) >1 THEN erlSa*You auat antar a valua laaa than or equal¦ ier2S«*to 1 for the_
patlcal diameter."iGOSUB ERBOXiCOTO REDO30
CRDLk (N LAYER) • VAL (anawarS I
' Edtar cha radial dlffualoo coefficient
REDO]1i
DFAULTS • '(coda calculataa)*
QUES1S • 'Ester radial dlffuaion coafflclant (ca*2/a) for layar • * * £TRS (NLAYTR)
' IF RBUCKL ¦ S THEN DFAULTS • ETR5(DR (HLAYSl)}' IF DH(KLAYER) • 0 THIN DFAULTS • '(eoda calculataa)'
GOSUB 0UE5B0X
IF anawarS • ** THEN anawarS • *0*
IF anawarS - ¦¦ AND RBUCKL • S THEN anawarS • DFAULTS
IF ASCIanewerSI • 27 THQJ GOTO REDO30
IF VAL(anawarS) < 0 TVEN arlSa'You auat antar a valua graatar Chan xero."ier2$a* 'iGOSUB ERBOXiOOTO RED031
IF VAL(anewerS) >1 THDI erlS-'You auat antar a valua laaa than or aqua 1*ier2S>'to 1 for the.
patlcal diameter.'iGOSUB ERBOX.COTO RE DO31
IF VAl(anewerJ) < 0 THEN BEEPi GOTO REDO31
DR(NLAYER) • VAL(aasverS)
I
' Enter tha varcleal dlffuaion coefficient
REDOJ2i
DFAULTS • '(coda ealcvlatea)*
QUES1S • 'Enter vertical dlffuaion coafflclant (cn"2/a) for layar I* * STRS(K1AYER)
' IF RBUCKL • S THEN DFAULTS • STRS(DV(NLAYER))i IF DV(NLAYER) . 0 THHJ DFAULTS • '(coda calculataa)'
GOSUB QUESBOX
IF anawarS ¦ " THEM anawarS • >0'
IF anawarS ¦ •• AND RBUCKL • 5 THEN anawarS • DFAULTS
IF ASCIanewerS) ¦ 27 TOO) GOTO REDOll
IF VAL(anawarS) < 0 THEN arlS-'You auat antar a valua greater than zero.•ier2S«* 'iOOEUB ERBOXiOOTO RES032
IF VAL(anawarS) >1 TKDf arlSa'You auat enter a value leaa than or equal*ier2S>'to 1 for the_
patlcal dlaaeter.*iGOSUB ERXGXiGOTO REDOI2
DV(NLAYER) • VALianawarSI
' Enter tha radial paraaabillty
RIDOJJ.
DFAULTS • '(coda calculataa)*
QUES1S - 'Enter radial paraaablllty (cb~2) for layer t* »_ STRS(NIAYTR)
' IF RBUCKL • S TKEX DFAULTS • fiTRS (XR (KLAYER)) i IF UKNLAYER) • 0 THDI DFAULTS • '[coda calculataa)'
GOSUB QUESBOX
IF anawarS ¦ ** 1UM anawarS • '0'
' IF anawarS • '• AND RBUCKL ¦ S THEN anawarS • DFAULTS
IF ASCIanawerS) • 27 THEN COTO RED012
IF VAL(anawarS) < 0 THEN erlS-'You auat enter a value greater than taro.aier2S«* 'iOOSDB DtBOXiQOTO RB>033
IF VAL(anawerS) >1 THEN erl$»'You auat enter a valua laaa than or aqual*iar2Sa*to 1 for the_
patlcal diaaetar.*iGOSUB ERBQXiGOTO REDO]]
KR(NLAYER) ¦ VALtanawarS)
I
' Enter tha vertical paraaablllty
I
RIS03«i
DFAULTS - '(coda calculaceal•
QUES1S • 'Enter vertical paraaablllty (ol"2 1 for layer I* ~ ETRS(NIAYD)
C-17
-------
' IF RBUCKL • 5 m» DFAULTS « ETRSIICVINIAYO1 > i IF FVINLAYEJU • 0 THDI DFAULTS • '(coda calculataal*
COSUB QUESBOX
IF I£N(anawarSI ¦ 0 TCQ4 anrwarS ¦ '0*
IF L£N1 WEN arlS»"You auat antar a valua laaa than or aqual*iar2S«'to 1 tor tha_
patlcal diaaatar.*iCOSUB ERBOX.GOTO REDOJ4
XV(NLAYB() • VAManawarS)
' Entar Cha adaorptleo coafflciant for tha layar
redo:5.
DFAULTS • '(batarlal typa dafault)'
QUES1S • 'Entar adaorption coefficient lor layar I* • STRSar2Sa*to 1 for the_
patlcal diaaatar.•iGOSUB ERBOXiGOTO KEB035
KADS (KLAYER) ¦ VALI anawarS)
END IF
' Draw cha layar and add chickneaa Co total
5COL • &SOIL
:f riiNurtu >1.0 then scol • rsoil
LINE (24. natart • DELD • 5<) -STEP1551. NTHICX(NLAYER) • DELDI , SCOL, BF
natart ¦ natart . NTHICKiNLAYER)
CHECK tl i • NLAYER) . 1
IF natart >• aaxdp - .0001 THEM GOTO RE0O34
GOTO RED021
' Stap down looting layara
RED03 4i
If lag ¦ l
dflag • l
IF fdapth <> 0 THEN
LINE <314, Sa)-ETZP|6. INTIfdapth • DELD * .SI). 7, BF
FOR I . 59 TO INT I fdapth • DQJ> ~ .5 • S»)
IF INTfANDU) * 10 » .5! < S THEN PSET 1314 * INTIRNDI2) « 3 » .5), I). I
NE3CT I
END IF
IF CHBCX04 * NLAYER • 1) - 0 THEN
DFAULTS - ' (proceed!1
QUES1S • 'Praia ¦ * CHRS(24) • * or " • CNR$|2S) • • to lower footing-
POEPTH . fdapth
OOSUB ARROWBOX
IF anawarS • 'DONE" and fdapth>0 THEN CHECKi34 . NLJIYER *1) ¦ 1" OOTO REDOKl
If anawarS • 'DONE' and fdepthiO than checK(34*nlayer*l)»1igoco redo37a
IF anawers • 'UP* AND fdapth • o THEN BEEP> goto redolo
IF anawarS • "DOW AND fdapth • maxdp THEN BEEPi GOTO r«do20
IF anawerS • 1 BACK1 THIN CHECK 114 * NLAYER) - 0:fdapth.0.funt.Oi OOTO REDO)
IF anawarS • "DOWN* 1HQ4
FUNT • RIKT . 1
(depth • fdapth ~ POOTjFUNTI
END IF
IF anawarS • "UP* THIN
FUNT • DW - 1
IF FUNT > 0 THEN fdapth • fdapth - FOOT(FUNT • 1)
IF FUNT • 0 THEN fdapth ¦ 0
END IF
GOTO rado 20
' En tar tha concraca radlia coneantration
RED0161i
OUESlt ¦ "dear tha radius concentration tpCl/gt of tit* foociog.*
DFAULTS • *1.0*
' IF RAUCKL • 5 THEN DFAULTS • BTRS I era I
GOSUB QUESBOX
IF anawarS • ** THQl anawarS • DFAULTS
IF A£C(anawarS) • 27 THEN chacki34«nlayar»lI.OiOOTO RED03C
IF VAL(anawarS) < 0 TKDi arlS>"You auat antar a valid radlia coec«ntratlee'iar2$-'for tha
footing (».0).•.OOSUB arBOXiOOTO REDOltl
IF VAL(anavarS) >100 THIM arlS>*You auat antar a valua laaa than 100 (pCi/LI *iar2f•* *iE0SUB arBOX;GOTO RED0161
fra ¦ VALianawarS)
" Entar tha concraca danalty
RE0O162r
guESis > 'Entar cha danaity (g/ccl of tha footing.*
DFAULTS > -2.1*
' IF UUCKL - S TON DFAUtTS • STRS (Cdanat
C-18
-------
COSUB QUESBOX
IF ativarS ¦ •* 1UX anawarS ¦ DFAULTS
IF A5C(*n«w«xS) • 27 THDI GOTO REDOltl
IF VAL(anawarS) < 0 THEN arl$>*You auat wear a valid footing danalty (g/cc) • iar2$>* • tOOSUB ERBOXtOOTO RES0K2
IF VAL(anawarS) >10 THEN «rl$a*You suit antar a valua laaa than 10 (g/cc) • i«r2$>* • lOOtUB ERBOXiOOTO REOOK2
fdana ¦ VAL(anawarS)
' It thara la radiua In tha footing, Chan Input cha ama nation coafflclant
IF Cra ¦ 0 1HDI COTO RED0164
REDOltJi
QUES1S ¦ 'dear tha aaoaatlao coafflclant ot tha footing.*
DFAULTS • *0.1*
' IF RBUCKL • S THEN DFAULTS • STRS (caul
QO&UB QUESBOX
IF anawarS ¦ " THEN anawarS • DFAULTS
IF ASC(anawarS) • 27 TOW SOTO RED01S2
IF VAL(anawarS) < 0 THEN arlS>*You auat ancar a valid aaanatlon coaf fici«it* iar2S»* • iGOSUB ERSOXiCOTO RED0163
IF VAL(anawarS) >1 1KD< arlS-'You auat antar a valua laaa than or aqual'iar2S«'to l for cha_
radon asacatliEi coafflciat* iGOSUB ERBOXiOOTO RED0163
fane • VAL(anawarS)
' Entar tha footing poroalty
REDOlt4i
DFAULTS . cms(INTt til - cdana / 2.7) * 1000 ~ .5) / 1000)
' IF RBUCKL - S THEN DFAULTS • STRS(capg)
QUESIS • 'Entar cha poroalty of tha footing*
COSUB QUESBOX
IF anawarS • •• THEN anawarS • DFAULTS
IF ASC(anawarS) • 27 AN0 fra <> 0 THEN GOTO REDOU3
IF ASC(anawarS) • 27 AND fra • 0 THEN COTO RED01S2
IF VALIanawarS) « 0 THEN arlSa'You auat antar a valid poroalty (>0)*iar2S-* *:COSUB ERBOX:COTO RED0144
IF VALIanawarS) >10 THEN arlSa'You auat antar a valua laaa Chan or aqual'iar2S«'to 10 for tha_
footing. ¦ 1005UB BIBOXiOOTO RED01 44
fapg • VAL(anawarS)
t
' En tar tha aatarial typa for : l>a footing
RESOliSi
DFAULTS • -11*
' IF RBUCKL ¦ S THEN DFAULTS ¦ STR$(clal)
QUESIS ¦ 'Entar tha aatarial cypa for tha footing.*
COSUB QUESBOX
IF anawarS • ** 1HS< anawarS • DFAULTS
IF ASC(anawarS) • 27 TOE* COTO RED01«4
IF VXL(anawarS) <• 0 IMS' arlS-'You auat antar a valua graatar than xaro.*>ar2S-1 * iCOSUB ERBOXiOOTO RED0KS
IF VAL(anawarS) »naoll WDl arl$>*You auat antar a valua laaa than or aqual'iar2$«*to •~atr$(naoil)»,_
for tha footing. • iQOSUB ERBOXiOOTO ROOKS
flal • VAL(anawarS)
' Entar cha dagraa of aaturatlon of tha footing
REDOKi i
DFAULTS - '(aatarial typa dafault)'
' IF RBUCKL • S THEN DFAULTS • STRS(CMSAT)i IF CMSAT • 0 THQ4 DFAULTS • •(aatarlal typa dafault)*
QUESIS • 'Entar tha watar aaturatlon fraction of tha footing aatarlal.*
COSUB QUESBOX
IF anawarS • " THEN anawarS ¦ '0*
IF ASC(anawarS) • 27 THIN GOTO REDOICS
IF VAL(anawarS) < 0 THEN arl$>*You auat antar a valua graatar Chan xaro.'iar2$a* 'iQOSUB nBOXiGOTO REDOlCi
IF VAL(anawarS) >1 THD) arlS>'You auat antar a valua laaa than or aqual•iar2S-*to 1 for tha_
footing aaturatlon.*.COSUB ERBOXiCOTO REDOltt
fMSAT • VAL(anawarSI
' btar tha partlcla diaaacar of tha footing
RED0167i
fSRDIA - 0
' Entar cha radial diffusion coatflclact of tba footing
RESOltl i
DFAULTS • '(coda calculataa)*
' IF RBUCKL • S THEN DFAULTS • STRSICDR)i IF CDR • 0 THEN DFAULTS • *(coda calculataa)*
QUESIS • 'Entar radial diffualon coafficlaot (ca~2/a) of tha footing aatarlal'
COSUB QUESBOX
IF anawarS « •• THEN anawarS • '0'
IF ASC(anawarS) ¦ 27 THIH COTO REDOKi
IF VALIanawarS) < 0 THEN arlt>'You auat antar a valua graatar than aaro.*iar2S-' 'iOOSUX ERBOXiOOTO RESOIM
fDR • VAL(anawarS)
' bear tha vartlcal diffualon eoaffiaot of tha footing
REDOl69¦
DFAULTS • "(coda calculacaal*
' IF RBUCKL • 5 THEN DFAULTS . STRS (CDV) i IF CUV . 0 WEN DFAULTS • * (coda calculataa) •
QUESIS - 'Qatar varclcal diffualon coafficlaot (ca*2/a) of cha footing aatarlal'
C-1 9
-------
GOSUB QUES80X
IP anauerS • •• TOM anawarS ¦ *0'
IF ASCI*n«werJI - 27 THEN GOTO RED01S8
IF VAL(4Dfwer$) < 0 THQ< erlSa'You auat enter a value grutar Chan zero.*ier2S'* *:OOSUB ERBOXiOOTO REDOl 69
fOV . VAL(answers)
' En Car the radial permeability of the footing
REDOl 701
DFAULTS ¦ •(cod* calculate*)¦
' IF RBUCKL • S THEN DFAULTS - STRS (CKRI i IP CKR ¦ 0 THI> DFAULTS • ' (code Calculates)'
QUES1S • 'Entar radial permeability («*2) of the tooting material'
COS OB OUESBOX
IF anawarS • •• THEN anawarS - *0*
IF ASC(anawarS) • 27 TO EN COTO RED0149
]F VAL(anawarS) < 0 TKQ4 erlSa'You auat antar a value graatar chao xaro. ¦ >er2S>* ' iUDSUB ERBOXiOOTO RQ3O170
fKR ¦ VAL(anawarS)
' En tar tha vertical permeability of tha footing
REW1711
DFAULTS - '(coda calculate*)*
' IF RBUCKL • S THEN DFAULTS • ETRSlCKV). IF CKV • 0 IMS' DFAULTS • * (coda calculate*) '
0UES1S • 'Enter varclcal permeability (a>*2) of the footing material.'
GOSUB QUESBOX
IF anawarS - •• THEN anawarS • >0*
IF ASCianawerS) • 27 TO EH SOTO REDO170
IF VALIanswerS) < 0 THEN erlSa'You auat enter a value graatar than tero.*>er2S'* 'iQOSUB ERBOXiOOTO HED0171
1KV , VAL(anawarS)
' Enter tha adaorpelon coefficient of tha footing
RED0172i
DFAULTS ¦ '(material type default)'
' IF RBUCKL • S THEN DFAULTS ¦ STRS (CHADS). IF CKADS • 0 WEN DFAULTS - '(coda Caleulataal'
QUES1S • 'Enter adaorpdoo coefficient of ehe footing material'
GOSUB OUESBOX
IF answers ¦ " THEN answers » '0*
IP ASC(anawarS) • 27 TOD) COTO RED0171
IF VAL(anawerS) < 0 THEN erlS-'You mult enter a value greater than xaro.'ier2S«* *:QOSUB ERBOXiQOTO REDOl 7 J
CKADS > VAL(answers)
endlf
Lower yard elevation
RED037AI
dflag • 0
IF ydepch <> 0 THDJ
LINE 1391, S4)-(S7S, IWTfydepth • DELD ~ .5 . SB)), 9, BF
LINE (391, INTIydepch • DELD ~ .5 . S7) J - (S75. INT(ydepth • DELD ~ .S ~ 581), 2, BF
FOR I • 391 TO S7S STEP 2
LINE (I, INT(ydepth • DELD ~ .S ~ S4))-- maxdp THEN BEEPi GOTO redo20
IF answers • "DOWN* AND ydepth >• (depth THEN BEEPi GOTO redoJO
IF anawarS • 'BACK* THEN CHECK(34 ~ NLAYER ~ 1) • 0. COTO REDOl
IF anawarS - 'DOWN' THEN
yunt • yunt ~ 1
ydepth - ydepch • FOOT (yunt)
DTO IF
IF answers ¦ 'UP' HOW
yunt ¦ yunt - 1
IF yunt > 0 THEN ydepth • ydepth - FOOTlyunt ~ 1)
IF yunt • 0 THEN ydepth • 0
END IF
OOTO redo20
END IF
' Define Craeka t Penetrations
RHXJ991
pannua » o
cous ¦ o
REDOf 9>
nflag-0
L - LNC
W . WID
SR. 320 I ISO
PI - 3.141S924S4I
C-20
-------
if urw wm
TENP.L
L>W
W.TSKP
END IF
mlD • w / SQR(PI)
KMX • L / SQRIPI)
iUT • L / W
IT ARAT >• SR TK» US - 320 / rKlX
IF AJUT < sr mat US ¦ ISO / RMId
THIN.Rain
scum* 12
CLS 0
CLE
DAGAINi
LIHE <0,0|-(«3»,«7»).0,HF
FOR I . 1 TO 79
LOCATE 1. 1 ¦ FHIHT CHK$(196)|
NEXT I
LOCATE 1. It PRINT CHR»<199|
LOCATE 1, 791 PRINT CHK$U«2!i
LOCATE 1, Hi PRINT CHRS<182) i • CRACK DOTNITION • i CHRJ(199>
It «fl»o«0 than
LOCATE 21. 41 PRINT *Uaa 't CHR$(27li ' to dadoa dm crack. to cooclnua. to go hack '
alaa
. LOCATE 2(. 4¦ PRINT *U»a ¦ i CHRS(27) i * or * i CHRS 12<) i ' Co aova crack. to accapt daflDltloe. to go back*
andlt
' Draw houaa oucllna
RADIUS.((RMIN'USI*4)/USi C • 4i P.OiCOSUB ELLIPSE
RADIUS* t (RMIN'US) O) /USi C - 4: P.OiCOSUB ELLIPSE
RADIUS.|/USi C • 4i P.OiCOSUB ELLIPSE
RASIUS>((RMIN 0 THEN
FOR IDW . 1 To na
RADIUS-WKEEPIIDW)
C • 1
P.O
IF UKU*IIWI>B OR RNUMIIDW) tO THEN P-l
COSUB ELLIPSE
NEXT IDW
ENDIF
t
' Draw cha currant crack balng daflnad
IF MFLASoO THEN
RADIUS-THIN
C ¦ 11
P.O
00SUB ELLIPSE
LOCATE 27. 20
PRINT USING »\
ENDIF
\ MM.Ml \ \*i 'Dlacanca (ra» oucar *dga:
RKIN - TOINi -ft.
SCAN:
anaw«r$ • * •
kayS •
WHILE LSMkayS) ¦ 0
kay$ ¦ INKEYS
WEND
IF LEN(kayS) ¦ 1 THEN
IF ASCtkayt) • 27 AND enua • 0 THEN CKECX(34 » KLAYEft . 2) - 0> GOTO REDOl
IF ASCIkayS) • 27 AND cnua > 0 THEN enua • CCLB - 11 CHECK134 * N LAYER * 2 • CO IB) • Oi OOTO RED019
If aac(kayS) • 1) and Htlag.O than goco radoJO
IF ASC(kay$) . 13 and Nflag.l THEN
IF enua > 0 THQl
FOR 000 - 1 TO enua
IF KXIOXF(OgO) • THIN THEN BEEPi GOTO SCAN
NEXT 000
END IF
cnim«rouB*l
CHECK!34 * KLAYER *24 cats) . 1
KIKZZP (cnuBl - TWN
RED0911
CPRESS(cnuB) ¦ ph
CRADONIcnual • CH
DFAULTS • *10*
QUES1S - *E&tar cha crack or panacratioo radial vldthla)1
OO SUB QUESB1
IF anawarS • THEN anawarS • DFAULTS
IF ASCttasvarS) - 27 THEN chack(34*nlayar+2*anal«0iajv»-cnum-ligoco acac
C-21
-------
IF VAL(answarS) » RU • 12! • J.54 THIH arlta'Tha opening chlclmaaa cannot ba larger Chan* iar2S.atrS (ru)*'_
(ft) or 1 radial unit'igoaub ax box: GOTO RED091
CTHTCK (cdub) « VXL(acswerS)
rado92¦
DFAULTS ¦ '(Pull *11.). 0 co Daflna Ran. Paiia., •<* for opaninga*
CUES IS > * Eli tar cha nuabar of floor opaclngf ac chla radius*
005UB 0UESB1
IP anawarS • " THEN iQawarS • "-1*
IP ASC(anawarS) • 27 THEN GOTO RED091
IP VAL(anawarS) > 5 THEN BE£P: COTO rado92
IP pannua <> 0 AND VAL(anawarS) > 0 THiM BEZPi COTD rado92
UHUMIcnua) ¦ VAL(aaawerS)
IF pannus ¦ 0 AND UNUM(cnua) > C THEN pannia • cuia
IP UNUMIcma) <> 0 TKSi OOTD redD95
RED093 i
DFAULTS • *(F\j11 all.), I < < foi panatratlona*
QUC51S • 'Socar cha DusMr of raaadlaclon panatratlona at chla radlua*
IF pannuo <> 0 THEH RKUMleaun) » -1i GOTO rado94
OOCUB QUESB1
IF aniMtJ ¦ •• AND UtrUM(emu) ¦ 0 THEM anawarS ¦ '-1*
IF ASC(anawarS) • 27 THEN GOTO redo92
IF VAL(anawarS) > S TV EM BEE Pi GOTO KXD093
RNUM(coun) • VALtaeawarS)
IF pannum - 0 AND RNUN(enua) > 0 1KEN panaiB • cnua
rado94i
DFAULTS ¦ *(2 a houaa praaaura)*
QUES1S • "Entar cha praaaura drawing radon through cha rasadlacioo panacracion (Pa)'
GO SUB QUESB1
IF answers • ** WD) anawarS • STRS(2 • phi
IF ASClaoswarS) • 27 THEN GOTO RED093
CPRESSIcnual ¦ VAL(an«waiS)
RED094Ai
DFAULTS • *(houaa radon boundary)'
QUES1S • 'Ektcar cha radon boundary can dieion for cha raaadlatloo panacraclon (pCl/LI*
GOfiUB gUESBl
IF anawarS * " IMS) anawarS • STRS(CH)
IF ASCIanawarS) • 27 THEN GOTO r«do94
CRADONIcnua) • VAL(aamr$)
rado9Si
IF UNUM(CDin) « 0 OR RNUMICBUB) < 0 THEM GOTO RED09C
DFAULTS - *10*
QUES1S • 'Encar cha angular width of cha penetrations tea)*
005UB QUESB1
IF anawvrS • TOO* anawart • DFAULTS
IF JLSC(inawwrs) . 27 AND RNUM(cnw) > 0 THEN COTO RE0O94A
IF A£C(anawarS) • 27 AND UNUH (cnuB I > 0 TOEM COTO redo92
IF VALIanawarS) » SO THEN BEEP: GOTO redo9S
CWlDlcnun) • VALIanawarS)
RED096i
DFAULTS • '0.41*
QUES1S - -Entar cha crack or panacraclon fill poroslcy'
00SUB QUESB1
IF answers • " THS4 answers • DFAULTS
IF ASCtanswerS) • 27 AND UNUH(cnua) > 0 1HXN COTO redo9S
IF ASC(anawarS) ¦ 27 AND RNUH(cni») > 0 THEN GOTO rado9S
IF ASC(answers) • 27 AND UNUMIcnta) « 0 THEM COTO rado92
IF ASC(anawarS) ¦ 27 AND RNUMfcma) « 0 1HQI GOTO RED094A
CPOR(cnun) • VAL(anawarS)
RED097i
DFAULTS ¦ '1.0E-4*
quesis • 'Encar cha panacraclon vertical permeability (ca/a)*
G05UB QUESB1
IF answers ¦ THDJ answers • DFAULTS
IF ASC(anawarS) • 27 THEM OOTO REDO96
CPERlf(aia) • VALfanawerS)
RED09Ii
DFAULTS . '<.OE-3*
QUESIS • 'biter tha penetration vertical diffusion coefficient (ca*2)'
GOSUB QUESB1
IF anawarS ¦ "* TCEN anawarS • DFAULTS
IF ASC(anawarS) • 27 THEN GOTO RED097
CDIFF(eoin) ¦ VAL(anawerS)
If cnunaS Chan goto r*do9C
GOTO REDOB9
END IF
ENDIF
C-22
-------
IF LENIkaySI <> 2 TKSJ) BSEPi GOTO SCAN
if Aficmiom;*«y$. in <> n and AsciRicNTSikayj, id <> n iw* sap* aoro scan
IF ASCCRISHTSIkayS. I)) ¦ 77 WEN
TWN.TMIN.RU
IF TNIN»RMIN WW BHPi TMIN.TKJN-RUiGCrTO SCAN
BID IF
IF ASC(RIOTTS (kayS. 1)) • 75 1MO<
TMIN-WIN-RU
IF TMIN<0 THEN BEEP iTWN.TXIN^RU. GOTO SCAN
END IF
MFLAG - 1
GOTO DACAIN
REDO90i
' btu run tltla.
RED0S2 >
DFAULTS • ••
' IF RBUCKL • S THEN DFAULTS • RTITS
QUES1S - "Entar tha Tltla for thi« run.*
OOSUB QUESB1
RTITS • tnMrt
IF LB4(RTITS) ¦ 1 THEN
IF ASC(RTITS) ¦ 37 THEM CHECSU4 ~ NLAYER ~ 2 ~ COU> - 1) • Oi OPTO RQOl
ENS IF
CNAMS • "
TITLES - "CREATE RAETRAD INPUT FILES*
COSUB NUSCRUN
CHOICE • 0
' Entar flla naaa tor eraatlon
REBOSJ i
HLP1SI1) - *Entar cha naaa of tha flla for thla data.*
HLP2SU) • datfUS * CNAMS * RAE'
COSUB HELP
kayS • "
WHILE (LEN(kayS) ¦ 0)
kayS > INKEYS
WBfD
if AscikayS) - 27 mm ooro rdoi
IF ASC(kayS) • I AND LENICNAMSl <> 0 TOW CNAMS • LEFTS(CNAMS. LDJ(CNAMS) • l)i GOTO REB05J
IF ASCtkayS) • II AND L£M (CNAMS I <> 0 THEN GOTO REDO54
IF ASC(kayS) • II AND LIM (CNAMS) . 0 THEN BEE Pi COTO RED053
IF LEN(CNAMS) • ( THEN BEEP I GOTO RIDOSi
CNAMS • CNAMS * kayS
GOTO RXDOSJ
RIB054.
NREG • NLAYER • 1
IF L£N(CNAMSI < ( THEN CNAMS - CNAMS ~ LETTS IEXTS, {( - LIN (CNAMS)) )
' a«va flla
FLES • datfllS ~ CNAMS * ¦.RAE*
OPEN FLES FOR OUTPUT AS II
' wrlta control Information
PRINT II. CNAMS
PRINT II. LEFTS(RTITS. SO)
PRINT II. USING "III. ~~ III.II III.II lllll.ll lllll.ll II.Illl Mll.llll'i uxdpi WIDi LNG; phr CH. axirs
PRINT II. USING *111.11 III. II III.Ill III.Ill III.Ill *11.111 III. pout) cout i RU; aMIN; esui yiu/rgi dalr
PRINT II. USING *1111.111 Illl.Ill III III III lll'i fdapthi ydapthi FUNTi yunti NLAYERj cnua
' wrlta crack panatratlco Information
$
FOR I « 1 TO cnm
PRINT II, USING *111. til III.Ill III *11 Illl.Illl Illl.Illl Illl.Illl II.Illl III.Ill**** III .III—**, MinXP(Il;_
CTHICX(I) I UNUNII) i RNUM(I), CPRESS(I)i CRABON(I)l CWIDd); CPOR(I); CPERM(I); CDIFF(I)
NEXT I
' wrlta footing alab Information
t
PRINT II, USING *11111.*11 III III III III III.Ill Illl.Ill II.Ill II.Ill II.Ill —' II. III — —- II.Ill—— II.III.
II .III II.Ill— II.Ill— II.Ill— lll'i Fwid / 2.54 / 12lj li INT(laMIN) / RU ~ l.SJi li li Fwld / 2.S<_
/ 12! ¦ cra> ctlan* _
I earn capg, CHSAT; CGRDIAi CDRi CDVj cnil CTVi CXADSi clal
' wrlta aoll layar Information
FOR I ¦ 1 TO NIAYES
PRINT *1. USING *11111.111 III III III III III.Ill Illl.Ill II.Ill II.Ill II.Ill II.Ill II.Ill II.III.
— * II.Ill---- II.Ill ll.Ill II.Ill—- III*; NTHICXIIII nrl II)> nr2!I); ndltlji nd2(I)j vu(I>j rail)i_
danaiDi aa(I)i apgrllji MSAT(I)i CRDLAUlj DR(I)i DV(I); *R(I)j *V(I); KADS (I) j 1*1(1)
NEXT I
C-23
-------
writ* footing Loformttioo
ro* I . i to fust
PRINT «1. US I HO 'HIM.Ml Ml *11 III Ml Ml.Ml MM.Ml II.Ill tl.MI II.Ill M.MI M.IM M.HI.
11.1II II .III-"-- II til*"** M.IM lll'i FOOT! I) i INTIaMIN / RU » l.SI t INTtaHJN / RU ~ 1 .S) i I -» 11_
I * 1; FOOT!I) i frti Idanai («aOi Upji FMSATi fGRDIAi (DRi (DVj (KRj tTV: tXXDSi fill
NDCT I
CLOSE IJ
RETURN
QUESBORi
SUBROUTINE QUESBOX
»••
'** TTii« aubrouclna proapca ch« uaar (or input
Co craata a data 111c (or RAETRAD.
» ••
' PrlDC vertical ruooara
FOR ROW . 23 TO 22 STEP -1
LOCATE ROW. li PRINT CHRSI179)
LOCATE ROM. «0i PRINT CKRS(179|
NEXT ROW
»
• Print horizontal runnara
FOR COLUMN m 2 TO 79
LOCATE 21. COLUMNt PAIKT CHRS(196) i
LOCATE 24, COLUMNr PRINT CHR$i
LOCATE 21. SO r PRINT CHR5I191)i
LOCATE 24. 60. PRINT CHR$(217)i
IF lflag • 1 WDI LOCATC 25, 2ti PRINT * ( • previous quaaciant*)
IF l(lag • 3 then LOCATE 2&. 2«. PRINT •( ¦ whan finished >*¦
' Claar out ipace (or question
FOR EMPTY • 2 TO 79
LOCATE 22. EMPTY: PRINT * *:
LOCATE 23, EMPTY. PRINT • \-
NEXT BtPT*
' Dlaplay question and default answer
LOCATE 22. (40 - (INT(LB4(QUES1S) / 2 ~ .S)))i PRINT LOTS (0UES15, 76)
IF DFAULTS <> WEN
TLEN . (40 - IINTILEN(DFAULTS) / 2 * i * 4))J
LOCATE 24, TUX - 1
PRINT * «BTER»«*; DFAULTS; ¦ •»
LOCATE 24. TLB* • 2: PRINT CHRSI180);
LOCATE 24. TUN * < (40 - TLB4) • 2) i PRINT CHRS (195) :
EXE IF
' print users raaponca
aneverS ¦ **
Q'JES2i
LOCATT 23, Jt PRINT ¦->
LOCATE 23, Si PRINT ansvarSi ~~~
Rays ¦
WHILE ILEN(kayS) - 01
keys • INKEYS
WEND
IF ASC(k«y$) • 27 anavnrS - CHRS(27)i RETURN
IF ASC(keyS) - 13 1HEX RETURN
IF A£C(key$) • 6 AND LBi(anaw«r$) <> 0 THEN answers • LETTS ILDawrS, LBi(anavart) - 1) I OOTO QUES2
answer} • anawerS * kay$
OOTO QUES2
WNU12i
SUBROUTINE MENU 12
* ••
'*• n»is subroutine displays cha currant fllaa
chat exist in cha defaulc directory and
allows cha usar to select ooa tor changes.
C-24
-------
' Load diU til* DIM!
BUT* ¦ '.W
00CUB CETFILS
• Display (11* bum and instruction*
TITLES • 'MODIFY RAETRAD INPUT FILES*
00SUB NUSCREEN
HLPlS(l) ¦ 'Usa Cha righc or laft arrow to bovs cursor and apaea bar Co aalact*
HLP2S<1) ¦ '(11* (1 stax). Praaa «£HTEft» co procaad or <£SC> to raturn co mid auu.
nux • l
OOSUB DISFLS
IP IHUN • 0 THIN OOTO MDAJ1
CNAJU ¦ RF1SSI1)
' load la data tram salactad Ilia and aac dalaulta co 211a data
OOSUB 1NF1L
Coco era
dafaulca approprlataly aac.
'OOSUB MEKU11
KBIU12ai
cnut> " •
TITUS • 'MODIFY RAETRAD INPUT TILES'
OPTIONS • 5
OPTS 11) • 'HOUSE PARAMETERS'
OPTS 12) ¦ 'FLOOR OPENINGS'
OPTS 13) • 'FOUNDATION 4 COILS'
OPTS 14) ¦ "SAVE CHANCES TO FILE'
OPTS IS) • 'RETURN TO THE INPUT FILE KZJW*
HLP1SI1) « 'Praaa tha nunbar of tha CHOICE. It will bacoaa*
HLP2S11) ¦ 'hlghlightad. Praaa «ENTEK» to procaad. «E£C». or a naw nuabar.*
HLP1SI2) • "Thla opclon allowa you to modify or rtviw cha charaetarlsciea or tha'
HLP2SI2) • 'modal houaa baing analyxad. Praaa «ENTER>. «ESC». or a nw numbar."
HLP1S13) • "iris option allow* you to modify or ravlaw cha characteristics*
KLP2SI3) • 'of cha floor opaning*. Praaa . or a nw niaMr.'
HLP1S(4) • "Hits option allows you co modify or ravlaw cha characteristics'
HLP2S14) • 'of cha foundation fc soils. Praaa . <£SC>, or a dm oimbar.*
HLP15I5) • "Tila option prempta you for a fila name aod allowa you to sava*
KLP2S1S) • 'your racant changaa. Praaa . «ESC>< or a Daw Disbar.'
HLPllii) ¦ 'Thla option raturna you Co Cha INPUT FILE manu."
HLP2S(i) » 'Praaa «QfTER>, , or a oa
DELAY • 0
OOSUB KAXBENU
IF CHOICE .0 0* CHOICE > S TWO) RETURN
ON CHOICE OOSUB HOUSE. FLOOR. SOIL. DISIIT
GOTO KZNU12a
HOUSEi
MAXI-I
PAftH-1
PAAH2.1
GOSUB MOOIT
RETURN
FLOOR>
TITLES » 'MODIFY/REVIEW FLOOR OPINING CHARACTERISTICS'
COSUB MJSCRESI
cholca«0
HLPIS < 1) • 'Salact Cha nmbar of cha opanlng you wish co change and praaa «Brm>*
HLPiS(l) • 'Praaa «ESC» Co return Co INPUT FILES meou.'
OOSUB HELP
IF CNUH-0 THEN
CLS
CLS 0
ehoieaaO
HLPlS(l)-*Thara ara no cracks in this fila co modify-'
HLP2SU)•'Praaa any key to return co cha MODIFY manu'
goaub help
acq i
kayS."
keys»1okayS
if lao
-------
LOCATE JO, li PRINT JSi* Raaadlal Opting at ';inf 11 ().l, 1) i * ft (ran tha cntu
ELSEIF INFIL(J*1.1) >0 THE*
LOCATE J+2,liPRINT JSi* Floor Opanlog at ';Inf11(j+1,1)i• ft frea tha eantar
alaalf inflKJ+1.4)»0 than
LOCATE J*2.1tPRlNT JSi'Raaadlal Panatratlon ac "iinfil(J«l.1);• ft frea tha cantar
aodif
NEXT J
t
' print varelcal runnara
t
COLO* 2, 0, 0
FOR ROW • 20 TO 1 STEP -1
LOCATE ROW, li PRINT CHRSI179)
NEXT ROM
vcrl I
lflagal
COLOR 7,0,0
gussis m "Bitar tha nuabar of tha epani.Bg you with to ehanga and praaa «BnEK>'
dfaultS."
OOJUB QUESBOX
If lan(4navar$>-0 than baapi goto vcrl
If •»c(«n«war$l-27 than raturn
If val(»n»war$)<0 than baapigoto vcrl
If val (anaw«r$)»cm« than baapigoto vcrl
1 f lag«l
CHOI CEaVAL (ANSWERS)
BaxlalO
par««2
pam2>ehoica*l
cholca-0
goaub aodlt
goco floor
RETURN
SOIL,
goaub lnaoll
TITLES • "ICDIFK/RtVIEW MATERIAL LAYER CHARACTERISTICS*
00SUB NUSCREEM
cholea-0
HLPlStl) • 'Salaet tha niobtr of tha opening you wlah to changa and praaa *
HLP2S(1) • 'Praaa <£SC> to raturn to INPCT FILES atnu.'
Q05UB HELP
happy-l»nlayar*funt
If h*ppy»19 thao hapty • 19
FOR J-l TO happy
JS-STRS(J).*. •
IF J<10 TKBI JSa- •~STRS(JI«*. ¦
LOCATE J«2,l1PRINT JS; • * 3
COLOR 7,0,0
QUES1S • 'Entar tha auabar of tha layar you wlah to changa and praaa '
dfaultSa"
OOSUB QUESBOX
II lanianawarSi-0 than baapi goto vciJ
If aac(anawarSI-27 than raturn
if val(anawar$)«0 thao baapigoto vcr2
If val|anawarS)>happy than baapigoto ver2
lflag.l
CHOI CEaVAL (ANSWERS)
uxlal2
partta]
par»2«cholca*l*coua
choicaaO
goaub aodlt
goto aoll
RETURN
DISKJTi
' Entar flla ot»a for eraatlon
RESOISSi
titla$>*5ava flla changaa*
goaub ouacrno
choicaaO
C-26
-------
MLPlS(l) - 'Entar tha dim of eha (11* (or thla tecs.'
HLP2SI1) • 0 THQJ CNXKS . LEFTSICNAMS, LENIOUkHS) • 1) • GOTO RED01S3
IF ASC(kayS) • 13 WD LEH(CNAMS) « 0 THEN OOTO RED0154
ir ASC(kayS) • 13 AND LDMCNAMS) ¦ 0 TKD4 UZP< COTO RED01S3
IF LB^(OtAMS) ¦ 1 THEN REEFi OOTO RQ01S3
CNAXS • CHANS * kayS
GOTO REC0153
RED01S4>
tltlaS>'£ava (11a ehugM'
goaub tuierNii
cholca-0
HLPlS(l) • 'bear tha ¦ canarlo daacrlpeiOD (or thla dataflla.*
HLMSI1) • rtlcs*'.'
GOSUB HELP
kayS •
WHILE (LEN(kayS) • 0)
kayS • IKKEYS
WEND
IF ASC(kayS) - 27 THEN raturn
IF ASC(kayS) • I WD LEN(rtltS) <> 0 THBt rtltS • LETTS(rtltS, LBMrtUS) - 1] i GOTO RED01S4
ir ASC(kayS) • II AND LDUrtltS) <> 0 THEN OTTO REDOISS
IF ASC(kayS) ¦ 13 AND LENIrCltS) • 0 THEN BEEPi GOTO RED0154
IF lEHirtltS) • 10 THEK BEEP: GOTO RED01S4
rtltS • rtltS ~ kayi
GOTO RED01S4
RESOlSSi
IF LEN(CHAMS) < I THEN CNAMS • CNAMS ~ LEFTSIEXT5, (I - LEN ICNAMS))]
' aava (11a
FLES m datf11S * CNAMS * ¦ .RAE"
OPEN FLES FOR OUTPUT AS «1
' wrlca control Intonation
PRINT II, CNAMS
PRINT II, LETTS (RTITS. #01
print ii, using 'in.it in.«< iii.(i inn.ii inn.ii ii.nn imi.imi'i.
BAXdpilDfll (1.1) I lot 11 (1.J) 1 In £11(1,3)1 lnfll 11.4] llBflld, 5) Until (1,1)
print ii. using •in.n iii.n iti.ni ni.in ni.ni in.in iii.ni'i in(iiu.«)i_
ln(ll 11. 7) iruj aNINi nui ymax/rui dalr
PRINT II, USING •Mil.Ill llll.lll Ml Ml Ml Mt'i (dapthi ydaptht FVHTi yunti NLAYDti emn
' wrlca crack panatraclen Information
4
FOR I • 1 TO enta
PRINT II, USING '1*1.*11 III.Ill III III nil.Mil MM.Mil MM.MM II.MM Ml.lll"" IM .III
ln(11<1*1.IIiln(l111*1,2>ilnfll<1*1,3)iln(ll(1*1,4)iln(ll(l*l,S)linfil11*1.iIUntil(1*1,7 Ji_
10(11(1*1.01ilot11(1*1,91;lot 11(1*1,10J
NEXT I
' wrlta footing alab Information
#
PRINT II, USING •MM*.Ml Ml Ml III Ml 4M.MI MM.Ml II.Ml M.MI II. Ill M Ml"-- II.Ml M.»M_
M.MI M.MI II. Ml*"* M.MI —- III • i _
ot hie* |l>/2.54/12 iorl II) inr2 (1) mdUl) md2 II) ivu (1) i lnfll (coias. J, l), lnfll (cnvn*2.2) <_
lnfll (cnm*2,3) j lofll (cnun*2.4) i lnfll (coia*2. S) ¦ lnfll (cnia.2, t), lnfll (cbvb*2,7 ) i lnfll (enta*2. #j i_
Lnfll (covm*2.9) i lnfll (cdib.2.10) j lnfll (ecu*. 2. 11) i lnfll (cm».2, 12 i
' wrlta aoll layar Information
I
FOR I • 1 TO NLAYTH
PRINT II, USING 'Mill.Ml IM Ml Ml III Ml.HI IIM.Ml M.MI M.MI 11.111 II.Mt II.*11 M.MI.
M.MI—— II. IM M.MI—— 11. Ill *11' i _
nchlckll'l) ;orl (1*1) inrj (1*1) jndl (1*1) mdJ (1*1) ivu(l*l)i_
lnfll(cdud.2.1,1)ilnfll(cdub»3*L,2)ilnfll(ccub*2*1 ,3) i_
lnfll(cnua»2»l,4)ilnfll(cnua*2*l.5);lofll(ccub*2*1,i)
lnfll lcnua*2*l, 7) ilnfll (enu>*2*l,I) i lnfll (cnua.2.1, 9) Until (caua*2*L. 10) i lnfll (cnta*2*l, 11) i lnfll (em»*2»l. 121
nsct i
*
¦ wrlca footing lnformacloo
FOR 1 - 1 TO FWT
PRINT II, USINC *11111. Ml Ml Ml III Ml Ml.lll Mil.II* II.III 11.411 M.MI II.Ill*— M.MI— M.MI
— — M.MI M.MI M.MI- — - II.IM III ' I _
nthlckll.nlayar.iljnrl(l*nlayar*l)inr2(l*nlayar*l>indl(l«nlayar*l)io42(l*nlayar*l)i_
vuil.nlayar.il .-lnfll (cDim*2*nlayar»l,l) ilD(ll(ci]ia*2*i«nlayar,2) i_
lnfll (ceua*2*L*nlayar,3)ilnfll(enu»*2»l*nlayar,4)ilofll(eova*2*l*nlayar,Sli.
ln(ll (cnio.2»l*nlayar. 6) i Lnfll (cnu>*2»l*iUayar,7) i lnfll (eD«a*2*l*nlayar, 811_
In(11(cnta»2*l*alayar,9)ilnfll(enin»i3*l*nlayar,10)ilnfll(cnuB*2*l*nlayax,ll)ilnfll(couB*2*l*nlayar,12)
C-27
-------
NEXT I
CLOSE II
RETURN
MSIUl]'
............... SUBROUTINE HEJW1J
IMa auferoutlna diaplaya tha currant fllM
'*• that axlat Id tha datault directory and
'*• allow tha uaar to aalact thoaa to ba
dalatad.
' Load data flla umi
SUPS • ¦ . RA£"
00 SUB GTTTILS
' Dliplay Dixta and allow uaar to aalact (or delating
t
TITLES ¦ "DELETE METKAS INPUT FILES*
OOSUB. NUSCREIK
HLP1S[1) ¦ *Uaa tha right or laft arrow to aove curaor and apace bar to aalact'
HLP2SI1) • 'tllaa (10 uxl . Preaa <&rrOl> to proceed or
OOSUB KELP
RCTSQi
k«y$ .
WHILE (UM(k«yt) • 01
keyS - INKTYS
MEND
IF key$ o 'y • AND keyS <> •¥> AND keyS <> AND key$ <> 'N' THEN BEEP: OOTO KCT9Q
IF keyS • *N' OR keyS • >d' TOOI COTO HENU1
LOCATE 10, 24i COLOR 10, 0, 0
' Eraae Ml act ad data fllaa.
PRINT 'Flla deletion Id progreaa . . . *i
FOR 2DEL • 1 TO 2NUM
KILL Oat(il$ * RFLSSiIDEL) * ¦.RAE'
NEXT IDEL
COTO MENU1
HELLO i
SUBROUTINE HELLO ••
< *«
Thli aubrouclne diaplaya tha tltla page for
tha prograa and niti (or a key to be
praaiad.
' Dlaplay boaea and tltlaa
VTIV PRIWT 1 TO 2S
PERFORM ¦ 0
COLOR 1, 0, 0
CLE
VPOS • li HPOE . 1> VLBWTH • 211 KLEXCTH • 7», BOXCOLR • 4i SHADOW ¦ Di NLIKE • 2 ¦ OOSUB MAfXBOX
VPOS • (> HPOf • 91 VLBJCTO - 21 HLEhCTH • 64. BOXCOLR • li SHADOW ¦ 1. SHADCOLR • Oi KLINE • 1: SOSUB MAUBOX
TITLES • "RAfTRAD - Veraloo 3.1*¦ VPOS . 7. HPOS . ]7¦ TXTCOLft ¦ 14i BAKCOLR • 1> OOSUB TITLETXT
COLOR II. 4. 0
LOCATE 11, 17> PAINT *RA4oc Efcanatloo acd TRAoaport into Dwelling* •i
LOCATE 12. 7: PRINT "IClopyrlght 1993 by Rogera and Aaaoclataa Engineering Corporation *>
COLOR IS, 4, 0
LOCATE 11. Hi PRINT 'RAM
LOCATE 11. 2Ji PRINT *E*r
LOCA1T 11. 37. PRIWT 'TRAM
LOCATE 11, 52. PRIWT 'D'i
COLOR 7, 4, 0
MESSAGES • •Preaa any key to continue'i TXTCOLR • lii BAKCOLR • 0: OOSUB INK*
RETURN
C-28
-------
INKY i
............... BUBROUTINE INTT
TTilI aubrouclna prloca cha paaaad aaaaaga
on tha botcona Una o( tha coaputar acraan
and wale* for a kay to ba praaaad.
Varlabla Tabla
MESSAGES • flii tan co ba prlncad
TXTCOLR • Th« color of taxt daalrad
BAXCOLR - Tha background color Cor taxt
KEYS - Th« kay puahad by tha uaax
' Sat color and dliplay Maaaga at cancar of acraan
kayt • *•
COLOR TCTCOLR, BAKCOLR, 0
LOCATE 24, 40 - (LOi(MESSAGES) / 2)
PRINT MESSAGESi
' Await a kay to ba praaaad
kayS - •*
WHILE LDMkayS) . 0
kayS • 1NXEYS
MOID
RETURN
M LTTWiT |
.............. SUBROUTINE MAXESOX
• »f
Thla aubroutlna drava a box of any color
oo tha conpjcar acraan. A ahadow la
optional.
Varlabla Tibia
KLINE - Number ot Uoaa aurroundlng box
VPOS ¦ Vlrtlcal poaltlon of box
HPOS • Horliontal poaltlon ot box
VLD4GTH • Vlrtlcal halghc of box
HLDiCTH • Horizontal halghc of boot
BOXCOLR - Color of Ben
SHADOW • Shadow Flag (l>yaa, O.no)
SMAOCOLR - Color of Shadow, if applle&bla
' Chack cha paaaad paraaacara for valldlcy
IF VPOS * VLENCTH » 24 OR VPOS * VLENCTH < 0 01) HPOS » KLEMGTH > 79 OR HPOS * H LENGTH < 0 THEH B£EP> UrnmJ
IF VPOS < 0 OR HPOS < 0 THEN BEEP: RETURN
IF SKA00H • 1 AND (VPOS ~ VLENCTVI > 22 OR HPOS < 4) THEN BEEP: RE1UKN
' Sat color and rnnbar ot llnaa
COLOR IS, BOXCOLU, 0
IF KLINE • 2 TOD) LTC ¦ 201. RTC • 18?i BUT • 200 > BRC • lt8i HL • 20Si VL • IK
IF NL1NE ¦ 1 1HQ) LTC • 218 > RTC • 191 ¦ BLC • 1921 BRC • 217. HL ¦ 1961 VL « 119
'draw box top
LOCATE VPOS, HPOSi PRINT CHRl(LTCI
FOR I . 1 TO HLENCTH • 1
LOCATE VPOS. HPOS • I
PRINT CHRS(HL)
NEXT I
LOCATE VPOS, HPOS « HLEHCTH. MINT CHRJ (RTCI
' Draw box aldaa
*
P0R I ¦ 1 TO VUJJCTH - 1
LOCATE VPOS . I, HPOS
PRINT CKRS(VL), SPC(HLEJCTH - l|l CHF$(VL>
NEXT I
' Draw box botcca
LOCATE VPOS * VLENGTH, HPOSi PRINT CHR$(BLOi
FOR I . 1 TO HLDJCTH • 1
LOCATE VPOS . VLEJCTH, HPOS ~ I
C-29
-------
PRINT CKRSOO.) I
NEXT I
LOCATE VPOS • VLDCTO. HPQ6 ~ HLBCTO. PRINT CHRS (BRC),
I
' Draw shadow if flag aat
IP SHADOW • 0 THEN RETURN
COLOR SHADCOLR, SKADCOLR. 0
FOR I . 1 TO VLEHCTH ~ 1
LOCATE VPOS * 1, HFOS - 2
PRINT SPC(2)i
KDTT I
~
LOCATE VPOS » VISCTO » 1. HPOS - 3
PRINT SPC (HLEJCTH « 1),
RETURN
TITIEnCT.
* SUBROUTINE TITLETXT
'*•
'»* flila aubrouclna prints cha string pa a* ad It
fro* right to laft Id tha color daaignatad.
f*t
Variable Table
VPOS • Vlrtlcal poaition of string
HPOS • Lafc horizontal poaitlao of
¦trlng
TXTCOLR - Color of text
BAXCOLR • Background color for (trlng
TITLES • String to be printed tlcla
' Cheek the passed parameters for validity
IF VPOS >20 OR VPOS < 0 OR HPOS ~ LEW (TITLES) > 79 THEN BEEPi RETURN
' Cat colora and scoll out title
COLOR TXTCOLR, BAKCOLR, 0
FOR I ¦ 1 TO LENITITLESI
LOCATE VPOS, HPOS
PRINT SPC (LEW f TITLES I - II; LETTS (TITLES, I)
FOR DELAY - 1 TO lOOOi NDCT DELAY
NEXT I
RETURN
NUSCREENi
.............. SUBROUTINE NUSCR£QI
Thla subroutine claara the screen in
preparation for next paga.
•» Varlabia Tabla
V »
.. TITLES - String to ba prlntad aa titla
• •
SCREEN 0
COLOR 7, 0, 0
CLS
' print vartlcal runners
COLOR 2, 0. 0
FOR ROW • 24 TO 1 STEP -1
LOCATE ROW, li PRINT CHRS(l79!
LOCATE ROW, «0i PRINT CHRS (179)
NEXT ROW
' print horliooul runners
FOR COLUMN • 1 TO 79
LOCATE 1, COLUMNi PRINT CHRS(19t);
LOCATE 11, COLUXNi PRINT CXRSU96).-
LOCATE 24. COLUMNi PRINT CHAS(19«);
NEXT COLUMN
' print paga tlcla
C-30
-------
COLD* 0. "J, 0
TLE* • (40 - (MT(UM(TXTU$! / 2 » .5111
LOCATE X, TL» - 1
PRINT • •; TITLESi * •<
' print cortwr aarkara
COLOR 2, 0. 0
LOCATE 1. li PRINT CHRI!218) i
LOCATE 21. It PRINT CHRSI195) ,
LOCATE 24, 1< PRINT CHRS 1192) i
LOCATE 1, TLEN - 2< PRINT CHRS(1»0><
LOCATE 1. TLEN * ! (10 - Tlffl! • 2)< MINT CHMUSSl!
LOCATE 1, 80: PRINT CHRS<19111
LOCATE 31. Mi PRINT CHRSUI01,
LOCATE 24, «0. PRIOT CHSS(2X71;
RETURN
KAXEKEhUi
[UlKXmKI HAXSOEXU
» »•
Thl» auferoutlna aak«« th» da«lr*4 mou aod *•
wait* for input. ••
Variable Tabla
QOSUB HUSCRZZM
COLOR 14. 0, 0
LOCATE «, J»> PRIST "OPTIONS1
LOCATE 5. 361 PRINT • •
FOR J » 1 TO OPTIONS
LOCATE I ~ I, 251 PRINT «*$(!), *j OPTSCI)
NEXT J
LOCATE « * OmSNt • 4, 301 PRINT •ESTER YOUR CHOICE*
CHOICE • 0
QOSUB KELP
AMUT • 0
' t««lc a kay to ba prasaad
WRONG i
count . o
kayS • «•
WHILE LENiKeyS! a 0 JUTO CCUOT < 100000
kayS • IN1GETS
COUNT • COUNT ~ 1
MENS
IP LEN!k«yS> . 0 AND DEL** • 1 THEN RETURN
IF L£Nlk«y$) ¦ 0 AND DELAY • 0 THDJ GOTO WRONG
IP ASC(k«y$) - 13 AND AWAIT - 1 TWEN OOTO NAKE1
IF ASC(kayS) ¦ 27 AND DELAY «» 1 TKQI CHOICE - 0. RETURN
IF LENikaySI ¦ 2 AND JLSC (RIGHTS (kayS. 1)1 - 72 THEN CHOICE • CHOICE - li OOTO arrow
IF LEKIkvyS) - 2 AND ASC(RIGHTS(k«yS. II) • 60 THEN CHOICE • CHOICE * li OOTO arrow
IF VALikaySI « I OR VALlkayS) > OPTIONS THEN BEEPt OOTO WRONG
arrowi
SOUND SO, 1
IF CHOICE 1
' Highlight optloo and await as «ENTEH»
COLOR 14, 0, 0
LOCATE 4, 3«. PRINT 'OPTIONS*
LOCATE 5, 361 PRIMT * •
FOR 1 - 1 TO OPTIONS
LOCATE « . I, 251 PRINT STRStDi *. "i OPTSlI)
NEXT I
GOSUB HELP
COLOR 0, 14, 0
LOCATE < ~ CHOICE, 25. PRINT STRS(CHOICE) i *. *i OmtCHOICX)
OOTO WRONG
Hum i •
DELAY • 0
RETURN
C-31
-------
HELP)
............... SUBROUTINE help •••••»"«••••••<
'«•
•** TTila subroutine dlaplaya eha paaaad
'•* latrucclaoi In tha halp apaca at tha bottea
of cha acraan.
' claix halp u*i and print halp Huigw.
COLOR 1. 0, 0
FOR EMPTY • 2 TO 79
LOCATE 22. EMPTYi PRINT '
LOCATE 23. DIPTYi PRINT ' * i
NEXT EMPTY
LOCATE 22. (40 - IINT)> i PRINT LETTS(HLP2S(CHOICE • 1), 74)
RETURN
KOTO i
............... SUBROUTINE KENU2
...
nil aubroutlna dlaplaya cha tacond aanu
lor cha prograa and walca lor a kay e© ba
'•* praaaad.
* ~»
' Display fllaa to ba run.
SUFS . •.RAE"
00SUB CETFILS
TITLES • "RAETRAD ANALYSIS'
OOSUB NUSCREZX
HLPlS(l) ¦ *Uaa tha right or laft arrow Co aova cursor and apaca bar to aalact*
HLP2S(1) ¦ 'fllaa (30 sax). Praaa «ENTEX> Co procaad or «ESC> to raturn Co main Banu.*
FMAJt . 30
OOSUB 0ISFLS
I
' Allow cha uaar to aalact thoaa for • batch run.
IF INUX ¦ 0 THEN GOTO MEMUXAIN
CHOICE • 0
VI1M PRIKT 1 TO 25
TITLES • *RA£TRAD ANALYSIS EXECUTION*
COLOR II. 0. 0
' Eateh print or lava for latar
HLPlS(l) • 'Do you want to print out cha raaulta*
HLP25(1) • 'Of aach aanarlo aa lc la cosplatad (y/nj?*
00SUB HELP
RCT11i
kayS • **
WHILE (LOKKvySI - 0)
It ays • INKEYS
WEND
IF kayS <> *y* AND kayS <» *Y* AND kayt <> *0* AND kayS <> -N' THEN BEEPt 00T0 RCT11
PLPTS ¦ kayS
PREPS • *N'
' Thla aactlon nodiflas paraaatara co print radial and angular coapooanta
r
HLP1SOI ¦ 'Do you want to hava tha praaaura and radon'
HLPiS(l) ¦ 'fcatriclaa prlntad aa part of cha output(y/n)?•
O05UB HELP
RCTllqqli
kayS ¦ '•
NHILE (LDHkaySI • 0)
kayS • INKEYS
HEM)
IF kayS <> 'Y' AND kayS *Y* AMD kayS <> 'n* AND kayS <» *N* TODi BEEP> 00T0 RGTllijgl
If« - kayS
RCTlOli
CHOICE • 0
lm ¦ lrn ~ 1
VIEW PRINT 1 TO 25
TITLES > 'RAETRAD ANALYSIS EXECUTION"
00SUB NUSCREEH
COLOR 14. 0, 0
HLPlS(l) • 'RAETRAD is currantly calculating " * STRSdNUW • " fllaa.*
KLP2SI1) • 'Plaaaa wait '
GOSUB KELP
VIEW PRINT S TO 20
C-32
-------
COLOR 14. 0. 9
OPEN Taya.WBT' POD OUTPOT AS II
quetaS • CHRSIJ4)
cs p *1( FllaExiatC ~ quotas * *RSTS.emp* ~ quotas ~ ") --8TPUE than FilaDalataC ~ quotas ~ •RSYS.CJap* * quocaS * •)'
PRINT II. tS
t$ • 'if FilaEiiiit(* ~ quotas ~ •RSYS.OTl' ~ quotas • *)».«TRUE thas FilaDalatal• • quotas • "RSYS.OT1' * quotas * ')"
PRINT II. tS
tS • 'if FilaExiatC • quotas • 'RSYS.otJ' « quotas • *)..«TRUE thas FllaOalatai• * quotas • 'RSYS.otJ* * quotas *
PMNT II. t$
tS ¦ 'if PllaExiatl* ~ quotas * 'RSYS.otJ' • quotaS • *)».«TRDE then FllaDalata(' • quotas • *RSYS.Ot3* * quocaS * ¦)¦
PRINT II, tS
tS ¦ "FllacopyC ~ quotas • ayafilS • *RAETRAD.SYS' • quocaS • '.' • quotas * 'KHE.m- • quotas ~ '.0FAL£E1*
print ii, ts
RCTlOi
CHOICE • 0
Ira ¦ irn ~ l
CMAMS • datfilS « RFLSSdrn) « ".RAI-
LS ¦ 'FilaCopyt* * quotas » CNAKS ~ quocaS • ~ quotas • *RSYS.INP* ~ quotas ~ MFiImI'
PRINT II, LS
tS • 'BoxOpanf * quocaS * 'RAETRAD varaioo 3.1* ~ quotaS • • quotas * 'Procaaalngi * • RFLSSdrn) • quotas ~ •)'
PRINT 11, t$
ts • 'RunHldaHaltI' ~ quotas ~ *raya2.a>a* * quotas ~ '.' ~ quotas * quotas ~ *|'
PRINT II. tS
tS • *lf rilaExlacl" • quotas • datfilS • RFLSSdrn! * '-OT1* * quocaS ~ * I-¦•TOUT than FilaDalataC » quotas ~_
datfilS - RFISS Urn) • '.OT1* ~ quotas * •)*
PRINT II, t$
tS ¦ 'if FllafitlatC ~ quotas • datfilS » RFLSS(lrn) ~ *.017* ~ quotas » "l«rtTRUE Chan FilaDalataC * quotas •_
datfilS ~ RFUS (in) ~ '.OT2' * quotas * ')'
PRINT II. tS
t$ ¦ *lf FllaExiatC ~ quotas » datfilS » RFLSSdrn! » *.OT3* ~ quotas * *)«»8TRUE Chan FilaDalataC » quotas ~_
dacfilS » RFLSSdrn) » *.OTl' • quotas » *)'
PRINT II, tS
LS • 'FilaHovaC « quocaS * -RSYE.OT1' ~ quotas . *. • ~ quotas ~ datfllS ~ RFLSSdrn) ~ *.0T1* ~ quotas ~ '.•FALSE!'
PRINT II, LS
LS • 'FilaHovaC - quotas - •RCYS.0T2* « quocaS ~ '. ' ~ quocaS « datfilS ~ RFLSSdrn] ~ '.0T2* + quotas * ',OFALSE) •
PRINT II, L$
L5 • 'FilaHovaC ~ quotas ~ *RSYS.OTJ* » quotas ~ *.* ~ quotaS « datfilS « RFLSSdrn! ~ *.0TJ' » quotas ~ ', OFALSEI'
PRINT II. LS
LS • 'BoxShutO*
PRINT II. LS
IF PLPTS . OR PLPTS • *y* THIN
t$ • 'BoaOpanC ~ quotas ~ "KAOTtAD varalon 1.1* ~ quotaS ~ ~ quocaS « 'Printing output fllai * ~_
RFLSSdrn) ~ quotas ~ •)•
PRINT II. tS
LS • 'Fllacopy (• * quotas ~ datfilS ~ RFLSSdrn) « * 0T1* ~ quocaS ~ ',* ~ quotas ~ 'prn* ~ quocaS ~ •.•FALSE} •
PRINT II. LS
IF JPTSo'y' AND IPTSo'Y' THEN
tS • 'BoxShutO'
PRINT II. tS
ENOIF
END IF
IF IPTS • 'Y' OR IPTS - 'y • WBJ
LS ¦ 'FilaCopyC ~ quotas ~ datfilS » RFLSSdrn) » *.0T2* * quocaS • » quotas » 'prn* ~ quotaS ~ *,0FALSE)*
prlntl1,IS
PRINT II, 'BoxShutO'
END IF
IF lrn < 1NUK THEN GOTO RCT1Q
tS • 'NaaaagaC » quotas » 'RAETRAD varaion 3.1* • quotas • *,* ~ quotaS * 'Aoalyaia eonplatad* ~ quotas « *)*
PRINT II. tS
CLOSE II
END
GETF1LS i
CUBROVTINE CTTFILS'
ma aubroutina gata all of tha flia nwi
of tha paaaad typa (Input or output) fran
tha apaclflad dlractory araa.
FLES ¦ "
FILN17M ¦ 0
RON - 2
COLUMN • 0
COLOR 0, 0. 0
CIS
tamp • 1
ON EftROR OOTO ERR0R1
FILES datfilS ~ '•' * CUFS
ON ERROR OOTO 0
CET1:
COLUMN • COLUMN « 1
IF COLUMN > 80 THQ< COLUMN • li ROM . ROW « 1
IF ROW > 24 THE3I OOTO CET2
CHAS • CHR$(SCRB}J(ROW, COLUMN) )
C-33
-------
ir cku ¦ • • them ooto cm
IF OiAS • *\' THEM FLES ¦ "V GOTO am
FLES • FLES * CHAS
IF RIGHTS (FLES, 4) • SUFS THEN FILfflJM • FILNUM * 1 •. FILES IFILNUM) - LDTSIFLES. UHfrLESI - 41 i FLES • "i Q0T9 cm
GOTO GET1
GETS i
IF FILNUN ¦ 0 THEN taap > Ci GOTO ERROftl
RETURN
ERROR1i
............... SUBROUTINE ERROR!
9 •• ••
'** 1M> aubroutloa 1* callad if tbara ara no ••
til** in tha directory. **
••ttl******!*!tttf
CHOICE * 0
COLOR 14, 0, 0
TITLES • 'RAETRAD JUOLYSIS EXECUTION'
CQSUB NUSCREEN
COLOR 14, 0, 0
HLPISO) • "Thara ara do RAETRAD input filai found in thli path.*
HLP2$<1) - 'Praaa « OTTER* to continue.'
COSUB HELP
kayS « *•
WHILE ILENIkeyS) - 0)
keys • 1NKEYS
WQJO
IF tanp • 1 THEN RESUME KENUXAIN
GOTO HEMUMAIN
xsniii
............... SUBROUTINE KDIUl ........
<«•
llila aubroutlne diaplaya output Co tha
acraen or printar aa dealred.
TITLES • 'OUTPUT REVIEW-
OPTIONS - 3
OPT5(1) - 'REVIEW SUMMARY REPORT*
OPTS 1J) • 'REVIEW DETAILED REPORT'
OPTSI1) • ¦RETURN TO MAIN MENU'
HLP1SU1 - 'Praaa the nualier ot tha CHOICE- It will bee OB a'
KLP2S(1) • 'hlghllghced. Praaa Co proceed. . or a Daw nuBfter.'
HLP1$(2) • 'Thla opt too allows you co output a acenario amary to cha'
HLP2$(2) • 'printar or acraen. Praaa , , or a new ninber.*
HLPISO) • 'Thla option allowa you CO oucput the praaaur* and radon*
HLP2SI3) • 'aatriclai (or a acaoarlo. Praaa ', . or a naw ntiBber.*
' HLPlS(l) - 'Thia option graphically diaplaya tha radon or praaaura matrix"
' HLP2SI4I • 'for a given scenario. Praia «ENTEJt», «ESC>, or a naw pimber.'
HLPlSfll • *Thla option return* you co tha bald nanu.*
HLP25(4) • 'Praaa *BITERr, «ESC», or a naw niAber.'
DELAY - 0
00 SUB KAXEMENU
IF CHOICE • 0 OR CHOICE • 3 THXM GOTO HENUHAIN
OH CHOICE QOSUB HEKU31. MENU32
GOTO MWU3
KDflnit
'gat output tilea
surs • • .cm'
OOSUB CETFILS
TITLES . "DISPLAY RAETRAD OUTWT FILES*
OOSUB NUSCREEN
HLPISO) • *Uaa tha right or left arrow to bov* curaor and apace bar to aelect*
HLP2SU) • *tha fila (1 MX). Praaa to procaad or cESC> to return to aaio b*ou.*
FMAX . 1
' Allow uaar to a pacify which filea co output
OOSUB DISFL6
IF INUM • 0 THEN SOTO MENU)
OPEN datf11$ * RTLSSll) * '.OT3* FDR INPUT AS 14
INPUTI4.CNUM. IRH,IRH,RU
IF CNUH>0 THEN
FOR IP-1 TO CNUH
INPUT»4,CT)fPE
-------
INPOTI4. TOT4. vm. rtrti
CLOSE 14
CHOICE • 0
VIEW PRINT 1 TO 25
SCRUM 12
CLS 0
CLS
rrrS.'Vlewing output frca file, •«LCTT5 (RFLSS [1), UN (RFLSS(1)1-4)
locate 1, (40-LB*(RRRS)/2) iprlnt RRASi
I
' Brick Wall
LIKE <0. S0I-STEPI20, 30). 12. BF
LINE (0. SO)-(0. 10). 4
LINE (10, 50)-<10. SO>. 4
LIKE (20,SO)-(20,SO).4
' floor
LINE (20, 50)-STEP(20,3(0), 7, BF
FOR I ¦ SO TO 410
IF IHTIRMD(l) • 10 ~ .5) * 5 TKDJ PSET (20 • IHT(RHD<21 • 20 ~ .51.1), «
NBCT I
footing
LINE (40,SO)•STEP(40,40),7,BF
FOR I ¦ 40 TO 80
IF INTIRMDI1) • 10 • .5) * S THQJ PSET (I.SO * INTIRNDI21 • 40 ~ .51). t
NEXT 1
' put Id 5 crick* tod •taaary Information
IF CNUM>0 THEM
locate 5.29:prtnt "Air Entry Rat* -3) - 145.(S0*SS*JI)*3),C,BF
LOCATE VTlJIl.ii PRINT VDfPS
IF C.O IHSI
LOCATE vt II.Ill ';totl
LOCATE 23.14iPRINT USINC 'Indoor radon entry rata (pCl/a) i 11.111""': tot J
locate 27,2l:prlnt "Preaa a key when finished*!
GGC i
k«y$»* *
while len(key$)«0
k*y$ainkey$
wend
RETURN
KQ4U32 i
' Get the iaMi of che output file*
CUTS - '.OT2*
Qosub orrriLs
TITLES • 'DISPLAY KAETRAS OUTPUT FILES"
00SUB NUSCRTOJ
HLPlS(l) ¦ *Uee the right or lefc arrow to »ov# cursor and ¦pace bar to aelect"
KLP2SI1) ¦ "the file (l bbji) . Pre«a co proe*«d or co return co sain mdu.
FWUC • 1
' Allow u**r co *p*clfy which fll** co output
(30SUB D3SFLS
IF INUH • 0 TOB» GOTO KENU3
C-35
-------
CHOICE ¦ 0
VIW PRINT 1 tO 21
TITLES » "DISPLAY AACTRAB OJTTOT FILES'
(25 SUB MUSCREEN
COLOR 14. 0, 0
* talact output davica.
HLP1JI1I » "Do you want to output ' ~ RTL6SlJ) ~ * to tha ifietMO*
HLP2SI11 - *or to tha mriiiiar la/p)?¦
00 SUB HELP
CTOOli
kayS «
WHILE (L£Nlk«yS) ¦ 0)
kayS • INKEY$
WEND
IF kayS <> ua kays <» *»* AND kay$ <» *p* AND kayS «» *P" then kxp> ooto Cttai
IF keys «» 'P* AMD kayS <> *P" THEN OOTO SCNLOOR
LOCATE 10. 341 COLOR 30, 0. 0
• print Mch 111* to prlotar
PHINT *Fila printing in progress . . . 'i
KLPli 11 > • 'Pima c££C> to diieontinua printing.*
KLP3SU! • **
QOCUB KELP
OOSUB EPSON
RETUAW
SCNLOOKi
SUBROUTINE SCHLOQK ••••••*»
» ••
*•* Tfcla aubrautina diaplaya output to tha
aeraan.
* Opao tha (ila and input tha lina*
OPQI datfilS * RFLSSUI * *.0T1* FOR INPUT AS II
' Chack to if aof la aaeountarad.
i
ix - e
QCTSt)
I* - IX * 1
LINE INPUT II. DISPJflXI
IF BDF(l) THEN EFL • 1i GOTO 01S
SOTO gent
015 i
CLOSE II
IX ¦ IX • 1
span datfl2S«rtlaS11>•1.ot2* {or input aa II
qgtlli
lx«lx«l
Una input »1, HiapSIix)
if aof !1) than at!«Ssfoto q9S3
goto qgtll
qf>3>
CHOICE • 0
VIEW PRINT 1 TO 35
TITLES - •RAETRAD OUTPUT REVIEW
OOSUB KUSCREDJ
COLOR 14. 0, 0
KLP1$(1) - HFLfiS (1! • * la currantiy baing diaplayad. Praaa cPgDn>, cPgUp», .
HLP2S(11 • *«End» to ehanga display. Praaa «ESC» to ratura to tha Mio aanu.'
OOSUB HELP
VIEW PRINT 5 TO 30
COLOR 14, Q, 0
EFL ¦ 0
' Olaplay Metico of tha scraac.
VTOP ¦ 1
LEFT • 1
PQOTi
FOR IR ¦ VTOP TO VTOP * 12
LOCATE IR - VTOP ~ 7, 2< MINT MD$|«
*, L^^T, LEFT ~
LOCATE IR - VTOP ~ ?, 3. PRINT KIDS (DISPS (IRS - LEFT, LEFT • 75) j
NEXT IR
0015.
*«yS . «•
WHILE ILBJ(kayS) ¦ 0)
C-36
-------
kiyS . 2NXTYS
HEME
IF A5C(k«yS) ¦ 27 THSI GOTO 0VER1
IF U* <> 2 THSI COTO Qgl5
IF ASC (RIGHTS (kayS, 1)) *61 AND VTOP . 12 « IX TOD» VTOP . VTOP * 13 i GOTO ROT
IF ASC(RIGHTS(kayS, 1)) -73 AND VTOP > 1> THEN VTOP » VTOP - 13i GOTO POOT
IF ASC(RICHTS(kayS< 1)1 >71 THEN LEFT • li GOTO POOT
IF ASC(RICHTS (kvyf, 111 .79 THEM LETT • 74, GOTO ROT
BEXPi GOTO QglS
ovrm i
VIEH PRINT 1 TO 25
GOTO MENUS
HQnJ4i
•••••••• etaXDWIHE KMH
>t« •
• •• TTila aubroutlna dlaplaya tha touch mdu lor*
'*• tha prograa and wale* for a key to bi •
' •• pruax). •
• c
' Display bo>M and tlclta
TITLES • 'SYSTS* HA INTAKE* C* ¦
OPTIONS ¦ 1
OPTS(1) ¦ 'CHANGE LOCATION OF DATA FILES'
OPTS12) • 'CHANCE LOCATION OF SYSTEM FILES'
OPTS 13) • 'RETURN TO THE MAIN MENU*
HLPlS(l) ¦ 'Praia Cha nuafear ol the CHOICE. It will bKcw'
HLP2K1) ¦ 'highlighted- Praaa > to proceed. «ESC», or a new number.'
HLP1SI2) • "TTila option allows you to apaclfy where the data fllea ara locatad."
HLP2S(2) • 'Praaa , or a new number.'
HLP11(4) • 'TYila option raturaa you to tha main Baou.'
HLPUMI ¦ 'Praaa «OnER», or a on number. ¦
DELAY . 0
OOCUB XXXEMENU
IF CHOICE ¦ 0 OR CHOICE ¦ 1 THEN COTO MENUNAIN
ON CHOICE OOEUB MENU*J. MENU43
OOTO MQRJ4
I
hbtosi
-mmmmmmmmmmmmmm SUBROUTINE KEMUS mmmmmmmm
* mm
'** 1*ila aubroutlna dlaplaya tha Couth menu (or
'** tha program and Mlta lor a kay to be
preaaed.
• ••
' Diaplay boxma and tltlaa
TITLES • 'DIIT SYSTEM'
OPTIONS ¦ 2
OPTS II) - 'RETURN TO MAIN MENU"
OPTS (2 ) • 'EXIT CTSTQI'
HLPlSI1) - 'Praaa tha Dunbar of tha CHOICE. It will beccae'
HLP2S|1) • 'highlighted. Praaa to proceed. or a new mater.'
HLP1SI2) » "Nile option returea you to tha main mui.*
HLP2SC2) ¦ 'Praaa , or a m number.*
HLPlS(l) - 'Thla option aavaa all of tha changea Bade Ajring Chla aeaalon'
HLP2S(1) • 'and return* you to DOS. Praaa or a Daw number.*
DELAY . 1
OOCUB MAXEMENU
IF DELAY ¦ 1 THSI GOTO MEXUMAIN
IF CHOICE ¦ 0 OR CHOICE ¦ 1 Wff OOTO KEWMAIN
I
COLOR 7, 0, D
CLS
END
HDTJ4I.
'***>*..»**>*** BUB ROUTT HE MEMJ42
'*« mm
'•* Thla aubroutlna allows the uaar to epeclty »•
'** tha path whara tha data fllaa ara locatad. **
C-37
-------
' Display bootee acd tltlea
gosub Inef
TITLES • 'Milk FILES LOCATION"
HLP1SI1) ¦ 'Enter the path where the diet dlea are loeatlao.*
HLP2S(1) ¦ 'For example: C> \RAETRAD\DATJk-
CHOICE ¦ 0
00SUB NUSCREXM
OOSUB HELP
COLOR 14. 0. 0
LOCATE 10. 1
PRINT -Data File Location¦ I 1' ¦
LOCATE 12,2
oldS«dat(llS
PRINT • (Currant i -.datf 115- * I ¦
LOCATE 10, 22 > INPUT datdlS
If OJtfllS--- Chan datdlS*oldS
IF RIGHTS (datdlS, 1) <» -\- AND LBtfdatdlS) > 0 THEN datdlS • datdlS ¦> *\-
IF LENIdat(IIS) • 3 AND RIGHTS IdatlllS. 1) • AND LDTS '\* AND LdlaysdlS) > 0 THEM eyadls • ayadlS » "V
IF LQJ(aysdlS) - 3 AND RIGHTS(sysdlS, It - *\* AND LETTS(sysd 1S, 1) • *A- THEN sysdlS • LEFTS IsysIllS, 21
IF LOJfayadlS) • 3 AND RIGHTS (ayadlS. II • AND LEFTS (ayadlS, 1) • *B- THEN syadlS ¦ LEFTS (sysdlS. 21
OOSUB OTDEF
RETURN
DISFLS:
............... SUBROUTINE DISFLS •••«•«»••••••
* **
This subroutine display a the (Ilea retrlevd
'•* by the GETFLS subroutine and allowa the
"* uaar to aalect thea for further proceaalng
' Dlaplay boxes and tltlee
CHOICE ¦ 0
1m • 0
INUM • 0
CURPOS • 1
OOSUB KELP
COLOR 14, 0, 0
IF FILNUM ¦ 0 THEM GOTO ABCQ
IF FILNUM » ISO THEM FILNUM • ISO
NT)OW • FILNUM / 1
X ¦ 1
IF (FILNUM NOD I) <> 0 THEN NROM • HROM ~ 1
FOR ROW • 6 TO NROM » S
FOR COLUMN . 2 TO 72 STEP 10
IF FILSS(K) «> ** THEN LOCATE ROM. COLUMN i FLOCtK, 1) ¦ ROHi FLCC IK, 21 • COLUMN i F10C(X, 3) - I4i PRIWT FILSS(
K • * * 1
IF X > FILNUM THEM GOTO ABCQ
NEXT COLUMN
NEXT ROW
ABCQ:
COLOR 14, 0. 0. LOCATE 3. 31i PRINT 'FILES SELECTED: •; STRS(INUM)i « ¦;
C-38
-------
LOCATE FLOC(CURPOS, II, FLOC (CUIIPOS, 2)
COLOR 0. 14, Oi PRINT FILES (CURPOS) ;
COLOR 14. D, 0
' Malt for tha UMr to hit • kay and procaaa lc.
HR0NS2Q>
k«yS - ••
WIILE IZN(kayS) • 0
kayS . INXEIS
MEND
RCT • 0
IF LEN(kayt) • 1 AND ASC(kayS) *> 13 AND ASC(kayS) <> 32 AND ASC(kayt) <> «S AND ASCIkaySI <» 2? THEN BEEPi BOTO WR0NC2Q
COLOR FLOCICURPOE, 3), 0, Di LOCATE FLOC( CUR POS, 1). FLOCICURPOS, 2) • PR INT FILSS (CURPOSI j
IF LEN(kayS) • 1 AND ASC(kayS) • 27 THQ) INUM.OrRETURN
IF UX(kayS) > 1 AND ASC(kayS) • 13 THEN GOTO RCT3Q
IF LD<(k«y$) • 2 AND ASC(RIGHTS (kayS, 1) ) >77 THEN CURPOS ¦ CURPOS * 1. RCT • 1
IF LEN(kayS) • 2 AND ASC(RIGHTS (kayS. 1)) • 75 THEN CURPOS ¦ CURPOS - li ROT - 1
IF LOKkayS) • 2 AND ASC(RIGHTS(kayS. 11) >10 THEN CURPOS . CURPOS * «¦ ROT • 2
IF LEMkayS) . 2 AND ASC(RIGHTS72 THEN CURPOS - CURPOS • ROT * 2
IF LEKIkayS) • 1 AND ASCIkaySI - 32 THE* ROT • 1 > OOTO RGT2Q
IF RCT • 0 THEM BEEPi OOTO WRON52©
IF CURFOS > FILNUM AND RCT ¦ 1 THEN CURPOS • 1
IF CURPOE » FILNUM AND RCT ¦ 2 THEN CURPOS ¦ (CURPOS - (I HOD •
IF CURPOS < 1 1MDI CURPOS ¦ FILNUM
COLOR FLOCICURFOE, 3), 0, Di LOCATE FLOCICURPOS, 1), FUJCICURPOS, 2!i PRINT FILSS (CURPOS) i
OOTO ABCQ
' It tha uaar baa aalactad or d«aalactad, procaaa It.
RCT2Q.
IF FLOCICURPOS. 3) ¦ 30 THIM COTO RCT4Q
INUM • INUM ~ 1
IF INUM > FMAX THEN OOTO RCT3Q
RFLSS(INUM) • FILSSICURPOSI
FLOC(CURPOS, 31 . 30
COLOR FLOC (CURPOE. 3), 0, Oi LOCATE FLOCICURPOS. 1). FLOCICURPOS. 2) i PRINT F1LSS (CURPOS) i > COLOR 14, 0, 0
CURPOS ¦ CURPOS * 1
IF CURPOS » FILNUM THEN CURPOS ¦ 1
OOTO ABCQ
' k«*p • tabulated Hat of which fllaa hava baan aalacted.
t
RCT4Q.
IFLAC • 0
FOR OOPS • 1 TO INUM
IF RFLSS tOOPS) • F1LSS (CURPOS) THEM RTLSS(OOPS) • ••> IFLAO • 1
IF IFLAC > 1 THEN RFLSSIOOPS) ¦ RFLSS (OOPS • 1)
NEXT OOPS
INUM • INUM - 1
FLOCICURPOS. 3) • 14
OOTO ABCQ
RCTJQi
RETURN
apaon¦
ott.l
goaub apaonl
If occ'l than
ott«2
goaub apaonl
•ndif
raturo
EPSON1.
••«••• SUBROUTINE EPSON
* ••
'** nil aubrouclna prlota tha glvan fllaa out
to tha prlotar.
' Dlaplay bovaa and tltlaa
WIDTH LPRINT 132
if ott • l than open daefllS ~ rflssid * von* for input as ti
IF oct - 2 THEN OPB* daefllS * RFLSS(l) * • .cm ¦ FOR INPUT AS II
U0T14Qi
OX ¦ 0
LIKE INPUT *1. DISPSURI
IF EDFI1I THEN £TL . li GOTO QCT150
kayS .
kayS • INXEYS
IF LEN(kayS) <» 1 THEN OOTO CINE
IF ASCIkayS) - 27 THEN LPRINT > LPRINT * Printing dlacontinuad by uaar'iott.O
IF ASCIkaySI • 27 THEM OOTO QCT15Q
CTWEi
LPRINT DISPS(IR)
C-39
-------
GOTO 0CT140
QCTISQ-
LPRINT CHRS112)
CLOSE II
RETURN
INFILi
•••>«•«•¦••¦*•» SUBROUTINE lunL ••¦••••••••«•~••»
'¦« V*
'•* ITila aubroutlna loada In eh* valuaa troa a •*
'*• aalactad Input data 111*. *~
' Dlaplay boxaa and tltlaa
*
FLES • datfllS * CHAMS * VKAE*
OPEN FLES FOR INPUT AS II
INPUT II, CNAKS
INPUT II. RTIT5
Input 11, ¦axdp.lofll(l.n.laCl)(1.2l,lD(ll(l,3l,lDll]II.«).lDfll(I,S),la(il(l.«l
tirtSU.D.'Houaa vldath (fc.I •
t*tS<1.2> i'Hsuh length (ft) ¦
txtS(1. J)¦*Indoor preaaure (Pa) ¦
txtS(l.t).'Ind. Rn boundary (pCl/L) '
txtSU. S) .'Mr exchange Rate «lnfll(F
-------
DRIII, DV(I), K*(I>, rv(I>, IADS(II. 1*1(II
NEXT I
' raid footing In format Ion
FOR I ¦ 1 TO FUNT
'INPUT II, FOOT(I), o, o. 0. G. FOOT(I). fra, fdana, fan, lupQ, fKSAT. fCRDIA, (M, IDV. fUt. fRV. fKADS. till
input II, nthickll+nlayartl I ,nxl (l«nlayar»l (,nr21 i«nlayar«l) , ndl ll»nlayar»l). d!2 [i-nliytr-ll, _
vu l»nl«y*r. 2), is til (cnu&*2*l*olayar,))
Infil. iof 11 (a>m«2«i*nliyar. 7)
lnfll(cm»+2«UQlayar,a), Infll (cnia»2*i»nlayar, 9) .let 11 lcuu»*3-.l.Dl«yai. 10).lot 11 (cbu»>J»l<-nHy«r, 11),
lnfll(cnu».2»i*nlayax,12)
NEXT I
CLOSE *1
RETURN
INSOILi
SUBROUTINE INSOIL
'»• •«
Dill lubrMtlM rudf In Cha utarial typn
hem RAETRAD.SYS. ••
' Display baxaa and tit las
ON ERROR GOTO ERRORS
OPEM ayafllS * ¦ RAETRAD.SYS¦ FOR INPUT AS II
ON ERROR GOTO 0
N90IL • 0
FOR I - 1 TO 19
INPUT II, LM>S (II. LSAT(I). LDIA(I). SOILS (I)
ir SOILS 111 <> •usdaf THEM NSOIL • NSOIL ~ 1
NEXT I
CLOSE 11
RETURN
' If do data fila la found than arror.
ERRORSi
CLOSE II
BEZPi B£ZP
RESUME KENU1
ARROHBOXt
............... SUBROUTINE ARROWBOX
nil auferoutlna prenpta tha uaar for Input
to eraata a data flla for RAETRAD.
» ••
' Print varclcal runaara
FOR ROW • 21 TO 22 STEP -1
LOCATE ROW. 1. PRINT CHRS(179)
LOCATE ROW. 80. PRINT CHRSU79)
NEXT ROM
1 Print horizontal runoara
FOR COLUMN • 2 TO 79
LOCATE 21, COLUMNi PRINT CURS [196) i
LOCATE 24, OOLUKNt PRINT CURS(196)j
NEXT COLUMN
' Print cornar aarkara
LOCATE 11, li PRINT CHRS<219!i
LOCATE 24, li PRINT CHRSi192),
LOCATE 21, 80. PRINT CHRS(191) i
LOCATE 24, SOi PRINT CHRSl217(i
' ciaax out apaca for quaacloa
FOR EMPTY • 2 TO 79
LOCATC 22, EMPTY. PRINT * ¦;
LOCATE 2). EMPTY i PRINT " ¦:
NEXT EMPTY
LOCATE 3S, 2ti PRINT *I • pcavloua quaatlecl'i
4
' Diaplay quaation and da fault anavar
LOCATE 22, {40 - (INTILENIQUESISI / 2 ~ ,5)))i PRINT LETTS (QUES1S, 76)
C-41
-------
IF df lag • 0 THEN LOCATE 3], 4i PRINT OSINC 'Currant fill thlcfcn»»» o( llllll.ll ft*; PDEPW
IF dflag • 1 WEN LDCATC 23. 4> PRINT USING 'Currant footing dapth of llllll.li tf, PDEPTH
IF DFAULTS «» •' THEN
TLS< • (40 - CNT(LBJ(DF*ULTS) / 2 * .5 * «>>)
LOCATE 34. TLIN - 1
PBIffT • «ENTER».'i DFAULTS: • •>
LOCATE 24, TLEN • 3i PRINT CHRS(J 80)j
LOCATE 24. TLEN « I (40 - TLQJ) • 2) i PRINT CHRS 1195);
END IF
QUES2Ai
aomit ¦ "
key* -
WHILE (LB»(kayS) • 0)
kayS - INXTYS
WEND
IF ASC(kayS) • 27 WIN answarS ¦ 'BACK*: RETURN
IF ASC(kayS) • JJ TOQ4 anawarS - 'DONE'i RETURN
IF UN(keyS) «> 2 THEN BEEP. GOTO QUES2A
IF ASC(RIGHTS(kayJ, 1)) >72 THEN anavarS • 'UP'i RTTURN
IF ASC < RIGHTS (kajr$. 1)) ¦ (0 WDJ uml! ¦ 'DOWN' , RETURN
BEEP i GOTO QUES2A
RETURN
ELLIPSE.
IF P.O THEN
CIRCLE (320. 150*10),INT(RADIUS*US*0.5)*1.3,C,. .1/ARAT
ELSE
FOR ITTVI— 0.135 TO 1.375 STEP 0.5
Ira-lttw»pl
tas>(ictv*0.35)*pl
if lttw<0 Chan
Ira • (2-.125l«pl
and if
CIRCLE(320.150*10),INT(RADIUS"US*0.5)*1.3.C.frn.taa,1/ARAT
NEXT ITTW
END IF
RETURN
QUEEBli
SUBROUTINE QUXSB1
~ •
'** Thla aubroutina proapta cha uaar for input *
to craaca a data flla for RA£TRAD. ¦
' Print vertical ruooara
FDR ROW . 27 TO 26 STEP -1
LOCATE ROW. 1> PRINT CHRS (179)
LOCATE ROW. <0< PRIffT CHRS (179)
NEXT ROW
t
' Print horizontal ruanara
TOR COLUMN ¦ 2 TO 79
LOCATE 25, COLUKNi PRINT CHRS(194)i
LOCATE 28, COLUMNi PRINT CHRS(1941,
NEXT COLUMN
' Print cornar urkara
LOCATE 25. 1> PRINT CHRS(218>i
LOCATE 38. li PRINT CHRS(192)i
LOCATE 2 5, PRINT CHRS(191)i
LOCATE 2S, #0, PRINT CHRS(217);
' Clear out apac* for quaatioo
FOR EXPTY . 2 TO 79
LOCATE 26, EMPTYi PRINT ' * i
LOCATE 27, EXITS'i PRINT ' 'i
NEXT EHPTY
' Diaplay quaatioo and dafaulc anavar
LOCATE 21. (40 - (INT(LENIOUESIS) / 2 * .51)1 i PRINT LETTS (QUES1S. 7«)
IF DFAULTS <» *• THEN
TLEN • (40 - (INTlLOMDFAULTS) / 2 * .5*4)))
LOCATE 28. TUN - 1
PRINT ' «B»TER»-'i DFAULTSt • ')
LOCATE 28, TLDJ - 2. PRINT CHRS (110),
LOCATE 28, TLB* * ((40 - TLEN) • 2)i PRINT CHRS1195)i
END IF
C-42
-------
print UMra raapooca
anawarS • "
QUES2Ali
LOCATE 27, 3¦ PRINT *->
LOCATE 27, Si PRINT anawarSi
kayS • ••
WHILE ILBUkayS) ¦ 0)
kayS • INKEYS
MIND
IF ASCikayS) • 27 TOW anavarS • CHRS<27>. RETURN
IF ASCIkayi) • 13 THEN RETURN
IF ASCIkayS) • • AND LENlanawarS) <> 0 THEV anawarS
anawarS • anawarS • kayS
OOTO QUES2A1
• LOTS (anavarS. LEManmarS) • 11: OOTO QUES2A1
KENU41I
RETURN
arbaoci
............... subkootine arrbooc •••¦•»•••••••
• ••
Ttile ¦ubroutina pranpta tha u»tr tor Input
to eroico a dat* tilm tot RAETIUlD.
• ••
' Print vartlcal runoara
FOR ROW ¦ 23 TO 22 STEP -1
LOCATE ROW, li PRINT CHRSI179)
LOCATE ROM. (Oi PRINT CNRSI179)
NEXT ROM
' Print horizontal xunnara
*
FOR COLUMN - 2 TO 79
LOCATE 21, COLUMNi PRINT CHRS(196)i
LOCATE 24. COLUMN. PRINT CMR$(19()i
locata 25,eolu«niprint * "i
NEXT COLUMN
' Print cornar urkvi
f
LOCATE 21. 1> PRINT CHRS<218)i
LOCATE 24. 1> PRINT CHRSfl92)i
LOCATE 21. SOi PRINT CHRS(191)i
LOCATE 24. (Oi PRINT CHRS(217)i
' Claar out apaea tor quaation
FOR EMPTY . 2 TO 79
LOCATE 22. EMPTY: PRINT ' •:
LOCATE 23, EMPTY. PRINT *
NEXT EMPTY
' Diaplay quaation and dafault anawar
LOCATE 22, (40 - (INT(LEN(arlS) / 2 * .31))i PRINT L£TT$(erlS. 74)
LOCATE 23. (40 - (INT(LEN(ar2$) 12* .Sllli PRINT LEFT$(ar2$. 76)
LOCATE 24,31
PRINT ' to procaad'j
/
' print uaara raaponea
anawarS - "
arS2i
kayS ¦ ••
WHILE (LBKkayi) • 0)
kayS • IHXEY5
WEND
IF ASC(kayS) • 13 IMS' RETURN
goto ara2
arboc*.
SUBROUTINE axbox ••••••••••••••
»•• • •
'*• Itiia aubroutlna praapta tba uaar for Input •*
'** to eraata a data (11a (or RAETRAD. ••
' Prlnc vartical runoara
C-43
-------
baap
FOR ROW ¦ 27 TO 21 STEP -1
LOCATE HOW, 1. PRINT CHRS (179)
LOCATE ROW. 10i PRINT CHRSU79)
NEXT ROM
' Print horltoctal runaara
PDR COUJtV - 2 TO 79
LOCATE J5, COLUKNi PRINT CHRS<19«)i
LOCATE 31. COLUMNi PRINT CHRS(196)i
XOCT COLUMN
' Print eernw uikvi
LOCATE 25. 1. PRINT CURS (211) I
LOCATE 21, It PRINT CHRS(192)i
LOCATE 25, tOi PRINT CHRS(1911i
LOCATE 28, tOi PRINT CHRSI217],
t
' Clair out apaca Cor gutitlon
FOR DIFTY ¦ 2 TO 7*
LOCATE 26, EMPTYi PRIKT " ¦I
LOCATE 27. EMPTY¦ PRINT * •»
NEXT OCPTIT
' Dlaplay quaatloo and datault anavar
LOCATE 21, («0 - (INT(LEN(arllI 12- .S)))i PRINT LETTS(«rl5, 76)
LOCATE 27. (40 - (INT(LEN(ar2SI II* .S)))i PRINT LOTSlarJS. It)
LOCATE 21.31
PRINT *
kayt •
WHILE (LEM(kay$) • 0)
kayS • INKEYS
won
IF ASC(kayS) > 13 TOIX RETURN
goto araJq
HODITi
TITLES • "MODIFY/REVIEW INPUT FILE"
00SUB NUSCREEN
HLPlStl) • 'Salad tha nwbar of tha parunatar you wiah to ctiuga ud praaa *
HLP2S (1) • 'Praaa cESC> to racurn to INPUT FILES atnu.'
QOSUB KELP
FOR J.l TO NAXI
JS-STRS(J)**. *
IF J< 10 THEN JS-* •¦»6TRS I J) . •
LOCATE J*2,liPRINT JS;TXTS(FARM,J)i•I•sINF1LIPARM2.J)
NEXT J
' print vartlcal ruaaara
COLOR 2. 0, 0
FOR ROW . 20 TO 3 STEP -1
LOCATE ROW. li PRINT CHRS1179)
NEXT ROM
vcri
IflagO
COLOR 7,0.0
QUESlS • 'Ditar tba aumbai of tha para*atar you wlah to chaapa tad praaa *
dfaultS.**
G05UB QUESBOX
If lan(*aawarS)«0 th«j baapi goto vcr
It aacianawarS).27 than ratuni
It val (anawar$)<0 than tnaap ¦goto vcr
it vtl (anavar* )>oucl than baaptgoto vcr
lflag.l
CHOI CE .VAL (ANSWERS)
dfaultSaatrS (lolll iptn] , CHOICE))
quaalSa'dtar tha naw vmlua Oaalrad* '
COLOR 10,0.0
LOCAW VAL-0 MX INFIL(PARM2.CHOICE) -VALIDFAULTSI iOOTO MODIT
INF1LIPARM2,CHOICE).VAL(ANSWERS)
C-44
-------
GOTO MODIT
t
1d«( i
. .............. SUBROUTIHE iMl
OPEN «y»f11$ * ¦RAETRAD.DEF' FDR INPUT M *1
I MP ITT II. SYSFILS
INPUT II, DATFILS
CU>SE II
RETURN
OTDZTi
SUBROUTINE OTDH
OPEN •yafllS * •RA£TRAD.D£S" FDR OUTPUT U II
PRINT II. SYSFILS
PRINT II. DATFILS
CLOSE II
RETURN
-------
LISTING FOR: RSYS2.E3CB
INTERFACE to Integer*2 function setexltqqlExlCHode]
Integer'2 exitaode
and
c
PROGRAM RATTRAD
C-.m-mm..................mmmmmm...m.m.m..........m........mm.......mm..
e RAETRAD • RAdon Bsanatlon 4 TRAnaport into Dwellings (Version 3.1i
c ... ...
c
c RATTRAD computes Mr wint and Radon generation and BeveNOt In
e foundation soils and slab-on-grade floors and Integrates the rates of
e aoll gaa and radon antry into a dualling fron user-defined aourca and
e transport paraaetera. It uses Bulti-phaae radon generation and transport
c equatiooa aa defined In Health Phyeica tOitOI-llS (1991). and allows
e nultl-reglon definitions of foundation and aoll proparclaa includingi
c 1. Moisture taat'D. it act.) 7. Pamela Diameter (for K)
e 2. Density I. Rn Diffusion coefficient
c 3. Radii* Concentration V. Air Peraeablllty
c 4. Radon ffeanatlon Coeff. 10. Rn Adaorption Coefficient
c S. Specific Cravlty 11. Boll Claaalflcation
c «. Vartlcal (. Radial Octant 12. Vartleal (. Radial Meeh Units
c
c RAETRAD v2 is a simplified and Bora rapid verilon of the RAETRAD coda
c that aecalarataa numerical calculation convarganca by pracalculatlng
c preasure flalda for a smaller grid araa, and than axpanda the araa as
c tha calculation progresses. Ttie conputed steady-state Pressure profiles
c around a houae foundation are used with Rador aourca and diffusion
c propertlea in coaputlng radon entry into the houae. RAETRAD uses
c elliptical-cylindrical eynoetry to solve the tva-disiensional cyllndrlcal-
c coordinate diffuaive-advective problem by finite-difference nethods,
c Version 2.1 permita uaer-deflned nonuDlfom vertical Dashes, and user-
c defined uniform radial seahes.
c Version 2.2 uses analytical functions for Rn transport through floor
c crocks and optimizes time units.
c Version M uses analytical functions (or air transport through floor
c cracks. (2-24-92)
c Version 2.4 IBM version. Deletes specific gravity,
c Version 2.5 Solve* Pressure Field and Radon Concentration Field with
c 1-atep matrix calculation,
c
c Version 3.0 Adda multiple crack and r«nedlatlon penetrations.
c
c Verelon 3.1 Fixes a few bugs found In 3.0 and adda inperical solutions (vj.l)
c
c Array Dimensioning! if Nr • No. o( radial neah unite
c i Mv ¦ Ho. e( vertical Beeh units
c P(0;Mv,Nr) DviNV.Nr) FrlNV.Nrl
e c{D:Nv.Nr) Dr(Wv.Nr! OtNv.Nr)
c Alrp < 0:Mv.Nr) vvfuv.Nrl felOiNv.Nrl
c Pv(Wv.Nr) Vr(Nv,Nrl (a(Nv.Nr)
c Pr(Nv.Nr) Fv(Hv.Nr) FLX(i.Nr»2l
c C0(IWv*l)'Nr,2'IMv*11*11
c BC([Nv*l)'Nr) Depf(ttvl
c
C frit Bodea
INTECER'2 QWINSEtlTPROHPT
INTEGER'S 0WNSEX1TNOPERSIST
1NTEGER'2 QWINSEXITPERSIST
parameter (CWINSEXITPROMPT . I)
PARAMETER (CINSEXITOOPERSIST - 2)
PARAMETER IQWINSEXJTPERSICT . 31
IWTBBER'2 SETEXITQQ[EXTERN!
lnteger'2 ills
REAL flxtot (3.4.51)
REAL KADSO(ll). SATP3 (19) .CRDIAM(U)
DIMENSION YCW(5) ,XPH(») ,XCW(«J ,XCTOICK(«I ,
t XPOCR < 5],XPERCRIS)•XDCR(S)
character S0ILNMU9) •«. ffl
Jlncludei'canoon.blk'
CALL CETTIMIIHR, IM2N. 2 SEC. 2100TO)
CALL GETOAT(1YR,IMON,IDAY)
HOUR1-FLOAT!(((IHR-40).IMIN)•to)«ISEC)
FF-char (12)
c
c Read In aoll parameter defaults
c
OPEN(UNIT»4,FILE"'Rsya.SYS')
DO 9B6 1.1,19
C-46
-------
HEAD (1,133) UISOII) . EATT3 (I) .SRDIUUI). SOILNM (X)
931 FORMAT (3F1D.O.AI)
996 CONTINUE
CLOSE (UNI T- 4)
IURJU>—1
IELLIP.O
OPEN(UNIT.9,Flla.'RS«.OTl')
OPD<(UNIT.10, FILE. • MYS-OT3 ')
OPEN(UNIT-3,F11«»'raya.lop')
READ(3,99) taxc
READI3.99) TEXT
READ 13.99) TEXT
REACH. 1013) POUT.CODT.HU
1012 FORMAT(F6.0,F7.0.Ff<0)
99 FORMAT (A10)
READ(3,104) X.X.1X>IX.NX,ICRACK
104 FORMAT IF#-0.F9- 0,414)
If (lerack.gc.0) Chan
do 105 IZal,ICRACX
r*ad(3. lot) yXlcr.ycvilZ) .DimtnllZ) .DrniallZ).
t xpH(IZ-H) ,xcH(IZ*l).xethlckllZ).Kpocr(lZ).
t xp*rcr(lZ),xdcrllll
IF(NUNUM(IZ).CT.O) lURAD-lz
IF(NXNUNilZ)-GT.O) IUPAC-lI
IF(NUNUNilZ) .LT.O.OR.NRNUM(IZ) -LT.O) XELLXP»IttLIP*l
106 FORMAT(F?.0,F6-0.2I4,3F10.0,F8.0.3F12.D)
ZLCRtIZ).lOCtYXLCR/RU*0.S)
105 ceocloua
•ndlC
CLOSE (UNIT-3)
C Call raya wlch aleor radlua lnConwcioo
C
DO 110 IH.1,3
C
c Z«re out crack and p«oacration lnCoraacleo
c
icm-o
DO 300 lU'l.S
CW(IU)aO.
lUNUH(IU) >0
IRNUM(IU)«0
PHIIU»1).0.0
CH!lU»l)aO.O
CTHICXUUl.O.O
POCR(IU)-0.0
PERCR(IU)>0.0
DCR(IU)«0.0
LCI IIU)aO
300 CONTINUE
C
C RbId axla run
c
IF(IH.EQ.l) THEN
DO 310 IU«1.S
CWIIU)-YCW(IU)
lUNUNlIUI-NUNUHlIU)
IRNUM(IU)'NRNUM(XU)
PH(1U»1I-XPH(IU*1)
CX(IU*l)*XCmiU«l)
CTHICX(IU) aXCIWICX(IU)
POCR(IU)aXPOCft(IU)
PERCRIIU).XPEFCR(IU)
DCR(IU)aXDCR(IU)
lXCH(ltl*l|
C-47
-------
CTHICJCU I.XCTHICK(ltl)
POCR(1)«XP0CR(itl)
FERCR11)»XPERCRlltl)
DCR(1)»XDCR(1C1)
LCr 11)>2LCR(ltl)
ICNM-1
call rsyallH.KASSO.SATPl.SRDlAM.GOILNM.IRH.IMI)
CALL KEEP IIH,FLXTOT)
END IF
C
c Paaa through with juat cracka only,
c
ELSE IF(IH.aq.3> MQI
iCDBaO
IF (ICRACK.CT.01 THEN
Do 121 lx.l.ICRACK
If (Nuoindx) .Lt.O.or.Nista(It) .Lt.O) chu
lcm>lcnB*l
cvdcnai-rcwdxi
IUNUM1tens).NUNUMtlx)
IRNUMUcdb)«NRMUH(1K)
PH( 1cisb*1 1 >XPH(lx*l)
CH
-------
C0MM0H/BLX3/IURAD. IRIUD. IELLIP. couc .pouc
COMMON / BUU B / Z LC R (S). NUNUN t S). NKNUM (S)
COMMON/BLXt/HOUCEA, AX, RIN, roof.
4 pcrockli),ph(<),ch(<), iunia(S),IroualS),cthick 15)
OPD»tUNIT«3,FILE«'RS*S.OT3')
RFFtD-'l
RFT(2>.' I
RFT(3)«" t •
RFF<4).' I '
RFF(S).' I'
FLOOR.' O'
WALL*' I O-. . . .'
IfARDl." *'
YARD.' T'
DO 10 IR-1.Ira
RTOT(1.IR)«0.
RTOrT(2,IR).0.
XLZ.O.
CIRC.O.
RATI 01 "0.
RATI 02 >0,
un>o.
PM»>D.
IRAD-IUAAD
IF (IRAD.CT.O) THEN
XLZ.FLOATUUCRIIRADl)
CIRC.2°PX*SQRT( ((RASP'XLZ)••2-»(XLZ)#,2.)/2.)
RATIOl.XCTHICX(IRAD)/2.St/12./CIRC
RATI02.YCWURADI/2. 54/12./CIRC
AREA.PI*(IR"2.-(IR-1)**2.>*RASP
PAR£A-RATI01 • AREA
EMC IF
ITFlJkC.O
IF (ICRACX.CT.O) THEN
DO 20 IC.l,ICRACK
IF (INT(ILCR(IC)I.EQ.IR.AND.
4 HUNUN1IC) .LT.O. .AHD.ITFLAC.EQ.O) THEN
NUMBER >0
IF (IRAD.CT.O) NUMBER>NUNUM(IRAD)»NRNUM(IRAD!
R1T7T(1.1R) ¦FLXTOTi2,«,IRM»l.IC)* (FLXTOTIl,1.IR)
-PAAEA* float (NUMBER) ) /
FLXTOTIl.1.IR)*
FLXTOTIl< 4.1RM*1»IC)*PXREA*float (NUMBER) /
FLXTOTIl, 1. IR)
RTaT(2,IR).FUCTOT(3. J, IRM*1»IC)« (FLXTOTIl. l.IR)
-PARSt'f loat (NUMBER) ) /
FLXTOTIl.1. IR)»
FLXTOTIl. 3, IMU1+IC) *PfcREA«Il04C (NUMBER) /
FLXTOTIl.l.IR)
ITTLAfl.l
ELSEIF (IHT(ZLCR(IC)) .BQ.IR.AND.NRNUMIIC) LT.O.AND.
4 ITTTAC.EQ.O) THEN
NUMBER.0
IF(IRAD.CT.O) NUMBZX'NUNUM(IRAD) *NRNUM(IRAD)
RTOT(l,IR)»0.0
RT0TI2, IR) .0.0
ITFLAG-1
ELSEIF dnClzLCRIICI) .EQ.IR.AND.
4 NUNUM(IC) .OT.O.KND.ITFLXS.EO.O) THEM
NUMBER.NUNUMIIC)
RIOT (1,IR).FLXT0T(3.4.IR)•IFLXTOTI1,1. IR)
4 -PAREA'NUMBD*)/FLXTOTIl.l.IR)
4 ~FLXTOTIl.4,IRM.l.IC)'RATI 01'NUMBER
4 ~ FLXTOTI2,4,IRM.1»1C)«RATI02«NUMBER
RTOT (2.1RI ¦ F LXTOT (3, 3,1R) • (FLXTOT (1,1,1R)
4 -PfcREA* NUMBER) /FLXTOT(1.1, IR)
4 ~FLXTOT! 1,3, IRM*1«IC) 'RATIOl* NUMBER
4 *FLX70T(2.1.IRM*l*IC)*RATia2*NUKBER
ITTLW.l
ELSEIF lint(XLCR(IC)) ,EQ.IR-AND.
4 NRNUN(IC).CT.0.WTO.ITTLAC.BQ.0) THZN
NUMBER-NRNUMtIC)
RTOT(1 >IRI .FUTOTl3,4. IR)* (FLXTOTIl. l.IR)
4 -PAREA»NUMBER)/FLX7DTM.1,IR)
BTOT(J.IR)¦(Fl*T0T(3.3.IR)*IFLXTOTI1.1,IR)
4 -PA«A*NUMBBl))/FLXTOTIl,l.IR)
ITTlAC.l
ENDIF
CONTINUE
BfDIF
NUMBER>0
IF(IRAD.CT.O) NUMBER.KUnM(IIU2))»N1UnJM(IRAD)
if dtflag.vq.O) then
RTOT (1, IR) > (FLXTOT (3 , 4,1R) • IFLXTOTI 1.1. IR) - PARE* • NUMBER) ~
I FLXTOTIl. 4. IR)»PAREA*NUMBDU/FLXTCTd. l.IR)
RTOT(2,IR)-(FLXTOT(3.3. IR) • IFLXTOTI 1,1, IR)- WkREA«NUMBCT)»
4 FLXTOT (1. 3,1 R)»PAJOA« NUMBER I / FLXTOTIl, l.JR)
•lOif
C-49
-------
10 CONTINUE
C
c
c
WRITE (9.409)
IRSTEP-IM/S
TOT1-0.0
TOT2-0.0
WHITE(3,4912) ICRACK.IRM.IRH.RU
DO 103 IQ-l.IRn
IFIIQ.LE.IRH»1) THEN
TOT1 •TOT1*RT0T( 1,10)
TOT2 .TOT2 ~ RTCTT (2 ,10)
ENOIF
APPLE-RFFI5)
IF RFT(4)
IF (IC.LE. IRSTCP'3) APPLE.RfT(3l
IF (IQ.LE. IRSTEP'2I APPLE-RFF<2)
IF dQ.LE.IRSTEPM) APPLE-JUTI1I
4912 FORMAT [315,IP,El 4.3)
IF (ICRACK.GT.O) THQ4
DO ISO IC.l,ICRACK
IF( INT(ILCRdG)) .EQ.IQ.AND.NUNUM(IG) .LT.O) THQI
WRITEI9,1500] APPLE,IQ'ru,RTOTI2,IQ),
rtotd. lq)/llxcot(1. l. lq) /.0929,
rcocd.rO)
WRITTI3,4923) 1,IQ'RU,RTOTI2.IQ),
RTOT! 1. IQ) /FLXT0TU, 1, IQ) /. 092#,
RTOTI1,IQ)
4923 FORMATEIS.1P,4E14.4)
COTO 140
ELSEIF (INTCZLCRilC)).BQ.IQ.AND.NRNUNdG).LT.O) THQI
WRITE(9,1501) APPLE,IQ'm, RTOT(2,IQ),
rtot(1,lq)/tlxtoc(1.1,lq)/.0929,
rtocd. lq)
WRXTE(3.4923) 2.IQ'RU.RTOTI2.IQ),
RTOTl1,10)/FLXT0T(1,1,IQ)I.0929,
RTOTIl.IQ)
GOTO 140
ELfEIF (INTIZLCRdS) ) .EQ.IQ.AND.NUNUMIIG) .CT.O) TTOJ
WRITCI9.1S02) APPLE. IQ'r\J, RTOTl 2. IQ).
rcocll.lq)/tlxcoc(l.l.lql/.0929,
rtocd. lq)
WRITE(3,4923) 3,IQ'RU.RTOTI2, IQ),
RTOTll.IQ)/FLXTOTIl.l.IQ)/.0929,
RTOTIl.IQI
GOTO liO
ELSEIF (INT(ZLCRflG)) . BJ. IQ.AND.NRNUMI IG) .CT.O) THE>
WRITEI9,1S03I APPLE,IQ'ru,RTOTI2. IQ).
riot(1.lq)/(lxcot(1,l.lqi/.0929,
rcoeil,lq)
WRI1X<3.4923) «,IQ'RU.RTDTI2,IQ),
RTOT(1.IQ)/FLXTOT(1.1,IQ)I.0929.
RTOT(1, IQ)
GOTO 1(0
END IF
ISO CONTINUE
ENDIF
IFIIQ.La.IRH)
4 WRI1T(«,1S04) APPLE,FLOOR.IQ'ru.RTOTl2, IQ).
4 rCOC(l,lq)/(lxtat(l.l,lq)/.0929,
4 RTOT(1,10)
IFCIQ.EQ.IRH*1) THEN
WRIir(9,lS0S) WALL,IQ'nJ, RT0TI2. IQ),
4 rtot(1,lq)/Clxtot(1.1.lq)^.0929,
4 RT0T(1,10)
WRITE(9,H97) yard, T0T2, Cotl/houaaa/O . 0929,TOT1,
4 yard
writ*(3 ,43 661 tot2, totl/houaaa/0.0929,totl
43*6 FORMAT! IP, 3E12 .4)
ENDIF
IFCIQ-EQ. IRH*2)
4 WRITE19.1S0S) YARD, IQ'ru, RTOT(2 , IQ) ,
4 rtot(l.lq) /(lxcotll. 1. lq) /0.929,
4 RTOTll, 101
IFIIQCT.IRH*2)
4 WRITT(9.1S0S) YARD1,IQ*ru,RTOTI2,IQ),
4 rtoe(l.lq)/(lxtotll.1,lq)/0.929,
4 RTOTd.IQI
160 CONTINUE
103 CONTINUE
609 FORMAT!//,'RADON ENTRY PROFILEi'./,
4 T<0,' ',4X,' Air '.SX,' Elf. ',4X.' Radon ',/.
4 T«0, 'Radial' ,4*.' Entry '.SX.' Radon ',4x,' Entry './,
4 T60,'PoBitn-,4*.' Rata '.SX.' Flux ',«*,• Rata './,
4 T60,' It ',4X,' elm '.SX.'pCl/m2a ',4x.' pCl/a ',/,
4 10X, '-Houtt Cantar-',T<0. ' ', 4X,' ',5X.
4 . •, 4X, ' ')
C-50
-------
1500 FORMAT!1CX,A5,7X, 'Elliptical crack' ,TfO, fS.2.5X. 1PE9.2. 4X.E9.2.
4 3k.*9.2)
1501 FOMCAT<10I,A5,7I('INMdlttlon crack',T«0.tt-2.5X.1PE9.2.4X.E9.2,
4 3*,a9.2>
1502 FORMAT!10X.A5.IX. 'Floor alab opaolng • ,T<0, fS .2.Sx. 1PE9.2,4X.E?.2.
4 3x,a9.2)
1503 FORMATI10X. AS.7X.'R»«dlatlc« paoatratlon' ,T<0.
4 tS.3.SX,lPE».2,4X,E9.2,3x,a9.31
1504 FORMAT! 10X. AS, A7. WO, fS.2 . SX. 1PD.2, .WCo(S)
REAL RADS0U9) ,CAT1>3<19> ,CRDIAM<1») ,Dapf(40) .KADS.KMA
INTEGER F.LCRalSl.LCRl(S)
Character IoFlla'12.TITLE"«O,XFILE»12.SOILNM(19)»0.TEtT»l,
4 FF*1
Slocludai'coBBOD.blk'
INFILE<'RSY5.INP
UNIT..0(444<7 ! pCi/LMt/h to pci/a2/a
Pi-3.141SI24
C
FFaCKAR C121
do 1589 i«l,40
P(0.11-0.
CIO.ll-0.
AIRP!0,i)-l.
F£(0,11-1.
1SI9 coocloua
DO 111 I.1.3S
DO 112 J-1,40
P(I,J).0.
CII.JI-0.
Wll.JlaO.
V*|I,J)-0.
FVII.J1.0.
FR(I,J)-0.
Q(I.J)"0.
FAII.JI-0.
FS(I.J)-1.
AIRPtI,J)-l.
DR(I,Jt»0.
CJV|I,J).0.
PR (I, J ) aO .
PV(I,J)aO.
112 CONTINUE
111 CONTINUE
DO 114 I-1.1240
bc(l)>0.
DO Hi J.1,13
CO(I,J)aO.
lit CONTINUE
114 CONTINUE
c
C
CALL CCTnHIIHR.IMIN.ISEC.IlOOTO)
CALL CETDAT (1TO. 1MDN. I DAY)
Vi«cal.83E-S t N.a/m2 (Pa.a)
KHAaO.24 < Nacar/Alr Dlatrlb. Coaff.
Iiv-i 1 Mall thlckaaaa (l radial unit)
PPREV.O. I lolt Praaaura
CPr«v»l. I lolt Rd Cone.
IVN-o l Vartlcal hx.
IRM-0 I Radial max.
Iah-0 I lac. dapth.
LaC».2.1E-4 ! Re Dacay CoDat ll/i)
LA-Laca'3400. i Rn Dacay Conat ll/h>
TU-1. I Input tlaa unlta (h)
c
c Rud Input...
c
OPEN(UNITa3,Flla«INFILEI
READ(3,i24) XFILE
READ(3.99) TITLE
824 FORMAT(A1 2)
99 FORMAT!ABO)
C-51
-------
READ!J.100) X,XW3D,XLDI,PH(1) ,CM(1) , AX, ROOF
100 FORMAT(F«.0,2F7.0.4F9.0.F10.0|
READ(J,101) PWT.COUT.RU
101 FORMAT |FS.0,r7.0,F8.0)
READ 13.1041 x£d*p,ydap, lfdq, ISO, NLAYER, 1cRACK
104 FORMAT(FB.0,F9.0.4J4>
JPLOT.O
IPRT.O
lCOD«l
HRB0.1»KLA*CT»1 fdq
it (lcrack.0C.Ol th«o
do 10S 1Z-1.1CRACX
rudlJ.lOl) TDCT
104 FORMATIAl)
105 CCOtlDU*
•ndlf
ICNUM-ICHM
c
c Initialise Paraaatara * sure Huter
c
1435 HOoaaA-XLan'XWld I Houa* ATM
IftXLan.lt.XMld) Thao : Hake width teallast
xs-XWld
XWld-XLaD
XLanaXS
End II
Raap>XL*o/XWld ¦ Ellipse Aspect Ratio
FS>Sgrt12.I(1.*Raap»*2>) ' Radial Dispersion for Elllpa*
XRH>Int (Sqrt (HoueaA/PWAiap)/RU*. 499999)! Minor Radius (radial units)
Rade-Sgrc1(1.~Reap**2)/2.1'Float(IRH)*RU
Clrcun>2.'Pl'Raap'Float(IRH) ! Appro* Elllpa* Circus!eraoca
1f(lenun.gt.0) than
DO 117 I.l.lcnua
LCrl(I I-IRH-LCr(11 ' Crack Location aa radius
LCr* 11) »LCr 111
117 CONTINUE
• la*
LCr*(l)-lrh/2
LCrl (1) -lrh/2
CN(1).0.0
luDWaO
lrniBaO
ph(2)«ph(l)
ch(2)-ch(l)
cchlck(l)«0.
pocr(l)-l.
percr(l)*l-
dcr(1)*1.
1 peon »0
•ndl f
IPCON-1 ! Preaaure Convergence Optlac flag
IF(IPAS.EQ.l) WRITEI10.1009) TITLE.XFILE
1009 FORMATI1X.'SCD4ARIO TITLE i '.A90.T106,
4 RAFTKAD vj.l'./,
4 IX,' FILENAME! ',A12.T76,
t RAdon Eteanatlcc and TRAnaport Into Dwelling*'.
4 /,IX,T76,'developed by Rogera 4 Aasoclatea Englo',
4 'earing Corporation')
IFdPAS.EQ.il HRITC(»,1000> TITLE,*f lie, IHDN, IDAY. IYR.
4 IKR, IMIN
1000 FORMAT!/, IX,'SCDtARIO TITLE t '.AI0.T106,
4 JUnMD V3.1'./.
4 IX.' FILE NAMEi '.A12.TU,
4 RAdon Dnaaacloo and TRAnaport leto IValllnga',
4 /.IX,' RUN DATE: •.12,'/'.12,'/',14.' • '.I2,'i',I2,
4 T76.'developed by Rogers 4 Aaaoclatea Engln'.
4 'earing Corporation',//)
IFtIPAS.EQ.il HRITE(9,1001)
1001 FORMAT!IX, ('•'!¦'< INPCT PARAMETERS i'.SS('.'l/|
IFIIPAS.EQ.ll tmiiz(9.1002) xwld,Xlan,IWT(irhTu) .pout,
4 Int(HouaaA*.&),raap,
4 Ch(l) .lao.YECP.CIRClM'RU. GOUT, lldq.kf dep. fH(l) ,m
1002 FORMAT! /IX, 'HOUSE
4 1X.TS,'Dlaanalona i',17.1,2x,,f4.1,¦ ft.', TSJ,
4 'Equlv. ellipse radius i',19,' ft.',T99.
4 'Outdoor Preaaure t',f7.2.' Pi',/,
4 lx.tl.'Area >',17 ,2x,'aq. ft.'.TSS,
4 'Aapact ratio if9.J,T99,'Indoor Ro tod.
4 f7.2,' pCi/L' # /,
4 lx,t8,'Fill thlcksaaa |',17,' unit* (', f4 .1,' ft.)' ,I!5, \
4 'ClrCUBf«T«DO* i'.f9.1,' ft.',T99, \ 'v-
4 'Outdoor Ro Bod. i',f7.2.' pCl/L',/,
4 lx.tS.'Footing depth i',17,' units (',f4.1,'ft.)',T5S,
4 'Indoor preaaure I'.fS.l,' Pa.',T99,
4 'Radial Mash Units i',f7.2,' ft.')
c
c Print out crack and penetration lnfonatlco
C-52
-------
IF (IPAS.EQ.l .and.lertck.gc.O) -mo<
Will TEIJ.1100)
DO 11S« IW-l.ICWJN
IF IIUWJN(IUT) .LT.OI WRITE!9,1101) (lrh-LCmiUT)) *ru,
4 PH(IUT*1),CH(IUT*1).CHIIOTI ,
4 cthlckflutl,pecr ,CW(IW). CTHICX (IOT),
4 poerllut),p«rcr(lut),dcr(lut)
13 St CONTINUE
ENDIF
1100 FORMAT! //, ' FLOOR OPENIWS i'./,
4 IX,T8,' Crack or' ,T48, 'Loc. Pw,W0. 'Local',
4 T7o.'Local",T78,'Radial',T89,'Arc'./,
4 IX, T8,' P«iatratlof)' ,T3S, 'Nvnbar of'.T48. ' Paratr
4 TJ8.•Praeaure' ,T(8.'Rn Bndry',t78, 'Width'.T87, 'Lmgth',
4 T»(,'Poroalty',T108,'Par*.',tl17.'D1((.'./,
4 IX,T8,' Typa',t34.'Panatratlona',T51,'£t',Ttl,'P»',
4 T70, 'pCl/L'.TSO, 'C«'.T89, '»' ,tlOS, 'caJ'.tll'J. 'Cm2/»'./.
4 1X.T8.24I'-').2X.12I'-•),2X,8['-'>,2X,SI, 2X.«(*-'),
4 2X.(('-').2X,8('-').2x,8C-'(.2x.8('-'),2n.8<'-')>
1101 FORKATUX.T8.'Elliptical Crack ',10X,4X.110.I,
4 fl0.2,fl0.2,(B.2,fl0.2,F9-3.1X,lp,2alQ.2)
1101 F0RMAT(1X,T8,'Floor alab opanlng ',110,4X.(10.3,
4 (10.2.(10.2>(6.2,F10.2,F9.3,lX,lp,2al0.2)
1104 FORMATUX.T8,'Ranadlatlon Panacratloo •,110.4X.(10.I.
4 fl0.2,(10.2.(8.2.F10.2,F9.3.1X.lp.2al0.2)
c
c Contlnua Haadar Printout o( Input Data
c
IF(IPAS.EQ.l) Wrltalf,(02)
(02 Format!//' FOUNDATION 4 SOILS 1'./,
4 T8,'Lyr ITilckniii Vrt. RaJ2( Dana. Eaan. Tot. Sat''D',
4 P.Dlaa Dl((.Rad Dl((.Var Para.Rad',
4 Para.Var tad* ',/,
4 Tl,'No. (t Dlv. pCl/g g/cm3 (rac. Poroa (rac.'.
4 cm cm2/a cm2/a cm2
4 a] ee/g Matarlal',/,
4 T8,' ',
i ¦ ',
4 •
c Raad 4 Print Input Data (or Coocrata 4 Solla
c
Dapf(l)-0. I Dapth 9 baaa ot (loot »l»b (ft)
NDap(>l • No. o( grid polota dadoed
Iah.lah*l
lao>lao*l
Iahp.Iah+1
Iaop*lao*l
HaxdaO
DO 1 I.l.Nrag • Rag ion 1 • floor alab
READ13.102) X.Nrl ,Nr2 .Ndl .Nd2. Win. R, Dan.lfc, Porln.Satm. Dia.
4 DFr.DFV,PRr.PRv.Rada,ISI
102 FORMAT(F9.0,414,F8.0,F9-0,2F7.0,8F11.0, Id
l((odl.gt.30) odl-30
1 ( (od2 . gt. 3 0) ndJ.JO
if(nrl.gt.40) nrl*40
l((nr2.gt.40) nr2«40
IVK.HAX(lV*,Nd2l I Da(. calc. llalta
I((I.«q.2)Rlo>R
IIOt.MAXllRII.Nr2l
I((SatB.LE.O.) Katm.SatpJ(ISI)
IF(SADS.LE.O) KadasRadaO (ISII *aacp(-12.*Sata|
K(Dla.la.0.) Dta-GrDlan(ISI)*1.#-(
(alaPorln1(1.-Sata*SatM*KHA) ! (a
(aia(al*Don,Xada 1 (a
Airpi'PorlD*(1-•Saca) ! air poroaity
QlniR*Dan*te*La*1000. • pel/LItar/hour
KIDFr.LE.0.) DFr .. 112 • PORIWEXP (-I. • CAT** PO* IN-« . • tATH««
4 (14 ¦•PORJN) )
II (DFV.LE.O.t DFv..HJ*PORIN*EXP(-( .•SATW'PORIN-t .'SAW**
k (14 -•PORJN) )
KIPRr.LE.0.) PRr.(PorIn/S00. )»*2*EXP<-12 .•SATO*«4>* (Dla« .01)
4 .33333*10000.
I((PRv.L£.0¦) PRv.(PorIn/S00.)**2*EXP(-12.*SATO**t)*(Dla*.01)
4 ••1.33333*10000.
C-53
-------
iFdPAS.EQ.l.asd.I .oe.l.aod.l .lt.alay«x«2) write(9. 692)
k l-l.x.lntix/vuio),
k R, Dec.Ka,PorlL.£aU».Dl»,DFr.DFV.PRj.PRv,Kadi.
k Sol1KBll£I)
IFdPAS.ECl.tnd.I.EO.NREG.and.XFBEP.OT.O! Wrlt«(9,614)
k XFDEP.IFDQ.
k R,Dea.i&. Porla. Sau.Dla.DFr.DFv.PRr. PRv.Xada.
i £ollNB(ISI)
IPdPAS.EQ.1.and.l.eq.l.aod.l.lt.Dlayer»2) writ*(9.603)
4 X.lot(X/vuinl,
4 R,Dae,Efe, PerId. £ata,Dla,DFr.DFv,PRr,PRv,Rada,
4 CoIINb(ISI)
(03 Format(lX,t8, 'FIR',fll.3,1*,F7.1,4F7.3,F10.4,1P.4E10.2,
I 0P.F8.4.2X.A8)
414 Format(IX,tt,'FTC',fll.3,14.F7.1,4F7.3.F10.4,IP,4E10.2,
4 0P.F8.«.2x.A8t
692 Fonut (1X.T9.13, (11.3.16.F7.1. 4F7.3,F10.4,IP. 4E10.2.
4 0P.F8.4.2x.A8)
If(I.eq.2) SCA-DFV
c Define Vertical Depth Units
c
I ahMaxaMax 11 aoP, I ah P)
DO 119 IZ.l,»ax(lcnu6,l]
fCw(U) . cv(lZ)/30.4l/RU i crick width* Id radial unit*
119 CONTINUE
DO 30 lv.Hdl.M2
If((I.ne.l.OR.ICon.eq.OI.and.Iv.gt.Maxd«ICon) Then
•UxdaMaxd«l ! Incraaent dapth unit
NDepfaNDepf»l ! No. ol vartlcal unlta
Depf(NDepfIaDepf(NDepf-1)»VU1b I Define daptha (It)
Did If
VU(lv)-VUln ! Store vartlcal spacing < f11
DO 30 Ir-Nrl.Nr2
fa(Iv,2r)-fal
(•(lv,Ir)«fsl
AIRP(Iv,Ir)>Alrpl
QIIv, Ir) agin
Dr(lv,Ir)aDFr*fal/fal*3.t7S/RU I aq.ft/hour (bulk) [3600/3 0.48*2]
Dv(Iv,Ir>.DFVf»l/fal*3.«75/VU(lv|
Pr(Iv,Ir)»PRr/Vlac,3.875/RU ' ft2/Pa.h (bulk)
Pw(Iv.Ir) ¦PRv/Vlac,3. 87S/VU (lv)
DO 211 IZ>l,Bax(lcnis.l)
Ifdr.eq.LCr(IZ).and.Iv.eq.il Than
WCrdZI-0.2S*0.75*exp(fcv(IZI-l.)
WCo(lZ)al.-WCrIIZ)
P(lv,ir) »Pv(iv,ir)••wco(Il)
i *(ParCr(IZ)/viic'3.875/Vu(lv))••wcr(III
Dv(Iv,Ir) ¦ I (1 ¦ •fewlIZ)) *Dv (lv, Ir) *fa (lv. Ir) ~
4 Sqrt(few(12))*fcv(lzi*DCr(XZ)*3.87S/Vu(lv)•PoCr(IZ))/
k ((1.-fcv(IZ))•f»(Iv,Ir)«few(IZ)"PoCr(IZ))
fa(lv,Ir) ¦ fa(lv,Ir)•(1. -fcv(IZ))»PoCr(IZ)* few)IZ)
fadv.lr) » fa (lv, Ir) * (1. -fcv(IZ)) »PoCr (IZ) *fcw(IZ)
JLlrptlv, lr) • JLlrp (lv, Ir) • (1 .-fcw(IZ)) »PoCr(IZ)• fcw(IZ)
End If
211 CONTINUE
If(IV.LE.Iao.and.I*.GT.IRK*1) Then
fadv.lr).1.
fadv.lr) -1.
alrpllv,Ir)>1.
Prllv.lr).0.
Pvdv.Ir) .0.
Dr(lv,ir)«0.
Dv(lv,Ir)a0.
0(lv,Ir)-0.
End If
30 Continue
1 CONTINUE
It (llRMI-5.le.llrh)) write (9,1*7)
187 Formatt/,lx,'HkRNINCi MlDor axla of house la wlthlo S unlta'.
i ' of the yard boundary.')
IF(IPAS.EQ.l) WRITC(9,1004) FF.title,*flle
1006 FORKATUl,/.lX. "SCDttRIO TITLEi ',AI0,T106,
i ' RAETRAD v3.1'./.
k IX.' FILE NAMEi '.A12.T76,
4 RAdoo Enanatlor and TftAnaport Into DwlUngi',
t /,IX,T74,'developed by Rogera 4 Aaaociatea Engln',
4 'eerlog Corporation',///.
4 lX.S5('a').'i ANALYSIS RESULTS i',SS('¦')/)
c
c Initlallie paraaetera with time 4 depth unlta
c
FllTT»Depf dao-»l-l) i Fill mclmasa (It) \
LA«I>*TU ! lambda*t
Lfial.-LA I 1-lambda't
UNIT* UN IT/TV I alter for tine unlta
Do 10 Iv-1.Ivb
Do 10 Irai,lra
C-54
-------
Qdv.Ir!-Q(Iv, Irl'TU
Dr(Iv,Ir».Dr!Iv,Ir»*TU
Cv(lv,Irl«Dv(Iv,Ir)*TU
Prllv,Ir).Pr(lv,ir)*TU
Pw(Iv, lr)>Pv(Iv, ir) 'TO
)0 CeBtlnua
c
DO 212 IP.l.baxdcnuB, 1)
CW(iP).CM(lPt/2.S4/12./RU I Crack width (fraet. of
312 CONTINUE
ClOM Praaaura riald troa ftAETRAS.PRE flla
c
IVIIS.KlN(rVM,2«)
IRHP>IRH«1
c
c Daflna ttMdy-IUca 2-DlMnalaoAl Pniiuit Flald
c
lvip< Ivb « l ! No. of vtrtlctl points
nap ¦ lvap'lra I No. o( Eqn'¦ to aolva
lb* » lvap i ux matrix band width
lbwp • Ibw • l
lbwpj • lbw * 2
ltmx m 2*ibw ~ ) ! ux band poaltlen
call PREDEFIlvB.irm.lrh.lSO)
call SOLVE(HNP,IBW)
Do 31 J.l.nnp
lr.[I>1)/ivap «1
iv.l-lir-1)•ivmp
P(lv-1, ir) >BC (I)
31 Contlnua
do 213 il.l .ux 11 *ioiiB.2)
If (ph(ix).na.pout) goto 214
211 Contlnua —
Do 5 iv.O.ivn
Do S lr-1, lrm
P(lv.lr).phd)
5 Contlnua
Writ*(9, IIS)
(IS Fonut(/,'No Praaaura Cradiant* or Air Flom P(Indoor)',
4 ' « PlOutdoorl'l
Co TO 20
214 Ccotlnua
c
c Daflna Valocltlaa teem Praaaura Flald
c
Do J lv . l.IVM
IvbI .IV-1
Do 2 Ir • l.IWt
Inl • Naall.Ir-l)
vvilv.lr) • Pvdv, Ir) »
4 (P(Iv.lr)/Alrptlv, lr)-Pllval.IrI/Alrpllval.lr))
2 VR(Iv.Ir) ¦ Pr(Iv.ir) •
4 (P(Iv,lr)/Airp(Jv,lr)-P
1 Contlnua
c
c Print Staady-Stata Praaaura Flald
c
paax.O.
do 21S Iv.O.lvs
do 21« lr-1,Ira
lfl-PllV,lr I/AIRPIlv,lr).CT.PMAX)
4 [i»«y • -P( lv, Irl /AIHP( lv, lrl
21( CODtiDU*
215 contlnua
paul. no.** (4*lnt (AloglOd. /ptsAX))) >/10 .
if(lpaa.aq.l) WRITEdO. (04) l./PMul.
t iDapiS Contliiua
If(IVMS.lt.IVM) Than
If(lpaa.aq.l) Mrlta(10.(04) l./PMul, (Dapf(I).I.TVM£*2,IVM)
Do 151 I.l.IRH
951 If (lpaa.aq.l) wrltadO, (05) I, (INT(-P(J, Ii /AirpiJ, 1) •
4 PMUl».5l,J-IVHE»2.IVH>
End If
c
c Sava Log-Codad Praaaura Flald In RAETRAS.PRE flla
c
c Print Vartical 4 Radial Bulk Air Valocltlaa
C-55
-------
IFIIPRT.EO-2) Than
If(lpaa.aq.ll HKITC(10.<70) (I.I.O.IVMS)
670 P0RKAT(//,42X,'Vartlcal Bulk Valocltlaa (ca/at'.lSx,
t 'depth unlta »',/, 4X.25I5,/)
VUM..00i«(7/TO I Unit Multiplier
DO 671 I.l.IRM
(71 If(Jpaa.aq.l) WRITE 110.672 I I, (F IW< J, 1) *VTM, K).K.J.I.1 VMS)
672 FDRKATC '.13.35(13.121)
If(IVKS.lt.IVX) Than ! writa for dapcha «xc««ding flrtc llo*
If(lpaa.aq.l) Hrlca(10.670) (I,l.IVKS*l.IV*)
Do 6710 I.l.IRM
(710 if(lpaa.aq.l) Wrlta(10,(72) 1, (F(W(J,2)*VUM,K) ,K,
* j-rvKE+i.rvx)
End If
VUM«.00»4(7/TO • Unit Multiplier
If(lpaa.aq.l) WRITEI10,(73) (I,1.0,IVMfi)
(73 FORMATI/.42X,'Radial Bulk Valoclclaa (e»/a)',15x,
k 'depth unlta »•,/,«x,25I5,/)
DO (74 I.l.IRM
(74 if(lpaa.aq.l) WRITE(10,672) I.IFIVrlJ.I)*vum.K).K.J-l,IVNSI
If(IVMS.le.IVM) Than ! writa lor dapcha exceeding flrat lioe
If(lpaa.eq.l) WrltellO,673) (I,I-IVMS.l,IVM)
DO (740 I.l.IRM
(740 If(lpaa.eq.l) MrlCe(10.672) I.(F(Vr(J,I)*VUM.K),K,J«
* IVMS«1.IVM)
End If
Endlf
c
e Zare Che Coefficient Matrlcaa for Radeo Concentration Calculation*
e
20 Do ( I-l.tUip
Bc(I) . 0.D0
Do ( J ¦ 1, lbBDt
( Co(I,J) . 0¦DO
c
c Dafloa Steady-State 2-Dlaeoaloeal Radon Concentration Flald
c
Call GONDEF(lvB,lrm,IRK,ISO)
c
Call Solve(NNP.IBM)
Do 22 I.l.onp
lr - (1-1)/lv*p * 1
lv • I - (lr-l)Mvnp
22 C(lv-1,ir)>BC(I)/fa(lv-1.lr) I Store Rn Coscntratiooa ID C array
c
e Dafloa Radon Fluxea froa Radon Concentration Flald
c
INeg.O
DO 24 IV > 1, IVM
lval • Iv - 1
Do 23 Ir • 1iIRM
If (C(Iv.Ir).LT.O.) INeg.l
lnl . Max(l.Ir • 1)
FV(lv.lr) • fallv,lr I>Dv(Iv,lr)*
t (C(Iv.ir)-Clival,Ir))
23 FRIIv.Ir) ¦ fallv.ir)*Dr(Iv.Ir)•
k (C(Iv,Ir)-C(Iv,Irml))
24 Continue
c
c Print Steady-State Radon cone ant rat ion Flald
c
21 CKAX.O.
do 217 iv.O,ivn
do 211 lr.l,ira
If (cliv.ic) .gt.aax) caax>c(iv.ir)
211 contloua
217 continue
IF(IPAS.EQ.l) WRITEI10,1112) ff,TITLE,xnLE
1112 FOR»T(al,/,lX. 'SCOttRIO TITLE. ',AI0,T10(.
4 ' RAETRAS V3.1'./.
k IX,' FILE MAMEi '.A12.T76,
k RAdon Dtasatioa and TRAnaport into Dwellinga'.
k /.1X,T7(.'developed by Rogera t Aaaociatea Engln',
* 'eerlng Corporation'///)
c*.l0.**(4*lDt|Aloal0ll./aaax) ))/10.
if(ipaa.eq.l) VRITC(10,60() 1¦/CM,(Depf(I).1*1.TVMS*1)
<06 FORMAT!/,'Soil Caa Radon Concentration* |',F12.3,' pCl/Llter)'.
k lOx,'depth (ft.) »\/,4X,2SFS.l,/)
DO 59 I-l.IRM
59 lfllpaa.aq.il W1ITEI10,(07) I, (IKTIC(J.I)*CM*.5),J>1,IVMS«1)
607 FORMAT!' ',13,2515)
If (IVMS.lt.IVM) Than
If(lpaa.eq.1) Write(10,(06) 1./CM,IDapfII),I ,J.IVMS*2,rVM)
End If
C-56
-------
c
c Print Vartleal t Radial Radoo Flux**
c
IFIIPRT.fiO.Jl Than
VUM>.0t44447/lV i Chang* unit* co PCI/m2/•
It(lpaa.aq.l) WRITE(10,<75) (I.I.O.IVMS)
47S FORMAT!/.22*.'Bulk Diffuaiva Varclcal Rn Flux** (pCl/B2/a)'.
k 15x,'d*pth unlet—4x.25X5,/)
DO 474 I-l.IRM
474 1((lpaa.aq.11 WRITE! 10, 472) I, (F •',T»1.lx. 10('•"•••••'),/)
e
c Calculate Radco Fluxaa loco falling....
c
CALL FLUXINIl.XRM.IRM.CSC.lao)
END
e Subroutine FUJX IN Co»j*jt*« Radon Fluxa* into cha Houaa through cha
e Floor Curfaea Araa via Dlffualon and Advactloe.
e
SUBROUTINE FUDCINdl.13.XRM.SEC.lao)
REAL XCW(S).ACRATI5)
REAL La.Lb
CCM>OM/BLlU/P(0i3S.40) ,C(0>3S,40), AIRP(0 135,40) , PV(35 ,40),
4 PR (35,401 ,DV (3S, 40). DR (35.40) ,W (35.40) ,VR 134.40) .
4 FV135,40).FRI35,40) ,Q!3S.40) ,FS(0 i35, 40),
4 FAOS.40), FLX (4. 52) ,VU(3S). UNIT. ISHP, ISOP.LA.LB,
4 LCr(5), cw (5),PB,raap.pl,Icon,eu.ru,lcsua
COMMON/BLU/IURAD, IRRAD, XELL1P. COUC,pouc
CGMMDN/BLJC4/HOUSEA, AX, RXN, roof,
4 pcrackiS) ,ph(4) , eh(4). lusuadl, lrtiua<5i .cthlcklSl
COMMON/BLKS/I CWM
COMM3N/BLK
PB«PH(IZ*1)
ENDIP
121 CONTINUE
JC-1
Elaa
CB.Couc
PB-Pout
JC>tao*l I Flrat aoll layar eucalda
End If
FLXtl,I)-Pl,rLOAT(I*«I-(I-l)*«2),EJ< I Annular Maah Araa
-------
FLX(3,1)»Pv|JC.I)*(P(JC.I) /Airp (Jc. 1) -PB) *CKB*Ud1c ! Adv«etlv« Flux
FLX(4,I).FLX<2.I).FLX(3,I) ' Total, Crawl Spaea
FLXtS,I).Pv(JC.I)*U>2> .PI* (FLOAT(LCH(I) I ••J-FLO*T(LCR(I)-1 )-*2 I
4 *n*ACrat (I) l Crk iru
DO 7 J *2,4 4 Crack Araa-Mtd. Avg's
7 FLX(J, IRMP2) -FLX(J, LCr (I)) /ACrat (I) I Sia i)u>IP|»FLX!«,I)
DO 2 J.2.4
2 FLXIJ.IRJfP) -FLX (J. IRMPI .FLX (J. I) *FLX{ 1.1)
J CONTINUE
FLXI2, IRHP) .FLX<2, IRMP)/FLX(l.IRMP) ! Avaraga
FLX (3, IRXP| .FLX <3, IRK?) /FLXU.IRMP)
FLX(I.IKMP) .FLX(4. IMP) /FLXU.IRMP)
SSC.SSC/FLXIl.IRMP) > Nona 111* by Housa Area
RETURN
END
C[[[
c F Fonuta Valocltlas 4 Fluxas lo Cenprassad Expocantial Format
c
IWIBSER FUNCTION FIA.I2)
IS.l
12.0
1FIA) 2.1.3
1 F-0
RETURN
2 IS—1
3 C«AIOC10(ABS(A))
IFIC) 5,4,«
4 F.1S
RETURN
5 I2-1NTIC)-2
11-IS*INT(100.MO" (HODIC.l.) I..51
IF(IAHSIll).LT.100) GO TO ¦
12-I2.i
11.11/10
CO TO «
< I2«INT(C)-1
Il-ie*INT(10.*10"(MOD(C, 1.))..499999)
I F.I1
IFd2.LT.-9) 12.-12
RETURN
END
e PREDEF aata up prassura Batrlx eoatliclant array
Subroutlna PROS' (lvm. Ira. IRH. ISO)
REAL't co.be
REAL La.Lb
COMMON/BLKl/P(Oi]S,40),C(0:3S,40).AIRPI0i35.40).PV[35.40).
4 PR (35« 40) ,DV(35. 40) ,DR(35,40) ,W(35.40) .VR135.40).
4 FV(35.40), FR (35.40),0(35,40), FS (0:35, 40),
4 FA(35.40),FLX(6,52). VU< 35), UNIT, ISHP, JSOP. LA, LB.
4 LCr(5),CW(5),FG.rasp,pi,Icon,tu.ru,lcnua
COMMON/BLX2/IURAD, IRRAD, IELLI P. cout. pout
COKMDN/BLK3A/CO(144 0, 73) ,BC(1440) , IBM. IWP, 1BWP2 , IBKX
COMMON / BLK3 B / ZLCR (51 .NUNUM(5) ,NRNUM(5)
COMMON/BLK4/HOUSEA, AX, RIN, rool,
4 pcrack (5) ,ph(4) ,ch|6), lunialS), lrnua(J) ,cthlck(SI
COMMON/BLKS/1CNM
-------
c Start Main vertical Loop fraa Top Downward
c
Do 30 rv.i.rvw i Row i ia Top Boundary P
lvp • lv ~ l
If (IV.aq.l) Thai
ivu - Vu(l)
Els* If dV.«q.IVKP) Than
• Vu ¦ Vu(IVMP-l)
IlM
•Vu » 0.J*(Vullvp-1)~Vu(lv-1)) I Avg. Vertical Utalt Sis*
Endlf
e
c Start Ha Id Radial Loop fro* Canter to IRK
c
Do 20 IR>1, IU
PRESS-PH(1)
Do 112 Ii-2,ux(lcnia»l,2)
IP(IR.BQ.LC*(1Z-1)) PRESS.PW(II)
112 CONTINUE
lnd ¦ (IR-1)*IVMP » IV I Index for Coefflc. Array
lrp ¦ lr ~ 1
If(IV.LE.Ieo*l| Then
IP(IR.LE.IRHP) Then
IflTV.EQ.l) Than
Do 1 I.l.lbax
1 Co(lnd.l) • 0.D0
CodDd, ltwp) - 1 - DO I Houae Boundary Coefficient*
BC(ind) • PRESS '¦ Define Houae Boundary Condi1.1 oo
Else If (Jv.gt.l) Then
If(IR-BO-l) Then
Call Left(lv-1,lvp-1,lv-2,lr,lrp,lnd,aVu)
Elae If(IR.EQ.IRMPI Then
Call Right!lv-1,lvp-i.iv-2.lr.lr-l.lDd.aVu)
Elae
Call Midilv-l.lvp-i.lv-J.lr,lrp,lr-1,Ind.aVu)
End If
Endlf
Else
Do 2 J¦1,lbax
2 CO(lDd.I) ¦ O.DO
Collnd,lbwp) • 1.D0 ! Outdoor Boundary Coefflcienta
BC(ind) ¦ pout i Define outdoor Boundary Condition
Endlf
Elee If (IV.«t.lao*l.and.rv.lT.IVNP) Ttien
If(IR.EQ.l) Then
Call Left(lv-l,lvp-l,lv-],ir.lrp,lnd,aVu)
Elee If(IR.EQ.IRMI Then
Call Right(lv-l.ivp-l,iv-2.1r.lr-1,Ind.aVu)
Elae
Call Kld(iv-1,lvp-1.lv-2.lr,lrp.lr-1,lnd,aVu)
Endlf
Elee If (IV.eq.IVMPI Then
If(IR.EQ.l) Then
Call BotL(iv-l,lv-2,lr,lrp,Ind.aVu)
Elee If(IR.EQ.IRM) Then
Call BotR(lv-1,lv-j.ir,lr-1.Ind.aVu)
Elee
Call Bot(lv-1.lv-2.lr.lrp.lr-1.lnd.aVu)
End If
Endlf
20 Continue
30 continue
Return
End
c MID ccsputea preaaure matrix coefficient! for Middle aectlona
Subroutine MID (lv,lvp,lvm,1,lp,1b,lnd.aVul
REAL'S co.bc
REAL La,Lb
CO*OCN/BUU/P(0i3S.40).C(0:3S.«0) ,AIRPI0.35,40),PV(JS.401,
i PR(35,40),DV(3S,40) .DR(J5,40| ,W(J5.40) ,VR<3S,40) ,
t FVI3S.40),rR(35,40),Q(35,40),FS(0i35,40),
k FA(35, 401 ,FIJC<«.S2) . VU(3S), UNIT. ISXP, ISOP.LA.LB,
t LCr(5),Of (S),FC,raip.pl,icon.tu.ru.irnuB
CaWON/BIJU A/CO (1440, 73 1. BC (1440) , ISM. I MP, IBWP2, UMX
Co(ind.lbw) • Pvllv. 1)/aVu/Alrp(Ivb, 1)
collnd.1) • Pr(lv,D/RU/AirpUv.ia)
coilnd.lbwp) > ( -, Pr(lv.lpi • (i.DO»FG/Dfloat (1)) /Ru
t - Prllv, D/RU - (Pv( lvp, 1) »Pv(lv, 1)) /aVu) /Alrpllv, 1)
Co(lnd,ibex) • Pr (lv. lp) • (1.DO-FC/Dfloat (1))/RU/Alrp(lv, lp)
Cojlnd. lt*^>2) • Pv(lvp, 1)/aVu/Alrpllvp, 1)
BC(lnd) - O.DO -
Return
End
c
c RIGHT Deflnea preeaure Mtrlx coefficient! for Right boundary eleaenta
Subroutine RIGHT (lv,lvp,lva,1,la,lnd,aVu)
REAL*I co.bc
C-59
-------
HEAL La. Lb
CO»MDN/BLJU/P(0>J5.40|.C (0.35, 40) .AIRPIO. 35, 40) ,PV(35,40),
k PROS,40|,DVO5, tDI ,DR(35,40>,W(35,40) ,VR(35, 40),
t FV(35, tt>l ,FR(35,4 0),0(3 5.40),rS<0.3 5, 40),
fc FA(35,40),FLXf6,52) ,VJ(35) ,UNIT.ISHP, ISOP.LA. LB.
fc LCr (SI ,CW( S),PC,rasp,pi .icon, tu, ru, lcnus
C«OCN/BUUA/00<144B.73l ,BC<1440) ,IBW,IBWP, IBHPI.IBKX
Co(lnd,lbwt • Pv(lv,l)/aVu/Alrp(lva,l)
Coded. I) ¦ Pr(lv.l)/RU/Alrptlv.iB)
co(lDd.lbwp) • i- Pr,DR<3J,4O),W(35,4C),VR(35, 40|,
A FV(35,40),FR(35,40),0(3 5,40),FS|0iJ5,40),
A FA(3 5,40) ,FLX(«,52) ,VU(3S).UNIT.ISHP, ISOP.LA, LB,
A LCrIS j,CW(S).PC.raap,pi,Icon.tu, ru. lenua
COKMDN/BIX1A/COU440.73), DC{14401 .IBW, IBWP, IBwpj, IBKX
Co(lnd.lbv) ¦ Pv|lv,1)/aVu/AlrpIIvb,l)
Co(lnd.l) • 0.D0
Co(lnd.lbwp) • I- Prllv.lpi" (J .D0*FC/Df loat U!) /RU
t - IPvilvp,1|»Pv
-------
4 FAOS.40) ,FLX[i.S2) .VU|1S), UNIT. ISHP. ISOP.Uk.LB,
4 LCr(5),CW(5),FC,r»»p,pi,Icon.tu,ru,icnua
COMMON/BLK3A/CO (1440.73 ), BC (1440) , IBM, IWF. IBWP2, IUX
Collnd,lbw| ¦ Pv( lv, I)/«Vu/AArp(lv»,l)
codod.l) - Pr(lv.i)/RU/Alrp(lv.iB)
Collnd.Ibwp) . (- Pr/Mj - tv(lv.i|/»vg)/Alrp(lv.l)
Collnd,ibax) ¦ 0.D0
Collnd, ltowp2| • O.DO
BC(lnd) ¦ 0.DO
Return
End
SUBROlfflffi SOLVEINNP.IHALFB)
REAL'6 CO,bC,A.PIVQTI,SUM
COKMDH/BIJQA/CO (1140, 73I, BC {1440). IBM, I BMP, IBWF2, IBMC
C
IHBP-lHALFB+1
IBAND'2*IHALFB»1
C
C TRUNSUIAKIZE lUTKIX Co(NP.IB)
C
NU.WP-IHALFB
DO 20 NIal.NU
prVOTIal.ODOfCOINI,IHBP)
NJ-NI»1
IB-IHBP
NXaKl»lHAira
DO IS NL.NJ.NK
IB.IB-1
Aa-CotNL. IB)*PIVOTI
CO(NL.IB)-A
JB-IB*1
RB-IB-IKALFB
LB-IHBP-IB
IFIA.EQ.O.ODOI 03 TO 15
DO 10 KB-JB.KB
HB«LB*MB
10 Co(NL.KB>aColNl,KB:*A*Co(NI,NB)
IS CONTINUE
20 CONTINUE
NRaNU*l
NU-NNP-1
NKaNNP
DO 40 HlaHB.NU
prran>i.oDo/ce(Ni,iHBP)
IB-IHBP
DO 35 KL-NJ.NF
IB.IB-1
A.-CO (NL. IB) "PIVOTI
Co(NL.IB) -A
JB.IB.l
KB.IB*NNP-NI • RAE 1/91 WAS. KB-IB*IHALFB
LB.IHBP-IB
IFIA.BQ.O.ODO) OO TO 35
DO 10 KBaJB.KB
NBaLB+KB
30 CotNL.KB)-Co(NL,KB)«A*Co(NI,NB)
35 CONTINUE
40 CONTINUE
C
C NODIFY LOAD VECTOR BC(NP)
C
NU-NNP*1
DO 70 NI'2.IKBP
IB»IHBP-NI»1
NJal
SIM. 0.0
DO (0 JBalB. IHALTB
EUM>SUN*Co|Nl, JB) *BC(fiJ)
(0 NJaKJ.l
BC(NI|aBC(NII*5UM
70 eootlnu*
IB. J
NLalHBPol
DO 90 NlaNL.NNP
HJ-N1 -IKBP* 1
SUtUO.O
DO (0 JB>IB.IHALTB
£UN>£UM»Co(NI. JB) «BC INJ)
SO NJ.H7.1
BC(N1).BC(NI)«SUM
90 contlmj#
C
C BACK SOLVE
C
BC(NNP)aBC(NNP)/ColNNP,IKBP)
C-61
-------
DO 110 IB*2,1HBP
HI.NU-IB
NJ.NI
MB'IHALFB+IB
6UM.O.ODO
DO 100 JB-Hl.MB
100 SUM.SUM*Co(NI,JBI*BC(KJ)
BCIKIJ • IBC NL,W1.ivmp i Row l is Top Boundary C
Ivp • lv • l
If (IV.aq.l) Than
aVu > Vu[l)
Elaa If (IV.aq.TVMP) 7T>«d
aVu • Vu(IVMP-l)
Elaa
•vu ¦ 0.S*(Vu(lvp-l)»Vu(lv-iu i Avg. Vertical unit fill*
Endlf
c
c Start Kale Radial Loop (ra Canter to IRM
c
Do 20 IRal,IRM
CONC.CH(1)
DO 113 I2>2,BaK(lcDi»»l .2)
IFIIR.EQ.LCR(lX-l)) CONC.CHUZ)
112 cowtinue
lnd • (IR-l)'IVMP * IV • Index for Coafflc. Array
lrp ¦ lr ~ 1
If(XV.LE.Ito»l) Than
ir(IR.LE.IRHP) Than
If(IV.EQ.l) Than
Do 1 I-1.1tea
1 Co(lnd,I) ¦ 0.DO
Co(Ind.lbwp) ¦ 1.DO l Houaa Boundary Coefflclanta
BC( lndl ¦ CONC I Define Houaa Boundary Condition
Else If(IV.CT.l) l*an
If(IR.EQ.l) Then
call CLaft(lv-l.lvp-i.lv-2.1r.lrp.lDd.aVu)
Elaa If (IR.EQ.IRHP) Than
Call CRlght tlv-l.lvp-l.iv-a,lr.ir-l.lnd.aVu)
Elaa
call CMld(lv-i,lvp-l,lv-2,lr.lrp,lr-l.Ind.aVU)
Endlf
Endlf
Elaa
Do 3 1-1.lbmx
2 Co(lnd.I) . 0.D0
Co(Ind,lbwp) • 1.DO I Outdoor Boundary Coafflclaeta
BC(lndl ¦ cout l Define Outdoor Boundary cccdltlon
Endlf
Elaa If (IV.gt.lao-fl.and.IV.LT.IVMP) Than
If(IR.BQ.l) Than
Call CLaft(lv-l.lvp-l.lv-2,lr.lrp,lnd,aVu)
Elaa If(IR.EQ.IRM) Then
C-62
-------
call CRlgbt(lv-l, lvp-l,iv-2,ir. ir-1, Ind.aVu)
Elaa
Call CMld(lv-l,lvp-1,lv-2,lr.lrp,lr-1,lnd,aVu)
Endlf
Elaa It (IV.aq.IVKP) Than
I £(IR ES-1) Than
Call CBotL(lv-l.lv-2,lr,lrp,Ind.aVu)
Elaa If(IF.B3.IRXI Than
call CBotmlv-l, lv-2, lr, lr-1, Ind.aVu)
Elaa
call CTot(lv-l,lv-2,lr.lrp.lr-1.lod.avu)
End K
Mil
20 Conclmia
30 Contlnua
Raturn
End
e CKID Ceaputaa Rd Coneantratlon utrlt coafflclanta for alddla aacclooa
Subroutlna CNID (lv.lvp,lva,1,lp,la,Ind.aVu)
REAL*! CO.be
HEAL La,Lb
C0KM3N/SLX1/P(0¦35, 40) ,C(0i35,40) ,AIRPIO135.40).PV(35,40).
4 PR (35, 40) .DV(3S.40).DRI3S.40),W(3S.4D) ,VR (35,40),
4 FV(3S.401.FR(35,40).Q135.40),FS(0!35,40),
4 FA(35.40) ,FLX(«,52) ,VU(35) .UNIT. ISHP. ISOP.LA.1B,
4 LCr(5), CW(5),FC,raap,pi,Icon,Cu.ru,lenua
C0MWH/11JUA/C0(144a, 73) .BC 11440) ,IBI. IMP, XBWF2. XBMX
Co(lnd.lbv) • Dv( lv, 1) • fa (lv, 1) /aVu/fadva, 1)
Codnd.ll • Dr(lv,1)'fa(lv,l)/RU/fa(lv,la)
collnd.lbwp) . (. LA*(a(lv,l) - Vr(lv,l)/RU - W(iv.l)/aVu
4 - (a(lv,lp)/RU* <1. D0»FC/df loac(1) ) *Dr (lv,lp)
4 - Dr(lv,1)*(a(lv,1)/RU
4 - (a(lv,1)•Dv(lv,1)/aVu - Dv(lvp,1)*fa(lvp,1)/aVul/(a(1v,1)
Co (lnd, lban) • (Dr (lv, lp) • (a (lv, lp) /RU* (1.D0»PC/Dfloat (1))
4 ~ Vr(lv,lp)/RU»(1.D0»PC/dfloaCdl))/fallv.lp)
Collnd.Ibwp2) • (Dvd vp. 1) *fa (lvp, 1) /aVu
4 ~ Vv(lvp.ll/aVu)/fa(lvp.l)
BC(lod) • - 0(lv,l)
Raturn
End
c CRICHT Daflnaa Ro Coocast radon utilx coafflclanta (or Right boundary
c alaaanta
Subroutine OUGHT (lv,lvp,lva,1,la.lnd.aVu)
REAL'S eo.be
REAL La.Lb
C0KH0N/BLK1/P (0135,40).C(0:35.40),AIRP(0.35.40).PV13S.40).
4 PR(35,40) ,DV(35,40) . DR ( 35. 40) ,W(35,40) ,VR(35,40),
4 rV(35,40).FRI35.40),Q(35, 40),F£(0:35, 40),
4 rA(35,40),FLX(6,52),VU(35).UNIT,ISHP,ISOP.IA.LB,
4 LCr(5), CW(S), FG,raap,pi,Icon,tu.ru,lenua
CO«>CN/BLIUA/CO(1440,73I,BC(1440) ,IW,IWP, IBWP2, IBMX
codnd.lbw) • Dv(lv,l>*fa(lv,1)/aVu/fa(lva,1)
Co(lnd.l) • Dr(lv,1)•fa(lv,ll/ru/(i(lv, la)
Co(lnd.ibwp) . (- LA*fa(1v,l) - Vr(lv,l)/RU - Vv(lv.l|/aVu
4 - Or(lv,1)•fa(lv,1)/RO
4 - ta(lv,1)*Dv(lv,1)/aVu - Dv(lvp.1)«fa(lvp.1)/aVu)/f»(lv, 1)
Codnd.lbox) • 0.D0
Co(lnd,lbwp2) • |Dv(lvp,l)*fa(lvp,l)/aVu
4 ~ Vv(ivp,1)/aVu)/fa(lvp,l)
BC(lnd) ¦ - Q(lv,l)
Raturn
End
e CLEFT Daflnaa Radoa concentration aatrlx coafflclaota for Laft Boundary
c Elaaanta
Subroucloa CLOT (iv.lvp,lva,l,lp,Ind.aVu)
REAL'S eo.be
REAL La.Lb
COWCK/BUU/P(0(35,40) ,C(0i35,40).AII»P< 0>35, 40). PV(35, 40),
4 PROS.40) .DVI35.40) ,DR(35.40) ,W()5.40) ,V*(35,40).
4 FV(35,40),FR(35,40),Q(35. 401 ,FS(0.35, 40),
4 FA(35,40) ,FLX(«,52) ,VU(35) ,UNIT.ISHP, 1SOP,LA, LB,
4 LCr(S),CW(5).FC.raap.pl.Icon.Cu.ru,lenua
CCMM3M/BUOA/CO (1440,73 ), BC (1440|, IBM, WP, IBWF2. IBM
Co(lnd,lbw) . Dv(lv, 1)*fa(lv, 1) /aVWfadva, 1|
Co(lnd, 1) ¦ O.DO
Co( lnd. Ibnp) ¦ (- LA'fadv. 1) - Vv(lv,l)/aVu
4 - fa(lv,lp)/RlT*(l ,D0»PG/dfloaC(1) > * Dr (lv, lp)
4 - fa(lv,l)«Dv(lv.l)/aVu - Dv(lvp,1)*f•(lvp,1)/*Vu)/fa(lv.1)
Codnd.lbnx) ¦ (Dr (lv, lp) • fa (lv, lp) /RU* (1. D0»FWDf lost (1))
4 . Vr(lv. lp)/RU*(1¦D0»PG/d(loat(1)))/(a(lv,lp)
Coilnd.lbvpJ) . (Dv(lvp.ll*fadvp.l)/4Vu
4 * Vvdvp.l)/aVu)/fa(lvp,i)
BC(lnd) ¦ • Q(lv,1)
C-63
-------
Return
End
c CBOT coaputM Radon concentration Batrlx co«((lcl«nca (or Bottoa boundary
c alaaanta
Subroutine CBOT (lv,ivB,l,lp,lB,ind,aVu)
HULL'S CO.be
REJLL La.Lb
COKNDM/BUU/P(0:3S,40) ,C|0,35,401 ,AIRPIO:35,40| , PV( 35,40),
4 PR(35,401.DVUS.40) .DRI3S.40), W(35,40) , VR 135, 40),
4 FV(35,40I.FR(35,40),Q(35,40),FS(0.3S.40),
4 FAI35,40) ,FLX(4,52),VU(35), UNIT, ISHP, ISOP, LA. LB.
4 LCr15),CW(5),FC,raap,pi,Icon,Cu.ru.Icnua
CO»CK/1LI3A/CO(1«40,7J),BC(1440) ,IW,IWP. IBWP2. IBKX
Collnd.lbw) • Dv(lv.1)«(a(lv,1)/avu/taIIvb.1)
Coded.1) • Dr(lv,l)*(allv,li /RU/(a(lv. la)
Colled.• (- LA'fa(lv.l) - vrliv,l)/RU - Vv(lv,l)/«Vu
4 - (allv.ipi/RU*(l.D0»PS/d(loac(l))*Dr(lv,lp)
4 - Drllv,1|(lv,1)/RU
4 • (a(lv,i>*Dv(iv,l|/aVu)/(allv,il
Celled,lbmx) • (Or Ilv,lp|*(allv,lp)/RU*II.D0«FC/D(loaC11))
4 • Vr(lv,lp)/RU*(1.D0»FC/d(loat(l)))/(a|lv,lp)
Collnd,lbwp2) ¦ 0.00
BC(lnd) • - Qllv.l)
Raturn
End
C«Bai«iBiliBBBaaBBaiaiataaaBaa»aaaaiBaaaiBBaaaaaiBtB«>BaiiaiasBBaaaaaa
c CBOTL CoapuCea Radon concentration Batrlx coa((lclenca (or Botcea Laft
c boundary el amenta
Subroutine CBOTL I lv, lva, 1. lp. lnd.aVtr)
REAL*I co.bc
REAL La.Lb
COmOH/BLXl/PIOilJ. 401 ,C 10, 35. 40), AIRPIO.35,40) . PV( 35. 40) ,
4 PR 13 5, 40) , DV| 35, 40) , DRI35. 40) , W(35.40) . VR {35, 40) ,
4 FV(35,40).FRI35,40),Q|35,40),FS(0:35,40),
4 FAf35,40),FLX(6.52),VUI35),UNIT,ISHP,ISOP,LA, LB.
4 LCr(5),CW(5I,FC,raap,pi.Icon,cu.ru, Icnua
COMMON/BLK3A/CO (1440. 71) ,BC( 1440) , IW. IHP, IEWP2, IBKX
collnd.lbwj • Dv(lv,l)*(a(lv.li/aVu/(«(lvB,1)
Collad,1) • 0.00
Co(lBd.lbt^) ¦ l- LA*(• (lv, 1) - W(lv.i)/aVu
4 - (allv,lp)/RU*U.D0»FG/d(loaCII))*0r(lv,lp)
& - fallv.l)*Dv|iv,i)/aVu)/(allv, 1)
Co (lnd, lbmx) • (Dr llv, lp) *fa (lv, lp) /RU* (1. D0->F3S, 40) ,C10i 35.40) .AIRPI0: 35.40) .PVI35, 40) ,
4 PR (3 5, 40) ,DVI35. 40) ,DR(3S. 40) ,W( 35,40) .VR 135,401 .
4 FVO5.40) ,FR 135,40) ,Q 135.40) ,FS(0:35.40).
k FAf35,40).FLX(<.52).VUI35).UNIT.ISHP,ISOP. (A. LB.
4 LCr(5),CW(5).rs.raap.pl.icon.cu.ru.Icnua
COWCN/BUUA/CO(1440.73). BC (1440), IW, IBWP. IBWP2. IBKX
Co(lnd,lbw| • Dv(lv,1)*(a(lv,1)/aVu/(allvB,1)
Co(lnd.l) ¦ Dr(lv,l)*fa(lv,1)/RU/(a(lv,1b)
Collnd,lbwp) • I- LA*(a(lv,l) - vr|lv,l)/RU - Vv|iv,i)/aVu
& - Dr(lv,1)*fa(lv,1)/RU
4 - (a (lv, 1) •CM' (lv, 1) /aVu) /(allv, 1)
Collnd,lbox) • O.DO
Co(lnd,lbwp2) • O.DO
BCIlnd) - - Qllv.l)
Raturn
Bid
C-64
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO..
EPA-600/R-94-198
4. TITLE AND SUBTITLE
The RAETRAD Model of Radon Gas Generation,
Transport, and Indoor Entry
3. RECIF
PB95-142030
5 REPORT DATE
November 1994
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
K.R.Nielson, V.C.Rogers, V.Rogers, and R. B. Holt
8. PERFORMING ORGANIZATION REPORT NO.
RAE-9127/10-1R1
9. PERFORMING ORGANIZATION NAME AND ADDRESS
10. PROGRAM ELEMENT NO.
Rogers and Associates Engineering Corporation
P. O. Box 330
Salt Lake City, Utah 84110-0330
11. CONTRACT/GRANT NO.j^p^
RWFL933783-01 and 68-DO-
0097 (S. Cohen)
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Air and Energy Engineering Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; l/93~7/93
14. SPONSORING AGENCY CODE
EPA/600/13
is. supplementary notes EERL project officer is David C.
541-2979.
Sanchez, Mail Drop 54, 919/
16. ABSTRACT-j-j^g rep0r(- describes the theoretical basis, implementation, and validation
of the R'Adon Emanation and TRAnsport into Dwellings (RAETRAD) model, a concep-
tual and mathematical approach for simulating radon (222Rn) gas generation and
transport from soils and building foundations to the indoor environment. It has been
implemented in a computer code of the same name to provide a relatively simple,
inexpensive means of estimating indoor radon entry rates and concentrations.
RAETRAD uses the complete, multi-phase differential equations to calculate radon
generation, decay, and transport by both diffusion and advection (with pressure-
driven air flow). The equations are implemented in a steady-state, 2-dimensional
finite-difference mode with elliptical-cylindrical geometry for maximum efficiency
and modeling detailr>For validation, the air flow part of RAETRAD was compared
with a 2~dimensioned analytical calculation of air flow through a uniform field. Var-
-rations of
------- |