c/EPA
EPA/600/R-15/203 | April 2015
United States
Environmental Protection
Agency
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and
Reactivity _		
Office of Research and Development
National Risk Management Research Laboratory
Land and Materials Management Division

-------
Notice
The U.S. Environmental Protection Agency through its Office of Research and Development
partially funded and collaborated in the research activities described herein under Cooperative
Research and Development Agreement Number 0189-00 with the Aluminum Association and
the Environmental Research and Education Foundation and under contract numbers EP-C-05-
056 and EP-C-11-006 with Pegasus Technical Services Inc. This report has been subject to both
internal and external Agency review and has been approved for publication as an U.S. EPA
document.
2

-------
Foreword
The U.S. Environmental Protection Agency (EPA) is charged by Congress with protecting the Nation's land, air,
and water resources. Under a mandate of national environmental laws, the Agency strives to formulate and
implement actions leading to a compatible balance between human activities and the ability of natural systems to
support and nurture life. To meet this mandate, EPA's research program is providing data and technical support for
solving environmental problems today and building a science knowledge base necessary to manage our ecological
resources wisely, understand how pollutants affect our health, and prevent or reduce environmental risks in the
future.
The National Risk Management Research Laboratory (NRMRL) is the Agency's center for investigation of
technological and management approaches for preventing and reducing risks from pollution that threatens human
health and the environment. The focus of the Laboratory's research program is on methods and their cost-
effectiveness for prevention and control of pollution to air, land, water, and subsurface resources; protection of water
quality in public water systems; remediation of contaminated sites, sediments and ground water; prevention and
control of indoor air pollution; and restoration of ecosystems. NRMRL collaborates with both public and private
sector partners to foster technologies that reduce the cost of compliance and to anticipate emerging problems.
NRMRL's research provides solutions to environmental problems by: developing and promoting technologies that
protect and improve the environment; advancing scientific and engineering information to support regulatory and
policy decisions; and providing the technical support and information transfer to ensure implementation of
environmental regulations and strategies at the national, state, and community levels.
This publication has been produced as part of the Laboratory's strategic long-term research plan. It is published and
made available by EPA's Office of Research and Development to assist the user community and to link researchers
with their clients.
Cynthia Sonich-Mullin, Director
National Risk Management Research Laboratory
3

-------
4

-------
Executive Summary
Aluminum is a ubiquitous, highly used non-ferrous metal, employed in a wide range of products. Unlike other
metals, aluminum can be almost completely recycled into new products through a series of processes that re-melt it
to produce aluminum product at secondary aluminum processing (SAP) facilities. Solid residues generated by
aluminum melting processes are often referred to as aluminum dross, which forms on the surface of molten
aluminum through contact with oxygen during melting, holding, refining and transfer processes. There are
distinguished differences between white and black dross. Dross obtained from primary smelting operations and from
the hearth of reverberatory furnaces at SAP facilities (also known as "white dross") consists primarily of aluminum
oxide (with some oxides of other alloying elements, such as magnesium and silicon), and may contain from 15 to
70% recoverable metallic aluminum. Dross from the charge well of reverberatory furnaces at SAP facilities (also
known as "black dross") typically contains a mixture of aluminum/alloy oxides and slag (a partially amorphous
solid by-product of the smelting process), and contains approximately 12 to 18% recoverable aluminum. Salt cake is
the residue remaining after the metallic value in dross or scrap has been thermally recovered in SAP facility rotary
furnace.
Baghouse dust (BHD) from SAP facilities is generated from particulate air emissions collected in baghouse air
pollution control equipment connected to a wide range of potential SAP emission sources. Some of these sources
include: rotary furnaces, reverberatory charge wells, aluminum scrap dryers, aluminum scrap shredders, aluminum
scrap delacquering units, dross dry milling operations, etc,. The formation of BHD and the amount of BHD formed
depend on several factors, such as type and quality of input material (e.g., aluminum scrap), operating conditions
and technology applied.
Traditionally, BHD and salt cake from SAP facilities are disposed in municipal solid waste (MSW) landfills. Almost
one million (metric) tonne of aluminum wastes, including saltcake and baghouse dust is landfilled annually in the
U.S.. Worldwide, the aluminum industry produces nearly 5 million tonne of aluminum waste each year and this
number continues to grow with the increase in aluminum consumption. There is a need to treat and dispose of the
waste from aluminum production, and to reduce the presence of by-products of aluminum recycling in both the U.S.
and other countries around the world.
Given the potential concern associated with the reactivity of BHD in a landfill environment, the U.S. EPA initiated a
collaborative research effort with the Aluminum Association and the Environmental Research and Education
Foundation to characterize BHD waste material and investigate its reactivity under controlled conditions. This report
presents the first systematic study on the characteristics and reactivity of BHD derived from operating SAP facilities
in the U.S.
The specific objectives of the study were to:
•	Identify and characterize the metal constituents in BHD
•	Investigate the leaching behavior of metals from BHD following its reaction with water
•	Identify the dominant crystalline mineral phases in BHD
•	Evaluate factors that impact the reactivity of BHD
•	Evaluate BHD reactivity with water
Seventy eight (78) BHD samples were collected from thirteen (13) SAP facilities across the U.S. The facilities were
identified by the Aluminum Association to cover a wide range of processes. Results suggest that while the
percentage of metal leached from BHD was relatively low, the leachable metal content may still pose a
contamination concern, and potential harmful human and ecological exposure if uncontrollably released to the
environment. As a result, BHD should always be managed at facilities that use synthetic liner systems with leachate
5

-------
collection (the salt content of the leachate will increase the hydraulic conductivity of clay liners within a few years
of installation). The mineral phase analysis showed that metallic aluminum and other species of aluminum minerals
are present in the BHD samples with a large degree of variability. The relative abundance of various aluminum
species was evaluated, but it is noted that the method used was a semi-quantitative method and as a result the data
has limited uses. The analysis only showed a few aluminum species present in BHD, but that does not exclude the
presence of other crystalline species, especially in light of the variability observed in the samples.
Results presented in this document are of particular importance when trying to understand concerns associated with
the disposal of BHD in MSW landfills. The MSW decomposition process is exothermic, creating landfill
temperatures that are typically greater than 37° C with the possibility of reaching 50° C or more. The elevated
temperatures present in most MSW landfills can be conducive to and could initiate BHD reactions that otherwise
may not take place. Furthermore, elevated temperatures can increase the rate of a BHD reaction, and thus further
propagate it. Even outside of MSW landfills, once a BHD reaction starts, it may self-propagate and increase the rate
at which the reaction occurs. The results presented herein suggest that higher environmental temperatures tend to
intensify a BHD reaction. As stated earlier, this is of particular significance for the disposal of BHD. Depending on
their design and capacity, MSW landfills tend to be well-insulated and operate at elevated temperatures. When these
conditions exist, the reaction of BHD with liquids tends to become more problematic as the elevated temperatures
may initiate the BHD reaction with water while the insulating properties of the landfill may intensify the reaction
and magnify the impact of the reaction.
When elevated temperatures are encountered in MSW landfills, elevated levels of H2 gas may be generated as a
result of BHD reactivity. Gas collection and treatment systems in landfill are not designed to handle H2 since MSW
landfill gas generally consists of CH4 (methane), generated during the anaerobic decomposition of MSW, and CO2
(carbon dioxide) at ~ 50/50 ratio. This can be a cause for further concern in MSW landfill gas management because
at elevated concentrations hydrogen can be explosive, and can cause problems when mixed with CH4 after gas
export Like hydrogen, methane, at elevated concentrations, can also be explosive, so care must be taken if a BHD
reaction with liquids occurs in a landfill. It is known that full combustion of methane needs more oxygen than that of
hydrogen, and an unstable composition of landfill gas is problematic for landfill gas management and applications.
The proportion of BHD landfilled relative to that of other material in an MSW landfill might be small, however due
to the potential for highly exothermic reactions, the contribution of these additional gases should be further assessed.
Also, is must be noted that the levels of NH4+ (ammonia) resulting from BHD reactions are significantly higher than
normally found in landfills, which could have a detrimental impact on the performance of the landfill. From a
human health perspective, ammonia gas from a BHD reaction could be a cause for concern if concentrations exceed
acceptable Occupational Safety & Health Administration (OSHA) standards.
The samples of BHD analyzed in this study represented a range of processes that may produce these materials at
SAP facilities. Testing was conducted under a controlled set of laboratory conditions and represents a broad yet
detailed characterization of different BHD, including the resultant products following reaction with water. The data
generated during this effort will help to support future, in-depth characterization efforts, which may ultimately be
used to better predict the impacts of disposing BHD from SAP facilities in MSW landfills and help identify
operational techniques and procedures to minimize these impacts.
6

-------
Table of Contents
Notice	2
Foreword	3
Executive Summary	5
Table of Contents	7
List of Figures	9
List of Tables	10
Acronyms and Abbreviations	11
1.	INTRODUCTION	12
2.	METHODOLOGY	17
2.1	Sample Collection and Preparation	17
2.1.1	Field Sampling	18
2.1.2	BHD Sample Processing	18
2.2	Baghouse Dust Characterization	18
2.2.1	Physical Properties	18
2.2.1.1	Moisture Content	18
2.2.1.2	Water Holding Capacity 	18
2.2.1.3	pH and Electrical Conductivity 	19
2.2.2	Chemical Properties	19
2.2.2.1	Total Elemental Analysis	19
2.2.2.2	Leachate Elements Analysis	19
2.2.2.3	Toxicity Characteristic Leaching Procedure	19
2.2.2.3 X-ray Diffraction Analysis	20
2.3	Reactivity of Baghouse Dust	20
2.3.2	Factors Impacting BHD Reactivity	22
2.3.2.1	Effect of Environmental Temperature	22
2.3.2.2	Effect of Liquid Addition Rate	23
2.3.2.3	Effect of Liquid Chemical Composition	23
2.3.2.4	Effect of Liquid-to-Solid Ratio of BHD	23
2.3.2.5	Effect of Mixed Chemicals (BHD Simulation)	23
2.3.3	BHD Reactivity Evaluation	24
2.3.3.1	Temperature Increase	25
2.3.3.2	Heat Generation Potential	25
2.3.3.3	Gas Generation Potential	27
2.3.3.3.1	Gas Volume	27
2.3.3.3.2	Gas Composition	27
2.3.3.3.3	Gas Productivity	28
2.4	Statistical Analysis	28
2.5	Quality Metrics	30
3.	PHYSICAL AND CHEMICAL PROPERTIES	32
3.1	Moisture Content 	32
3.2	Water Holding Capacity	33
3.3	pH and Electrical Conductivity	34
3.4	Total Extractable Metals	37
3.4.1	Aluminum Content	37
3.4.2	Major Metals Content	38
3.4.3	Trace Metals Content	39
3.5	Leachable Elements	40
3.5.1	Leachable Aluminum	40
3.5.2	Leachable Major Metals	41
3.5.3	Leachable Trace Metals	42
3.6	Results of TCLP	43
3.7	Crystalline Mineral Phases	44
7

-------
3.7.1	Non-Aluminum Mineral Phases	44
3.7.2	Aluminum Crystalline Phases	47
3.7.2.1	Metallic Aluminum 	47
3.7.2.2	Aluminum Nitride and its Oxides	47
3.7.2.3	Aluminum Oxides	48
3.7.2.4	Elpasolite and Spinel	48
3.8 Discussion	48
4.	BAGHOUSE DUST REACTIVITY	49
4.1	Factors Impacting Baghouse Dust Reactivity	49
4.1.1	Environmental Temperature	49
4.1.2	Liquid Addition Rate	51
4.1.3	Liquid Composition	52
4.1.4	Liquid-to-Solid Ratio and Mass of BHD	56
4.1.5	Aluminum Speciation	57
4.2	Reactivity Indices	61
4.2.1	Maximum Temperature Change	61
4.2.2	Time to Reach the Maximum Temperature	62
4.2.3	Heat Generation Potential	63
4.2.4	Gas Generation Potential	64
4.2.4.1 Hydrogen Gas	65
4.2.4.3	Ammonia:	70
4.2.4.4	Nitrous Oxide	71
4.3	Discussion	72
5.	CONCLUSION	75
5.1	Baghouse Dust Characteristics	75
5.2	Baghouse Dust Reactivity	75
6.	REFERENCES	78
7.	APPENDIX
A: Method Report Limits of Metals and Gas Analysis	79
B: Physical and Chemical Properties of BHD	80
C: Mineral Analysis (XRD data) of BHD	129
D: Temperature profiles of BHD	474
E: Gas Productivity of BHD	490
F: QAPP	F-l
8

-------
List of Figures
Figure 2-1: Water holding capacity method illustration	18
Figure 2-2: Temperature change apparatus	21
Figure 2-3: Heat measurement apparatus	21
Figure 2-4: Reactivity test apparatus for gas generation measurement	22
Figure 2-5: Sample arrangement in an insulation box for temperature change experiment	26
Figure 2-6: Example of calibration curve for heat calculation	27
Figure 2-7: Examples of mean diamonds and box plot	29
Figure 3-1: BHD moisture content and its distribution	33
Figure 3-2: BHD water holding capacity and its distribution	34
Figure 3-3: BHD pH and distribution	35
Figure 3-4: BHD EC and distribution	37
Figure 3 -5: Correlation of K content from different methods in BHD	45
Figure 3 -6: Correlation of Na contents from different methods in BHD	46
Figure 4-1: Impact of environmental temperature on maximum temperature change	50
Figure 4-2: Temperature change as a function of watering schedule	52
Figure 4-3: Effect of dissolved organic matters in liquid on the temperature profile of BHD	53
Figure 4-4: Effect of phosphate in liquid on the temperature profile of BHD	54
Figure 4-5: Impact of liquid to solid ratio and mass of BHD on ATmax and W-T	56
Figure 4-6: Effect of liquid to solid ratio of BHD on the gas production	57
Figure 4-7: Temperature increase after the addition of (a) A1 (b) A1N (c) AI4C3 in BHD simulators	58
Figure 4-8: The impact of the addition of A1N and AI4C3 in BHD simulators to temperature changes	59
Figure 4-9: The role of AI2O3 in BHD simulators on temperature change at 37 °C	60
Figure 4-10: The role of A1N in a mixed chemical system on heat generation potential at 50 °C	61
Figure 4-11: The heat generation potential and ATmax from BHD reaction at 50 °C	64
Figure 4-12: Correlation between total generated gas volume and heat from BHD reaction	65
Figure 4-13: Distribution of percent hydrogen from gas generated by BHD reaction	66
Figure 4-14: Correlation between (a) H2 productivity and ATmax, and (b) H2 productivity
and heat from BHD reaction	67
Figure 4-15: Distribution of percent of the CH4 concentration (%) from BHD reaction	68
Figure 4-16: Distribution of the (a) gaseous NH3 concentration, (b) aqueous NH4 and
(c) total ammonia from the BHD reaction	69
Figure 4-17: Nitrous oxide productivity from BHD reaction	72
Figure 4-18: Reaction mechanism of water with an alumina-coated aluminum particle.	73
Figure 4-19: Correlation between (a) H2 productivity and (b) heat and metallic aluminum abundance in BHD 74
9

-------
List of Tables
Table 2-1: SAP waste (BHD) facility and sample identification list	17
Table 2-2: Spike recovery for metals	19
Table 2-3: Treatments for testing the effect of liquid composition on BHD reactivity	24
Table 2-4: Treatments for testing the effect of liquid to solid ratio on BHD reactivity	24
Table 2-5: Composition of the mixed chemicals for testing the impact aluminum species of BHD on reactivity
Err
or! Bookmark not defined.
Table 2-6: Calculations of heat generation from a fixed resistance and EAT	26
Table 2-7: Summaries of QA/QC Checks	31
Table 3-1: Moisture content of BHD by facility	32
Table 3-2: BHD water holding capacity	34
Table 3-3: pH of BHD	36
Table 3-4: EC of BHD	36
Table 3 -5: Extractable aluminum content in BHD	3 8
Table 3 -6: Maj or metals content in BHD	3 8
Table 3 -7: Trace metal content in BHD	3 9
Table 3-8: Aluminum leachability from BHD	41
Table 3-9: Major metal leachability from BHD	42
Table 3-10: Trace metal leachability from BHD	42
Table 3-11: Metal concentration in the TCLP solution	44
Table 3-12: Non-aluminum mineral phases in BHD	45
Table 3-13: Aluminum crystalline phases in BHD	47
Table 4-1: Impact of environmental temperature on heat generation potential	51
Table 4-2: Impact of environmental temperature on gas generation potential	51
Table 4-3: Impact of liquid composition on ATmax and W-t	55
Table 4-4: Impact of liquid composition on heat generation potential	55
Table 4-5: Hydrogen productivity as a function of liquid composition	55
Table 4-6: Impact of A1 speciation on temperature change in BHD simulators	60
Table 4-7: Impact of A1 speciation in BHD simulators on heat generation potential	60
Table 4-8: ATmax of BHD reaction by facility	62
Table 4-9: Time to reach maximum temperature of BHD reaction by facility	63
Table 4-10: Heat generation from BHD reaction by facility at 50 °C	64
Table 4-11: Total generated gas volume (ml g1) from BHD reaction by facility	65
Table 4-12: Hydrogen generation from BHD reaction by facility	66
Table 4-13: Methane generation from BHD reaction by facility	68
Table 4-14: Ammonia generation from BHD reaction by facility	70
Table 4-15: Nitrous oxide generation from BHD reaction by facility	71
10

-------
Acronyms and Abbreviations
AT = difference in temperature
EAT = sum of temperature change
AA = atomic absorption
AES = atomic emission spectroscopy
A1 = aluminum
ANOVA = analysis of variance
ASTM = American Society for Testing and Materials
BHD = baghouse dust
CHL = Center Hill Laboratory
DIW = deionized water
EC = electrical conductivity
ECD = electron capture detector
EPA = Environmental Protection Agency
EREF = Environmental Research and Education Foundation
GC = gas chromatograph
GFAA = graphite furnace atomic absorption
ICDD = International Centre for Diffraction Data
ICP = inductively coupled plasma
MC = moisture content
MDL = method detection limit
MRL = method reporting limit
MSW = municipal solid waste
OSHA = Occupational Safety & Health Administration
PAHs = polycyclic aromatic hydrocarbons
PDF = powder diffraction file
PVDF = polyvinylidene fluoride
RCRA = Resource Conservation and Recovery Act
SAP = secondary aluminum processing
TCD = thermal conductivity detector
TCLP = toxicity characteristics leaching procedure
UCL = upper confidence limit
UN = United Nations
U.S. = United States
VOA = volatile organic analyte
VOC = volatile organic compound
WHC = water holding capacity
11

-------
1. INTRODUCTION
Aluminum is one of the most commonly used non-ferrous metals. Unlike other metals and recyclable commodities,
aluminum can almost be completely recycled into new aluminum products [1-5], Secondary aluminum processing
(SAP) involves the recycling and re-melting of scrap aluminum and/or select drosses and aluminum concentrates to
reproduce aluminum alloys, which can generate various types of byproducts referred to as SAP wastes. The process
of treating and disposing the waste from aluminum production, as well as the presence of byproducts of the
aluminum recycling process, is becoming not only a problem in the U.S. [6-15], but a global one [3, 16-22], This
report provides the results of research on the characterization of baghouse dust (BHD), which is one of the solid
wastes from aluminum recycling facilities throughout the U.S.[23],
Aluminum is used in a large number of products, both alone or as a component of an alloy. The total amount of
aluminum production in the world was approximately 28 million tonne (with over 8 million tonne recycled from
scrap) in 1990, and nearly 56 million tonne (with close to 18 million tonne recycled from scrap) in 2008. By 2020,
aluminum metal demand is projected to increase to around 97 million tonne, including approximately 31 million
tonne recycled from scrap [3 ]. The total North American aluminum industry supply was 11.5 million tonne in 2013,
41% of which came from recycled aluminum [24], The used beverage aluminum container recycling rate was 50%
(52 billion cans) in 2006, and increased to 66.7% (60.2 billion cans) by 2013 [25], Almost 90% of automotive
aluminum, including versatile aluminum alloys, is reclaimed and recycled [4], However, Americans still discarded
about 2.9 million tons of aluminum in the municipal solid waste (MSW) stream after recycling and recovery in
2012, totaling 1.4 percent of total MSW discards [26], Recycling scrap aluminum requires only 5% of the energy
used to produce aluminum from raw materials (i.e., ore), and avoids approximately 95% of the emissions associated
with producing new aluminum from ore [3, 5, 23, 27, 28], The technologies used for SAP vary from one plant to
another depending on the scrap type, oxide content, impurities present and other factors [4, 5, 29], In the U.S., one
popular method of producing secondary aluminum is through the use of rotary furnaces with the addition of salt
fluxes to improve recovery and reduce oxidation of the aluminum metal [30 ]. Salt flux is a mixture of sodium
chloride (NaCl) and potassium chloride (KC1) with lower amounts of other compounds, such as calcium fluoride
(CaF2) [16, 31-34], Salt flux melts at a slightly lower temperature than aluminum, and therefore coats the metal
before it melts in the furnace and reduces aluminum metal loss to oxidation. Additives in salt flux also penetrate and
break down previously-formed aluminum oxide layers and improve separation between aluminum metal and
nonmetal material in the furnace [33-35],
Aluminum dross, such as salt cake from SAP rotary furnaces, is a residue from aluminum melting activities. It is
generated when impurities and oxidation layers are skimmed from the top of molten metal during the melting,
holding and casting operations. The formation of dross and the amount of dross formed depends on different factors,
such as the type and quality of input material (e.g., aluminum scrap in secondary industry). Drosses obtained from
primary smelting operations and from the hearth of reverberatory furnaces at SAP facilities (known as white
drosses) consist primarily of aluminum oxide (with some oxides of other alloying elements such as magnesium and
silicon), and may contain 15 to 70% recoverable metallic aluminum [4, 5, 30, 36, 37], Dross from the charge well of
reverberatory furnaces at SAP facilities (black drosses) typically contain a mixture of aluminum/alloy oxides and
slag, and typically contain recoverable aluminum contents ranging from 12 to 18% [4, 5, 30, 36, 37],
While salt cake is the residue from SAP rotary furnaces, various SAP processes also generate BHD, which is a very
fine particulate captured by air pollution control devices called baghouses [23, 38, 39], Dust generation and air
emissions are typical at both scrap processing and melting facilities. Chloride gases, volatile organic compounds
(VOCs), and polycyclic aromatic hydrocarbons (PAHs—note: PAHs are a category of VOC) are representative
substances emitted from these facilities as a result of scrap de-lacquering and evaporation of fluxing salt. Great
effort has been made in the industry to ensure full compliance with the Clean Air Act and other relevant
environmental laws and regulations. Modern furnace and equipment designs enable most air emissions to be
confined and circulated inside the equipment so that they can be fully combusted, improving energy efficiency.
Scrubbers and bag houses are also commonly used to control emissions and dust. Lime or calcium carbonate is used
to capture both chloride gases and residue VOCs [23], Actually, it is difficult to be specific about dimensions of
these fine particles and definition of these materials [38], According to the International Standardization
Organization (ISO), "Dust: small solid particles, conventionally taken as those particles below 75 |im in diameter,
12

-------
which settle out under their own weight but which may remain suspended for some time" [40]. According to the
Glossary of Atmospheric Chemistry Terms, "Dust: Small, dry, solid particles projected into the air by natural forces,
such as wind, volcanic eruption and by mechanical or man-made processes such as crushing, grinding, milling,
drilling, demolition, shoveling, conveying, screening, bagging and sweeping. Dust particles are usually in the size
range from about 1 to 100 |im in diameter, and they settle slowly under the influence of gravity" [41],
In general, the formation of BHD and the amount of BHD formed depend on several factors, such as the type and
quality of the input material (e.g., aluminum scrap), operating conditions and technology applied [4, 5, 30, 36, 37],
In an early report from 1990, Viland estimated for every tonne of scrap aluminum processed, 760 kg of secondary
aluminum, 240 kg of dross residues and 30 kg of BHD are generated [42], Lopez-Delgado et al. (2007) estimated
that in Western Europe, approximately 13 kg of BHD are generated per tonne of scrap aluminum recycled [39], A
2013 document from TAA indicates that the BHD generation rate inNorthern America is about 6.8 kg per tonne of
the aluminum scrap recycled [23], Aluminum nitrides, carbides and sulfides may also be present, as well as metal
oxides derived from the molten alloy in BHD [4, 5, 36, 37, 39, 43, 44], When compared with the salt cake, there is
significantly less research available on the characteristics of BHD from SAP [13, 16, 20, 22, 39, 44-46],
Traditionally, aluminum wastes has been disposed of in landfills. Almost one million tonnes of aluminum wastes,
including saltcake and BHD, are placed in MSW landfills annually in the U.S.[47], In fact, there are no directly
available information about BHD disposal in the America, although BHD is known as a part of SAP wastes.
Worldwide, the aluminum industry produces nearly 5 million tonnes of solid aluminum waste (e.g., salt cake and
BHD) each year [29], and this number continues to grow with the increase in aluminum consumption, especially
from the SAP [3, 23, 48], However, BHD is recognized as a hazardous waste in European Union countries [49]
because it is considered to be "highly flammable" (Category H3-A) and an "irritant" (Category H4) [50] . When
BHD comes in contact with water or damp air, highly flammable gases form, and these gases can be explosive as
well as act as irritants to skin and mucous membranes. Furthermore, BHD has been found to be harmful if inhaled or
ingested (Category H5) [50]. BHD is also in the category of substances that are capable, after disposal (landfill or
other), of potentially yielding another substance (e.g., leachate), which can possess any of the characteristics
associated with the solid BHD or gaseous products (Category H13) [50], Therefore, landfill disposal of BHD can be
costly, and attempts in Europe to landfill this type of waste are dwindling due to the lack of landfill space [51],
Because aluminum has amphoteric properties (meaning it dissolves in both acid and alkaline solutions, generating
heat and gas), the disposal of large quantities of aluminum-containing BHD can be problematic. The many forms of
aluminum (i.e., metallic aluminum, aluminum nitride [A1N], aluminum carbide [AI4C3], aluminum sulfide [AI2S3]
and aluminum oxy nitride [Al5OeN]) that may be contained in BHD can undergo a wide range of potential reactions
after interacting with water during disposal. These reactions are listed in Equations 1-1 through 1-10:
Note that reaction 1-1 could only occur in alkaline solutions above a pH of 8 [52, 53], Metallic aluminum (Al) could
also react under acidic solutions to produce complex aluminum-containing ions and hydrogen gas in the following
manner [54, 55]:
The presence of aluminum nitride and carbide in the aluminum wastes, including BHD, is due to the reactions of
molten Al with the different gases during the melting process [1, 4, 39, 56], These reactions include:
2A1 + 20H~ + 6H20 -> 2(A1(0H)4)" + 3H2(g) t +heat
(1-1)
2A1 + 6HsO+ + 6H20 -> 2(AL(OH)6)3+ + 9H2(g) t +heat
(1-2)
2A1 + N2(g) -> 2A1N
(1-3)
6A1 + 3C02^ -> AI4C3 + A1203
(1-4)
4A1 + 3S02(.g^ —> A12S3 + Al2 O3
(1-5)
13

-------
The formation of aluminum nitride (A1N) and aluminum carbide (AI4C3) in aluminum waste is a function of the
melting duration, casting, fuel combustion stoichiometry and temperature. The influence of temperature on the A1N
composition in SAP waste has been described by Alfaro (1980) [39], When SAP dross is generated at a temperature
of 700° C, the A1N content in the dross is approximately 2% by weight and rises to around 18% at approximately
1,000° C. Aluminum nitride and its oxide in SAP dross have often been documented in reviews and reports [4, 5, 12,
18, 37, 43, 57-59], The formation of aluminum carbide is believed to occur at above 900° C [39], especially in the
white dross [37],
The reaction of aluminum nitride is also pH-dependent. The reaction products are a series of aluminum hydroxide or
oxides and ammonium hydroxide (1-6) or ammonia gas (1-7) [60-65]:
A1N + 4H20 -> Al(OH)3 + NH4OH	(1-6)
A1N + 3H20 -> Al(OH)3 + NH3(g) t	(1-7)
Aluminum oxide nitride can also react with water to yield aluminum oxide and ammonia gas:
2A1506N + 3H20 -> 5A1203 + 2NH3(g) t	(1-8)
Aluminum carbide can react with water to produce methane [66, 67]:
A14C3 + 12H20 -> 4A1(0H)3 + 3CH4(g) t	(1-9)
Aluminum sulfide hydrolysis can also generate hydrogen sulfide [68]:
A12S3 + 6H20 -> 2A1(0H)3 + 3H2S(g) t	(1-10)
As outlined earlier, various forms of aluminum may be present in BHD, some of which can react with water to
generate flammable gases (e.g., hydrogen and methane). There is no current policy or guidance from the U.S. EPA
for a specific test to determine if BHD exhibits the reactivity characteristic for the purpose of hazardous waste
classification. There is a requirement for generators to use "generator knowledge" in making hazardous waste
determination. It is noted that the U.S. EPA does not classify aluminum processing waste, including BHD, as
ignitable, corrosive, reactive or toxic (the four hazardous characteristic categories) at the present time. Therefore,
U.S. EPA regulations do not exclude aluminum processing waste, including BHD, from disposal in MSW landfills.
While, SAP waste, including BHD, may not meet the U.S. federal definition of a hazardous waste, reactions with
liquids from MSW landfills have been documented and are of potential concern to engineered protective
components of the landfill (e.g., bottom liners that capture leachate that percolates through the waste). In MSW
landfills, heat is generated as a result of biochemical processes and the decomposition of organic components in
waste [71], Temperature is considered to affect waste decomposition in two ways: short-term effects on reaction
rates and long-term effects on the microbial population balance [72], In laboratory studies, optimum temperature
ranges for the growth of mesophilic and thermophilic bacteria involved in waste decomposition were identified to
range from 35 to 40 0 C and 50 to 60 0 C, respectively [73, 74], There is no specific landfill design for the handling of
SAP waste (including BHD) in the U.S. Most of the generated SAP waste, including BHD, is still currently disposed
of in MSW landfills (Subtitle D municipal and industrial, non-hazardous waste), which are usually designed with
liners to protect groundwater from contamination. The liners are expected to provide this protection for the entire
period of time that a landfill may contain leachable chemicals, and damage to these liners could result in a negative
impact on the environment. However, it has been shown these liners can develop significant problems over time due
to exothermic biological activity and exothermic reactions associated with other waste [77, 78], The integrity of the
landfill liner is a concern for many decades after the landfill has ceased waste disposal operations, in order to protect
from groundwater contamination. Current liner designs include a geomembrane and either a geosynthetic clay liner
or a compacted clay liner. As long as the geomembrane component of the composite liner retains its structural
integrity, this barrier successfully limits landfill leachate and gases from impacting groundwater and the surrounding
14

-------
environment. A geosynthetic clay or compacted clay layer incorporated into a MSW landfill composite liner system
may also lose integrity when exposed to a thermal gradient because of desiccation and cracking of the clay layer
[75], This becomes especially problematic if the geomembrane above the clay liner develops defects such as cracks
or holes as it ages because the clay liner then acts as the primary barrier to leachate. Bench-top laboratory
experiments determined that both moisture and temperature gradient across a clay liner would result in a greater
desiccation potential and induce cracking[76], .
Some MSW landfills in the U.S. have reported operational challenges that may be attributable to reactions from SAP
waste disposal, which included the wastes come from BHD, including:
•	High subsurface temperatures
•	Elevated gas flow, and hydrogen and ammonia concentration
•	Nuisance odors with potential hazardous gaseous emissions
•	Increased leachate volume with potential heavy metal contaminants
•	Difficult disposal facility for leachate due to high concentration of salt
•	Subsurface oxidation events
•	Outbreaks of leachate from side slopes
•	High rates of landfill settlement/subsidence
•	Reduction in landfill gas collection efficiency
•	Impacts to groundwater quality
As an example, aluminum processing waste disposed in an unlined landfill by the Recycled Aluminum Metals
Company (RAMCO) resulted in a host of issues. Salt cake and a smaller amount of BHD were placed in an unlined
landfill near Dallesport, WA between 1982 and 1989. A Site Hazard Assessment conducted by the Washington State
Department of Ecology showed elevated concentrations of salt in the groundwater and borings beneath the landfill
surface showed elevated temperatures and the presence of ammonia gas. The composition of the landfill included up
to 29% aluminum, 8% sodium, 2.8% magnesium, 2.1% calcium and 1.5% potassium, with lesser amounts of metals
including chromium, manganese, iron, copper, nickel and zinc present. Groundwater impacts from nitrate, sodium,
chloride and total dissolved solids were also observed. Ultimately, the waste was removed from the site and
transported to a landfill in compliance with the liner and monitoring requirements of Resource Conservation and
Recovery Act subtitle D [7],
Another example is Brantley Landfill (Island, McLean County, Kentucky). Over a two-year period from 1978-1980,
a total of 250,306 tonnes of SAP waste were deposited in the landfill (previously the site of a coal strip mine). It is
noted that it was unclear on what type of SAP waste it was and if it included BHD or not. Site investigations found
some contaminants of concern including chromium, copper, titanium, vanadium, aluminum, magnesium and
sodium, which react with water to form several gases, including ammonia, acetylene, methane, hydrogen and
hydrogen sulfide. A number of options were evaluated as remedial treatments, including the removal of the waste
from the site. However, since the landfilled waste was 60 feet thick at its deepest point, this option would have
required special equipment and excavation techniques. It was determined that the waste would remain at the fenced
in, isolated location. A new landfill cap and an alkaline recharge trench were constructed, surface and groundwater
were monitored and leachate was collected, treated and disposed off-site. The total cost of the remedial action was
projected to exceed $5,000,000, with an additional annual cost of $57,000 to $223,000 allotted for site monitoring
[6],
SAP waste placed in an MSW landfill may result in an exothermic reaction upon contact with water, which can
initiate incomplete combustion or pyrolysis of other waste materials [12, 14, 46], Aside from the potential impacts
on engineered systems relating to leachate collection, gas collection and liner systems, there are potentially
significant environmental and community health impacts associated with air emissions and surface
water/groundwater releases from these reactions. For example, between 1993 and 2006, the Countywide Recycling
and Disposal Facility in East Sparta, OH, accepted approximately 600,000 tonnes of aluminum processing waste.
The majority of this aluminum process waste was described as "dross" or "salt cake", which are by-products of the
melting of aluminum with a salt flux. A small portion of the aluminum process waste was baghouse dust and
15

-------
shredder residues [79], In 1998, Countywide began re-circulating leachate, and in 2001, elevated temperatures were
detected in gas wells in two cells of the landfill. Odor complaints were made by citizens in 2004, and so an odor
suppression system was installed in 2005. By the end of 2005, hundreds of odor complaints were again being filed
and landfill gas wells were showing elevated temperatures. In 2006, well temperatures were still increasing, leachate
outbreaks were occurring, accelerated settlement was observed and odor problems increased [8], Numerous actions
were taken during this period to alleviate the problems. Leachate recirculation was halted, aluminum processing
wastes were no longer accepted and site monitoring actions were increased. Despite these and other efforts, the Ohio
EPA concluded that exothermic reaction was occurring in the landfill which involved the SAP wastes and the MSW.
Although additional actions recommended or required by the Ohio EPA and the U.S. EPA were implemented,
evidence of a continuing subsurface reaction involving the aluminum processing waste and water was observed in
2008, which may also have caused pyrolysis of landfilled MSW. Acetylene, hydrogen and carbon monoxide were
also detected at the site along with methane. Mixtures of these gases may cause an explosive atmosphere near the
surface of the landfill [80], In June 2009, a remedial strategy involving the removal of the problematic areas within
the landfill involving excavation was completed, resulting in the extraction of approximately 400,000 cubic yards of
waste. A liner was installed to cover the excavated area to reduce contact by moisture and atmospheric oxygen and
separate the problematic area and the unaffected remainder of the facility [8].
In light of the issues that have been documented regarding SAP waste disposal at unauthorized landfills and at
Subtitle D landfills, there is a need to more fully understand the conditions that led to reaction of BHD and the effect
those reactions have on landfill operation and landfill engineered components. Most historic documents do not
stated clearly the type of aluminum wastes and if it included BHD. The U.S. EPA initiated a collaborative research
effort with the Aluminum Association and the Environmental Research and Education Foundation (EREF) to
examine safe management practices for BHD waste. The U.S. EPA is seeking to better understand BHD waste
material and its potential risks and strategies for safe management of municipal landfills. This research report
presents a systematic study on the characteristics of BHD and evaluation of BHD reactivity when exposed to liquid
water. The specific study objectives were as follows:
•	Identify and characterize the metal constituents in BHD
•	Investigate the leaching behavior of metals from BHD following its reaction with water
•	Identify the dominant crystalline mineral phases in BHD
•	Evaluate factors that impact the reactivity of BHD
•	Evaluate BHD reactivity with water
16

-------
2. METHODOLOGY
2.1 Sample Collection and Preparation
Baghouse dust (BHD) samples were collected from 13 secondary aluminum processing facilities (designated as A,
B, C, D, E, F, H, I, J, L, M and N; Table 2-1). The facilities were identified in collaboration with the Aluminum
Association and EREF to cover a wide range of processes. The non-sequential sample identifications represent the
facilities which participate in the study, and are not indicative of a research sample selection process.
Table 2-1: SAP waste (BHD) facility and sample identification list
Sample #
Facility
Sample ID
Date received
Sample #
Facility
Sample ID
Date received
1
A
2573
11/12/2009
40
H
2564
1/10/2010
2
A
2574
11/12/2009
41
H
2565
11/13/2010
3
A
2575
12/28/2009
42
H
2566
12/14/2009
4
A
2576
12/28/2009
43
H
2567
1/11/2010
5
A
2577
2/2/2010
44
H
2569
2/12/2010
6
A
2578
2/2/2010
45
H
2570
2/12/2010
7
A
2579
2/24/2010
46
I
2522
11/5/2009
8
A
2580
2/24/2010
47
I
2523
11/5/2009
9
B
2453
1/26/2010
48
I
2524
12/4/2009
10
B
2479
2/24/2010
49
I
2525
12/4/2009
11
B
2481
2/24/2010
50
I
2526
1/7/2010
12
B
2455
3/19/2010
51
I
2527
1/7/2010
13
C
2432
11/25/2009
52
I
2528
2/8/2010
14
C
2434
12/28/2009
53
I
2529
2/8/2010
15
D
2533
11/5/2009
54
J
2514
1/8/2010
16
D
2539
2/24/2010
55
J
2516
1/8/2010
17
D
2541
2/15/2010
56
J
2513
11/20/2009
18
D
2537
1/15/2010
57
J
2518
2/5/2010
19
E
2436
1/15/2010
58
K
2582
12/2/2009
20
E
2438
2/24/2010
59
K
2583
12/2/2009
21
F
2503
11/20/2009
60
K
2585
1/7/2010
22
F
2505
12/28/2009
61
K
2587
2/24/2010
23
F
2507
1/15/2010
62
K
2588
3/19/2010
24
F
2509
2/24/2010
63
K
2589
3/19/2010
25
F
2511
4/6/2010
64
L
2483
12/2/2009
26
H
2044
2/12/2010
65
L
2485
12/28/2009
27
H
2045
2/12/2010
66
L
2487
2/2/2010
28
H
2047
3/12/2010
67
L
2489
2/2/2010
29
H
2048
3/12/2010
68
L
2491
4/6/2010
30
H
2049
3/12/2010
69
M
2602
12/28/2009
31
H
2050
3/12/2010
70
M
2604
12/28/2009
32
H
2545
11/13/2009
71
M
2606
2/2/2010
33
H
2549
11/13/2009
72
M
2608
2/2/2010
34
H
2551
11/13/2009
73
M
2610
3/8/2010
35
H
2552
12/14/2009
74
M
2612
3/8/2010
36
H
2556
12/14/2009
75
N
2493
12/28/2009
37
H
2558
12/14/2009
76
N
2495
2/2/2010
38
H
2560
1/11/2010
77
N
2497
3/8/2010
39
H
2563
1/11/2010
78
N
2499
4/6/2010
17

-------
To our knowledge, this was the largest number of BHD samples collected for characterization and reactivity
assessments in the world at the time this research was initiated.
2.1.1	Field Sampling
BHD samples were collected by a designated third party at a storage area from each facility approximately once a
month for four months. After cooling (72 to 120 h), the stored materials were size reduced following ASTM Method
C702 -98: "Standard practice for reducing samples of aggregate to testing size" [81], Each BHD sample was
collected using pre-cleaned sampling equipment and divided into two fractions. The first fraction approximately 1
kg sample, was delivered to EPA's Center Hill (CHL) Research Facility in a shipping container. The second sample
fraction (10 to 20 kg) was stored at the test site for further analysis, if needed, based on current findings.
2.1.2	BHD Sample Processing
Upon receipt at CHL, samples were logged and stored in a storage unit. Within two weeks, individual samples were
sieved, and the particles <2 mm in size were used throughout the study. Only 4 of 78 BHD samples contained some
large materials, e.g. paper, and plastics bags, which was not passed the 2 mm sieve. The other 74 samples were
tested as received, after the sieving process. Any sample that was not used in the experiment was returned to its
original labeled container and placed in storage.
2.2 Baghouse Dust Characterization
2.2.1 Physical Properties
2.2.1.1	Moisture Content (MC)
The moisture content of the BHD samples was measured after the sample size was reduced to less than 2 mm. The
samples were then placed in an oven and moisture content was determined following ASTM Method D-2216 [82],
which was designed for soil and rock. It was noted that many BHD sample were reacted (strong odor release, e.g.
NH3) during the MC tested processing due to the moisture content in the air. The weight change of BHD during the
processing of MC was not limited to the loss of water only. Aluminum nitride reacts to moisture from air even at
room temperature [83],
2.2.1.2	Water Holding Capacity (WHC)
The WHC of the BHD samples was measured using a modified ASTM Method F1815-06 [84], Approximately 10 g
of a sample (size < 2 mm) was placed into a cylinder (see Figure 2-1), and cold water (Temperature <12 °C) was
added to saturate the sample. The saturated sample within the cylinder was placed on top of an absorbent membrane
until the excess water was drawn away by gravity. Once equilibrium was reached (usually in approximately 16 h),
the WHC was calculated based on the weight of the water held in the sample vs. the sample's dry weight. Note that
the water holding capacity data must be used with caution due to the potential solubility of the BHD sample and of
the reactions that can occur when the BHD is mixed with water.
Absorbent Membrane
Figure 2-1: Water holding capacity method illustration
18

-------
2.2.1.3 pH and Electrical Conductivity (EC)
The pH and EC of the BHD samples (< 2 mm) were measured after a sample reacted with DI water at 50° C for a
week of incubation in a closed system with a gas capture apparatus. The liquid to solid ratio was 20 to 1 (100 ml
deionized water (DIW)/5g). After filtering by using a 0.45 -^m PVDF media, pH and EC were measured directly
using a hydrogen ion-selective electrode and conductivity probe following Standard Methods for the Examination of
Water and Wastewater (Standard Method 4500-H, pH Value, 2510 Conductivity)[85], respectively
2.2.2 Chemical Properties
2.2.2.1 Total Elemental Analysis
The BHD samples (< 2 mm) were acid digested following EPA Method 3051A [86], For aluminum quantification a
mixture of hydrochloric and nitric acid (1 part HC1 and 3 parts HNO3) was employed. Furthermore, the microwave
temperature was set at 185° C for 30 minutes, rather than the 175° C for ten minutes that is specified in the method
which helped increase the recovery of Al. The weight of the BHD samples was approximately 0.1 g instead of the
0.5 g called for by method 3051 A. After acid digestion, all metal composition (Al, As, Ca, Cd, Cr, Cu, Fe, K, Na,
Mn, Pb, Se and Zn) was measured via EPA Method 6010C using a Thermo ICP-AES[87], The method detection
limits (MDL) for metals in aqueous phase and the method reporting limit (MRL) for metals in solid phase for ICP
are presented in Appendix A (Table A-l). Standard reference material 1633c (Coal Fly Ash), blank spikes and
baghouse dust samples spikes were also digested during each batch for quality control. The average recovery of
spiked Al, K, Mg, Pb and Zn in the blank, 1633c and BHD samples (2577-A,'2509-F, 2537-D, 2563-H, 2567-H,
2048-H, 2518-J, 2587-K and 2606-M) are presented in Table 2-2.
Table 2-2: Spike recovery for metals
Recovery (%)
Element
Blank
Reference material
BHD samples

(n=5)
(1633c)(n=5)
(n=9)
Al
105
96
103±6.3(93-115)
K
103
94
94±5.9 (83-102)
Mg
104
96
96±6.8 (80-102)
Pb
99
100
97±7.5 (84-106)
Zn
91
92
97±7.9 (85-109)
2.2.2.2	Leachate Elements Analysis
Leachable elements (Al, Fe, Mg, Cu, Zn, K, Na, Ca, Mn, Pb, Cr, As and Se), following the mixing of BHD with
water during a five day incubation at 50° C (5 gram BHD to 100 ml DIW in a 500 ml bottle), were analyzed using
Thermo ICP-AES using EPA Method 6010C for metals [87], The leachate was filtered using 0,45-|im PVDF
media. The solution for metals analysis was also preserved with 100 |iL of trace metal grade concentrated HNO3
before analysis.
2.2.2.3	Toxicity Characteristic Leaching Procedure (TCLP)
The toxicity characteristics leaching procedure (TCLP) was conducted as prescribed in U.S. EPA method 1311 [32]
after 2 years sampling. Two different extraction fluids were employed based on the buffer capacity of each sample.
The TCLP extracts were digested following EPA method 3015A after filtration and acidification (pH < 2.0), and the
concentrations of metals were analyzed using Thermo ICP-AES [87], Of the eight Resource Conservation and
Recovery Act (RCRA) toxicity characteristic metals, mercury was not analyzed. Although all TCLP tested in this
report were outside sample holding time (180 d) required by TCLP, the hazardous characteristic was still considered
for those samples and elements which exceed the TCLP limit, whereas the results must be considered to be
19

-------
inconclusive with respect to the regulatory limits for those samples/elements which did not exceed the TCLP limits
[88],
2.2.2.3 X-ray Diffraction (XRD) Analysis
The various aluminum species differ in their reactivity with liquids. To assist in the understanding of BHD
reactivity with liquids XRD analysis was conducted to evaluate the presences of Aluminum species. The crystalline
mineral phases of BHD were investigated from 5 to 110 degrees 29 on a Philips X'Pert Pro Diffractometer using
copper Ka radiation. A total of 44 BHD samples were analyzed and at least one sample was included from each
SAP facility. The powder diffraction file (PDF) patterns database from the International Centre for Diffraction Data
(ICDD) was employed for the search, match and identification steps. A subset of reference patterns was built for all
baghouse dust samples. The semi-quantitative phase analysis was performed by the X'Pert HighScore Plus
software [89], based on the CHUNG Normalized RIR Method [90]. The relative intensity of each phase is given by
the scale factor, which is determined by least squares fit through all matching reference pattern lines in X'Pert
HighScore. The concentration X of phase a is calculated using:
'(May
where RIR« is Reference Intensity Ratio, based on the relative net peak height ratio of the strongest line (Irel =
100%) of the phase and of the strongest line of corundum, measured with copper Ka radiation in a mixture of equal
weight percentages, and Irhk|J=, is Intensity of reflection of hkl in phase a (hkl are the reflection indices).
The normalization used in this method assumes that the sum of all identified phases is 100%. This means that there
are no unidentified crystalline phases or amorphous phases assumed to be present in the sample. Only under these
conditions can meaningful, semi-quantitative results be obtained.
2.3 Reactivity of Baghouse Dust
The chemical reaction of aluminum species with water typically generates heat and gas. Therefore, the reactivity of
BHD with liquid was evaluated using three indicators: 1) temperature increase as well as time to reach the maximum
temperature, 2) heat generation potential, and 3) gas generation potential.
2.3.1 Apparatus for Testing BHD Reactivity
The apparatus presented in Figure 2-2 was used to evaluate the increase in temperature caused by the reaction of
BHD with liquid. The target BHD sample was placed in a 60 mL volatile organic analyte (VOA) vial and purged
with argon for five minutes. The vial was then sealed and connected to a 1-L Tedlar bag for pressure release. Pre-
heated deionized water (DIW) was then added to the sealed vial to achieve a certain liquid-to-solid ratio. The change
in temperature as a result of the BHD reaction with liquid was monitored using a thermocouple wire placed in the
sample. Sand samples were used as control under the same experimental condition (e.g., liquid-to-solid ratio). When
the average temperature difference between the sample and control reached 1.5° C (three times higher than the
sensitivity of the thermocouple), the experiment was stopped. The overall experimental duration typically ranged
from 72 to 120 h. Furthermore, monitoring of the reaction temperature continues for 10 hours after the difference
between the temperature in the control and the BHD sample reached the 0.5 °C. This insures that the reaction is
complete
The heat generation potential was evaluated using a custom-made reaction calorimeter presented in Figure 2-3. The
calorimeter is composed of double glass vessels: an inner-vessel (40 ml VOA vial) and an outer-vessel (250 ml vial
with a three-port Teflon cap). The inner-vessel is immersed in the outer-vessel containing 90 ml ethylene glycol as a
2 °= i (^I (hkl) jRI Rj !(hkl)
V.
[2-1)
20

-------
thermal buffer since it has a low specific heat capacity. The calorimeter is equipped with three thermocouple wires
immersed in the ethylene glycol solution and connected to a data logger. The inner-vessel is connected to a 1-L
Tedlarbag to relieve any pressure resulting from the reaction of BHD with liquid.
Temperature Data Logger
Thermocouple wire
14. Tedlar bag for
pressure relief
60 mL VOA Vial
1:1 ratio of BHD (10 g)
and water (10 mL)
Figure 2-2: Temperature change apparatus
Syringe pusher
Tedlarbag, 1L
Temperature
Controlled Room
Temperature
data logger
One way gas valve
Three port Telfon Cap
Thermal buffer:
Ethylene Glycol Solution
BHD with
water, e.g.
Sg/lOml DIW
Thermal insulation materials
Figure 2-3: Heat measurement apparatus
The gas generation potential of BHD was evaluated under anaerobic conditions (to simulate a MS W landfill
environment) using the test apparatus presented in Figure 2-4. The target BHD sample was placed into a 500 mL
21

-------
lined media bottle sealed with a lyophilization stopper and a cap. The media bottle was then purged with argon for
ten minutes. An aliquot of oxygen-free, argon-purged and pre-heated water was then added to the sample to achieve
a certain liquid-to-solid ratio. A 1 -L Tedlar bag was connected to the bottle to collect the gas generated from the
reaction. The media bottles were then placed in a 50° C incubator (Fischer Scientific Isotemp Dual CO2 Incubator)
for five days, after which the Tedlar bag was disconnected and gas quantity and composition were measured. It is
noted that the sample bottles were allowed to reach room temperature before performing the gas volume and
composition measurements.
Tedlar bag (gas capture) for
off-line analysis
Three-port teflon cap
One-way gas valve
Headspace
BHD or Reference
materials
Figure 2-4: Reactivity test apparatus for gas generation measurement
2.3.2 Factors Impacting BHD Reactivity
Many factors may impact the BHD reactivity and include the enviromnental temperature, liquid addition rate, and
liquid-to-solid ratio, as well as chemical composition of the liquid and chemical composition of BHD. The impact of
these parameters on BHD reactivity was evaluated by random selected sample as examples (case study) to
demonstrate the potential effect of these factors. Actually, these results were also used for the methodology
development for assess the reactivity of all BHD samples.
2.3.2.1 Effect of Enviromnental Temperature
Because MSW decomposition is an exothermic process, MSW landfill temperatures are typically greater than 37 °C
and may reach 50 °C or greater [71, 73, 74], Reaction of aluminum with water is also sensitive to the enviromnental
temperature [55], therefore, it is necessary to investigate the sensitivity of BHD reactivity to the temperature change,
including heat and gas generation, to understand the potential risk of BHD in landfill enviromnent.
Randomly selected BHD samples (2576-A, 2507-F, 2608-M and 2493-N) were employed to investigate the impact
of enviromnental temperature (20° C, 37° C and 50° C) on the temperature change of the sample once exposed to
water. Samples with particle sizes <2 mm (size was achieved as described in section 2.1.2) were mixed with pre-
heated DIW (pH 6.2) to achieve a liquid-to-solid ratio of 1 to 1 (10ml liquid to 10 g sample), and the temperature
increase was measured using the apparatus described in section 2.3.1.
The impact of enviromnental temperature (37° C and 50° C) on the heat generation potential of BHD was tested
using samples (2574-A, 2575-A, 2576-A, 2432-C, 2537-D, 2436-E and 2505-F). 10 ml pre-heated DIW (pH 6.2)
was added to the samples to achieve a liquid-to-solid ratio of 2 to 1 (10 ml liquid to 5 g sample). The heat generation
22

-------
potential was measured using the apparatus described in section 2.3.1.
The impact of environmental temperature (4° C, 20° C, 37° C and 50° C) on the gas generation of BHD was testing
using samples (2576-A, 2507-F, 2608-M and 2493-N). 20 ml of pre-equilibrated DIW to the target temperature (pH
6.2) was added to the samples to achieve a liquid-to-solid ratio of 20 to 1 (20 ml liquid to 1 g sample, duplicated).
The hydrogen and methane productivity were measured after five days reaction in 60-ml vials, as described in
section 2.3.1.
2.3.2.2	Effect of Liquid Addition Rate
Water availability might be one of the key factors for the reactivity of BHD in landfill environment. In the landfill
environment it is likely that liquids would contact BHD in an intermittent fashion. To that end, a BHD sample
(2583-K) received three treatments as follows: 1) 10 g BHD sample with initial 10 ml and second 5 ml DIW
addition, 2) 15 g BHD sample with initial 10 ml and second 5 ml DIW addition, and 3) 15 g BHD sample with
initial 15 ml and second 5 ml DIW addition. The second water was added 72 hours after the initial watering. The
increase in temperature as a function of hydration/dehydration cycle was measured using the apparatus described in
section 2.3.1. If these initial test results suggested a notable, a broader range of rewetting scenarios would be
warranted.
2.3.2.3	Effect of Liquid Chemical Composition
The effect of chemical composition of liquid on BHD reactivity was evaluated by measuring the temperature
increase, heat generation and gas generation from samples exposed to liquids with different chemistry. Leachate
from landfill have large variations, not only for the chemical composition, but also the concentration. Most of them
contain different organic materials, e.g. the small organic acids (VFA mixture) and large organic molecules (Humic
acids) [91], which might significantly impact the processing of aluminum reaction [55, 92, 93], On the other hand,
aluminum has amphoteric properties for the chemical reactions and can easily form different aluminum complex
[94], Eight different liquids with a wide range of pH, organic materials and ligands for aluminum complex
represented different possible scenario were tested for the reactivity of random selected BHD samples (Table 2-3).
All liquids used were pre-heated to 50° C—the temperatures at which the experiments were carried out.
2.3.2.4	Effect of Liquid-to-Solid Ratio of BHD
Varying liquid to solid ratio may also impact reactivity of BHD. A randomly selected BHD sample (2583-K) was
employed to investigate the effect of liquid to solid ratio on the temperature profile under 37° C and 50° C
environmental conditions. Different treatments were used where the liquid-to-solid ratio was varied as presented in
Table 2-4. Pre-heated DIW (pH 6.2) was used as the liquid. The impact of liquid-to-solid ratio on gas generation
potential of BHD was evaluated using randomly selected BHD samples (2576-A, 2507-F, 2608-M) at 50° C using
the apparatus described in section 2.3.1.
2.3.2.5	Effect of Mixed Chemicals (BHD Simulation)
To understand the mechanism of temperature increase in BHD and the effect of BHD composition on the magnitude
of temperature change, commercial chemicals NaCl, KC1, AI2O3, metallic aluminum, A1N and AI4C3 were used in
varying mixtures to simulate the BHD chemical composition. The reason for synthesizing BHD for the purpose of
this test over using the actual BHD samples was to enable the understanding of the role of each individual aluminum
species in BHD reactivity. The particle sizes of AI2O3, AI4C3, metallic aluminum and A1N in the mixture were
0.05,10, 20 and 44 |.im, respectively. The particle sizes of added salt (NaCl and KC1) were less than 1 mm. The
liquid-to-solid ratio was 1 to 1 (10 mL DIW tolO g solid sample). The experiments were conducted at 37° C using
the apparatus described in section 2.3.1 to measure the temperature change. The basic mixture (Mixture I) was
composed of 5% KC1, 10% NaCl and 85% AI2O3. The details of the BHD simulants are presented in Table 2-5. It is
noted that a control sample (sand) was employed with each set of experiments.
23

-------
	Table 2-3: Treatments for testing the effect of liquid composition on BHD reactivity
Reactivity Indicator Liquid to Solid Ratio liquid Composition pH	Sample ID


DIW
6.2



0.2M NaH2P04
4.2

Temperature
Change
1:1 (10 ml liquid to 10 g
BHD, 50°C)
0.2M Na2HP04
1% salt of humic acid
VFA*
Landfill Leachate**
8.9
8.3
5.3
8.1
2576-A, 2507-F,
and 2583-K


DIW
6.2

Heat Generation
2:1 (10 ml liquid to 5 g
BHD, 50°C)
0.2M NaH2P04
0.2M Na2HP04
VFA
Landfill Leachate
4.2
8.9
5.3
8.1
2576-A, 2507-F,
and 2583-K


DIW
6.2



0.1 MHC1
1



0.1 MNaOH
13

Gas Generation
20:1 (20 ml liquid to 1 g
BHD, 50°C)
0.2M NaH2P04
0.2M Na2HP04
Landfill Leachate
1% salt of humic acid
VFA
4.2
8.9
8.1
8.3
5.3
2576-A, 2507-F,
and 2583-K
* VFA composition: 1,795 mg L"1 acetic acid;l,296 mg L"1 propionic acid; and 1,284 mg L"1 n-butyric acid;
**Landfill leachate: DOC: 20,000 mg L"1
Table 2-4: Treatments for testing the effect of liquid to solid ratio on BHD reactivity
Reactivity
Liquid to Solid
Liquid Volume
Solid Mass

Indicator
Ratio
(ml)
(g)



10+5
10


Variable
10+5
15
2583-K


15+5
15


4
10
2.5

Temperature
2
10
5
2583-K
Increase
1
10
10

0.5
10
15



5
5


Fixed (1:1)
10
10
2583-K


15
15


0.5
2.5
5

Gas
1
5
5
2507-F,02608-M, and
Generation
5
5
1
2493-N

10
10
1


20
20
1

Experiment BHD Simulator A1 (%)
A1N (%)
A14C3(%)
*Others (%)
1 0
0
0
100- Mixture I*
24

-------
2	5	0	0	95- Mixture I
1	3	10	0	0	90- Mixture I
4	20	0	0	80- Mixture I
1	0	2	0	98- Mixture I
2	0	5	0	95- Mixture I
2	3	0	10	0	90- Mixture I
4	10	2	0	88- Mixture I
5	10	10	0	80- Mixture I
1	5	1	0	94- Mixture I
2 2	20	1	0	79- Mixture I
3	5	2	0	93-Mixture I
4	20	2	0	78- Mixture I
1	0	0	5	95- Mixture I
4	2	5	0	5	90- Mixture I
3	10	0	5	85- Mixture I
4	20	0	5	75- Mixture I
1	20	0	0	54% NaCl and 26% KC1
5	2	20	5	0	50% NaCl and 25% KC1
3	20	10	0	47% NaCl and 23% KC1
'Mixture I is composed of 5% KC1, 10% NaCl, and 85% AI2O3
2.3.3 BHD Reactivity Evaluation
The experiments conducted in section 2.3.2 were designed to assess the impact of various parameters on BHD
reactivity as measured by temperature increase, heat generation and gas generation. The results of the factors studies
helped in shaping the overall reactivity evaluation experiment and deign its parameters. In another word,
measurements made in section 2.3.2 were used to identify the range of to assess reactivity based on temperature
increase, heat generation and gas generation.
2.3.3.1	Temperature Increase
The apparatus presented in Figure 2-2 was used to measure the temperature increase as a result of a BHD reaction
with DIW. A 10 g BHD sample of 2 mm particle size was placed into a 60 mL volatile organic analyte (VOA) vial.
After purging the vial with argon for five minutes, the vial was sealed and 10 ml pre-heated DIW was then added to
achieve a 1:1 liquid-to-solid ratio. The experiments were conducted at two different temperature conditions (37° C
and 50° C). The temperature conditions were selected based on reported ideal temperatures for mesophilic (35 to 40°
C) and thermophilic (50 to 60° C) bacteria that are normally present in MSW landfills [73, 74] and temperatures
consistent with reported landfill temperatures [95-97], The temperature conditions were achieved by placing the
experimental apparatus in an incubator heated to the desired temperature (Fischer Scientific Isotemp Dual CO2
Incubator). Usually, six to 12 sample vials and one control sample vial were grouped as one batch arranged in an
insulated box inside the incubator (Figure 2-5). Insulation materials were used to isolate the heat transfer among the
vials and to decrease the influence among the samples. The increase in temperature as a function of time was
measured as previously described in section 2.3.1.
2.3.3.2	Heat Generation Potential
The heat generation potential was evaluated using the calorimeter described in section 2.3.1. A 5g BHD sample (size
< 2 mm) was added to the 40 ml inner-vessel which was then capped and placed in the 250 ml outer vessel
containing 90 ml pre-heated ethylene glycol. The experiments were conducted at 50 °C enviromnental temperature,
which was achieved by placing the calorimeter in an incubator heated to the desired temperature (Fischer Scientific
Isotemp Dual CO2 Incubator). A 10 ml pre-heated liquid was injected to the inner-vessel using a syringe to achieve a
25

-------
liquid to solid ratio of 2:1. The temperature of the ethylene glycol solution was monitored over time (one reading
every two minutes recorded using a data logger) until no temperature change is observed from the reaction (at least
72 lirs). With each batch (4 double vessels in an insulated box), sand samples were employed as control under the
same experimental conditions.
Figure 2-5: Sample arrangement in an insulation box for temperature change experiment
For every recorded reading, the difference in temperature (AT) between the BHD sample and control was calculated.
It is noted that each temperature reading is the average of the three thermocouple readings. The sum of temperature
change as compared to the control (SAT) was converted to heat using a calibration curve. The calibration curve was
constructed between the EAT and the heat generated by a fixed resistance (R) when applying varying electric current
(I) with time. The power (P) is calculated using the following relationship:
P = VI	(2-1)
Where P is the power, I is the current and V is the voltage (V T » R). The generated heat (Q) from a resistance is
related to the power and time as follows:
Q = PT	(2-2)
The calibration curve is constructed by plotting the EAT and Q. Examples of detailed calculations and the calibration
curve are presented in Table 2-6 and Figure 2-6, respectively.
The following relationship was obtained from the calibration curve under our laboratory setting:
Q = 0.006EAT	(2 - 3)
Table 2-6: Calculations of heat generation from a fixed resistance and EAT
Resistance
Current
Time Energized
Power Applied
Voltage
Energy
EAT
(O)
(mA)
(min)
(W)
(V)
(kJ)
(°C per 2min)

135
60
0.83
6.2
3
480±7

174
60
1.4
8
5
800±14
45.8
191
60
1.7
8.7
6
1,100±10
246
60
2.8
11
10
1,700±27

348
60
5.6
16
20
3,100±44

427
60
8.3
20
30
5,000±25
26

-------
2.3.3.3 Gas Generation Potential
The apparatus presented in Figure 2-4 was used for evaluating the gas generation potential as a result of BHD
reaction with water. A 5 g BHD sample with size < 2 mm was placed into a 500 mL lined media bottle sealed with a
lyophilization stopper and cap. The media bottle was then purged with argon for ten minutes. 100 mL of oxygen-
free, argon-purged, pre-heated (50° C) water was then added to the sample to achieve a 20:1 liquid-to-solid ratio.
The volume and composition of the gas generated were measured as presented below.
y = 0.0061x
R2 = 0.9952
0 -I	1	1	1	1	1	
0	1000	2000	3000	4000	5000	6000
Sum of Temperature change (C/2min)
Figure 2-6: Example of calibration curve for heat calculation
2.3.3.3.1	Gas Volume
The gas volume was measured using a 60 mL gas-tight syringe after 5d reaction. The gas volume generated was
composed of two portions: one is the gas present in the bottle's headspace and the other is the gas collected in the
Tedlar bag. After 5 days, the Tedlar bag was disconnected, and both the bottle and Tedlar bag were placed under a
chemical fume hood at room temperature (25 °C) for 4 hours. The headspace gas fraction was measured by attaching
a 20 gage needle to the syringe and then inserting the needle through the bottle septum allowing the syringe plunger
to move freely. The gas volume fraction collected in the Tedlar bag was extracted using the syringe. The total gas
volume was calculated by the sum of the two fractions.
2.3.3.3.2	Gas Composition
Hydrogen (H2) and Methane (CH4)
The concentrations of hydrogen (H2) and methane (CH4) gas content were determined via analysis of a 100 |iL
headspace sample using an Agilent 6980 Gas Chromatograph equipped with a thermal conductivity detector
(GC/TCD). The gas components were separated by the two analytical columns (PorapakN packed column and
Molesieve 5A packed column), and controlled by an automated valve switch. A five-point calibration curve was
prepared to quantify the gas composition. The calibration range was 1 to 100% for H2 and 1.67 to 100% for CH4.
The method report limit (MRL) was 0.14% for H2 and 0.2% for CH4 (Appendix A, Table A-2). A standard gas
mixture (15% C02, 15% CH4, 4 % H2 and 66% N2) purchased from Matheson TRI-GAS Inc. was used as a standard
check before and after gas analysis.
Nitrous Oxide (N20)
Nitrous oxide (N20) concentration was determined via analysis of a 100 |iL headspace sample using an Agilent
5975 Gas Chromatograph equipped with a split/splitless injection port operated in the split mode and an Electron
Capture Detector (GC/ECD). The gas components were separated using a J&W GS-Gaspro column, 60 meters in
length and 0.32 mm in diameter, then detected by a |-i-ECD detector. A six-point calibration curve was prepared to
quantify the N20 composition. The retention time of N20 for the specified conditions was 4.94 minutes, and the
27

-------
linear concentration ranged from 20 to 2,000 parts per billion in volume (ppbv). The MRL for N2O was 20 ppbv
(Appendix A, Table A-2).
Ammonia (gaseous NH3) and Ammonium (aqueous NH4+)
After the BHD reacts with water, the generated ammonia can be present in the gaseous form as NH3 or in aqueous
form as Ammonium ions (NH4+) and dissolved gas. The equilibrium between these two forms is mainly dependent
on solution pH in the gas reactivity test apparatus. To measure NH3 content in the gaseous form, a 20 ml headspace
gas sample was injected into 20 ml of 0.1 M H2SO4 acid solution to transfer all the gaseous form of ammonia into
NH4+. The concentration of NH4+ in the solution was measured using an ammonia electrode (Standard Methods for
the Examination of Water and Wastewater, 4500-NH3 D, E) [85]. It was noted that the molar number of acid in the
gas trapped solution was at least 20 times of ammonia gas. To measure the NH4+ concentration in the liquid form,
approximately 2 to 5 mL of liquid in the media bottle (Figure 2-4) was collected (without filtration) and injected
using a syringe into a 50 ml volume of 0.05M H2SO4 acid solution. The concentration of NH4+ was determined as
previously described [85] .
2.3.3.3.3 Gas Productivity
The H2, CH4 and N20 gas productivity (mole gas g"1 BHD sample) was calculated as follows:
•	Multiply the total gas volume (measured using syringe) by the gas concentration (measured using GC) to
get the volume (L) of each individual gas.
•	To convert each individual gas volume to moles of gas, divide the volume by 24.45 L. One mole of an
ideal gas at STP occupies 22.4 liters but under the current experimental condition (25 °C) the corrected
volume for one mole of gas is 24.45 L.
•	The productivity (mole g"1) of each gas is then calculated by normalizing the moles of gas produced to the
BHD sample weight used.
The NH3 gas productivity (mmole gas g"1 BHD sample) was calculated as follows:
•	The NH3 concentration measured in the acid solution in mg L"1 as X (Section 2.3.2.2.4) was converted to
molar concentration (mM) as Y (Y = X/18).
•	The millimoles of NH3 (mmoles NH3) as Z is calculated by multiplying the acid solution volume (0.02 L)
by the mM concentration of NH3 (Z = 0.02 (~J)-
•	The total millimoles of NH3 in the gas as A was calculated by multiplying the milimoles NH3 by the total
gas volume (liter) generated (as V), then dividing this quantity by 0.02 (the volume of headspace gas
x
sample analyzed for ammonia) (A = V(—)).
18
•	The gas ammonia productivity (mmole g"1) as B was calculated by normalizing the total moles of gas
produced to the BHD sample weight used (5 g) (B = V (^)).
•	The concentration of gas ammonia as C (%) was calculated based on the gas law. The standard gas
volume was 22.4 L mol"1 at the conditions of 273K, and it will be as 24.45 L at room temperature (25 °C).
C = 24.45 (^—) 100 = 0.136X (%).
V1000W	v '
2.4 Statistical Analysis
Statistical analysis and graphical representation of the data was performed using Microsoft Excel 2007, JMP 9.0,
and SigmaPlot 11.0 [98, 99],
The statistical analysis technique was chosen based on the properties of the analyzed parameters. The mean,
standard error, minimum and maximum values, as well as UCL95 (95% upper confidence limit), were used to
summarize the content of elements, mineral phases and the temperature change, as well as the gas composition and
28

-------
production. UC L95 was used to describe the potential risk or hazards in USEPA [100], It is noted that the 95% UCL
is a probability statement. It means "I am 95% confident that the true distribution of the sampling data lias a
population mean less than or equal to my calculated UCL".
Box plots with mean diamonds were employed to graphically depict groups of numerical data through
their summaries (minimum, lower quartile, median, mean, upper quartile and maximum). A mean diamond
illustrates a sample mean and confidence interval. Figure 2-7 is an example of mean diamonds being used in a box
plot. The top and bottom of each diamond (Figure 2-7a) represent the 95% confidence interval for each group. The
confidence interval computation assumes that the variances are equal across observations. Therefore, the height of
the diamond is proportional to the reciprocal of the square root of the number of observations in the group. The
mean line across the middle of each diamond represents the group mean. Overlap marks appear as lines above and
below the group mean. For groups with equal sample sizes, overlapping marks indicate that the two group means are
not significantly different at the given confidence level. Basic box plots show a simple rectangular box-plot, from
the first to the third quartile, with the median marked in the center (Figure 2-7b).
15-
95%
confidence
interval
10-
5-
x-axis proportional
Box ends at 3rd
Quartile
\
Box starts from f—,	—r- '"--T—
1st Ouartile /	|' Median )
Figure 2-7: Examples of mean diamonds and box plot
One-way ANOVA tests were employed to judge the differences of these parameters among facilities, including the
interaction of the random facility and the tested conditions (e.g., enviromnental temperature). If the whole model
indicated the differences were significant, LS Means Difference Tukey HSD were further run to judge the
differences among facilities. Correlations between the temperature change and mineral phases, or relation between
trace metal content and aluminum content, were analyzed using the Pearson product-moment correlation and
Spearman's rank correlation to calculate the p-level. The Pearson product-moment correlation coefficient is a
measure of the correlation (linear dependence) between two variables X and Y, giving a value between +1 and -1,
inclusive. Spearman's rank correlation coefficient is a non-parametric measure of statistical dependence between two
variables. It assesses how well the relationship between two variables can be described using a monotonic function.
If there are no repeated data values, a perfect Spearman correlation of+1 or -1 occurs when each of the variables is
a perfect monotone function of the other. If p < 0.05, it was assumed that the relation was significant. If p < 0.01, the
correlation was considered very significant. If p > 0.05, it was assumed that there was no significant correlation. The
29

-------
linear correlations were used for the calibrations and relations between the properties of parameters (e.g., ATmax vs
heat). To determine how the facilities affect the data, further testing in the JMP model was done after introducing the
facility as a factor in these correlations. The 95% confidence regions of a bivariate normal distribution were also
presented. The density ellipsoid is computed from the bivariate normal distribution fit to the X and Y variables. The
bivariate normal density is a function of the means and standard deviations of the X and Y variables and the
correlation between them. These ellipses are both density contours and confidence curves. As confidence curves,
they show where a given percentage of the data is expected to lie, assuming the bivariate normal distribution. The
density ellipsoid is a good graphical indicator of the correlation between two variables. The ellipsoid collapses
diagonally as the correlation between the two variables approaches either 1 or -1. The ellipsoid is more circular (less
diagonally-oriented) if the two variables are less correlated.
Care must be taken when evaluating the data presented herein due to the exploratory nature of the experiment,
numerous comparisons and correlations were made. It may be overly simplistic to conclude that reactivity of BHD is
correlated to a single parameter or even on the relationship of the index of reactivity of BHD and mineral
composition: The accurate correlations between mineral content and the index of reactivity of BHD cannot be drawn
directly due to the nature of mineral analysis in this study as semi-quantitative analysis.
2.5 Quality Metrics
The accuracy checks, precision, calibration of instrumentation and determination of detection limits are used to
ensure the quality control and the confidence level of the obtained results. Precise, documented and valid data are
needed for the ultimate decisions to be made. To ensure the quality of the data, all instruments have been regularly
calibrated. QA/QC checks have been done to ensure the precision and accuracy of the data. Table 2-7 summarizes
the QA/QC checks for each monitoring parameter in this report.
It was noted that the results of TCLP in this report were obtained after 2 years after sampling, which were more than
the required holding time (180 d) [88]. Based on the website of USEPA (TCLP Questions,
http://www.epa.gov/epawaste/hazard/testmethods/faq/faq_tclp.htm), for those samples/elements which did not
exceed the TCLP limits, results must be considered to be inconclusive with respect to the regulatory limits. For
those samples and elements which did exceed the TCLP limit, the hazardous characteristic was considered to be
valid [88],
The method of ammonia gas determination in this report was a classic method, which was adopted by standard
methods of ammonia in wastewater [85], A fixed gas volume (20 ml) was slowly introduced into a 0.2M H2SO4
solution after which the dissolved ammonia concentration in the solution was measured with an ammonia selective
electrode. Although the molar ratio of acid to ammonia used was more than 20 times what is needed, a potential loss
of ammonia gas was still possible [101] . Thus, the results of gas form ammonia in this report might be
underestimated. The linear range of ammonia selective ion electrode in this method was from 0.07 up to 1000 mg L~
The mineral phase quantification was based on the X'Pert HighScore Plus software (PW3212,Version 3.0)[89], The
semi-quant [%] was only show the integer percentage without decimal part. As results, the sum of all detected
minerals in that sample (usually more than 5) might be not as exactly as 100%.
For the purpose of comparison, metal content, heat potential and gas productivity in BHD was further calculated
based on dry weight base and presented in this report. However, moisture content (MC) was determined based on a
ASTM Method which was designed for the soil and rocks [82], It was found that the reactivity of BHD was
increased with the environmental temperature and many aluminum minerals in BHD can further react with the air
moisture [61], As a result, the "MC content" would not only reflect weight loss for the water, but also for that some
weight loss or gain due to the gases (e.g. H2, CH4 and ammonia) release from aluminum reactions or aluminium
hydroxide formation during the processing of MC (e.g. 105 °C, 16h).
Similar to the WC, water holding capacity (WHC) was determined based on a modified ASTM Method F1815-06
[84], however, some degree of reaction of the BHD with water may occur at the room temperature for the overnight
measurement processing, which could result in a mass loss and ultimately skew the WHC measurements as mass
30

-------
loss would result in an under-reported WHC value. Therefore, both measured MC and WHC values should be
viewed with some caution - as described.
Table 2-7: Summaries of QA/QC Checks
Parameter
QC Check
Method
Frequency
Acceptance Criteria
Corrective Action
Moisture Content
Initial Calibration
1 point
At the beginning
Within ± 5 % of the full range
1. Re-calibrate


calibration

of the probe

Water holding
Initial Calibration
1 point
At the beginning
Within ± 5 % of the full range
1. Re-calibrate
capacity

calibration

of the probe

PH
Initial Calibration
3 point
At the beginning
Within ± 0.1 pH unit of the
1. Re-calibrate


calibration

correct value

Conductivity
Initial Calibration
1 point
At the beginning
Within ± 2 % of the full range
1. Re-calibrate


calibration

of the probe

Total metal
Calibration
5 point
Before each run
R2 > 0.99
1. Re-calibrate


calibration




Precision
Sample
For every 12 samples
< 25% RPD
1. Re-run


duplicate


2. Prepare new standards





2. Check calculations

Accuracy
Standard check
With every run
75-125% recovery
1. Re-calibrate
Ammonia (NH4)
Initial calibration
4 point
At the beginning
R2> 0.995
1. Re-calibrate


calibration




Continuing
Run midpoint
Every 12 samples
±20 % of the actual
1. Re-calibrate

calibration
standard

concentration


Precision
Sample
Every 6 samples
< 20% RPD
1. Redo triplicate


duplicate


2. Investigate the problem

Blank
Laboratory
Every 6 samples
< Reported detection limit
1. Investigate problem


blank


2. Remove contamination





3. Check other blanks

Accuracy
Matrix Spike
Every 6 samples
100 ± 20% recovery
1. Re-run spike





2. Check calculations





3. Re-run samples as





required
Metals (leachate)
Calibration
4 point
Before each run
R2> 0.995
1. Re-calibrate


calibration




Precision
Sample
Every 12 samples
< 15% RPD for macro-
1. Re-analyze


Duplicate

elements (Al, Fe, Ca, K, Na,
2. Investigate the problem




S and Mg) and < 25% for





trace metals (Ag, Ba, Cu, Mi,





Zn, Cd, As, Se, Cr and Pb).


Blank
Laboratory
Every 12 samples
< Reported detection limit
1. Investigate problem


blank


2. Remove contamination





3. Check other blanks

Accuracy
Check Standard
Every 12 samples
100 ± 15 % recovery for
1. Re-calibrate




major metals and 100 ± 25 %
2- Re-run samples as




for trace metals
required
Temperature
Initial Calibration
1 point
At the beginning, and
Within ± 2% of the full range
1. LTse new thermocouple


calibration
once a year
of the probe
(within 1 year)
Heat measurement
Initial Calibration
1 point
Every 6 months
Within ± 15 %
1. Re-do sample


calibration


2. Investigate the problem-





Flag data
Crystallinity
Calibration
Reference
Prior to sample

1. Re-calibrate
(XRD)

standard
analysis


Gas volume
Initial Calibration
1 point
At the beginning
Within ± 5 % of the full range
1. Re-calibrate


calibration

of the probe

Gas Composition
Initial Calibration
6 point
Monthly
R2> 0.990
1. Re-calibrate


calibration




Precision
Sample
Every 12 samples
< 20% RPD
1. Re-do sample


Duplicate


2. Investigate the problem-





Flag data

Accuracy
Standard Check
Twice a Week
100 ± 20% recovery
1. Re-calibrate
31

-------
3. BHD CHARACTERIZATION: PHYSICAL AND CHEMICAL PROPERTIES
3.1 Moisture Content (MC)
The average moisture content of the BHD samples was 3.5%, with a range of 0.1 to 27%. More than half of the
samples had less than 2.5% moisture content (Table 3-1). The variability of MC by facility and the overall
distribution are presented in Figure 3-1. The detailed MC results for each of the investigated BHD samples are listed
in Appendix B (Table B-l).
Table 3-1: Moisture content (%) of BHD by facility
Facility
n
Mean
UCL95*
Range
A
8
2.3±2.7
4.5
0.1-6.3
B
4
1.2±0.7
2.4
0.2-1.9
C
2
1.1±0.2
2.5
1.0-1.2
D
4
0.7±0.5
1.5
0.1-1.2
E
2
1.8±1.1
12
1.0-2.6
F
5
0.8±0.2
1.1
0.6-1.0
H
20
4.2±5.9
7
0.4-27
I
8
1.3±1.5
2.6
0.1-4.0
J
4
2.6±0.6
3.6
2.3-3.5
K
6
8.7±8.2
16
0.4-22.3
L
5
l.lil.O
2.4
0.2-2.6
M
6
8.7±5.6
13
2.7-17
N
4
1.3±1.1
3
0.7-2.9
All Facilities
78
3.5±5.0
4.6
0.1-27
*Upper 95% confidence level on the mean
25
20
15
10
5
0
Facility
32

-------
-0.90
-0.80
-0.70
-0.60
-0.50 s
-0.40
24%
-0.30
-0.20
9%
-0.10
4% 3%
1%
1%
1%
0%
20
25
Moisture content
Figure 3-1: BHD moisture content (%) by facility (a) and its distribution (b)
3.2 Water Holding Capacity (WHC)
Water holding capacity (WHC) is an important physical characteristic of materials, especially for landfill
management, as it is essential to implement control over landfill moisture content and consequently affect its
settlement. The overall average WHC of BHD was 75% and ranged from 1.7 to 250% (Table 3-2). About 64% of
the BHD samples had a WHC between 25 and 100% (Figure 3-2). Statistically, there were significant differences in
WHC between samples from various facilities. For example. Facilities D and H had the highest WHC levels, which
were more than four times greater than the average WHC of Facilities A and B, the lowest ones (Table 3 -2).
250
to 150
Q_
(0
O
2
¦g 100
Facility
33

-------
J							
0	50	100	150	200	250
Water Hold Capacity
Figure 3-2: BHD water holding capacity (%) by facility (a) and its distribution (b)
Table 3-2: BHD water holding capacity (%)
Facility
n
Mean
UCL95*
Range
A
8
30±14
42
3.0-44
B
4
30±32
82
1.7-77
C
2
53±3.8
87
50-56
D
4
120±71
230
44-200
E
2
76±26
310
57-94
F
5
46±24
64
21-81
H
20
103±41
120
43-195
I
8
64±41
98
12-120
J
4
89±17
120
78-110
K
6
98±30
130
49-140
L
5
52±9.4
64
44-67
M
6
95±71
150
47-250
N
4
34±19
65
15-60
All Facilities
78
75±48
86
1.7-250
3.3 pH and Electrical Conductivity (EC)
Both the pH and EC of BHD were measured after BHD reacted with water for a week at 50° C in the reaction device
(Figure 2-3, Section 2.2.1.3). The liquid-to-solid ratio was 20 to 1. The average pH of the BHD sample was 9.6, and
ranged from 6.3 to 12.3 as presented in Table 3-3. Approximately 66% of BHD samples had a pH in the range of 9
to 11, 10% of samples were neutral (pH <7.5) and another 10% of them were highly alkaline (pH >11) (Figure 3 -3).
34

-------
14
13
12
11
I0
Q.
9
8
7
6
5
Facility
43%
-0.50
-0.40
23%
-0.30 ra
-0.20
9% / 9%
.9%
-0.10
5%
2%
12
14
Figure 3-3: BHD pH by facility (a) and distribution (b)
35

-------
Table 3-3: pH of BHD
Facility
n
Mean
UCL95*
Range
A
8
8.2±1.6
9.53
6.3-9.8
B
3
9.2±0.1
9.49
9.1-9.3
C
2
10.9±0.9
14
10.3-11.6
D
2
11.6±0.5
14
11.3-12.0
E
1
12.3
NA
NA
F
4
9.8±0.4
10.4
9.5-10.4
H
8
9.5±1.3
10. 6
7.7-11.5
I
2
10.2±0.4
13.4
9.9-10.5
J
2
8.9±0.02
9.14
8.9-9.0
K
3
9.2±0.7
10.2
8.5-10.0
L
4
10.2±0.1
10.2
9.9-10.1
M
2
10.2±0.9
14
9.5-10.8
N
3
10.0±0.5
13.9
9.6-10.3
All Facilities
44
9.6±1.3
10
6.3-12.3
*NA: Not applicable
Significant differences of pH among facilities were observed and the distribution of pH is presented in Figure 3 -3.
Sample 2436 from Facility E had the highest pH (12.3), whereas sample 2573 from Facility A exhibited the lowest
pH (6.3). The detailed pH results for all BHD samples are listed in Appendix B (Table B-l).
The EC of BHD was relatively high with large variation, from 15.3 to 62.9 mS cm"1 (Figure 3-4). The average EC of
all BHD samples was 23.2 mS cm"1 (Table 3-4). It was noted that the EC of the BHD samples from facilities B and
N were significantly higher than those of facilities A, M and H, whereas no significant difference was found
between the other facilities (p>0.05). The detailed EC results for each sample are listed in Appendix B (Table B-l).
Table 3-4: EC of BHD
Facility
n
Mean
UCL95*
Range
A
8
15±15
28
1.5-36
B
3
47±3.6
56
44-51
C
2
37±3.0
66
34-39
D
2
26±7.7
95
21-32
E
1
34±0
NA
NA
F
4
19±6.5
30
12-26
H
8
15±10
23
1.5-28
I
2
30±12
130
22-38
J
2
28±0.91
37
28-29
K
3
9.9±15
34
1.6-33
L
4
29±3.8
35
24-33
M
2
8.8±3.2
37
6.6-11
N
3
58±7.4
120
52-63
All Facilities
44
23±16
28
1.5-63
*NA: Not applicable, only one sample was analyzed
36

-------
30
ro
30
50
30
20
10
0
Facility
0.30 ~
0.25.5
Figure 3-4: BHD EC by facility (a) and distribution (b)
3.4 Total Extractable Metals
The major total extractable metal content of each BHD sample investigated is listed in Appendix B (Table B-2), and
the trace metals content is presented in Appendix B (Table B-3).
3.4.1 Aluminum (Al) Content
37

-------
The average content of aluminum (Al) in the BHD from the 13 SAP facilities was approximately 19%, and ranged
from 2.8 to 60%, as presented in Table 3-5. Sample 2587 from Facility K had the highest aluminum content at 60%,
while sample 2577 from Facility A had the lowest at 2.8% (Table 3-5). The overall distribution of % aluminum for
the BHD samples is presented in Appendix B (Figure B-l). Approximately 80% of the BHD samples from SAP
contained aluminum at concentrations ranging from 5 to 25%, while only 6% of the BHD samples contained total
aluminum at concentrations > 40%.
Table 3-5: Extractable aluminum content in BHD
Facility
n
Mean
UCL95
Range
A
8
15.6±10.3
24.2
2.76-34.0
B
4
9.13±1.4
11.4
6.99-10.0
C
2
9.25±1.3
20.3
8.38-10.1
D
4
12.5±5.5
21.1
7.79-18.2
E
2
4.02±0.46
8.12
3.70-4.3
F
5
33.6±14.8
52.0
24.2-59.1
H
20
16.5±6.2
19.4
5.47-29.5
I
8
16.5±11.3
25.9
8.64-43.7
J
4
19.5±0.84
20.8
18.4-20.5
K
6
43.8±11.1
55.4
28.8-60.3
L
5
28.7±3.7
33.3
26.4-35.3
M
6
14.3±5.0
19.6
9.79-23.9
N
4
14.5±5.9
23.9
7.25-21.6
All
78
19.2±12.0
21.9
2.76-60.3
3.4.2 Major Metals Content
In addition to Al, several other metals were detected in BHD samples in relatively high concentrations and were
denoted "major metals" in the current study. These metals are Ca, Mg, Fe, K and Na, and their concentrations are
presented in Table 3-6.
Table 3-6: Major metals content in BHD (%)
Mean
Median
UCL95
Range
Ca
6.9±7.6
3.8
8.6
0.26-30
Mg
2.7±2.0
2.1
3.2
0.47-9.5
Fe
0.93±0.70
0.83
1.1
0.09-3.1
K
5.4±4.9
4.8
6.5
0.17-19
Na
6.7±6.0
6.8
8.1
0.17-25
The average calcium (Ca) content in the investigated BHD samples was approximately 6.9%, and ranged from 0.26
to 30% (Table 3-6). Facilities N and F had low Ca content, while Facilities E and C showed higher values
(Appendix B, Tables B-4). The overall distribution of % Ca for the BHD samples is presented in Appendix B
(Figure B-2). Approximately 60% of the BHD samples contained Ca at concentrations < 5%, and only 4% of the
samples contained Ca at concentrations > 25%.
The magnesium (Mg) content in BHD ranged from 0.47 to 9.5%, with an average of 2.7% (Table 3 -6). The Mg
content of samples from Facilities D, J and L were significantly higher compared to those observed for the samples
from the rest of the facilities (Appendix B, Tables B-5). The overall distribution of % Mg for the BHD samples is
presented in Appendix B (Figure B-3). Approximately 20% of the BHD samples contained Mg at concentrations >
4.5%.
The average iron (Fe) content in BHD from SAP waste was 0.93% and ranged from 0.09 to 3.1% (Table 3-6). The
38

-------
samples from Facilities K, H, J, M and A had significantly higher levels of iron (up to 3.1%) as compared to the
samples from the rest of the facilities (Appendix B, Tables B-6). The overall distribution of the percent iron for the
BHD samples is presented in Appendix B (Figure B-4), and the iron content from all samples analyzed is presented
in Appendix B (Table B-6). Approximately 65% of the samples contained Fe at concentrations < 1%, and only 7%
of samples contained Fe at concentrations > 2%.
The content of potassium (K) in the studied BHD ranged from 0.15 to 19% with an average of 5.4% (Table 3-6).
The overall distribution of % K for the BHD samples is presented in Appendix B (Figure B-5). Approximately 20%
of the BHD samples contained potassium at concentrations > 10%, and 40% of the samples contained potassium at
concentrations < 2%. Samples from Facility B contained the highest potassium content, while samples from Facility
K had the lowest content (Appendix B, Table B-7).
The average content of sodium (Na) in the BHD samples was 6.7% with a range from 0.17 to 25% (Table 3-6).
There were significant differences in the Na content among facilities (Appendix B, Figure B-6). About 40% of the
samples had relatively low Na content (< 2 %), while another 30% of the samples contained relatively high Na
levels (> 10%). The sodium content from all samples analyzed is presented in Appendix B (Table B-8)
3.4.3 Trace Metals Content
The metals found in trace concentrations in BHD samples were As, Cd, Cr, Cu, Mn, Pb, Se and Zn. The
concentrations of the trace metals detected in BHD samples are presented in Table 3-7.
Table 3-7: Trace metal content in BHD (mg kg *)

Mean
Median
UCL95
Range
As
10±12.5
5.7
12.8
<5.5-107
Cd
41±56
16
54
<1.0-230
Cr
440±460
260
540
39-1,680
Cu
1,380±1,320
1000
1,670
120-6,300
Mn
1,400± 1,040
990
1,630
235-5,220
Pb
1010±1,940
270
1,450
28-8,930
Se
42±76
5.9
59
5.0-400
Zn
7,060±16,200
1910
10,700
170-84,200
On average, the BHD samples contained 10 mg kg1 arsenic (As), with a range of < the minimum reporting limit
(MRL) to 107 mg kg1, as presented in Table 3-7. 36 of the 78 BHD samples (46% of the total) contained 5.5 mg
kg-1 of As - the MRL for As. Sample 2050-H had the highest As content at 107 mg kg"1 (Table 3-7). Approximately
25% of the BHD samples contained arsenic at concentrations more than 10 mg kg"1, as presented in Appendix B
(Figure B-7). Samples from Facility H and Facility M had the highest As content (14 and 12 mg kg"1, respectively),
as presented in Appendix B (Table B-9).
On average, the BHD samples contained 41 mg kg"1 of cadmium (Cd) (Table 3-7). There was a high level of
variability in the samples with Cd ranging from undetectable (<1.0 mg kg1) to 230 mg kg"1 (Appendix B, Table B-
10). The majority of the BHD samples (88%) contained cadmium content >1.0 mg kg1, and approximately 20% of
the BHD samples contained cadmium at concentrations > 75 mg kg"1 (Appendix B, Figure B-8).
Chromium (Cr) was detected in all BHD samples and had an average value of 440 mg kg"1 (Table 3-7). There was a
high level of variability in the samples, with concentrations ranging from 39 to 1,680 mg kg"1 (Appendix B, Table
B-l 1). Approximately 30% of the BHD samples contained Cr at concentrations more than 500 mg kg"1 (Appendix
B, Figure B-9).
The average copper (Cu) content inbaghouse was 1380 mg kg"1, with a range of 120 to 6,300 mg kg"1 (Table 3-7).
Samples from Facility J had significantly higher Cu content as compared to samples from Facilities B, C, E, N and
A (Appendix B, Table B-12). About half of the samples contained Cu at concentrations < 500 mg kg"1 (Appendix B,
39

-------
Figure B-10).
Manganese (Mn) was also detected in all the investigated BHD samples with an average of 1,400 mg kg1 and a
range of 235 to 5,220 mg kg1 (Table 3-7). Approximately 80% of the BHD samples contained Mn at concentrations
less than 2000 mg kg1 (Appendix B, Figure B-l 1). The samples from facility E had the lowest Mn content (260 mg
kg-1) (Appendix B, Table B-13).
The average lead (Pb) content in BHD was 1,010 mg kg1, and ranged from 28 to 8,930 mg kg_1(Table 3-7). The Pb
content varied between facilities. For example, all samples from Facilities B, C, E and F had Pb concentrations <100
mg kg1, whereas all samples from Facility H had a concentration of > 700 mg kg1 (Appendix B, Table B-14).
Approximately 10% of the BHD samples contained Pb at concentrations > 2000 mg kg1 (Appendix B, Figure B-12).
Approximately half of the 78 BHD samples contained selenium (Se) at a concentration > MRL (5 mg kg1). On
average, the BHD samples contained 42 mg kg1 Se, as presented in Table 3-7. Around 80% of the BHD samples
contained Se at concentrations < 10 mg kg1, and ~ 5% of the samples contained Se at concentrations > 200 mg kg1
(Appendix B, Figure B-13). Samples from Facilities B, C, H and I, in general, had significantly higher levels of Se
than the samples from the rest of the facilities (Appendix B, Table B-15).
Zinc (Zn) was detected in all BHD samples (Table 3-7). The average Zn content measured was 7,060 mg kg1 with a
range of 170 to 84,200 mg kg1. Samples from Facilities H and J had high concentrations of Zn, from 3,400 to
84,200 mg kg1, whereas samples from Facilities B, C and E had lower levels of Zn (< 800 mg kg1) (Appendix B,
Table B-16). Approximately 10% of BHD samples contained Zn at concentrations > 10,000 mg kg"11 (Appendix B,
Figure B-14).
3.5 Leachable Elements
Leachable metal content was measured following the reaction of BHD with water (liquid to solid ratio was 20:1).
After filtration through a 0.45-|im PVDF filter, the acidified samples were analyzed for metals by ICP-AES [87], As
previously mentioned in the methodology section, the leachable metal content was only evaluated for 44 BHD
samples (58% of the total sample) and these samples included at least one sample from each facility. For the purpose
of this section, an element's leachability is defined as the percentage of the total leachable content divided by the
total concentration of the element in the BHD (Equation 3-1). For the purpose of leachability calculation, if the
metal content was below the MRL, the value of the MRL was used as the metal concentration.
„, . , T , ,	Leachable metal concentrationt .	N
Metal Leachability =	x 100%	(3-1)
Total metal concentration
3.5.1 Leachable Aluminum (Al)
Aluminum was detected in all 44 leachate samples analyzed (MRL = 0.02 mg L"1). The average concentration of
leachable Al was 14 mg L"1, and ranged from 0.32 to 170 mg L"1 as presented in Table 3-8. The overall leachability
of aluminum in BHD was 0.19% with a range 0.003 to 1.8%, and approximately 95% BHD samples leached < 1%
of the total aluminum content (Table 3-8, Appendix B, Figure B-15). There was a positive correlation between
leachable Al and pH in BHD samples (p < 0.01) (Appendix B, Figure B-16).
40

-------
	Table 3-8: Aluminum leachability from BHD*	
Concentration mg L1 Percent Leached (%)
Facility	n 	 	


Mean
UCL95
Range
Mean
UCL95
Range
A
8
6.5±7.4
13
0.34-23
0.08±0.09
0.16
0.02-0.27
B
3
4.8±6.7
15
1.4-15
0.10±0.14
0.33
0.03-0.32
C
2
22±3.4
52
19-24
0.48±0.15
1.79
0.38-0.58
D
2
84±120
110
0.8-170
0.93±1.3
12.5
0.02-1.8
E
1
0.32
NA
0.32
0.02
NA
NA
F
4
4.8±5.3
13
1.5-13
0.03±0.03
0.08
0.01-0.08
H
8
12±14
24
0.4-42
0.21±0.26
0.42
0.01-0.72
I
2
14±9.7
100
7.3-21
0.29±0.28
2.83
0.09-0.49
J
2
1.4±0.5
5.6
1.1-1.7
0.02±0.01
0.06
0.01-0.02
K
3
1.7±1.3
4.7
0.5-2.9
0.01±0.004
0.02
0.003-0.01
L
4
8.3±2.5
12
5.9-11
0.06±0.02
0.08
0.05-0.08
M
2
63±76
740
9.2-120
0.93±1.1
10.9
0.14-1.7
N
3
4.0±3.3
12
2.1-7.8
0.09±0.11
0.36
0.03-0.22
All Facilities
44
14±30
22
0.32-170
0.19±0.38
0.31
0.003-1.8
* Liquid to solid ratio = 20 :1, 50°C, DIW, anaerobic closed system, 5d, 0.45|im filter; NA: not applicable (only one sample analyzed).
3.5.2 Leachable Major Metals
The average leachable calcium concentration in BHD was 470 mg L_1, and ranged from 0.72 to 3300 mg L1 (Table
3-9). The concentrations of Ca in the leachate of BHD from each facility are presented in Appendix B (Table B-17).
Approximately 80% of the leachate samples contained Ca < 500 mg L_1, and ~ 6% of the samples had Ca
concentration > 2000 mg L"1 (Appendix B, Figure B-17). As a result, a high level of variability in calcium
leachability in the BHD was found, with an average of 12% and a range from 0.09 to 100%. It is noted that the
median of Ca leachability was 6.2% and almost 70% of the samples' Ca leachability was < 10%.
The average leachable magnesium concentration was 8.9 mg L1, with a range from 0.01 to 62 mg L"1 (Table 3-9).
Only 1 of the 44 leachate samples analyzed contained Mg at a level < MRL (11 jxg L_1). The concentrations of Mg in
the leachate of BHD from each facility are presented in Appendix B (Table B-18). The leachability of Mg in BHD
wasfromO.001 to 18%, with an average of 2% and a median of 0.1% (Table 3-9). Approximately, 75% of the BHD
had Mg leachability <1% (Appendix B, Figure B-18).
The BHD samples contained relatively low leachable iron with an average of 1.9 mg L1, and a range from 0.06 to
34 mg L1 (Table 3-9). The concentrations of Fe in the leachate of BHD from each facility are presented in Appendix
B (Table B-19). The leachability of Fe in BHD ranged from 0.01 to 7.7%, with an average of 0.5% and a median of
0.1% (Table 3-9). Approximately 93% of the baghouse had Fe leachability < 1% (Appendix B, Figure B-19).
Potassium was detected in all of the 44 leachate samples. The average leachable K concentration was 2100 mg kg1,
with a range of 27 mg kg1 to 6,800 mg kg1 (Table 3-9). As expected, the leachability of K in BHD was relatively
high because it is one of the major salts used in SAP processes. The concentration of K in the leachate of BHD from
each facility is presented in Appendix B (Table B-20). The average and median K leachability were 69 and 78%,
respectively (Table 3-9). However, there was still one sample which had very low leachability (less than 10%).
Approximately 98% of the BHD samples had K leachability > 30% (Appendix B, Figure B-20). There was a linear
relationship between the total K and leachable K (p < 0.01) (Appendix B, Figure B-21), which indicated most of the
K in BHD was water soluble.
41

-------
Table 3-9: Major metal leachability from BHD*
Concentration mg L1	 	Percent Leached (%)
ivicuu
Mean
Median
UCL95
Range
Mean
Median
UCL95
Range
Ca
470±790
116
710
0.72-3,300
12±19
6.2
17.7
0.09-100
Mg
8.9±16
0.9
14
0.01-62
1.9±4.4
0.1
3.3
0.001-18
Fe
1.9±6.1
0.19
3.7
0.06-34
0.5±1.6
0.1
0.97
0.01-7.7
K
2,100±2,000
2000
2700
27-6,800
69±21
78
76
0.6-100
Na
2,700±2,500
2340
3500
50-11,000
70±17
72
75
0.9-100
* Liquid to solid ratio = 20 :1, 50°C, DIW, anaerobic closed system, 5d, 0.45|im filter; n=44
Similar to K, detectable concentrations of Na were measured in all 44 leachate samples. The average leachable Na
concentration was 2700 mg kg1, with a range from 50 to 11,000 mg kg1 (Table 3-9). There were significant
differences among facilities with leachable Na from facilities K and M being relatively low, while leachable Na
from facility N was relatively high (Appendix B, Table B-21). Expectedly, similar to K, the leachability of Na was
relatively high with an average and median of 70 and 72%, respectively. Approximately 98% of the BHD samples
had Na leachability > 30% (Appendix B, Figure B-22). There was a linear relation between the total Na and
leachable Na (p <0.01) (Appendix B, Figure B-23) that indicated most of Na in BHD was water soluble.
3.5.3 Leachable Trace Metals
The average concentration of leachable As was 33 |.ig L1, and ranged from 26 to 140 |.ig L1 (Table 3-10). Only 7
leachate samples from five facilities (A, B, E, H and N) had arsenic concentration above the MRL (26 |.ig L1)
(Appendix B, Table B-22). The average leachability of As in BHD was 6.5% with a range from 1.7 to 21%. (Table
3-10). Approximately 12% of the samples had As leachability > 10% (Appendix B, Figure B-24).
Less than half of the samples analyzed (43%) leached Cr greater than the MRL (13.6 |.ig L1). The average leachable
Cr concentration was 23 |.ig L1, with a range between 14 and 96 |.ig L1 (Table 3-10). The concentration of Cr in the
leachate of BHD from each facility is presented in Appendix B (Table B-23). The leachability of Cr from BHD was
low with ~ 90% of the samples having leachability < 1% (Appendix B, Figure B-25). The average and median
leachability of Cr were 0.44 and 0.17%, respectively (Table 3 -10).
Only 16 samples, from six facilities, out of the 44 leachate samples analyzed contained Cd > the MRL (3.2 |.ig L"1).
The average of the leachable Cd concentration in BHD was 9.4 |.ig L"1 (Table 3-10) with high variability among
facilities and among samples from the same facility (Appendix B, Table B-24). For example, the Cd concentration
ranged from 3.2 to 42 |.ig L"1 inFacility H. Approximately half of the BHD samples had leachability <1% (Appendix
B, Figure B-26). The average and median leachability of Cd of BHD were 1.5 and 0.82%, respectively (Table 3-10).
	Table 3-10: Trace metal leachability from BHD*	
Concentration (j.« L1	Percent Leached (%)

Mean
Median
UCL95
Range
Mean
Median
UCL95
Range
As
33±21
26
39
26-140
6.7±5.5
4.8
10.5
1.7-21
Cr
23±17
14
28
14-96
0.44±0.69
0.17
0.65
0.03-4.0
Cd
9.4±12
3
13
3.2-54
1.5±2.1
0.82
2.8
0.05-12
Cu
470±1,100
75
790
11-6,100
0.82±1.6
0.33
1.3
0.01-39
Mn
510±1,700
12
1000
1.8-10,000
1.2±4.0
0.02
2.3
0.001-21
Pb
410±2,500
17
1210
17-17,000
1.5±5.9
0.21
3.3
0.001-39
Se
210±260
79
290
34-1,300
14±14
8.2
38
0.18-57
Zn
320±720
130
540
5.3-4,300
0.53±0.83
0.12
0.78
0.01-3.9
* Liquid to solid ratio = 20 :1, 50oC, DIW, anaerobic closed system, 5d
, 0.45(.uii filter; n=44



42

-------
Approximately 90% of the leachate samples analyzed contained Cu > the MRL (11 |ig L1). The average leachable
Cu concentration was 470 |.ig L1, with a range between 11 and 6,100 |.ig L1 (Table 3-9). The concentrations of Cu in
the leachate of facilities J, K and L were significantly higher than those from Facilities A, B, C and D (Appendix B,
Table B-25). High variability was also observed in the leachable Cu between facilities and among samples from the
same facility. The leachability of Cu in BHD was also low. Almost 80% of samples had Cu leachability <1%
(Appendix B, Figure B-27). The average and median leachability of Cu were 0.82 and 0.33%, respectively (Table 3 -
10).
Mn was detected in the leachate of 43 of the 44 BHD samples analyzed (MRL =1.8 |ag L"1) with a large variability
from 1.8 to 10,000 |agL_1(Table 3-10). The median of leachable MninFacility A was 490 M-gL"1, whereas the
median of all the other 12 facilities was only 6.7 |ig L"1. The concentration of Mn for in the leachate per facility is
presented in Appendix B (Table B-26). The average leachability of Mn in BHD was relatively low (1.2%) and
ranged from 0.001 to 21%. Approximately, 80% of the samples had Mn leachability < 0.1% (Appendix B, Figure B-
28). The median leachability of Mn in BHD was only 0.1% (Table 3-10).
Only eight of the 44 leachate samples analyzed contained Pb > the MRL (17 |ag L"1). It is noted that a relatively high
concentration of Pb (17 mg L1) was detected from Facility H (Appendix B, Table B-27). The average leachable
lead concentration was 410 |ag L"1, with a range between 17 and 1,700 |.ig L"1 (Table 3-10). The leachability of Pb in
BHD had a broad range, from 0.001 to 39% (Table 3-10). The average and median leachability of Pb was 1.5 and
0.2%, respectively. It is noted that the sample with the highest leachability was not the one with the highest level of
Pb in leachate. Approximately, 86% of the samples had < 1% Pb leachability (Appendix B, Figure B-29).
About 60% of leachate samples (27) from ten facilities had Se content greater than the MRL (34 |.ig L"1). Significant
differences in the Se content in the leachate among facilities and within the same facility were observed (Appendix
B, Table B-28). The average and median leachable Se concentration in BHD were 210 and 79 |.ig L1, respectively
(Table 3-10). The leachability of Se was quite high and ranged from 0.18 to 57%, with an average of 13%. It is
noted that the Se leachability of ~ 20% of samples exceeded 20% (Appendix B, Figure B-30), which was relatively
high compared with the leachability of the other heavy metals investigated.
All 44 leachate BHD samples analyzed contained Zn at a level above 1.0 |.ig L1. The average leachable Zn
concentration was 320 |.ig L1, with a range between 5.3 and 4,300 |.ig L1 (Table 3-10). There were significant
differences in the concentration of leachable zinc among facilitates as well as within the same facility (Appendix B,
Table B-29). The leachability of Zn was relatively low and ranged from 0.01 to 3.9% (Table 3-10). About 80% of
the samples had Zn leachability of < 1% (Appendix B, Figure B-31). The average and median of Zn leachability
were 0.53 and 0.12%, respectively.
3.6 Results of TCLP
The toxicity characteristic leaching procedure was also carried out on all 78 BHD samples after sample were stored
after 2 years. In addition to Al, the concentration of seven out of the eight toxicity (TC) metals were measured (As,
Se, Ag (silver), Ba (barium), Cr, Cd and Pb) as presented in Table 3-11. The concentrations of four metals (Ag, As,
Ba and Cr) were consistently below their corresponding TC limit. On the other hand, some samples had higher
concentrations of Cd, Pb and Se as compared to their corresponding TC limit. It is noted that solid waste is
characterized as hazardous if any TC metals leached over their respective TC limit[88]. The percentage of samples
that exceeded the TC limit for Cd, Pb and Se were 14, 4 and 6%, respectively. The highest detectable TCLP
concentrations for Cd, Pb and Se were 6, 56 and 3.5 mg L1, respectively. Facility specific results are presented in
Appendix B (Table B-30 to Table B-37).
Although DI water and TCLP extractions tests were performed at the same liquid to solid ratio (20:1), there were no
significant correlations between the results obtained from these two methods. The differences between the results
obtained by both methods may be attributed to the differences in the extraction pH. In addition, the TCLP uses an
organic acid (acetic acid) that tends to chelate metals.
43

-------
Table 3-11: Metal concentration in the TCLP solution (mg L"1)
Metal
Mean
Median
UCL95
Range
TC
Al*
132
34
178
0.9-950
NA
Ag
0.02
0.01
0.02
0.01-0.07
5
As
0.02
0.02
0.03
0.02-0.2
5
Ba
2.6
1.7
3.1
0.01-12
100
Cd
0.5
0.1
0.8
0.003-6
1
Cr
0.17
0.1
0.2
0.02-1.5
5
Pb
2.1
0.1
4.1
0.01-56
5
Se
0.23
0.05
0.35
0.02-3.5
1
*A1 is not among the TCLP metals. Liquid to solid ratio = 20 :1, room temperature (25 oC), TCLP
extraction #1 and #2,, 18 h, 0.451m filter; n=78
3.7 Crystalline Mineral Phases
The mineral phases of 44 (-58% of the total number of samples) BHD samples collected from 13 facilities were
characterized using XRD. At least one sample from each facility was analyzed. As expected, the dominant
aluminum minerals in the baghouse dust samples were metallic aluminum (Al), aluminum nitride (A1N) and its
oxides (AlxOyNz), elpasolite (K2NaAlF6), spinel (magnesium aluminum oxide, AhMgO i). and different forms of
aluminum oxide. Baghouse dust samples also contained the salts used in the SAP, like halite (NaCl), sylvite (KC1)
and fluorite (CaF2), for example. Some samples also contained quartz (SiO;). silicon nitride (Si3N4). anhydrite
(CaSO.4), calcite (CaCCh), magnesium sulfate (MgSO.4) and periclase (MgO). The details of the mineral phases of
each sample, including the peak and pattern lists, are listed in Appendix C. The semi-quantitative results for each
mineral are listed in Appendix B (Table B-38 and Table B-39). Because the XRD technique is semi-quantitative, a
built-in assumption is that all phases add to 100%. Thus, the results will not indicate unidentified crystalline or
amorphous phases.
3.7.1 Non-Aluminum Mineral Phases
Potassium chloride (sylvite, KC1) is employed in the SAP process [4, 5, 36, 37], and was detected in 35 baghouse
dust samples (80% of the studied samples). The average abundance of KC1 was 5.3% with a range from undetected
to 17%, as presented in Table 3-12. The variability of KC1 by facility, the overall distribution (Figure B-32) and the
abundance of KC1 by facility (Table B-40) are presented in Appendix B. It was found that there were two minerals
that related to K content in BHD, one was sylvite and another was elpasolite, which are acidic soluble. Two
significant correlations were observed based on the mineral abundance quantified by XRD: 1) Between the K
content obtained from the abundance of KC1 and the leachable K content from the leaching experiment (Figure 3-
5a), and 2) between the total K content obtained from the abundance of KC1 and K2NaAlF6, and the total K content
obtained by acidic digestion (Figure 3-5b).
44

-------
Leachable K
Total K (digestion)
Figure 3-5: Correlation of leachable (a) and total (b) K content (%) from different methods in BHD
(leachable K vs Kby XRD-KC1, r2=0.67, p<0.01; total K vs Kby XRD-KC1 and K2NaAlF6, r2=0.42, p<0.01; Birariate Normal Ellipse, red
region, Cl=0.95; green region, Cl=0.50)
Table 3-12: Non-aluminum mineral phases (%) in BHD
Mineral
Mean
Median
UCL95
Range
% detected
KC1
5.3±4.9
4
6.8
ND-17
80
NaCl
10±8.6
10
13
ND-32
77
CaF2
4.8±4.0
4
6
ND-15
82
CaS04
6.5±3.9
7
7.7
ND-15
89
CaC03
3.9±11
1
7.6
ND-67
68
Si02
24±26
15
33
ND-94
89
Si3N4
3.0±4.0
0
4.4
ND-17
48
MgS04
3.8±3.1
3
4.8
ND-17
86
MgO
1.6±4.1
0.5
3
ND-25
50
*ND: not detected, n=44
45

-------
Halite (NaCl), which is also generally added during the SAP process [4, 5, 36, 37], was detected in 34 baghouse dust
samples (77% of the studied samples). The overall average abundance of NaCl was 10% with a range from
undetected to 32%, as presented in Table 3-12. The variability of NaCl by facility and the overall distribution are
presented in Appendix B (Figure B-33), and the abundance of NaCl by facility is presented in Appendix B (Table B-
41). Similar to K mineral, halite and elpasolite are the two minerals related to Na content in BHD. Two significant
correlations were also observed based on the mineral abundance quantified by XRD: 1) Between the Na content
obtained from the abundance of NaCl and the leachable Na content from the leaching experiment (Figure 3 -6a), and
2) between the total Na content obtained from the abundance of NaCl and K2NaAlF6, and the total Na content
obtained by acidic digestion (Figure 3-6b). The correlations discovered in regards to both the K and Na content of
the studied samples further support the reliability of quantitative results of the mineral phases in this work.
Fluorite (CaF:) is also traditionally used in the SAP process [4, 5, 36, 37], and was detected in 36 BHD samples
(82% of the studied samples). The average abundance of CaF2 was 4.8%, with a range from undetected to 15%
(Table 3-12). The variability of CaF2 by facility, the overall distribution (Figure B-34) and the abundance of CaF2 by
facility (Table B-42) are presented in Appendix B.
Leachable Na
Total Na (digestion)
Figure 3-6: Correlation of leachable (a) and total (b) Na content (%) from different methods in BHD
( Leachable Na vs Na by XRD-NaCl, r2=0.74, p<0.01; total Na vs Na by XRD- NaCl and K2NaAlF6, r2=0.72, p<0.01. Birariate Normal
Ellipse, red region, Cl=0.95; green region, Cl=0.50)
46

-------
Quartz (SiO:). silicon nitride (Si3N4). periclase (MgO), magnesium sulfate (MgS04), anhydrite (CaSO.4) and calcite
(CaC03) were six minor minerals identified in baghouse dust. The corresponding average abundance of these phases
in BHD was 24, 3, 1.6, 3.8, 6.5 and 3.9%, respectively (Table 3-12). Although most of these mineral phases were
minor in most BHD samples, some samples contained a relatively high abundance of these phases. It is also noted
that not all of these minerals were present in all of the analyzed BHD samples. The variability of SiCK Si3N4, MgO,
MgSCk CaSC>4 and CaCC>3 by facility and the overall distribution are presented in Appendix B (Figure B-35 to
Figure B-40, respectively).
3.7.2 Aluminum Crystalline Phases
3.7.2.1	Metallic Aluminum (Al)
Metallic aluminum (Al) is generated from secondary aluminum production. All of the analyzed BHD samples,
except one, contained a detectable amount of metallic aluminum. The average abundance of metallic aluminum in
the investigated BHD was 5.5% (Table 3-13) with a range from undetectable to 28%. The variability of metallic
aluminum by facility and the overall distribution is presented in Appendix B (Table B-43 and Figure B-41).
Approximately 60% of the samples had a range of 2 to 4% metallic aluminum, and 18% of the samples had < 2% of
metallic aluminum. Only 6% of the samples contained more than 10% metallic aluminum.
3.7.2.2	Aluminum Nitride (A1N) and its Oxides
Mineral aluminum nitride (A1N) and its oxides are part of the newly formed minerals during the SAP process.
Oxidation of aluminum nitride occurs from 650 to 1400° C [103], and the presence of three different aluminum
oxide nitrides was confirmed in the majority of BHD samples. The average abundance of A1N was 3.3%, with a
range from undetectable to 13% (Table 3-13). The A1N abundance in BHD by facility and the overall distribution
are presented in Appendix B (Figure B-42 and Table B-44). The average abundance of AI2.85O3.45N0.55.
Al2.8iO3.56N0.44 and AI2.78O3.65N0.35 were 5.8, 3.3 and 2.4%, respectively, which were equivalent to 0.9, 0.4 and 0.3%
of A1N, respectively. The average percentage of A1N, AI2.85O3.45N0.55. Al2.8iO3.56N0.44 and AI2.78O3.65N0.35 in total A1N
were 67, 19, 8 and 5%, respectively. It is noted that not all BHD contained detected A1N or its oxides. The A1N
oxides (AI2.85O3.45N0.55. Al2.8iO3.56N0.44 and AI2.78O3.65N0.35) content in BHD by facility and their overall distributions
are presented in Appendix B (Tables B-45 to B-47 and Figure B-43). The total A1N abundance in BHD by facility
and the overall distribution are presented in Appendix B (Table B-48 and Figure B-44). The occurrence of A1N,
three different forms of oxides and total A1N in the analyzed BHD were 73, 71, 64, 57 and 84%, respectively. As a
result, the total A1N abundance in BHD was 4.9 with a range of undetectable to 13%.
Table 3-13: Aluminum crystalline phases (%) in BHD
Mineral
Mean
Median
UCL95
Range
% detected
Al
5.5±5.6
3
7.2
ND-28
98
Total A1N
4.9±3.6
4.9
6
ND-13
84
A1N
3.3±3.0
3
4.2
ND-13
73
AI2.85 O3.45 N:i.55
5.8±5.0
6
7.3
ND-18
70
AI2.8I 03.56Nj.44
3.3±3.0
3
4.2
ND-10
64
AI2.78 O3.65Nj.35
2.4±2.7
1.5
3.2
ND-8
57
Total AI2O3
19±15
23
5.7
ND-48
89
AI2O3
3.7±3.7
3
4.8
ND-20
82
AI2.67 O4
4.1±4.2
3
5.4
ND-12
59
AIO(OH)
0.9±1.8
0
1.4
ND-7
25
K2Na AlFs
3.2±3.2
2
4.2
ND-13
75
Mg AI2O4
4.8±3.0
5
4.2
ND-12
89
*ND: not detected. n=44
47

-------
3.7.2.3 Aluminum Oxides
Aluminum oxides are the other main types of aluminum minerals found in BHD. It was confirmed that at least
AI2O3 and Al2 67O4 were present in most samples. The other aluminum oxides included three forms of aluminum
nitride oxides and aluminum hydroxide (diaspore, AIO(OH)). The occurrence of total aluminum oxides in BHD was
89%. The average AI2O3, AI2.67O4, AIO(OH) and total AI2O3 abundance in BHD were 3.7%, 4.1%, 0.9% and 19%
respectively (Table 3-13). The corresponding variability of aluminum oxide and total aluminum oxide by facility
and within the overall distribution is presented in Appendix B (Tables B-49 to B-52 and Figures B-45 to B-48).
3.7.2.4 Elpasolite (K2NaAlF6) and Spinel (MgAl204)
Both elpasolite (K2NaAlF6) and spinel (MgAl204) are the byproducts of secondary aluminum processes, which were
widely reported in the aluminum dross [18, 104], The occurrence of elpasolite and spinel in BHD were 75 and 89%,
respectively. The average elpasolite abundance was 3.2% with a range from undetectable to 13%, while the average
spinel abundance was 4.8% with a range from undetectable to 12%, as presented in Table 3-13. The abundance of
K2NaAlF6 and MgAl204 by facility and the overall distribution are presented in Appendix B (Tables B-53 and B-54
and Figures B-49 and B-50).
3.8 Discussion
A total of 78 BHD samples from 13 SAP facilities across the U.S. were evaluated for moisture content (MC), water
holding capacity (WHC), total metals and 7 RCRA metals by TLCP. 44 of these samples were further evaluated for
their crystalline phases and leachable metals, pH and EC at high temperature environments after BHD's reaction
with deionized water under anaerobic conditions. In general, BHD is highly alkaline with a large degree of inter-
and intra-sample variability, which could be attributed to variability of the A1 feed stock, conditions at the
processing facilities, sample processing and analysis. Overall BHD samples contained elevated total metal content,
and some BHD samples exceeded the toxicity limit for three of the eight RCRA metals (Mercury was not analyzed).
While the percent metal leached was relatively low, the leachable metal content may still pose a contamination
concern and potential human and ecological exposure if uncontrollably released to the environment. As a result,
BHD should always be managed at facilities that use synthetic liner systems with leachate collection (the salt
content of the leachate will increase the hydraulic conductivity of clay liners within a few years of installation). The
mineral phase analysis showed that various species of aluminum are present in the BHD samples with a large degree
of variability. The relative abundance of various aluminum species was evaluated, but it is noted that the method
used was a semi-quantitative method, and as a result the data usage is limited. The analysis only showed a few
aluminum species present in BHD which does not exclude the presence of other crystalline species especially in
light of the variability observed in the samples.
48

-------
4. BAGHOUSE DUST REACTIVITY
Three key indices were employed to evaluate the impact of reacting BHD with liquids, particularly with regards to
the temperature profile of the reaction:
1.	The maximum temperature change, ATmax (°C), and the time to reach the highest post-reaction
temperature, W (h)
2.	Heat generated from the reaction
3.	Volume of gas generated from the reaction
BHD reactivity may be impacted by various factors including, but not limited to:
•	environmental temperature
•	liquid introduction rate
•	liquid composition
•	liquid-to-solid ratio
•	aluminum speciation in the BHD sample
Selected case studies are presented in Section 4.1 from laboratory evaluation of BHD, which are informative of the
potential influence of these and other environmental factors on BHD reactivity. These case studies also illustrate the
utility of the laboratory procedures employed to determine BHD reactivity.
4.1 Factors Impacting Baghouse Dust Reactivity
4.1.1 Environmental Temperature
Aluminum-based reactions are often influenced by environmental temperatures [55, 105, 106], Research suggests
that a metallic aluminum reaction with water requires activation [55], whereas aluminum carbide or aluminum
nitride can react with water and water vapor (even air moisture) at room temperatures [61, 68], Temperature increase
as a result of deionized water (DIW) addition to BHD samples was examined as a function of time under 20, 37 and
50 °C. As presented in Figure 4-1 (a), for sample 2576-A, the temperature increase was minimal when DIW was
added at room temperature, indicating low reactivity of the BHD sample. However, when the environmental
temperature was raised to 50 °C, a significant temperature increase was observed (ATmax ~ 50 °C), indicating higher
degree of sample reactivity. BHD sample 2608-M exhibited a different temperature profile as demonstrated in
Figure 4-1 (b). This sample exhibited reactivity even at room temperature which resulted in an increase in the
intensity of the reaction (a higher ATmax and shorter W i).
The differences between the behaviors of the BHD samples in response to a change in environmental temperature
could be attributed to variation in the speciation of aluminum present in the BHD samples. The presence of A1N or
AI4C3 in BHD samples could result in a reaction with DIW at room temperature. Also, the increase in temperature
provided by the aluminum nitride reaction may initiate the reaction of other aluminum species present in the sample.
The results of XRD analysis supported this hypothesis, as sample 2576-A only contained a relatively small amount
of aluminum nitride oxides (1.6% Total A1N), whereas sample 2608-M contained a significantly higher amount of
A1N (5.6% total A1N with 70% A1N).
49

-------
60
50 -
40 -
O 30-
20 -
10 -
a
Type-I (2576-A) —20 °c
38 C
50 °C
0 j

0
1 1 1 1
20 40 60 80
Time (h)
40 -i
'I
b
Type-I 1 (2608-M) 20°c
v ' — 38° c
50° C
o J—
0
10 20 30 40
Time (hr)
Figure 4-1: Impact of environmental temperature on maximum temperature change for sample 2576-A (a)
and 2608-M (b)
(L/S = 1:1, 10 g BHD, DIW)
The results presented here are of particular importance when trying to understand concerns associated with the
disposal of BHD. Research suggests that municipal solid waste landfill temperatures are typically greater than 37
°C, and may reach 50 °C or higher [71, 73, 74], Based on this analysis, in addition to room temperature, two
environmental temperatures were chosen for the reactivity experiments: 37 and 50 °C. Furthermore, it must be noted
that the elevated temperatures present in most MSW landfills may be conducive to and could initiate BHD reactions
that otherwise may not take place. As the enviromnental temperature increased, the heat generated from BHD
50

-------
samples increased significantly (Table 4-1). Traditional it is believed that the heat energy evolved per unit mass of
BHD reaction is independent of the initiating enviromnental temperature, assuming that the reaction goes to
completion. The observed trends indicate the reaction might not be complete when the test was assumed done and
the complexity of a BHD reaction.
Table 4-1: Impact of environmental temperature on heat generation potential
Sample ID
Heat (kJ g1)*

37 °C
50 °C
2574-A
1.9
4.1
2575-A
0.34
0.44
2576-A
1.5
2.9
2432-C
0.05
0.36
2537-D
0.95
1.7
2436-E
ND
ND
2505-F
0.23
0.57
*L/S = 2:1. DIW. 5
g BHD; ND: not detected, <0.05 kJ g"1

The impact of enviromnental temperature on gas generation potential was also evaluated. The productivity of H2 gas
as a function of enviromnental temperature for randomly selected BHD samples is presented in Table 4-2. It is noted
that other gases evolve from BHD reactions with water, but H2 is the major one (> 95%) as will be presented in
section 4.2.3. This may be attributed to the limited amount of aluminum carbide when compared to the relatively
large amount of metallic aluminum. The results indicate that, in general, H2 productivity increased with the increase
in enviromnental temperature. Thus, at the elevated temperatures encountered in MSW landfills, elevated levels of
H: gas may be generated as a result of reactivity and will be of concern. It is noted that at 4 and 20 °C enviromnental
temperatures, there was H2 gas productivity from BHD despite the minimal increase in ATmax. This shows that BHD
can still react to minor temperature increases, but the reaction rate is slow enough that the increase in temperature
may not be observed.
Table 4-2: Impact of environmental temperature on gas generation potential
Sample ID

H2 productivity (ml g1)
4 °C
20 °C
37 °C
50 °C
2576-A
1.3±0.1
2.2±0.0
25±3.4
44:4.5
2507-F
6.9±0.2
17±0.8
112±2.4
100±40
2608-M
33±4.4
36±0.9
41±0.5
39±5
2493-N
0.3±0.05
1.1±0.1
14±0.6
36±8
* L/S=20, DIW. 5 days, and 1 g BHD.
4.1.2 Liquid Addition Rate
In the enviromnent it is likely that liquids would contact BHD in an intermittent fashion. The results clearly show
that the initial water addition resulted in a significant temperature increase, rapid in the first few hours, with up to a
25 °C ATmax for the sample at 50 °C conditions (Figure 4-2). On the other hand, the second addition did not result in
a significant increase in temperature, and only a minor temperature increase for treatment 2. The patterns of the
three treatments were very similar. The results of this experiment suggest that while the largest change in reaction
temperature occurs after the first liquid addition unless enough liquids are added to a BHD sample to fully react it,
that BHD may continue to react each time a new source of liquids becomes available. Since the impact of liquid
addition rate was minimal on the temperature generation, no further evaluation of this factor was carried out on heat
generation or gas generation potential for BHD.
51

-------
Initial 8 h after 1st water
2583-K, @50°C
	lOg/lOml +5 ml
	15g/10 ml+5 ml
15g/15 ml+5 ml
Time (h)
72h after 2 nd water
Time (h)
2 nd watering
Figure 4-2: Temperature change as a function of watering schedule
4.1.3 Liquid Composition
The chemical composition of the liquid that starts the BHD reaction may also have an impact on the observed
temperature profile. To that end, various solutions were added to the same sample of BHD, and the temperature was
measured as a function of time—the results are presented in Table 4-3. It is apparent that the composition of liquids
either dissolved organic matter (a type of organic ligand of A1 complex, e.g., the mixed volatile fatty acid [VFA],
humic acid [107]) (Figure 4-3), the phosphate in liquids (a type of inorganic ligand of A1 complex [108]) (Figure 4-
4) or landfill leachate (contain both inorganic and organic ligands of A1 complex) might diminish the chemical
reaction intensity.
52

-------
Effect of chemical composition of liquid on the temperature profile of BHD:2576-A a
50
0 30
12 18 24 30 36 42 48
Time (h)
72
Time (h)
120
144
168
192
216
¦DIW
Mixed organic acid
¦ Hum ic acid (1%)
'Leach ate
Effect of chemical composition of liquid on the temperature profile of BHD (2583-K)
10
192 216
480
¦Humic acid (1%)
Time (h)
¦DIW
•Leachate
Mixed organic acid
Figure 4-3: Effect of dissolved organic matters in liquid on the temperature profile of BHD for sample 2576-
A (a) and 2583-K (b)
(1VS=1:1, 10 g BHD. @ 50 °C)
As a result, the maximum temperature change (ATmax) can be reduced and/or the time to get the highest temperature
(Wax) can be increased. It is noted that the patterns are related to the composition of BHD as well. For Samples
2576-A and 2583-K, the Wax of landfill leachate treatment in both samples was significantly increased, whereas the
ATmax behavior was different. There were no differences of ATmaxbetween DIW and leachate for Sample 2576-A,
but there were significant differences for Sample 2583-K. It was found that 2583-K lias much higher amount of
metallic aluminum and much less amount of A1N compared to 2576-A (Appendix C).
53

-------
Effectof phosphate on the temperature profile of BH D:2576-A
Time
120
144
192
216
Time
¦DIW
NaH2P04( 0.2 M) Na2HPO4(0.2M)
Figure 4-4: Effect of phosphate in liquid on the temperature profile of BHD for sample 2576-A (a) and 2583-
K (b)
(L/S = 1:1, 10 g BHD. @ 50 °C)
Effect of phosphate on the temperature profile of BHD (2583-K)
nme(h)
-2
Na2HP04 (0.2M)	DIW	NaH2P04 (0.2M)
54

-------
Table 4-3: Impact of liquid composition on ATmax and tmax-T
AT max (°C)	tmax-T (h)

2576-A
2507-F
2583-K

2576-A
2507-F
2583-K
DIW
46
6.5
7

9.6
53
11
Landfill leachate
48
5.2
3.8

33
27
160
VFA mixture
44
4.2
7.7

9
17
26
Humic acid salt
40
5.9
<1.5

18
31
53
0.2 M NaH2P04
< 1.5
2.5
<1.5

12
160
0.8
0.2 M Na2HP04
<1.5
4.2
<1.5

110
100
38
*L/S =1:1, 10 g BHD, @50 °C
Table 4-4: Impact of liquid composition on heat generation potential
Solution		Heat (kJ g1)

2576-A
2507-F
2583-K
DIW
3
3.1
1.5
Landfill leachate
3
3.2
1.5
VFA mixture
2.8
2.7
1.5
0.2 M NaH2P04
0.48
0.12
0.8
0.2 M Na2HP04
0.15
0.04
1
*L/S =2:1. 5 g BHD. @50°C. 5 days.
Liquid composition also significantly impacted the heat generation for BHD. The results of Table 4-4 indicated that
phosphate treatment (a type of inorganic ligands of A1 complex[108]) at the short term (at current laboratory scale)
can significantly decrease the total heat released by the reactions. This was in agreement with the results of the gas
productivity of BHD (Table 4-5). The highest H2 gas productivity was obtained in the cases of alkaline solutions
(0.1 M NaOH), whereas the landfill leachate, VFA mixture, humic acid salt and phosphate treatments, in general,
resulted in significantly lower H2 productivity when compared to that in the case of DIW. While the liquids used in
this evaluation had varying initial pH values, the final pH for all samples for DIW, 0.1M NaOH, landfill leachate,
humic acid salt and Na2HP04 treatments were alkaline (pH >8.5), whereas the final pH of HC1, VFA and NaFLPOi
treatments of sample 2576-A, and 2583-K were below 7 (4.1 to 6.2). Thus, it is unclear to what degree the initial
solution pH impacted the temperature increase and the gas productivity. These results also indicate that reactions of
BHD with landfill leachate would be much more complex than that in the DIW system, which might relate to the
formation of aluminum complex with different ligands during the reaction processing [94], The temperature change,
heat generation and gas productivity may be impacted more by the sample composition rather than by the type of
liquids added.
Table 4-5: Hydrogen productivity (ml g-1) as a function of liquid composition
H2 ( ml g1)

2576-A
2507-F
2583-K
0.1 M HC1
16
12
17
0.1 M NaOH
45
86
48
DIW
41
65
58
Landfill leachate
0.1
5.8
ND
VFA mixture
2
58
2.3
Humic acids salt
0.4
5.2
1.6
0.2 M NaH2P04
0.6
0.9
ND
0.2 M Na2HP04
0.7
1.6
ND
*L/S =20. @50 °C. lg BHD. 5 days; ND: not detected < 0.05 ml g"1
55

-------
4.1.4 Liquid-to-Solid Ratio and Mass of BHD
As expected, the indices of temperature changes of BHD reaction the maximum temperature increase, ATmax and the
time to reach the maximum temperature, tmax-T, are related to the conditions of BHD reactions. One of the main
factors is the liquid-to-solid ratio. Figure 4-5 is an example for BHD sample 2583-K at 37 °C. It was observed that
the ATmax was the highest when the liquid to solid ratio at 1 to 1, but the absolute ATmax was also changed with the
mass of BHD at the same liquid to solid ratio. Meanwhile, the relationship between the temperature changes and the
mass of BHD were not liner. Similar patterns were observed in the other BHD samples. Therefore, the results of the
ATmax or Wt only can be comparable under the fixed laboratory conditions, and there are no physical meanings of
the absolute values of these indexes if the conditions are unknown. It is not expected that these values or changes in
the current laboratory setting are presented in a full-scale landfill after disposal of BHD. In other words, temperature
profile in this study, including the two indices, ATmax and tmaxT, are related to the experimental conditions or
"operational definition."
2583-K @37°C
2.5G/10 ML a
5 g/10 ml
10g/10 ml
15 g/10 ml
Time (h)
10
u
O
2583-K @37°C
5 g/5 ml
10 g/10 ml
15 g/15 ml
Time (h)
Figure 4-5: Impact of liquid to solid ratio and mass of BHD on ATmax (a) and tmax-T (b) at 37 °C
Varying liquid-to-solid ratio may also impact gas generation from BHD reactions. Similar to the temperature profile
study, the gas production testing results indicated variability between samples in terms of H2 gas productivity, as
presented in Figure 4-6. Liquid-to-solid ratio impact is mainly driven by the availability of enough liquids to
completely react with the BHD sample. For example, at a liquid-to-solid ratio of 5, samples 2493-N and 2608-M
received enough liquid to completely react, and as a result, the H2 gas productivity did not vary significantly when
56

-------
the liquid-to-solid ratio increased to 20. However, for sample 2507-F, the H2 gas productivity continued to increase
as the liquid-to-solid ratio increased. In this case, the volume of liquid added was not large enough to completely
react with the baghouse sample.
100.0
90.0
80.0
70.0
60.0
50.0
40.0
30.0
2493-N
20.0
2608-M
10.0
2507-F
0.0
0
5
10
15
20
Liquid to Solid Ratio
Figure 4-6: Effect of liquid to solid ratio of BHD on the gas production (ml g1).
(50 °C. 5 days. DIW)
4.1.5 Aluminum Speciation
Since various aluminum species tend to react with liquids at different rates, the relative abundance of various species
in BHD would impact the temperature generation profile and the reaction intensity. It is noted that the aluminum
mineral phases of BHD were similar to those of salt cake, and thus, the synthetic mixture of aluminum species used
in the salt cake report can represent both salt cake and BHD. Therefore, the impact of aluminum species on BHD
reactivity was adopted from the salt cake report and is presented below to make this information easily accessible to
the reader.
As can be seen in Table 4-6, the addition of aluminum powder to the theoretical BHD simulator (Mixture I as
identified in section 2.3.2.5) had minimal impact on ATmax and W i. It is noted that some increase in temperature
was observed as a result of the addition of aluminum, as presented in Figure 4-7a. For example, the temperature of
the sample containing 20% metallic aluminum took almost 28 hours to return to the background, which suggests a
low intensity reaction. Overall however, it appears that the addition of metallic aluminum powder to the mix has a
minimal impact on its reactivity with water. Similarly, a temperature increase was observed with the addition of A1N
to the theoretical BHD and directly correlated with the A1N content (Figure 4-7b). AI4C3 also reacted with water (in
the BHD mix) to increase the reaction temperature to approximately 11° C (at 5% AI4C3 concentration). (Figure 4-
7c).
57

-------
T Experiment I
100% Mixture I 
-------
Upon the addition of A1N and metallic aluminum to the mixture I samples, the reaction temperature significantly
increased above that observed for similar individual concentrations of A1N and metallic aluminum (Table 4-6). For
example, the ATmax measured for a mixture containing 10% metallic aluminum and 2% A1N was four times more
than that generated by each individual species (Table 4-6). The temperature difference might be attributed to the
interaction of A1N with metallic aluminum. Furthermore, as presented in Figure 4-8a, the addition of various species
also tends to speed the rate of the reaction by reducing the time it takes to achieve the maximum temperature. A
similar synergetic effect on the reaction of aluminum with water was also observed in the presence of aluminum
carbide (Figure 4-8b).
58
AIN Effect
48
38
1%AIN 5% Al, 94% Mix I
1%AIN, 20% Al, 79% Mix I
i- 28
^—2% AIN, 5% Al, 93% Mix I
^—2% AIN,20% Al, 78% Mix I
24
36
Time ( h)
ALC, Effect
28
u
5%AL4C3, 5% Al, 90% Mix I
i-
<
	5% AL4C3, 10% Al, 85% Mix I
5%AL4C3, 20% Al, 75% Mix I
Time (h)
24
36
Figure 4-8: The impact of the addition of AIN and AI4C3 in BHD simulators to temperature changes
59

-------
Table 4-6: Impact of A1 speciation on temperature change in BHD simulators
	A1 (%) A1N (%) A14C3(%) Mix-I (%) ATmax(°C) tmax-T(h)
5	0	0	95	2.9	0.13
A1	10	0	0	90	3	0.13
20	0	0	80	2.9	0.17
0	2	0	98	3.9	0.03
AIN	o	5	0	95	6.3	3.9
0	10	0	90	19	3.1
AI4C3	0	0	5	95	11	2.6
5	1	0	94	13	5.2
5	2	0	93	15	5.1
A1/A1N 10	2	0	88	33	2.6
10	10	0	80	59	2.5
20	1	0	79	30	3.2
20	2	0	78	49	1.8
5	0	5	90	14	2.5
AI/AI4C3 10	0	5	85	19	2.8
20	0	5	75	32	2.5
AUO, Effect
20% Al, 27% KCI and 54% NaCI
5% AIN, 10% Al, 28% KCI and 57% NaCI
5% AIN, 20% Al, 25% KCI and 50% NaCI
10% AIN, 10% Al, 27% KCI and 54% NaCI
10% AIN, 20% Al, 23% KCI and 57% NaCI
Time ( h)
Figure 4-9: The role of AI2O3 in BHD simulators on temperature change at 37 °C
Table 4-7: Impact of Al speciation in BHD simulators on heat generation potential (ND=Not Detected)

Al
AIN
AI4C3
Total Heat (kJ)


(g)
(g)
(g)
37 °C
50 °C
Al
1
0
0
ND
ND

0
0.5
0
2.5
2.5
AIN
0
1
0
5.5
3.2

0
2
0
12
9.4

0
3
0
17
17
AI4C3
0
0
1
9
15.6

0.5
0.2
0
8.1
11

0.5
0.5
0
11
14
A1/A1N
1
0.2
0
16
20

1
0.5
0
18
24

2
0.2
0
28
37

2
0.5
0
32
39
AI/AI4C3
0.5
0
0.2
ND
9.8

1
0
0.2
ND
20
60

-------
40
:

@50°C
.-i:*
••
30





-



^20




a
-


• 0.2 g A1N, r2 = 0.99
10



• 0.5 g A1N, r2 = 0.99


r<:

• l.Og A1N, r2 = 0.99
1 1 1
0

1

1
1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1

0
0.5
1 1.5 2



Amount of Metallic A1 ( g)
Figure 4-10: The role of A1N in a mixed chemical system on heat generation potential at 50 °C
The synergetic effects of aluminum species in BHD samples are rather complicated. For example, the exclusion of
AI2O3 from the mixture containing 10% A1N and 20% metallic aluminum resulted in an increase in tmax-T by ~ 12
hours, as presented in Figure 4-9. It is noted that AI2O3 is a relatively non-reactive aluminum species.
Similar to temperature change, aluminum species had significant impacts on the heat generation potential from
BHD. The data presented in Table 4-7 indicates that a mixture of A1/A1N or AI/AI4C3 generated significantly higher
heat as compared to that of individual aluminum species, which is indicative of "synergetic effects" as previously
concluded with the temperature increase data. Additionally, at the same A1N content, the heat generation potential
increased as the A1 content increased, following a linear relationship (Figure 4-10). When the A1N content was
increased from 0.2g to l.Og, a similar relationship was observed with minimal impact on the value of heat generated
(Figure 4-9). In other words, the slope of linear correlations did not changed when the A1N varied between 0.2 and
l.Og. This indicates that the presence of A1N in BHD is necessary for the reaction to generate measurable heat;
however, the magnitude of heat generation is not linearly correlated to the amount of A1N.
4.2 Reactivity Indices
4.2.1 Maximum Temperature Change (ATmax)
BHD samples were reacted with water, as outlined in section 2.3.3, and the reaction temperature was monitored up
to 144 hours. If the ATmax was less than 1.5° C (three times the sensitivity of the thermocouples) in the whole
process, it was designed as ND (not detectable) for temperature changes. Different from the salt cake, not all BHD
samples have a temperature response. Only about ~ 50% and 75% of the BHD samples investigated at 37° C and
50° C enviromnental temperature conditions were observed to have a temperature increase, respectively.
61

-------
Table 4-8: ATmax (°C) of BHD reaction by facility
Facility 	37_^C	 	5(KC
Mean
UCL95
Range
n
N
Mean
UCL95
Range
n
N
A
8.1±19
24
ND-55
2
8
13.2±23
32
ND-51
4
8
B
UD
NA
ND
0
4
ND
NA
ND
0
4
C
2.3±3.2
31
0-4.5
1
2
3.3±2.4
25
1.6-5
2
2
D
13±24
50
0-48
2
4
11±18
41
ND-39
3
4
E
UD
NA
ND
0
2
3.3±1.3
15
2.3-4.2
2
2
F
3.5±6.6
12
0-15
2
5
6.1±4.6
12
0-13
4
5
H
2±2.4
3.2
0-9.2
11
20
3.9±3.7
5.7
0-13
14
20
I
2.8±3.1
5.3
0-8.1
5
8
12±6.7
17
4.4-24
8
8
J
4.5±2.9
9.2
1.7-7.2
4
4
8.6±1.3
11
7-10
4
4
K
4.2±5.3
9.8
ND-13
4
6
12±10
23
2.1-24
6
6
L
9.7±10
22
2.6-27
5
5
19±12
33
5.2-36
5
5
M
11±17
29
ND-38
3
6
13±17
31
ND-36
5
6
N
UD
NA
UD
0
4
0.4±0.8
1.6
ND-1.5
1
4
All Facility
4.6±10
6.9
ND-55
39
78
8.2±11
11
ND-51
58
78
NA: Not applicable, n is the number of samples with ATmax>1.5°C, and N is the total number of samples analyzed
The average ATmax at 37 and 50 ° C was 4.6 and 8.2 ° C, and ranged from ND to 55 and ND to 51, respectively
(Table 4-8). About 90% of the samples had ATmax at < 10 ° C at 37 °C compared to 74% of the samples at 50 °C. It
is noted that the variability of ATmax was high among all facilities and among samples from the same facility. The
details of the temperature profile investigation results are provided in Appendix D. However, based on the ANOVA
test with the facility and enviromnental temperature, the ATmax at 50° C was still significantly higher than that at 37
°C (p < 0.01). This supports the earlier conclusion that enviromnental temperatures can impact the reaction rate of
BHD samples. These results suggest that enviromnental temperature lias significant implications for the disposal of
BHD in MSW landfills. Depending on their design and capacity, MSW landfills tend to be well-insulated and
operate at elevated temperatures compared to ambient conditions and as a result, the reaction of BHD with liquids
tends to become more problematic. The elevated temperatures combined with the leachate in MSW landfills may
initiate the BHD reaction with liquids and the insulating properties of the landfill can further intensify the reaction.
4.2.2 Time to Reach the Maximum Temperature (tmax-T)
While, evaluation of ATmax can provide information with regards to the reactivity of the BHD samples, the time it
takes a sample to reach the maximum temperature (W-t) can provide some insight into the intensity of the reaction.
The tmax-T of BHD samples was evaluated at the two enviromnental temperatures examined. As described in the
previous section not all BHD samples had temperature responses. Here, the data presented for tmax-T (Table 4-9) was
only the samples that exhibited a temperature response. The average tmax-T was observed to be 9.9 and 5.0 h with a
range of 0.5 to 45 and 0.2 to 45 h, at 37 and 50 °C, respectively, as presented in Table 4-9.
62

-------
Facility

37 °C


50 °C

Mean
UCL95
Range
Mean
UCL95
Range
A
14±12
120
5.4-22
4.7±5.1
13
1.3-12
B
NA
NA
NA
NA
NA
NA
C
2.1
NA
2.1
5.6±2.6
29
3.7-7.4
D
1.4±1.0
10
0.7-2.1
0.9±0.7
2.7
0.4-1.7
E
NA
NA
NA
1.1±0.9
9.3
0.4-1.7
F
12±13
130
2.3-21
25±19
56
0.6-45
H
9.5±14
19
0.5-45
4.2±4.7
6.9
0.2-18
I
3.7±4.1
00
00
1.1-11
0.6±0.3
0.8
0.4-1.2
J
4.1±5.0
12
0.8-12
0.5±0.2
0.8
0.2-0.7
K
21±15
45
9.5-42
6.6±8.7
16
0.2-0.7
L
18±15
36
4.7-44
4.8±1.5
6.6
2.5-6.1
M
6.1±6.3
22
0.7-13
3.2±2.6
6.4
0.4-5.9
N
NA
NA
NA
13
NA
13
All Facilities 9.9±12
14
0.5-45
5.0±8.2
7.2
0.2-45
* This table presents only the samples that reacted and had a value for t-maxT, NA: Not applicable
As expected, the time to reach the maximum temperature at 50 °C conditions, in general, was significantly less than
that at the 37 °C conditions (p < 0.01, ANOVA test). There was an inverse correlation between the ATmax and the
t-maxT. The Pearson product moment and Spearman rank order correlation coefficients at 37 °C were -0.55 and -0.48
(p < 0.01), respectively. The corresponding coefficients at 50 °C were -0.58 and -0.59 (p < 0.01), respectively.
While the heat generation potential per gram of BHD sample is a sample specific parameter, the results here suggest
that higher enviromnental temperatures tend to intensify the BHD reaction for all samples. This means that with
increasing temperature the rate of BHD reaction will also increase. As stated earlier, this is of particular significance
for the disposal of BHD. Depending on their design and capacity, MSW landfills tend to be well insulated and
operate at elevated temperatures. When these conditions exist, the reaction of BHD with liquids tends to become
more problematic since the elevated temperatures in MSW landfills may initiate the BHD reaction and the insulating
properties of the MSW may further intensify the reaction.
4.2.3 Heat Generation Potential
The heat generation potential of BHD was evaluated as described in section 2.3.3.2. The results are outlined in Table
4-10 and the heat ranged from ND (not detectable) to 4.1 kJ g1, with an average of 1.1 kJg1. Heat generation
showed a correlation with metallic aluminum abundance in the samples, but since the XRD data is semi-quantitative
in nature, an accurate relationship between A1 content and the heat generation of BHD cannot be drawn.
63

-------
Table 4-10: Heat generation (kJ g*) from BHD reaction by facility at 50 °C
Facility
n
Mean
UCL95
Range
A
8
1.2±1.5
2.4
ND-4.4
B
3
0.12±0.21
0.64
ND-0.36
C
2
0.065±0.035
0.38
0.04-0.09
D
2
0.84±1.2
11
ND-1.7
E
1
1.62
NA.
1.6
F
4
1.9±1.2
3.8
0.57-3.5
H
8
0.71±0.66
1.3
ND-1.7
I
2
0.13±0.02
0.31
0.11-0.14
J
2
1.2±1.2
12
0.38-2.0
K
3
1.8±0.37
2.7
1.4-2.1
L
4
2.1±1.1
3.9
0.84-3.4
M
2
0.75±0.84
8.3
0.15-1.3
N
3
0.74±0.057
1.2
0.7-0.78
All Facilities
44
l.lil.l
1.4
ND-4.1
*NA: Not applicable, ND: not detectable.
Given the wide range of variables that impact BHD reactivity, it may be very simplistic to conclude that heat
generation and reactivity are correlated to a single parameter. Furthermore, there was a positive correlation of all
samples between the ATmax and heat as presented in Figure 4-11 (r2 = 0.35, n = 44, the green region in the plot
represents the 95% quantile of a bivariate normal distribution). This linear relationship is significant (p < 0.01)
based on an ANOVA model with the heat as the outcome variable and ATmax as explanatory variables. Meanwhile,
the ANOVA model also indicated that the correlation did not relate to the studied facility (Facility leverage, p =
0.08).		
4
3
2
%•# •
1
0
0
10
20
30
40
50
60
Tmax-at
Figure 4-11: The heat generation potential and ATmax (°C) from BHD reaction at 50 °C
4.2.4 Gas Generation Potential
The volume of the gas generated as a result of BHD contact with DIW (at 50° C, L/S 20/1, 5 days contact) was
measured for all BHD samples collected. As presented in Table 4-11, the net gas volume generated ranged from
0.03 to 170 ml g"1 of BHD with an average of 40 ml g"1. Approximately 70% of the samples evaluated generated gas
at less than 40 ml g"1 of BHD. The detailed gas volumes generated from BHD reactions with water by facility and
the gas composition are presented in Appendix E (Table E-l and Figure-E-1). As expected, there was a positive
correlation between the gas volume generated and the heat generation potential (Figure 4-12) (r2 = 0.19, n = 44, the
green region in the plot represents 95% quantile of a bivariate normal distribution). This linear relationship is
significant (p < 0.05) based on an ANOVA model with the heat as the outcome variable and volume of total gas
64

-------
generation as explanatory variables. Similar to the correlations between heat and the ATmax, the ANOVA model for
regression tests also indicated that gas volume produced and facility are not correlated (Facility leverage, p = 0.24).
Table 4-11: Total generated gas volume (ml g*) from BHD reaction by facility
Facility
n
Mean
UCL95
Range
A
8
43±44
80
0.3-100
B
3
12±3.6
20
9.0-16
C
2
8.8±11
110
1.2-16
D
2
69±45
470
37-100
E
1
10
NA
10
F
4
60±77
180
5.0-170
H
8
26±28
49
0.03-88
I
2
17±11
110
9.4-24
J
2
32±11
130
25-40
K
3
77±38
140
33-130
L
4
60±48
140
30-130
M
2
30±16
170
19-41
N
3
25±5.7
76
21-29
All Facilities
44
40±40
52
0.03-170
*NA: Not applicable (only one sample analyzed)
ro 2
©
I



-
•
1


I

•
1
1
;>©
•* /]
* • X*
1-
¦
1
¦ . /
1 1 1 1 ¦ ¦ ¦ 1 ¦ 1 ¦ 1 1 ¦ 1 1 ¦ 1 ¦
40 80 120 160 200
Total Gas Productivity
Figure 4-12: Correlation between total generated gas volume and heat from BHD reaction
To determine the composition of the generated gas, H2, CH4, Ammonia, and N20 were measured. It was noted that
H:S concentration was not tested in this report because the adopted technique needed relatively large gas volumes
that were not generated by most of the BHD reactions.
4.2.4.1 Hydrogen Gas (H2)
65

-------
Hydrogen (H2) was the dominant gas generated by the interaction of BHD with water and was detected in 44
samples. As presented in Table 4-12, the overall concentration of H2 in the collected gas samples ranged from below
the MRL (< 0.14%) to 100%, with an average of 89%. About 90% of the samples had a hydrogen concentration >
80% (Figure 4-13). It should be noted that the percentages presented here are based on the evolved gas generated
from the reaction of the BHD samples over a 5 day contact time period. The average productivity of hydrogen from
BHD was 1.6 mmol g"1, or 36 ml g1 (Table 4-12). Approximately 75% of the investigated samples had less than 2
mmol g"1 productivity, but 12% of the samples released a considerable amount of hydrogen (> 4 mmol g-1) in the
controlled experimental condition (Figure-E-2). Sample 2511-F generated the highest H2 productivity at 7.2 mmol
g1. Based on the samples evaluated, a conservative estimate of the mean (UCL95 on the mean) for the productivity
of H: from BHD is approximately 51 ml of H2 per gram of BHD.
	Table 4-12: Hydrogen (H2) generation from BHD reaction by facility	
Facility
n
Concentration (%)
Productivity (|a.mol g~')
Mean
UCL95
Range
A
8
94±8.2
1640±1730
2960
11-4150
B
3
97±2.6
260±210
790
22-400
C
2
67±33
1060±640
6810
610-1520
D
2
99±0.3
2240±2604
25600
400-4090
E
1
95
930
NA
930
F
4
93±8.0
2420±3220
7540
170-7190
H
8
73±45
970±1190
1960
0-3650
I
2
85±18
12805±410
4930
990-1560
J
2
83±15
2080±1880
19000
750-3410
K
3
98±3.2
3440±1630
7480
1860-5110
L
4
97±3.3
2300±1970
5430
1240-5250
M
2
97±3.2
1230±710
7600
720-1730
N
3
97±2.1
990±210
2870
840-1140
All Facilities
44
89±22
1620±1670
2120
0-7190
NA: Not applicable (only one sample analyzed)

0% 0% 0%
0.80
-0.70
-0.60
0.50
-0.40-Q
fL
0.30
-0.20
-0.10
10 20 30 40 50 60 70 80 90 100
H2 concentration
Figure 4-13: Distribution of percent hydrogen from gas generated by BHD reaction
66

-------
A positive correlation was observed between the ATmax and the H2 productivity (Figure 4-14a), as well as heat and
the H: productivity (Figure 4-14b). For example, the Pearson Product Moment and Spearman Rank Order
correlation coefficients for ATmax and productivity of H2 were 0.49 (p <0.001) and 0.64 (p <0.001) at 37 °C, and the
corresponding coefficients were 0.51 {p <0.001) and 0.55 (p < 0.001) at 50 °C. The presence of H2 gas at such high
levels might pose a particular concern for the end-of-life management of BHD. Hydrogen is explosive in a range (in
air) of 4 to 79%, and as a result, can potentially cause fires. Hydrogen is of even greater concern for the landfill gas
export if generated in MSW landfills. Apart from being a fire hazard when mixed with CH4, landfill gas collection
transportation and treatment systems are not designed to handle H2 since MSW landfill gas generally consists of
CH4 and C02 at ~ 50/50 ratio, since the full combustion requirement of oxygen for methane and mixed gas are
different from that of hydrogen [109], It make more trouble for the landfill gas transport, and gas applications [110],
o
E
E
i>
¦>
CM
X

1 1 1 1 l 1—l l 1 1 1-1

e



S / j


.y ® /
7


V •• /
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

10
20 30
Tmax-at
40
50
60
Figure 4-14: Correlation between H2 productivity and ATmax (a), and H2 productivity and heat from BHD
reaction (b)
4.2.4.2 Methane Gas (CH4)
Methane (CH4) was the second most abundant gas detected from the BHD reactions (Table 4-13). The average
productivity of CH4 was ~ 0.03 mmol g"1 (0.6 ml per gram BHD, Figure-E-3). However, not all BHD samples
generated CH4 with 45% of the samples generating CH4< MRL (0.14%, 0.05 ml g"1). Approximately 95% of the
remaining samples generated CH4 gas at less than 10% by volume (Figure 4-15).
67

-------
i^M
77%
18%
no/ 00/
0% 0% 0% I I 0% 0% 0% 0% I I
	1	r	^	•——1	¦	^	1
0	10	20	30	40	50	60
CH4 concentration
Figure 4-15: Distribution of percent of the CH4 concentration (%) from BHD reaction
Assuming that the CH4 generation resulted from the reaction of aluminum carbide with liquids, the average
aluminum carbide content of BHD would be 0.4% with a 0.5% UCL95 on the mean. Compared to H;. the average
productivity of CH4 was about 83% lower than that of H;. Like hydrogen methane can be an explosive gas and care
must be taken if BHD reacts with liquids. But unlike with hydrogen, the gas collection and treatment system in an
MSW landfill is designed to handle methane gas—a greenhouse gas generated during the anaerobic decomposition
of MSW.
	Table 4-13: Methane (CH4) generation from BHD reaction by facility	
Productivity (|j,mol g1)
Facility	n Concentration (%) 	I	



Mean
UCL95
Range
A
8
ND
ND
NA
ND
B
3
2.1±2.7
16±16
41
ND-33
C
2
29±30
27±38
370
ND-54
D
2
0.34±0.48
22±8.5
98
16-28
E
1
3.9
9.6
NA.
9.6
F
4
2.8±4.6
56±62
155
ND-145
H
8
1.8±2.5
31±40
64
ND-104
I
2
15±17
60±52
530
23-97
J
2
5.1±0.98
23±33
315
ND-46
K
3
1.5±3.0
54±94
286
ND-162
L
4
3.1±3.4
56±51
137
ND-114
M
2
2.5±3.6
20±28
267
ND-39
N
3
2.0±2.9
24±34
329
ND-48
All Facilities
44
3.7±8.7
29±42
42
ND-162
*NA: not applicable (only one sample analyzed), ND: not detectable and <5 (.unol g"1
68

-------
-0.60
-0.40 =
20%
-0.20
67 *| o 20 3040 60100 200300 500 1000 4000 10000
Gas NH3 Concentration
100000
0.40
-0.30
-0.20 o-
-0.10
01 0.2 0.40.71 2 3 4 56710 2030 50 1 00 200 400 1 00 0 3000 1 00 00 1 00 0 00
NH4 concentration in leachate
0.30 ^
0.20 a.
2 3 4 5 67 1 0 20 3040 601Q0 200300 5001QQQ 4000 1QQQO 30000
Productivity of total Ammonia
Figure 4-16: Distribution of the (a) gaseous NH3 concentration (ppmv), (b) aqueous NH4 (mg L1) and (c) total
ammonia (|imol g1) from the BHD reaction
69

-------
4.2.4.3 Ammonia (gaseous and aqueous NH3):
Ammonia, both gaseous and aqueous, is also a byproduct of BHD reactions with liquids. As presented in Table 4-
14, the average concentration of gaseous ammonia was 2.6 % and ranged from 86 ppmv (parts per million by
volume) to 26% (v/v). It is noted that there were significant variations among facilities, as well as in samples within
the same facility. About 80% of samples released ammonia gas with relatively high concentration (>100 ppmv)
(Figure 4-16a). The average productivity of ammonia gas was 11 |.imol g1 with a range from 0.1 to 240 |_unol g1
(Figure-E-4a). Ammonia gas lias a distinctive odor and humans are able to detect ammonia gas down to a level as
low as 5 ppmv. From a human health perspective, the concentration of ammonia gas resulted from the BHD reaction
was relatively high and can be of concern.
The concentration of aqueous ammonia (NH4+) ranged from 0.8 to 11,200 mg L1 with an average of 1,800 mgL1
(Table 4-14). As presented in Figure 4-16b, ~ 43 % of the aqueous ammonia concentrations were > 1,000 mg L1
(Figure 16b). The ammonia productivity in the gas was significantly lower than in the liquid, despite the alkaline pH
of the liquid phase (Figure-E-4b). This may be attributed to the fact that the experiment was conducted in a closed
system where the relatively low Henry's constant for ammonia gas (0.75atm [111] ) resulted in the majority of
ammonia gas fraction being in the liquid phase. To put this in context, H2 and CH4 gases have Henry's constants of
68,300 atm and 37,600 atm respectively [111]. It is noted that MSW landfills are open systems, and thus, ammonia
in the gas may be significantly higher than the levels detected in this experiment, causing widespread odor problems
in landfills as a result of BHD reactivity. The level of NH4+ resulting from the BHD reactions is significantly higher
than the levels found in landfills [112], and as a result, the ammonia generated from BHD may have a detrimental
impact on the performance of MSW landfills. The total ammonia productivity had an average of 2.2 mmol g"1 (Table
4-14). Around 46% of the samples had a total ammonia productivity more than 1.0 mmol g"1 (Figure 4-16c).
Table 4-14: Ammonia generation from BHD reaction by facility
Facility
n
NH3,g)
NH4+
(liquid)
Total
Concentration
(%)
Productivity
(|j.mol g1)
Concentration
(mgL1)
Productivity
(|j.mol g1)
(|amol g1)
A
8
4.4±7.8
3.3±4.3
120±120
194±205
198±205
B
3
0.55±0.72
3.1±2.5
430±110
1030±960
1030±960
C
2
4.0±2.5
12±4.1
2,400±1,300
2320±2260
2340±2260
D
2
0.46±0.21
7.4±8.0
3,500±4,000
4430±4330
4440:4340
E
1
0.41±NA
2.5
1,200±NA
1380
1390
F
4
4.4±8.6
11±16
2,300±1,800
2750±2080
2760±2080
H
8
2.8±5.4
4.2±5.4
700±760
1270±1730
1270±1730
I
2
0.4±0.25
6.0±5.2
3,600±880
4940±1920
4950±1920
J
2
12±16
120±170
7,200±2,800
5690±7690
5810±7860
K
3
0.12±0.20
1.3±1.4
2,900±5,600
3190±5270
3200±5380
L
4
0.29±0.12
7.1±3.3
2,700±3,500
4230±6200
4230±6200
M
2
0.46±0.37
7.3±8.1
3,100±4,400
3680±5200
3690±5190
N
3
0.92±0.71
8.5±5.0
410±390
488±463
496±458
All Facilities
44
2.6±5.8
11±36
1,800±2,700
2200±3230
2210±3250
*NA: not applicable (only one sample analyzed)
70

-------
4.2.4.4 Nitrous Oxide (N20)
BHD reactions with liquids can also generate nitrous oxide (N20) gas, which is a greenhouse gas that contributes
approximately 6% to the total radiative forcing of the earth's atmosphere [113], For BHD samples from some
facilities, significantly higher concentrations of N20 gas were generated compared to the N20 level in the
atmosphere (330 to 350 ppbv [114]). The average concentration of N20 gas was 44,000 ppmv, with a range from
1.2 to 960,000 ppmv (Table 4-15). It should be pointed out that the observed high concentrations of N20 only
occurred in samples with minimal gas productivity, and there was high variability in the level of N20 generated
among facilities and within samples from the same facility.
The average productivity of N20 from BHD was 280 mnol g_1with a large range variations from 0 to 450 nmol g"1
(Table 4-15). Approximately 32% of the samples generated less than 10 mnol g"1 N20 (Figure 4-16). Research
suggests that N20 gas can be generated from ammonia directly [115], Therefore, to examine if ammonia was the
source of N20 gas generated in the study, the N20 productivity was plotted against the total ammonia productivity
and no correlation was found between the two measurements at a 5% level of significance.
	Table 4-15: Nitrous oxide (N2O) generation from BHD reaction by facility	
Productivity (|amol g1)	Concentration (ppmv)


Mean
Mean
UCL95
Range
A
8
0.31±0.57
15,000±41,000
49,000
1.2-116,000
B
3
0.003±0.003
11±2.9
18
7.8-14
C
2
ND
150±100
1,100
80-230
D
2
1.3±1.8
32±36
350
6.7-57
E
1
0.003
6,000±NA
NA*
6,000
F
4
0.015±0.012
19±23
55
1.8-50
H
8
0.72±1.64
230,000±420,000
580,000
3.5-960,000
I
2
0.47±0.65
480±620
6,000
45-920
J
2
0.03±0.006
20±19
190
6.4-33
K
3
0.02±0.01
6.4±3.9
13
2.0-11
L
4
0.012±0.007
8.2±6.6
19
1.8-14
M
2
0.018±0.013
20±21
210
5.0-35
N
3
0.004±0.001
3.8±0.58
9
3.4-4.2
All Facilities
44
0.28±0.84
44,000±190,000
1,000,000
1.2-960,000
*NA: not applicable (only one sample analyzed), ND: not detectable
71

-------
55%
32%
5%
0.50
0.40
h0.30"§
o
-0.20
-0.10
—i—i—i i 1111	1—i—i—i 1111	1—i—i i 1111	1—i—i—i 1111
-| 2 3 4 5 6 78-j Q 20 30 40 60 -|Q0 200 400 600-|QQQ 2000 4000-|QQQQ
Productivity of N20
Figure 4-17: Nitrous oxide (N2O) productivity from BHD reaction
4.3 Discussion
From the view of a chemist, it is not new that the metallic aluminum can react with water to release hydrogen
though the thin layer of aluminum oxide, AI2O3, usually protects the surface of metallic aluminum and prevents the
reaction [55, 116], Temperature becomes one of the key factors to control in this reaction[117]. On the other hand,
metallic aluminum can produce localized pitting and rupture of the alumina layer on aluminum particles with other
chemicals, like water soluble inorganic salts, especially the chloride ions [118, 119], These effects have been
enhanced with the combined metal oxide. For example, the hydrogen generation level is the function of oxide
addition at the range of 0.5 to 4% by weight [55], It was confirmed that aluminum oxide-modified aluminum
powder could continuously react with water and generate hydrogen at room temperature under atmospheric pressure.
The aluminum oxide may be in the form of bayerite, boehmite, gamma alumina or alpha alumina [55], The alumina
could then react with water to produce boehmite, which would grow in thickness until the boehmite reacted with the
underlying aluminum to produce hydrogen bubbles at the aluminum-boehmite interface. Under suitable conditions,
these bubbles would then rupture the AI2O3 layer, leading to the activation of aluminum for the reaction with water
[120] (Figure 4-18).
(a) Induction stage (no film growth)
Al 0,+ H O -> 2AIOOH
Hydration front
(b) AIOOH film growth and formation of H? bubbles
6AIOOH + 2AI -» 4AI,0, + 3H 1
AIOOH
72

-------
Figure 4-18: Reaction mechanism of water with an alumina-coated aluminum particle[120].
It is noted that the promotional effect of alumina is also related to its content in the mixture, from the view of total
amount of hydrogen, induction time and maximum hydrogen generation rate. Suitable amounts of alumina (e.g.,
30% volume) can significantly increase the maximum hydrogen generation rate with a relatively long induction
time, whereas the high amount of alumina reduces the hydrogen generation rate and the total amount of hydrogen,
but with a short induction time [121, 122], It was also reported that the activation of aluminum is related to the
microstructure of A1 powder [123], and formation of aluminum carbide [124], Computational analysis [125] and
recently experiments were further demonstrated that the high surface area and poor crystalline of Al(OH)3 promote
hydrogen generation in an aluminum-water system [126-128], This hypothesis is consistent with the observations of
the reactivity of BHD from SAP. Since BHD contains a considerable amount of A1N, its oxides and small amount
of aluminum carbide, both of them can react with water to generate a series of aluminum hydroxides and oxides,
including bayerite (Al(OH)3), aluminum hydroxide boehmite (AIO(OH)) and aluminum oxide (Al203)[64, 65, 67,
129], These reactions do not only increase the reaction temperature, but also further promote the reaction of metallic
aluminum in BHD with water to generate hydrogen due to the catalysis effect from these new formed aluminum
hydroxides and aluminum oxides. This hypothesis has been further confirmed by a series of A1N hydrolysis
experiments, which will reported elsewhere [130], Meanwhile, BHD contains soluble salts (e.g., NaCl, KC1 and
CaF2), and oxides (alumina and MgO), all of them might be have these promotional effects in the reactivity of BHD
[55],
In other words, BHD reactivity with water is driven by the hydrolysis of metallic aluminum under some degree of
initiation from the hydrolysis of A1N with a possible contribution from AI4C3. The correlations between the metallic
aluminum abundance and the hydrogen productivity and heat generation (Figure 4-19) further support this
conclusion. The linear relationships are significant (p <0.01), based on an ANOVA model with either hydrogen
productivity or heat as the outcome variable, and metallic aluminum abundance as an explanatory variable.
Meanwhile, the ANOVA model also indicated that the correlations did not relate to the studied facility (Facility
leverage, p = 0.89 for hydrogen productivity, and p= 0.06 for heat). It should be pointed out that the conclusions are
based on the 44 BHD samples from 13 facilities throughout the country. The statistics also indicated that there were
no differences in the total metals and temperature response of the 78 total samples and the 44 selected samples that
were used for gas and leaching tests. The results of this report present a detailed, wide-ranging attempt to
characterize the cause and ultimate impacts of disposing BHD dust from SAP facilities, and carries important
implications for landfill management, both in terms of how these materials can impact landfill temperatures and the
degree that these materials react under conditions that were modeled to be similar to those found in landfills.
Even though there were correlations between the metallic aluminum abundance in BHD with the hydrogen
productivity and heat of BHD samples in the current laboratory setting, both productivity of hydrogen and total
ammonia by BHD reactions in the current laboratory setting were still much lower than expected by the
stoichiometry of A1 and A1N with water. The highest abundance of metallic aluminum content in the tested 44 BHD
samples was 28%. Based on the stoichiometry, 1 mol A1 can generate 1.5 mol or 36.6 L hydrogen, making the
potential hydrogen productivity of that BHD as high as 15 mmol g"1, and thus only partial metallic aluminum in the
BHD samples reacted with DI water (Figure-E-5). The same circumstance was observed for the hydrolysis of A1N
in the BHD samples. This might be one reason why the measured heat from BHD reactions was changeable with the
environmental temperature (Table 4-1). The results of gas productivity in different liquids (Table 4-5) further
demonstrated that the reactions of BHD were complicated.
73

-------
5 10 15 20 25 30
Metallic Al abundance
5 10 15 20 25 30
Metallic Al abundance
Figure 4-19: Correlation between (a) Eh productivity and (b) heat and metallic aluminum abundance in BHD
On the other hand, all results in this report were achieved under laboratory conditions, and the results are strongly
related to the operational conditions. The results of the ATmax or Wt, gas productivity and even the heat generation
can only be comparable under the fixed laboratory conditions of these tests and cannot be extrapolated to conditions
in an actual landfill. In fact, all conditions in the laboratory setting are different from actual situations of BHD
disposal and landfill operations. Therefore, the data and results presented herein may not necessarily be
representative of how BHD would behave under various handling and disposal conditions in landfills. Additional
work is necessary to understand the mechanism of reaction of metallic aluminum in BHD in landfills. Many
questions concerning the management of BHD disposal are still unanswered and more work is necessary for the best
management of disposal of BHD in the future.
74

-------
5. CONCLUSION
The findings presented in this report provide useful information that may be used by managers of secondary
aluminum processing (SAP) facilities and solid waste disposal facilities, as well as regulators, to determine the best
management practices forbaghouse dust (BHD, a type of SAP waste). BHD samples collected from 13 SAP
facilities across the USA were characterized and tested for reactivity with water under controlled laboratory
conditions. The major findings of this research are highlighted as follows.
5.1	Baghouse Dust Characteristics
A total of 78 BHD samples from 13 SAP facilities across the USA were evaluated for MC, WHC, total metals and
seven RCRA metals by TLCP. 44 of these samples were further evaluated for their crystalline phases and leachable
metals, pH and EC at high temperature environments after the BHD's reaction with deionized water under anaerobic
conditions. Overall, BHD samples had a large degree of inter- and intra-sample variability, which could be attributed
to variability of the air emission sources, conditions at the processing facilities, sample processing and/or analysis.
The moisture content of the BHD samples investigated had an average value of 3.5% and ranged from 0.1 to 27%
(w/w). The average water holding capacity of BHD was 75%, and ranged from 1.7 to 250%. BHD samples were
alkaline. When reacted with deionized water (DIW, pH 6.2, 1:20 solid-to-liquid ratio, 50 °C, 5-d test), the pH of
BHD ranged from 6.3 to 12.3 with an average of 9.6. The pH of approximately 66% of the BHD samples was in the
range of 9 to 11. The electrical conductivity (EC) of BHD was high and exhibited high variability among samples.
The average EC was 23 mS cm"1 and ranged from 15 to 63 mS cm1.
The average total aluminum (Al) content in the BHD samples was 19%, and ranged from 2.6% to 60%.
Approximately 80% of the BHD samples contained total aluminum at concentrations between 5 and 25%, and only
6% of the BHD samples contained aluminum at concentrations greater than 40%. Other elements were also detected
in BHD samples, and the general order of the elemental content was Al > Na > K > Ca > Mg > Fe > Zn > Cu > Mn
> Pb > Cr > Cd > As > Se.
Al was detected in the leachate from all 44 BHD samples. The average concentration of aluminum was 14 mg L1
with a range of 0.32 to 170 mg L"1. The concentrations of heavy metals were relatively high in the leachate of some
BHD samples (e.g., >100 mg L1 As and Cu). The leachability of an element was defined as the percentage of the
mass leached divided by the mass determined using total metal analysis. The average leachability of Al from BHD
was 0.18%. Approximately 95% of the BHD samples leached less than 1% of the total aluminum content. The
average leachability of As, Cr, Cd, Cu, Mn, Pb, Se and Zn of the investigated BHD samples was 6.7, 0.44, 1.5, 0.82,
1.2, 1.5, 14 and 0.53%, respectively (high variability was observed). Overall BHD leachate contained elevated total
metal content, and some BHD samples exceeded the toxicity limit for three of the eight RCRA metals (Hg was not
analyzed).
The dominant crystalline aluminum minerals in the BHD samples were metallic aluminum (Al), aluminum nitride
(A1N) and its oxides, spinel (magnesium aluminum oxide, AhMgO/i), elpasolite (K2NaAlF6) and different forms of
aluminum oxide. Sylvite (potassium chloride, KC1), halite (sodium chloride, NaCl) and fluorite (CaF2) were also
identified by XRD analysis. Some BHD samples also contained relatively high amounts of quartz (Si02) and calcite
(CaCOs) at > 50%. Metallic aluminum abundance in BHD was found to have a high variability, from undetectable
to 28%, with an average of 5.5% of the mass, whereas the total aluminum nitride abundance ranged from
undetectable to 13% with an average of 4.9%. Both aluminum carbide (AI4C3) and aluminum sulfide (AI2S3) were
not detected by XRD analysis.
5.2	Baghouse Dust Reactivity
The temperature profile of the BHD reaction with water (the maximum temperature change, ATmax [°C] and the time
to reach the highest post-reaction temperature, W [h]), the heat generation potential and the gas generation potential
75

-------
were the key indices employed to evaluate the baghouse reactivity with water. The impact of various factors on
BHD reactivity was also investigated. The findings of these evaluations are highlighted below.
The environmental temperature, liquid composition, liquid-to-solid ratio and aluminum speciation in BHD were
found to significantly influence BHD reactivity.
The increase in environmental temperature resulted in increasing ATmax, decreasing the Wax (h), increasing heat
generation and increasing H2 productivity. The differences between the behaviors of the BHD samples in response
to a change in environmental temperature could be attributed to variation in the speciation of aluminum present in
the BHD samples.
The chemical composition of the investigated liquid reacting with BHD had minimal impact on the magnitude of the
reaction (ATmax), however, these results do not necessarily mean that other solution chemistries (e.g., alkaline) will
not impact the extent of BHD reactivity. Despite the minimal change in the ATmax, the time to reach maximum
temperature (W i) was impacted by the change in liquid composition. The gas productivity of BHD was
significantly impacted by the liquid composition with the highest H2 gas productivity obtained in the cases of
alkaline solutions (0.1 M NaOH) and DIW.
Various aluminum species tended to react with liquids at different rates. The data presented in the report
demonstrated that at concentrations many times higher than those observed in actual BHD samples, the individual
aluminum species are unable to produce elevated temperatures to explain some of the field data observed at BHD
disposal sites. The reaction temperatures achieved independently by each aluminum species are not additive, which
further suggests a synergetic effect between aluminum species. Similar to temperature change, aluminum species
had significant impacts on the heat generation potential from the synthetic BHD. The results also showed that the
presence of A1N in BHD is necessary for the reaction to generate measurable heat. However, the magnitude of heat
generation is not linearly correlated to the amount of A1N.
The metallic aluminum in BHD is the key component responsible for BHD reactivity. There is a trigger effect of
A1N and AI4C3 involved in the reaction of aluminum with water. The trigger effect of A1N on the reaction of
metallic aluminum with water was demonstrated.
Out of the 78 BHD samples investigated, only ~ 50% and 75% of the samples had temperature responses at 37° C
and 50° C environmental temperature conditions, respectively. The average ATmax for reaction temperatures 37° C
and 50° C was 9.2 and 11° C, and ranged from 0 to 55 and 0 to 50° C, respectively. For the samples with
temperature response, the average time to reach the maximum temperature (tmaxr) for reaction temperatures 37° C
and 50° C was 9.9 and 5.0 h, and ranged from 0.5 to 45 and 0.2 to 45 h, respectively.
The heat generation potential of the 44 BHD samples ranged from undetectable to 4.1 kJ g1 with an average of 1.1
kJ g-1. Heat generation showed a correlation with the metallic aluminum content of the samples, but since the XRD
data is semi-quantitative in nature, an accurate relationship between metallic aluminum content and the heat
generation of BHD cannot be drawn. Given the wide range of variables that impact BHD reactivity, it may be overly
simplistic to conclude that heat generation and reactivity are correlated to a single parameter. Furthermore, there was
a positive correlation between the ATmax and heat.
The generated gas volume from the 44 BHD samples ranged from 0.03 to 170 ml g"1 of BHD, with an average of 40
ml g"1 (40 m3 tonne1) with -70% of the samples generating < 40 ml g"1 of BHD. It is noted that gas can be generated
from BHD, which is an important index for BHD reactivity because some samples show no temperature response
when reacted with liquids, yet a measurable gas quantity was generated. This shows that BHD can still react, but the
reaction rate is so slow that the increase in temperature may not be observed. Therefore, measuring gas productivity
is preferable over temperature increase as a key index for BHD reactivity.
Hydrogen (H2) was the dominant gas generated from BHD. The average concentration of H2 in the collected gas
samples was 82% (v/v). The average productivity of H2 from BHD was 1.6 mmol g"1, or 36 m3 tonne1. About 12%
of BHD samples generated more than 4 mmol g"1 H2 under the experimental conditions. A positive correlation was
76

-------
observed between the H2 productivity and the ATmax, as well as heat.
Methane (CH4) was the second most abundant gas detected from the BHD reaction. Methane gas was measured in
55% of the samples evaluated, and typically at concentrations less than those measured for hydrogen. The average
productivity of CH4 was ~ 0.03 mmol g"1, which is only 2% of the H2 gas productivity.
The average concentration of ammonia in gas was 2.6 % and ranged from 86 ppmv to 26%. The average
productivity of ammonia gas (NH3(g)) was 11 |.imol g1.
The concentration of aqueous ammonia (NH4+) ranged from 0.8 to 11,200 mg L1 with an average of 1,800 mg L1.
Approximately 40% of the BHD samples generated > 1,000 mg L1 of the aqueous ammonia. The level of NH4+
resulting from the BHD reaction is significantly higher than the levels found in landfills, and as a result the ammonia
generated from BHD may have a detrimental impact on the performance of MSW landfills.
The total ammonia productivity had an average of 2.2 mmol g"1. Around 55% of the samples had a total ammonia
productivity less than 1.0 mmol g"1.
Only partial metallic aluminum and aluminum nitride in the BHD were reacted with water in the current laboratory
setting, and the reactivity of BHD (e.g., the productivity of hydrogen, heat and temperature changes, etc.) was
related to the conditions of reaction.
77

-------
6. REFERENCES
1.	Green JAS (ed.): Aluminum Recycling and Processing for Energy Conservation and Sustainability.
Materials Park, OH: ASM International; 2007.
2.	Hagelstein K: Globally sustainable manganese metal production and use. Journal of Environmental
Management 2009, 90(12):3736-3740.
3.	IAI: Global Aluminium Recycling: A Cornerstone of Sustainable Development. In.: International
Aluminium Institute; 2009.
4.	Schlesinger ME: Aluminum Recycling. Boca Raton, FL: CRC Press; 2007.
5.	Schmitz CJ: Handbook of Aluminum Recycling: Vulkan-Verlag GmbH; 2007.
6.	USEPA: EPA Superfund Record of Decision: Brantley Landfill EPA ID: KYD980501019, OU01, Island,
KY, 12/14/1994. In USEPA Region IV: USEPA; 1995: 157.
7.	Swackhamer RD: Interim remedial action plan, RAMCO aluminum waste disposal site, Port of Klickitat
Industrial Park Dallesport, WA. In.: Washington State Department of Ecology; 2006.
8.	Gerbasi G: Heating event at Countywide landfill. In Edited by OhioEPA. OhioEPA: OhioEPA; 2006: 6.
9.	Szczygielski T: Fire in the hole: Aluminum dross in landfills. Waste Management J Natural Resources and
Environmental Law 2007, 22(2):159-174.
10.	Allen PS: Aluminum Production Waste Advisory, Part II. In. Edited by Division of Solid and Infectious
Waste Management OE. Columbus, OH: OhioEPA; 2007: 4.
11.	Newark Processing/Licking River Bank Stabilization Project
[http://epa.ohio.gov/cdo/newark processing.aspxl
12.	Calder GV, Stark TD: Aluminum Reactions and Problems in Municipal Solid Waste Landfills. Journal of
Hazardous, Toxic, and Radioactive Waste 2010, 14:258-265.
13.	Huang X-L, Badawy AME, Arambewela M, Ford R, Barlaz MA, Tolaymat T: Environmental
Characterization of "Salt Cake" from Secondary Aluminum Processing Waste In: 2012 Global Waste
Management Symposium. Phoenix, AZ, USA; 2012.
14.	Stark TD, Martin JW, Gerbasi GT, Thalhamer T, Gortne RE: Aluminum Waste Reaction Indicators in a
Municipal Solid Waste Landfill. Journal of Geotechnical and Geoenvironemtal Engineering, ASCE
2012(3):255-261.
15.	Huang X-L, Badawy AE, Arambewela M, Ford R, Barlaz MA, Tolaymat T: Characterization of salt cake
from secondary aluminum production Journal of Hazardous Materials 2014, 273:192-199.
78

-------
16.	Reuter M, Xiao Y, Boin U: Recycling and environmental issues of metallurgical slags and salt fluxes. In:
7th International Conference on Molten Slags Fluxes and Salts: 2004; Cape Town, South Africa: Camera
Press, Johannesburg; 2004: 349-356.
17.	Gil A: Management of the salt cake from secondary aluminum fusion processes. Industrial & Engineering
Chemistry Research 2005, 44(23):8852.
18.	Lucheva B, Ts. Tsonev and R. Petkov: Non-Waste Aluminum Dross Recycling. Journal of the University
of Chemical Technology and Metallurgy 2005, 40(4):335-338.
19.	Shinzato MC, Hypolito R: Solid waste from aluminum recycling process: characterization and reuse of its
economically valuable constituents. Waste Management 2005, 25(l):37-46.
20.	Lorber KE, Antrekowitsch H: Treatment and disposal of residues from aluminium dross recovery. In: 2nd
International Conference on Hazardous and Industrial Waste Management. Crete,Greece: Technical
University of Crete (GR),University of Padua (IT),Hamburg University of Technology (DE) and IWWG-
International Waste Working Group; 2010: B.2.1.
21.	SINTEF: Roadmap from Europe and North America Workshop on Aluminum Recycling. In: Roadmap
from Europe and North America Workshop on Aluminum Recycling: 2010; Tronheim, Norway. SINTEF,
The Research Council of Norway, NTNU; 2010: 28.
22.	Tsakiridis PE: Aluminium salt slag characterization and utilization - A review. Journal of Hazardous
Materials 2012, 217-218(0): 1-10.
23.	TAA: The envoronmental footprint of semi-finshed aluminum productions in North America. In.: The
Aluminum Association; 2013.
24.	Facts at a Glance - 2013 [http://www.aluminum.org/sites/default/files/FactSheet2013.pdfl
25.	Aluminum Can Recycling Holds at Historically High Levels [http://www.aluminum.org/news/aluminum-
can-recvcling-holds-historicallv-high-levelsl
26.	Aluminum [http://www.epa.gov/wastes/conserve/materials/alum.html
27.	Aluminum Production: Producing Aluminum Sustainably
[http ://www. aluminum, org/sustainabilitv/aluminum-productionl
28.	Bray EL: USGS Aluminum Mineral Commodity Summaries. In. Edited by United-States-Geological-
Survey; 2009.
29.	Azom: Aluminium Dross Recycling - A New Technology for Recycling Aluminium Waste Products. In:
The A to Z of Materials; 2003.
79

-------
30.	Hwang JY, X. Huang and Z. Xu: Recovery of Metals from Aluminum Dross and Salt Cake. Journal of
Minerals & Materials Characterization & Engineering 2006, 5(l):47-62.
31.	Masson DB, Taghiei MM: Interfacial Reactions between Aluminum Alloys and Salt Flux during Melting.
Materials Transactions, JIM 1989, 30(6):411-422.
32.	Tenorio JAS, Carboni MC, Espinosa DCR: Recycling of aluminum - effect of fluoride additions on the salt
viscosity and on the alumina dissolution. Journal of Light Metals 2001, 1(3): 195-198.
33.	Utigard TA, Friesen K, Roy RR, Lim J, Silny A, Dupuis C: The properties and uses of fluxes in molten
aluminum processing. JOM1998, 50(11):38-43.
34.	Utigard TA, Roy RR, Friesen K: The roles of molten salts in the treatment of aluminum. Canadian
Metallurgical Quarterly 2001, 40(3):327-334.
35.	Tenorio JAS, Espinosa DCR: Effect of salt/oxide interaction on the process of aluminum recycling. Journal
of Light Metals 2002, 2(2):89-93.
36.	Kulik GJ, Daley JC: Aluminum dross processing in the 90's. In: Second International Symposium:
Recycling of Metals and Engineered Materials. Edited by van Linden JH, Stewart DL, Sahai Y: The
Minerals, Metals & Materials Society; 1990: 427-437.
37.	Peterson RD, Newton L: Review of aluminum dross processing. Light Metals 2002:1029-1037.
38.	Anigstein R, Thurber WC, Mauro JJ, Marschke SF, Behling UH: Potential recycling of scrap metal from
nuclear facilities, Appendix B: Aluminum recycling In. Washington DC: USEPA; 2001.
39.	Lopez-Delgado A, Tayibi H, Lopez FA: Treatments of aluminium dust—a hazardous residue from
secondary aluminium industry. In: Focus on Hazardous Materials Research. Edited by Mason LG. New
York: Nova Science Publishers, Inc.; 2007: 1-52.
40.	ISO: ISO-4225: Air quality - General aspects - Vocabulary. In Geneva.: International Organization for
Standardization; 1994: 24.
41.	IUPAC: Glossary of atmospheric chemistry terms. Pure and Applied Chemistry 62 (11):2167-2219 1990,
62(11):2167-2219.
42.	Viland JS: A Secondary's View of Recycling. In: Second International Symposium: Recycling of Metals
and Engineered Materials. Edited by Jan H. L. Van Linden, Donald L. Stewart, Sahai Y. Warrendale,
Pennsylvania: A Publication of The Minerals, Metals & Materials Society; 1990 21.
43.	Breault R, Tremblay SP, Huard Y, Mathieu G: Process for the preparation of calcium aluminates from
aluminum dross residues. In: United States Patents and Trademark Office. USA; 1995: 10.
80

-------
44.	Lopez FA, Medina J, Gutierrez A, Tayibi H, Pena C, Lopez-Delgado A: Treatment of aluminium dust by
aqueous dissolution. Tratamiento delpolvo de aluminio mediante disolucion acuosa 2004, 40(5):389-394.
45.	Huang XL, Tolaymat T, Ford R: Heavy Metals in Salt Cake from Secondary Aluminum Production I. Total
Metal Content. In: 2011 World Congress on Engineering and Technology (CET2011): Oct 28-Nov 2, 2010.
2011; Shanghai, China: IEEE Press; 2011: 910-914.
46.	Martin J, Stark, T., Thalhamer, T., Gerbasi, G., and Gortner, R. : Detection of Aluminum Waste Reactions
and Waste Fires. Journal of Hazardous, Toxic, and Radioactive Waste 2013, 17(3):164-174.
47.	USDOE: Recycling of aluminum dross/salt cake. In: Office of industrial technologies,Energy Efficiency
and Renewable Energy, U.S. Department of Energy; 1999: 2.
48.	TAA: Aluminum: The Element of Sustainability. In The Aluminum Association; 2011.
49.	European-Commission: Commision decision of 3 May 2000 replacing Decision 94/3/EC establishing a list
of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision
94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC
on hazardous waste. In: L226/3. Edited by European-Commission. Official Journal of the European
Communities; 2000: 22.
50.	European-Commission: Council Directive of 12. December 1991 on hazardous waste (91/689/EEC),
ANNEX III: Properties of wastes which render them hazardous. In: L0689-EN-22071994-001001-10.
Edited by European-Commission. Official Journal of the European Communities; 1991: 11.
51.	EAA/OEA: Aluminium Recycling in Europe: The Road to High Quality Products. In. Edited by European-
Aluminium-Association, Organisation-of-European-Aluminium-Refiners-and-Remelters. Brussels; 2006:
52.
52.	Belitskus D: Reaction of Aluminum with Sodium Hydroxide Solution as a Source of Hydrogen. Journal of
The Electrochemical Society 1970, 117(8):1097-1099.
53.	Huang X, Gao T, Pan X, Wei D, Lv C, Qin L, Huang Y: A review: Feasibility of hydrogen generation from
the reaction between aluminum and water for fuel cell applications. Journal of Power Sources 2013,
229:133-140.
54.	Nie H, Zhang S, Schoenitz M, Dreizin EL: Reaction interface between aluminum and water. IntJHydrog
Energy 2013, 38(26): 11222-11232.
55.	Petrovic JJ, Thomas G: Reaction of Aluminum with Water to Produce Hydrogen, Version 1.0 - 2008 edn:
U.S. Department of Energy; 2008.
56.	Tottoen GE, MacKenzie DS (eds.): Handbook of Aluminum. New York: Marcel Dekker, Inc.; 2003.
81

-------
57.	Bruckard WJ, Woodcock JT: Recovery of valuable materials from aluminium salt cakes. International
Journal of Mineral Processing 2009, 93(1): 1 -5
58.	Yan X: Chemical and Electrochemical Processing of Aluminum Dross Using Molten Salts. Metallurgical
and Materials Transactions B 2008, 39(2):348-363.
59.	Gil A: Management of salt sake generated at secondary aluminum melting plants by disposal in a
controlled landfill: Characteristics of the controlled landfill and a study of environmental impacts.
Environmental Engineering Science 2007, 24(9): 1234.
60.	Fukumoto S, Hookabe T, Tsubakino H: Hydrolysis behavior of aluminum nitride in various solutions.
Journal of Materials Science 2000, 35(ll):2743-2748.
61.	Li Jinwang MN, Takashi Shirai, Koji Matsumaru, Chanel Ishizaki and Kozo Ishizaki: Hydrolysis of
aluminum nitride powders in moist air. Advances in Technology of Materials and Materials Processing
2005, 7(l):37-42.
62.	Oliveira M, Olhero S, Rocha J, Ferreira JMF: Controlling hydrolysis and dispersion of A1N powders in
aqueous media. Journal of Colloid and Interface Science 2003, 261(2):456-463.
63.	Krnel K, Kosmac T: Reactivity of Aluminum Nitride Powder in Dilute Inorganic Acids. Journal of the
American Ceramic Society 2000, 83(6):1375-1378.
64.	Kocjan A, Dakskobler A, Kosmac T: Evolution of Aluminum Hydroxides in Diluted Aqueous Aluminum
Nitride Powder Suspensions. Crystal Growth & Design 2012, 12(3):1299-1307.
65.	Kocjan A, Ambrozic M, Kosmac T: Stereometric analysis of nanostructured boehmite coatings synthesized
by aluminum nitride powder hydrolysis. Ceramics International 2012, 38(6):4853-4859.
66.	Chariot G, Murray RG: Qualitative Inorganic Analysis, 4 edn: Wiley; 1954.
67.	Sears MB, Ferris LM: Hydrolysis of uranium, thorium and aluminum carbides in D2O. Journal of
Inorganic and Nuclear Chemistry 1966, 28(9):2055-2059.
68.	Holleman AF, Wiberg E: Inorganic Chemistry, 1 edition edn. San Diego: Academic Press; 2001.
69.	USDOT: Title 49 - Transportation. Subtitle B - Other Regulations Relating to Transportation. In.:
Deparment of Transportion, USA; 2011.
70.	ECOSOC: UN Recommendations on the Transport of Dangerous Goods, Manual of Tests and Criteria,
Fifth revised edition edn. New York and Geneva: United Nations 2009.
71.	Ycsillcr N, Hanson JL, Liu WL: Heat generation in municipal solid waste landfills. Journal of
Geotechnical and Geoenvironmental Engineering 2005, 131(11): 1330-1344.
82

-------
72
73
74.
75
76
77
78
79
80
81
82
83
84
85
Hartz KE, Klink RE, Ham RK: Temperature effects: methane generation from landfill samples. Journal of
the Environmental Engineering Division, ASCE 1982, 108(EE4):629-638.
Tchobanoglous G: Integrated Solid Waste Management: Engineering Principles and Management Issues:
McGraw-Hill 1993.
Cecchi F, Pavan P, Musacco A, Alvarez JM, Vallini G: Digesting the organic fraction of municipal solid
waste: Moving from mesophilic (37°C) to thermophilic (55°C) conditions. Waste Management and
Research 1993, 11(5):403-414.
Southen JM, Rowe RK: Modelling of thermally induced desiccation of geosynthetic clay liners. Geotextiles
and Geomembranes 2005a, 23(5):425-442.
Southen JM, Rowe RK: Laboratory Investigation of Geosynthetic Clay Liner Desiccation in a Composite
Liner Subjected to Thermal Gradients. Journal of Geotechnical and Geoenvironmental Engineering 2005b,
131 (7): 925 -935.
Rowe RK, SangamHP: Durability of HDPE geomembranes. Geotextiles and Geomembranes 2002,
20(2):77-95.
Rowe RK, Hoor A: Predicted temperatures and service lives of secondary geomembrane landfill liners.
Geo synthetics International 2009, 16(2):71-82.
Isolation Break Excavation Plan Countywide Recycling and Disposal Facility
[http://www.epa.state.oh.us/portals/47/media/countvwide/isolation break report.pdfl
Allen P, Princic K, Ruesch P: Secondary Aluminum Production Waste Disposal Issues. In: Planning for a
Sustainable Future, ASTSWMO Solid Waste Managers Conference. New Orleans, LA; 2009.
ASTM: Standard Practice for Reducing Samples of Aggregate to Testing Size In.: American Society for
Testing and Materials 2003: 4.
ASTM: Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and
Rock by Mass. In: American Society for Testing and Materials 2005: 7.
Li J, Nakamura M, Shirai T, Matsumaru K, Ishizaki C, Ishizaki K: Mechanism and Kinetics of Aluminum
Nitride Powder Degradation in Moist Air. Journal of the American Ceramic Society 2006, 89(3):937-943.
ASTM: Standard Test Methods for Saturated Hydraulic Conductivity, Water Retention, Porosity, and Bulk
Density of Putting Green and Sports Turf Root Zones. In; 2006.
Clescerl LS, Greenberg AE, Eaton AD: Standard Methods for the Examination of Water and Wastewater
20th edition edn. Washington, DC: American Public Health Association, American Water Works
Association, Water Environment Federation; 1998.
83

-------
86.	USEPA: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods 3051 A. In: Microwave-
assisted acid digestion of sediments, sludges, soils and oils. USEPA; 2007: 1-14.
87.	USEPA: Test Methods for Evaluating Solid Waste, Physical/Chemical Methods, 6010C. In: Inductively
Coupled Plasma-Atomic Emission Spectrometry. USEPA: USEPA; 2007.
88.	TCLP Questions [http://www.epa.gov/wastes/hazard/testmethods/faa/faa tclp.html
89.	PANalytical BV: X'Pert HighScore Plus (PW3212) In., Version 3.0 edn; 2010.
90.	Chung FH: Quantitative interpretation of X-ray diffraction patterns, I. Matrix-flushing method of
quantitative multicomponent analysis. Journal of Applied Crystallography 1974, 7:513-519.
91.	Kjeldsen P, Barlaz MA, Rooker AP, Baun A, Ledin A, Christensen TH: Present and long-term composition
of MSW landfill leachate: a review. Critical Reviews in Environmental Science and Technology 2002,
32(4):297 - 336.
92.	Kravchenko OV, Semenenko KN, Bulychev BM, Kalmykov KB: Activation of aluminum metal and its
reaction with water. Journal of Alloys and Compounds 2005, 397(l-2):58-62.
93.	Krnel K, Kosmac T: Protection of A1N powder against hydrolysis using aluminum dihydrogen phosphate.
Journal of the European Ceramic Society 2001, 21(10-11):2075-2079.
94.	Sposito G: The Environmental Chemistry of Aluminum, Second edition edn. Boca Raton, Florida: CRC
Press 1996.
95.	Klein R, Baumann T, Kahapka E, Niessner R: Temperature development in a modern municipal solid
waste incineration (MSWI) bottom ash landfill with regard to sustainable waste management. Journal of
Hazardous Materials 2001, 83(3):265-280.
96.	Hanson JL, Yeiller N, Oettle NK: Spatial and temporal temperature distributions in municipal solid waste
landfills. Journal of Environmental Engineering 2010, 136(8):804-814.
97.	Hanson JL: Integrated temperature and gas analysis at a municipal solid waste landfill. Proc 16th Int Conf
on Soil Mechanics and Geotechnical Engineering, Geotechnology in Harmony with the Global
Environment 2005, 4:2265-2268.
98.	SigmaPlot: SigmaPlot™ 11. In, Windows Version 11.0 edn: Systat software, Inc.; 2008.
99.	JMP: JMP 9.0.0. In: SAS institute Inc; 2010.
100.	USEPA: Calculating upper confidence limits for exposure point concentrations at hazardous waste sites In.:
Office of Emergency and Remedial Response, USEPA; 2002: 29.
101.	Ndegwa PM W, Hristov AN, Joo HS.: Measuring Concentrations of Ammonia in Ambient Air or Exhaust
Air Stream using Acid Traps. J Environ Qual 2009, 38:647-653.
84

-------
102.	AILLC: JEROME® 631-X Hydrogen Sulfide Analyzer Operation Manual Chandler, AZ 85225: Arizona
Instrument LLC (AILLC); 2011.
103.	Bellosi A, Landi E, Tampieri A: Oxidation behavior of aluminum nitride. Journal of Materials Research
1993, 8(3):565-572.
104.	Bruckard WJ, P. Walta and J.T. Woodcock: The recovery of aluminum metal from primary and secondary
aluminum drosses by wet grinding and screening. In: 134th TMS Annual Meeting: February 13-17, 2005
2005; San Francisco, CA: TMS; 2005: 1203-1212.
105.	Kocjan A, Krnel K, Kosmac T: The influence of temperature and time on the A1N powder hydrolysis
reaction products Journal of the European Ceramic Society 2008, 28(5): 1003-1008.
106.	Vedder W, Vermilyea DA: Aluminum + water reaction. Transactions of the Faraday Society 1969, 65:561-
584.
107.	Casey WH: Large aqueous aluminum hydroxide molecules. Chemical Reviews 2006, 106(1): 1 -16.
108.	Atkari K, Kiss T, Bertani R, Martin RB: Interactions of aluminum(III) with phosphates. Inorganic
Chemistry 1996, 35(24):7089-7094.
109.	Zlochower IA, Green GM: The limiting oxygen concentration and flammability limits of gases and gas
mixtures. Journal of Loss Prevention in the Process Industries 2009, 22(4):499-505.
110.	Uehara I: HYDROGEN SEPARATION AND HANDLING. In: ENERGY CARRIERS AND CONVERSION
SYSTEMS WITH EMPHASIS ON HYDROGEN. Edited by Ohta T, vol. 1: EOLSS; 2009: 16.
111.	Tchobanoglous G, BurtonFL, Stensel HD: Wastewater Engineering Treatment and Reuse, 4 edn: McGraw-
Hill College; 2002.
112.	El-Fadel M, Alayli B, Bou-Zeid E, Chahine W: Temporal Variation of Leachate Quality From Pre-Sorted
and Baled Municipal Solid Waste With High Organic and Moisture Content. Waste Management 2001,
22(l):269-282.
113.	IPCC: Climate Change 2001:The Scientific Basis,Contribution of Working Group I to the Third
Assessment Report of the Intergovernmental Panel on Climate Change: Cambridge University Press 2001.
114.	Beaulieu JJ, Shuster WD, Rebholz JA: Nitrous oxide emissions from a large, impounded river: The Ohio
river. Environmental Science and Technology 2010, 44(19):7527-7533.
115.	Bosch H, Janssen F: The Catalytic Reduction of Nitrogen Oxides, A Review of Fundamentals and
Technology, vol. 2; 1988.

-------
116
117
118
119
120
121
122
123
124
125
126
127
128
J.M. Olivares-Ramirez, A. Marroquin de Jesus, Jimenez-Sandoval O, Pless RC: Hydrogen Generation by
Treatment of Aluminium Metal with Aqueous Solutions: Procedures and Uses In: Hydrogen Energy -
Challenges and Perspectives Edited by Minic D. intechopen.com: intechopen; 2012: 55-76.
Yavor Y, Goroshin S, Bergthorson JM, Frost DL, Stowe R, Ringuette S: Enhanced hydrogen generation
from aluminum-water reactions. IntJHydrog Energy 2013, 38(35): 14992-15002.
McCafferty E: Sequence of steps in the pitting of aluminum by chloride ions. Corrosion Science 2003,
45(7):1421-1438.
Munoz AG, Bessone JB: Pitting of aluminium in non-aqueous chloride media. Corrosion Science 1999,
41(7):1447-1463.
Deng ZY, Ferreira JMF, Tanaka Y, Ye J: Physicochemical mechanism for the continuous reaction of y-
Al203-modified aluminum powder with water. Journal of the American Ceramic Society 2007, 90(5): 1521-
1526.
Deng ZY, Liu YF, Tanaka Y, Zhang HW, Ye J, Kagawa Y: Temperature effect on hydrogen generation by
the reaction of y-AkCb-modified A1 powder with distilled water. Journal of the American Ceramic Society
2005, 88(10):2975-2977.
Deng ZY, Tang YB, Zhu LL, Sakka Y, Ye JH: Effect of different modification agents on hydrogen-
generation by the reaction of A1 with water. Int J Hydrog Energy 2010, 35(18):9561-9568.
Razavi-Tousi SS, Szpunar JA: Effect of structural evolution of aluminum powder during ball milling on
hydrogen generation in aluminum-water reaction. Int J Hydrog Energy 2013, 38(2):795-806.
Streletskii AN, Mudretsova SN, Povstugar IV, ButyaginPY: Mechanochemical activation of aluminum: 5.
Formation of aluminum carbide upon heating of activated mixtures. Colloid J 2006, 68(5):623-631.
Lu Y-H, Chen H-T: Hydrogen generation by the reaction of H20 with A^Cb-based materials: a
computational analysis. Physical Chemistry Chemical Physics 2015, 17(10):6834-6843.
Teng H-T, Lee T-Y, Chen Y-K, Wang H-W, Cao G: Effect of Al(OH)3 on the hydrogen generation of
aluminum-water system. Journal of Power Sources 2012, 219(0):16-21.
Chen Y-K, Teng H-T, Lee T-Y, Wang H-W: Rapid hydrogen generation from aluminum-water system by
adjusting water ratio to various aluminum/aluminum hydroxide. Int J Energy Environ Eng 2014, 5(2-3): 1-
6.
Yang Y, Gai W-Z, Deng Z-Y, Zhou J-G: Hydrogen generation by the reaction of A1 with water promoted
by an ultrasonically prepared Al(OH)3 suspension. Int J Hydrog Energy 2014, 39(33):18734-18742.
86

-------
129.	LI P, Guo M, Zhang M, Teng LD, Seetharaman S: Leaching process investigation of secondary aluminium
dross: investigation of A1N hydrolysis behaviour in NaCl solution. Mineral Processing and Extractive
Metallurgy 2012, 121(3): 140-146.
130.	Huang XL, Tolaymat T: Hydrogen from the aluminum wastes of secondary aluminum production. In: The
FifthAsian Conference on Sustainability, Energy and the Environment 2015. lstedn. Art Center of Kobe,
Kobe, Kansai Region, Japan; 2015.
87

-------
APPENDIX A
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
Table A-l Method detection limit and method reporting limit for metal analysis using ICP
Liquid	Solid
Element MDL MRL	MDL MRL
(jig L1) (mg L1) (mg kg1) (mg kg1)
Ag
1.0
3.3
0.5
1.7
A1
33
95
17
48
As
2.2
7.2
1.1
3.6
Ba
1.5
4.8
0.8
2.4
Ca
86
257
43
129
Cd
0.1
0.4
0.1
0.2
Cr
12
38
6.0
19
Cu
2.0
7.0
1.0
3.5
Fe
35
105
18
53
K
284
850
142
425
Mg
3.0
10
1.5
5.0
Mn
5.0
14
2.5
7.0
Na
457
1400
229
700
S
109
330
55
165
Se
4.9
15
2.4
7.7
Pb
72
228
36
114
Zn
2.3
5.2
1.2
2.6
Table A-2: Method reporting limit for gas analysis
Gas
MDL
MRL
h2
0.05%
0.14%
ch4
0.06%
0.2%
nh3
0.001%
0.003%
n2o
7 ppbv
20 ppbv

-------
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
APPENDIX B: Physical and Chemical Properties of BHD
List of Figures
Figure B-l: Total aluminum distribution in baghouse dust samples	80
Figure B-2: Total calcium distribution in baghouse dust samples	81
Figure B-3: Total magnesium content distribution in baghouse dust samples	82
Figure B-4: Total iron distribution in baghouse dust samples	83
Figure B-5: Total potassium content overall distribution	84
Figure B-6: Total sodium distribution in baghouse dust samples	85
Figure B-7: Total arsenic distribution in baghouse dust samples	86
Figure B-8: Total cadmium distribution in baghouse dust samples	87
Figure B-9: Total chromium distribution in baghouse dust samples	88
Figure B-10: Total copper distribution in baghouse dust samples	89
Figure B-ll: Total manganese distribution in baghouse dust samples	90
Figure B-12: Total lead distribution in baghouse dust samples	91
Figure B-13: Total selenium content distribution in baghouse dust samples	92
Figure B-14: Total zinc content distribution in baghouse dust samples	93
Figure B-15: Leachability of aluminum in baghouse dust samples	93
Figure B-16: Correlation between leachable A1 and pH in leachate of baghouse dust	94
Figure B-17: Leachability of calcium in baghouse dust samples	94
Figure B-18: Leachability of Mg in baghouse dust samples	95
Figure B-19: Leachability of Fe in baghouse dust samples	95
Figure B-20: Leachability of K in baghouse dust samples	96
Figure B-21: Correlation between leachable K and total K in baghouse dust samples	97
Figure B-22: Leachability of Na in baghouse dust samples	97
Figure B-23: Correlation between leachable Na and total Na in baghouse dust samples	98
Figure B-24: Leachability of As in baghouse dust samples	98
Figure B-25: Leachability of Cr in baghouse dust samples	99
Figure B-26: Leachability of Cd in baghouse dust samples	99
Figure B-27: Leachability of Cu in baghouse dust samples	100
Figure B-28: Leachability of Mn in baghouse dust samples	101
Figure B-29: Leachability of Pb in baghouse dust samples	101
Figure B-30: Leachability of Se in baghouse dust samples	102
Figure B-31: Leachability of Zn in baghouse dust samples	103
Figure B-32: Distribution of the KC1 abundance in baghouse dust samples	108
Figure B-33: Distribution of the NaCl abundance in baghouse dust samples	109
Figure B-34: Distribution of the fluorite abundance in baghouse dust samples	110
Figure B-35: Distribution of the SiC>2 abundance in baghouse dust samples	110
Figure B-36: Distribution of the Si;,N4 abundance in baghouse dust samples	111
Figure B-37: Distribution of the MgO abundance in baghouse dust samples	111
Figure B-38: Distribution of the MgSC>4 abundance in baghouse dust samples	111
Figure B-39: Distribution of the CaSC>4 abundance in baghouse dust samples	112
Figure B-40: Distribution of the CaCC>3 abundance in baghouse dust samples	112
Figure B-41: Distribution of the metallic aluminum in baghouse dust samples	113
Figure B-42: Distribution of A1N in baghouse dust samples	113
Figure 4-43: Overall distribution of the three aluminum nitride oxides in baghouse dust	115
Figure B-44: Distribution of the total A1N in baghouse dust samples	115
Figure B-45: Distribution of the AI2O3 in baghouse dust samples	116
Figure B-46: Distribution of Al2 67O4 in baghouse dust samples	117
72

-------
Figure B-47: Distribution of AIO(OH) in baghouse dust samples	117
Figure B-48: Distribution of total aluminum oxide in baghouse dust samples	118
Figure B-49: Distribution of the elpasolite abundance in baghouse dust samples	119
Figure B-50: Distribution of the spinel abundance in baghouse dust samples	120
73

-------
List of Tables
Table B-l: Physical properties of baghouse dust	75
Table B-2: Major elemental composition of baghouse dust (EPA Method 3051)	76
Table B-3: Trace metals content of baghouse dust (EPA Method 3051)	78
Table B-4: Total calcium content (%)	80
Table B-5: Total magnesium content (%)	81
Table B-6: Total iron content (%)	82
Table B-7: Total potassium content (%)	83
Table B-8: Total sodium content (%)	84
Table B-9: Total arsenic content in baghouse dust (mg kg1)	85
Table B -10: Total cadmium content (|ig kg"1)	86
Table B-l 1: Total chromium content (mg kg1) in baghouse dust by facility	87
Table B-12: Total copper content (mg kg1)	88
Table B-13: Total Manganese content (mg kg1)	89
Table B -14: Lead content (mg kg"1)	90
Table B -15: Total selenium content (mg kg"1)	91
Table B-16: Total zinc content (mg kg1)	92
Table B-17: Leachable Ca (mg L1)	94
Table B-18: Leachable Mg (|ag L"1)	95
Table B-19: Leachable Fe (mg L1)	95
Table B-20: Leachable K (mg L1)	96
Table B-21: Leachable Na (mg L1)	97
Table B-22: Leachable arsenic (j-ig L"1)	98
Table B-23: Leachable Cr (|ag L"1)	99
Table B-24: Leachable Cd (|ig L1)	100
Table B-25: Leachable Cu (|ag L"1)	100
Table B -26: Leachable Mn (|_ig L"1)	101
Table B-27: Leachable Pb (|ag L1)	101
Table B-28: Leachable Se (|ag L"1)	102
Table B-29: Leachable Zinc (|ag L"1)	103
Table B-30: TCLP results for A1 (mg L1) by Facility	103
Table B-31: TCLP results for Ag (mg L1) by Facility	104
Table B-32: TCLP results for As (mg L1) by Facility	104
Table B-33: TCLP results for Ba (mg L1) by Facility	104
Table B-34: TCLP results for Cd (mg L1) by Facility	105
Table B-35: TCLP results for Cr (mg L"1) by Facility	105
Table B-36: TCLP results for Pb (mg L"1) by Facility	105
Table B-37: TCLP results for Se (mg L"1) by Facility	106
Table B-38: Aluminum mineral phase (%) in baghouse dust	106
Table B-39: Non-Aluminum mineral phase (%) in baghouse dust	107
Table B-40: KC1 abundance of baghouse dust by facility (%)	109
Table B-41: NaCl abundance of baghouse dust by facility (%)	109
Table B-42: Fluorite abundance of baghouse dust by facility (%)	110
Table B-43: Metallic A1 abundance (%) of baghouse dust by facility	112
Table B-44: A1N abundance (%) of baghouse dust by facility	113
Table B-45: Al2.g5O3.45N0.55 abundance of baghouse dust by facility	114
Table B-46: Al2.8iO3.56N0. 44 abundance of baghouse dust by facility	114
Table B-47: AI2.78O3.65N0.35 abundance of baghouse dust by facility	114
Table B-48: Total A1N abundance of baghouse dust by facility	115
Table B-49: AI2O3 abundance (%) of baghouse dust by facility	115
Table B-50: Al2 67O4 abundance (%) of baghouse dust by facility	116
Table B-51: AIO(OH) abundance (%) of baghouse dust by facility	117
Table B-52: Total aluminum oxide abundance (%) of baghouse dust by facility	118
Table B-53: Elpasolite abundance (%) of baghouse dust by facility	119
Table B-54: Spinel abundance (%) of baghouse dust by facility	119
74

-------
2573
2574
2575
2576
2577
2578
2579
2580
2453
2479
2481
2455
2432
2434
2533
2539
2541
2537
2436
2438
2503
2505
2507
2509
2511
2044
2045
2047
2048
2049
2050
2545
2549
2551
2552
2556
2558
2560
2563
Table B-l: Physical properties of baghouse dust
cility
MC (%)
WHC
(%)
Sample
ID
Facility
MC (%)
WHC
(%)
A
0.78
40
2564
H
0.73
43
A
0.1
44
2565
H
3.2
74
A
5.7
28
2566
H
6.2
78
A
0.19
3.6
2567
H
2.5
96
A
6.3
42
2569
H
5.2
160
A
0.43
20
2570
H
0.88
114.9
A
0.11
24
2522
I
0.18
86.7
A
4.3
40
2523
I
0.26
17.5
B
1.9
22
2524
I
0.07
11.9
B
1.3
1.7
2525
I
0.96
102.3
B
1.5
20
2526
I
1.7
122.4
B
0.2
77
2527
I
0.17
32.2
C
0.98
50
2528
I
4.0
54.6
C
1.2
56
2529
I
3.2
82.2
D
1.2
44
2514
J
2.3
78.2
D
0.44
79
2516
J
2.3
113.8
D
0.06
200
2513
J
2.3
83.5
D
0.98
160
2518
J
3.5
79.5
E
1.0
57
2582
K
22
69.2
E
2.6
94
2583
K
2.9
99.5
F
0.55
27
2585
K
3.1
136.2
F
0.81
50
2587
K
0.44
95.7
F
0.98
21
2588
K
15
48.9
F
0.84
53
2589
K
13
117.5
F
1.9
81
2483
L
0.16
49.8
H
2.7
89
2485
L
1.6
66.5
H
1.4
60
2487
L
2.6
44.2
H
3.4
200
2489
L
0.76
56.9
H
0.37
160
2491
L
0.37
44.7
H
6.2
82
2602
M
6.4
51.1
H
27
110
2604
M
13
90.1
H
2.5
130
2606
M
7.4
46.9
H
3.3
160
2608
M
4.3
138.1
H
0.38
52
2610
M
2.7
51.3
H
10
120
2612
M
3.7
253.6
H
1.8
85
2493
N
2.9
34.7
H
0.67
63
2495
N
0.65
60.3
H
4.5
120
2497
N
0.98
14.9
H
1.5
82
2499
N
0.69
27.8
75

-------
Table B-2: Major elemental composition of baghouse dust (EPA Method 3051)
Facility
Sample
A1
Ca
Mg
Fe
K
Na
P
s
ID




(%)



A
2573
7.96
17.1
0.47
0.91
0.34
0.43
0.11
0.18

2574
34.0
1.70
1.20
1.20
7.21
4.10
0.15
0.17

2575
15.9
6.79
0.52
0.98
0.45
0.41
0.13
0.18

2576
19.0
1.70
0.85
1.00
13.0
8.12
0.16
0.23

2577
2.77
29.9
0.51
0.39
0.27
0.25
0.04
0.10

2578
17.1
2.81
1.10
1.81
12.0
6.83
0.29
0.34

2579
23.0
1.60
0.81
1.30
11.0
6.31
0.13
0.21

2580
5.33
30.3
0.60
0.61
0.44
0.39
0.06
0.16
B
2453
9.58
6.12
2.96
0.38
14.3
12.2
0.12
1.94

2455
10.02
4.21
3.01
0.45
17.0
11.0
0.21
1.70

2479
6.99
5.78
1.52
0.09
12.2
17.2
0.30
1.82

2481
9.95
6.29
3.15
0.40
14.2
12.2
0.13
1.93
C
2432
8.38
16.2
2.73
0.13
6.06
13.1
0.20
0.66

2434
10.12
16.2
3.24
0.17
6.17
13.2
0.19
0.65
D
2533
7.79
13.2
9.31
0.20
9.01
7.29
0.01
0.59

2537
18.2
10.1
8.28
0.56
6.16
5.25
0.02
0.33

2539
16.1
8.14
6.53
0.24
12.1
9.14
0.01
0.38

2541
7.80
14.0
9.51
0.26
7.00
7.30
0.02
0.57
E
2436
4.34
21.2
1.62
0.30
5.05
8.28
0.08
0.49

2438
3.70
26.7
1.54
0.15
5.85
9.55
0.07
0.80
F
2503
25.1
0.92
1.91
0.13
2.01
7.04
0.20
0.16

2505
25.2
1.61
1.41
0.55
1.11
11.1
0.02
0.14

2507
34.3
0.88
3.13
0.18
2.93
9.49
0.10
0.15

2509
24.2
1.61
2.02
0.32
2.22
10.1
0.20
0.10

2511
59.1
0.37
3.06
0.31
4.08
8.36
0.01
0.10

2044
15.4
2.67
0.61
1.64
0.18
0.17
0.07
0.39
H
2045
18.3
5.27
2.94
1.01
6.19
4.97
0.06
0.24

2047
18.6
1.97
5.28
1.02
3.52
1.35
0.06
0.32

2048
9.54
7.63
1.00
1.41
0.47
0.49
0.09
0.41

2049
21.3
4.58
3.30
0.82
5.65
5.44
0.01
0.29

2050
19.2
4.25
1.37
3.29
2.19
0.40
0.18
0.71

2545
20.5
9.23
4.41
0.88
1.23
0.69
0.02
0.23

2549
5.48
20.7
0.80
0.84
0.18
0.18
0.05
0.40

2551
21.1
3.31
3.73
0.68
5.22
6.83
0.01
0.27

2552
6.11
16.7
0.83
0.86
0.17
0.27
0.06
0.40

2556
18.3
1.93
5.30
1.02
1.83
1.12
0.05
0.29

2558
18.1
3.62
3.12
0.80
6.75
7.65
0.03
0.29

2560
22.0
1.88
5.24
1.04
1.99
1.26
0.04
0.29

2563
7.41
7.72
0.92
1.12
0.35
0.34
0.06
0.42

2564
16.1
4.63
2.72
1.01
9.27
8.76
0.05
0.32

2565
21.7
4.03
1.14
3.10
1.24
0.36
0.21
0.46

2566
19.2
2.67
0.78
2.03
0.35
0.19
0.10
0.34

2567
15.4
4.31
0.96
2.87
0.51
0.30
0.15
0.52

2569
29.5
1.90
5.06
1.16
1.90
0.96
0.05
0.22

2570
9.18
7.47
1.11
1.41
0.43
0.48
0.07
0.45
I
2522
11.0
19.0
1.90
0.81
4.61
6.11
0.06
0.61

2523
17.0
0.70
4.81
0.57
11.0
11.0
0.02
0.03
76

-------

2524
16.0
0.73
4.40
0.50
12.0
11.0
0.03
0.04

2525
11.1
19.2
2.52
0.15
5.76
8.08
0.39
0.86

2526
8.65
19.3
2.95
0.25
3.97
6.41
0.77
1.00

2527
12.0
1.10
2.60
1.00
8.41
13.0
0.04
0.04

2528
43.8
0.78
1.56
1.25
0.26
0.22
0.06
0.01

2529
12.4
15.5
2.07
0.37
5.99
6.82
0.07
0.71
J
2514
19.4
4.30
5.32
1.23
5.32
6.86
0.03
0.20

2516
18.4
4.91
5.32
1.23
4.61
5.02
0.04
0.14

2513
20.5
6.55
5.32
0.69
6.86
7.78
0.09
0.28

2518
19.7
5.18
5.91
1.55
4.35
4.87
0.04
0.13
K
2582
55.1
0.99
1.92
1.23
0.32
0.24
0.06
0.05

2583
28.8
2.57
0.91
2.27
0.55
0.50
0.21
0.15

2585
38.2
3.20
1.55
2.48
1.14
1.03
0.20
0.21

2587
60.3
0.92
1.31
1.10
0.43
0.42
0.05
0.03

2588
43.5
0.89
0.86
1.13
0.34
0.24
0.05
0.07

2589
41.4
2.99
1.26
2.07
1.49
1.11
0.21
0.24
L
2483
27.0
1.80
4.31
0.83
6.11
10.0
0.06
0.31

2485
26.4
1.32
3.96
0.86
6.61
12.2
0.04
0.27

2487
26.7
1.75
3.80
0.63
6.16
11.3
0.08
0.26

2489
35.3
1.21
3.53
0.61
4.23
9.88
0.05
0.25

2491
28.1
1.00
3.71
0.29
5.52
15.1
0.10
0.18
M
2602
9.8
1.28
2.03
0.56
15.0
18.2
0.09
0.87

2604
14.9
17.2
1.01
1.61
0.74
0.64
0.29
1.84

2606
11.9
1.00
2.48
0.36
14.0
19.4
0.08
0.78

2608
14.6
23.0
1.02
1.78
0.87
0.82
0.30
1.25

2610
11.3
1.13
2.26
0.47
18.5
16.4
0.07
0.72

2612
23.9
14.5
1.56
2.39
1.04
1.03
0.43
1.35
N
2493
21.6
1.03
1.34
0.45
5.56
13.39
0.08
0.25

2495
14.1
2.32
1.21
0.97
5.54
18.12
0.11
0.21

2497
15.1
0.26
3.23
0.15
13.1
20.2
0.02
0.07

2499
7.25
0.36
2.22
0.12
16.1
25.2
0.03
0.10
77

-------
Table B-3: Trace metals content ofbaghouse dust (EPA Method 3051)
Facility
Sample
As
Cd
Cr
Cu
Pb
Mn
Se
Zn
ID



mg kg1



A
2573
5.5
3.2
77
343
131
968
5.0
736

2574
5.5
6.1
140
941
330
3800
5.0
1500

2575
7.1
1.1
92
530
201
1590
5.3
721

2576
5.5
11
130
711
341
2510
5.0
1200

2577
12.8
6.1
41
128
58
416
20.3
245

2578
5.5
16
171
1100
382
4320
5.0
2010

2579
5.5
8.4
140
981
340
3800
5.0
1200

2580
5.7
1.7
56
355
84
679
5.2
418
B
2453
5.6
7.7
48
153
39
652
204
387

2455
5.5
8.4
63
210
52
661
160
361

2479
5.6
9.9
41
142
41
446
162
719

2481
5.6
7.4
49
152
49
670
203
386
C
2432
5.6
11
40
212
37
667
131
424

2434
5.6
11
48
202
43
759
89
466
D
2533
5.6
40
142
405
111
455
15.2
617

2537
5.6
14
242
1010
263
1010
151
1310

2539
17
22
191
392
100
542
7.3
974

2541
5.5
17
140
3700
390
330
5.0
1100
E
2436
5.6
17
46
141
86
293
15.2
586

2438
5.6
18
67
123
39
236
32.9
318
F
2503
5.5
1.4
382
131
28
2210
50.3
170

2505
5.5
1.0
100
554
43
756
5.0
827

2507
5.6
1.0
869
3430
36
1010
5.0
11100

2509
6.8
2.6
182
383
33
1110
25.2
282

2511
11
1.0
1220
2650
163
693
5.1
3260

2044
11
24
1130
1130
1340
1340
5.1
4520

2045
5.6
93
598
882
1120
1120
18.3
6800

2047
9.4
145
1660
1240
1350
2480
362
11400

2048
10
141
1510
2210
7929
763
16.1
53200

2049
5.9
69
864
928
1170
949
5.3
6180

2050
115
93
890
3560
2060
1370
178
6990

2545
5.6
87
1540
985
974
1740
23.6
7280

2549
9.1
134
662
1450
7960
414
6.9
53800

2551
13
46
883
652
743
924
5.0
3510
H
2552
12
133
689
2000
6890
467
21.1
68900
2556
6.5
143
1630
1120
1320
1530
153
10200

2558
5.9
91
604
977
936
735
43.3
4830

2560
5.8
157
1680
1150
1360
1890
126
10500

2563
8.1
193
1120
2030
8930
640
11.2
84300

2564
5.5
84
604
705
1210
907
32.2
8060

2565
30
165
909
1760
1650
1450
5.2
6100

2566
22
91
928
1280
2030
1170
5.3
4900

2567
22
185
841
1850
1950
1130
19.5
6260

2569
10
105
1480
1480
1270
3380
127
10200

2570
7.4
232
1410
2420
8070
736
5.0
73600
78

-------

2522
12
140
210
1700
912
791
62.1
4510

2523
5.5
1.0
491
501
110
812
5.0
321

2524
5.5
1.0
590
530
170
1400
5.0
260
T
2525
5.6
11
72
848
46
283
47.5
5760
I
2526
5.6
24
95
417
101
621
397
2240

2527
5.5
1.0
641
2800
150
851
5.0
1300

2528
10
1.0
260
875
146
2810
5.2
710

2529
15
33
300
2270
279
620
35.1
5680
J
2514
5.6
45
512
5020
747
1230
5.1
5020

2516
6.1
30
256
5830
532
798
5.1
5530

2513
5.6
26
276
4610
307
1130
5.1
4500

2518
5.7
28
280
6320
560
860
5.2
5800
K
2582
11
2.6
308
1280
192
3330
6.4
1050

2583
6.6
3.5
185
1340
330
2680
5.1
1240

2585
7.7
5.8
258
1550
630
2890
5.2
1650

2587
11
1.4
211
1310
251
5220
5.0
1810

2588
6.8
1.2
176
1770
188
3060
5.9
1530

2589
36
18
391
1490
678
3330
5.7
2760
L
2483
5.5
6.8
441
1300
280
1600
5.0
1800

2485
5.6
7.0
264
1830
163
1630
5.1
2240

2487
5.6
8.2
308
2670
205
1850
5.1
3390

2489
5.5
11
292
4130
252
1810
5.0
3020

2491
5.5
1.4
120
592
60
1910
5.0
710
M
2602
7.1
20
64
395
160
919
5.3
1030

2604
29
11
218
1490
2070
1610
9.9
3560

2606
7.8
19
58
346
140
918
8.7
970

2608
13
19
167
1570
2720
1780
5.2
3030

2610
5.7
16
63
391
154
946
5.1
860

2612
13
12
322
2180
2390
2800
5.2
3630
N
2493
5.7
2
78
206
41
618
48.4
450

2495
5.5
18
131
876
413
1110
38.2
2620

2497
14
9
49
151
35
727
18.2
200

2499
5.5
15
39
181
46
604
6.0
390
79

-------
?>1
&
1-0.15 =
2
Q.
-0.05
30	45
Al content
Figure B-l: Total aluminum distribution in baghouse dust samples
Table B-4: Total calcium content (%)
Facility
Mean
UCL95
Range
A
11.5±12.6
22.0
1.6-30.2
B
5.6±0.95
7.1
4.2-6.3
C
16.2±0.02
16.4
16.1-16.2
D
11.3±2.7
15.7
8.1-14
E
23.9±3.9
59
21.2-26.7
F
1.08±0.54
1.7
0.37-1.6
H
5.8±4.9
8.1
1.9-20.7
I
9.5±9.4
17.4
0.70-19.3
J
5.2±0.95
6.7
4.3-6.5
K
1.9±1.1
3.1
0.87-3.2
L
1.4±0.35
1.8
1.0-1.8
M
9.6±9.7
19.8
1.0-22.9
N
0.99±0.95
2.5
0.26-2.3
All Facility
6.9±7.6
8.6
0.26-30.2
80

-------
ol
-0.30 -
2
Q.
-0.20
11% 1% 1%
	I | I
12 18 24 30 36
Ca content
Figure B-2: Total calcium distribution in baghouse dust samples
Table B-5: Total magnesium content (%)
Facility
Mean
UCL95
Range
A
0.76+0.28
1.0
0.47-1.2
B
2.7+0.76
3.9
1.5-3.1
C
3.0+0.36
6.2
2.7-3.2
D
8.4+1.4
11
6.5-9.5
E
1.6+0.05
2.1
1.5-1.6
F
2.3+0.76
3.2
1.4-3.1
H
2.5+1.8
3.4
0.61-5.3
I
2.9+1.2
3.8
1.6-4.8
J
5.5+0.29
5.9
5.3-5.9
K
1.3+0.38
1.7
0.84-1.8
L
3.9+0.29
4.2
3.5-4.3
M
1.7+0.63
2.4
0.99-2.5
N
2.0+0.94
3.5
1.2-3.2
All Facility
2.7+2.0
3.2
0.47-9.5
81

-------
Mg content
Figure B-3: Total magnesium content distribution in baghouse dust samples
Table B-6: Total iron content (%)
Facility
Mean
UCL95
Range
A
1.0+0.43
1.4
0.39-1.8
B
0.33+0.16
0.59
0.09-0.45
C
0.15+0.03
0.41
0.13-0.17
D
0.31+0.16
0.57
0.20-0.56
E
0.23+0.11
1.2
0.15-0.30
F
0.30+0.16
0.50
0.13-0.55
H
1.4+0.77
1.7
0.68-3.1
I
0.61+0.38
0.93
0.15-1.2
J
1.2+0.36
1.8
0.69-1.6
K
1.7+0.64
2.4
1.1-2.5
L
0.65+0.23
0.93
0.29-0.86
M
1.2+0.84
2.1
0.35-2.4
N
0.42+0.39
1.1
0.12-0.97
All Facility
0.93+0.70
1.1
0.09-3.1
82

-------
Fe content
Figure B-4: Total iron distribution in baghouse dust samples
Table B-7: Total potassium content (%)
Facility
Mean
UCL95
Range
A
5.6+5.8
10.5
0.27-13.0
B
14.4+2.0
17.6
12.2-17.0
C
6.1+0.08
6.8
6.1-6.2
D
8.6+2.6
12.7
6.2-12.1
E
5.4+0.56
10.5
5.1-5.8
F
2.5+1.1
3.8
1.1-4.1
H
2.5+2.7
3.7
0.17-9.3
I
6.5+3.9
9.7
0.26-12.0
J
5.3+1.1
7.1
4.3-6.9
K
0.70+0.48
1.2
0.31-1.5
L
5.7+0.92
6.9
4.2-6.6
M
8.3+8.3
17.0
0.72-18.5
N
10+5.4
18.6
5.5-16.1
All Facility
5.4+4.9
6.5
0.17-18.5
83

-------
I>1
-0.35
-0.25
-0.20 a
-0.05
10	15
K content
Figure B-5: Total potassium content overall distribution
Table B-8: Total sodium content (%)
Facility
Mean
UCL95
Range
A
3.4+3.4
6.2
0.24-8.1
B
13.2+2.8
17.6
11.0-17.2
C
13.1+0.02
13.3
13.1-13.2
D
7.2+1.6
9.8
5.3-9.1
E
8.9+0.89
16.9
8.3-9.5
F
9.2+1.6
11.2
7.0-11.1
H
2.1+2.9
3.4
0.17-8.8
I
7.8+4.0
11.2
0.22-13.0
J
6.1+1.4
8.4
4.9-7.8
K
0.59+0.39
0.99
0.23-1.1
L
11.7+2.1
14.3
9.9-15.1
M
9.4+9.4
19.3
0.63-19.3
N
19.2+4.9
27
13.4-25.2
All Facility
6.7+6.0
8.1
0.17-25.2
84

-------

-0.30
-0.25
-0.10
-0.05
1%	1%
10 15 20 25
Na content
-m
Figure B-6: Total sodium distribution in baghouse dust samples
Table B-9: Total arsenic content in baghouse dust (mg kg *)
Facility
Mean
UCL95
Range
A
6.6+2.5
00
00
5.5-12.8
B
5.6+0.04
5.6
5.5-5.6
C
5.6+0.01
5.6
5.6-5.6
D
8.4+5.8
17.6
5.5-17.1
E
5.6+0.06
6.2
5.5-5.6
F
6.9+2.5
10.0
5.5-11.2
H
15.6+22.4
26.1
5.5-107
I
8.1+3.9
11.4
5.5-15.5
J
5.8+0.25
6.2
5.6-6.2
K
13.0+11.0
24.5
6.6-35.0
L
5.6+0.06
5.6
5.5-5.6
M
12.4+5.4
21.2
5.6-28.3
N
7.7+4.3
14.5
5.5-14.1
All Facility
10.0+12.5
12.8
5.5-107
85

-------
w

74%
¦ 18%
5%
0% 0% 0% 0% 0%
0 20 40 60 80 100 120
As content
Figure B-7: Total arsenic distribution in baghouse dust samples
Table B-10: Total cadmium content (|i.g kg ')
Facility
Mean
UCL95
Range
A
6.7+5.1
11
1.1-16
B
8.4+1.1
10
7.4-9.9
C
11+0.02
11
11-11
D
23+12
42
14-41
E
18+0.92
26
17-18
F
1.4+0.70
2.3
1.0-2.6
H
120+52
140
24-230
I
27+48
66
1.0-140
J
32+8.8
46
26-45
K
5.4+6.4
12
1.2-18
L
6.9+3.5
11
1.4-11
M
16+3.8
20
11-20
N
11+7.0
22
2.2-18
All Facility
41+56
54
1.0-230
86

-------

O


67%
9%
1%
8%
1%
8%
3% 3%
0	50	100 150 200 250
Cd content
Figure B-8: Total cadmium distribution in baghouse dust samples
Table B-ll: Total chromium content (mg kg ') in baghouse dust by facility
Facility
Mean
UCL95
Range
A
106+46
144
40-171
B
50+9.5
65
40-63
C
44+5.1
90
40-48
D
179+49
256
140-242
E
57+14
186
46-67
F
551+480
1,150
100-1,220
H
1,080+390
1,260
598-1,670
I
332+218
515
72-641
J
331+121
523
256-511
K
251+80
334
172-384
L
286+114
427
120-441
M
148+107
260
58-321
N
74+41
140
39-131
All Facility
440+462
544
39-1,670
87

-------
-0.40
-0.30 £
CD
-Q
2
0-
-0.20
0	500	1000	1500
Cr content
Figure B-9: Total chromium distribution in baghouse dust samples
Table B-12: Total copper content (mg kg'1)
Facility
Mean
UCL95
Range
A
636+353
930
128-1,100
B
164+31
214
142-210
C
207+6.8
269
202-212
D
1,380+1,580
3,890
392-3,700
E
132+12.9
248
123-141
F
1,430+1,500
3,300
131-3,430
H
1,470+665
1,790
653-3,300
I
1,240+905
2,000
417-2,800
J
5,440+774
6,670
4,600-6,310
K
1,430+184
1,630
1,220-1,730
L
2,100+1,360
3,800
592-4130
M
1,060+784
1,880
344-2,180
N
353+349
909
151-876
All Facility
1,370+1320
1,670
123-6,310
88

-------
&
1-0.301
2
Q.
-0.10
0 1000 2000 3000 4000 5000 6000 7000
Cu content
Figure B-10: Total copper distribution in baghouse dust samples
Table B-13: Total Manganese content (mg kg ')
Facility
Mean
UCL95
Range
A
2.260+1.560
3,570
415-4,320
B
607+108
779
446-670
C
713+65.4
1,300
670-759
D
584+297
1,060
330-1,010
E
264+40.2
626
234-293
F
1,160+615
1,920
690-2,210
H
1,250+710
1,580
413-3,370
I
1,020+786
1,680
283-2,810
J
1,000+207
1,330
798-1,230
K
3,370+930
4,350
2,680-5,220
L
1,760+137
1,930
1,600-1,910
M
1,490+744
2,270
913-2,800
N
764+235
1,140
604-1,110
All Facility
1,390+1,040
1,630
236-5,220
89

-------
—
0-

50%
31%
10%
I I I I I
£ 1
3?
¦
co
0 1000 2000 3000 4000 5000 6000
Mn content
Figure B-ll: Total manganese distribution in baghouse dust samples
Table B-14: Lead content (mg kg'1)
Facility
Mean
UCL95
Range
A
230+130
340
57-380
B
45+6.4
55
39-52
C
40+3.6
73
37-43
D
220+140
440
100-390
E
62+33
360
39-86
F
61+57
130
28-160
H
3,000+3,000
4,390
740-8,930
I
240+280
470
46-910
J
540+180
820
307-750
K
370+220
600
180-670
L
192+86
300
60-280
M
1,260+1,240
2,560
140-2,710
N
130+190
430
35-410
All Facility
1,010+1,940
1,450
28-8,930

-------


<

-0.15£
10 20 30 4050 70-|QO 200 400 600-j QQQ 2>00° 4'°°°10 000
Pb content
Figure B-12: Total lead distribution in baghouse dust samples
Table B-15: Total selenium content (mg kg ')
Facility
Mean
UCL95
Range
A
7.0+5.3
11
5.0-20
B
180+24
220
160-204
C
110+30
380
89-130
D
45+71
158
5.0-150
E
24+13
136
15-33
F
18+20
43
5.0-50
H
58+89
100
5.0-360
I
70+130
180
5.0-400
J
5.1+0.03
5.2
5.1-5.2
K
5.5+0.43
5.9
5.0-6.1
L
5.1+0.05
5.1
5.0-5.1
M
6.5+2.1
8.7
5.1-9.7
N
28+19
58
6.0-48
All Facility
42+76
59
5.0-400
91

-------

13%	13%
-0.60
-0.30 B
0-
-0.20
4 6 6 78 1 0	20 30 40 50 6070 ^QQ 200 300 400500
Se content
Figure B-13: Total selenium content distribution in baghouse dust samples
Table B-16: Total zinc content (mg kg ')
Facility
Mean
UCL95
Range
A
1.000+590
1490
244-2,010
B
463+171
735
361-719
C
445+29.3
708
424-465
D
1,000+290
1,470
617-1,310
E
452+189
2,150
318-586
F
3,130+4,630
8,880
171-11,100
H
22,000+27,200
34,700
3,510-84,200
I
2,600+2,360
4,570
260-5,750
J
5,210+570
6,120
4500-5,800
K
1,650+595
2,270
1,000-2,710
L
2,230+1,050
3,540
710-3,390
M
2,170+1,350
3,580
863-2,630
N
920+1,140
2,730
202-1,620
All Facility
7,100+16,200
10,700
171-84,200
92

-------


<

-0.20
-0.05
-j oo 200 300400 6001000 20003000 5000 10000 20000 40000 70000
Zn content
Figure B-14: Total zinc content distribution in baghouse dust samples
4%
0% 0% 0%
0.5	1	1.5
Leachability of Al

.80
.70
.60
.50 =
Figure B-15: Leachability of aluminum in baghouse dust samples
93

-------
12 -
11 -
10 -
I
CL
0.4 0.6 0.01
2 3 4 5 6 78-JQ
20 30 40 50 70 1Q0
Al content
Figure B-16: Correlation between teachable Al and pH in leachate of baghouse dust
2%
1
9%
60%
29%
-
-
-
-
-
-





0.00^ 01 003 0.06Q.1 0.2 0.3 0.50.7 1 2 3 4 5 67fr|Q 20 3040 60-|QQ
Leachability of Ca
Figure B-17: Leachability of calcium in baghouse dust samples
Table B-17: Leachable Ca (mg L')
Facility
Mean+Stdev UCL95
Range
A
140+180
290
12-420
B
1,100+1,300
3,300
240-3,100
C
340+30
610
320-360
D
620+420
4,400
320-920
E
1,300
NA
NA
F
8.2+14
30
0.72-29
H
560+1,100
1,500
29-3,300
I
660+920
9,000
3.8-1,300
J
1,300+260
3,700
1,200-1,500
K
86+45
200
36-120
L
18+11
36
8.4-33
M
1,700+900
9,800
1,100-2,300
N
15+9.0
38
9.7-26
All Facilities
470+790
710
0.72-3,300
NA: not applicable (only one sample was analyzed from facility E)
94

-------
Table B-18: Leachable Mg (p,g L')
Facility
Mean+Stdev UCL95
Range
A
17+18
32
0.21-41
B
7.0+5.3
16
0.07-13
C
0.24+0.31
3.0
0.02-0.46
D
0.01+0
0.01
0.01-0.01
E
0.03
NA
NA
F
0.57+0.69
1.7
0.08-1.6
H
16+24
36
0.06-62
I
0.38+0.27
2.8
0.19-0.57
J
38+15
170
28-49
K
5.8+5.1
19
0.88-11
L
0.38+0.11
0.56
0.29-0.54
M
1.7+2.3
22
0.05-3.3
N
2.2+2.3
7.8
0.24-4.7
All Facilities
8.9+16
14
0.01-62
NA: not applicable (only one sample was analyzed from facility E)
-0.40
-0.30 if
-0.20 £
-0.10
0.001 0.004 Q Q-j 0-02 0.05 0.1 0.2 0.4 0.7^ 2 3 4 567<|Q 20 30 50
Leachability of Mg
Figure B-18: Leachability of Mg in baghouse dust samples
0% 0% 0% 0%
-F
2	4
Leachability of Fe
0.80
0.60 &
2
0.40 0-
0.20
Figure B-19: Leachability of Fe in baghouse dust samples
Table B-19: Leachable Fe (mg L"1)
95

-------
Facility Mean+Stdev UCL95 Range
A
8.5+13
19
0.06-33
B
0.10+0.01
0.12
0.08-0.11
C
0.15+0.04
0.46
0.12-0.17
D
0.16+0.04
0.47
0.13-0.18
E
0.13
NA
NA
F
0.15+0.08
0.29
0.09-0.27
H
1.4+2.5
3.5
0.14-7.0
I
0.23+0.08
0.92
0.17-0.28
J
0.11+0.04
0.49
0.08-0.14
K
0.18+0.07
0.36
0.13-0.26
L
0.26+0.09
0.39
0.19-0.38
M
0.19+0.04
0.50
0.16-0.21
N
0.31+0.08
0.49
0.23-0.38
All Facilities
1.9+6.1
3.7
0.06-33
NA: not applicable (only one sample was analyzed from facility E)
Table B-20: Leachable K (mg L')
Facility
Mean+Stdev UCL95
Range
A
2,200+2,400
4,200
92-5,600
B
4,400+3,000
9,200
43-6,800
C
3,100+910
11,000
2,400-3,700
D
3,100+780
10,000
2,500-3,600
E
1,500
NA
NA
F
920+970
2,200
240-1,900
H
1,200+1,200
2,200
27-2,700
I
3,000+2,000
21,000
1,600-4,400
J
2,000+280
4,600
1,800-2,200
K
240+160
630
140-420
L
2,300+540
3,200
1,500-2,700
M
160+28
410
140-180
N
4,500+2,200
9,900
2,100-6,300
All Facilities
2,200+2,000
2,700
27-6,800
NA: not applicable (only one sample was analyzed from facility E)
20
40	60
Leachability of K
80
-0.30
-0.25
-0.20 =
0.15 2
Q.
-0.10
-0.05
100
Figure B-20: Leachability of K in baghouse dust samples
96

-------
0	2000	4000	6000	8000
Leachate K
Figure B-21: Correlation between teachable K and total K in baghouse dust samples
Table B-21: Leachable Na (mg L')
Facility
Mean+Stdev UCL95
Range
A
1,400+1,400
2,500
84-3,300
B
4,300+3,100
9,300
52-7,600
C
4,900+720
11,000
4,400-5,400
D
2,400+460
6,500
2,100-2,700
E
2,500
NA
NA-2,500
F
2,900+900
4,400
1,900-3,800
H
1,200+1,200
2,200
50-2,800
I
3,000+1,000
13,000
2,200-3,700
J
2,100+490
6,500
1,800-2,500
K
210+110
480
150-340
L
4,200+690
5,300
3,400-5,000
M
180+4.5
220
180-180
N
9,000+1,900
14,000 7,100-11,000
All Facilities
2,700+2,500
3,500
50-11,000
NA: not applicable (only one sample was analyzed from facility E)
-0.25
-0.20
£
-0.15 «
.Q
2
Q.
-0.10
2%	2%
I 0% 0% I
	1—
20
40	60
Leachability of Na
-0.05
80
100
Figure B-22: Leachability of Na in baghouse dust samples
97

-------
w 1	1	1	1	1	1		
0 2000 4000 6000 8000 10000 12000
Na content
Figure B-23: Correlation between teachable Na and total Na in baghouse dust samples
10	15
Leachability of As
20
0.35
-0.30
-°-25.-&
15
-0.20 5
E
Q.
-0.15
-0.10
0.05
Figure B-24: Leachability of As in baghouse dust samples
Table B-22: Leachable arsenic (ng L')
Facility
Mean+Stdev UCL95 Range
A
29+8.6
37
26-51
B
33+13
54
26-53
C
26+0
26
26-26
D
26+0
26
26-26
E
35
NA
NA
F
26+0
26
26-26
H
37+29
61
26-110
I
26+0
26
26-26
J
26+0
26
26-26
K
26+0
26
26-26
L
26+0
26
26-26
M
26+0
26
26-26
N
77+62
220
26-140
All Facilities
33+21
39
26-140
NA: not applicable (only one sample was analyzed from facility E)

-------
Table B-23: Leachable Cr ()j,g L1)
Facility
Mean+Stdev UCL95 Range
A
20+9.5
28
13-37
B
20+13
40
13-39
C
22+0.64
28
22-23
D
28+19
200
14-42
E
27
NA
NA
F
14+0.91
16
14-16
H
28+23
48
14-68
I
29+22
220
14-44
J
16+4.0
52
14-19
K
14+0
14
14-14
L
17+6.9
28
14-27
M
14+0
14
14-14
N
45+45
160
14-96
All Facilities
23+17
28
14-96
NA: not applicable (only one sample was analyzed from facility E)
0.40 s
0.30Q.
Leachability of Cr
Figure B-25: Leachability of Cr in baghouse dust samples
0.90
0.80
1-0.70
0.60
£
I-0.50S
«
-0.40 S
Q.
0.30
1-0.20
0.10
4	6	8
Leachability of Cd
Figure B-26: Leachability of Cd in baghouse dust samples
99

-------
Table B-24: Leachable Cd (ng L')
Facility
Mean+Stdev UCL95 Range
A
4.6+4.0
8.0
3.2-15
B
9.5+10
26
3.2-25
C
3.2+0
3.2
3.2-3.2
D
3.2+0
3.2
3.2-3.2
E
13
NA
NA
F
3.2+0
3.2
3.2-3.2
H
18+16
31
3.2-42
I
3.2+0
3.2
3.2-3.2
J
18+1.1
28
18-19
K
3.2+0
3.2
3.2-3.2
L
3.2+0.1
3.3
3.2-3.3
M
3.2+0
3.2
3.2-3.2
N
32+21
83
13-54
All Facilities 9.4+12
13
3.2-54
NA: not applicable (only one sample was
; analyzed from:
Table B-25: Leachable Cu (|j,g L')
Facility
Mean+Stdev UCL95
Range
A
54+71
113
11-210
B
43+17
70.7
21-59
C
31+4.4
70.6
28-34
D
38+0.53
42.4
37-38
E
160
NA
NA
F
460+640
1480
25-1,400
H
470+430
827
32-1,000
I
140+160
1560
30-250
J
1,300+1,200
11960
490-2,200
K
1,500+1,500
5240
160-3,100
L
1,600+3,100
6400
11-6,100
M
92+22
287
76-110
N
270+320
1062
35-630
All Facilities
470+1,100
790
11-6,100
NA: not applicable (only one sample was analyzed from facility E)
o% o% o% o%
0.80
¦0.70
¦0.60
£•
¦0.50 =
.Q
¦0.40 2
0.
¦0.30
0.20
¦0.10
4	6
Leachability of Cu
10
Figure B-27: Leachability of Cu in baghouse dust samples
100

-------
Table B-26: Leachable Mn (|j.g L')
Facility
Mean+Stdev UCL95
Range
A
2,400+3,700
5,500
6.1-10,000
B
33+30
81
2.9-73
C
2.3+0.32
5.1
2.1-2.5
D
1.9+0.07
2.6
1.8-2.0
E
9.9
NA
NA
F
5.4+4.7
13
1.9-12
H
370+670
930
1.8-1,600
I
13+7.5
81
7.9-19
J
35+2.9
61
33-37
K
86+78
280
3.7-160
L
3.9+1.9
6.9
2.6-6.7
M
25+32
320
2.1-48
N
36+21
89
12-53
All Facilities
510+1,700
1,000
1.8-10,000
NA: not applicable (only one sample was analyzed from facility E)
-0.50
42%
-0.40
36%
-0.30 «
s
0-
-0.20
9% 9% -0.10
	45 .
0.00 1 00050.0 1 003 0 060.1 0 2 0 4 0 7 1 2 3 4 56710 20 30
Leachability of Mn
Figure B-28: Leachability of Mn in baghouse dust samples
2%
24%
60%
11%
2%
-
-
-
-
-
-
I

| 1 1 1 1 llll




0.001 00050.01 0.03 0.06Q_1 0.2 0.4 0.71 2 3 45671Q 20 30
Leachability of Pb
Figure B-29: Leachability of Pb in baghouse dust samples
Table B-27: Leachable Pb (|xg L')
101

-------
Facility Mean+Stdev UCL95 Range
A
20+4.8
24
17-31
B
200+350
770
17-730
C
17+0
17
17-17
D
17+0
17
17-17
E
63
NA
NA
F
17+0
17
17-17
H
2,100+5,900
7,100
17-17,000
I
17+0
17
17-17
J
17+0
17
17-17
K
17+0
17
17-17
L
17+0
17
17-17
M
17+0
17
17-17
N
54+63
210
17-130
All Facilities
410+2,500
1,200
17-17,000
NA: not applicable (only one sample was analyzed from facility E)
57%
-0.50
-0.40
-0.301
2
Q_
9% 9%	-0.10
4%
	0% |
0	20	40	60
Leachability of Se
Figure B-30: Leachability of Se in baghouse dust samples
Table B-28: Leachable Se (|j.g L')
Facility Mean+Stdev UCL95 Range
A
42+16
55
34-79
B
740+510
1,600
34-1,300
C
200+130
1,400
110-300
D
250+260
2,600
63-440
E
58
NA
NA
F
300+180
580
120-520
H
200+170
340
34-390
I
340+430
4,200
34-640
J
34+0
34
34-34
K
34+0
34
34-34
L
270+110
450
170-400
M
34+0
34
34-34
N
160+100
410
41-240
All Facilities
210+260
290
34-1,300
NA: not applicable (only one sample was analyzed from facility E)

-------
Table B-29: Leachable Zinc (|j.g L')
Facility
Mean+Stdev UCL95 Range
A
150+160
290
10-460
B
110+17
140
94-130
C
310+130
1500
210-400
D
110+6.7
170
110-120
E
120
NA
NA
F
84+55
170
11-130
H
380+410
720
50-1400
I
2300+2800
28000
320-4300
J
210+120
1300
130-300
K
41+32
120
5.3-67
L
750+1000
2400
100-2300
M
63+32
350
40-85
N
92+41
200
46-130
All Facilities
320+720
540
5.3-4300
NA: not applicable (only one sample was analyzed from facility E)
-0.70
-0.60
-0.50 ^
&
_ 15
-0.40 «
s
-0.30 °-
-0.20
-0.10
Leachability of Zn
Figure B-31: Leachability of Zn in baghouse dust samples
Table B-30: TCLP results for A1 (mg L') by Facility
Facility
Mean+Stdev UCL95 Range
A
84+140
200
1.7-340
B
170+110
340
75-300
C
170+140
1400
66-270
D
20+23
57
1.3-51
E
4.5+1.6
18
3.4-5.6
F
440+370
890
70-880
H
140+200
240
0.9-640
I
27+31
53
1.2-87
J
4.6+2.1
8.0
1.8-7.0
K
130+170
300
0.9-370
L
170+160
370
44-440
M
25+46
73
1.3-120
N
360+430
1000
33-950
All Facilities
130+210
180
0.9-950
103

-------
Table B-31: TCLP results for Ag (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.009±0.004
0.013
0.007-0.019
B
0.009±0.003
0.013
0.007-0.012
C
0.013±0.008
0.082
0.007-0.018
D
0.009±0.003
0.014
0.007-0.013
E
0.012±0.007
0.075
0.007-0.017
F
0.013±0.013
0.028
0.007-0.035
H
0.014±0.015
0.021
0.007-0.067
I
0.008±0.028
0.010
0.007-0.015
J
0.02±0.015
0.043
0.007-0.033
K
0.011+0.011
0.022
0.007-0.032
L
0.033±0.027
0.066
0.007-0.07
M
0.016±0.013
0.029
0.007-0.034
N
0.031±0.016
0.056
0.007-0.04
All Facilities
^1"
O
O
-H
O
O
0.017
0.007-0.07
Table B-32: TCLP results for As (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.021
0.021
0.021-0.021
B
0.021
0.021
0.021-0.021
C
0.021
0.021
0.021-0.021
D
0.021
0.021
0.021-0.021
E
0.021
0.021
0.021-0.021
F
0.021
0.021
0.021-0.021
H
0.026
0.032
0.021-0.073
I
0.021
0.021
0.021-0.021
J
0.021
0.021
0.021-0.021
K
0.021
0.021
0.021-0.021
L
0.07
0.17
0.021-0.21
M
0.021
0.021
0.021-0.021
N
0.029
0.057
0.021-0.055
All Facilities
0.026
0.031
0.021-0.21
Table B-33: TCLP results for Ba (mg L') by Facility
Facility
Mean+Stdev UCL95 Range
A
1.5+1.3
2.6
0.7-4.5
B
1.1+0.32
1.7
0.9-1.6
C
1.5+0.22
3.5
1.3-1.7
D
1.7+0.62
2.7
1.2-2.5
E
2.9+0.31
5.7
2.7-3.2
F
0.9+0.5
1.5
0.4-1.8
H
2.7+2.4
3.8
1.0-12
I
3.2+2.6
5.4
0.7-7.3
J
5.2+3.4
11
2.2-10
K
4.1+4.6
9.0
0.8-12
L
4.0+1.3
5.7
2.6-6.2
M
1.6+0.8
2.4
0.4-2.7
N
2.8+0.6
3.7
2.0-3.3
All Facilities
2.6+2.3
3.1
0.4-12
104

-------
Table B-34: TCLP results for Cd (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.068±0.088
0.14
0.008-0.26
B
0.28±0.059
0.37
0.21-0.34
C
0.056±0.075
0.73
0.003-0.11
D
0.004±0.001
0.005
0.003-0.005
E
0.01+0.01
0.10
0.003-0.017
F
0.007±0.09
0.018
0.003-0.023
H
1.5±1.8
2.4
0.003-5.9
I
0.012±0.01
0.02
0.003-0.024
J
0.39±0.47
1.1
0.12-1.1
K
0.037±0.033
0.07
0.003-0.085
L
0.09±0.059
0.16
0.017-0.16
M
0.24±0.25
0.50
0.003-0.55
N
0.15±0.11
0.33
0.012-0.27
All Facilities
0.47±1.10
0.71
0.003-5.9
Table B-35: TCLP results for Cr (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.086±0.11
0.18
0.02-0.28
B
0.075±0.050
0.15
0.038-0.14
C
0.071±0.072
0.72
0.02-0.12
D
0.020±0.001
0.020
0.019-0.02
E
0.063±0.060
0.60
0.02-0.11
F
0.22±0.03
0.26
0.17-0.26
H
0.43±0.43
0.63
0.019-1.5
I
0.051±0.043
0.087
0.019-0.11
J
0.063±0.049
0.14
0.02-0.11
K
0.073±0.086
0.16
0.019-0.22
L
0.12±0.06
0.20
0.046-0.19
M
0.019±0.001
0.020
0.019-0.02
N
0.13±0.11
0.31
0.02-0.29
All Facilities
0.17±0.27
0.23
0.019-1.5
Table B-36: TCLP results for Pb (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.13±0.12
0.22
0.013-0.31
B
0.087±0.049
0.17
0.039-0.15
C
0.064±0.07
0.71
0.013-0.11
D
0.013
0.013
0.013-0.013
E
0.057±0.062
0.62
0.013-0.10
F
0.13±0.23
0.41
0.013-0.53
H
7.6±16.6
15
0.016-56
I
0.068±0.080
0.13
0.013-0.25
J
0.25±0.40
0.89
0.013-0.85
K
1.36±2.02
3.5
0.013-5.1
L
0.16±0.085
0.27
0.065-0.29
M
0.18±0.19
0.39
0.013-0.53
N
0.057±0.052
0.14
0.013-0.13
All Facilities
2.1±8.9
4.1
0.013-56
105

-------
Table B-37: TCLP results for Se (mg L') by Facility
Facility
Mean+Stdev UCL95
Range
A
0.025±0.007
0.031
0.017-0.035
B
1.1±0.25
1.5
0.92-1.5
C
0.17±0.021
0.35
0.15-0.18
D
0.12±0.11
0.29
0.036-0.28
E
0.08±0.056
0.58
0.043-0.12
F
0.23±0.15
0.42
0.035-0.41
H
0.45±0.82
0.83
0.017-3.5
I
0.092±0.085
0.16
0.022-0.28
J
0.073±0.055
0.16
0.02-0.14
K
0.017±0.00
0.017
0.017-0.017
L
0.11±0.058
0.18
0.017-0.17
M
0.024±0.005
0.029
0.017-0.027
N
0.14±0.17
0.41
0.017-0.38
All Facilities
0.24±0.49
0.34
0.017-3.5
Table B-38: Aluminum mineral phase (%) in baghouse dust
Facility
Sample
ID
<
Total A1N
A1N
*n
-t
fi
V)
^ 1/3
W) ,_®
3 *
<
SO
W)
fi
O 5
t-H O
3 *
<
W)
SO
fi
0 s
^ z
ri ^
<
Total
AI2O3
O
<
-t
O
h
so
so
ri
<
(HO)
OIY
\©
fa
i
z
-t
O
c<(
s
A
2573-A
2
ND
ND
ND
ND
ND
0.0
ND
ND
ND
ND
ND

2574-A
11
0.6
ND
4
ND
ND
3.4
ND
ND
ND
ND
4

2575-A
6
2.0
2
ND
ND
ND
2.0
2
ND
3
10
ND

2576-A
9
1.6
ND
10
ND
ND
24
ND
12
ND
ND
ND

2577-A
1
ND
ND
ND
ND
ND
0.0
ND
ND
ND
2
ND

2578-A
3
1.0
ND
4
2
1
13
3
3
ND
1
1

2579-A
14
ND
ND
ND
ND
ND
0.0
ND
ND
ND
8
6

2580-A
2
ND
ND
ND
ND
ND
0.0
ND
ND
ND
5
ND
B
2455-B
1
2.0
2
ND
ND
ND
2.0
2
ND
ND
1
3

2479-B
1
5.9
2
18
7
ND
25
4
ND
ND
ND
2
106

-------

2481-B
1
4.0
3
6
ND
ND
7.0
2
ND
ND
1
3
c
2432-C
1
4.7
3
5
4
3
16
6
ND
ND
13
4

2434-C
1
6.7
3
16
6
3
35
4
7
ND
2
4
D
2533-D
2
3.3
ND
11
6
7
33
ND
9
ND
ND
2

2537-D
6
4.8
3
6
3
4
23
4
6
ND
2
6
E
2436-E
ND
4.6
2
11
6
ND
31
5
9
ND
2
2
F
2503-F
4
8.7
6
8
6
6
48
20
8
ND
3
5

2505-F
3
8.6
6
6
7
7
41
13
8
6
8
6

2507-F
11
6.3
4
8
5
3
32
9
7
ND
7
9

2511-F
13
4.8
2
10
6
4
30
2
8
ND
6
8
H
2045-H
3
11
9
7
3
2
14
4
ND
ND
3
7

2545-H
11
3.7
3
2
2
1
10
3
2
ND
5
7

2549-H
4
6.4
6
1
1
1
6.9
3
1
ND
7
3

2551-H
3
12
9
9
6
6
34
4
9
ND
1
7

2552-H
3
13
13
ND
ND
ND
7.3
6
1
3
5
6

2558-H
4
10
8
8
4
5
26
3
6
ND
2
6

2565-H
6
1.0
1
ND
ND
ND
1.0
1
ND
1
4
3

2567-H
3
2.0
2
ND
ND
ND
1.0
1
ND
ND
2
1
I
2524-1
1
6.6
4
7
6
6
34
6
9
ND
3
10

2526-1
3
4.8
3
5
5
3
25
4
7
ND
3
6
J
2514-J
2
5.4
3
7
6
4
27
3
7
2
2
5

2516-J
2
9.1
6
9
8
5
35
4
9
ND
2
8
K
2583-K
28
ND
ND
ND
ND
ND
3.0
3
ND
ND
ND
12

2587-K
17
ND
ND
ND
ND
ND
1.0
1
ND
ND
ND
9

2589-K
15
ND
ND
ND
ND
ND
0.0
ND
ND
ND
ND
7
L
2483-L
4
9.1
6
9
7
7
39
4
11
ND
3
7

2485-L
4
8.7
5
12
7
8
41
3
11
ND
2
6

2487-L
7
8.1
6
9
3
2
25
6
5
4
2
7

2489-L
7
8.6
6
9
5
5
31
4
8
4
5
8
M
2604-M
2
1.0
1
ND
ND
ND
1.0
1
ND
1
1
1

2608-M
10
5.2
4
3
3
3
15
3
3
4
11
5
N
2495-N
2
5.1
3
9
3
2
23
7
3
7
3
3

2497-N
2
5.0
3
7
6
ND
29
2
12
ND
ND
3

2499-N
1
4.9
ND
17
10
8
33
3
ND
ND
ND
2
ND: Not detected
	Table B-39: Non-Aluminum mineral phase (%) in baghouse dust	
Facility Sample KC1 NaCl CaF2 CaSQ4 CaCQj MgSO-t MgO SiCh SbN4
A
2573-A
ND
ND
ND
ND
4
ND
ND
94
ND

2574-A
5
5
ND
3
ND
4
ND
63
ND

2575-A
ND
ND
1
1
7
7
ND
54
5

2576-A
15
20
15
9
1
4
ND
7
ND

2577-A
ND
ND
ND
ND
35
ND
ND
55
8

2578-A
7
6
4
4
ND
1
ND
58
ND

2579-A
12
15
14
9
ND
5
ND
16
ND

2580-A
ND
ND
4
ND
67
ND
ND
4
17
B
2455-B
14
15
13
11
1
2
ND
36
ND

2479-B
14
17
10
10
ND
ND
9
ND
7

2481-B
7
20
12
13
1
3
ND
28
ND
C
2432-C
13
26
11
1
3
ND
ND
ND
8
107

-------

2434-C
10
23
5
7
4
3
1
1
ND
D
2533-D
17
15
7
8
2
2
6
7
ND

2537-D
11
10
9
7
1
3
8
8
ND
E
2436-E
10
19
6
7
5
3
1
13
ND
F
2503-F
1
10
2
7
ND
3
ND
4
6

2505-F
1
3
2
7
2
6
3
1
7

2507-F
3
11
3
8
1
6
1
ND
5

2511-F
4
9
4
8
ND
4
1
11
ND
H
2045-H
5
8
7
8
1
3
25
3
4

2545-H
2
1
2
4
5
4
2
44
ND

2549-H
1
1
4
6
3
8
1
43
4

2551-H
3
13
3
7
1
2
1
16
ND

2552-H
1
ND
2
10
ND
10
1
33
5

2558-H
4
15
5
8
1
3
ND
17
ND

2565-H
ND
ND
ND
2
1
3
ND
76
3

2567-H
ND
ND
ND
1
1
2
ND
85
2
I
2524-1
10
10
6
13
ND
3
1
4
ND

2526-1
8
13
6
6
3
3
2
18
4
J
2514-J
7
10
6
7
1
2
1
23
3

2516-J
7
11
7
9
ND
3
2
3
4
K
2583-K
ND
ND
ND
7
3
17
ND
17
13

2587-K
ND
ND
ND
4
1
ND
ND
68
ND

2589-K
ND
ND
ND
ND
1
5
ND
72
ND
L
2483-L
7
12
5
7
1
3
1
6
ND

2485-L
3
15
4
8
ND
4
1
7
ND

2487-L
5
13
4
8
6
4
1
ND
7

2489-L
4
11
3
8
ND
4
ND
5
4
M
2604-M
ND
ND
ND
3
1
1
ND
85
2

2608-M
2
1
6
9
3
9
2
10
9
N
2495-N
2
26
2
8
ND
3
ND
17
ND

2497-N
6
32
8
13
ND
4
1
ND
ND

2499-N
12
21
7
ND
ND
6
ND
14
ND
ND: not detected
KCI Abundance
Figure B-32: Distribution of the KCI abundance in baghouse dust samples
108

-------
Table B-40: KC1 abundance of baghouse dust by facility (%)
Facility
Mean+Stdev UCL95 Range
A
4.9+6.0
9.9
ND-15
B
12+4.0
22
7-14
C
12+2.1
31
10-13
D
14+4.2
52
11-17
E
10
NA
NA
F
2.3+1.5
4.6
1-4
H
2.0+1.9
3.5
ND-5
I
9.0+1.4
22
8-10
J
7.0+0
7
7-7
K
0
0
ND
L
4.8+1.7
7.5
3-7
M
1.5+0.7
7.9
1-2
N
6.7+5.0
19
2-12
All Facilities
5.3+4.9
6.8
ND-17
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
Table B-41: NaCl abundance of baghouse dust by facility (%)
Facility
Mean+Stdev UCL95 Range
A
5.8+7.8
12
ND-20
B
17+2.5
24
15-20
C
25+2.1
44
23-26
D
13+3.5
44
10-15
E
19
NA
NA
F
8.3+3.6
14
3-11
H
4.8+6.4
10
ND-15
I
12+2.2
31
10-13
J
11+0.76
17
10-11
K
0+0
0
ND
L
13+1.8
15
11-15
M
1.5+0.80
7.9
1-2
N
26+2.6
40
21-32
All Facilities
10+8.6
13
ND-32
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
15 20 25
NaCl Abundance
-0.35
-0.30
-0.25
I-0.20 5
CO
-0.15I
-0.10
-0.05

Figure B-33: Distribution of the NaCl abundance in baghouse dust samples
109

-------

12
CaF2 Abundance
0.35
0.30
0.25
0.20 S

-------
Si3N4 Abundance
Figure B-36: Distribution of the SbN-t abundance in baghouse dust samples
&*>¦¦¦

	1	1	1	V-
i			1	1	1	r
0	5	10	15	20	25	30
MgO Abundance
Figure B-37: Distribution of the MgO abundance in baghouse dust samples
I	1 +oH	1 ¦ ¦
\


	\	1
l 1 l 1 I
0	3	6	9	12 15 18
MgS04 Abundance
Figure B-38: Distribution of the MgSO-t abundance in baghouse dust samples
111

-------
1	1 1	1


/
/


1
¦
0	3	6	9	12	15
CaS04 Abundance
Figure B-39: Distribution of the CaS04 abundance in baghouse dust samples



-1.00


-0.80


i i
o o
^ b>
o o
Probability


-0.20

	1	1	1	1	1	J

0 10 20 30 40 50 60 70
CaC03 Abundance
Figure B-40: Distribution of the CaCCb abundance in baghouse dust samples
Table B-43: Metallic A1 abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
6.0+4.8
10
1-14
B
1.0+0
1.0
1-1
C
1.0+0
1.0
1-1
D
4.0+2.8
29
2-6
E
0
NA
NA
F
7.8+5.0
16
3-13
H
4.6+2.8
6.9
3-11
I
2.0+1.4
15
1-3
J
2.0+0
2.0
2-2
K
20+7
37
15-28
L
5.5+1.7
8.3
4-7
M
10+0
10
ND-10
N
1.7+0.6
3.1
1-2
All Facilities
5.5+5.6
7.2
ND-28
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
112

-------
0
6	12	18
Metalic Al Abundance
~~r
24
30
Figure B-41: Distribution of the metallic aluminum in baghouse dust samples
I I	1






0	3	6	9	12	15
AIN Abundance
Figure B-42: Distribution of AIN in baghouse dust samples
Table B-44: AIN abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
0.25+0.7
0.8
ND-2
B
2.3+0.6
3.8
2-3
C
3.0+0
3.0
3-3
D
1.5+2.1
21
ND-3
E
2.0
NA
NA
F
4.5+1.9
7.5
2-6
H
6.4+4.1
9.8
1-13
I
3.5+0.7
9.9
3-4
J
4.5+2.1
24
3-6
K
0+0
0
ND
L
5.8+0.5
6.5
5-6
M
5.5+2.1
25
4-7
N
2.0+1.7
6.3
ND-3
All Facilities
3.3+3.0
4.2
ND-13

-------
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
Table B-45: AI2.85O3.45N0 .55 abundance of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
2.3+3.6
5.3
ND-10
B
8.0+9.2
31
ND-18
C
11+7.8
80
5-16
D
8.5+3.5
40
6-11
E
11
NA
NA
F
8.0+1.6
11
6-10
H
3.4+3.9
6.7
ND-9
I
6.0+1.4
19
5-7
J
8.0+1.4
21
7-9
K
0+0
0
ND
L
9.8+1.5
12
9-12
M
1.5+2.1
21
ND-3
N
11+5.3
24
7-17
All Facilities
5.8+5.0
7.3
ND-18
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
Table B-46: Al2.8iO3.56N0.44 abundance of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
0.3+0.7
0.8
ND-2
B
2.3+4.0
12
ND-7
C
5+1.4
18
4-6
D
4.5+2.1
24
3-6
E
6.0
NA
NA
F
6.0+0.8
7.3
5
H
2.0+2.2
3.8
ND-6
I
5.5+0.7
12
5-6
J
7.0+1.4
20
6-8
K
0+0
0
ND
L
5.5+1.9
8.5
3-7
M
1.5+2.1
21
ND-3
N
6.3+3.6
15
3-10
All Facilities
3.3+3.0
4.2
ND-10
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
Table B-47: Al2.78O3.6sN0 .35 abundance of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
0.1+0.4
0.4
ND-1
B
ND
ND
ND
C
3.0+0
3.0
3-3
D
5.5+2.1
25
4-7
E
0
NA
NA
F
5.0+1.8
7.9
3-7
H
1.9+2.4
3.8
ND-6
I
4.5+2.1
24
3-6
J
4.5+0.7
11
4-5
K
0+0
0
ND
L
5.5+2.6
9.7
2-8
M
1.5+2.1
21
ND-3
N
3.3+4.2
14
ND-8
All Facilities
2.4+2.7
3.2
ND-8
114

-------
NA: not applicable (only one sample was analyzed from facility E), ND: not detected

-0.30
-0.25
0.20 :f
-0.151
-0.10
-0.05

I I
-0.40
-0.35
-0.30
-0.25 £
-0.15
-0.10
-0.05
Lll
00000
Probability
0 3 6 9 12 15 18
A12.85O3.45N0.55 Abundance
3 6 9 12 I I
AI2.81O3.56N0.44 Abundance
3 6 9 12
AI2.78O3.65N0.35 Abundance
Figure 4-43: Overall distribution of the three aluminum nitride oxides in baghouse dust
Table B-48: Total A1N abundance of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
0.7+0.8
1.3
ND-2
B
3.9+1.9
8.7
2-5.9
C
5.7+1.4
19
4.7-6.7
D
4.0+1.0
13
3.3-4.8
E
4.6
NA
NA
F
7.1+1.9
10
4.8-8.7
H
7.4+4.7
11
1-13
I
5.7+1.2
17
4.8-6.6
J
7.2+2.6
31
5.4-9.1
K
0+0
0
ND
L
8.6+0.4
9.3
8.1-9.1
M
6.1+1.3
18
5.2-7
N
5.0+0.1
5.2
4.9-5.1
All Facilities
4.9+3.6
6.0
ND-13
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
I
	In,.,
O	3	6	9	12	15	18
Total AIN Abundance
Figure B-44: Distribution of the total AIN in baghouse dust samples
Table B-49: AI2O3 abundance (%) of baghouse dust by facility
115

-------
Facility
Mean+Stdev UCL95 Range
A
0.6+1.2
1.6
ND-3
B
2.7+1.2
5.5
2-4
C
5.0+1.4
18
4-6
D
2.0+2.8
27
ND-4
E
5.0
NA
NA
F
11+7.5
23
2-20
H
3.1+1.6
4.5
1-6
I
5.0+1.4
18
4-6
J
3.5+0.7
9.9
3-4
K
1.3+1.5
5.1
ND-3
L
4.3+1.3
6.3
3-6
M
5.0+2.8
30
3-7
N
4.0+2.6
11
2-7
All Facilities
3.7+3.7
4.8
ND-20
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
0.40
0.30
£
!5
ro
0.20 e
Q.
0.10
0	5	10	15	20
AI203 Abundance
Figure B-45: Distribution of the AI2O3 in baghouse dust samples
Table B-50: AI2.67O4 abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
1.9+4.2
5.4
ND-12
B
0+0
0
ND-0
C
3.5+4.9
48
ND-7
D
7.5+2.1
27
6-9
E
9.0
NA
NA
F
7.8+0.5
8.5
7-8
H
2.4+3.3
5.2
ND-9
I
8+1.4
21
7-9
J
8+1.4
21
7-9
K
0+0
0
ND
L
8.8+2.9
13
5-11
M
1.5+2.1
21
ND-3
N
5+6.2
21
ND-12
All Facilities
4.1+4.2
5.4
ND-12
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
116

-------
-0.40
-0.30 £
15
n
-Q
-0.20 0-
H	1									
0	3	6	9	12	15
AI2.6704 Abundance
Figure B-46: Distribution of Al2.67O.tin baghouse dust samples
Table B-51: AIO(OH) abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
0.5+1.1
1.4
ND-3
B
0+0
0
ND
C
0+0
0
ND
D
0+0
0
ND
E
0
NA
NA
F
1.5+3
6.3
ND-6
H
0.5+1.1
1.4
ND-3
I
0+0
0
ND
J
1+1.4
14
ND-2
K
0+0
0
ND
L
2+2.3
5.7
ND-4
M
4+0
4
4-4
N
2.3+4.0
12
ND-7
All Facilities
0.9+1.8
1.4
ND-7
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
: ¦ ¦

1=^		1	1	1
t				1	1	r
0	3	6	9
AIO(OH) Abundance
Figure B-47: Distribution of AIO(OH) in baghouse dust samples
117

-------
Table B-52: Total aluminum oxide abundance (%) of baghouse dust by facility
Facility Mean+ UCL95 Range
A
5.3+8.9
13
ND-24
B
11+12
42
2-25
C
25+13
100
16-35
D
28+6.7
88
23-33
E
31
NA
NA
F
38+8.4
51
30-48
H
13+12
22
1-34
I
29+7.0
92
25-34
J
31+5.6
82
27-35
K
1.3+1.5
5.1
ND-3
L
34+7.4
46
25-41
M
11+5.5
60
7-15
N
28+5.1
41
23-33
All Facilities
19+15
23
ND-48
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
"Total aluminum oxide is calculated by the sum of equivalent AI2O3 of AI2O3,
AI2.67O4, and three aluminum nitride oxides.
H I	1

\



^ :

¦


0	10	20	30	40	50
Total AI203 Abundance
Figure B-48: Distribution of total aluminum oxide in baghouse dust samples

-------
H lo 1	1 ¦




mi"
0	3	6	9	12	15
K2NaAIF6 Abundance
Figure B-49: Distribution of the elpasolite abundance in baghouse dust samples
Table B-53: Elpasolite abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
3.3+4.0
6.6
ND-10
B
0.7+0.6
2.1
ND-1
C
7.5+7.8
77
2-13
D
1.0+1.4
14
ND-2
E
2.0
NA
NA
F
6.0+2.2
9.4
3-8
H
3.6+2.0
5.3
1-7
I
3.0+0
3.0
3-3
J
2.0+0
2.0
2-2
K
0+0
0
ND
L
3.0+1.4
5.3
2-5
M
8.5+3.5
40
6-11
N
1.0+1.7
5.3
ND-3
All Facilities
3.2+3.2
4.2
ND-13
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
Table B-54: Spinel abundance (%) of baghouse dust by facility
Facility
Mean+Stdev UCL95 Range
A
1.4+2.3
3.3
ND-6
B
2.7+0.6
4.1
2-3
C
4.0+0
4.0
4-4
D
4.0+2.8
29
2-6
E
2.0
NA
NA
F
7.0+1.8
9.9
5-9
H
5.0+2.3
6.9
1-7
I
8.0+2.8
33
6-10
J
6.5+2.1
26
5-8
K
9.3+2.5
16
7-12
L
7.0+0.8
8.3
6-8
M
5.5+0.7
12
5-6
N
2.7+0.6
4.1
2-3
All Facilities
4.8+3.0
5.7
ND-12
NA: not applicable (only one sample was analyzed from facility E), ND: not detected
119

-------
MgAl204 Abundance
Figure B-50: Distribution of the spinel abundance in baghouse dust samples
120

-------
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
APPENDIX C: XRD Data
APPENDIX C Contents	Error! Bookmark not defined.
Facility A	126
1.1: 2573-A-BHD	126
1.1.1 Measurement Conditions	126
1.1.2: Main Graphics, Analyze View of 2573-A	127
1.1.3: Pattern List of 2573 -A	128
1.1.4: Peak List of 2573-A	128
1. 2: 2574-A-BHD	131
1.2.1: Measurement Conditions	131
1.2.2: Main Graphics, Analyze View of 2574-A	132
1.2.3: Pattern List of 2574-A	133
1.2.4: Peak List of 2574-A	133
1.3: 2575-A-BHD	137
1.3.1: Measurement Conditions	137
1.3.2: Main Graphics, Analyze View of 2575-A	138
1.3.3: Pattern List of 2575-A	139
1.3.4: Peak List of 2575-A	139
1.4: 2576-A-BHD	144
1.4.1: Measurement Conditions	144
1.4.2: Main Graphics, Analyze View of 2576-A	145
1.4.3: Pattern List of 2576-A	146
1.4.4: Peak List of 2576-A	147
1.5: 2577-A-BHD	152
1.5.1: Measurement Conditions	152
1.5.2: Main Graphics, Analyze View of 2577-A-BHD	153
1.5.3: Pattern List of 2577-A-BHD	154
1.5.4: Peak List of 2577-A-BHD	154
1.6: 2578-A-BHD	157
1.6.1: Measurement Conditions	157
1.6.2: Main Graphics, Analyze View of 2578-A	158
1.6.3: Pattern List of 2578-A	159
1.6.4: Peak List of 2578-A	159
1.7: 2579-A-BHD	164
1.7.1: Measurement Conditions	164
1.7.2: Main Graphics, Analyze View of 2579-A	165
1.7.3: Pattern List of 2579-A	166
1.7.4: Peak List of 2579-A	166
1.8: 2580-A-BHD	171
1.8.1: Measurement Conditions	171
1.8.2: Main Graphics, Analyze View of 2580-A	172
1.8.3: Pattern List of 2580-A	173
1.8.4: Peak List of 2580-A	173
Facility B	177
2.1: 2455-B-BHD	177
2.1.1: Measurement Conditions	177
121

-------
2.1.1: Main Graphics, Analyze View of 2455-B	178
2.1.3: Pattern List of 2455-B	179
2.1.4: Peak List of 2455-B	179
2.2: 2479-13-131II)	184
2.2.1: Measurement Conditions	184
2.2.2: Main Graphics, Analyze View of 2479-B	185
2.2.3: Pattern List of 2479-B	186
2.2.4: Peak List of 2479-B	186
2.3: 2481-13-131II)	191
2.3.1: Measurement Conditions	191
2.3.2: Main Graphics, Analyze View of 2481-B	192
2.3.3: Pattern List of 2481-B	193
2.3.4: Peak List of 2481-B	193
Facility C	198
3.1: 2432-C-I3III)	198
3.1:1: Measurement Conditions	198
3.1.2: Main Graphics, Analyze View of 2432-C	199
3.1.3: Pattern List of 2432-C	200
3.1.4: Peak List of 2432-C	200
3.2: 2434-C-I3III)	205
3.2.1: Measurement Conditions	205
3.2.2: Main Graphics, Analyze View of 2434-C	206
3.2.3: Pattern List of 2434-C	207
3.2.4: Peak List of 2434-C	208
Facility D	214
4.1: 2533-D-BHD	214
4.1.1: Measurement Conditions of 2533-D	214
4.1.2: Main Graphics, Analyze View of 2533-D	215
4.1.3: Pattern List of 2533-D	216
4.1.4: Peak List of 2533-D	216
4.2: 2537-D-I3III)	222
4.2:1: Measurement Conditions of 2537-D	222
4.2.2: Main Graphics, Analyze View of 2537-D	223
4.2.3: Pattern List of 2537-D	224
4.2.4: Peak List of 2537-D	225
Facility E	231
5.1: 2436-E-BHD	231
5.1.1: Measurement Conditions	231
5.1.2: Main Graphics, Analyze View of 2436-E	232
5.1.3: Pattern List of 2436-E	233
5.1.4: Peak List of 2437-E-SC	234
Facility F	240
6.1: 2503-F-BHD	240
6.1.1: Measurement Conditions of 2503 -F	240
6.1.2: Main Graphics, Analyze View of 2503-F	241
6.1.3: Pattern List of 2503-F	242
6.1.4: Peak List of 2502-1 	243
6.2:2505-F-BHD	249
6.2.1: Measurement Conditions of 2505-F	249
6.2.2: Main Graphics, Analyze View of 2505-F	250
6.2.3: Pattern List of 2505-F	251
6.2.4: Peak List of 2505-F	252
6.3:2507-F-BHD	256
122

-------
6.3.1: Measurement Conditions of 2507-F	256
6.3.2: Main Graphics, Analyze View of 2507-F	257
6.3.3: Pattern List of 2507-F	258
6.3.4: Peak List of 2507-F	259
6.4: 2511 -I -131II)	265
6.4.1: Measurement Conditions of 2511 -F	265
6.4.2: Main Graphics, Analyze View of 2511-F	266
6.4.3: Pattern List of 2511-F	267
6.4.4: Peak List of 2511 -F	268
Facility H	273
7.1: 2045-11-HIII)	273
7.1.1: Measurement Conditions of 2046-H	273
7.1.2: Main Graphics, Analyze View of 2045-H	274
7.1.3: Pattern List of 2045-H	275
7.1.4: Peak List of 2046-11	276
7.2: 2545-H-BHD	281
7.2.1: Measurement Conditions of 2545-H	281
7.2.2: Main Graphics, Analyze View of 2545-H	282
7.2.3: Pattern List of 2545-H	283
7.2.4: Peak List of 2545-H	284
7.3: 2549-11-131II)	289
7.3.1: Measurement Conditions of 2549-H	289
7.3.2: Main Graphics, Analyze View of 2549-H	290
7.3.3: Pattern List of 2549-H	291
7.3.4: Peak List of 2549-H	292
7.4: 2551-11-131II)	298
7.4.1: Measurement Conditions of 2551 -H	298
7.4.2: Main Graphics, Analyze View of 2551-H	299
7.4.3: Pattern List of 2551 -H	300
7.4.4: Peak List of 2551-H	301
7.5: 2552-11-I3III)	306
7.5.1: Measurement Conditions of 2552-H	306
7.5.2: Main Graphics, Analyze View of 2552-H	307
7.5.3: Pattern List of 2552-H	308
7.5.4: Peak List of 2552-H	308
7.6: 2558-11-13111)	314
7.6.1: Measurement Conditions of 2558-H	314
7.6.2: Main Graphics, Analyze View of 2558-H	315
7.6.3: Pattern List of 2558-H	316
7.6.4: Peak List of 2558-H	317
7.7: 2565-H-BHD	322
7.7.1: Measurement Conditions of 2565-H	322
7.7.2: Main Graphics, Analyze View of 2565-H	323
7.7.3: Pattern List of 2565-H	324
7.7.4: Peak List of 2565-H	324
7.8: 2567-11-131II)	329
7.8.1: Measurement Conditions of 2567-H	329
7.8.2: Main Graphics, Analyze View of 2567-H	330
7.8.3: Pattern List of 2567-H	331
7.8.4: Peak List of 2567-H	331
Facility 1	337
8.1: 2524-I-BHD	337
8.1.1: Measurement Conditions of 2524-1	337
123

-------
8.1.2: Main Graphics, Analyze View of 2524-1	338
8.1.3: Pattern List of 2524-1	339
8.1.4: Peak List of 2524-1	339
8.2: 2526-I-BHD	345
8.2:1: Measurement Conditions of 2526-1	345
82.2: Main Graphics, Analyze View of 2526-1	346
8.2.3: Pattern List of 2526-1	347
8.2.4: Peak List of 2526-1	348
Facility J	355
9.1: 2514-J-BHD	355
9.1.1: Measurement Conditions of 2514-J	355
9.1.2: Main Graphics, Analyze View of 2514-J	356
9.1.3: Pattern List of 2514-J	357
9.1.4: Peak List of 2514-J	358
9.2: 2516-J-BHD	364
9.2:1: Measurement Conditions of 2516-J	364
9.2.2: Main Graphics, Analyze View of 2516-J	365
9.2.3: Pattern List of 2516-J	366
9.2.4: Peak List of 2516-J	367
Facility K	372
10.1: 2583-K-BHD	372
10.1.1: Measurement Conditions of 2583-K	372
10.1.2: Main Graphics, Analyze View of 2583-K	373
10.1.3: Pattern I.isl of 2583-K	374
10.1.4: Peak List of 2583-K	374
10.2: 2585-K-BHD	378
10.2:1: Measurement Conditions of 2585-K	378
10.2.2: Main Graphics, Analyze View of 2585-K	379
10.2.3: Pattern List of 2585-K	380
10.2.4: Peak List of 2585-KJ	380
10.3: 2587-K-BHD	385
10.3:1: Measurement Conditions of 2587-K	385
10.3.2: Main Graphics, Analyze View of 2587-K	386
10.3.3: Pattern List of 2587-K	387
10.3.4: Peak List of 2587-KJ	387
10.4: 2589-K-BHD	390
10.4:1: Measurement Conditions of 2589-K	390
10.43.2: Main Graphics, Analyze View of 2589-K	391
10.4.3: Pattern List of 2589-K	392
10.4.4: Peak List of 2589-KJ	392
Facility L	396
11.1: 2483-I.-131II)	396
11.1.1: Measurement Conditions of 2483 -L	3 96
11.1.2: Main Graphics, Analyze View of 24832-L	397
11.1.3: Pattern List of 2483 -L	398
11.1.4: Peak List of 2483-1.	399
11.2: 2485-1 .-131II)	404
11.2.1: Measurement Conditions of 2485-L	404
11.2.2: Main Graphics, Analyze View of 2485-L	405
11.2.3: Pattern List of 2485-L	406
11.2.4: Peak List of 2485-L	407
11.3: 2487-1.-131II)	411
11.3.1: Measurement Conditions of 2487-L	411
124

-------
11.3.2: Main Graphics, Analyze View of 2487-L	412
11.3.3: Pattern List of 2487-L	413
11.3.4: Peak List of 2487-L	414
11.4: 2489-1 .-151II)	419
11.4.1: Measurement Conditions of 2489-L	419
11.4.2: Main Graphics, Analyze View of 2489-L	420
11.4.3: Pattern List of 2489-L	421
11.4.4: Peak List of 2489-L	422
Facility M	427
12.1: 2604-M-BHD	427
12.1.1: Measurement Conditions of 2604-M	427
12.1.2: Main Graphics, Analyze View of 2604-M	428
12.1.3: Pattern List of 2604-M	429
12.1.4: Peak List of 2604-M	429
12.2: 2608-M-BHD	435
12.2.1: Measurement Conditions of 2608-M	435
12.2.2: Main Graphics, Analyze View of 2608-M	436
12.2.3: Pattern List of 2608-M	437
12.2.4: Peak List of 2608-M	438
Facility N	445
13.1: 2495-N-BHD	445
13.1.1: Measurement Conditions of 2495-N	445
13.1.2: Main Graphics, Analyze View of 2495-N	446
13.1.3: Pattern List of 2495-N	447
13.1.4: Peak List of 2495 -N	448
13.2: 2497-N-BHD	453
13.2.1: Measurement Conditions of 2497-N	453
13.2.2: Main Graphics, Analyze View of 2497-N	454
13.2.3: Pattern List of 2497-N	455
13.2.4: Peak List of 2497-N	455
13.3: 2499-N-BHD	459
13.3.1: Measurement Conditions of 2499-N	459
13.3.2: Main Graphics, Analyze View of 2499-N	460
13.3.3: Pattern List of 2499-N	461
13.3.4: Peak List of 2499-N	461
125

-------
Facility A
1.1: 2573-A-BHD
1.1.1 Measurement Conditions
Dataset Name
2573-A-Slow

File name
M:\XRD-BHD\2573-A-Slow.rd
Sample Identification
2573-A-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/21/2013 3:46:00 PM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

126

-------
1.1.2: Main Graphics, Analyze View of2573-A
IU	M
A ft
i*
I .
\
50	60	70
Position [°2Theta] (Copper (Cu))
'"in l"l
Quartz low 94 %
Aluminum 2 %
Calcrte 4 %
127

-------
1.1.3: Pattern List of25 73-A
Ref. Code
Score
Compound
Name
Chemical
Formula
Semi Quant
[%]
Matched
Lines
Strong
Unmatched
Lines
01-085-
43
Aluminum
A1
2
5
0
1327






01-086-
21
Calcite
Ca (C 03)
4
19
0
2340






01-085-
24
Quartz low
Si 02
94
24
0
0335






1.1.4: Peak List of2573-A
Pos. | 2Tli.| Height [cts] FWHM d-spacing [A] Rel. Int. [%] Matched by
	[°2Th.]	
5.4204
307.30
0.2952
16.30425
0.09
6.0317
357.89
0.2952
14.65330
0.10
7.6501
416.35
0.1476
11.55654
0.12
8.5195
889.33
0.1476
10.37908
0.26
10.1210
398.78
0.1968
8.74004
0.12
11.2929
602.29
0.2952
7.83553
0.17
12.0228
577.05
0.3936
7.36146
0.17
13.5639
283.28
0.0984
6.52833
0.08
14.0232
605.12
0.0984
6.31552
0.18
17.0266
428.69
0.0984
5.20765
0.12
17.4656
799.02
0.0984
5.07775
0.23
17.8780
902.15
0.2460
4.96153
0.26
18.4887
1754.96
0.1476
4.79900
0.51
19.4657
1465.82
0.2460
4.56028
0.43
19.8261
1706.58
0.1476
4.47820
0.50
20.5226
11171.62
0.1968
4.32777
3.24
21.2746
1485.86
0.2460
4.17646
0.43
21.7223
3194.24
0.1968
4.09138
0.93
22.7674
24708.99
0.1968
3.90588
7.17
23.3138
1529.67
0.0984
3.81556
0.44
23.6966
6803.17
0.1476
3.75479
1.97
24.0749
3492.24
0.1476
3.69663
1.01
25.2194
2428.24
0.1476
3.53141
0.70
26.2278
82775.91
0.2460
3.39788
24.03
27.1522
7843.30
0.1476
3.28426
2.28
27.5299
9336.96
0.1968
3.24006
2.71
29.1229
344492.40
0.1968
3.06635
100.00
30.6388
6407.50
0.1968
2.91801
1.86
128

-------
31.1564
9386.79
0.1476
2.87070
2.72
01-086-2340
32.0970
9866.79
0.1476
2.78869
2.86

34.2690
11579.17
0.2460
2.61675
3.36

35.1702
16899.06
0.1476
2.55174
4.91

35.6915
44480.18
0.1968
2.51566
12.91

36.2633
4987.17
0.1476
2.47729
1.45

38.1313
50662.57
0.1968
2.36012
14.71

38.5277
15880.95
0.0984
2.33675
4.61
01-085-1327
39.1398
69523.60
0.1968
2.30160
20.18

39.8702
6600.29
0.2460
2.26111
1.92

40.8491
3297.46
0.1968
2.20916
0.96

41.3703
981.24
0.1476
2.18252
0.28

42.0398
7300.58
0.1476
2.14930
2.12

42.3908
17942.04
0.1476
2.13231
5.21
01-085-0335
42.8819
59440.24
0.1968
2.10903
17.25

43.2890
18893.98
0.1476
2.09013
5.48
01-086-2340
44.3671
26275.13
0.2460
2.04181
7.63

45.1310
2887.02
0.1968
2.00901
0.84

45.5081
2620.33
0.1476
1.99324
0.76

46.0559
1926.05
0.1968
1.97080
0.56

46.8153
21930.73
0.1476
1.94059
6.37

47.2469
71910.51
0.2460
1.92386
20.87
01-086-2340
48.2322
72184.27
0.2460
1.88684
20.95
01-086-2340
49.8272
6399.77
0.1968
1.83011
1.86

50.4023
4349.77
0.1968
1.81057
1.26

51.1322
7592.12
0.1968
1.78643
2.20

51.7616
1201.57
0.1968
1.76618
0.35

52.8226
511.37
0.0984
1.73317
0.15

53.3110
1000.42
0.1476
1.71844
0.29

54.0011
7533.90
0.1476
1.69810
2.19

54.6138
4080.57
0.1968
1.68049
1.18

56.2868
13017.05
0.2952
1.63445
3.78

57.1159
30081.40
0.2460
1.61268
8.73
01-085-0335
57.8177
7324.85
0.1968
1.59476
2.13

58.3539
3509.94
0.1476
1.58138
1.02

59.5912
3871.74
0.1968
1.55147
1.12

60.3799
20379.60
0.1968
1.53308
5.92

61.1204
9541.62
0.2460
1.51627
2.77
01-086-2340
62.3707
2724.78
0.1476
1.48885
0.79

62.7765
7189.09
0.2952
1.48020
2.09

63.7101
2047.32
0.1476
1.46074
0.59

64.3638
23885.61
0.2400
1.44627
6.93

64.6488
20986.50
0.1968
1.44178
6.09
01-086-2340
65.3320
14461.55
0.2460
1.42835
4.20
01-085-1327
129

-------
67.3919
3307.99
0.1476
1.38961
0.96

67.9103
3362.23
0.2952
1.38026
0.98
01-085-0335
68.3256
2424.74
0.0984
1.37288
0.70
01-085-0335
68.8931
5830.07
0.3444
1.36295
1.69
01-086-2340
69.9679
6975.72
0.3936
1.34463
2.02
01-086-2340
70.9734
638.35
0.1476
1.32803
0.19

72.0306
2660.69
0.1476
1.31111
0.77

72.5980
11316.68
0.2460
1.30226
3.29
01-086-2340
73.3803
3618.08
0.0984
1.29030
1.05
01-085-0335
73.9338
4616.17
0.1968
1.28200
1.34

74.7857
1665.18
0.2952
1.26950
0.48

75.2647
1359.15
0.1968
1.26260
0.39

75.9775
3997.15
0.1968
1.25252
1.16

76.8833
7848.85
0.3444
1.24001
2.28

77.8124
12120.97
0.3600
1.22650
3.52
01-085-0335
78.1113
6533.94
0.1800
1.22559
1.90

79.5431
1311.62
0.3600
1.20410
0.38

80.6795
2623.79
0.1800
1.18998
0.76
01-086-2340
81.2224
8781.78
0.3600
1.18340
2.55
01-086-2340;





01-085-0335
81.9993
5228.70
0.3000
1.17414
1.52

82.2309
3356.50
0.2400
1.17433
0.97

83.4874
15554.81
0.2400
1.15695
4.52

83.7783
8573.07
0.1200
1.15654
2.49

84.5536
6880.39
0.2400
1.14506
2.00

84.8763
2883.73
0.1800
1.14437
0.84

86.1833
1722.93
0.1800
1.12754
0.50
01-086-2340
86.6529
2443.15
0.3600
1.12263
0.71

89.1299
649.69
0.3600
1.09773
0.19

89.7251
1297.30
0.2400
1.09199
0.38

90.6148
1523.62
0.4800
1.08357
0.44

91.3400
71.57
0.1200
1.07685
0.02

91.6241
403.19
0.1200
1.07425
0.12

92.0215
1333.05
0.2400
1.07065
0.39

92.3243
1429.18
0.3000
1.06793
0.41

92.7737
3216.28
0.2400
1.06393
0.93

93.1668
2173.80
0.2400
1.06310
0.63

93.6813
779.16
0.1200
1.05599
0.23

94.4154
10582.43
0.1800
1.04971
3.07

94.7622
17929.90
0.2400
1.04678
5.20

95.1068
7624.00
0.1800
1.04649
2.21

95.8929
6114.03
0.2400
1.03741
1.77

96.3065
3609.77
0.2400
1.03662
1.05

97.4339
689.21
0.1800
1.02507
0.20

98.9000
10046.80
0.2400
1.01377
2.92

130

-------
99.2854
5917.54
0.2400
1.01337
1.72
100.1205
1233.44
0.2400
1.00467
0.36
100.6798
839.65
0.1800
1.00308
0.24
101.2014
850.49
0.2400
0.99684
0.25
101.8841
2319.46
0.2400
0.99200
0.67
102.6532
4483.36
0.3000
0.98665
1.30
103.8710
4221.87
0.2400
0.97838
1.23
104.2981
2263.78
0.1800
0.97797
0.66
105.5456
4200.67
0.1800
0.96742
1.22
105.9197
6849.85
0.3600
0.96503
1.99
106.3095
3828.01
0.1800
0.96495
1.11
107.1118
1647.87
0.1800
0.95756
0.48
107.6549
934.81
0.3600
0.95423
0.27
108.3872
418.99
0.3600
0.95218
0.12
109.3102
4791.38
0.3000
0.94436
1.39
1. 2: 2574-A-BHD
1. 2.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
2574-A-Slow
M:\XRD-BHD\2574-A-Slow.rd
2574-A-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/22/2013 3:26:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
131

-------
Diffractometer Type	XPert MPD
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	Yes
1.2.2: Main Graphics, Analyze View of2574-A
W VV V www
V
vvvw vvvvvvv
V V V v\
V V V V
WWWVW VVWVWWVVVVV V
JU/jWl ) -K' WljU4
..J'Wl. .A
,1 !
I. ..A,.
		
50	60	70
Position [°2Theta] (Copper (Cu))
Quartz low 63.6 %
Aluminum 11.1 % |

Anhydrite 3 %


Magnesium Aluminum Oxide 4 % |
\\
W Aluminum Oxide Nitride 4 %


Sodium Chloride 5.1 %

Svlvrts Magnesium Sulfate 4 %

132

-------
1.2.3: Pattern List of25 74-A
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
00-004-
40
Sylvite, syn
K CI
5
10
0
0587






01-077-
48
Sodium
Na CI
5
9
0
2064

Chloride




01-074-
6
Magnesium
Mg A12 04
4
9
0
1132

Aluminum
Oxide




01-080-
8
Aluminum
A12.85
4
10
0
2171

Oxide
Nitride
03.45
NO.55



01-085-
43
Aluminum
A1
11
5
0
1327






01-086-
16
Anhydrite
Ca ( S 04 )
3
33
0
2270






01-072-
17
Magnesium
Mg S 04
4
37
0
1259

Sulfate




01-085-
26
Quartz low
Si 02
63
27
0
0335






1.2.4: Peak List of2574-A
[°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
5.2644
117.11
0.3936
16.78701
0.06
5.7815
331.18
0.1476
15.28663
0.18
7.6642
979.54
0.2460
11.53524
0.54
8.5035
1440.76
0.1476
10.39857
0.79
10.1583
455.18
0.0984
8.70798
0.25
12.1386
384.97
0.1476
7.29150
0.21
12.7083
229.86
0.1968
6.96585
0.13
13.5137
630.71
0.1476
6.55247
0.35
13.9150
191.02
0.1476
6.36437
0.11
14.7048
351.64
0.1968
6.02426
0.19
15.5067
561.08
0.3936
5.71451
0.31
17.6860
1338.74
0.1968
5.01497
0.74
18.4668
3247.66
0.1476
4.80465
1.79
19.5667
1823.45
0.4920
4.53697
1.01
20.5126
12891.22
0.1476
4.32984
7.11
21.6787
3183.20
0.1476
4.09952
1.76
22.4822
2777.31
0.1476
3.95478
1.53
23.2579
4554.93
0.1476
3.82461
2.51
23.6659
16212.69
0.1476
3.75958
8.95
Matched by
01-072-1259
01-072-1259
133

-------
24.3433
4350.54
0.1476
3.65648
2.40

25.2044
43255.62
0.1476
3.53348
23.87

26.2980
66112.09
0.1476
3.38897
36.48
01-072-1259
27.0482
15135.06
0.1476
3.29666
8.35

28.0055
181238.40
0.1476
3.18611
100.00

28.6373
2409.39
0.0984
3.11723
1.33
01-086-2270
29.0793
9970.01
0.1968
3.07085
5.50

29.9878
3573.26
0.1968
2.97986
1.97

30.6007
3610.49
0.2460
2.92156
1.99

31.3652
120664.80
0.1476
2.85207
66.58
01-074-1132;





01-086-2270
32.5430
3695.64
0.1476
2.75149
2.04

33.1684
1433.40
0.1476
2.70103
0.79

34.2602
41483.26
0.2460
2.61740
22.89

35.1723
3917.48
0.1968
2.55159
2.16

35.7031
4267.58
0.1476
2.51487
2.35
01-072-1259
36.1189
23862.97
0.1968
2.48687
13.17

37.0652
2252.26
0.1476
2.42552
1.24

38.1421
172565.80
0.3444
2.35948
95.21

39.1190
8618.50
0.1968
2.30278
4.76
01-080-2171
39.8360
27594.11
0.0984
2.26297
15.23

40.1776
82164.38
0.1968
2.24451
45.33
01-085-0335
40.5158
16190.36
0.0984
2.22656
8.93
00-004-0587
40.9145
3633.02
0.1476
2.20578
2.00
01-086-2270;





01-072-1259
41.2876
3122.06
0.1476
2.18670
1.72
01-086-2270
42.1159
6520.21
0.1476
2.14559
3.60

42.8760
4268.52
0.1968
2.10930
2.36

44.3827
103728.60
0.1968
2.04113
57.23

45.1040
56622.52
0.1476
2.01015
31.24

47.1432
3204.78
0.1476
1.92785
1.77

48.2793
3257.63
0.2460
1.88511
1.80
01-072-1259
48.8290
1980.16
0.1476
1.86516
1.09
01-086-2270
49.8037
33201.16
0.1968
1.83092
18.32
01-080-2171
50.2538
6701.39
0.0984
1.81557
3.70
00-004-0587;





01-085-0335
51.1783
778.04
0.1968
1.78493
0.43

52.1612
4810.51
0.1476
1.75358
2.65
01-086-2270
52.7924
1015.99
0.1476
1.73410
0.56
01-086-2270
53.2865
3227.85
0.2460
1.71918
1.78

53.9685
3343.94
0.1968
1.69905
1.85
01-077-2064
54.5191
5087.43
0.1968
1.68319
2.81
01-072-1259
54.9891
1144.51
0.1968
1.66991
0.63
01-085-0335
56.0834
18785.89
0.2952
1.63989
10.37

56.8235
891.42
0.0984
1.62028
0.49
01-080-2171
57.4797
3819.00
0.0984
1.60334
2.11

134

-------
57.7968	12903.93
58.2679	16015.03
58.9256	7470.45
59.5744	11894.62
60.4302	2772.54
61.2259	843.93
61.6490	1503.39
62.3858	1088.26
62.9120	1764.61
63.6277	2213.50
64.3651	11917.46
64.7145	51402.52
65.2765	6220.53
66.0062 33532.48
66.6041	4923.09
67.3406	4807.51
67.7505	6190.56
67.9625	6179.37
68.7002	4527.92
69.1358	15003.06
70.5771	574.76
71.0837	172.13
71.5801	663.84
72.6905	5154.99
73.3107	18760.60
73.5685	9921.87
74.0123	4776.82
74.8847	16668.89
75.1629	8457.82
75.5252	1614.24
76.1517	630.76
0.1476	1.59529
0.2460	1.58351
0.2460	1.56740
0.2460	1.55187
0.1476	1.53192
0.1476	1.51391
0.2460	1.50453
0.1968	1.48852
0.1476	1.47733
0.2460	1.46243
0.1200	1.44625
0.2460	1.44047
0.0984	1.42943
0.2460	1.41538
0.1476	1.40412
0.1476	1.39055
0.1800	1.38198
0.1476	1.37933
0.1476	1.36631
0.1968	1.35876
0.2952	1.33451
0.1476	1.32623
0.1476	1.31825
0.1968	1.30083
0.1800	1.29028
0.1200	1.28959
0.1800	1.27978
0.1800	1.26702
0.1200	1.26615
0.1200	1.25786
0.2400	1.24906
7.12 01-086-2270;
01-072-1259
8.84
4.12 01-086-2270;
01-072-1259
6.56 01-074-1132
1.53 01-080-2171;
01-072-1259
0.47 01-086-2270;
01-072-1259
0.83 01-072-1259
0.60 01-086-2270
0.97
1.22 01-072-1259
6.58 01-072-1259
28.36
3.43 01-074-1132;
01-085-1327;
01-086-2270
18.50 01-077-2064;
01-072-1259;
01-085-0335
2.72 00-004-0587;
01-080-2171
2.65
3.42 01-085-0335
3.41 01-072-1259;
01-085-0335
2.50 01-074-1132;
01-086-2270
8.28
0.32 01-072-1259
0.09 01-080-2171
0.37 01-086-2270;
01-072-1259
2.84 01-086-2270
10.35 01-085-0335
5.47
2.64 01-074-1132;
01-086-2270
9.20
4.67
0.89 01-080-2171;
01-072-1259;
01-085-0335
0.35 01-072-1259
135

-------
77.3977	16874.83	0.1800
77.8526	56470.87	0.1800
78.1301	27227.93	0.1200
79.5058	3357.26	0.2400
79.7729	2447.13	0.1800
80.7651	2009.44	0.1800
81.0884	4081.09	0.1800
82.0616	14537.55	0.1800
82.7946	2530.02	0.2400
83.5807	11847.47	0.2400
83.8809	6111.30	0.1200
84.9233	305.83	0.1200
85.2245	90.29	0.1200
85.6300	91.63	0.1200
85.9658	954.17	0.3000
86.5180	1651.69	0.2400
87.2792	4154.80	0.1200
87.5742	2302.99	0.1200
88.4365	1699.32	0.2400
89.1517	891.71	0.1800
90.0134	1209.23	0.1800
90.4275	2939.88	0.2400
90.7623	1585.80	0.1200
91.3435	358.32	0.2400
92.3800	609.01	0.2400
93.2745	657.82	0.1800
94.1497	10009.37	0.1800
94.4893	5564.55	0.1800
95.1404	1962.48	0.1800
95.8765	2137.68	0.1200
96.1579	2163.55	0.1800
96.7156	4144.93	0.2400
97.3554	151.05	0.1200
98.1118	3948.95	0.2400
98.7105	7175.63	0.1800
99.0852	3382.56	0.1800
99.6317	1384.74	0.2400
100.1228	3684.44	0.3600
1.23203	9.31 01-074-1132;
01-086-2270;
01-072-1259
1.22597	31.16 01-085-0335
1.22534	15.02
1.20458	1.85 01-072-1259
1.20420	1.35
1.18894	1.11
1.18501	2.25 01-085-0335
1.17341	8.02 01-072-1259
1.16487	1.40 01-074-1132;
01-086-2270;
01-072-1259
1.15590	6.54 01-072-1259
1.15539	3.37
1.14102	0.17 01-085-0335
1.14058	0.05
1.13340	0.05 01-074-1132
1.12983	0.53 01-074-1132;
01-086-2270;
01-072-1259
1.12404	0.91 01-072-1259
1.11618	2.29 01-072-1259;
01-085-0335
1.11595	1.27
1.10454	0.94 01-086-2270;
01-072-1259
1.09752	0.49 01-072-1259
1.08924	0.67
1.08533	1.62
1.08488	0.87
1.07682	0.20
1.06743	0.34
1.05953	0.36
1.05197	5.52
1.05169	3.07
1.04362	1.08
1.03755	1.18
1.03526	1.19
1.03076	2.29
1.02824	0.08
1.01979	2.18
1.01520	3.96
1.01488	1.87
1.00828	0.76
1.00465	2.03
136

-------
1.80
4.39
1.97
0.62
0.99
0.33
0.15
0.52
0.22
0.34
0.47
0.67
0.32
2.74
1.52
4.19
1.3: 2575-A-BHD
1.3.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
100.7612
3263.68
101.1106
7948.79
101.4550
3565.79
101.8400
1119.83
102.2263
1791.95
102.6981
604.37
103.1786
271.29
103.8444
949.15
104.7237
405.97
105.4394
614.83
106.2265
853.28
107.4213
1218.89
107.7827
581.25
108.2236
4970.17
108.6322
2752.12
109.6613
7591.18
0.1800
1.00249
0.1800
0.99749
0.1800
0.99751
0.1200
0.99231
0.1800
0.98961
0.1200
0.98879
0.1200
0.98305
0.1200
0.97856
0.1200
0.97274
0.2400
0.96810
0.1200
0.96309
0.1800
0.95566
0.1800
0.95583
0.2400
0.95080
0.1800
0.95071
0.1800
0.94232
2575-A-Slow
M:\XRD-BHD\2575-A-Slow.rd
2575-A-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/22/2013 3:07:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
137

-------
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	Yes
1.3.2: Main Graphics, Analyze View of2575-A
V VV WVW VV W VV V V V w
¥\

V
VV VVV V VV
/'vl
'J '1

¦JkJy' /


I"./
/lil
w> r IV\ a
50	60	70
Position [°2Theta] (Copper (Cu))
138

-------
Quartz low 55.1 %
Ahimioiup rv.-i"¦
Anhydrite 1 %
Diaspore 3.1 %
Elpasolite, syn 10.2 %
Silicon Nitride 5.1 %
Aluminum 6.1 % |
Calcite 7.1 %~|
Magnesium Sulfate 7.1 %
1.3.3: Pattern List of25 75-A
Ref. Code
Score
Compound
Name
Chemical
Formula
Semi Quant
[%]
Matched
Lines
Strong
Unmatched
Lines
01-075-
14
Aluminum
A12 03
2
19
1
1862

Oxide




01-075-
9
Aluminum
A1N
2
7
1
1620

Nitride




01-085-
25
Aluminum
A1
6
5
0
1327






00-004-
19
Fluorite, syn
Ca F2
1
5
0
0864






00-022-
21
Elpasolite,
K2 Na A1
10
16
0
1235

syn
F6



01-086-
8
Anhydrite
Ca ( S 04 )
1
37
0
2270






01-086-
42
Calcite
Ca(C 03)
7
24
0
2340






01-072-
30
Magnesium
Mg S 04
7
48
0
1259

Sulfate




01-076-
24
Silicon
Si3 N4
5
46
0
1407

Nitride




01-074-
24
Diaspore
A1 O ( O H
3
42
0
1879


)



01-085-
17
Quartz low
Si 02
54
26
0
0335






1.3.4: Peak List of2575-A
139

-------
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.8424
164.41
0.1968
15.12759
0.16

7.1224
183.84
0.5904
12.41143
0.18

8.2765
385.48
0.5904
10.68321
0.38

9.9741
68.06
0.0984
8.86839
0.07

10.4775
292.25
0.1476
8.44340
0.29

11.5071
240.54
0.0984
7.69018
0.24

12.0723
891.50
0.1476
7.33137
0.89

12.6134
774.22
0.0984
7.01806
0.77

13.8508
1764.33
0.3936
6.39373
1.76

14.5866
2000.37
0.2952
6.07284
1.99

15.9796
1957.53
0.1476
5.54642
1.95

16.3327
1880.18
0.1476
5.42731
1.87

18.5111
1245.85
0.3444
4.79325
1.24

19.5061
2101.83
0.1476
4.55093
2.09

20.5180
8749.80
0.2460
4.32871
8.71
01-072-1259;





01-076-1407
21.6711
6529.80
0.1476
4.10094
6.50
00-022-1235
22.7211
11581.67
0.2460
3.91373
11.53
01-086-2270;





01-072-1259;





01-076-1407
23.6410
7104.39
0.2460
3.76349
7.08

25.0708
1474.05
0.0984
3.55201
1.47

26.2569
35629.29
0.2952
3.39418
35.48
01-072-1259
27.1113
5269.95
0.2460
3.28913
5.25

27.6288
2928.41
0.1476
3.22868
2.92
01-072-1259;





01-074-1879
28.0657
1686.31
0.1476
3.17941
1.68
00-004-0864
29.1021
67316.91
0.2952
3.06850
67.04
01-086-2340
29.9118
1365.33
0.1476
2.98725
1.36

30.4747
2191.01
0.1968
2.93335
2.18

31.1178
3150.59
0.1968
2.87417
3.14
00-022-1235;





01-086-2270;





01-086-2340;





01-076-1407
32.0678
3186.06
0.2460
2.79117
3.17
01-086-2270;





01-076-1407
34.2259
21871.06
0.3444
2.61995
21.78
01-072-1259
35.1300
6504.61
0.1968
2.55457
6.48
01-075-1862;





01-076-1407;





01-074-1879
35.6491
13861.96
0.2460
2.51855
13.81
01-072-1259
36.3159
4083.61
0.2460
2.47383
4.07
01-086-2270;





01-086-2340;





01-085-0335
140

-------
38.0819
100411.50
0.3936
2.36307
100.00
01-075-1620;
01-074-1879
39.1114
18501.72
0.3444
2.30321
18.43
01-076-1407;
01-074-1879
39.7932
11125.02
0.2952
2.26530
11.08
01-076-1407
40.8279
1847.38
0.1968
2.21025
1.84
01-086-2270;
01-072-1259;
01-074-1879
41.3204
1990.34
0.1476
2.18504
1.98
01-086-2270
42.3001
6157.90
0.2460
2.13667
6.13
01-074-1879;
01-085-0335
42.8327
15920.54
0.2460
2.11133
15.86

44.3200
50699.98
0.3936
2.04387
50.49

45.4308
2153.62
0.1476
1.99645
2.14
01-086-2270;
01-074-1879
46.0263
877.30
0.1476
1.97200
0.87
01-075-1862;
01-072-1259;
01-085-0335
46.7296
7063.65
0.2460
1.94395
7.03
01-086-2270;
01-072-1259;
01-076-1407
47.2120
18020.26
0.2952
1.92520
17.95
00-004-0864;
01-086-2270;
01-086-2340
48.1871
19768.46
0.3444
1.88850
19.69
01-086-2340;
01-072-1259;
01-076-1407
49.7312
6376.39
0.2952
1.83342
6.35
01-075-1620
50.3257
1975.29
0.1476
1.81315
1.97
00-022-1235;
01-076-1407;
01-074-1879;
01-085-0335
51.0694
1874.76
0.1968
1.78848
1.87

51.6044
392.57
0.0984
1.77119
0.39
01-076-1407
52.1285
204.69
0.1476
1.75461
0.20
01-086-2270;
01-076-1407
53.2244
886.93
0.1968
1.72104
0.88
01-074-1879
53.9694
4582.25
0.3444
1.69902
4.56

54.5574
2388.75
0.1968
1.68210
2.38
01-072-1259;
01-076-1407;
01-074-1879
56.3145
4438.58
0.3936
1.63371
4.42
01-072-1259;
01-076-1407;
01-074-1879
57.0660
10086.57
0.2952
1.61397
10.05
01-076-1407;
01-085-0335
141

-------
57.7180
7908.07
0.3936
1.59728
7.88
01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
58.4736
1322.90
0.1476
1.57843
1.32

59.4904
3895.80
0.3444
1.55386
3.88
01-075-1862;





01-075-1620;





01-076-1407
60.3809
7313.80
0.2952
1.53306
7.28
01-086-2270;





01-072-1259
61.1130
4244.10
0.2460
1.51644
4.23
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259;





01-074-1879
62.8573
2722.35
0.2952
1.47849
2.71
01-086-2340;





01-074-1879
64.6478
34166.24
0.5904
1.44180
34.03
00-022-1235;





01-086-2340;





01-072-1259;





01-076-1407
65.4319
4532.96
0.2460
1.42641
4.51
01-086-2270;





01-074-1879
66.7764
960.91
0.0984
1.40092
0.96
01-086-2270;





01-076-1407;





01-074-1879
67.3205
2830.73
0.1968
1.39091
2.82

67.7592
5872.91
0.1968
1.38297
5.85
01-072-1259;





01-085-0335
69.0405
8575.97
0.3936
1.36040
8.54
01-086-2340;





01-074-1879
69.7312
2249.14
0.3000
1.34749
2.24
01-075-1620;





01-086-2340;





01-076-1407
70.1119
2237.03
0.1968
1.34222
2.23
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407;





01-074-1879
70.9765
497.03
0.0984
1.32797
0.49
01-074-1879
72.5321
5513.41
0.2952
1.30328
5.49
01-075-1620;





01-086-2340;





01-076-1407;





01-074-1879
142

-------
73.8714
2290.34
0.2460
1.28293
2.28
00-022-1235;
01-086-2340;
01-074-1879
75.2316
1444.55
0.1968
1.26308
1.44

75.9136
1614.33
0.0984
1.25342
1.61
00-004-0864;
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
77.7745
32179.38
0.5412
1.22802
32.05
00-022-1235;
01-086-2270;
01-072-1259;
01-076-1407;
01-085-0335
79.3372
1106.10
0.3000
1.20671
1.10
01-072-1259;
01-076-1407;
01-074-1879
79.6144
1510.16
0.1968
1.20420
1.50
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
80.8418
2755.19
0.1800
1.18800
2.74
01-075-1862;
01-075-1620;
01-076-1407
81.1274
4432.30
0.1476
1.18552
4.41
01-075-1620;
01-086-2340;
01-074-1879;
01-085-0335
81.9459
10046.79
0.4428
1.17574
10.01
00-022-1235;
01-086-2270;
01-072-1259;
01-076-1407;
01-074-1879
83.4444
6599.75
0.2460
1.15840
6.57
01-086-2270;
01-072-1259;
01-076-1407;
01-074-1879
84.6216
2998.14
0.1968
1.14526
2.99
01-086-2270;
01-086-2340;
01-072-1259;
01-074-1879
86.2769
2029.51
0.1968
1.12749
2.02
01-075-1862;
01-086-2340;
01-072-1259
87.7761
414.03
0.1476
1.11206
0.41
01-076-1407;
01-074-1879;
01-085-0335
143

-------
89.2673
805.39
0.4800
1.09640
0.80
01-072-1259;





01-076-1407;





01-074-1879
89.5721
1015.70
0.1800
1.09617
1.01

90.3788
1766.47
0.2400
1.08578
1.76
00-022-1235
90.7275
1032.99
0.1800
1.08521
1.03

91.7271
516.85
0.1200
1.07331
0.51

92.7946
1114.24
0.1800
1.06374
1.11

93.5860
368.04
0.1800
1.05682
0.37
00-022-1235
94.4090
4476.31
0.2400
1.04976
4.46
00-004-0864
94.7306
6189.05
0.3600
1.04705
6.16

95.8164
3048.59
0.3000
1.03804
3.04

96.6313
2119.44
0.4200
1.03144
2.11

98.9568
5445.87
0.6600
1.01334
5.42
00-022-1235
99.8891
2386.20
0.3000
1.00637
2.38

101.9262
1197.65
0.3600
0.99171
1.19
00-022-1235
102.5758
1646.97
0.1800
0.98964
1.64

103.8724
1653.73
0.3000
0.97838
1.65

104.5088
744.58
0.1200
0.97657
0.74

105.7781
3010.38
0.2400
0.96593
3.00
00-004-0864
106.0689
2765.91
0.1800
0.96648
2.75

108.3228
524.50
0.1200
0.95020
0.52

109.2045
2353.37
0.2400
0.94498
2.34

1.4: 2576-A-BHD
1.4.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
2576-ASlow_002
E:\BHD-2013-2\2576-ASlow_002.rd
2576-ASlow_002
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/20/2013 3:28:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
144

-------
Receiving Slit Size [mm]
0.2500
Measurement Temperature [°C]
0.00
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Diffractometer Number
1
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
Incident Beam Monochromator
No
Spinning
Yes
1.4.2: Main Graphics, Analyze View of2576-A

i/V VV V WV VVVWV W V
W V V vv vvv
V VV VV
w wv
2576-ASIow_002
300000 -
200000 -
100000 -
10	20	30	40	50	60	70	80	90	100
Position [°2Theta] (Copper (Cu))
145

-------
Fluorite, syn 14.7 %

Sodium Chloride 19.6 %
Sylvite, syn 14.7 % // \
Calcite 1 % |
Aluminum Oxide 11.8 %
Quartz 6.9 %]
Aluminum Oxide Nitride 9.8 %

Aluminum 8.8 %

Anhydrite 8.8 % |
1.4.3: Pattern List of2576-A
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
00-004-
34
Sylvite, syn
K CI
15
10
0
0587






01-077-
49
Sodium
Na CI
20
9
0
2064

Chloride




01-080-
10
Aluminum
A12.85
10
10
0
2171

Oxide
Nitride
03.45
NO.55



01-085-
44
Aluminum
A1
9
5
0
1327






00-004-
5
Fluorite, syn
Ca F2
15
3
0
0864






01-086-
13
Anhydrite
Ca ( S 04 )
9
30
0
2270






01-086-
9
Calcite
Ca(C 03)
1
17
0
2340






01-072-
11
Magnesium
Mg S 04
4
33
1
1259

Sulfate




01-085-
32
Quartz
Si 02
7
23
0
0930






01-080-
11
Aluminum
A12.667 04
12
9
0
1385

Oxide




146

-------
1.4.4: Peak List of2576-A
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.1727
60.90
0.0984
17.08445
0.02

6.5892
60.94
0.1968
13.41453
0.02

7.7348
708.07
0.1476
11.43009
0.21

8.5361
1217.46
0.1476
10.35895
0.36

9.1130
691.03
0.1476
9.70434
0.20

9.5694
393.97
0.1968
9.24253
0.12

10.1972
367.17
0.1476
8.67493
0.11

10.6177
224.19
0.0984
8.33225
0.07

11.2254
137.70
0.1968
7.88249
0.04

12.7208
297.57
0.1476
6.95904
0.09

13.5304
346.47
0.2952
6.54440
0.10

14.0515
641.85
0.1968
6.30287
0.19

14.5186
198.62
0.0984
6.10111
0.06

15.2129
149.91
0.2952
5.82421
0.04

16.4475
221.50
0.5904
5.38969
0.07

18.4871
1828.93
0.1476
4.79943
0.54

19.7691
1123.12
0.1968
4.49097
0.33

20.5347
8802.76
0.1476
4.32524
2.59
01-072-1259
21.6999
1517.97
0.1476
4.09555
0.45

22.4809
1154.08
0.0984
3.95501
0.34
01-072-1259
22.7657
1310.09
0.0984
3.90618
0.39
01-086-2270
23.1976
2477.71
0.1476
3.83441
0.73
01-086-2340
23.6911
9228.56
0.1476
3.75565
2.72

24.3747
5012.10
0.1476
3.65184
1.48

25.2270
67868.41
0.1476
3.53037
19.98

26.3218
49019.61
0.1968
3.38596
14.43
01-072-1259
27.0738
24764.97
0.1968
3.29359
7.29

27.4858
8962.73
0.0984
3.24516
2.64
01-077-2064;





01-072-1259
28.0296
339751.50
0.1968
3.18342
100.00

28.6750
6184.07
0.0984
3.11322
1.82
01-086-2270
29.1082
12993.21
0.1476
3.06786
3.82

29.6139
3922.44
0.1476
3.01662
1.15

30.0110
6417.36
0.1968
2.97760
1.89

30.6251
7783.15
0.1476
2.91928
2.29

31.3933
243165.10
0.1476
2.84958
71.57
01-086-2270
32.1567
4149.59
0.1476
2.78365
1.22
01-086-2270
32.5760
3424.00
0.0984
2.74877
1.01

33.1348
3472.17
0.1476
2.70368
1.02

34.3114
27785.64
0.1476
2.61361
8.18
01-072-1259
35.1946
4069.72
0.1968
2.55003
1.20

147

-------
35.7596
5883.29
0.1476
2.51102
1.73
01-072-1259
36.1343
51616.66
0.1476
2.48584
15.19
01-086-2340
37.1336
2615.27
0.1476
2.42121
0.77

38.1811
108713.00
0.1968
2.35716
32.00
01-072-1259
39.1560
5786.93
0.1476
2.30069
1.70
01-080-2171;





01-080-1385
40.2174
191329.10
0.1476
2.24238
56.31
01-085-0930
40.9540
3801.61
0.1476
2.20374
1.12
01-086-2270;





01-072-1259
41.3282
2081.25
0.1476
2.18465
0.61
01-086-2270
42.1536
3424.55
0.1476
2.14376
1.01

43.0991
3384.89
0.1476
2.09890
1.00
01-086-2340
43.7992
3502.01
0.1476
2.06696
1.03

44.4290
61015.48
0.1968
2.03911
17.96

45.1491
127666.10
0.1968
2.00825
37.58

46.8247
1203.14
0.0984
1.94022
0.35
01-086-2270;





01-072-1259
47.2562
1905.17
0.1968
1.92350
0.56
01-086-2270;





01-086-2340
47.6205
2568.60
0.1476
1.90964
0.76

47.9851
2283.76
0.0984
1.89597
0.67
01-072-1259
48.3772
2586.14
0.2460
1.88152
0.76
01-086-2340
49.8652
70343.78
0.1968
1.82881
20.70
01-080-2171;





01-080-1385
50.2873
12444.51
0.1476
1.81444
3.66
00-004-0587;





01-085-0930
51.1238
1712.64
0.2952
1.78670
0.50

52.1906
7559.96
0.1476
1.75266
2.23
01-086-2270
52.8107
701.55
0.1476
1.73354
0.21
01-086-2270
53.5690
4956.33
0.1476
1.71078
1.46

54.0573
2867.52
0.1968
1.69647
0.84
01-077-2064
54.5587
2068.57
0.1968
1.68206
0.61

55.0281
1080.88
0.1968
1.66882
0.32
01-085-0930
56.1266
42893.06
0.1968
1.63873
12.62
01-072-1259
56.9294
264.42
0.0984
1.61752
0.08

57.8657
7728.22
0.1476
1.59355
2.27
01-086-2270;





01-072-1259
58.2895
25292.19
0.2460
1.58297
7.44

58.9615
17020.96
0.1476
1.56653
5.01
01-086-2270;





01-072-1259
59.6036
4998.11
0.3444
1.55118
1.47

60.1375
550.32
0.1200
1.53740
0.16
01-085-0930
60.4417
1126.82
0.2460
1.53166
0.33
01-080-2171;





01-072-1259;





01-080-1385
148

-------
61.2261
575.71
0.1968
1.51390
0.17
01-086-2270;





01-086-2340;





01-072-1259
61.8831
913.95
0.2952
1.49940
0.27
01-072-1259
62.4408
1174.66
0.1968
1.48734
0.35
01-086-2270
62.9313
1649.59
0.1476
1.47693
0.49
01-086-2340
63.6933
2026.04
0.1968
1.46108
0.60
01-072-1259
64.4051
5799.13
0.1476
1.44664
1.71
01-072-1259
64.7743
32091.23
0.1968
1.43929
9.45
01-086-2340
65.2961
12153.93
0.1476
1.42905
3.58
01-085-1327;





01-086-2270
66.0384
67470.05
0.1800
1.41360
19.86
01-077-2064;





01-072-1259;





01-085-0930
66.2785
28565.75
0.1200
1.41256
8.41

66.6553
12078.78
0.1800
1.40201
3.56
01-080-2171;





01-080-1385
67.3926
3842.77
0.1800
1.38845
1.13

68.0009
6027.58
0.3600
1.37750
1.77
01-072-1259;





01-085-0930
68.6714
2058.89
0.1800
1.36568
0.61
00-004-0864;





01-086-2270;





01-072-1259
69.2027
8930.77
0.1800
1.35649
2.63
01-086-2340
69.9235
605.87
0.2400
1.34426
0.18
01-080-2171;





01-086-2340;





01-080-1385
70.5321
524.51
0.2400
1.33414
0.15
01-072-1259
71.9471
896.75
0.1800
1.31134
0.26

72.7321
5124.76
0.1800
1.29911
1.51
01-086-2270;





01-086-2340
73.3489
39859.86
0.1800
1.28971
11.73
01-085-0930
73.6099
19104.32
0.1200
1.28897
5.62

74.0547
8409.38
0.1800
1.27915
2.48
01-086-2270
74.9344
41266.73
0.1800
1.26630
12.15

76.1284
641.39
0.1800
1.24938
0.19

77.1122
2955.82
0.1200
1.23588
0.87
01-086-2270;





01-072-1259
77.4719
8845.55
0.1200
1.23104
2.60
01-086-2270;





01-072-1259
77.9164
32699.05
0.1800
1.22512
9.62
01-085-0930
78.1864
16842.56
0.1200
1.22460
4.96

79.4841
1691.27
0.2400
1.20485
0.50

79.7852
1678.94
0.1200
1.20404
0.49

80.8365
1459.01
0.1200
1.18807
0.43

81.1376
2290.78
0.1200
1.18736
0.67

82.1239
8914.73
0.1800
1.17267
2.62
01-072-1259
149

-------
82.8388
5495.56
0.1800
1.16436
1.62
01-086-2270;





01-072-1259
83.6325
29003.19
0.1200
1.15531
8.54
01-072-1259
83.9203
15715.23
0.1200
1.15495
4.63

84.8699
627.70
0.1800
1.14160
0.18
01-086-2340;





01-085-0930
86.5460
972.80
0.2400
1.12374
0.29
01-072-1259
87.3126
11558.99
0.1800
1.11584
3.40
00-004-0864;





01-072-1259;





01-085-0930
88.1604
1567.11
0.1200
1.10729
0.46
01-086-2270;





01-072-1259
88.4641
3548.37
0.1200
1.10701
1.04

89.1758
851.83
0.1800
1.09729
0.25
01-072-1259
89.4847
556.82
0.1800
1.09702
0.16

90.0689
2710.91
0.1800
1.08871
0.80

90.4129
1892.90
0.2400
1.08546
0.56

90.7975
1170.87
0.1800
1.08455
0.34

92.4575
826.89
0.1800
1.06674
0.24

94.1881
22998.97
0.1800
1.05164
6.77
00-004-0864
94.5157
12501.22
0.1200
1.05147
3.68

95.2048
4359.97
0.1800
1.04308
1.28

95.8699
1205.39
0.2400
1.03760
0.35

96.7998
2244.72
0.2400
1.03009
0.66

98.4132
1383.26
0.1800
1.01747
0.41

98.7828
4282.11
0.1800
1.01465
1.26

99.1317
2289.81
0.1800
1.01453
0.67

99.5612
1215.13
0.2400
1.00880
0.36

100.1830
2028.72
0.2400
1.00421
0.60

100.8166
8922.50
0.1800
0.99960
2.63

101.1482
19024.35
0.1800
0.99722
5.60

101.4937
8158.86
0.1800
0.99723
2.40

101.9063
973.84
0.1200
0.99185
0.29

102.2785
2957.06
0.2400
0.98925
0.87

103.5198
352.18
0.1200
0.98074
0.10

103.7171
245.16
0.2400
0.97942
0.07

104.2213
707.35
0.1800
0.97605
0.21

104.7325
596.78
0.2400
0.97269
0.18

105.4912
1978.93
0.1800
0.96777
0.58

106.2976
2087.28
0.1800
0.96264
0.61

106.6938
1244.48
0.1800
0.96254
0.37

107.4408
3269.55
0.1800
0.95554
0.96

107.8315
2217.29
0.1200
0.95553
0.65

108.2572
13059.85
0.1800
0.95059
3.84

108.6528
6673.76
0.1800
0.95059
1.96

150

-------
109.7141 19191.16	0.1800	0.94201	5.65
151

-------
1.5: 2577-A-BHD
1.5.1: Measurement Conditions
Dataset Name
2577-A-Slow

File name
M:\XRD-BHD\2577-A-Slow.rd
Sample Identification
2577-A-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/23/2013 2:48:00 AM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

152

-------
1.5.2: Main Graphics, Analyze View of2577-A-BHD
400000 - 2577-A-Slow
300000 -
50	60	70
Position [°2Theta] (Copper (Cu))
Quartz low 54.5 %
Calcite 34.7 %
Aluminum 1 % |
Elpasolite, syn 2 % |
Silicon Nitride 7.9 %
153

-------
1.5.3: Pattern List of2577-A-BHD
Ref. Code
Score Compound
Chemical
SemiQuant Matched
Strong

Name
Formula
[%]
Lines
Unmatched
Lines
01-085-
14 Aluminum
A1

1 2
0
1327





00-022-
10 Elpasolite,
K2 Na A1

2 10
0
1235
syn
F6



01-086-
42 Calcite
Ca(C 03)

35 20
0
2340





01-085-
10 Quartz low
Si 02

55 14
0
0335





01-076-
10 Silicon
Si3 N4

8 30
1
1407
Nitride




1.5.4: Peak List of2577-A-BHD
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel. Int. [%]
Matched by
6.0226
233.65
0.3444
14.67534
0.06

8.3084
386.86
0.4920
10.64223
0.09

9.9517
267.67
0.5904
8.88836
0.06

11.4238
203.69
0.0984
7.74608
0.05

12.0650
312.31
0.1476
7.33579
0.08

13.0420
158.88
0.1968
6.78839
0.04
01-076-1407
13.8833
441.34
0.1476
6.37882
0.11

14.9214
147.21
0.1968
5.93733
0.04

15.7062
216.10
0.1476
5.64236
0.05

17.3590
655.29
0.2952
5.10868
0.16

18.3205
889.11
0.1968
4.84269
0.22

18.6931
688.18
0.1476
4.74700
0.17

20.3745
8784.59
0.1968
4.35889
2.13

21.6243
1368.76
0.1476
4.10970
0.33

22.6359
33057.40
0.1968
3.92827
8.00

23.2074
2419.33
0.1476
3.83281
0.59
01-086-2340
23.5751
3407.70
0.0984
3.77386
0.83

23.9424
3853.00
0.1476
3.71679
0.93

26.0797
87846.09
0.1968
3.41684
21.27

27.7113
8273.42
0.1476
3.21925
2.00

28.9953
412996.10
0.1968
3.07955
100.00

30.5200
8693.28
0.1968
2.92910
2.10

31.0349
12146.73
0.1968
2.88167
2.94
00-022-1235;
01-086-2340;
01-076-1407
154

-------
31.9689
14870.58
0.1968
2.79958
3.60
01-076-1407
33.1388
1460.18
0.2460
2.70337
0.35

34.1401
4061.24
0.2460
2.62634
0.98

35.0433
22062.58
0.1476
2.56069
5.34

35.5642
61521.71
0.1968
2.52437
14.90
01-076-1407
36.8930
2055.87
0.1476
2.43644
0.50

37.2831
2433.21
0.0984
2.41184
0.59

38.0015
12560.96
0.1968
2.36788
3.04

38.3882
20255.44
0.1476
2.34492
4.90
01-085-1327;





00-022-1235
39.0105
91551.27
0.1968
2.30893
22.17
01-076-1407
39.7663
2861.25
0.1968
2.26678
0.69
01-076-1407
40.7615
3259.82
0.2460
2.21370
0.79

41.9016
9074.16
0.1476
2.15607
2.20
01-076-1407
42.2647
22983.14
0.1476
2.13838
5.56
01-085-0335
42.7538
80137.98
0.1968
2.11505
19.40

43.1683
25258.09
0.0984
2.09569
6.12
01-086-2340
44.2283
6931.04
0.1968
2.04790
1.68

45.0042
3098.38
0.1476
2.01438
0.75

45.9406
2878.14
0.1476
1.97547
0.70
01-085-0335
46.6921
32604.19
0.1476
1.94542
7.89
01-076-1407
47.1223
93089.53
0.2460
1.92865
22.54
01-086-2340
48.1108
98005.09
0.2952
1.89131
23.73
01-076-1407
49.6889
2508.69
0.1476
1.83488
0.61

50.2719
5978.31
0.1476
1.81496
1.45
00-022-1235;





01-085-0335
51.0205
12037.83
0.1968
1.79008
2.91

51.6239
2353.64
0.1968
1.77056
0.57
01-076-1407
52.3713
1133.14
0.1800
1.74560
0.27
01-076-1407
52.5778
1041.84
0.1476
1.74067
0.25

53.1380
912.05
0.1968
1.72363
0.22

53.8816
7876.65
0.1968
1.70159
1.91

54.4991
4002.35
0.1968
1.68376
0.97
01-076-1407
56.1607
18104.28
0.3444
1.63782
4.38
01-076-1407
56.9945
46086.17
0.2460
1.61583
11.16

57.7203
6503.84
0.1476
1.59722
1.57
01-086-2340;





01-076-1407
58.2317
4952.36
0.1968
1.58441
1.20

59.4833
1494.54
0.2952
1.55403
0.36
01-076-1407
60.2573
28118.45
0.1968
1.53590
6.81
01-076-1407
61.0059
13231.17
0.2952
1.51884
3.20
01-086-2340
62.2136
3378.05
0.1476
1.49223
0.82

62.6479
10451.49
0.3444
1.48292
2.53
01-076-1407
64.2472
30988.58
0.2460
1.44982
7.50
01-085-0335
65.2188
18875.27
0.3444
1.43055
4.57
01-085-1327
67.4159
2311.98
0.1476
1.38918
0.56

155

-------
68.2186
3142.55
0.1968
1.37477
0.76
00-022-1235;





01-085-0335;





01-076-1407
68.7901
7193.20
0.2400
1.36361
1.74

69.0227
4999.94
0.1200
1.36296
1.21

69.8545
9588.70
0.4800
1.34542
2.32
01-086-2340;





01-076-1407
71.4283
1292.58
0.2400
1.31959
0.31
01-076-1407
71.9156
3660.67
0.2400
1.31184
0.89

72.4895
14209.19
0.3600
1.30286
3.44
01-086-2340;





01-076-1407
73.2785
4341.10
0.1800
1.29077
1.05
01-085-0335;





01-076-1407
73.8265
5931.47
0.2400
1.28254
1.44
00-022-1235;





01-086-2340
74.6928
2753.21
0.3000
1.26980
0.67
01-076-1407
75.8811
6628.68
0.3600
1.25284
1.61
01-085-0335;





01-076-1407
76.7773
10230.01
0.3600
1.24043
2.48
01-086-2340;





01-076-1407
77.7164
3039.50
0.3000
1.22777
0.74
00-022-1235;





01-085-0335;





01-076-1407
79.0628
353.47
0.1800
1.21021
0.09
01-076-1407
79.4773
587.86
0.3000
1.20494
0.14
01-076-1407
80.5284
2850.51
0.2400
1.19184
0.69
01-086-2340;





01-076-1407
81.1379
12307.54
0.2400
1.18441
2.98
01-086-2340;





01-085-0335
82.9209
5386.96
0.1800
1.16341
1.30

83.3854
21837.90
0.2400
1.15811
5.29
01-076-1407
83.6800
12643.36
0.1200
1.15765
3.06

84.4170
10225.66
0.2400
1.14657
2.48

84.7370
5257.69
0.2400
1.14589
1.27

86.0743
2565.54
0.2400
1.12869
0.62
01-086-2340
86.5700
3697.44
0.2400
1.12349
0.90
01-076-1407
87.5212
790.08
0.2400
1.11372
0.19
01-085-0335
89.0309
794.23
0.2400
1.09870
0.19
01-076-1407
89.5840
1603.21
0.3000
1.09334
0.39
01-076-1407
90.6691
1050.31
0.4200
1.08306
0.25
00-022-1235
91.8323
1438.05
0.2400
1.07236
0.35

92.1278
2557.57
0.2400
1.06969
0.62

92.6956
4150.89
0.2400
1.06462
1.01

93.0766
3272.29
0.1800
1.06390
0.79

94.3275
14200.10
0.1800
1.05046
3.44

94.6604
25031.48
0.2400
1.04764
6.06

156

-------
94.9993
10618.58
0.1800
1.04739
2.57

95.8260
7905.67
0.2400
1.03796
1.91

97.3237
972.18
0.2400
1.02594
0.24

98.7973
11683.56
0.3000
1.01454
2.83
00-022-1235
99.2046
7106.20
0.3000
1.01398
1.72

100.2809
353.58
0.1200
1.00349
0.09

101.1373
512.19
0.2400
0.99730
0.12

101.8540
2435.01
0.3000
0.99221
0.59
00-022-1235
102.5884
6289.90
0.2400
0.98710
1.52
00-022-1235
103.7908
5004.97
0.3000
0.97892
1.21

104.1820
3119.34
0.1800
0.97874
0.76

105.4779
6060.95
0.1800
0.96785
1.47

105.8293
10953.34
0.2400
0.96560
2.65

106.2197
5512.94
0.1800
0.96552
1.33

107.0125
2179.13
0.2400
0.95818
0.53
00-022-1235
107.7280
1249.02
0.2400
0.95616
0.30

108.2555
545.80
0.2400
0.95060
0.13

109.2036
7136.89
0.2400
0.94498
1.73

109.6644
3377.61
0.2400
0.94464
0.82

1.6: 2578-A-BHD
1.6.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
2578-A-Slow
M:\XRD-BHD\2578-A-Slow.rd
2578-A-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/23/2013 2:28:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
157

-------
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
Incident Beam Monochromator No
Spinning	Yes
1.6.2: Main Graphics, Analyze View of2578-A
V WV W WW WV WW V V V V V WW V V V VV V V

¦A, ' vJ. /v. U' Aa .. .J 'Aa !j l'lil
50	60	70
Position [*2Theta] (Copper (Cu))
m wv w
Ml. A..
V V
J'l
Fluorite, syn 9.S %
Aluminum Oxide Nitride 8.8 %
Anhydrite 8.8 %

Aluminum 6.9 %

Aluminum Oxide 6.9 %


Quartz 6.9 %
Sodium Chloride 14.7 %
Sylvite, syn 14.7 %
Magnesium Aluminum Qxide 2.9 %
_ [~j| Aluminum Oxide Nitride 2 %~|
|~^j Elpasolite, syn 2.9 % ]g% |
Aluminum Oxide 5.9 %
158

-------
1.6.3: Pattern List of2578-A
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]

Lines
Unmatched
Lines
01-075-
23
Aluminum
A12 03

6
14
0
1862

Oxide





00-004-
45
Sylvite, syn
K CI

15
10
0
0587







01-077-
49
Sodium
Na CI

15
9
0
2064

Chloride





01-074-
15
Magnesium
Mg A12 04

3
11
0
1132

Aluminum
Oxide





01-080-
11
Aluminum
A12.85

9
10
0
2171

Oxide
Nitride
03.45
NO.55




01-080-
7
Aluminum
A12.81

6
7
0
2172

Oxide
Nitride
03.56
NO.44




01-080-
6
Aluminum
A12.78

2
7
0
2173

Oxide
Nitride
03.65
NO.35




01-085-
46
Aluminum
A1

7
5
0
1327







00-004-
11
Fluorite, syn
Ca F2

10
5
0
0864







00-022-
14
Elpasolite,
K2 Na A1

3
13
0
1235

syn
F6




01-086-
17
Anhydrite
Ca ( S 04 )

9
28
0
2270







01-072-
12
Magnesium
Mg S 04

3
31
0
1259

Sulfate





01-080-
10
Aluminum
A12.667 04

7
8
0
1385

Oxide





01-085-
37
Quartz
Si 02

7
24
0
0930







1.6.4: Peak List of2578-A
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A]
Rel.
Int. [%]
Matched by


[°2Th.]




5.2709

67.70
0.3936
16.76627

0.03

8.3804

417.44
0.2952
10.55098

0.18

8.9477

256.41
0.1968
9.88329

0.11

10.0297

131.14
0.1476
8.81937

0.06

13.9666
1108.41
0.1476
6.34100

0.48

14.7495

15.63
0.1968
6.00613

0.01

159

-------
15.0584
38.77
0.0984
5.88360
0.02

16.8552
217.05
0.0984
5.26022
0.09

17.3223
311.27
0.1476
5.11942
0.14

18.3505
2054.00
0.2460
4.83484
0.89

19.3463
1004.10
0.1968
4.58816
0.44
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
19.6242
704.72
0.1476
4.52382
0.31

20.4222
9557.08
0.1968
4.34881
4.15
01-072-1259
21.5748
2114.91
0.1968
4.11901
0.92

22.3560
1067.01
0.1476
3.97683
0.46
01-072-1259
23.0659
2087.28
0.1476
3.85601
0.91
01-086-2270
23.5695
10858.41
0.1476
3.77474
4.72

24.2623
3248.80
0.1476
3.66851
1.41

25.0997
46756.91
0.1476
3.54799
20.33

26.2000
53453.94
0.1476
3.40142
23.24
01-072-1259
26.9619
16126.49
0.1968
3.30701
7.01

27.8961
230030.90
0.1476
3.19835
100.00

28.5456
7044.01
0.1476
3.12704
3.06
01-086-2270
28.9905
10953.44
0.1476
3.08005
4.76

29.4695
3098.23
0.0984
3.03107
1.35

29.8855
4103.44
0.1476
2.98983
1.78

30.5294
8389.68
0.1968
2.92821
3.65

31.2748
187526.10
0.1968
2.86010
81.52
01-074-1132;





00-022-1235;





01-086-2270
31.9336
3556.26
0.1968
2.80259
1.55
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-080-1385
32.7317
3850.87
0.1476
2.73605
1.67

34.1806
17579.66
0.1968
2.62332
7.64

34.7108
7191.16
0.1476
2.58445
3.13
01-072-1259
35.1022
6228.48
0.1476
2.55653
2.71
01-075-1862
35.9935
35740.16
0.1476
2.49524
15.54

36.4279
5486.18
0.0984
2.46648
2.38
01-086-2270;





01-085-0930
36.9909
3328.98
0.1476
2.43022
1.45
01-074-1132
37.3262
3672.20
0.0984
2.40916
1.60
01-080-2171;





01-080-2172;





01-080-1385
38.0523
68410.37
0.1968
2.36484
29.74

39.0202
7885.62
0.1968
2.30838
3.43
01-080-2171
40.0696
143818.40
0.1968
2.25031
62.52

160

-------
40.4187
25521.32
0.0984
2.23168
11.09
00-004-0587;





01-085-0930
40.7621
4730.09
0.0984
2.21367
2.06
01-086-2270;





01-072-1259
41.2170
2365.48
0.1968
2.19028
1.03
01-086-2270
41.9976
4820.14
0.1476
2.15136
2.10

42.9359
6569.50
0.2460
2.10650
2.86

43.6532
3719.80
0.1968
2.07353
1.62

44.2840
38649.47
0.1968
2.04545
16.80

45.0139
96051.20
0.1968
2.01396
41.76
01-074-1132
45.7892
2172.20
0.1476
1.98166
0.94
01-080-2171;





01-080-2172;





01-080-2173;





01-072-1259;





01-080-1385;





01-085-0930
46.6648
3493.01
0.2952
1.94649
1.52
01-086-2270;





01-072-1259
47.1132
3569.48
0.1476
1.92901
1.55
00-004-0864
47.5110
2573.10
0.1476
1.91378
1.12
01-086-2270
48.1722
3400.37
0.2460
1.88905
1.48
01-072-1259
48.7702
2686.82
0.1476
1.86728
1.17
00-022-1235;





01-086-2270
49.7053
50401.67
0.1968
1.83432
21.91

50.1591
9393.86
0.0984
1.81878
4.08
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-080-1385;





01-085-0930
50.8092
3909.07
0.3000
1.79554
1.70
01-072-1259;





01-085-0930
51.0611
3417.66
0.1800
1.79171
1.49

52.0450
6995.01
0.1800
1.75577
3.04

53.4179
5431.49
0.2400
1.71384
2.36

53.8694
4023.11
0.2400
1.70054
1.75
01-077-2064
54.3914
2992.71
0.2400
1.68544
1.30
01-072-1259
54.8742
2143.26
0.1800
1.67175
0.93
01-085-0930
55.9940
28355.66
0.3600
1.64094
12.33
00-004-0864
57.0273
4248.83
0.2400
1.61364
1.85

57.7189
5243.89
0.1800
1.59594
2.28
01-086-2270;





01-072-1259
58.1418
18242.41
0.3000
1.58533
7.93

58.7975
11616.07
0.2400
1.56921
5.05
00-004-0587;





01-086-2270;





01-072-1259
161

-------
59.4824
9094.04
0.3600
1.55276
3.95
01-075-1862;





01-074-1132
60.3828
3083.25
0.3000
1.53174
1.34
01-080-2171;





01-080-2172;





01-080-2173;





01-072-1259;





01-080-1385
61.8507
1479.12
0.4800
1.49887
0.64
01-072-1259
62.7743
1559.82
0.3600
1.47902
0.68

63.5493
2390.58
0.2400
1.46283
1.04
01-072-1259
64.6431
21058.98
0.2400
1.44070
9.15
01-072-1259
65.1534
8884.56
0.1800
1.43064
3.86
01-074-1132;





01-085-1327;





00-022-1235
65.8774
46222.00
0.4200
1.41666
20.09
01-086-2270;





01-072-1259;





01-085-0930
66.5267
8533.57
0.1800
1.40440
3.71
01-075-1862;





00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
67.2465
4491.95
0.1800
1.39111
1.95

67.7160
8462.04
0.4200
1.38260
3.68
01-085-0930
68.5349
2240.00
0.1800
1.36807
0.97
01-074-1132;





00-004-0864;





01-086-2270;





01-072-1259;





01-085-0930
69.0565
5467.75
0.2400
1.35900
2.38

70.4537
880.44
0.1200
1.33544
0.38
01-075-1862;





01-086-2270;





01-072-1259
71.4415
836.67
0.4800
1.31938
0.36
01-080-2173;





01-086-2270;





01-072-1259
71.8100
1152.55
0.1800
1.31677
0.50

72.5969
4275.75
0.1800
1.30120
1.86

73.1915
26685.79
0.1800
1.29209
11.60
01-077-2064;





01-072-1259
73.9305
5729.34
0.2400
1.28099
2.49
00-004-0587;





01-074-1132;





00-022-1235
74.8128
28661.26
0.1800
1.26806
12.46
01-072-1259
75.0846
15005.45
0.1200
1.26728
6.52

162

-------
76.9541
2779.27
0.1800
1.23802
1.21
01-075-1862;





01-086-2270;





01-072-1259
77.7911
20354.42
0.2400
1.22678
8.85
00-022-1235;





01-086-2270;





01-085-0930
78.0726
9300.53
0.1200
1.22610
4.04

79.3984
2620.44
0.1800
1.20593
1.14
01-072-1259
81.0182
2699.32
0.1200
1.18586
1.17
01-085-0930
81.9904
6052.54
0.2400
1.17424
2.63
00-022-1235;





01-072-1259
82.2763
4309.28
0.1200
1.17380
1.87

82.6656
3707.65
0.2400
1.16636
1.61
01-074-1132;





01-085-1327;





01-086-2270;





01-072-1259
83.5167
19282.48
0.1800
1.15662
8.38
01-072-1259
83.8065
9789.99
0.1200
1.15622
4.26

86.4781
980.11
0.1200
1.12445
0.43
01-075-1862;





01-072-1259
87.1540
7008.51
0.1800
1.11746
3.05
00-004-0864;





01-072-1259;





01-085-0930
87.4542
3579.29
0.1200
1.11717
1.56

88.3430
1960.37
0.4800
1.10547
0.85
01-086-2270;





01-072-1259
89.0710
894.79
0.1800
1.09831
0.39
01-075-1862;





01-072-1259
89.9373
1930.69
0.2400
1.08996
0.84
01-086-2270
90.3377
2327.82
0.2400
1.08617
1.01
00-022-1235
90.6708
1363.29
0.1200
1.08574
0.59

91.2765
273.70
0.1200
1.07743
0.12

91.5756
288.09
0.1200
1.07469
0.13

92.3831
923.09
0.2400
1.06740
0.40

93.2672
915.04
0.1800
1.05959
0.40

94.0202
14317.70
0.1800
1.05308
6.22
00-004-0864
94.3424
8407.46
0.1800
1.05294
3.65

95.1010
3615.67
0.1800
1.04395
1.57

95.7395
1426.38
0.2400
1.03867
0.62

96.1718
1259.86
0.1800
1.03772
0.55

96.6378
1572.63
0.3600
1.03139
0.68

98.6885
3315.55
0.3000
1.01537
1.44
00-022-1235
99.0634
1710.76
0.1800
1.01505
0.74

100.1103
1760.87
0.3000
1.00474
0.77

100.6862
6786.02
0.1200
1.00054
2.95

101.0024
11613.40
0.1800
0.99827
5.05

163

-------
101.3456
5406.38
0.1800
0.99829
2.35

102.1492
2446.25
0.2400
0.99015
1.06
00-022-1235
103.4231
643.41
0.1800
0.98140
0.28

103.7481
1113.00
0.1800
0.97921
0.48

104.1167
758.48
0.1800
0.97917
0.33

104.4296
382.61
0.1800
0.97468
0.17

105.2889
1157.09
0.1800
0.96907
0.50

106.1860
1339.36
0.3600
0.96334
0.58

106.5726
823.39
0.1800
0.96330
0.36

107.3502
2423.53
0.1800
0.95610
1.05
00-022-1235
108.0845
7985.36
0.2400
0.95163
3.47

108.4925
4219.48
0.1800
0.95155
1.83

109.6108
13402.12
0.1800
0.94261
5.83

1.7: 2579-A-BHD
1.7.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
2579-A-Slow
M:\XRD-BHD\2579-A-Slow.rd
2579-A-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/24/2013 2:09:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
164

-------
Incident Beam Monochromator No
Spinning	Yes
1.7.2: Main Graphics, Analyze View of2579-A
2579-A-Slow
200000 -
100000 -
10	20	30	40	50	60	70	80	90	100
Position [°2Theta] (Copper (Cu))
Sodium Chloride 15.2 %
Aluminum 14.1 %
Fluorite, syn 14.1 %
Sylvite, syn 12.1 %
Quartz 16.2%
Magnesium Sulfate 5.1 %
Magnesium Aluminum Oxide 6.1 %
Elpasolite, syn 8.1 %
Anhydrite 9.1 %
165

-------
1.7.3: Pattern List of25 79-A
Ref. Code
Score Compound
Chemical
Semi Quant
Matched
Strong

Name
Formula
[%]

Lines
Unmatched
Lines
00-004-
37 Sylvite, syn
K CI

12
10
0
0587






01-077-
48 Sodium
Na CI

15
9
0
2064
Chloride





01-074-
9 Magnesium
Mg A12 04

6
11
0
1132
Aluminum
Oxide





01-085-
44 Aluminum
A1

14
5
0
1327






00-004-
9 Fluorite, syn
Ca F2

14
6
0
0864






00-022-
13 Elpasolite,
K2 Na A1

8
13
1
1235
syn
F6




01-086-
19 Anhydrite
Ca ( S 04 )

9
30
0
2270






01-072-
14 Magnesium
Mg S 04

5
36
0
1259
Sulfate





01-085-
48 Quartz
Si 02

16
27
0
0930






1.7.4: Peak List of2579-A
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
5.2350
186.64
0.1968
16.88133

0.08

5.8971
241.06
0.3936
14.98732

0.10

6.7197
139.90
0.1968
13.15432

0.06

7.6060
609.30
0.3936
11.62339

0.25

8.5404
1365.71
0.1476
10.35367

0.55

9.0772
538.84
0.2460
9.74254

0.22

10.1466
504.53
0.1476
8.71804

0.20

10.7021
338.49
0.1476
8.26675

0.14

11.4366
251.14
0.1476
7.73738

0.10

12.1743
237.59
0.2460
7.27019

0.10

12.7349
323.36
0.2952
6.95139

0.13

13.6104
441.07
0.1476
6.50611

0.18

14.0622
1119.64
0.1476
6.29810

0.45

166

-------
17.4205
463.05
0.1476
5.09079
0.19

18.4913
4940.71
0.1476
4.79832
1.99

19.5222
1029.94
0.2460
4.54721
0.41

19.7675
734.47
0.1476
4.49133
0.30

20.5377
26246.39
0.1476
4.32461
10.58
01-072-1259
21.7086
1647.86
0.1476
4.09394
0.66
00-022-1235
22.5168
901.78
0.1476
3.94878
0.36
01-072-1259
22.7766
977.19
0.1476
3.90432
0.39
01-086-2270
23.1710
1605.92
0.0984
3.83875
0.65

23.6848
25226.51
0.1476
3.75663
10.16

24.3759
3462.74
0.1476
3.65166
1.40

25.2088
51592.16
0.1476
3.53287
20.79

26.3199
126680.50
0.1476
3.38620
51.04
01-072-1259
27.0662
18040.74
0.1968
3.29450
7.27

28.0168
248186.50
0.1476
3.18485
100.00

28.6567
8387.25
0.1476
3.11517
3.38
01-086-2270
29.1119
10771.61
0.1968
3.06749
4.34

29.5601
3440.86
0.0984
3.02199
1.39

29.9987
3719.83
0.2952
2.97880
1.50

30.6126
4384.95
0.1476
2.92044
1.77

31.3817
185438.20
0.1968
2.85060
74.72
01-074-1132;





01-086-2270
32.1105
2241.21
0.1476
2.78755
0.90
01-086-2270
32.5583
3339.89
0.1476
2.75023
1.35

33.1337
1671.66
0.0984
2.70377
0.67

34.2941
33691.17
0.1476
2.61490
13.57
01-072-1259
35.1889
4548.75
0.1476
2.55043
1.83

35.7086
3327.50
0.0984
2.51449
1.34
01-072-1259
36.1267
39845.87
0.1968
2.48634
16.05
01-086-2270
36.7732
1229.15
0.0984
2.44411
0.50
01-074-1132;





01-085-0930
38.1635
143863.10
0.1968
2.35820
57.97
01-072-1259
39.1535
9206.46
0.1476
2.30083
3.71

40.1981
151386.40
0.1476
2.24342
61.00
01-085-0930
40.5325
27688.03
0.0984
2.22568
11.16
00-004-0587
40.8742
3106.40
0.0984
2.20786
1.25
01-086-2270;





01-072-1259
41.3003
1824.19
0.1476
2.18606
0.74
01-086-2270
42.1379
8790.71
0.1968
2.14452
3.54

43.0835
2383.45
0.1476
2.09962
0.96

43.8028
3930.93
0.1476
2.06680
1.58

44.4056
80400.51
0.1476
2.04013
32.40

45.1291
108205.90
0.1968
2.00909
43.60

45.5174
6767.66
0.0984
1.99285
2.73
01-077-2064;





01-086-2270
167

-------
46.7322
701.27
0.1476
1.94384
0.28
01-086-2270;





01-072-1259
47.1747
1815.43
0.2460
1.92664
0.73
00-004-0864;





01-086-2270
47.5961
1544.09
0.1476
1.91056
0.62

48.2484
1945.52
0.1476
1.88624
0.78
01-072-1259
48.8520
1749.14
0.1476
1.86434
0.70
00-022-1235;





01-086-2270
49.8318
58250.05
0.2460
1.82995
23.47

50.2781
9762.54
0.1476
1.81475
3.93
00-004-0587;





00-022-1235;





01-085-0930
50.9384
1956.87
0.3444
1.79277
0.79

52.1612
5558.20
0.1968
1.75358
2.24
01-086-2270
52.7846
655.62
0.1968
1.73433
0.26
01-086-2270
53.3233
4742.71
0.2400
1.71666
1.91

53.5739
3241.20
0.1200
1.71346
1.31

53.9672
2159.92
0.2400
1.69768
0.87
01-077-2064
54.5268
4282.01
0.3000
1.68158
1.73
01-072-1259
54.9723
1448.44
0.1800
1.66900
0.58
01-085-0930
55.4235
564.16
0.1200
1.65647
0.23
00-022-1235;





01-085-0930
56.1092
28964.59
0.3600
1.63785
11.67
01-072-1259
56.8108
224.83
0.1200
1.61927
0.09

57.0858
1323.49
0.1800
1.61212
0.53
01-085-0930
57.8346
10896.04
0.1800
1.59302
4.39
01-086-2270;





01-072-1259
58.2785
19913.20
0.3000
1.58194
8.02

58.9347
11491.76
0.2400
1.56588
4.63
00-022-1235;





01-086-2270;





01-072-1259
59.5954
16475.43
0.3000
1.55009
6.64

60.5375
1990.15
0.3600
1.52820
0.80
01-086-2270;





01-072-1259
61.7253
875.52
0.1800
1.50161
0.35
01-072-1259
62.9353
1069.57
0.1800
1.47562
0.43

63.6594
2421.57
0.3000
1.46057
0.98
01-072-1259
64.7429
43365.17
0.3000
1.43872
17.47
00-022-1235
65.2847
8855.51
0.1200
1.42808
3.57
01-074-1132;





01-085-1327;





01-086-2270
66.0171
51521.41
0.3000
1.41400
20.76
01-077-2064;





01-072-1259;





01-085-0930
66.6438
7860.13
0.1800
1.40222
3.17

67.3803
7013.27
0.1800
1.38867
2.83

168

-------
67.9753
7751.82
0.3600
1.37796
3.12
01-072-1259;





01-085-0930
69.1743
11414.99
0.2400
1.35697
4.60
00-022-1235
70.5671
776.73
0.2400
1.33357
0.31
01-072-1259
71.3721
626.50
0.1800
1.32049
0.25
01-086-2270;





01-072-1259
71.6749
836.89
0.1200
1.31565
0.34
01-072-1259
71.9514
802.53
0.1800
1.31128
0.32

72.7142
4636.04
0.1800
1.29939
1.87
01-086-2270
73.3287
31783.54
0.1200
1.29001
12.81
01-085-0930
73.5825
15197.50
0.1200
1.28938
6.12

74.0423
6354.86
0.1800
1.27933
2.56
01-074-1132;





01-086-2270
74.9213
31875.44
0.1200
1.26649
12.84

75.5820
2941.71
0.1200
1.25705
1.19
01-072-1259;





01-085-0930
77.1027
2488.40
0.1800
1.23601
1.00
01-086-2270;





01-072-1259
77.8885
47094.45
0.1800
1.22549
18.98
00-022-1235;





01-085-0930
78.1700
23127.21
0.1200
1.22482
9.32

79.5269
4398.11
0.1800
1.20431
1.77
01-072-1259
79.7884
3638.75
0.1800
1.20102
1.47
01-086-2270;





01-072-1259;





01-085-0930
80.3206
99.66
0.1200
1.19439
0.04
01-085-0930
80.7986
2599.51
0.1800
1.18853
1.05

81.1258
3855.38
0.1200
1.18750
1.55

82.0932
11076.23
0.1800
1.17303
4.46
00-022-1235;





01-072-1259
82.3865
5632.17
0.1200
1.17251
2.27

82.8106
4063.35
0.2400
1.16468
1.64
01-074-1132;





01-086-2270;





01-072-1259
83.6195
21618.29
0.1800
1.15546
8.71
01-072-1259
83.9107
10954.56
0.1200
1.15505
4.41

84.6713
570.64
0.1800
1.14377
0.23
01-086-2270
86.2366
695.78
0.4800
1.12698
0.28
01-072-1259
86.5095
1235.50
0.1800
1.12692
0.50

87.2795
7859.56
0.1800
1.11618
3.17
00-004-0864;





01-072-1259;





01-085-0930
87.5842
4251.19
0.1800
1.11584
1.71

88.1751
1649.25
0.1200
1.10714
0.66
01-086-2270;





01-072-1259
88.4547
2361.27
0.1800
1.10436
0.95
01-086-2270;





01-072-1259
169

-------
89.2231
1158.67
0.3000
1.09683
0.47
01-072-1259
90.0428
1865.42
0.1800
1.08896
0.75

90.4766
4996.33
0.2400
1.08486
2.01
00-022-1235
90.7811
2859.27
0.1200
1.08471
1.15

91.3692
619.77
0.1200
1.07658
0.25

92.0781
197.18
0.1200
1.07014
0.08

92.4375
1234.23
0.2400
1.06692
0.50

94.1619
17765.55
0.1800
1.05187
7.16
00-004-0864
94.4938
9481.49
0.1200
1.05165
3.82

94.8105
7795.05
0.1200
1.04638
3.14

95.1554
5724.03
0.1800
1.04349
2.31

95.9207
3829.67
0.1800
1.03719
1.54

96.2254
2009.02
0.1200
1.03728
0.81

96.7138
3325.06
0.2400
1.03078
1.34

97.6273
335.46
0.1800
1.02356
0.14

98.7426
6427.44
0.2400
1.01496
2.59
00-022-1235
99.1064
2614.91
0.1800
1.01472
1.05

99.6177
490.82
0.1200
1.00838
0.20

100.1794
2949.75
0.2400
1.00424
1.19

100.8006
6592.24
0.1800
0.99972
2.66

101.1273
14588.16
0.1200
0.99737
5.88

101.4705
6558.26
0.1200
0.99739
2.64

101.9044
2515.95
0.1800
0.99186
1.01
00-022-1235
102.2504
3782.93
0.1800
0.98944
1.52

102.6657
841.41
0.1200
0.98902
0.34

103.8807
1827.19
0.1800
0.97832
0.74

104.2196
1072.86
0.1200
0.97849
0.43

105.4511
1290.48
0.3000
0.96802
0.52

106.2579
2269.32
0.2400
0.96289
0.91

106.6767
1015.46
0.1800
0.96265
0.41

107.4370
2074.71
0.1800
0.95556
0.84
00-022-1235
107.8227
887.67
0.1200
0.95558
0.36

108.2235
8998.66
0.2400
0.95080
3.63

108.6269
4490.49
0.1800
0.95074
1.81

109.7053
12467.79
0.1800
0.94206
5.02

170

-------
1.8: 2580-A-BHD
1.8.1: Measurement Conditions


Dataset Name
2580-A-Slow

File name
M:\XRD-BHD\2580-A-Slow.rd
Sample Identification
2580-A-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/24/2013 1:49:00 PM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

171

-------
1.8.2: Main Graphics, Analyze View of2580-A
w vv
VW V
2580-A-S ow
50	60	70
Position [°2Theta] (Copper (Cu))
Quartz low 46 %
Calcite 38 % ]
Aluminum 1 % |
Elpasolite, syn 3 % |
Fluorite, syn 3 %
Silicon Nitride 9 % |
172

-------
1.8.3: Pattern List of2580-A
Ref. Code
Score Compound
Chemical
SemiQuant Matched
Strong

Name
Formula
[%]
Lines
Unmatched
Lines
01-085-
20 Aluminum
A1

1 4
0
1327





00-004-
8 Fluorite, syn
Ca F2

3 3
0
0864





00-022-
13 Elpasolite,
K2 Na A1

3 11
0
1235
syn
F6



01-086-
45 Calcite
Ca (C 03)

38 22
0
2340





01-085-
8 Quartz low
Si 02

46 19
0
0335





01-076-
12 Silicon
Si3 N4

9 33
1
1407
Nitride




1.8.4: Peak List of2580-A
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel. Int. [%]
Matched by
5.1820
313.80
0.1476
17.05372
0.09

5.5680
711.40
0.1476
15.87239
0.20

5.9298
953.88
0.1476
14.90465
0.27

6.2058
776.85
0.1476
14.24244
0.22

7.5114
709.30
0.3936
11.76955
0.20

8.4914
856.22
0.2952
10.41336
0.24

9.7701
760.23
0.1476
9.05309
0.22

11.3062
590.92
0.1476
7.82633
0.17

13.2851
615.88
0.2952
6.66469
0.18
01-076-1407
14.0620
1219.79
0.1476
6.29817
0.35

14.8172
521.67
0.3936
5.97885
0.15

17.4001
1143.95
0.2952
5.09670
0.33

18.5362
1777.29
0.2952
4.78682
0.51

19.7773
1361.47
0.1968
4.48914
0.39

20.5247
8350.60
0.1968
4.32733
2.38
01-076-1407
21.7811
1290.10
0.1476
4.08048
0.37
00-022-1235
22.7809
27011.74
0.1968
3.90359
7.70
01-076-1407
23.7183
4424.95
0.1476
3.75140
1.26

24.0809
2500.04
0.1476
3.69573
0.71

25.2665
633.88
0.1476
3.52493
0.18

26.2294
77592.72
0.1968
3.39768
22.11

27.1513
3087.72
0.1476
3.28437
0.88

27.5226
3731.07
0.1476
3.24090
1.06

173

-------
27.8718
6619.63
0.3444
3.20109
1.89

29.1368
350883.10
0.1968
3.06492
100.00
01-086-2340
30.6555
6899.60
0.2460
2.91646
1.97

31.1758
9809.47
0.1968
2.86896
2.80
00-022-1235;





01-086-2340;





01-076-1407
32.1142
12098.40
0.1968
2.78724
3.45

33.2179
1129.08
0.2460
2.69711
0.32

34.2793
5412.93
0.2460
2.61599
1.54

35.1827
18771.86
0.1968
2.55086
5.35
01-076-1407
35.7127
52984.01
0.2460
2.51421
15.10

36.2844
3238.21
0.1476
2.47590
0.92

37.0962
2095.48
0.1476
2.42357
0.60

38.1366
20443.47
0.1968
2.35981
5.83

38.5361
16964.25
0.1476
2.33626
4.83
01-085-1327;





00-022-1235
39.1528
78210.35
0.2460
2.30087
22.29

39.9131
3677.29
0.3444
2.25878
1.05

40.9144
2820.22
0.2460
2.20578
0.80

42.0335
7542.30
0.0984
2.14961
2.15
01-076-1407
42.4082
20829.84
0.1476
2.13148
5.94
01-085-0335
42.8973
69288.03
0.2460
2.10830
19.75

43.3125
21164.11
0.0984
2.08905
6.03
01-086-2340;





01-076-1407
44.3571
10526.75
0.2952
2.04225
3.00

45.1290
2925.30
0.1476
2.00909
0.83

45.5102
2366.22
0.1476
1.99315
0.67

46.0770
2551.95
0.1968
1.96995
0.73

46.8284
26606.41
0.1968
1.94007
7.58
00-004-0864;





01-076-1407
47.2689
84122.58
0.2460
1.92302
23.97
01-086-2340
48.2496
85368.61
0.2952
1.88620
24.33
01-086-2340;





01-076-1407
49.8231
3218.55
0.1968
1.83025
0.92

50.4082
4312.38
0.1968
1.81038
1.23
00-022-1235;





01-085-0335;





01-076-1407
51.1599
9521.66
0.1968
1.78553
2.71

51.7659
1407.21
0.1476
1.76604
0.40
01-076-1407
52.5048
515.32
0.1968
1.74292
0.15

53.3286
763.54
0.0984
1.71792
0.22

54.0230
7394.94
0.1968
1.69747
2.11

54.6438
3978.39
0.1476
1.67964
1.13
01-076-1407
56.2926
15500.39
0.2952
1.63429
4.42
01-076-1407
57.1308
38444.29
0.2460
1.61230
10.96
01-085-0335;





01-076-1407
174

-------
57.8436
6763.61
0.1476
1.59411
1.93
01-076-1407
58.3668
3869.69
0.1968
1.58106
1.10

59.6350
2544.21
0.2952
1.55044
0.73
01-076-1407
60.3927
24368.24
0.2460
1.53278
6.94

61.1446
11499.02
0.2952
1.51573
3.28
01-086-2340
62.3416
2973.50
0.1476
1.48947
0.85
01-076-1407
62.7901
8696.55
0.3444
1.47991
2.48

64.3791
26320.86
0.2952
1.44717
7.50

65.3669
15160.75
0.3444
1.42767
4.32
01-085-1327
67.0657
1237.69
0.1476
1.39558
0.35

67.5295
2505.38
0.2460
1.38712
0.71
01-085-0335
67.9346
2331.61
0.1476
1.37983
0.66
01-085-0335;





01-076-1407
68.3399
2708.14
0.1968
1.37263
0.77
00-022-1235;





01-085-0335;





01-076-1407
68.9186
6062.18
0.1968
1.36251
1.73
00-004-0864;





01-086-2340
69.9663
8371.00
0.2460
1.34465
2.39
01-086-2340;





01-076-1407
72.0504
3065.94
0.1968
1.31080
0.87
01-076-1407
72.6250
13040.06
0.2952
1.30184
3.72
01-086-2340;





01-076-1407
73.4052
3629.41
0.1968
1.28992
1.03
01-086-2340;





01-085-0335;





01-076-1407
73.9448
4767.88
0.1968
1.28184
1.36
00-022-1235
74.8386
2397.92
0.2460
1.26873
0.68
01-076-1407
76.0125
5858.08
0.3000
1.25100
1.67
00-004-0864;





01-076-1407
76.2667
4092.94
0.1200
1.25056
1.17

76.8938
9052.30
0.3000
1.23884
2.58
01-076-1407
77.8478
5099.43
0.3600
1.22603
1.45
00-022-1235;





01-085-0335;





01-076-1407
78.7742
308.23
0.1200
1.21392
0.09
01-086-2340;





01-076-1407
79.5066
906.12
0.1800
1.20457
0.26
01-076-1407
79.8161
907.07
0.1200
1.20365
0.26

80.6899
2830.77
0.2400
1.18986
0.81
01-076-1407
81.2586
10508.09
0.2400
1.18296
2.99
01-086-2340;





01-085-0335
82.0629
3195.53
0.3600
1.17339
0.91
00-022-1235;





01-076-1407
83.5056
18243.79
0.3000
1.15675
5.20
01-076-1407
83.8075
10118.70
0.1800
1.15621
2.88

84.5406
8818.81
0.3000
1.14521
2.51

175

-------
84.8700
4559.81
0.1800
1.14444
1.30

86.2129
2239.15
0.2400
1.12723
0.64
01-086-2340
86.7261
3015.20
0.3600
1.12187
0.86
01-076-1407
87.6639
546.08
0.2400
1.11227
0.16
00-004-0864;





01-085-0335
88.2086
285.92
0.1800
1.10955
0.08

89.0982
758.05
0.2400
1.09804
0.22
01-076-1407
89.7231
1263.59
0.3000
1.09201
0.36
01-076-1407
90.7875
967.57
0.5400
1.08196
0.28

92.0012
1382.75
0.2400
1.07083
0.39

92.2598
1702.01
0.1800
1.06850
0.49

92.8112
3591.61
0.2400
1.06360
1.02

93.1698
2322.04
0.1800
1.06308
0.66

94.4406
12327.87
0.2400
1.04950
3.51
00-004-0864
94.7770
21211.28
0.2400
1.04666
6.05

95.9256
6771.70
0.2400
1.03715
1.93

96.2796
4167.62
0.2400
1.03684
1.19

97.4278
731.74
0.1200
1.02512
0.21

98.9116
10735.09
0.3000
1.01368
3.06
00-022-1235
99.2979
6667.36
0.2400
1.01328
1.90

101.2724
452.76
0.3000
0.99633
0.13

101.9281
1943.42
0.2400
0.99169
0.55
00-022-1235
102.6838
5546.98
0.1800
0.98644
1.58
00-022-1235
103.9083
5081.53
0.1800
0.97814
1.45

104.3086
3036.80
0.2400
0.97547
0.87

105.5644
5503.01
0.1800
0.96730
1.57
00-004-0864
105.9417
9409.82
0.2400
0.96489
2.68
00-004-0864
106.3126
4751.47
0.1800
0.96494
1.35

107.1150
2116.22
0.2400
0.95754
0.60
00-022-1235
107.7100
1193.59
0.2400
0.95627
0.34

108.2870
523.25
0.2400
0.95042
0.15

109.3524
6617.46
0.3600
0.94411
1.89

176

-------
Facility B
2.1: 2455-B-BHD
2.1.1: Measurement Conditions
Dataset Name
2455-B-Slow

File name
M:\XRD-BHD\2455-B-Slow.rd
Sample Identification
2455-B-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/25/2013 1:30:00 AM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

111

-------
2.1.1: Main Graphics, Analyze View of2455-B

h,Al
m
50	60	70
Position [°2Theta] (Copper (Cu))
A,
Sodium Chloride 14.9 %
Sylvrte, syn 13.9 %
Fluorrte, syn 12.9 %
Quartz low 35.6 %
3
U Aluminum 1 % I 2 %


lJ Elpasolite, syn 1 %
fj
"j| 		am waiuc i /o
xide 3 %
Anhydrite 10.9%

178

-------
2.1.3: Pattern List of2455-B
Ref. Code Score Compound Chemical SemiQuant Matched Strong
Name	Formula	[%]	Lines Unmatched
Lines
01-075-
3 Aluminum
A12 03

2
12
0
1862
Oxide





00-004-
29 Sylvite, syn
K CI

14
9
0
0587






01-077-
45 Sodium
Na CI

15
9
0
2064
Chloride





01-074-
28 Magnesium
Mg A12 04

3
10
0
1132
Aluminum
Oxide





01-075-
11 Aluminum
A1N

2
7
0
1620
Nitride





01-085-
22 Aluminum
A1

1
4
0
1327






00-004-
20 Fluorite, syn
Ca F2

13
5
0
0864






00-022-
11 Elpasolite,
K2 Na A1

1
9
0
1235
syn
F6




01-086-
28 Anhydrite
Ca ( S 04 )

11
27
0
2270






01-086-
8 Calcite
Ca (C 03)

1
12
0
2340






01-072-
8 Magnesium
Mg S 04

2
30
1
1259
Sulfate





01-085-
16 Quartz low
Si 02

36
20
0
0335






2.1.4: Peak List of2455-B
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
5.2154
61.12
0.1476
16.94465

0.02

5.5252
462.82
0.1968
15.99514

0.16

5.9363
450.82
0.2460
14.88836

0.16

6.5261
251.53
0.1968
13.54422

0.09

7.6649
410.26
0.1476
11.53429

0.15

8.0207
679.25
0.0984
11.02331

0.24

8.9767
2019.48
0.0984
9.85142

0.71

10.7227
514.74
0.5904
8.25093

0.18

179

-------
11.4920
371.56
0.1968
7.70023
0.13

12.4156
147.82
0.1476
7.12943
0.05

13.0228
370.74
0.1968
6.79833
0.13

13.6672
893.15
0.0984
6.47921
0.32

14.3663
506.69
0.1968
6.16547
0.18

15.1775
3650.94
0.1476
5.83768
1.29

16.4863
1486.23
0.1968
5.37708
0.53

16.9700
1382.58
0.2460
5.22490
0.49

17.5913
1261.89
0.3936
5.04173
0.45

18.3520
2434.15
0.1476
4.83445
0.86

18.8367
4494.74
0.2952
4.71113
1.59
01-074-1132;





00-022-1235
19.3978
3335.61
0.1476
4.57609
1.18

20.5181
3270.27
0.1476
4.32869
1.16
01-072-1259
22.1175
2494.97
0.0984
4.01915
0.88

22.5384
3339.06
0.1476
3.94505
1.18
01-072-1259
23.0873
2021.24
0.1476
3.85248
0.72
01-086-2270;





01-086-2340
23.6731
4442.99
0.1476
3.75847
1.57

24.3274
5097.52
0.0984
3.65884
1.80

25.1399
57167.04
0.1968
3.54240
20.23

25.8825
2723.45
0.0984
3.44242
0.96

26.3049
22963.79
0.1476
3.38810
8.13
01-072-1259
27.0406
26216.78
0.1476
3.29756
9.28

27.9328
282179.80
0.1968
3.19423
99.88

28.2586
59574.27
0.0984
3.15814
21.09
00-004-0587;





00-004-0864
29.0953
14043.59
0.1476
3.06920
4.97

30.0052
6433.37
0.1476
2.97817
2.28

30.5429
5587.87
0.1476
2.92696
1.98

30.9672
19379.35
0.0984
2.88781
6.86
01-086-2340
31.3778
282529.60
0.1968
2.85095
100.00
01-074-1132;





01-086-2270
32.3259
8378.52
0.0984
2.76947
2.97

32.8092
7177.68
0.2460
2.72977
2.54

33.7656
2670.44
0.0984
2.65461
0.95

34.3003
4372.35
0.1476
2.61444
1.55
01-072-1259
34.7947
3675.59
0.1476
2.57842
1.30

35.3607
6710.47
0.1476
2.53843
2.38

36.0215
39513.32
0.1968
2.49336
13.99
01-075-1620;





01-086-2340
36.5451
14709.24
0.1476
2.45883
5.21
01-085-0335
37.5493
4681.67
0.1476
2.39535
1.66
01-075-1862
38.1827
12767.72
0.1968
2.35707
4.52
00-022-1235;





01-072-1259
180

-------
38.6112
4684.56
0.0984
2.33189
1.66
01-074-1132;





01-085-1327;





01-086-2270
39.0768
4014.50
0.1476
2.30517
1.42

40.1019
166496.30
0.1968
2.24857
58.93

40.5104
47240.62
0.0984
2.22684
16.72
00-004-0587
42.1257
3075.87
0.2952
2.14511
1.09

42.5632
5035.74
0.1968
2.12407
1.78
01-085-0335
43.0853
6260.01
0.1476
2.09954
2.22
01-086-2340
43.8832
5192.62
0.1968
2.06320
1.84
01-072-1259
44.5733
19432.79
0.2952
2.03285
6.88
01-085-1327;





00-022-1235;





01-072-1259
45.1300
167068.00
0.1968
2.00906
59.13

45.8312
5989.73
0.1476
1.97994
2.12
01-072-1259;





01-085-0335
46.3811
7513.19
0.1968
1.95774
2.66

46.7340
7095.14
0.1968
1.94377
2.51
01-086-2270;





01-072-1259
47.4398
4073.34
0.1476
1.91649
1.44
01-086-2270
48.2516
2707.08
0.1476
1.88612
0.96
01-086-2340;





01-072-1259
48.7787
1785.62
0.1968
1.86697
0.63
00-022-1235;





01-086-2270
49.7328
49227.34
0.2952
1.83336
17.42
01-075-1620
50.2673
14742.02
0.1476
1.81512
5.22
00-004-0587;





00-022-1235;





01-085-0335
50.7572
3233.42
0.1476
1.79874
1.14
01-072-1259;





01-085-0335
52.0626
5227.13
0.2460
1.75667
1.85

52.8093
2639.58
0.1476
1.73358
0.93
01-086-2270
53.5509
6650.57
0.2952
1.71131
2.35

54.5885
1878.03
0.3444
1.68121
0.66

54.9800
2044.75
0.1476
1.67016
0.72
01-085-0335
55.3962
3474.23
0.1968
1.65860
1.23
00-022-1235;





01-085-0335
56.1144
55378.34
0.2460
1.63906
19.60
01-072-1259
57.1347
2636.35
0.1968
1.61219
0.93
01-085-0335
58.1538
20478.20
0.3936
1.58635
7.25

58.8062
18185.28
0.1476
1.57029
6.44
00-004-0587;





01-086-2270;





01-072-1259
59.6537
3161.81
0.1476
1.54999
1.12
01-075-1862
60.1067
2174.26
0.1476
1.53939
0.77
01-085-0335
181

-------
60.7285
1893.38
0.0984
1.52511
0.67
01-086-2270;





01-086-2340;





01-072-1259
61.9658
2364.44
0.1968
1.49760
0.84
01-072-1259
62.7739
1495.93
0.1476
1.48025
0.53

63.7241
2172.81
0.1476
1.46045
0.77
01-072-1259
65.1199
14852.54
0.4428
1.43248
5.26
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340
65.8718
66886.81
0.2460
1.41794
23.67
01-075-1620;





01-086-2270;





01-072-1259;





01-085-0335
66.6353
15198.30
0.1476
1.40354
5.38
01-075-1862
67.3583
2002.88
0.1476
1.39022
0.71

67.8215
3294.46
0.1968
1.38185
1.17
01-072-1259;





01-085-0335
69.2094
1576.98
0.1968
1.35750
0.56
00-022-1235;





01-086-2340
70.9235
1400.27
0.1800
1.32774
0.50

71.2226
1621.23
0.2460
1.32399
0.57
01-075-1620;





01-086-2270;





01-072-1259
73.1829
26892.62
0.1968
1.29329
9.52
01-077-2064;





01-072-1259
74.0423
9409.21
0.1476
1.28039
3.33
01-075-1862;





01-074-1132;





01-086-2270
74.9196
54396.78
0.1200
1.26651
19.25

75.1827
26934.94
0.1200
1.26587
9.53

76.9402
3496.83
0.3000
1.23821
1.24
01-075-1862;





01-086-2270;





01-072-1259
77.9301
3515.68
0.1800
1.22494
1.24
00-022-1235
79.4139
1713.68
0.1800
1.20574
0.61

81.2120
986.61
0.4800
1.18352
0.35
01-075-1620;





01-086-2340;





01-085-0335
81.4217
976.17
0.1200
1.18394
0.35

82.6162
3670.97
0.2400
1.16693
1.30
01-074-1132;





01-085-1327;





01-086-2270;





01-072-1259
83.6194
38248.38
0.1200
1.15546
13.54
01-072-1259;





01-085-0335
83.9066
18858.27
0.1200
1.15510
6.67

182

-------
86.1717
1170.90
0.1800
1.12766
0.41
01-075-1862;





01-075-1620;





01-086-2340;





01-072-1259
87.1037
7602.21
0.1800
1.11798
2.69
01-085-0335
88.2037
4214.87
0.1800
1.10685
1.49
01-086-2270;





01-072-1259
90.0537
3356.52
0.1800
1.08886
1.19

90.3494
2224.07
0.1800
1.08876
0.79

90.8141
1263.84
0.1200
1.08171
0.45

91.8894
609.00
0.1800
1.07184
0.22

93.4281
5153.68
0.1800
1.05819
1.82
00-022-1235
93.9513
14055.03
0.2400
1.05367
4.97

94.2961
6971.89
0.1800
1.05333
2.47

95.1864
5524.77
0.1800
1.04324
1.96

95.9224
996.83
0.2400
1.03717
0.35

97.2506
242.47
0.1200
1.02651
0.09

98.3660
549.67
0.1800
1.01784
0.19

98.9146
973.50
0.6000
1.01366
0.34
00-022-1235
100.2271
2340.17
0.1800
1.00389
0.83

100.8187
19049.43
0.1800
0.99959
6.74

101.1853
9035.78
0.1800
0.99943
3.20

102.2545
3024.21
0.1800
0.98941
1.07

103.1128
566.52
0.1800
0.98350
0.20
00-022-1235
104.3818
937.07
0.2400
0.97499
0.33

105.2225
1337.25
0.1800
0.96950
0.47

106.1961
607.26
0.3600
0.96328
0.21

107.4270
6272.81
0.1800
0.95563
2.22
00-022-1235
107.8824
7346.89
0.3600
0.95285
2.60

108.3681
3370.33
0.1200
0.95229
1.19

109.6903
23774.82
0.1800
0.94215
8.41

183

-------
2.2: 2479-B-BHD
2.2.1: Measurement Conditions


Dataset Name
2479-B-Slow

File name
M:\XRD-BHD\2479-B-Slow.rd
Sample Identification
2479-B-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/26/2013 9:40:00 AM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

184

-------
2.2.2: Main Graphics, Analyze View of2479-B
v i w
2479-B-S ow
Position [ 2Theta] (Copper (Cu))
Sodium Chloride 16.8 % |
Aluminum Oxide Nitride 17.3 %~|
Sylvite, syn U.9 %
Aluminum 1 %
A uminum Nitride 1 %
Fluorite, syn 9.9 %
Anhydrite 9.9 %
Quartz low a.y %


Magnesium Aluminum Oxide 2 % |

Aluminum Oxide Nitride 6.9 %

Aluminum Oxide 6.9 %

185

-------
2.2.3: Pattern List of24 79-B
Ref. Code Score Compound Chemical SemiQuant Matched Strong
Name	Formula	[%]	Lines Unmatched
Lines
01-075-
13 Aluminum
A12 03

4
15
0
1862
Oxide





00-004-
37 Sylvite, syn
K CI

14
9
0
0587






01-077-
45 Sodium
Na CI

17
9
0
2064
Chloride





01-074-
17 Magnesium
Mg A12 04

2
9
0
1132
Aluminum
Oxide





01-075-
7 Aluminum
A1N

2
6
1
1620
Nitride





01-080-
7 Aluminum
A12.85

18
9
0
2171
Oxide
Nitride
03.45
NO.55




01-080-
8 Aluminum
A12.81

7
11
0
2172
Oxide
Nitride
03.56
NO.44




01-085-
29 Aluminum
A1

1
5
0
1327






00-004-
18 Fluorite, syn
Ca F2

10
6
0
0864






01-086-
20 Anhydrite
Ca ( S 04 )

10
25
0
2270






01-080-
8 Aluminum
A12.667 04

7
10
0
1385
Oxide





01-085-
5 Quartz low
Si 02

9
15
0
0335






2.2.4: Peak List of2479-B
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
5.2907
155.71
0.3936
16.70355

0.04

6.0369
755.95
0.4920
14.64066

0.18

6.8672
456.30
0.3936
12.87214

0.11

7.6887
321.38
0.1968
11.49865

0.08

9.2650
1833.61
0.1476
9.54555

0.44

9.9824
180.55
0.1968
8.86105

0.04

10.7806
169.93
0.1476
8.20670

0.04

11.9189
180.12
0.2460
7.42539

0.04

13.0974
279.09
0.2952
6.75980

0.07

13.9191
583.79
0.1476
6.36249

0.14

186

-------
14.5828
1027.37
0.1476
6.07442
0.25

15.4655
2811.57
0.1476
5.72962
0.67

16.2239
64.37
0.1968
5.46346
0.02

16.7310
204.21
0.1476
5.29899
0.05

17.2631
910.93
0.1476
5.13684
0.22

17.7382
566.03
0.1476
5.00031
0.14

19.1311
3545.60
0.1968
4.63927
0.85
01-074-1132;





01-086-2270
19.6870
2679.42
0.1476
4.50952
0.64

20.6179
901.89
0.1476
4.30797
0.22

21.6625
1144.62
0.1968
4.10254
0.27

22.3934
1748.02
0.1476
3.97026
0.42

22.8197
2520.15
0.1476
3.89704
0.60
01-086-2270
23.4179
1069.91
0.1476
3.79884
0.26

23.9381
304.06
0.0984
3.71746
0.07

24.6059
7464.96
0.1476
3.61806
1.78

24.8753
1360.29
0.0984
3.57947
0.33

25.4628
43971.45
0.1476
3.49820
10.51
01-075-1862;





01-086-2270
26.1761
3284.31
0.0984
3.40447
0.78

26.5819
4350.75
0.1968
3.35342
1.04
01-085-0335
27.3221
40360.35
0.1476
3.26423
9.64
01-077-2064
28.2540
210743.60
0.1476
3.15865
50.35
00-004-0587;





00-004-0864
28.5332
100135.10
0.0984
3.12837
23.92
01-086-2270
29.3989
7916.73
0.1968
3.03819
1.89

30.2856
8500.37
0.1476
2.95123
2.03

30.8292
4046.48
0.0984
2.90042
0.97

31.6574
418548.00
0.1476
2.82640
100.00
01-077-2064;





01-080-2171;





01-080-2172;





01-080-1385
32.6196
6786.89
0.1476
2.74520
1.62

33.1296
5625.04
0.1968
2.70410
1.34
01-075-1620
34.0319
1161.51
0.1476
2.63444
0.28

34.5770
3250.78
0.1476
2.59414
0.78

35.1051
5798.08
0.1968
2.55632
1.39
01-075-1862
35.6540
3994.63
0.1476
2.51822
0.95

36.3551
27532.43
0.1476
2.47125
6.58
01-086-2270
36.8202
6881.67
0.1476
2.44109
1.64
01-074-1132
37.3943
4027.07
0.1476
2.40492
0.96
01-080-2171;





01-080-2172;





01-080-1385
37.7669
3292.46
0.2460
2.38205
0.79
01-075-1862;





01-075-1620
187

-------
38.4602
10955.27
0.1968
2.34069
2.62
01-074-1132;





01-085-1327;





01-086-2270
38.9212
3210.87
0.1476
2.31402
0.77

39.3293
462.05
0.0984
2.29095
0.11
01-080-2171;





01-080-2172;





01-080-1385;





01-085-0335
40.4312
121902.40
0.1968
2.23102
29.13
00-004-0587;





01-085-0335
40.7884
65988.55
0.1476
2.21231
15.77
01-086-2270
41.9425
2543.11
0.1968
2.15406
0.61

42.2249
2520.77
0.1476
2.14031
0.60

42.8649
2140.51
0.1476
2.10982
0.51

43.3422
9203.95
0.1968
2.08769
2.20
01-075-1862;





01-086-2270
44.2129
2760.35
0.1968
2.04857
0.66

44.6641
4775.68
0.0984
2.02892
1.14
01-074-1132;





01-085-1327
44.9204
11131.28
0.0984
2.01794
2.66
01-074-1132;





01-085-1327
45.4080
223457.30
0.1968
1.99740
53.39
01-077-2064;





01-080-2171;





01-086-2270
46.1574
3745.72
0.1476
1.96670
0.89
01-075-1862
46.7065
9516.55
0.2460
1.94485
2.27
01-086-2270
47.0376
11058.45
0.3444
1.93193
2.64
00-004-0864;





01-086-2270
48.2371
2272.67
0.0984
1.88666
0.54

48.9611
1476.89
0.1968
1.86044
0.35
01-074-1132;





01-086-2270
50.0848
35042.29
0.2460
1.82130
8.37
00-004-0587;





01-080-2171;





01-080-2172;





01-080-1385;





01-085-0335
50.5407
19355.17
0.1476
1.80594
4.62
01-085-0335
51.0468
2134.12
0.1476
1.78922
0.51

51.4449
1889.98
0.1476
1.77630
0.45

52.4331
5444.41
0.1968
1.74513
1.30
01-075-1862;





01-086-2270
53.1089
1416.79
0.1476
1.72451
0.34

53.7999
11522.21
0.2460
1.70398
2.75
01-077-2064
54.6464
954.64
0.2952
1.67957
0.23

55.2766
2730.92
0.1476
1.66190
0.65
01-085-0335
188

-------
55.6458
4708.72
0.2460
1.65175
1.13
01-074-1132;





00-004-0864;





01-086-2270
56.3885
78868.63
0.2952
1.63174
18.84
01-077-2064
57.4302
6761.55
0.2460
1.60460
1.62
01-075-1862;





01-085-0335
58.5183
14592.35
0.1968
1.57733
3.49
00-004-0587
59.1012
14842.85
0.2460
1.56316
3.55
01-086-2270
60.0194
2005.59
0.0984
1.54142
0.48
01-085-0335
61.2364
1251.14
0.1800
1.51242
0.30
01-075-1862;





01-086-2270
61.5269
243.00
0.1200
1.50972
0.06

62.2526
983.55
0.1800
1.49015
0.23
01-086-2270
63.0843
949.79
0.2400
1.47249
0.23

63.5607
570.67
0.1800
1.46260
0.14

64.1540
887.89
0.3600
1.45050
0.21
01-085-0335
64.9889
4898.93
0.1800
1.43387
1.17
01-085-1327
65.5088
8589.22
0.1800
1.42374
2.05
01-086-2270
66.1468
53415.45
0.3000
1.41155
12.76
01-077-2064;





01-075-1620
66.9145
21624.64
0.1800
1.39720
5.17
01-086-2270
68.1182
4306.17
0.2400
1.37542
1.03
01-075-1862;





01-085-0335
69.5232
1299.99
0.3000
1.35102
0.31
01-075-1620
71.2118
1261.98
0.1800
1.32307
0.30
01-075-1620;





01-080-2171;





01-080-2172;





01-086-2270;





01-080-1385
71.5208
2044.36
0.2400
1.31811
0.49
01-075-1620;





01-086-2270
72.0645
970.07
0.1800
1.30950
0.23

72.9735
5851.06
0.1200
1.29541
1.40
01-077-2064;





01-086-2270
73.5697
19326.10
0.2400
1.28638
4.62
00-004-0587;





01-085-0335
73.8281
9445.42
0.1200
1.28570
2.26

74.3142
13600.66
0.1800
1.27532
3.25
01-075-1862;





01-074-1132;





01-086-2270
75.1926
74362.27
0.1800
1.26259
17.77
01-077-2064
75.4606
37235.54
0.1200
1.26190
8.90

76.7998
2545.49
0.1800
1.24012
0.61
01-075-1862
77.3613
2570.02
0.4200
1.23252
0.61
01-075-1862;





01-074-1132;





01-086-2270
189

-------
78.1918
2756.15
0.1800
1.22149
0.66
01-074-1132;





01-085-1327
78.9815
330.39
0.2400
1.21125
0.08
01-080-2171;





01-080-2172;





01-080-1385
79.6825
1687.38
0.2400
1.20235
0.40
01-085-0335
80.8283
856.96
0.1800
1.18817
0.20
01-075-1862;





01-075-1620
82.4328
1683.71
0.1800
1.16906
0.40
01-074-1132;





01-085-1327
83.0567
2910.63
0.2400
1.16186
0.70
01-075-1862;





01-086-2270
83.8920
51240.16
0.1800
1.15240
12.24
01-077-2064;





01-085-0335
84.1840
27886.56
0.1200
1.15200
6.66

86.4238
1440.19
0.2400
1.12502
0.34
01-075-1862
87.5325
6377.90
0.2400
1.11360
1.52
00-004-0587;





01-080-2171;





01-080-2172;





00-004-0864;





01-080-1385;





01-085-0335
88.4599
4299.68
0.2400
1.10431
1.03
01-086-2270
89.3746
379.41
0.1800
1.09536
0.09

90.3207
4269.67
0.1800
1.08633
1.02

90.6288
2262.57
0.1200
1.08613
0.54

91.0784
629.77
0.2400
1.07926
0.15

91.4144
486.36
0.1800
1.07884
0.12

93.6724
2409.48
0.1800
1.05607
0.58

94.3983
10335.24
0.2400
1.04985
2.47
00-004-0587;





00-004-0864
94.7335
5182.54
0.1800
1.04962
1.24

95.4628
7484.68
0.2400
1.04094
1.79

96.2650
362.25
0.1800
1.03439
0.09

96.5830
338.99
0.2400
1.03183
0.08

97.1519
72.90
0.2400
1.02985
0.02

98.3172
455.61
0.1800
1.01821
0.11

99.0744
211.03
0.1800
1.01245
0.05

100.3709
163.29
0.1800
1.00284
0.04

101.0752
18255.04
0.2400
0.99774
4.36

101.4150
12952.26
0.1200
0.99779
3.09

101.7312
2679.60
0.1200
0.99308
0.64
00-004-0587
102.5278
3720.76
0.2400
0.98752
0.89

103.4252
312.15
0.3600
0.98138
0.07

104.3694
423.75
0.1800
0.97507
0.10

104.7331
834.20
0.1800
0.97510
0.20

190

-------
105.7105
1296.99
0.1800
0.96636
0.31
00-004-0864
107.7023
5919.22
0.1800
0.95395
1.41

108.0978
4551.52
0.1800
0.95155
1.09

108.4525
4684.39
0.1800
0.95178
1.12

108.8756
1644.40
0.1800
0.94691
0.39
00-004-0587
2.3: 2481-B-BHD


2.3.1: Measurement Conditions


Dataset Name
2481-B-Slow

File name
M:\XRD-BHD\2481-B-Slow.rd
Sample Identification
2481-B-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/26/2013 9:20:00 PM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

191

-------
2.3.2: Main Graphics, Analyze View of2481-B
I VV V V w
W V
U

/\ J
50	60	70
Position [°2Theta] (Copper (Cu))
90	100
Sodium Chloride 20 %
Anhydrite 13 %
Fluorite, syn 12 %
~
Quartz low 28 %



—1
Elpasolite, syn 1 %
Ali in-.ii-.i im MH-i-
Calcite 1 % jde 2 %
Jxide 3 %
Aluminum Oxide Nitride 6 %
Sylvite "Magnesium Sulfate 3 %~|
192

-------
2.3.3: Pattern List of2481-B
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
8
Aluminum
A12 03
2
12
0
1862

Oxide




00-004-
23
Sylvite, syn
K CI
7
8
0
0587






01-077-
49
Sodium
Na CI
20
9
0
2064

Chloride




01-074-
31
Magnesium
Mg A12 04
3
12
0
1132

Aluminum
Oxide




01-075-
20
Aluminum
A1N
3
8
0
1620

Nitride




01-080-
7
Aluminum
A12.85
6
9
0
2171

Oxide
Nitride
03.45
NO.55



01-085-
27
Aluminum
A1
1
4
0
1327






00-004-
19
Fluorite, syn
Ca F2
12
5
0
0864






00-022-
10
Elpasolite,
K2 Na A1
1
12
0
1235

syn
F6



01-086-
25
Anhydrite
Ca ( S 04 )
13
30
0
2270






01-086-
13
Calcite
Ca (C 03)
1
14
0
2340






01-072-
9
Magnesium
Mg S 04
3
29
1
1259

Sulfate




01-085-
17
Quartz low
Si 02
28
18
0
0335






2.3.4: Peak List of2481-B
Pos. | 2Tli.| Height [cts] FWHM d-spacing [A] Rel. Int. [%] Matched by
[°2Th.]
5.4250
429.66
0.3936
16.29050
0.14
6.0249
1036.08
0.3936
14.66981
0.35
6.7452
789.30
0.1968
13.10466
0.26
8.6072
1199.85
0.3936
10.27350
0.40
9.7014
1235.43
0.3936
9.11710
0.41
11.0354
1379.32
0.3936
8.01783
0.46
13.1507
1777.50
0.3936
6.73250
0.59
14.6018
4277.64
0.2460
6.06654
1.43
193

-------
15.4937
2027.66
0.1476
5.71927
0.68

17.1472
2175.38
0.5904
5.17131
0.73

18.9930
4352.37
0.1476
4.67270
1.45
01-074-1132;





00-022-1235;





01-086-2270
19.8505
2521.02
0.4920
4.47275
0.84

20.7759
4499.65
0.1968
4.27556
1.50
01-085-0335
22.9774
2820.04
0.1476
3.87065
0.94
01-086-2270;





01-086-2340
23.3332
3127.79
0.0984
3.81243
1.04

23.9485
3785.39
0.1476
3.71585
1.26

24.6159
6595.74
0.1476
3.61661
2.20
01-072-1259
25.3797
55427.57
0.1968
3.50948
18.50
01-075-1862;





01-086-2270
26.1781
3714.26
0.0984
3.40422
1.24
01-072-1259
26.5748
16249.22
0.1968
3.35429
5.42
01-072-1259;





01-085-0335
27.3256
29042.84
0.1968
3.26382
9.69
01-077-2064;





01-072-1259
28.1662
253983.50
0.1968
3.16829
84.78
00-004-0587;





00-004-0864
28.5261
77917.93
0.0984
3.12914
26.01
00-004-0587;





01-086-2270
29.4795
13272.09
0.2952
3.03007
4.43
01-086-2340
30.2831
5601.35
0.1476
2.95146
1.87

31.6642
299583.50
0.1476
2.82581
100.00
01-077-2064;





01-080-2171
32.7791
3625.49
0.1476
2.73221
1.21

33.1667
6797.65
0.1968
2.70115
2.27
01-075-1620
34.5691
3536.23
0.1968
2.59472
1.18
01-072-1259
35.1132
2892.84
0.1476
2.55576
0.97
01-075-1862
36.2269
34030.62
0.1968
2.47970
11.36
01-075-1620;





01-086-2270;





01-086-2340
36.8326
14545.76
0.1968
2.44030
4.86
01-074-1132
37.8281
3658.81
0.1476
2.37834
1.22
01-075-1862;





01-075-1620
38.4626
11041.13
0.1968
2.34055
3.69
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
39.4198
3765.61
0.1968
2.28590
1.26
01-080-2171;





01-086-2340;





01-085-0335
40.2821
143454.00
0.2460
2.23893
47.88
01-085-0335
194

-------
40.7907
49106.32
0.1476
2.21218
16.39
01-086-2270;





01-072-1259
41.9965
4075.70
0.2460
2.15142
1.36

42.4168
4039.96
0.2952
2.13107
1.35
01-085-0335
42.8819
4256.90
0.1476
2.10902
1.42

43.3539
5478.74
0.1476
2.08715
1.83
01-075-1862;





01-086-2270;





01-086-2340
44.0326
3846.59
0.1476
2.05654
1.28
01-072-1259
44.7435
22681.31
0.2460
2.02551
7.57
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.4171
162900.90
0.1968
1.99702
54.38
01-077-2064;





01-080-2171;





01-086-2270
46.9720
8391.56
0.2952
1.93447
2.80
00-004-0864;





01-086-2270;





01-086-2340;





01-072-1259
47.6064
4897.52
0.1968
1.91017
1.63
01-072-1259
48.2522
4325.98
0.1476
1.88610
1.44
01-086-2340;





01-072-1259
49.0614
6628.31
0.2460
1.85687
2.21
01-074-1132;





00-022-1235;





01-086-2270
49.8899
40508.29
0.2952
1.82796
13.52
01-075-1620;





01-080-2171
50.5484
14890.17
0.1476
1.80568
4.97
01-072-1259;





01-085-0335
51.4531
1549.39
0.1968
1.77604
0.52

52.1990
4884.46
0.1968
1.75240
1.63
01-086-2270
53.1330
2285.48
0.1476
1.72378
0.76

53.8126
10906.47
0.1968
1.70361
3.64
01-077-2064
54.7347
2176.68
0.2952
1.67707
0.73
01-085-0335
55.6762
4190.85
0.2460
1.65092
1.40
01-074-1132;





00-004-0864;





01-086-2270
56.3972
54385.70
0.2460
1.63151
18.15
01-077-2064;





01-072-1259
57.4355
3386.75
0.1476
1.60446
1.13
01-075-1862;





01-086-2340;





01-085-0335
58.2741
17699.10
0.2952
1.58336
5.91

59.0482
12002.06
0.2952
1.56443
4.01
00-022-1235;





01-086-2270
195

-------
59.3806
7484.63
0.1968
1.55647
2.50
01-074-1132;
01-075-1620;
01-086-2270
62.2567
1456.21
0.2952
1.49130
0.49
01-086-2270
62.9768
1272.05
0.1968
1.47597
0.42
01-086-2340;
01-072-1259
63.5148
1006.49
0.1476
1.46476
0.34
01-072-1259
65.1933
15999.71
0.3444
1.43105
5.34
01-074-1132;
01-085-1327;
01-086-2270
66.1355
47712.44
0.3444
1.41293
15.93
01-077-2064;
01-075-1620;
01-072-1259
66.9283
16561.89
0.1476
1.39811
5.53
01-086-2270
67.5981
2353.75
0.1476
1.38587
0.79
01-085-0335
68.1387
3285.20
0.2952
1.37619
1.10
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
69.4729
1743.22
0.1476
1.35299
0.58
01-075-1620;
00-022-1235
71.2612
948.91
0.1800
1.32227
0.32
01-075-1620;
01-080-2171;
01-086-2270;
01-072-1259
71.5749
1680.95
0.0984
1.31834
0.56
01-075-1620;
01-086-2270;
01-072-1259
72.2579
2056.41
0.1476
1.30755
0.69

72.9961
10623.48
0.1800
1.29507
3.55
01-077-2064;
01-086-2270;
01-072-1259
73.2487
21308.31
0.2460
1.29229
7.11
01-077-2064;
01-072-1259;
01-085-0335
74.3300
10688.73
0.1476
1.27615
3.57
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
75.2097
59432.12
0.1800
1.26235
19.84
01-077-2064
75.4738
27846.99
0.1200
1.26171
9.30

77.0114
2344.45
0.3600
1.23724
0.78
01-075-1862;
01-086-2270;
01-072-1259
78.2205
3689.26
0.1800
1.22112
1.23
01-074-1132;
01-085-1327;
196

-------





00-022-1235;





01-072-1259
79.7268
1233.16
0.2400
1.20179
0.41
01-080-2171;





01-086-2270;





01-072-1259;





01-085-0335
80.6828
91.67
0.1200
1.18994
0.03
01-075-1862;





01-086-2340
81.0761
432.55
0.1800
1.18516
0.14
01-075-1620;





01-086-2340;





01-085-0335
81.4135
414.00
0.1800
1.18110
0.14
01-086-2270;





01-086-2340;





01-085-0335
82.6386
3378.31
0.4200
1.16667
1.13
01-074-1132;





01-085-1327;





01-086-2270;





01-072-1259
83.9101
40279.16
0.1800
1.15220
13.45
01-077-2064;





01-086-2340;





01-072-1259;





01-085-0335
84.1967
20242.12
0.1800
1.15186
6.76

87.0713
5062.59
0.3600
1.11831
1.69
01-072-1259;





01-085-0335
87.3890
3991.66
0.1800
1.11783
1.33

88.4791
3126.70
0.1800
1.10412
1.04
01-086-2270;





01-072-1259
90.3362
3383.16
0.1800
1.08619
1.13
00-022-1235
90.6411
2296.23
0.1800
1.08601
0.77

92.7334
632.22
0.1200
1.06429
0.21

93.9449
10441.99
0.5400
1.05372
3.49
00-004-0864
95.4780
5376.35
0.2400
1.04082
1.79

97.0519
454.09
0.3600
1.02809
0.15

98.5752
768.27
0.2400
1.01624
0.26
00-022-1235
99.3965
1307.98
0.6000
1.01003
0.44

100.4960
3915.53
0.1800
1.00192
1.31

101.1024
15657.91
0.1800
0.99755
5.23

101.4516
7089.45
0.1800
0.99753
2.37

102.5513
3001.02
0.2400
0.98735
1.00
00-022-1235
103.5684
227.95
0.3600
0.98042
0.08

105.1133
622.31
0.1800
0.97021
0.21

107.7232
7960.21
0.2400
0.95382
2.66

108.1272
4833.85
0.2400
0.95374
1.61

197

-------
Facility C
3.1: 2432-C-BHD
3.1:1: Measurement Conditions
Dataset Name
2432-C-Slow

File name
M:\XRD-BHD\2432-C-Slow.rd
Sample Identification
2432-C-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/27/2013 9:02:00 AM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

198

-------
3.1.2: Main Graphics, Analyze View of2432-C
'WW vv
JUjM
l\, ),A
)J\ A-l
50	60	70
Position [°2Theta] (Copper (Cu))
WW
Anhydrite 12.9 % |
Sylvite, syn 12.9 %
Fluorite, syn 11.9 %~|
Aluminum Oxide 7.9 % |
Sodium Chloride 26.7 % |
Calcite 1 %~j^l
Aluminum "Flfride 3 % |
[ Aluminum Qxide Nitride 4 %
Magnesium Aluminum Oxide 4 % |
Tj[~| Aluminum Oxide Nitride 4 % |
199

-------
3.1.3: Pattern List of2432-C
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
35
Aluminum
A12 03
6
16
0
1862

Oxide




00-004-
33
Sylvite, syn
K CI
13
10
0
0587






01-077-
50
Sodium
Na CI
27
9
0
2064

Chloride




01-074-
26
Magnesium
Mg A12 04
4
13
0
1132

Aluminum
Oxide




01-075-
19
Aluminum
A1N
3
8
0
1620

Nitride




01-080-
10
Aluminum
A12.85
5
9
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
8
Aluminum
A12.81
4
6
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
9
Aluminum
A12.78
4
5
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
26
Aluminum
A1
1
5
0
1327






00-004-
21
Fluorite, syn
Ca F2
12
6
0
0864






01-086-
24
Anhydrite
Ca ( S 04 )
13
31
0
2270






01-086-
9
Calcite
Ca (C 03)
1
15
0
2340






01-080-
10
Aluminum
A12.667 04
8
7
0
1385

Oxide




3.1.4: Peak List of2432-C
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%] Matched by
5.3210
225.41
0.2952
16.60878
0.06
6.0177
860.09
0.3936
14.68737
0.21
6.9594
538.03
0.2952
12.70190
0.13
7.8049
1208.74
0.1476
11.32760
0.30
8.5587
618.44
0.4920
10.33159
0.15
9.8249
752.79
0.2952
9.00275
0.18
200

-------
11.0719
1240.14
0.2952
7.99148
0.30

11.5443
1022.29
0.1968
7.66548
0.25

13.0951
407.74
0.2952
6.76097
0.10

14.6664
946.18
0.1968
6.03998
0.23

15.5939
839.87
0.2952
5.68275
0.21

17.1882
1507.92
0.1476
5.15906
0.37

18.1162
1524.75
0.1968
4.89684
0.37

18.9945
5206.44
0.1476
4.67234
1.28
01-074-1132;





01-086-2270
19.9412
2948.07
0.1476
4.45261
0.72

20.6940
3481.19
0.1476
4.29229
0.85

23.0462
4278.58
0.1476
3.85927
1.05
01-086-2270;





01-086-2340
23.4206
3343.27
0.0984
3.79841
0.82

24.6410
9567.30
0.1476
3.61297
2.35

25.4961
45888.51
0.1476
3.49372
11.26
01-075-1862;





01-086-2270
26.2141
6669.51
0.1476
3.39963
1.64

26.5889
6002.70
0.1476
3.35255
1.47

27.3510
39071.05
0.1476
3.26084
9.59
01-077-2064
28.2783
191449.50
0.1476
3.15599
46.99
00-004-0587;





00-004-0864
28.5644
87529.16
0.0984
3.12503
21.48
01-086-2270
29.4533
9566.13
0.1968
3.03270
2.35
01-086-2340
29.8986
6840.71
0.1476
2.98854
1.68

30.3070
9232.94
0.1476
2.94920
2.27

31.6859
407422.20
0.1968
2.82393
100.00
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
33.1928
16449.01
0.1476
2.69910
4.04
01-075-1620
34.0534
5458.60
0.1968
2.63283
1.34

34.5800
7077.76
0.1968
2.59393
1.74

35.1347
16625.18
0.1968
2.55424
4.08
01-075-1862
36.0030
9610.27
0.0984
2.49460
2.36
01-075-1620;





01-086-2340
36.3773
28508.57
0.1968
2.46979
7.00
01-086-2270
36.8496
22161.01
0.1476
2.43922
5.44
01-074-1132
37.4109
11895.87
0.1476
2.40390
2.92
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
37.7969
11661.31
0.2460
2.38023
2.86
01-075-1862;





01-075-1620
201

-------
38.4735
14544.86
0.1968
2.33991
3.57
01-074-1132;





01-085-1327;





01-086-2270
38.9510
8404.13
0.1476
2.31232
2.06

40.4575
116345.90
0.1968
2.22963
28.56
00-004-0587
40.8218
67403.10
0.0984
2.21057
16.54
01-086-2270
42.1777
5946.76
0.2952
2.14259
1.46

43.3557
18098.05
0.1968
2.08707
4.44
01-075-1862;





01-086-2270;





01-086-2340
43.9673
5640.12
0.1968
2.05944
1.38

44.7694
18908.44
0.1968
2.02439
4.64
01-074-1132;





01-085-1327
45.4371
245900.10
0.1968
1.99619
60.36
01-077-2064;





01-080-2171;





01-086-2270;





01-080-1385
47.0575
14336.05
0.2952
1.93116
3.52
00-004-0864;





01-086-2340
48.2763
4722.00
0.1476
1.88522
1.16
01-086-2340
49.0307
3767.69
0.1968
1.85796
0.92
01-074-1132;





01-086-2270
50.0976
34257.57
0.1968
1.82087
8.41
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
50.5745
21205.84
0.0984
1.80481
5.20

51.4679
5514.18
0.1476
1.77556
1.35

52.4816
9830.69
0.1476
1.74363
2.41
01-075-1862;





01-086-2270
53.1258
4083.29
0.1968
1.72400
1.00

53.8424
12499.62
0.1968
1.70273
3.07
01-077-2064
55.6787
6472.49
0.2952
1.65085
1.59
01-074-1132;





00-004-0864;





01-086-2270
56.4233
79192.09
0.1968
1.63082
19.44
01-077-2064
57.4440
15800.48
0.2952
1.60425
3.88
01-075-1862;





01-086-2340
58.5409
15632.16
0.1968
1.57677
3.84
00-004-0587
59.1269
18753.50
0.2460
1.56254
4.60
01-075-1620;





01-086-2270
60.8267
4565.63
0.0984
1.52288
1.12
01-086-2270;





01-086-2340
61.3020
3325.63
0.1476
1.51221
0.82
01-075-1862;





01-086-2270
62.1930
1575.48
0.1968
1.49267
0.39
01-086-2270
202

-------
63.0743
1668.54
0.1968
1.47392
0.41
01-086-2340
63.6575
1793.07
0.1968
1.46182
0.44

65.1412
14050.70
0.3936
1.43207
3.45
01-074-1132;
01-085-1327;
01-086-2340
66.1828
58708.05
0.2400
1.41087
14.41
00-004-0587;
01-077-2064;
01-075-1620
66.4037
37119.11
0.1200
1.41020
9.11

66.9450
21973.04
0.1800
1.39664
5.39
01-086-2270
68.1446
8902.39
0.3000
1.37495
2.19
01-075-1862
69.4554
1621.70
0.1800
1.35217
0.40

71.3707
2668.81
0.1800
1.32051
0.66
01-075-1620;
01-080-2172;
01-080-2173;
01-086-2270;
01-080-1385
71.6093
3001.25
0.1800
1.31670
0.74
01-075-1620;
01-086-2270
73.0060
6036.43
0.1200
1.29491
1.48
01-077-2064;
01-086-2270
73.5979
18217.07
0.1800
1.28596
4.47
00-004-0587;
01-086-2340
74.3436
12996.02
0.1800
1.27489
3.19
01-075-1862;
01-074-1132;
01-086-2270
75.2234
74970.73
0.1200
1.26215
18.40
01-077-2064
75.4862
38339.32
0.1200
1.26153
9.41

76.8212
4692.33
0.1200
1.23983
1.15
01-075-1862
77.1266
3787.04
0.1800
1.23568
0.93
01-075-1862;
01-074-1132;
01-086-2270
77.4058
4070.86
0.1800
1.23192
1.00
01-075-1862;
01-074-1132;
01-086-2270
78.1846
3213.96
0.1800
1.22159
0.79
01-074-1132;
01-085-1327
78.4769
2548.09
0.1800
1.21777
0.63
01-074-1132;
01-085-1327;
01-086-2270;
01-086-2340
79.7149
2031.56
0.1800
1.20194
0.50
01-080-2171;
01-086-2270
80.3755
1210.24
0.1800
1.19372
0.30
01-075-1862;
01-080-2173;
01-086-2340
203

-------
80.9289
1210.94
0.1800
1.18695
0.30
01-075-1620;





01-086-2340
82.4198
2041.65
0.2400
1.16921
0.50
01-074-1132;





01-085-1327
82.7323
3080.04
0.3000
1.16559
0.76
01-074-1132;





01-086-2270
83.0690
3476.05
0.1800
1.16460
0.85

83.9230
52832.62
0.1200
1.15205
12.97
01-077-2064;





01-086-2340
84.2116
27145.82
0.1200
1.15169
6.66

86.4056
1429.62
0.2400
1.12521
0.35
01-075-1862
87.5696
6129.74
0.1800
1.11323
1.50
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-004-0864;





01-080-1385
88.4847
4385.94
0.2400
1.10406
1.08
01-086-2270
89.2269
681.64
0.1200
1.09679
0.17

90.3475
4019.70
0.1800
1.08608
0.99

90.6518
2511.59
0.1200
1.08591
0.62

91.1282
1626.33
0.2400
1.07880
0.40

93.7182
2594.86
0.1200
1.05568
0.64

94.0582
5900.56
0.1800
1.05275
1.45
00-004-0864
94.4279
11211.30
0.2400
1.04960
2.75
00-004-0587;





00-004-0864
94.7620
6272.17
0.1200
1.04938
1.54

95.1687
4775.85
0.1200
1.04338
1.17

95.4974
8058.53
0.1800
1.04066
1.98

98.3693
562.53
0.3600
1.01781
0.14

99.3068
1274.23
0.1800
1.01070
0.31

100.0412
1166.85
0.1800
1.00525
0.29

101.0976
19280.05
0.1800
0.99758
4.73

101.4391
13178.04
0.1800
0.99762
3.23

102.5632
3906.11
0.2400
0.98727
0.96

103.6761
547.71
0.1800
0.97969
0.13

105.6992
1084.92
0.3000
0.96643
0.27
00-004-0864
107.7332
6568.52
0.1800
0.95376
1.61

108.1204
5413.40
0.1200
0.95378
1.33

108.4819
5244.46
0.1800
0.94925
1.29
00-004-0587
108.8749
2700.96
0.1200
0.94927
0.66

204

-------
3.2: 2434-C-BHD
3.2.1: Measurement Conditions


Dataset Name
2434-C-Slow

File name
M:\XRD-BHD\2434-C-Slow.rd
Sample Identification
2434-C-Slow

Comment
Exported by X'Pert SW


Generated by Xiaolan in
project Project.
Measurement Date / Time
2/27/2013 8:44:00 PM

Raw Data Origin
PHILIPS-binary (scan) (
RD)
Scan Axis
Gonio

Start Position [°2Th.]
5.0250

End Position [°2Th.]
109.9750

Step Size [°2Th.]
0.0500

Scan Step Time [s]
20.0000

Scan Type
Continuous

Offset [°2Th.]
0.0000

Divergence Slit Type
Automatic

Irradiated Length [mm]
15.00

Specimen Length [mm]
10.00

Receiving Slit Size [mm]
0.2500

Measurement Temperature [°C]
0.00

Anode Material
Cu

K-Alphal [A]
1.54060

K-Alpha2 [A]
1.54443

K-Beta [A]
1.39225

K-A2 / K-Al Ratio
0.50000

Generator Settings
40 mA, 45 kV

Diffractometer Type
XPert MPD

Diffractometer Number
1

Goniometer Radius [mm]
200.00

Dist. Focus-Diverg. Slit [mm]
91.00

Incident Beam Monochromator
No

Spinning
Yes

205

-------
3.2.2: Main Graphics, Analyze View of2434-C
WWW wv
V V V V vvv
r\M< J	I- ilil,,,, /M,,
50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum Oxide Nitride 16 % |
Sylvite, syn 10 %
Aluminum Oxide 7 %

Anhydrite 7 %


Aluminum Oxide Nitride 6 %

Fluorite, syn 5 % |
Sodium Chloride 23 %
X
Periciase, syn 1 %
/ I A 11 iKi-iii-ii in-i h.lH-Kirjp -! '-Vl I
rH Quartz 1 % (, 2 %l=Ur-.
| .J.		— -.-..J- 		a 3 %
i riviHp d sZ I
C Magnesium Sulfate 3 %
Magr^wimn 		nm	-t
}
206

-------
3.2.3: Pattern List of2434-C
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
26
Aluminum
A12 03
4
13
0
1862

Oxide




00-004-
47
Sylvite, syn
K CI
10
10
0
0587






01-077-
51
Sodium
Na CI
23
9
0
2064

Chloride




01-074-
33
Magnesium
Mg A12 04
4
14
0
1132

Aluminum
Oxide




01-075-
17
Aluminum
A1N
3
4
1
1620

Nitride




01-080-
15
Aluminum
A12.85
16
12
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
12
Aluminum
A12.81
6
11
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
12
Aluminum
A12.78
3
10
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
28
Aluminum
A1
1
5
0
1327






00-004-
27
Fluorite, syn
Ca F2
5
6
0
0864






00-022-
15
Elpasolite,
K2 Na A1
2
12
0
1235

syn
F6



01-086-
22
Anhydrite
Ca ( S 04 )
7
36
0
2270






01-086-
28
Calcite
Ca (C 03)
4
17
0
2340






01-072-
8
Magnesium
Mg S 04
3
30
1
1259

Sulfate




00-043-
24
Periclase,
Mg O
1
5
0
1022

syn




01-085-
5
Quartz
Si 02
1
16
0
0930






01-080-
13
Aluminum
A12.667 04
7
12
0
1385

Oxide




207

-------
3.2.4: Peak List of2434-C
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
6.1058
431.81
0.4920
14.47546
0.15

6.8152
269.70
0.2460
12.97028
0.10

7.7626
269.81
0.1476
11.38928
0.10

9.1283
473.78
0.1968
9.68819
0.17

10.0854
2730.44
0.2460
8.77078
0.96

11.1943
14156.31
0.2460
7.90433
5.00

12.8365
107.81
0.1968
6.89656
0.04

15.4260
302.58
0.1476
5.74420
0.11

15.9916
364.81
0.1476
5.54229
0.13

16.3708
225.52
0.1476
5.41478
0.08

17.0608
554.02
0.1476
5.19731
0.20

18.1257
1045.47
0.1476
4.89428
0.37

18.9125
3485.65
0.1476
4.69240
1.23
01-074-1132;





00-022-1235;





01-086-2270
20.7205
1769.20
0.1476
4.28687
0.62
01-085-0930
21.0509
1116.80
0.1968
4.22033
0.39
01-085-0930
22.5966
6589.29
0.3936
3.93502
2.33
01-072-1259
22.9515
6909.98
0.1476
3.87497
2.44
01-086-2270;





01-086-2340
23.3577
6888.97
0.1968
3.80850
2.43

23.8866
2523.69
0.1476
3.72535
0.89

24.5492
6966.22
0.1476
3.62628
2.46
01-072-1259
25.4432
25718.16
0.1476
3.50086
9.08
01-075-1862;





01-086-2270
26.3828
9448.02
0.1968
3.37827
3.34
01-072-1259
27.2691
30631.17
0.1476
3.27045
10.82
01-077-2064;





01-072-1259
28.2322
111667.30
0.1476
3.16103
39.44
00-004-0587;





00-004-0864
28.4788
67835.66
0.0984
3.13422
23.96
00-004-0587;





00-004-0864;





01-086-2270
29.2725
42437.64
0.1968
3.05102
14.99
01-086-2340
30.2187
6216.70
0.0984
2.95761
2.20

31.0381
21134.77
0.1968
2.88137
7.47
00-022-1235;





01-086-2340
31.6051
283112.50
0.1476
2.83097
100.00
01-077-2064
32.6492
8062.57
0.1968
2.74278
2.85

33.1070
10050.00
0.1968
2.70589
3.55
01-075-1620
35.0367
8705.04
0.1968
2.56116
3.07
01-075-1862
208

-------
35.8747
7479.72
0.1968
2.50323
2.64
01-075-1620;





01-086-2340;





01-072-1259
36.3369
18300.16
0.1476
2.47244
6.46
01-086-2270
36.7749
18617.87
0.1968
2.44399
6.58
01-074-1132;





00-043-1022;





01-085-0930
37.3415
6668.40
0.0984
2.40820
2.36
01-080-2171;





01-080-2172;





01-080-1385
37.6917
5401.80
0.1476
2.38663
1.91
01-075-1862;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
38.3915
8631.16
0.1476
2.34472
3.05
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
38.8380
12080.03
0.2460
2.31879
4.27
01-086-2270
39.2948
13372.61
0.2460
2.29288
4.72
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2340;





01-085-0930;





01-080-1385
40.4157
74168.35
0.1476
2.23184
26.20
00-004-0587;





01-085-0930
40.7394
47668.66
0.1476
2.21485
16.84
00-004-0587;





01-086-2270;





01-072-1259
42.1227
4565.58
0.1968
2.14526
1.61

42.4679
6671.25
0.0984
2.12862
2.36
01-085-0930
42.8159
11819.17
0.1968
2.11212
4.17
00-043-1022
43.2934
11769.64
0.1968
2.08993
4.16
01-075-1862;





01-086-2270;





01-086-2340
43.7490
3588.16
0.1476
2.06921
1.27

44.6707
10960.31
0.1968
2.02864
3.87
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3523
172125.70
0.1968
1.99972
60.80
01-077-2064;





01-086-2270
46.9418
13039.88
0.2460
1.93565
4.61
00-004-0864;





01-086-2270;
209

-------





01-086-2340;





01-072-1259
47.3562
11671.89
0.1968
1.91967
4.12
01-086-2270;





01-086-2340
48.3768
9756.60
0.3444
1.88153
3.45
01-086-2340;





01-072-1259
48.9862
2552.54
0.1476
1.85955
0.90
01-074-1132;





00-022-1235;





01-086-2270
50.0817
23502.52
0.1968
1.82141
8.30
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-085-0930;





01-080-1385
50.4886
14735.19
0.1476
1.80768
5.20
01-072-1259;





01-085-0930
51.3827
2474.93
0.1968
1.77831
0.87

52.4064
5921.91
0.1968
1.74596
2.09
01-075-1862;





01-086-2270
53.0215
2225.79
0.1968
1.72714
0.79

53.7451
9860.75
0.1968
1.70558
3.48
01-077-2064
55.2705
6486.11
0.2460
1.66207
2.29
00-022-1235;





01-085-0930
55.6111
6507.88
0.1968
1.65269
2.30
01-074-1132;





00-004-0864;





01-086-2270
56.3392
58093.27
0.2460
1.63305
20.52
01-077-2064;





01-072-1259
57.3580
9356.30
0.2460
1.60645
3.30
01-075-1862;





01-086-2340;





01-085-0930
58.5168
10509.25
0.1968
1.57737
3.71
00-004-0587
59.2169
12463.29
0.2952
1.56038
4.40
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270
60.4769
3850.18
0.2460
1.53085
1.36
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
61.1737
2098.78
0.2952
1.51508
0.74
01-075-1862;





01-086-2270;
210

-------





01-086-2340;





01-072-1259
62.1814
4133.83
0.3444
1.49292
1.46
01-086-2270;





00-043-1022
62.9477
1257.58
0.1476
1.47658
0.44
01-086-2340;





01-072-1259
63.4686
1031.46
0.1476
1.46571
0.36

64.4797
2371.38
0.1968
1.44515
0.84
01-072-1259
65.1053
10118.51
0.2460
1.43277
3.57
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340
65.5161
8669.62
0.1476
1.42478
3.06
01-086-2270
66.0726
27988.13
0.1800
1.41295
9.89
01-077-2064;





01-075-1620;





01-072-1259;





01-085-0930
66.3047
37007.33
0.1476
1.40973
13.07
01-075-1862;





00-004-0587;





01-077-2064;





01-080-2171;





01-072-1259;





01-080-1385
66.8645
15338.79
0.1476
1.39929
5.42
01-086-2270
68.0646
4663.64
0.1968
1.37751
1.65
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0930
68.6032
1979.23
0.1968
1.36800
0.70
01-074-1132;





00-004-0864;





01-086-2270;





01-072-1259
69.9854
1032.24
0.2952
1.34433
0.36
01-074-1132;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-080-1385
71.5239
1248.57
0.3444
1.31915
0.44
01-075-1620;





01-086-2270;





01-072-1259
72.9325
4169.01
0.1476
1.29711
1.47
01-077-2064;





01-086-2270;





01-086-2340;





01-072-1259
73.5723
14909.27
0.1200
1.28634
5.27
00-004-0587;





00-022-1235:
211

-------





01-086-2340;





01-085-0930
73.8279
7924.32
0.1200
1.28570
2.80

74.2668
10197.66
0.2400
1.27602
3.60
01-075-1862;
01-074-1132;
01-086-2270
75.1454
53528.08
0.1800
1.26327
18.91
01-077-2064
75.4149
26756.20
0.1200
1.26255
9.45

76.7452
2118.74
0.1800
1.24087
0.75
01-075-1862;
01-086-2340;
01-072-1259
77.3574
2461.28
0.3600
1.23257
0.87
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
78.1671
1991.49
0.1800
1.22182
0.70
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
78.4855
1832.93
0.1800
1.21766
0.65
01-074-1132;
01-085-1327;
01-086-2270;
01-086-2340;
01-072-1259;
00-043-1022
79.6480
971.89
0.1800
1.20278
0.34
01-072-1259;
01-085-0930
80.7059
579.01
0.4800
1.18966
0.20
01-075-1862
81.2829
814.43
0.1800
1.18267
0.29
01-075-1620;
01-086-2340;
01-085-0930
82.3572
1636.49
0.1800
1.16994
0.58
01-085-1327;
00-022-1235;
01-072-1259
82.6566
1705.21
0.1800
1.16646
0.60
01-074-1132;
01-085-1327;
01-086-2270;
01-072-1259
83.0619
2565.63
0.1800
1.16180
0.91
01-075-1862;
01-086-2270
83.8501
39640.70
0.1800
1.15287
14.00
01-077-2064;
01-086-2340;
01-072-1259;
01-085-0930
84.1394
20025.09
0.1800
1.15250
7.07

87.5391
4421.58
0.1800
1.11354
1.56
00-004-0587;
01-080-2171:
212

-------





01-080-2172;





01-080-2173;





00-004-0864;





01-072-1259;





01-085-0930;





01-080-1385
87.8302
2542.31
0.1200
1.11335
0.90

88.4154
2681.89
0.1800
1.10475
0.95
01-086-2270;
01-072-1259
90.2782
3456.73
0.1200
1.08673
1.22
00-022-1235
90.5804
2282.01
0.1200
1.08658
0.81

91.1184
1206.89
0.1800
1.07889
0.43

93.0764
458.88
0.1200
1.06126
0.16

93.6392
1584.49
0.1800
1.05636
0.56
00-022-1235
94.4146
9957.90
0.1800
1.04972
3.52
00-004-0587;
00-004-0864
94.7408
6832.91
0.1800
1.04956
2.41

95.4250
6394.25
0.2400
1.04126
2.26

97.6071
269.00
0.1200
1.02371
0.10

99.1485
923.41
0.9600
1.01189
0.33

99.9724
639.25
0.1200
1.00576
0.23

101.0349
12661.32
0.1800
0.99803
4.47

101.3865
11722.43
0.1800
0.99552
4.14
00-004-0587
101.7410
3087.86
0.1800
0.99548
1.09

102.4835
2959.29
0.2400
0.98782
1.05

103.3492
314.23
0.2400
0.98190
0.11

103.8317
282.84
0.1200
0.98108
0.10

104.3360
253.01
0.3600
0.97529
0.09

105.6951
1432.48
0.2400
0.96646
0.51
00-004-0864;
00-043-1022
106.0141
1124.89
0.1800
0.96683
0.40

107.6520
4437.36
0.1800
0.95425
1.57

108.0658
2830.76
0.1800
0.95411
1.00

108.4912
5058.80
0.1800
0.94919
1.79
00-004-0587
108.8938
2839.78
0.1800
0.94916
1.00

213

-------
Facility D
4.1: 2533-D-BHD
4.1.1: Measurement Conditions of2533-D
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2533-D-Slow
M:\XRD-BHD\2533-D-Slow.rd
2533-D-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/28/2013 8:26:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
214

-------
4.1.2: Main Graphics, Analyze View of2533-D
2533-D-Slow
150000 -
100000 -
50000
Position [°2Theta] (Copper (Cu))
Sodium Chloride 13 %
Fluorite, syn 12 %
Aluminum Oxide Nitride 11 % |
Quartz low 8 %
Sylvite, syn 22 %
Magnesium Aluminum Oxide 2 %
! Aluminum 2 %~|
fivl Calcite 2 % If ate 3 % |
A'umi Aluminum Oxide Nitride 3 %
Anhydrite 3~%~| pPrii-iJ Aluminum Oxide Nitride 4 % |
215

-------
4.1.3: Pattern List of2533-D
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]

Lines
Unmatched
Lines
00-004-
45
Sylvite, syn
K CI

22
10
0
0587







01-077-
50
Sodium
Na CI

13
9
0
2064

Chloride





01-074-
20
Magnesium
Mg A12 04

2
11
0
1132

Aluminum
Oxide





01-080-
10
Aluminum
A12.85

11
9
0
2171

Oxide
Nitride
03.45
NO.55




01-080-
9
Aluminum
A12.81

4
7
0
2172

Oxide
Nitride
03.56
NO.44




01-080-
11
Aluminum
A12.78

3
7
0
2173

Oxide
Nitride
03.65
NO.35




01-085-
40
Aluminum
A1

2
5
0
1327







00-004-
21
Fluorite, syn
Ca F2

12
5
0
0864







01-086-
24
Anhydrite
Ca ( S 04 )

8
31
0
2270







01-086-
24
Calcite
Ca (C 03)

2
17
0
2340







01-072-
11
Magnesium
Mg S 04

3
29
1
1259

Sulfate





00-043-
42
Periclase,
Mg O

5
8
0
1022

syn





01-080-
10
Aluminum
A12.667 04

5
10
0
1385

Oxide





01-085-
5
Quartz low
Si 02

8
14
0
0335







4.1.4: Peak List of2533-D
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A]
Rel.
Int. [%]
Matched by


[°2Th.]




5.2553

46.67
0.3936
16.81623

0.02

6.1734

405.98
0.0984
14.31707

0.20

6.8829

409.46
0.2952
12.84282

0.21

7.7215

986.68
0.3444
11.44983

0.50

216

-------
9.2252
600.34
0.1476
9.58661
0.30

9.7222
438.96
0.2460
9.09760
0.22

10.1123
456.92
0.1476
8.74754
0.23

10.6171
1251.82
0.2952
8.33269
0.63

11.2307
1141.08
0.1968
7.87882
0.57

11.5952
399.02
0.1476
7.63194
0.20

13.2364
238.60
0.3936
6.68909
0.12

14.6328
472.86
0.1476
6.05377
0.24

15.3674
453.57
0.2952
5.76599
0.23

16.2257
951.34
0.1476
5.46286
0.48

16.7124
1908.55
0.1968
5.30487
0.96

17.9821
4417.96
0.0984
4.93305
2.23

18.4994
5475.12
0.2952
4.79624
2.76

20.7067
1130.54
0.1968
4.28970
0.57
01-085-0335
21.4717
1102.50
0.1968
4.13856
0.56

21.9859
661.40
0.1968
4.04291
0.33

23.0122
1370.33
0.1476
3.86488
0.69
01-086-2270;





01-086-2340
23.4234
1753.22
0.1476
3.79796
0.88

24.6108
4345.70
0.1476
3.61735
2.19
01-072-1259
25.4719
39988.10
0.1968
3.49698
20.15
01-086-2270
26.5506
3181.01
0.1968
3.35730
1.60
01-072-1259;





01-085-0335
27.3139
20373.40
0.1476
3.26518
10.27
01-077-2064;





01-072-1259
28.2744
198461.30
0.1968
3.15641
100.00
00-004-0587;





00-004-0864
29.3107
13305.94
0.1968
3.04713
6.70
01-086-2340
30.2608
2720.09
0.1476
2.95359
1.37

30.6150
2571.87
0.1968
2.92022
1.30

31.6309
171994.20
0.1968
2.82871
86.66
01-077-2064;





01-080-2171;





01-080-2172;





01-080-1385
32.4081
3855.82
0.1968
2.76263
1.94

32.7529
3328.90
0.1476
2.73433
1.68

34.0280
10321.73
0.1968
2.63473
5.20

34.5463
4551.62
0.1476
2.59638
2.29
01-072-1259
35.3500
2393.18
0.1476
2.53918
1.21

36.3735
29786.71
0.1968
2.47004
15.01
01-086-2270;





01-085-0335
36.8504
8391.63
0.1476
2.43916
4.23
01-074-1132;





00-043-1022
37.8387
16967.80
0.3444
2.37769
8.55

38.4610
19299.45
0.1968
2.34064
9.72
01-074-1132;
01-085-1327;
217

-------
39.3887
2905.68
0.1968
2.28763
1.46
40.4559
41.2089
42.1401
42.8440
43.3438
44.1116
44.6649
45.3758
47.0287
47.4140
47.8369
48.3076
48.5921
49.5701
50.1031
50.5318
51.4261
52.4302
53.1328
53.7547
54.2524
55.6299
119871.50
2142.11
1728.92
41016.01
3469.49
2131.66
8121.95
107409.90
8441.78
4787.40
2571.09
3066.12
2373.27
3865.20
38376.31
11528.68
617.78
5311.34
630.86
4054.88
4348.58
6736.23
0.1476
0.1476
0.1968
0.1968
0.1476
0.1968
0.1476
0.1968
0.3444
0.1476
0.1476
0.1968
0.1476
0.2952
0.1968
0.1476
0.1476
0.1968
0.1476
0.1968
0.2460
0.1968
2.22972
2.19070
2.14442
2.11080
2.08761
2.05304
2.02889
1.99874
1.93228
1.91747
1.90150
1.88407
1.87370
1.83900
1.82068
1.80624
1.77691
1.74522
1.72379
1.70530
1.69083
1.65218
60.40
1.08
0.87
20.67
1.75
1.07
4.09
54.12
4.25
2.41
1.30
1.54
1.20
1.95
19.34
5.81
0.31
2.68
0.32
2.04
2.19
3.39
01-086-2270;
01-072-1259
01-080-2171
01-080-2172
01-080-2173
01-086-2340
01-080-1385.
01-085-0335
00-004-0587;
01-085-0335
01-086-2270
00-043-1022
01-086-2270;
01-086-2340
01-072-1259
01-074-1132;
01-085-1327;
01-072-1259
01-077-2064;
01-086-2270
00-004-0864;
01-086-2270;
01-086-2340;
01-072-1259
01-086-2270
01-072-1259
01-086-2340;
01-072-1259
01-086-2270
00-004-0587
01-080-2171
01-080-2172
01-080-2173
01-080-1385.
01-085-0335
01-072-1259;
01-085-0335
01-086-2270
01-077-2064
01-072-1259
01-074-1132;
00-004-0864;
01-086-2270
218

-------
56.3655
31744.22
0.2952
1.63235
16.00
01-077-2064;





01-072-1259
57.3945
1194.42
0.2460
1.60551
0.60
01-086-2340;





01-085-0335
58.1047
3502.26
0.1476
1.58757
1.76

58.5399
20106.47
0.2460
1.57680
10.13
00-004-0587
59.2147
11119.01
0.2460
1.56043
5.60
01-074-1132;





01-086-2270
60.5798
1594.30
0.2952
1.52850
0.80
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259;





01-080-1385
62.1955
22110.83
0.2460
1.49262
11.14
01-086-2270;





00-043-1022
63.1622
792.35
0.1968
1.47208
0.40
01-086-2340;





01-072-1259
64.0855
947.82
0.2952
1.45308
0.48
01-085-0335
65.0394
9195.90
0.1968
1.43406
4.63
01-074-1132;





01-085-1327;





01-086-2340
65.5433
7868.11
0.1476
1.42425
3.96
01-086-2270
66.2960
41979.89
0.2460
1.40990
21.15
00-004-0587;





01-077-2064;





01-080-2171;





01-072-1259;





01-080-1385
66.8872
8272.46
0.1476
1.39887
4.17
01-086-2270
68.0397
2578.70
0.1968
1.37795
1.30
01-072-1259;





01-085-0335
68.9388
2072.88
0.1968
1.36216
1.04
01-086-2270;





01-086-2340
69.7426
2375.56
0.1476
1.34842
1.20
01-074-1132;





01-080-2171;





01-086-2340;





01-080-1385
71.5830
2016.30
0.2460
1.31821
1.02
01-086-2270;





01-072-1259
72.0234
2271.23
0.2460
1.31123
1.14

72.9623
2675.94
0.1476
1.29666
1.35
01-077-2064;





01-086-2270;





01-072-1259
73.5984
22539.46
0.1476
1.28701
11.36
00-004-0587;
01-086-2340;
01-085-0335
219

-------
74.2864
75.1729
75.4354
77.4114
78.1687
78.5162
78.7985
79.6576
81.1699
82.3758
83.0824
83.8699
84.1636
84.8506
85.6296
86.2282
87.5667
87.8607
88.4186
88.7176
89.7806
5851.18
30404.13
15844.62
2053.77
4122.64
6714.24
3401.14
1051.65
1347.53
2015.77
3486.27
21085.67
11473.73
1001.42
774.15
822.14
7269.96
3903.37
1678.38
2144.44
495.31
0.1476
0.1200
0.1200
0.1800
0.1800
0.1800
0.1200
0.1800
1.2000
0.1800
0.2400
0.1800
0.1200
0.3600
0.2400
0.1800
0.1800
0.1200
0.1800
0.2400
0.1800
1.27679
1.26287
1.26226
1.23185
1.22180
1.21726
1.21662
1.20266
1.18403
1.16972
1.16156
1.15265
1.15223
1.14181
1.13341
1.12707
1.11326
1.11305
1.10472
1.10177
1.09146
2.95
15.32
7.98
1.03
2.08
3.38
1.71
0.53
0.68
1.02
1.76
10.62
5.78
0.50
0.39
0.41
3.66
1.97
0.85
1.08
0.25
01-074-1132;
01-086-2270
01-077-2064
01-074-1132;
01-086-2270;
01-072-1259
01-085-1327;
01-072-1259
01-074-1132;
01-086-2270;
01-086-2340;
01-072-1259;
00-043-1022
01-072-1259;
01-085-0335
01-086-2340;
01-085-0335
01-085-1327;
01-072-1259
01-086-2270
01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335
01-086-2340;
01-085-0335
01-074-1132;
01-086-2270
01-086-2340;
01-072-1259
00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-004-0864
01-072-1259
01-080-1385.
01-085-0335
01-086-2270;
01-072-1259
01-086-2270;
01-072-1259
01-086-2270
220

-------
90.3079
90.6164
92.1675
93.1050
93.9346
94.4457
94.7741
95.1942
95.4438
97.0510
97.4192
99.0314
100.0621
100.4685
101.0440
101.4012
101.7564
102.5015
103.8388
105.6484
107.6796
108.0487
108.5207
108.9237
109.6547
1855.81
1300.80
558.15
966.70
3971.48
14014.61
8032.31
3467.53
3941.55
1077.50
541.78
1368.95
1275.10
1457.00
6855.73
12095.98
4721.54
1955.20
367.98
2489.46
3878.62
3998.95
9276.29
5915.23
11335.89
0.1800
0.1200
0.2400
0.1800
0.1800
0.1800
0.1200
0.1800
0.2400
0.2400
0.1200
0.6000
0.1200
0.1800
0.1800
0.1800
0.1800
0.2400
0.4800
0.2400
0.1800
0.1800
0.2400
0.1800
0.1800
1.08645
1.08625
1.06933
1.06101
1.05381
1.04945
1.04928
1.04317
1.04110
1.02809
1.02773
1.01277
1.00510
1.00212
0.99797
0.99542
0.99537
0.98770
0.97860
0.96676
0.95408
0.95185
0.94902
0.94898
0.94235
0.94
0.66
0.28
0.49
2.00
7.06
4.05
1.75
1.99
0.54
0.27
0.69
0.64
0.73
3.45
6.09
2.38
0.99
0.19
1.25
1.95
2.01
4.67
2.98
5.71
00-043-1022
00-004-0587;
00-004-0864
00-004-0587
00-004-0864;
00-043-1022
00-004-0587
00-043-1022
221

-------
4.2: 2537-D-BHD
4.2:1: Measurement Conditions of2537-D
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2537-D-Slow
M:\XRD-BHD\2537-D-Slow.rd
2537-D-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
2/28/2013 8:08:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
222

-------
4.2.2: Main Graphics, Analyze View of2537-D
vwvvvvv vvv
VVV WW WW


u ,/ij iav/ u»n/
i., U JnA fUlju,.. A> >A. kA
50	60	70
Position [°2Theta] (Copper (Cu))

Fluorite, syn 9.3 %
Periclase, syn 8.2 %

Quartz low 8.2 %


Anhydrite 7.2 %


Aluminum 6.2 %



Aluminum Oxide 6.2 %

Aluminum Oxide Nitride 6.2 % |
Sodium Chloride 10.3 %
Sylvite, syn 11.3 %

Calcite 1 %
-irJ* 3 1 ^
/n 2.1 % |
LI|JUJ-UIILU, -j-
Aluminum Oxide Nitride 3.1 %
AlurLnunmAiuc t.i i	—
Aluminum Qxicle Nitride 4.1 % |
223

-------
4.2.3: Pattern List of2537-D
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
22
Aluminum
A12 03
4
16
0
1862

Oxide




00-004-
45
Sylvite, syn
K CI
11
10
0
0587






01-077-
47
Sodium
Na CI
10
9
0
2064

Chloride




01-074-
32
Magnesium
Mg A12 04
6
14
0
1132

Aluminum
Oxide




01-075-
38
Aluminum
A1N
3
10
0
1620

Nitride




01-080-
11
Aluminum
A12.85
6
10
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
11
Aluminum
A12.81
3
9
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
11
Aluminum
A12.78
4
10
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
42
Aluminum
A1
6
5
0
1327






00-004-
24
Fluorite, syn
Ca F2
9
6
0
0864






00-022-
21
Elpasolite,
K2 Na A1
2
13
0
1235

syn
F6



01-086-
21
Anhydrite
Ca ( S 04 )
7
36
0
2270






01-086-
14
Calcite
Ca (C 03)
1
19
0
2340






01-072-
14
Magnesium
Mg S 04
3
34
1
1259

Sulfate




00-043-
39
Periclase,
Mg O
8
8
0
1022

syn




01-080-
14
Aluminum
A12.667 04
6
10
0
1385

Oxide




01-085-
10
Quartz low
Si 02
8
18
0
0335






224

-------
4.2.4: Peak List of253 7-D
[°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.5231
170.92
0.1968
16.00125
0.11

6.0383
504.21
0.3936
14.63725
0.32

7.7984
1054.93
0.3936
11.33701
0.66

9.4397
441.36
0.1968
9.36923
0.28

10.1709
431.66
0.2460
8.69722
0.27

10.6287
478.26
0.2460
8.32365
0.30

11.2442
1872.10
0.2460
7.86937
1.17

12.1774
114.49
0.0984
7.26830
0.07

13.0209
283.57
0.1476
6.79931
0.18

13.9419
202.69
0.1476
6.35216
0.13

14.7068
296.50
0.1476
6.02346
0.19

16.2490
2401.68
0.1476
5.45508
1.50

17.1490
1144.49
0.1476
5.17076
0.72

18.0182
12208.02
0.1968
4.92324
7.64

18.9828
4477.58
0.1476
4.67519
2.80
01-074-1132;





00-022-1235;





01-086-2270
19.9691
731.10
0.1476
4.44646
0.46

20.4251
874.09
0.1968
4.34819
0.55
01-072-1259
20.7791
782.73
0.1476
4.27491
0.49
01-085-0335
21.4543
706.91
0.2952
4.14188
0.44

22.0685
755.09
0.1476
4.02797
0.47
00-022-1235
22.7214
1463.49
0.1476
3.91369
0.92
01-072-1259
23.0261
1608.69
0.1476
3.86258
1.01
01-086-2270;





01-086-2340
23.4602
2132.24
0.1476
3.79209
1.33

23.9419
1322.03
0.1476
3.71687
0.83

24.6449
3738.54
0.1476
3.61241
2.34
01-072-1259
25.5167
35806.16
0.1476
3.49093
22.42
01-075-1862;





01-086-2270
26.1834
1631.67
0.1476
3.40354
1.02

26.5967
4384.22
0.1476
3.35158
2.74
01-072-1259;





01-085-0335
27.3482
15755.31
0.1476
3.26117
9.86
01-077-2064;





01-072-1259
28.3138
159741.60
0.1476
3.15211
100.00
00-004-0587;





00-004-0864
29.3705
5228.22
0.1968
3.04106
3.27
01-086-2340
29.8628
2006.79
0.1476
2.99205
1.26

30.2879
2712.49
0.1476
2.95101
1.70

30.6750
6078.08
0.1968
2.91465
3.80

225

-------
31.2004
7609.69
0.1476
2.86676
4.76
01-074-1132;





00-022-1235;





01-086-2270;





01-086-2340
31.6734
154105.00
0.1968
2.82502
96.47
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
32.4148
2285.43
0.1476
2.76208
1.43

33.1834
12441.87
0.1968
2.69984
7.79
01-075-1620
34.0738
26331.08
0.1968
2.63129
16.48

34.6051
19841.63
0.1476
2.59210
12.42
01-072-1259
35.0935
3346.62
0.1476
2.55714
2.10
01-075-1862
35.9976
5801.83
0.1476
2.49497
3.63
01-075-1620;





01-086-2340
36.4108
24315.48
0.1476
2.46760
15.22
01-086-2270;





01-085-0335
36.8639
25296.57
0.1968
2.43830
15.84
01-074-1132;





00-043-1022
37.8885
10990.28
0.1968
2.37468
6.88
01-075-1862;





01-075-1620
38.4805
78775.34
0.1968
2.33951
49.31
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
39.4080
1686.07
0.1968
2.28656
1.06
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2340;





01-080-1385;





01-085-0335
40.4952
95576.18
0.1476
2.22764
59.83
00-004-0587;





01-085-0335
40.8271
23794.95
0.0984
2.21030
14.90
01-086-2270;





01-072-1259
41.2743
1871.92
0.1476
2.18737
1.17
01-086-2270
42.2771
4268.77
0.1968
2.13779
2.67
01-085-0335
42.8907
72973.71
0.1968
2.10861
45.68
00-043-1022
43.3542
5929.86
0.1476
2.08714
3.71
01-075-1862;





01-086-2270;





01-086-2340
44.7171
32346.57
0.1968
2.02664
20.25
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
226

-------
45.4256
47.0916
47.8971
48.6532
49.7204
50.1561
50.5761
50.8191
51.4479
52.4797
53.1224
53.8241
54.3036
55.6778
56.4116
57.4337
58.1404
58.5878
59.2897
60.7795
62.2435
63.5769
64.2251
87816.51
15308.49
2076.12
1818.32
4956.35
28729.17
11522.16
10567.53
1951.21
6305.18
4111.54
4904.42
6576.42
13017.59
27307.57
5137.45
7018.56
15124.34
18853.31
1473.01
37973.80
1021.35
2807.52
0.1968
0.2460
0.1476
0.1476
0.1476
0.1968
0.1800
0.2460
0.1476
0.1476
0.1968
0.1968
0.2952
0.1968
0.2952
0.2460
0.1968
0.1968
0.2460
0.1968
0.2460
0.1476
0.1968
1.99667
1.92984
1.89925
1.87149
1.83379
1.81888
1.80326
1.79670
1.77621
1.74369
1.72410
1.70327
1.68936
1.65087
1.63113
1.60451
1.58668
1.57562
1.55864
1.52395
1.49158
1.46348
1.45026
54.97
9.58
1.30
1.14
3.10
17.98
7.21
6.62
1.22
3.95
2.57
3.07
4.12
8.15
17.09
3.22
4.39
9.47
11.80
0.92
23.77
0.64
1.76
01-077-2064;
01-080-2171;
01-086-2270
00-004-0864;
01-086-2340
01-072-1259
00-022-1235;
01-086-2270
01-075-1620
00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-080-1385.
01-085-0335
01-072-1259;
01-085-0335
01-085-0335
01-075-1862;
01-086-2270
01-077-2064
01-072-1259
01-074-1132;
00-004-0864;
01-086-2270
01-077-2064;
01-072-1259
01-075-1862;
01-086-2340;
01-085-0335
00-004-0587;
01-072-1259
01-074-1132;
01-075-1620;
01-086-2270
01-080-2173;
01-086-2270;
01-086-2340;
01-072-1259
01-086-2270;
00-043-1022
01-072-1259
01-085-0335
227

-------
65.0646
65.5768
66.3475
66.9354
68.1036
69.4836
69.8101
70.1679
71.3375
73.0211
74.3294
74.6300
75.2171
75.4791
23520.01
12229.49
37043.23
7858.86
3139.50
6349.18
3202.40
627.69
2789.71
71.6290	2847.34
2967.86
73.6317 16235.18
5365.32
6164.79
25799.90
13029.79
0.2460
0.0984
0.2952
0.1476
0.3444
0.1800
0.1200
0.1200
0.2400
0.2400
0.1800
0.1800
0.1200
0.1200
0.1200
0.1200
1.43357
1.42361
1.40893
1.39797
1.37682
1.35169
1.34951
1.34017
1.32104
1.31638
1.29468
1.28545
1.27510
1.27387
1.26224
1.26163
14.72
7.66
23.19
4.92
1.97
3.97
2.00
0.39
1.75
1.78
1.86
10.16
3.36
3.86
16.15
8.16
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340
01-086-2270
01-075-1862
00-004-0587
01-077-2064
01-080-2171
01-080-2172
01-072-1259
01-080-1385
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
00-022-1235
01-075-1862
01-080-2171
01-080-2172
01-080-2173
01-086-2270
01-080-1385
01-075-1620
01-080-2172
01-080-2173
01-086-2270
01-072-1259.
01-080-1385
01-075-1620;
01-086-2270;
01-072-1259
01-077-2064;
01-086-2270;
01-072-1259
00-004-0587;
00-022-1235;
01-086-2340;
01-085-0335
01-075-1862;
01-074-1132;
01-086-2270
01-077-2064
228

-------
76.7870
77.3798
78.2012
78.5241
78.8416
79.7238
80.0728
80.6140
81.0530
82.4188
82.7061
83.1148
83.9164
84.2018
84.6717
85.8435
1062.21
2814.94
23071.08
14478.17
5679.80
547.85
267.27
223.16
804.38
5438.88
5245.87
3111.27
17585.51
9688.78
2389.97
1167.77
0.1800
0.3000
0.1800
0.1200
0.1200
0.1200
0.1800
0.1200
0.3000
0.1800
0.1200
0.1200
0.1800
0.1200
0.1200
0.2400
1.24030
1.23227
1.22137
1.22018
1.21305
1.20183
1.20044
1.19079
1.18544
1.16922
1.16879
1.16119
1.15213
1.15180
1.14377
1.13113
0.66
1.76
14.44
9.06
3.56
0.34
0.17
0.14
0.50
3.40
3.28
1.95
11.01
6.07
1.50
0.73
01-075-1862;
01-086-2340;
01-072-1259
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-080-2171
01-080-2172
01-080-2173
01-086-2270
00-043-1022.
01-080-1385
01-086-2270;
01-072-1259;
01-085-0335
01-075-1862;
01-086-2340
01-075-1620;
01-086-2340;
01-085-0335
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-075-1862;
01-086-2270
01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335
01-080-2172;
01-080-2173;
01-086-2270;
01-086-2340
01-074-1132;
01-075-1620;
01-086-2270;
01-086-2340;
01-072-1259
229

-------
86.2151	1317.87	0.1800	1.12721	0.82 01-075-1862;
01-086-2340;
01-072-1259
86.9245	1359.68	0.1800	1.11982	0.85 01-085-0335
87.6039	5090.29	0.1800	1.11288	3.19 00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-004-0864
01-072-1259
01-080-1385
01-085-0335
87.8914	2791.40	0.1800	1.11274	1.75
88.4834	1462.67	0.1200	1.10408	0.92 01-086-2270;
01-072-1259
88.7714	1059.09	0.1200	1.10397	0.66
89.4372	244.36	0.2400	1.09476	0.15 01-072-1259
90.3602	1684.85	0.1800	1.08596	1.05 00-022-1235
90.7132	1036.75	0.1800	1.08534	0.65
91.0996	1355.64	0.1800	1.07906	0.85
93.1023	1911.05	0.3000	1.06103	1.20
93.9883	7674.20	0.1800	1.05335	4.80 00-004-0864;
00-043-1022
94.4726 11838.17	0.1800	1.04922	7.41 00-004-0587;
00-004-0864
94.7938	7249.64	0.1800	1.04912	4.54
95.2375	5181.33	0.1800	1.04281	3.24
95.5112	3924.06	0.1800	1.04055	2.46
95.9496	1709.35	0.1800	1.03953	1.07
96.2991	1372.83	0.2400	1.03411	0.86
97.0612	1784.72	0.3000	1.02801	1.12
97.8218	196.83	0.1800	1.02204	0.12
99.0840	3549.45	0.2400	1.01238	2.22
99.4243	2773.80	0.1800	1.01233	1.74
100.4702	2339.87	0.2400	1.00211	1.46
101.0834	6505.05	0.1800	0.99768	4.07
101.4342	9029.13	0.1800	0.99518	5.65 00-004-0587
101.7966	3265.84	0.1800	0.99508	2.04
102.5373	1353.10	0.2400	0.98745	0.85
103.7052	177.58	0.2400	0.97950	0.11
104.2198	235.66	0.1800	0.97606	0.15
105.6843	2681.63	0.1800	0.96653	1.68 00-004-0864;
00-043-1022
106.0684	1767.98	0.1200	0.96648	1.11
106.6250	629.07	0.1200	0.96058	0.39
108.0785	3490.06	0.1800	0.95167	2.18
230

-------
108.5476	4868.19	0.1800	0.94886	3.05 00-004-0587
108.9551	2041.79	0.1800	0.94880	1.28
109.7247 15173.58	0.1800	0.94195	9.50 00-043-1022
Facility E
5.1: 2436-E-BHD
5.1.1: Measurement Conditions
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2436-E-Slow
E:\2436-E-Slow.rd
2436-E-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/1/2013 7:50:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
231

-------
5.1.2: Main Graphics, Analyze View of2436-E
Counts		


V U
ll,. f, f\
... A
50	60	70
Position [°2Theta] (Copper (Cu))


Quartz low 12.9 %
Aluminum Oxide Nitride 10.9 %
-
Sodium Choride 18.8 %
Sylvite. syn 9.9 %
ti oxide 2 %
Periclase. syn 1 %
A uminum Nitride 2 %
A uminum Oxide 8.9 %
Calcite 5 %
Anhydrite 6.9 %
Alumir Aluminum Oxide 5 % | |
232

-------
5.1.3: Pattern List of2436-E
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
20
Aluminum
A12 03
5
11
0
1862

Oxide




00-004-
48
Sylvite, syn
K CI
10
10
0
0587






01-077-
52
Sodium
Na CI
19
9
0
2064

Chloride




01-074-
28
Magnesium
Mg A12 04
2
9
0
1132

Aluminum
Oxide




01-075-
14
Aluminum
A1N
2
5
1
1620

Nitride




01-080-
9
Aluminum
A12.85
11
11
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
10
Aluminum
A12.81
6
11
0
2172

Oxide
Nitride
03.56
NO.44



00-004-
28
Fluorite, syn
Ca F2
6
6
0
0864






00-022-
14
Elpasolite,
K2 Na A1
2
11
0
1235

syn
F6



01-086-
25
Anhydrite
Ca ( S 04 )
7
32
0
2270






01-086-
27
Calcite
Ca (C 03)
5
17
0
2340






01-072-
13
Magnesium
Mg S 04
3
30
1
1259

Sulfate




00-043-
24
Periclase,
Mg O
1
4
0
1022

syn




01-085-
10
Quartz low
Si 02
13
17
0
0335






01-080-
13
Aluminum
A12.667 04
9
11
0
1385

Oxide




233

-------
5.1.4: Peak List of2437-E-SC
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
6.0562
487.90
0.3936
14.59387
0.25

7.7245
1234.26
0.2460
11.44534
0.63

8.7147
808.07
0.1476
10.14697
0.42

9.1958
1046.17
0.1968
9.61718
0.54

10.1172
1896.29
0.1476
8.74329
0.97

10.6171
1530.15
0.1476
8.33271
0.79

11.2232
7817.37
0.2460
7.88406
4.02

12.4747
165.62
0.2952
7.09578
0.09

13.3032
157.23
0.3936
6.65568
0.08

15.4836
630.60
0.2460
5.72297
0.32

16.1936
951.04
0.2952
5.47363
0.49

16.6953
323.92
0.1968
5.31024
0.17

17.9637
5189.83
0.1968
4.93806
2.67

18.9645
1794.78
0.1476
4.67966
0.92
01-074-1132;





00-022-1235;





01-086-2270
20.7227
1775.12
0.1476
4.28643
0.91
01-085-0335
21.3812
1228.29
0.1476
4.15587
0.63

22.6344
3412.98
0.1476
3.92853
1.75
01-072-1259
22.9859
5128.09
0.1476
3.86924
2.63
01-086-2270;





01-086-2340
23.4117
3344.01
0.1968
3.79983
1.72

23.9330
710.21
0.0984
3.71822
0.36

24.5839
3400.42
0.1476
3.62123
1.75
01-072-1259
25.4729
20613.51
0.1968
3.49684
10.59
01-075-1862;





01-086-2270
26.4240
9621.92
0.1968
3.37309
4.94
01-072-1259
27.2977
19828.46
0.1476
3.26709
10.19
01-077-2064;





01-072-1259
28.2673
102750.50
0.1476
3.15719
52.78
00-004-0587;





00-004-0864
28.5210
42303.09
0.0984
3.12968
21.73
00-004-0587;





01-086-2270
29.3165
48555.62
0.1968
3.04655
24.94
01-086-2340
30.2450
4005.71
0.1476
2.95510
2.06

30.6234
6097.42
0.1476
2.91944
3.13

31.0597
12095.69
0.1476
2.87942
6.21
00-022-1235;





01-086-2340
31.6316
194666.80
0.1968
2.82865
100.00
01-077-2064;





01-080-2171;





01-080-1385
32.3167
4757.73
0.1476
2.77024
2.44

234

-------
32.7048
4805.78
0.1968
2.73824
2.47

33.1345
4271.77
0.1476
2.70371
2.19
01-075-1620
34.0087
13395.82
0.2460
2.63619
6.88

35.0493
4224.95
0.1476
2.56026
2.17
01-075-1862
35.3601
4155.20
0.1476
2.53847
2.13

35.8739
6271.29
0.1968
2.50328
3.22
01-075-1620;





01-086-2340;





01-072-1259
36.3677
16127.60
0.1476
2.47042
8.28
01-086-2270;





01-085-0335
36.8119
7858.87
0.1968
2.44163
4.04
01-074-1132;





00-043-1022
37.3563
2952.42
0.1476
2.40729
1.52
01-080-2171;





01-080-2172;





01-080-1385
38.0939
3761.55
0.1476
2.36235
1.93
01-075-1620
38.7287
6717.52
0.2952
2.32508
3.45
01-074-1132;





01-086-2270
39.3276
10141.07
0.2460
2.29105
5.21
01-080-2171;





01-080-2172;





01-086-2340;





01-085-0335;





01-080-1385
40.4496
65008.17
0.1968
2.23005
33.39
00-004-0587;





01-085-0335
40.7746
29314.22
0.0984
2.21302
15.06
01-086-2270;





01-072-1259
42.1787
3989.99
0.2460
2.14254
2.05

42.8509
8144.42
0.1968
2.11048
4.18
00-043-1022
43.3266
6906.91
0.2952
2.08840
3.55
01-075-1862;





01-086-2270;





01-086-2340
44.6881
5276.96
0.1476
2.02789
2.71
01-074-1132;





00-022-1235;





01-072-1259
45.3760
121970.80
0.1968
1.99873
62.66
01-077-2064;





01-080-2171;





01-086-2270
46.9859
16953.80
0.2460
1.93394
8.71
00-004-0864;





01-086-2270;





01-086-2340;





01-072-1259
47.4224
12192.36
0.1968
1.91715
6.26
01-086-2270
48.4220
10159.81
0.3444
1.87988
5.22
01-086-2340
49.4955
3679.57
0.1968
1.84160
1.89

50.1001
20370.29
0.1968
1.82078
10.46
00-004-0587;





01-080-2171;
235

-------





01-080-2172;





00-022-1235;





01-085-0335;





01-080-1385
50.5174
10553.02
0.1800
1.80522
5.42
01-072-1259;





01-085-0335
50.7788
4751.95
0.1200
1.80100
2.44

51.3882
1412.95
0.3000
1.77666
0.73

52.4330
4100.52
0.2400
1.74369
2.11
01-075-1862;





01-086-2270
53.0986
1579.31
0.1800
1.72339
0.81

53.7596
6021.40
0.2400
1.70375
3.09
01-077-2064
54.2367
3451.53
0.2400
1.68988
1.77
01-072-1259
55.3071
4054.51
0.1800
1.65968
2.08
00-022-1235;





01-085-0335
55.6637
4113.62
0.3000
1.64989
2.11
01-074-1132;





00-004-0864;





01-086-2270
56.3613
39287.37
0.3600
1.63111
20.18
01-077-2064;





01-072-1259
57.3730
6313.84
0.3600
1.60473
3.24
01-075-1862;





01-086-2340;





01-085-0335
58.5385
8538.68
0.2400
1.57553
4.39
00-004-0587
59.2163
7789.06
0.3600
1.55910
4.00
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270
60.5074
3554.34
0.3000
1.52889
1.83
01-080-2171;





01-080-2172;





01-086-2270;





01-086-2340;





01-072-1259;





01-080-1385
61.3735
872.12
0.1800
1.50937
0.45
01-075-1862;





01-072-1259
62.1888
3307.15
0.1800
1.49153
1.70
01-086-2270;





00-043-1022
64.0927
1558.81
0.1800
1.45174
0.80
01-085-0335
64.5472
2926.51
0.1800
1.44261
1.50
01-072-1259
65.0824
4291.47
0.2400
1.43203
2.20
01-074-1132;





00-022-1235;





01-086-2340
65.5321
6268.30
0.1800
1.42329
3.22
01-086-2270
66.0900
17594.25
0.1800
1.41262
9.04
01-077-2064;





01-075-1620;





01-072-1259
236

-------
66.3006
30502.23
0.1800
1.40864
15.67
01-075-1862;





00-004-0587;





01-077-2064;





01-080-2171;





01-072-1259;





01-080-1385
66.8883
9466.40
0.1800
1.39769
4.86
01-086-2270
68.0801
2409.63
0.1800
1.37609
1.24
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
70.0749
1052.10
0.3000
1.34172
0.54
01-080-2171;





01-080-2172;





01-086-2270;





01-086-2340;





01-080-1385
71.5866
1805.89
0.3600
1.31706
0.93
01-075-1620;





01-086-2270;





01-072-1259
72.9524
3199.68
0.1800
1.29573
1.64
01-077-2064;





01-086-2270;





01-086-2340;





01-072-1259
73.5967
13018.93
0.1800
1.28597
6.69
00-004-0587;





00-022-1235;





01-086-2340;





01-085-0335
74.2958
6689.38
0.1800
1.27559
3.44
01-075-1862;





01-074-1132;





01-086-2270
75.1692
37378.08
0.1800
1.26293
19.20
01-077-2064
75.4348
18861.85
0.1200
1.26227
9.69

76.0806
2035.51
0.3000
1.25005
1.05
00-004-0864
77.3896
2174.03
0.1800
1.23214
1.12
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.5209
1254.56
0.4800
1.21720
0.64
01-074-1132;





01-086-2270;





01-086-2340;





01-072-1259;





00-043-1022
79.7016
1239.49
0.2400
1.20211
0.64
01-086-2270;





01-072-1259;





01-085-0335
81.7324
1964.75
0.1800
1.17730
1.01
01-086-2270;





01-085-0335
237

-------
83.0622
2885.03
0.2400
1.16179
1.48
01-075-1862;





01-086-2270
83.8702
26430.88
0.1800
1.15264
13.58
01-077-2064;





01-086-2340;





01-072-1259;





01-085-0335
84.1610
13827.17
0.1200
1.15226
7.10

84.6352
2538.22
0.2400
1.14417
1.30
01-080-2172;





01-086-2270;





01-086-2340;





01-072-1259;





01-080-1385
85.3712
1158.24
0.1800
1.13618
0.59
00-022-1235;





01-072-1259
86.0791
941.45
0.2400
1.12864
0.48
01-075-1862;





01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259
86.5658
1365.17
0.3000
1.12354
0.70
01-075-1862;





01-072-1259
87.5598
4701.84
0.1800
1.11333
2.42
00-004-0587;





01-080-2171;





01-080-2172;





00-004-0864;





01-072-1259;





01-085-0335;





01-080-1385
87.8644
2391.89
0.1200
1.11301
1.23

88.4236
1857.10
0.1800
1.10467
0.95
01-086-2270;





01-072-1259
88.7253
1089.29
0.1800
1.10443
0.56

90.2921
2346.74
0.1800
1.08660
1.21
00-022-1235
90.6028
1773.15
0.1800
1.08368
0.91
00-022-1235
92.0042
297.14
0.1800
1.07080
0.15

93.0094
1416.29
0.3000
1.06185
0.73

94.4322
8598.10
0.1800
1.04957
4.42
00-004-0587;





00-004-0864
94.7698
6243.24
0.1200
1.04932
3.21

95.4467
4018.00
0.1800
1.04108
2.06

96.1791
1133.56
0.3000
1.03508
0.58

97.3340
216.79
0.2400
1.02586
0.11

98.9305
1519.11
0.3000
1.01354
0.78
00-022-1235
99.9738
627.93
0.1800
1.00575
0.32

101.0527
8320.76
0.1800
0.99790
4.27

101.4019
8602.88
0.1800
0.99541
4.42
00-004-0587
101.7612
2551.95
0.1800
0.99533
1.31

238

-------
102.5183
2028.59
0.1800
0.98758
1.04

103.1351
588.42
0.1800
0.98579
0.30

103.4057
788.62
0.2400
0.98151
0.41

104.1834
404.09
0.4800
0.97630
0.21

104.7773
395.23
0.1200
0.97481
0.20

105.7692
1890.31
0.2400
0.96599
0.97
00-004-0864;
00-043-1022
107.6886
4082.80
0.1800
0.95403
2.10

108.0761
3121.60
0.1200
0.95405
1.60

108.5176
5009.35
0.1800
0.94904
2.57
00-004-0587
108.8942
2999.11
0.1800
0.94916
1.54

239

-------
Facility F
6.1: 2503-F-BHD
6.1.1: Measurement Conditions of2503-F
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2503-F-SLOW
M:\XRD-BHD\2503-F-SLOW.rd
2503-F-SLOW
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/1/2013 7:31:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
240

-------
6.1.2: Main Graphics, Analyze View of2503-F
V vvv vvwv w
. 2503-F-SLOW
1, ,JV« II M
l!l
4^
A ,/U \ Kj\A ,A
50	60	70
Position [°2Theta] (Copper (Cu))

Sodium Chloride 10.1 %
Aluminum Oxide Nitride 8.1 %


Aluminum Oxide 8.1 % A



Anhydrite 7.1 %

Aluminum Oxide Nitride 6.1 %"|
Aluminum Oxide Nitride 6.1 %
Aluminum oxide 20.2 %
Sylvite, syn 1 %
Yiayi iciiuin JUIIC1LC j %
Aluminum 4 %
Aluminum Nitride 6.1 %
Mat] Quartz low 4 % |oxide 5.1 % |
241

-------
6.1.3: Pattern List of2503-F
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
56
Aluminum
A12 03
20
22
0
1862

Oxide




00-004-
17
Sylvite, syn
K CI
1
7
0
0587






01-077-
46
Sodium
Na CI
10
9
0
2064

Chloride




01-074-
32
Magnesium
Mg A12 04
5
14
0
1132

Aluminum
Oxide




01-075-
39
Aluminum
A1N
6
10
0
1620

Nitride




01-080-
17
Aluminum
A12.85
8
10
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
18
Aluminum
A12.81
6
10
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
17
Aluminum
A12.78
6
9
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
41
Aluminum
A1
4
5
0
1327






00-004-
28
Fluorite, syn
Ca F2
2
7
0
0864






00-022-
26
Elpasolite,
K2 Na A1
3
13
0
1235

syn
F6



01-086-
22
Anhydrite
Ca ( S 04 )
7
44
0
2270






01-072-
10
Magnesium
Mg S 04
3
47
1
1259

Sulfate




01-085-
6
Quartz low
Si 02
4
17
0
0335






01-076-
22
Silicon
Si3 N4
6
39
0
1407

Nitride




01-080-
20
Aluminum
A12.667 04
8
10
0
1385

Oxide




242

-------
6.1.4: Peak List of2502-F
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.1969
60.68
0.1476
17.00496
0.04

6.9297
2110.86
0.1968
12.75623
1.34

7.6933
7369.00
0.1476
11.49176
4.69

9.4759
355.43
0.3936
9.33350
0.23

9.8203
297.33
0.1968
9.00692
0.19

11.0183
207.77
0.1968
8.03020
0.13

11.6403
328.61
0.7872
7.60247
0.21

13.9571
777.03
0.1968
6.34527
0.49

14.6208
430.47
0.1476
6.05871
0.27

15.4768
3999.40
0.1968
5.72547
2.55

16.2233
1641.78
0.1968
5.46365
1.05

17.0875
659.73
0.2952
5.18925
0.42

17.8327
670.56
0.1476
4.97404
0.43

18.3591
2267.51
0.1476
4.83258
1.44

18.9225
5162.97
0.2952
4.68996
3.29
01-074-1132;





00-022-1235;





01-086-2270
19.4474
3331.53
0.1476
4.56454
2.12
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
19.8046
3839.46
0.1968
4.48301
2.45

20.5704
1794.12
0.1476
4.31781
1.14
01-072-1259;





01-076-1407
21.2274
3169.44
0.1968
4.18564
2.02

22.9167
11774.05
0.2460
3.88077
7.50
01-086-2270;





01-076-1407
24.5651
3054.28
0.1476
3.62397
1.95
01-072-1259
25.4829
43075.83
0.1968
3.49549
27.44
01-075-1862;





01-086-2270
26.5894
3090.30
0.1476
3.35249
1.97
01-072-1259;





01-085-0335;





01-076-1407
27.2752
14860.83
0.1968
3.26973
9.47
01-077-2064;





01-072-1259
28.1425
10500.16
0.0984
3.17091
6.69
00-004-0587;





00-004-0864
28.4672
30337.76
0.1476
3.13547
19.32
00-004-0587;





00-004-0864;





01-086-2270
29.3180
11512.40
0.1476
3.04639
7.33

29.8198
6951.93
0.1476
2.99626
4.43

243

-------
30.2373
6785.09
0.1476
2.95583
4.32

30.9297
11349.43
0.1968
2.89123
7.23
01-076-1407
31.6102
157001.10
0.1476
2.83052
100.00
01-077-2064;





01-080-2171
32.5699
58162.60
0.1476
2.74928
37.05

33.1373
31280.06
0.1968
2.70349
19.92
01-075-1620
33.9062
7928.83
0.2460
2.64392
5.05

34.5109
10068.89
0.1476
2.59897
6.41
01-072-1259;





01-076-1407
35.0615
76314.80
0.1968
2.55940
48.61
01-075-1862
35.5695
6340.46
0.1476
2.52401
4.04
01-072-1259;





01-076-1407
35.9652
10036.22
0.1968
2.49714
6.39
01-075-1620;





01-072-1259
36.7601
18045.36
0.2460
2.44494
11.49
01-074-1132;





01-085-0335
37.1995
15674.06
0.1476
2.41707
9.98

37.6856
42398.49
0.2460
2.38701
27.01
01-075-1862;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
38.3923
52880.72
0.1968
2.34468
33.68
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
38.8751
23010.02
0.1968
2.31666
14.66
01-076-1407
40.1800
13520.13
0.1968
2.24439
8.61
01-085-0335;





01-076-1407
40.7407
22061.13
0.1476
2.21479
14.05
00-004-0587;





01-086-2270;





01-072-1259
41.3395
1461.93
0.0984
2.18407
0.93
01-086-2270
42.0544
6412.41
0.2460
2.14859
4.08
01-076-1407
43.2606
94363.27
0.2460
2.09144
60.10
01-075-1862;





01-086-2270
44.1563
10096.24
0.1476
2.05107
6.43
01-072-1259
44.6583
38359.34
0.2460
2.02917
24.43
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3562
106582.80
0.1968
1.99956
67.89
01-077-2064;





01-086-2270
47.0129
19592.26
0.4428
1.93289
12.48
00-004-0864;





01-086-2270;





01-072-1259;





01-076-1407
244

-------
48.2031
1198.55
0.1968
1.88791
0.76
01-072-1259;
01-076-1407
48.6662
1554.54
0.1968
1.87102
0.99
00-022-1235;
01-086-2270;
01-076-1407
49.7714
6078.49
0.2952
1.83203
3.87
01-075-1620;
01-080-2171;
01-080-1385
50.4920
6217.51
0.1476
1.80757
3.96
01-072-1259;
01-085-0335;
01-076-1407
51.3962
21271.48
0.1968
1.77787
13.55

52.4342
42410.00
0.2460
1.74509
27.01
01-075-1862;
01-086-2270;
01-076-1407
53.0782
6814.66
0.2952
1.72543
4.34

53.7492
5179.88
0.1968
1.70547
3.30
01-077-2064
54.7217
3392.84
0.1968
1.67744
2.16
01-085-0335;
01-076-1407
55.6234
5030.61
0.1968
1.65236
3.20
01-074-1132;
00-004-0864;
01-086-2270
56.3478
26450.02
0.2460
1.63283
16.85
01-077-2064;
01-072-1259;
01-076-1407
57.3782
90404.80
0.2952
1.60593
57.58
01-075-1862;
01-085-0335;
01-076-1407
58.1543
18955.60
0.1968
1.58633
12.07

59.2816
31784.41
0.1968
1.55883
20.24
01-074-1132;
01-075-1620;
00-022-1235;
01-086-2270;
01-076-1407
60.0259
7817.40
0.2460
1.54127
4.98
01-085-0335;
01-076-1407
60.7492
13242.24
0.1476
1.52464
8.43
01-080-2172;
01-080-2173;
01-086-2270;
01-072-1259
61.1873
9693.72
0.2460
1.51477
6.17
01-075-1862;
01-086-2270;
01-072-1259
62.2040
1460.65
0.1968
1.49244
0.93
01-086-2270
62.9892
1970.87
0.2460
1.47571
1.26
01-072-1259
63.5769
3153.12
0.2952
1.46348
2.01
01-072-1259;
01-076-1407
245

-------
64.9879
21908.66
0.3936
1.43507
13.95
01-085-1327;





00-022-1235;





01-076-1407
66.0727
27989.33
0.1800
1.41295
17.83
01-077-2064;





01-075-1620;





01-072-1259;





01-076-1407
66.3859
47652.71
0.2460
1.40821
30.35
01-075-1862;





00-004-0587;





01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-072-1259;





01-076-1407;





01-080-1385
66.8842
19522.85
0.1476
1.39892
12.43
01-086-2270
68.0762
48866.91
0.2460
1.37730
31.13
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335;





01-076-1407
69.3749
7649.36
0.1968
1.35466
4.87
00-022-1235;





01-076-1407
70.2493
1770.86
0.2460
1.33993
1.13
01-075-1862;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407
71.3478
8014.19
0.3936
1.32197
5.10
01-075-1620;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407;





01-080-1385
72.5296
2797.31
0.2460
1.30332
1.78
01-075-1620;





01-076-1407
72.9869
4113.20
0.2460
1.29628
2.62
01-077-2064;





01-086-2270;





01-072-1259;





01-076-1407
74.2700
5946.34
0.1968
1.27703
3.79
01-075-1862;





01-074-1132;





01-086-2270
75.1615
28007.21
0.1800
1.26304
17.84
01-077-2064
75.4277
14044.19
0.1200
1.26237
8.95

246

-------
76.7352
15774.69
0.1800
1.24101
10.05
01-075-1862;





01-072-1259
77.0767
12885.75
0.1800
1.23636
8.21
01-075-1862;





01-086-2270;





01-072-1259;





01-076-1407
77.3869
6959.67
0.1200
1.23524
4.43

78.0765
18813.26
0.1800
1.22301
11.98
01-085-1327;





00-022-1235;





01-072-1259
78.3820
10213.48
0.1800
1.22203
6.51

79.6015
1020.59
0.1800
1.20337
0.65
01-072-1259;





01-076-1407
80.2706
1869.25
0.1200
1.19501
1.19
01-075-1862;





01-080-2172;





01-080-2173;





01-085-0335;





01-080-1385
80.5629
5263.95
0.1200
1.19437
3.35

82.2930
7414.97
0.1800
1.17069
4.72
01-085-1327;





00-022-1235;





01-072-1259;





01-076-1407
82.5799
4337.74
0.1200
1.17025
2.76

83.8647
20336.74
0.1800
1.15271
12.95
01-077-2064;





01-072-1259;





01-085-0335;





01-076-1407
84.1693
12333.48
0.1200
1.15216
7.86

86.2282
4620.04
0.3000
1.12707
2.94
01-075-1862;





01-072-1259
87.2268
1792.31
0.1800
1.11672
1.14
00-004-0864;





01-072-1259;





01-085-0335;





01-076-1407
88.3764
4315.13
0.2400
1.10514
2.75
01-086-2270;





01-072-1259;





01-076-1407
88.8663
7208.40
0.1800
1.10031
4.59
01-075-1862;





01-086-2270
89.1752
3465.65
0.1200
1.10002
2.21

90.2757
2538.87
0.1200
1.08676
1.62
00-022-1235
90.5781
3040.38
0.1200
1.08391
1.94
00-022-1235
91.0537
7856.89
0.1800
1.07949
5.00

91.3900
3906.89
0.1800
1.07906
2.49

92.8690
480.33
0.1200
1.06309
0.31

93.9873
2354.30
0.1800
1.05336
1.50
00-004-0864
247

-------
95.1126
18242.05
0.1800
1.04385
11.62

95.4463
11813.91
0.1800
1.04367
7.52

96.0025
4561.49
0.1800
1.03652
2.91

96.3308
2688.38
0.1800
1.03643
1.71

96.9197
1200.92
0.2400
1.02914
0.76

98.2559
2758.82
0.2400
1.01868
1.76

98.5807
1598.46
0.1200
1.01872
1.02

99.0035
1640.56
0.1800
1.01298
1.04
00-022-1235
99.2978
1536.96
0.2400
1.01077
0.98

99.9630
2520.71
0.2400
1.00583
1.61

100.4019
3131.81
0.1800
1.00261
1.99

100.9748
18684.15
0.2400
0.99846
11.90

101.3631
10522.71
0.1800
0.99816
6.70

102.5149
1634.70
0.1800
0.98761
1.04

103.1859
1883.38
0.1800
0.98300
1.20
00-022-1235
103.5630
739.59
0.1800
0.98289
0.47

104.2871
347.55
0.1800
0.97562
0.22

104.7297
975.80
0.2400
0.97270
0.62

105.6576
218.16
0.1800
0.96670
0.14
00-004-0864
106.0889
241.53
0.1800
0.96396
0.15
00-004-0864
106.5295
387.10
0.1800
0.96118
0.25

107.6831
2125.71
0.1800
0.95406
1.35

108.3018
2051.80
0.2400
0.95033
1.31
00-004-0587
248

-------
6.2:2505-F-BHD
6.2.1: Measurement Conditions of2505-F
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2505-F-Slow
M:\XRD-BHD\2505-F-Slow.rd
2505-F-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/4/2013 9:59:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
249

-------
6.2.2: Main Graphics, Analyze View of2505-F
2505-F-Slow
20000 -
10000 -
0 -*
10
20
30
40
50
60
70
80
90
100
Position [°2Theta] (Copper (Cu))

Aluminum Oxide Nitride 6.9 %
Aluminum Oxide Nitride 6.9 %


Anhydrite 6.9 %

Silicon Nitride 6.9 %~|
Diaspora 5.9 %
Magnesium Sulfate 5.9 % |
Magnesium Aluminum Qxide 5.9 %
Aluminum oxide 7.b %
Elpasolite. syn 7.8 %
Aluminum Oxide 12.7 %
|J Sylvite, syn 1 % i
Z.:=I %
Quartz 1 %
Ah.m Fericlase, syn 2.9 %
250

-------
6.2.3: Pattern List of2505-F
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
37
Aluminum
A12 03
13
23
0
1862

Oxide




00-004-
22
Sylvite, syn
K CI
1
8
0
0587






01-077-
34
Sodium
Na CI
3
7
0
2064

Chloride




01-074-
23
Magnesium
Mg A12 04
6
15
0
1132

Aluminum
Oxide




01-075-
23
Aluminum
A1N
6
10
0
1620

Nitride




01-080-
29
Aluminum
A12.85
6
13
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
29
Aluminum
A12.81
7
12
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
30
Aluminum
A12.78
7
12
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
25
Aluminum
A1
3
5
0
1327






00-004-
24
Fluorite, syn
Ca F2
2
8
0
0864






00-022-
30
Elpasolite,
K2 Na A1
8
19
0
1235

syn
F6



01-086-
20
Anhydrite
Ca ( S 04 )
7
46
0
2270






01-086-
12
Calcite
Ca (C 03)
2
22
0
2340






01-072-
28
Magnesium
Mg S 04
6
55
0
1259

Sulfate




00-043-
15
Periclase,
Mg O
3
8
0
1022

syn




01-085-
6
Quartz
Si 02
1
24
0
0930






01-076-
21
Silicon
Si3 N4
7
46
0
1407

Nitride




01-080-
27
Aluminum
A12.667 04
8
13
0
1385

Oxide




01-074-
20
Diaspore
A1 O ( O H
6
44
0
1879


)



251

-------
6.2.4: Peak List of2505-F
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.4861
5.9787
6.8063
7.5995
8.3027
9.2796
11.1151
13.1266
13.9804
15.3496
17.0286
17.5762
17.8749
18.9120
20.6857
22.9301
23.3468
23.9165
24.6039
25.4110
26.1434
26.5589
27.2883
28.1775
28.5023
29.7770
30.2464
31.6198
130.52
275.09
646.82
1663.00
897.98
615.24
463.82
326.49
201.08
453.50
311.57
253.68
215.64
2343.49
456.22
828.00
403.18
1092.19
2691.53
12910.61
1741.41
6362.61
14432.87
58071.01
30817.60
2035.97
2652.01
155923.50
0.0984
0.1968
0.2952
0.1476
0.2952
0.2460
0.1476
0.3936
0.1968
0.1476
0.1476
0.0984
0.0984
0.1968
0.1968
0.3444
0.1968
0.0984
0.1968
0.2460
0.1476
0.1476
0.1968
0.2460
0.1476
0.1968
0.2460
0.2460
16.10928
14.78305
12.98721
11.63335
10.64953
9.53049
7.96049
6.74481
6.33474
5.77262
5.20706
5.04603
4.96240
4.69253
4.29401
3.87853
3.81025
3.72076
3.61834
3.50522
3.40866
3.35626
3.26819
3.16704
3.13170
3.00047
2.95497
2.82968
0.08
0.16
0.38
0.97
0.52
0.36
0.27
0.19
0.12
0.26
0.18
0.15
0.13
1.37
0.27
0.48
0.23
0.64
1.57
7.52
1.01
3.71
8.41
33.84
17.96
1.19
1.55
90.85
33.1251
34.5605
5646.10
37013.03
0.2952
0.1968
2.70445
2.59535
3.29
21.57
01-074-1132;
00-022-1235;
01-086-2270
01-072-1259;
01-085-0335
01-086-2270
01-072-1259
01-075-1862;
01-086-2270
01-072-1259;
01-085-0335
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864
00-004-0587;
00-004-0864;
01-086-2270
01-077-2064;
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385
01-075-1620
01-072-1259
252

-------
35.0458
4700.14
0.1968
2.56051
2.74
01-075-1862
36.2602
10846.01
0.2460
2.47750
6.32
01-075-1620;





01-086-2270
36.7695
15475.93
0.2952
2.44434
9.02
01-074-1132;





00-043-1022;





01-085-0335
38.4178
171622.30
0.2460
2.34318
100.00
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
40.1714
40949.32
0.3936
2.24485
23.86
01-085-0335
40.7612
24663.80
0.1476
2.21371
14.37
00-004-0587;





01-086-2270;





01-072-1259
41.8721
1597.00
0.0984
2.15752
0.93
01-075-1862;





01-072-1259
42.7418
5836.73
0.2952
2.11561
3.40
00-043-1022
43.2771
7724.07
0.1968
2.09068
4.50
01-075-1862;





01-086-2270
44.6726
79869.76
0.2460
2.02856
46.54
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3584
114731.60
0.2460
1.99947
66.85
01-077-2064;





01-080-2171;





01-086-2270
46.3796
2300.77
0.1476
1.95779
1.34
01-075-1862
47.0700
2375.12
0.1968
1.93068
1.38
00-004-0864;





01-086-2270;





01-072-1259
47.6290
1474.46
0.1476
1.90931
0.86
01-072-1259
48.1473
1449.95
0.1968
1.88997
0.84
01-072-1259
50.0071
11484.67
0.3936
1.82395
6.69
00-004-0587;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-080-1385;





01-085-0335
50.4962
7755.33
0.1476
1.80743
4.52
01-072-1259;





01-085-0335
51.4336
1826.52
0.2952
1.77667
1.06

52.4521
3434.91
0.3444
1.74454
2.00
01-075-1862;





01-086-2270
53.0135
2710.73
0.1968
1.72738
1.58
01-086-2270
53.7412
5127.03
0.2952
1.70570
2.99
01-077-2064
253

-------
54.7513
55.5387
590.69
2003.02
0.1476
0.1476
1.67660
1.65468
0.34
1.17
56.3456
57.3771
58.0486
59.0220
59.3178
61.1027
62.1288
63.2114
64.9716
66.0914
66.8567
68.0958
69.3976
70.5229
71.4298
32826.97
5263.48
16173.55
11555.41
10192.92
1872.27
3658.58
1575.73
60573.90
30920.24
11235.36
3811.00
14923.07
478.21
1664.27
0.2952
0.1968
0.2460
0.3000
0.1800
0.6000
0.4200
0.1800
0.4200
0.4800
0.2400
0.3600
0.3000
0.1200
0.4200
1.63288
1.60596
1.58897
1.56377
1.56054
1.51541
1.49282
1.46984
1.43421
1.41259
1.39827
1.37582
1.35315
1.33429
1.31956
19.13
3.07
9.42
6.73
5.94
1.09
2.13
0.92
35.29
18.02
6.55
2.22
8.70
0.28
0.97
72.9554
6976.42
0.3000
1.29569
4.06
01-085-0335
01-074-1132;
00-004-0864;
00-022-1235;
01-086-2270;
01-085-0335
01-077-2064;
01-072-1259
01-075-1862;
01-085-0335
01-086-2270;
01-072-1259
00-022-1235;
01-086-2270;
01-072-1259
01-075-1862;
01-086-2270;
01-072-1259
01-086-2270;
01-072-1259;
00-043-1022
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235
01-077-2064;
01-075-1620;
01-072-1259
01-080-2173;
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
00-022-1235
01-075-1862;
01-072-1259
01-075-1620;
01-080-2172;
01-080-2173;
01-086-2270;
01-072-1259
01-077-2064;
01-086-2270;
01-072-1259
254

-------
73.4522
7096.57
0.3600
1.28815
4.13
00-004-0587;





00-022-1235;





01-085-0335
74.2600
7076.74
0.3000
1.27612
4.12
01-075-1862;





01-074-1132;





01-086-2270
75.1405
33815.07
0.3600
1.26334
19.70
01-077-2064
75.4116
14724.12
0.1200
1.26260
8.58

77.0863
2512.35
0.6000
1.23623
1.46
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.1194
54483.34
0.3000
1.22245
31.75
01-085-1327;





00-022-1235;





01-072-1259
78.3926
29780.61
0.1800
1.22190
17.35

79.5864
1266.36
0.1200
1.20356
0.74
01-072-1259;





01-085-0335
81.1242
649.80
0.3000
1.18458
0.38
01-075-1620;





01-085-0335
82.0098
5309.34
0.1800
1.17402
3.09
00-022-1235;





01-072-1259
82.3600
15587.22
0.1800
1.16991
9.08
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
83.8279
23317.00
0.2400
1.15312
13.59
01-077-2064;





01-072-1259;





01-085-0335
84.1403
11100.15
0.1200
1.15249
6.47

86.7181
1809.72
0.3000
1.12196
1.05
01-072-1259
87.4106
1760.17
0.3000
1.11484
1.03
00-004-0587;





01-080-2171;





01-080-2172;





00-004-0864;





01-072-1259;





01-080-1385;





01-085-0335
88.4127
2008.41
0.3000
1.10478
1.17
01-086-2270;





01-072-1259
89.2332
254.83
0.2400
1.09673
0.15
01-072-1259
90.2415
2030.56
0.2400
1.08708
1.18
00-022-1235
91.0242
924.66
0.1800
1.07976
0.54

92.3706
182.54
0.1200
1.06751
0.11

93.5851
2280.37
0.1800
1.05683
1.33
00-022-1235
94.1677
5119.12
0.6000
1.05182
2.98
00-004-0864;





00-043-1022
255

-------
95.4204
4190.14
0.3600
96.9499
5482.24
0.3600
98.1664
247.31
0.1800
99.0047
5603.59
0.3000
99.4208
3756.52
0.3000
100.4141
6223.65
0.3000
101.0186
11114.69
0.2400
101.3931
6100.12
0.1800
102.4594
2113.88
0.3600
103.2279
443.85
0.4800
105.1369
360.50
0.4800
107.6563
2910.10
0.2400
108.0830
2177.57
0.3000
1.04129	2.44
1.02890	3.19
1.01937	0.14
1.01297	3.27 00-022-1235
1.01236	2.19
1.00252	3.63
0.99815	6.48
0.99795	3.55
0.98799	1.23
0.98272	0.26 00-022-1235
0.97005	0.21
0.95423	1.70
0.95401	1.27
6.3:2507-F-BHD
6.3.1: Measurement Conditions of2507-F
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
2507-F-Slow
M:\XRD-BHD\2507-F-Slow.rd
2507-F-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/4/2013 9:39:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
256

-------
Incident Beam Monochromator No
Spinning	Yes
6.3.2: Main Graphics, Analyze View of2507-F
V V V WW V V V WW
V
V VWV W V w
100000 -
50000 -
10	20	30	40	50	60	70	80	90	100
Position [°2Theta] (Copper (Cu))


Sodium Chloride 10.1 %

Aluminum Oxide 8.1 %
Magnesium Aluminum Oxide 3.1 % A. \
Aluminum Oxide 7.1 %
Anhydrite 7.1 %
Elpasolite, syn 7.1 %~|
Aluminum Oxide Nitride 7.1 % ]
Aluminum 10.1 %
Aluminum Oxide Nitride 10.1 %


^	 I r
Caluile 1 % 	>—

rcl ILidic, i/11 1 vo
\
-MUII III IUIII 1 4ILI IUC 1-
^ Aluminum Oxide Nitride 5.1 %
^iiir.r Magnesium iultate 4 %
257

-------
6.3.3: Pattern List of2507-F
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
46
Aluminum
A12 03
7
22
0
1862

Oxide




00-004-
25
Sylvite, syn
K CI
3
9
0
0587






01-077-
47
Sodium
Na CI
10
9
0
2064

Chloride




01-074-
34
Magnesium
Mg A12 04
8
13
0
1132

Aluminum
Oxide




01-075-
39
Aluminum
A1N
4
9
0
1620

Nitride




01-080-
17
Aluminum
A12.85
10
12
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
17
Aluminum
A12.81
7
12
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
16
Aluminum
A12.78
5
10
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
44
Aluminum
A1
10
5
0
1327






00-004-
23
Fluorite, syn
Ca F2
2
5
0
0864






00-022-
19
Elpasolite,
K2 Na A1
7
14
0
1235

syn
F6



01-086-
25
Anhydrite
Ca ( S 04 )
7
40
0
2270






01-086-
4
Calcite
Ca (C 03)
1
19
0
2340






01-072-
16
Magnesium
Mg S 04
4
47
0
1259

Sulfate




00-043-
24
Periclase,
Mg O
1
6
0
1022

syn




01-076-
19
Silicon
Si3 N4
5
41
0
1407

Nitride




01-080-
18
Aluminum
A12.667 04
8
12
0
1385

Oxide




258

-------
6.3.4: Peak List of2507-F
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
6.8764
735.77
0.1476
12.85499
0.46

7.6759
1662.59
0.2952
11.51774
1.04

9.2414
459.31
0.3936
9.56986
0.29

12.2469
345.22
0.5904
7.22721
0.22

13.8366
518.79
0.3936
6.40026
0.32

14.9828
848.47
0.1968
5.91311
0.53

15.4010
1090.60
0.2460
5.75348
0.68

16.2152
546.36
0.2952
5.46638
0.34

17.0314
450.25
0.1476
5.20622
0.28

18.9090
3249.08
0.2460
4.69328
2.03
01-074-1132;





00-022-1235;





01-086-2270
19.4249
1768.99
0.0984
4.56977
1.11
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
19.7913
1571.81
0.2460
4.48599
0.98

20.4850
1110.66
0.1476
4.33561
0.69
01-072-1259;





01-076-1407
21.5719
331.64
0.1968
4.11956
0.21

22.6636
3070.59
0.2460
3.92354
1.92
01-072-1259
22.9521
3351.20
0.1476
3.87487
2.10
01-086-2270;





01-086-2340;





01-076-1407
24.5382
2763.53
0.1968
3.62788
1.73
01-072-1259
25.4562
16504.22
0.2952
3.49910
10.32
01-075-1862;





01-086-2270
26.1366
1713.81
0.1968
3.40953
1.07

27.2587
14537.50
0.2460
3.27167
9.09
01-077-2064;





01-072-1259
28.0495
29495.73
0.2952
3.18121
18.44
00-004-0864
28.4553
30901.22
0.1476
3.13676
19.32
00-004-0587;





00-004-0864;





01-086-2270
29.2701
981.77
0.1476
3.05127
0.61
01-086-2340
29.7832
2642.64
0.2460
2.99986
1.65

30.2329
3153.67
0.2460
2.95625
1.97

31.5840
159914.10
0.2460
2.83280
100.00
01-077-2064;





01-080-2171;





01-086-2270;





01-076-1407;





01-080-1385
259

-------
32.3476
7414.27
0.2460
2.76766
4.64

33.0971
17301.95
0.2952
2.70668
10.82
01-075-1620
33.8904
3794.21
0.1476
2.64511
2.37

34.4809
27516.03
0.1968
2.60116
17.21
01-072-1259;





01-076-1407
35.0264
22861.56
0.2460
2.56189
14.30
01-075-1862
35.9370
10466.50
0.2460
2.49903
6.55
01-075-1620;





01-086-2340;





01-072-1259
36.7231
21391.20
0.2952
2.44732
13.38
01-074-1132;





00-043-1022
37.6924
19572.32
0.2460
2.38659
12.24
01-075-1862;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
38.3390
119982.40
0.2460
2.34781
75.03
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
38.8543
8992.55
0.0984
2.31786
5.62
01-086-2270;





01-076-1407
40.0801
31466.15
0.2952
2.24975
19.68
01-076-1407
40.7169
26266.09
0.1476
2.21602
16.43
00-004-0587;





01-086-2270;





01-072-1259
41.6403
3061.43
0.2460
2.16899
1.91
01-075-1862;





01-072-1259;





01-076-1407
42.0618
3479.24
0.1476
2.14823
2.18
01-076-1407
42.7386
11225.27
0.1968
2.11576
7.02
00-043-1022
43.2333
33299.79
0.1968
2.09269
20.82
01-075-1862;





01-086-2270;





01-086-2340
44.6289
85242.35
0.2952
2.03044
53.31
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3078
111646.80
0.2460
2.00159
69.82
01-077-2064;





01-086-2270
46.4967
9296.67
0.1476
1.95313
5.81

46.9679
8343.13
0.2460
1.93463
5.22
00-004-0864;





01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
260

-------
48.1881
1744.27
0.2460
1.88846
1.09
01-086-2340;





01-072-1259;





01-076-1407
49.7133
8676.20
0.2952
1.83404
5.43
01-075-1620;





01-080-2171;





01-080-1385
50.4648
7586.70
0.2460
1.80848
4.74
00-004-0587;





01-072-1259;





01-076-1407
51.3634
6979.34
0.2952
1.77893
4.36

52.3971
14539.49
0.2952
1.74624
9.09
01-075-1862;





01-086-2270;





01-076-1407
53.0399
5219.13
0.1968
1.72659
3.26
01-086-2270
53.7140
5281.10
0.2460
1.70650
3.30
01-077-2064
54.6231
1357.12
0.1968
1.68023
0.85
01-072-1259;





01-076-1407
55.5408
4294.81
0.2460
1.65462
2.69
01-074-1132;





00-004-0864;





00-022-1235;





01-086-2270
56.3090
33127.03
0.2952
1.63386
20.72
01-077-2064;





01-072-1259;





01-076-1407
57.3433
30199.87
0.3444
1.60682
18.89
01-075-1862;





01-086-2340;





01-076-1407
58.0203
17177.15
0.2460
1.58968
10.74
01-086-2270;





01-072-1259;





01-076-1407
59.2452
21358.26
0.3444
1.55970
13.36
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270;





01-076-1407
60.6860
5841.46
0.1968
1.52608
3.65
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259;





01-080-1385
61.1164
4391.25
0.1968
1.51636
2.75
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259
261

-------
62.1801
6069.90
0.3936
1.49295
3.80
01-086-2270;





01-072-1259;





00-043-1022
63.5544
2067.54
0.2460
1.46394
1.29
01-072-1259;





01-076-1407
64.9671
57627.92
0.3444
1.43548
36.04
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340;





01-076-1407
66.0401
29904.53
0.4200
1.41357
18.70
01-077-2064;





01-075-1620;





01-086-2270;





01-072-1259;





01-076-1407
66.3409
25581.32
0.1800
1.41139
16.00

66.8372
13232.73
0.1800
1.39863
8.27
01-080-2172;





01-080-2173;





01-086-2270
68.0357
18827.65
0.4800
1.37688
11.77
01-075-1862;





00-022-1235;





01-072-1259;





01-076-1407
69.3671
11770.73
0.3000
1.35367
7.36
00-022-1235;





01-086-2340;





01-076-1407
70.2186
633.78
0.1200
1.33933
0.40
01-075-1862;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407;





01-080-1385
71.3284
5169.58
0.5400
1.32119
3.23
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407;





01-080-1385
72.4356
1524.41
0.1800
1.30370
0.95
01-075-1620;





01-086-2340;





01-076-1407
72.9346
6490.05
0.3600
1.29601
4.06
01-077-2064;





01-086-2270;





01-086-2340;
262

-------





01-072-1259;





01-076-1407
73.4563
3291.49
0.1800
1.28808
2.06
00-004-0587;





00-022-1235;





01-086-2340;





01-076-1407
74.2005
6385.89
0.3000
1.27700
3.99
01-075-1862;





01-074-1132;





01-086-2270
75.1129
30981.97
0.3600
1.26373
19.37
01-077-2064
75.3841
13970.61
0.1200
1.26299
8.74

76.6874
6704.83
0.2400
1.24166
4.19
01-075-1862;





01-075-1620;





01-086-2340;





01-072-1259;





01-076-1407
77.0089
5686.42
0.1200
1.24035
3.56

78.0837
44148.73
0.3000
1.22291
27.61
01-085-1327;





00-022-1235;





01-072-1259
78.3562
26978.53
0.1800
1.22237
16.87

79.5765
670.01
0.2400
1.20368
0.42
01-072-1259;





01-076-1407
80.5124
1752.17
0.2400
1.19203
1.10
01-075-1862;





01-086-2340;





01-076-1407
81.3268
96.24
0.1800
1.18214
0.06
01-075-1620;





01-086-2340;





01-076-1407
82.3105
13209.57
0.3000
1.17049
8.26
01-085-1327;





00-022-1235;





01-072-1259;





01-076-1407
82.6056
8729.38
0.1800
1.16995
5.46

83.7940
21541.52
0.2400
1.15350
13.47
01-077-2064;





01-086-2340;





01-072-1259;





01-076-1407
84.1198
10793.21
0.1200
1.15272
6.75

86.1582
1959.41
0.3000
1.12780
1.23
01-075-1862;





01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259
87.1535
1540.62
0.1800
1.11747
0.96
00-004-0864;





01-072-1259;





01-076-1407
263

-------
87.4874
1170.35
0.1800
1.11406
0.73
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-004-0864;





01-072-1259;





01-080-1385
88.3244
2734.49
0.3000
1.10565
1.71
01-086-2270;





01-072-1259;





01-076-1407
88.8187
2120.96
0.1800
1.10351
1.33

90.1889
1754.89
0.3000
1.08758
1.10
00-022-1235
91.0303
3412.05
0.3000
1.07970
2.13

93.4818
1949.61
0.1800
1.05772
1.22
00-022-1235
93.8918
4078.80
0.4200
1.05418
2.55
00-004-0864;





00-022-1235;





00-043-1022
95.1032
11390.16
0.1800
1.04393
7.12

95.4058
7236.99
0.1200
1.04400
4.53

96.1705
1294.22
0.3600
1.03515
0.81

96.8992
3667.89
0.3600
1.02930
2.29

98.1244
1147.01
0.2400
1.01969
0.72

99.0116
4358.90
0.2400
1.01292
2.73
00-022-1235
100.3501
4717.88
0.3000
1.00299
2.95

100.9397
12785.14
0.2400
0.99872
8.00

101.3237
7162.70
0.1800
0.99844
4.48

102.4156
1623.08
0.3000
0.98829
1.01

103.1325
951.59
0.1800
0.98337
0.60
00-022-1235
104.3212
188.40
0.1200
0.97539
0.12

104.7666
449.39
0.4800
0.97246
0.28

107.5926
2272.85
0.2400
0.95461
1.42
00-022-1235
108.0297
1873.78
0.1800
0.95433
1.17

108.3285
1234.90
0.1200
0.95253
0.77

264

-------
6.4: 2511-F-BHD
6.4.1: Measurement Conditions of 2511-F
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2511-F-Slow
M:\XRD-BHD\2511-F-Slow.rd
2511-F-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/5/2013 9:20:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
265

-------
6.4.2: Main Graphics, Analyze View of 2511-F
2511-F-S tow
50	60	70
Position [°2Theta] (Copper (Cu))
Sodium Chloride 11 %~|
Aluminum Oxide Nitride S %
Elpasolite, syn S %
Magnesium Aluminum Oxide 8 %
Anhydrite 8 %
Magnesium Sulfate 6 % |
Aluminum 1J %
Quartz ow 13 %
.	-i oj I
,syn 1 % H
Oxide 3 % 1
Periclase
fAluminum
Aluminum Oxide Nitride 2 %
Fluorite, syn 4 %
Ai, ,m Sylvite, syn 4 %
266

-------
6.4.3: Pattern List of 2511-F
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
31
Aluminum
A12 03
3
14
0
1862

Oxide




00-004-
32
Sylvite, syn
K CI
4
9
0
0587






01-077-
48
Sodium
Na CI
11
9
0
2064

Chloride




01-074-
21
Magnesium
Mg A12 04
8
12
0
1132

Aluminum
Oxide




01-075-
18
Aluminum
A1N
2
9
0
1620

Nitride




01-080-
9
Aluminum
A12.85
8
9
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
12
Aluminum
A12.81
4
7
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
11
Aluminum
A12.78
2
5
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
45
Aluminum
A1
13
5
0
1327






00-004-
9
Fluorite, syn
Ca F2
4
4
0
0864






00-022-
20
Elpasolite,
K2 Na A1
8
14
0
1235

syn
F6



01-086-
28
Anhydrite
Ca ( S 04 )
8
31
0
2270






01-072-
16
Magnesium
Mg S 04
6
35
0
1259

Sulfate




00-043-
13
Periclase,
Mg O
1
6
0
1022

syn




01-080-
11
Aluminum
A12.667 04
5
9
0
1385

Oxide




01-085-
10
Quartz low
Si 02
13
18
0
0335






267

-------
6.4.4: Peak List of 2511-F
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.4861
5.9787
6.8063
7.5995
8.3027
9.2796
11.1151
13.1266
13.9804
15.3496
17.0286
17.5762
17.8749
18.9120
20.6857
22.9301
23.3468
23.9165
24.6039
25.4110
26.1434
26.5589
27.2883
28.1775
28.5023
29.7770
30.2464
31.6198
130.52
275.09
646.82
1663.00
897.98
615.24
463.82
326.49
201.08
453.50
311.57
253.68
215.64
2343.49
456.22
828.00
403.18
1092.19
2691.53
12910.61
1741.41
6362.61
14432.87
58071.01
30817.60
2035.97
2652.01
155923.50
0.0984
0.1968
0.2952
0.1476
0.2952
0.2460
0.1476
0.3936
0.1968
0.1476
0.1476
0.0984
0.0984
0.1968
0.1968
0.3444
0.1968
0.0984
0.1968
0.2460
0.1476
0.1476
0.1968
0.2460
0.1476
0.1968
0.2460
0.2460
16.10928
14.78305
12.98721
11.63335
10.64953
9.53049
7.96049
6.74481
6.33474
5.77262
5.20706
5.04603
4.96240
4.69253
4.29401
3.87853
3.81025
3.72076
3.61834
3.50522
3.40866
3.35626
3.26819
3.16704
3.13170
3.00047
2.95497
2.82968
0.08
0.16
0.38
0.97
0.52
0.36
0.27
0.19
0.12
0.26
0.18
0.15
0.13
1.37
0.27
0.48
0.23
0.64
1.57
7.52
1.01
3.71
8.41
33.84
17.96
1.19
1.55
90.85
33.1251
34.5605
5646.10
37013.03
0.2952
0.1968
2.70445
2.59535
3.29
21.57
01-074-1132;
00-022-1235;
01-086-2270
01-072-1259;
01-085-0335
01-086-2270
01-072-1259
01-075-1862;
01-086-2270
01-072-1259;
01-085-0335
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864
00-004-0587;
00-004-0864;
01-086-2270
01-077-2064;
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385
01-075-1620
01-072-1259
268

-------
35.0458
4700.14
0.1968
2.56051
2.74
01-075-1862
36.2602
10846.01
0.2460
2.47750
6.32
01-075-1620;





01-086-2270
36.7695
15475.93
0.2952
2.44434
9.02
01-074-1132;





00-043-1022;





01-085-0335
38.4178
171622.30
0.2460
2.34318
100.00
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
40.1714
40949.32
0.3936
2.24485
23.86
01-085-0335
40.7612
24663.80
0.1476
2.21371
14.37
00-004-0587;





01-086-2270;





01-072-1259
41.8721
1597.00
0.0984
2.15752
0.93
01-075-1862;





01-072-1259
42.7418
5836.73
0.2952
2.11561
3.40
00-043-1022
43.2771
7724.07
0.1968
2.09068
4.50
01-075-1862;





01-086-2270
44.6726
79869.76
0.2460
2.02856
46.54
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3584
114731.60
0.2460
1.99947
66.85
01-077-2064;





01-080-2171;





01-086-2270
46.3796
2300.77
0.1476
1.95779
1.34
01-075-1862
47.0700
2375.12
0.1968
1.93068
1.38
00-004-0864;





01-086-2270;





01-072-1259
47.6290
1474.46
0.1476
1.90931
0.86
01-072-1259
48.1473
1449.95
0.1968
1.88997
0.84
01-072-1259
50.0071
11484.67
0.3936
1.82395
6.69
00-004-0587;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-080-1385;





01-085-0335
50.4962
7755.33
0.1476
1.80743
4.52
01-072-1259;





01-085-0335
51.4336
1826.52
0.2952
1.77667
1.06

52.4521
3434.91
0.3444
1.74454
2.00
01-075-1862;





01-086-2270
53.0135
2710.73
0.1968
1.72738
1.58
01-086-2270
53.7412
5127.03
0.2952
1.70570
2.99
01-077-2064
269

-------
54.7513
55.5387
590.69
2003.02
0.1476
0.1476
1.67660
1.65468
0.34
1.17
56.3456
57.3771
58.0486
59.0220
59.3178
61.1027
62.1288
63.2114
64.9716
66.0914
66.8567
68.0958
69.3976
70.5229
71.4298
32826.97
5263.48
16173.55
11555.41
10192.92
1872.27
3658.58
1575.73
60573.90
30920.24
11235.36
3811.00
14923.07
478.21
1664.27
0.2952
0.1968
0.2460
0.3000
0.1800
0.6000
0.4200
0.1800
0.4200
0.4800
0.2400
0.3600
0.3000
0.1200
0.4200
1.63288
1.60596
1.58897
1.56377
1.56054
1.51541
1.49282
1.46984
1.43421
1.41259
1.39827
1.37582
1.35315
1.33429
1.31956
19.13
3.07
9.42
6.73
5.94
1.09
2.13
0.92
35.29
18.02
6.55
2.22
8.70
0.28
0.97
72.9554
6976.42
0.3000
1.29569
4.06
01-085-0335
01-074-1132;
00-004-0864;
00-022-1235;
01-086-2270;
01-085-0335
01-077-2064;
01-072-1259
01-075-1862;
01-085-0335
01-086-2270;
01-072-1259
00-022-1235;
01-086-2270;
01-072-1259
01-075-1862;
01-086-2270;
01-072-1259
01-086-2270;
01-072-1259;
00-043-1022
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235
01-077-2064;
01-075-1620;
01-072-1259
01-080-2173;
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
00-022-1235
01-075-1862;
01-072-1259
01-075-1620;
01-080-2172;
01-080-2173;
01-086-2270;
01-072-1259
01-077-2064;
01-086-2270;
01-072-1259
270

-------
73.4522
7096.57
0.3600
1.28815
4.13
00-004-0587;





00-022-1235;





01-085-0335
74.2600
7076.74
0.3000
1.27612
4.12
01-075-1862;





01-074-1132;





01-086-2270
75.1405
33815.07
0.3600
1.26334
19.70
01-077-2064
75.4116
14724.12
0.1200
1.26260
8.58

77.0863
2512.35
0.6000
1.23623
1.46
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.1194
54483.34
0.3000
1.22245
31.75
01-085-1327;





00-022-1235;





01-072-1259
78.3926
29780.61
0.1800
1.22190
17.35

79.5864
1266.36
0.1200
1.20356
0.74
01-072-1259;





01-085-0335
81.1242
649.80
0.3000
1.18458
0.38
01-075-1620;





01-085-0335
82.0098
5309.34
0.1800
1.17402
3.09
00-022-1235;





01-072-1259
82.3600
15587.22
0.1800
1.16991
9.08
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
83.8279
23317.00
0.2400
1.15312
13.59
01-077-2064;





01-072-1259;





01-085-0335
84.1403
11100.15
0.1200
1.15249
6.47

86.7181
1809.72
0.3000
1.12196
1.05
01-072-1259
87.4106
1760.17
0.3000
1.11484
1.03
00-004-0587;





01-080-2171;





01-080-2172;





00-004-0864;





01-072-1259;





01-080-1385;





01-085-0335
88.4127
2008.41
0.3000
1.10478
1.17
01-086-2270;





01-072-1259
89.2332
254.83
0.2400
1.09673
0.15
01-072-1259
90.2415
2030.56
0.2400
1.08708
1.18
00-022-1235
91.0242
924.66
0.1800
1.07976
0.54

92.3706
182.54
0.1200
1.06751
0.11

93.5851
2280.37
0.1800
1.05683
1.33
00-022-1235
94.1677
5119.12
0.6000
1.05182
2.98
00-004-0864;





00-043-1022
271

-------
95.4204
4190.14
0.3600
96.9499
5482.24
0.3600
98.1664
247.31
0.1800
99.0047
5603.59
0.3000
99.4208
3756.52
0.3000
100.4141
6223.65
0.3000
101.0186
11114.69
0.2400
101.3931
6100.12
0.1800
102.4594
2113.88
0.3600
103.2279
443.85
0.4800
105.1369
360.50
0.4800
107.6563
2910.10
0.2400
108.0830
2177.57
0.3000
1.04129	2.44
1.02890	3.19
1.01937	0.14
1.01297	3.27 00-022-1235
1.01236	2.19
1.00252	3.63
0.99815	6.48
0.99795	3.55
0.98799	1.23
0.98272	0.26 00-022-1235
0.97005	0.21
0.95423	1.70
0.95401	1.27
272

-------
Facility H
7.1: 2045-H-BHD
7.1.1: Measurement Conditions of2046-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2045-H-SLOW
M:\XRD-BHD\2045-H-SLOW.rd
2045-H-SLOW
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/12/2013 12:44:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
273

-------
7.1.2: Main Graphics, Analyze View of2045-H
2045-H-SLOW
40000 -

inn
Wi ;	W
li / U V \Jv
W
'wVv
ifl/w
1 j
a.
i JI A ¦
VV LvJ ¦/
50	60	70
Position [°2Theta] (Copper (Cu))
274
Periclase, syn 1 % I
L.yiUILH I 17—|	
				Jo
Elfjasuine
Silicui 1 Hiir 11.1 ti o .a
Magnesium Aluminum Oxide 8.7 %
Aluminum Oxide Nitride 8.7 %
Aluminum Oxide 4.9 % |
Fluorite, syn 8.7 %
Aluminum Oxide 4.9 % |
Aluminum Nitride 10.7 %
Sodium Chloride 10.7 %
Anhydrite 9.7 %
Sylvite, syn 6.3 % \
Aluminum Oxide Nitride 2.9 %


-------
7.1.3: Pattern List of2045-H
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
40
Aluminum
A12 03
5
17
0
1862

Oxide




00-004-
26
Sylvite, syn
K CI
7
9
0
0587






01-077-
45
Sodium
Na CI
11
9
0
2064

Chloride




01-074-
39
Magnesium
Mg A12 04
9
16
0
1132

Aluminum
Oxide




01-075-
42
Aluminum
A1N
11
11
0
1620

Nitride




01-080-
11
Aluminum
A12.85
9
14
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
14
Aluminum
A12.81
4
14
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
15
Aluminum
A12.78
3
13
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
40
Aluminum
A1
4
5
0
1327






00-004-
22
Fluorite, syn
Ca F2
9
7
0
0864






00-022-
24
Elpasolite,
K2 Na A1
4
18
0
1235

syn
F6



01-086-
39
Anhydrite
Ca ( S 04 )
10
46
0
2270






01-086-
13
Calcite
Ca (C 03)
1
21
0
2340






01-072-
17
Magnesium
Mg S 04
4
49
0
1259

Sulfate




00-043-
8
Periclase,
Mg O
1
7
0
1022

syn




01-085-
22
Quartz
Si 02
2
23
0
0930






01-076-
15
Silicon
Si3 N4
4
43
0
1407

Nitride




01-080-
14
Aluminum
A12.667 04
5
14
0
1385

Oxide




275

-------
7.1.4: Peak List of2046-H
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.1594
164.84
0.1968
17.12865
0.28

6.8824
184.83
0.4920
12.84373
0.31

7.7384
214.31
0.0984
11.42480
0.36

8.0707
105.46
0.1476
10.95512
0.18

8.7048
168.10
0.2952
10.15857
0.29

9.3464
99.06
0.2952
9.46256
0.17

9.8764
65.33
0.0984
8.95590
0.11

10.3262
70.36
0.0984
8.56679
0.12

11.3649
278.54
0.2952
7.78608
0.47

13.2515
346.86
0.2952
6.68150
0.59
01-076-1407
13.9245
352.40
0.1476
6.36004
0.60

15.3193
580.84
0.1476
5.78400
0.99

16.2295
512.73
0.2460
5.46161
0.87

17.0785
811.88
0.1968
5.19194
1.38

17.9440
713.65
0.1968
4.94343
1.21

18.9173
2516.74
0.2460
4.69122
4.28
01-074-1132;





00-022-1235;





01-086-2270
19.7548
544.76
0.1968
4.49419
0.93

20.7187
1663.69
0.1968
4.28723
2.83
01-085-0930;





01-076-1407
21.8906
562.01
0.0984
4.06031
0.95
00-022-1235
22.6407
1375.94
0.1968
3.92745
2.34
01-072-1259
23.8758
1599.26
0.2952
3.72701
2.72

24.6061
2767.98
0.1968
3.61802
4.70
01-072-1259
25.3506
12778.54
0.2952
3.51343
21.71
01-075-1862;





01-086-2270
26.5088
6286.28
0.1968
3.36250
10.68
01-072-1259;





01-085-0930;





01-076-1407
27.3143
15294.84
0.2460
3.26514
25.99
01-077-2064;





01-072-1259
28.1203
58851.90
0.2460
3.17336
100.00
00-004-0587;





00-004-0864
28.4728
13689.46
0.0984
3.13487
23.26
00-004-0587;





00-004-0864;





01-086-2270
29.2909
1942.92
0.1476
3.04915
3.30
01-086-2340
29.7708
3986.99
0.1968
3.00108
6.77

30.2754
1477.59
0.1968
2.95220
2.51

31.6017
56776.11
0.1968
2.83126
96.47
01-077-2064;





01-080-2171
276

-------
32.3411
3089.43
0.1476
2.76820
5.25

33.0916
19558.71
0.2952
2.70712
33.23
01-075-1620
34.0106
1441.80
0.1968
2.63604
2.45

34.5125
3242.57
0.1476
2.59885
5.51
01-072-1259;
01-076-1407
35.0384
4508.92
0.1968
2.56104
7.66
01-075-1862
35.9334
16665.94
0.2460
2.49927
28.32
01-075-1620;
01-086-2340;
01-072-1259
36.7759
15155.12
0.2952
2.44393
25.75
01-074-1132;
00-043-1022;
01-085-0930
37.8067
9513.94
0.1968
2.37964
16.17
01-075-1862;
01-075-1620
38.3914
15290.18
0.1968
2.34473
25.98
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
39.1197
2302.52
0.0984
2.30274
3.91
01-080-2171;
01-080-2172;
01-080-2173;
01-076-1407;
01-080-1385
40.2265
37004.13
0.3444
2.24190
62.88
01-085-0930;
01-076-1407
40.7296
10672.82
0.0984
2.21536
18.14
00-004-0587;
01-086-2270;
01-072-1259
41.1456
3931.37
0.1968
2.19392
6.68
01-086-2270
42.1325
2278.63
0.1476
2.14478
3.87

43.2385
5952.78
0.1968
2.09245
10.11
01-075-1862;
01-086-2270;
01-086-2340
43.9373
2298.93
0.1968
2.06078
3.91
01-072-1259
44.6438
15608.03
0.2460
2.02980
26.52
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
45.3556
39571.36
0.1968
1.99958
67.24
01-077-2064;
01-086-2270
46.9001
7757.91
0.1968
1.93727
13.18
00-004-0864;
01-086-2270;
01-072-1259;
01-076-1407
47.4330
5512.66
0.2460
1.91674
9.37
01-086-2270
48.5803
2629.89
0.2460
1.87413
4.47
01-086-2270;
01-086-2340
277

-------
49.7903
14256.88
0.4428
1.83138
24.23
01-075-1620;
01-080-2171;
01-080-2172;
01-080-1385
50.4874
3837.88
0.1968
1.80772
6.52
01-072-1259;
01-085-0930;
01-076-1407
51.3515
1048.14
0.1968
1.77931
1.78

52.1310
2136.53
0.1800
1.75308
3.63
01-086-2270;
01-076-1407
52.3903
3155.73
0.1476
1.74645
5.36
01-075-1862;
01-086-2270;
01-076-1407
53.0255
3342.19
0.2460
1.72702
5.68
01-086-2270
54.2133
9614.10
0.1968
1.69196
16.34
01-072-1259
55.6146
3147.38
0.1968
1.65260
5.35
01-074-1132;
00-004-0864;
00-022-1235;
01-086-2270
56.3381
14349.33
0.2460
1.63308
24.38
01-077-2064;
01-072-1259;
01-076-1407
57.3704
4488.68
0.2952
1.60613
7.63
01-075-1862;
01-086-2340;
01-085-0930;
01-076-1407
57.8810
2071.85
0.1800
1.59185
3.52
01-086-2270;
01-072-1259;
01-076-1407
58.1895
6617.92
0.2952
1.58546
11.25

59.2468
16818.30
0.6396
1.55966
28.58
01-074-1132;
01-075-1620;
00-022-1235;
01-086-2270
61.4449
627.30
0.1968
1.50904
1.07
01-075-1862;
01-072-1259;
01-076-1407
62.1292
1087.34
0.1476
1.49405
1.85
01-086-2270;
01-072-1259;
00-043-1022
62.7768
1282.58
0.3444
1.48019
2.18

63.5197
889.47
0.0984
1.46466
1.51
01-072-1259;
01-076-1407
63.9890
768.43
0.1968
1.45504
1.31
01-072-1259;
01-085-0930
65.0221
12918.25
0.3936
1.43440
21.95
01-074-1132;
01-085-1327;
278

-------





00-022-1235;





01-086-2340;





01-076-1407
66.0701
21536.12
0.3936
1.41417
36.59
01-077-2064;





01-075-1620;





01-072-1259;





01-085-0930;





01-076-1407
66.8594
4208.73
0.1476
1.39938
7.15
01-080-2173;





01-086-2270
68.0608
3384.83
0.2460
1.37758
5.75
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0930;





01-076-1407
68.8690
3697.15
0.1476
1.36337
6.28
01-074-1132;





00-004-0864;





01-086-2270;





01-086-2340
69.6547
3757.48
0.1968
1.34990
6.38
01-074-1132;





01-075-1620;





01-086-2340;





01-076-1407
71.2940
4416.30
0.2952
1.32284
7.50
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407;





01-080-1385
73.1527
6822.10
0.3936
1.29375
11.59
01-077-2064;





01-086-2270;





01-072-1259;





01-076-1407
74.2648
2790.31
0.1968
1.27711
4.74
01-075-1862;





01-074-1132;





01-086-2270
75.1524
15839.42
0.1476
1.26421
26.91
01-077-2064
77.1684
2032.55
0.4920
1.23614
3.45
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259;





01-076-1407
78.1495
5659.38
0.2400
1.22205
9.62
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
279

-------
78.4191
3117.06
0.1800
1.22155
5.30

79.6669
779.66
0.2400
1.20254
1.32
01-072-1259;





01-085-0930;





01-076-1407
80.9188
666.67
0.6000
1.18707
1.13
01-075-1620;





01-086-2340;





01-085-0930;





01-076-1407
82.1847
2081.91
0.2400
1.17196
3.54
01-085-1327;





00-022-1235;





01-072-1259;





01-076-1407
82.6557
2742.55
0.1800
1.16647
4.66
01-074-1132;





01-085-1327;





01-086-2270;





01-072-1259
83.8517
10685.36
0.1800
1.15285
18.16
01-077-2064;





01-086-2340;





01-072-1259;





01-085-0930;





01-076-1407
84.1357
5615.86
0.1800
1.15254
9.54

85.8191
621.48
0.3600
1.13139
1.06
01-074-1132;





01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259
87.1309
3012.59
0.2400
1.11770
5.12
00-004-0864;





01-072-1259;





01-085-0930;





01-076-1407
87.3795
2544.05
0.1800
1.11793
4.32

88.3702
1391.46
0.1800
1.10520
2.36
01-086-2270;





01-072-1259;





01-076-1407
89.4442
1375.98
0.1800
1.09469
2.34
01-072-1259;





01-076-1407
90.5957
1612.74
0.1800
1.08375
2.74
00-022-1235
91.0799
940.51
0.3600
1.07924
1.60

94.0258
5580.88
0.3600
1.05303
9.48
00-004-0864;





00-043-1022
94.6891
4028.67
0.1800
1.04740
6.85
00-004-0587
95.0984
4209.86
0.2400
1.04397
7.15

95.4586
2582.10
0.1800
1.04357
4.39

95.9220
1712.51
0.1200
1.03718
2.91

96.3703
721.67
0.3000
1.03354
1.23

96.9412
605.59
0.2400
1.03152
1.03

280

-------
97.3781
545.39
0.1200
1.02551
0.93

97.7853
1053.87
0.1800
1.02486
1.79

98.9989
998.05
0.1800
1.01302
1.70
00-022-1235
101.0135
6839.71
0.3600
0.99818
11.62

102.4743
1137.98
0.2400
0.98789
1.93

103.0432
413.21
0.2400
0.98642
0.70

104.8031
802.79
0.4800
0.97222
1.36

106.0294
523.70
0.7200
0.96433
0.89
00-004-0864;





00-043-1022
106.4805
263.56
0.2400
0.96388
0.45

106.8377
171.42
0.1800
0.95926
0.29
00-022-1235
107.6644
2164.33
0.3000
0.95418
3.68

7.2: 2545-H-BHD
7.2.1: Measurement Conditions of2545-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
2545-H-Slow
M:\XRD-BHD\2545-H-Slow.rd
2545-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/8/2013 2:54:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
281

-------
Spinning	Yes
7.2.2: Main Graphics, Analyze View of2545-H
VV W V V
w
W V V
V VVV V V
,/W^V	A;
./MjVk.
50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum 11 %
Magnesium Aluminum Oxide 7 % |
Elpasolite,
Anhydrite 4 %
Calcite 5 % | '
Quartz low 44 % |
Aluminum Oxide Nitride 1 %
Sodium Chloride 1 %
Kericiase, syn ^ tb
I IUUI ILC, i y I I sc>
™mn IUIII IUC I MIL
2
ide 2 %
3 Sylvite, syn 2 % L
Afu		 mng .no |
'l IUOIUIII •	¦ '_4I I "_HL-r	j	'
282

-------
7.2.3: Pattern List of2545-H
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
29
Aluminum
A12 03
3
16
0
1862

Oxide




00-004-
40
Sylvite, syn
K CI
2
10
0
0587






01-077-
33
Sodium
Na CI
1
9
0
2064

Chloride




01-074-
28
Magnesium
Mg A12 04
7
15
0
1132

Aluminum
Oxide




01-075-
15
Aluminum
A1N
3
7
1
1620

Nitride




01-080-
16
Aluminum
A12.85
2
14
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
18
Aluminum
A12.81
2
13
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
18
Aluminum
A12.78
1
13
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
45
Aluminum
A1
11
5
0
1327






00-004-
29
Fluorite, syn
Ca F2
2
7
0
0864






00-022-
17
Elpasolite,
K2 Na A1
5
16
0
1235

syn
F6



01-086-
19
Anhydrite
Ca ( S 04 )
4
43
0
2270






01-086-
35
Calcite
Ca (C 03)
5
24
0
2340






01-072-
22
Magnesium
Mg S 04
4
43
0
1259

Sulfate




00-043-
21
Periclase,
Mg O
2
7
0
1022

syn




01-080-
19
Aluminum
A12.667 04
2
13
0
1385

Oxide




01-085-
20
Quartz low
Si 02
44
24
0
0335






283

-------
7.2.4: Peak List of2545-H
[°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.3284
53.46
0.1476
16.58546
0.05

6.1245
81.62
0.0984
14.43142
0.08

8.0660
295.15
0.1968
10.96159
0.30

8.5178
227.98
0.1968
10.38117
0.23

9.4602
419.86
0.1476
9.34899
0.43

11.1444
852.76
0.3936
7.93965
0.88

12.3925
380.88
0.1476
7.14265
0.39

13.8113
211.80
0.3936
6.41192
0.22

14.2670
160.42
0.1476
6.20815
0.16

16.1261
511.03
0.4920
5.49637
0.52

18.0279
1162.10
0.2460
4.92063
1.19

18.7608
953.72
0.1476
4.73001
0.98
00-022-1235
19.0261
1574.15
0.1968
4.66466
1.62
01-074-1132;





00-022-1235;





01-086-2270
20.8171
2471.69
0.1968
4.26721
2.54
01-085-0335
23.0341
4859.90
0.2460
3.86126
4.99
01-086-2270;





01-086-2340
23.9421
3218.31
0.1968
3.71684
3.31

24.7170
6172.35
0.1968
3.60204
6.34
01-072-1259
25.5246
5966.50
0.1968
3.48987
6.13
01-075-1862;





01-086-2270
26.5065
15408.13
0.2460
3.36278
15.83
01-072-1259;





01-085-0335
27.4255
24686.03
0.1968
3.25215
25.36
01-077-2064;





01-072-1259
28.3222
20043.28
0.2460
3.15120
20.59
00-004-0587;





00-004-0864
29.3864
45170.97
0.2952
3.03946
46.40
01-086-2340
31.6837
10935.68
0.1968
2.82412
11.23
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
32.4294
5954.73
0.1476
2.76087
6.12

32.8539
9096.70
0.2952
2.72615
9.34

34.6056
22284.32
0.1476
2.59207
22.89
01-072-1259
35.1362
5284.57
0.1476
2.55413
5.43
01-075-1862
35.4460
6989.86
0.1476
2.53252
7.18

36.0484
18649.79
0.1968
2.49157
19.16
01-075-1620;
01-086-2340
284

-------
36.8015
37.1044
38.4697
39.3943
40.1790
40.4998
41.2228
41.8305
43.1987
44.0036
44.7149
45.4054
47.0728
47.4840
48.4906
49.1752
50.1194
9004.86
6930.28
97360.09
11204.39
13871.92
12914.66
7272.23
1578.64
17387.44
7991.39
54361.80
8642.83
9210.33
11481.04
12072.90
3899.06
7381.98
0.2460
0.1476
0.1968
0.2952
0.1968
0.1476
0.1968
0.1476
0.3936
0.1968
0.1968
0.1968
0.2460
0.2460
0.3936
0.1476
0.2460
2.44229
2.42305
2.34014
2.28732
2.24444
2.22740
2.18999
2.15957
2.09429
2.05783
2.02673
1.99751
1.93057
1.91481
1.87738
1.85284
1.82013
9.25
7.12
100.00
11.51
14.25
13.26
7.47
1.62
17.86
8.21
55.84
9.46
11.79
12.40
4.00
7.58
01-074-1132;
00-043-1022
00-043-1022
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-072-1259
01-080-2171
01-080-2172
01-080-2173
01-086-2340
01-080-1385.
01-085-0335
01-085-0335
00-004-0587;
01-085-0335
01-086-2270
01-075-1862;
01-072-1259
01-075-1862;
01-086-2270;
01-086-2340
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-077-2064;
01-080-2171;
01-086-2270;
01-080-1385
00-004-0864;
01-086-2270;
01-086-2340
01-086-2270
01-086-2270;
01-086-2340
01-074-1132;
01-086-2270
00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-080-1385
01-085-0335
285

-------
50.7607
51.4219
52.4387
53.1737
53.5539
54.2842
55.6934
56.5701
57.4009
58.1465
58.5855
59.3019
60.6632
61.5159
62.0602
62.7192
63.9867
65.0603
66.3289
2507.22
2084.80
1612.42
1525.03
3649.32
17641.82
3218.90
6990.68
4910.01
8787.20
1421.60
2726.36
3212.49
2266.81
3542.58
5819.41
2377.60
34880.61
5979.89
0.2952
0.1476
0.3444
0.1476
0.1968
0.2952
0.2460
0.2952
0.3936
0.1968
0.1476
0.3444
0.2460
0.1968
0.1476
0.2460
0.1968
0.2460
0.2952
1.79863
1.77704
1.74496
1.72256
1.71122
1.68991
1.65045
1.62694
1.60535
1.58653
1.57568
1.55835
1.52660
1.50747
1.49555
1.48141
1.45509
1.43365
1.40928
2.58
2.14
1.66
1.57
3.75
18.12
3.31
7.18
5.04
9.03
1.46
2.80
3.30
2.33
3.64
5.98
2.44
35.83
6.14
01-072-1259;
01-085-0335
01-075-1862;
01-086-2270
01-072-1259
01-074-1132;
00-004-0864;
01-086-2270
01-077-2064
01-080-2171
01-080-2172
01-080-2173
01-086-2340
01-072-1259.
01-080-1385
01-075-1862;
01-086-2340;
01-085-0335
00-004-0587;
01-072-1259
01-074-1132;
01-075-1620;
01-086-2270
01-080-2171
01-080-2172
01-080-2173
01-086-2270
01-086-2340
01-072-1259.
01-080-1385
01-072-1259
01-086-2270;
01-072-1259;
00-043-1022
01-085-0335
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340
01-075-1862;
00-004-0587;
01-077-2064;
286

-------
01-080-2171;
01-080-2172;
01-072-1259;
01-080-1385
67.6177	922.92	0.1476	1.38552	0.95 01-085-0335
68.0882	2667.75	0.1476	1.37709	2.74 01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
68.9317	6528.78	0.1968	1.36228	6.71 00-004-0864;
01-086-2270;
01-086-2340
69.4790	7245.08	0.1968	1.35289	7.44 01-075-1620;
00-022-1235
70.2236	1152.24	0.1200	1.33925	1.18 01-075-1862
01-080-2172
01-080-2173
01-086-2270
01-072-1259.
01-080-1385
70.5357	341.08	0.1800	1.33740	0.35
71.8649	591.50	0.1800	1.31264	0.61 01-072-1259
72.2708	694.64	0.1200	1.30627	0.71
73.0043	3316.45	0.2400	1.29494	3.41 01-077-2064;
01-086-2270;
01-072-1259
73.6181	3186.62	0.3600	1.28565	3.27 00-004-0587;
00-022-1235;
01-086-2340;
01-085-0335
75.1655	2563.75	0.3000	1.26298	2.63 01-077-2064
76.4747	1740.10	0.1800	1.24458	1.79 01-075-1620;
01-086-2340;
01-072-1259
77.2318	2110.43	0.4800	1.23426	2.17 01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
78.1970 26116.75	0.3000	1.22143	26.82 01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
78.4799 12786.44	0.1200	1.22076	13.13
80.0409	1237.60	0.1800	1.19786	1.27 01-075-1862
01-080-2171
01-080-2172
01-080-2173
01-086-2270
287

-------
01-080-1385;
01-085-0335
81.4305	1919.23	0.1800	1.18090	1.97 01-086-2270;
01-086-2340;
01-085-0335
82.4007	9058.86	0.2400	1.16943	9.30 01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
83.6659	3261.84	0.3000	1.15494	3.35 01-086-2340;
01-072-1259;
01-085-0335
83.9268	3358.52	0.1800	1.15487	3.45
85.3352	774.85	0.1200	1.13656	0.80 01-075-1862;
00-022-1235;
01-072-1259
86.8271	1590.51	0.2400	1.12083	1.63 01-085-0335
87.4762	1638.88	0.3000	1.11417	1.68 00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-004-0864
01-072-1259
01-080-1385
01-085-0335
88.2530	979.75	0.2400	1.10636	1.01 01-086-2270;
01-072-1259
89.4870	2659.24	0.2400	1.09428	2.73 01-086-2270;
01-072-1259
89.7834	1502.74	0.1200	1.09414	1.54
90.6295	1860.47	0.1200	1.08343	1.91 00-022-1235
91.0820	1039.43	0.1200	1.08191	1.07
92.5214	1063.17	0.6000	1.06617	1.09
94.4951	3687.48	0.6000	1.04903	3.79 00-004-0587;
00-004-0864
95.1942	4785.59	0.4200	1.04317	4.92
95.9624	3094.04	0.2400	1.03685	3.18
96.9991	2994.41	0.3000	1.02850	3.08
99.0651	4762.53	0.3000	1.01252	4.89 00-022-1235
99.4471	2941.52	0.2400	1.01216	3.02
100.5023	2709.66	0.2400	1.00188	2.78
101.3756	1427.43	0.1200	0.99560	1.47 00-004-0587
102.9251	1179.54	0.1200	0.98478	1.21 00-022-1235
103.8175	799.89	0.1800	0.97874	0.82
105.4784	1666.67	0.1800	0.96785	1.71 00-004-0864;
00-043-1022
288

-------
105.9412	2085.07	0.3600	0.96489	2.14 00-004-0864;
00-043-1022
106.4129
1707.26
0.1800
0.96430
1.75

106.8258
711.57
0.1200
0.95933
0.73
00-022-1235
107.4115
619.01
0.1200
0.95572
0.64
00-022-1235
108.4571
1267.52
0.1800
0.94940
1.30
00-004-0587
109.3316
1843.81
0.1200
0.94423
1.89
00-043-1022
109.6256
2208.56
0.1200
0.94252
2.27
00-043-1022
7.3: 2549-H-BHD
7.3.1: Measurement Conditions of2549-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2549-H-Slow
M:\XRD-BHD\2549-H-Slow.rd
2549-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/9/2013 2:35:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
289

-------
7.3.2: Main Graphics, Analyze View of2549-H
2549-H-Slow
60000 -
40000 -
20000 -
10
20
30
40
50
60
70
80
90
100
Position [°2Theta] (Copper (Cu))
Quartz low 44.4 %
Magnesium Sulfate 8.1 % | f"
Elpasolite, syn 7.1 %
Aluminum Nitr] Fluorite, syn 4 %
L| Periclase, syn 1 % |ile 1 % |
1 Y I V IL j -J- J I I I ."J j
Aluminum Oxide Nitride 1 %
=	——i	' r^T Magnesium Aluminum Oxide 3 % |
Anhydrite 6.1 % |	5lllc<		1
290

-------
7.3.3: Pattern List of2549-H
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
21
Aluminum
A12 03
3
16
0
1862

Oxide




01-077-
13
Sodium
Na CI
1
7
0
2064

Chloride




01-074-
16
Magnesium
Mg A12 04
3
14
0
1132

Aluminum
Oxide




01-075-
17
Aluminum
A1N
7
9
0
1620

Nitride




01-080-
11
Aluminum
A12.85
1
14
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
12
Aluminum
A12.81
1
15
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
11
Aluminum
A12.78
1
14
1
2173

Oxide
Nitride
03.65
NO.35



01-085-
29
Aluminum
A1
4
5
0
1327






00-004-
21
Fluorite, syn
Ca F2
4
7
0
0864






00-022-
19
Elpasolite,
K2 Na A1
7
17
0
1235

syn
F6



01-086-
20
Anhydrite
Ca ( S 04 )
6
35
0
2270






01-086-
28
Calcite
Ca (C 03)
3
22
0
2340






01-072-
29
Magnesium
Mg S 04
8
44
0
1259

Sulfate




00-043-
14
Periclase,
Mg O
1
8
0
1022

syn




01-076-
15
Silicon
Si3 N4
4
41
0
1407

Nitride




01-080-
12
Aluminum
A12.667 04
1
15
0
1385

Oxide




01-085-
12
Quartz low
Si 02
44
24
0
0335






291

-------
7.3.4: Peak List of2549-H
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int. [%] Matched by
5.3750
5.6774
6.0241
6.6546
7.5858
8.3196
8.7103
10.0435
11.1633
12.0570
12.7761
13.9424
14.2647
15.3675
16.0502
16.6275
17.8144
18.5028
19.3886
19.9605
20.3886
20.7505
21.4934
21.9660
22.6837
23.1774
23.8917
24.6425
25.2685
26.5423
27.3580
28.0415
28.9636
29.2897
29.5971
99.39
423.84
649.76
1778.77
1013.70
1623.25
2681.94
6255.42
1287.14
2252.95
387.40
594.80
414.30
1271.65
2309.55
1357.43
10655.84
1886.81
2752.84
749.38
968.90
1536.65
1291.37
1177.93
1379.59
2327.36
3192.59
13605.77
10481.34
16591.77
65874.70
41606.89
4502.78
2696.26
3054.06
0.0984
0.1476
0.1476
0.1476
0.2460
0.1476
0.1476
0.1968
0.1476
0.1476
0.1476
0.2952
0.1968
0.1476
0.1968
0.2952
0.1968
0.1476
0.2460
0.1476
0.1476
0.1476
0.1968
0.1476
0.2460
0.1968
0.1476
0.1476
0.2952
0.1968
0.1476
0.1968
0.1476
0.0984
0.1476
16.44193
15.56694
14.67164
13.28291
11.65437
10.62800
10.15217
8.80727
7.92619
7.34065
6.92903
6.35194
6.20914
5.76595
5.52219
5.33175
4.97910
4.79538
4.57825
4.44835
4.35590
4.28075
4.13443
4.04654
3.92010
3.83771
3.72457
3.61276
3.52466
3.35833
3.26002
3.18209
3.08286
3.04927
3.01830
0.15
0.64
0.99
2.70
1.54
2.46
4.07
9.50
1.95
3.42
0.59
0.90
0.63
1.93
3.51
2.06
16.18
2.86
4.18
1.14
1.47
2.33
1.96
1.79
2.09
3.53
4.85
20.65
15.91
25.19
100.00
63.16
6.84
4.09
4.64
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385
01-072-1259
01-076-1407;
01-085-0335
00-022-1235
01-072-1259
01-086-2340
01-072-1259
01-086-2270
01-072-1259;
01-076-1407;
01-085-0335
01-072-1259;
01-077-2064
01-086-2340
292

-------
29.8284
30.7948
31.2397
32.1730
33.0894
34.3497
35.1232
35.9890
37.0114
38.1855
39.1141
39.4743
40.1501
40.7710
41.1607
41.7169
42.1177
43.1651
43.9630
44.7074
45.4337
2229.59
3913.35
7638.59
19196.92
10242.18
13682.12
6533.34
39576.15
9362.38
58824.14
6908.29
3763.59
2996.84
4325.50
17447.76
3795.70
8251.26
10949.73
8648.92
8813.55
6365.08
0.0984
0.2460
0.2952
0.1968
0.3444
0.1476
0.2460
0.1968
0.1476
0.1968
0.1476
0.0984
0.1476
0.0984
0.1476
0.1476
0.1968
0.1968
0.1968
0.1968
0.1968
2.99542
2.90359
2.86324
2.78228
2.70729
2.61079
2.55505
2.49554
2.42892
2.35690
2.30305
2.28287
2.24599
2.21321
2.19315
2.16518
2.14551
2.09584
2.05964
2.02706
1.99633
3.38
5.94
11.60
29.14
15.55
20.77
9.92
60.08
14.21
89.30
10.49
5.71
4.55
6.57
26.49
5.76
12.53
16.62
13.13
13.38
9.66
01-074-1132;
00-022-1235;
01-086-2270;
01-086-2340
01-086-2270
01-075-1620
01-072-1259
01-075-1862
01-075-1620;
01-086-2340
01-074-1132;
00-043-1022
00-022-1235;
01-072-1259
01-080-2171;
01-080-2172;
01-080-2173;
01-076-1407;
01-080-1385
01-080-2172;
01-080-2173;
01-086-2340;
01-076-1407;
01-085-0335
01-076-1407;
01-085-0335
01-086-2270;
01-072-1259
01-086-2270
01-075-1862;
01-072-1259;
01-076-1407
01-075-1862;
01-086-2340
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-080-2171;
01-080-2172;
01-086-2270;
01-080-1385;
01-077-2064
293

-------
46.1030
46.9004
47.4719
48.6128
49.0653
49.7670
50.6234
51.4035
52.2732
53.0198
53.5668
54.2320
54.7851
55.5263
56.0308
56.5248
57.1354
57.4279
58.0791
59.2142
60.6625
3594.78
29154.46
5510.96
13447.88
2473.04
3272.31
8745.18
1618.15
2020.51
1814.05
1979.01
50240.21
3655.54
10675.31
5147.25
16395.26
3651.38
3285.10
4181.46
4419.22
10313.77
0.1968
0.2460
0.1968
0.1476
0.1476
0.1476
0.1968
0.1476
0.5904
0.1968
0.2460
0.2952
0.1476
0.2460
0.0984
0.2952
0.1800
0.1476
0.2460
0.2952
0.2460
1.96889
1.93726
1.91527
1.87295
1.85673
1.83218
1.80318
1.77764
1.75009
1.72719
1.71084
1.69142
1.67564
1.65502
1.64131
1.62813
1.61084
1.60466
1.58821
1.56044
1.52661
5.46
44.26
8.37
20.41
3.75
4.97
13.28
2.46
3.07
2.75
3.00
76.27
5.55
16.21
7.81
24.89
5.54
4.99
6.35
6.71
15.66
01-075-1862;
01-072-1259
00-004-0864;
01-086-2270;
01-072-1259;
01-076-1407
01-086-2270
01-086-2270
01-074-1132;
01-086-2270;
01-076-1407
01-075-1620;
01-080-2171
01-072-1259;
01-076-1407;
01-085-0335
01-086-2270;
01-076-1407
01-072-1259
01-076-1407;
01-085-0335
01-074-1132;
00-022-1235;
01-085-0335
01-076-1407
01-080-2171
01-080-2172
01-086-2340
01-072-1259
01-080-1385
01-077-2064
01-076-1407;
01-085-0335
01-075-1862;
01-086-2340;
01-076-1407;
01-085-0335
01-072-1259
01-074-1132;
01-075-1620;
00-022-1235;
01-086-2270
01-080-2171;
01-080-2172;
01-080-2173;
294

-------
61.4548
62.0495
62.6365
63.9323
64.4832
65.0487
66.4464
67.3131
68.0542
68.8843
69.1227
69.6739
70.4694
72.0814
72.3925
72.9281
5075.69
14650.26
12543.14
6963.76
1981.66
4750.75
1200.38
2519.05
2286.09
15371.92
8912.41
8784.07
1472.72
2486.70
3282.57
1232.02
0.1476
0.2952
0.1968
0.1968
0.1476
0.3936
0.2952
0.1968
0.2952
0.2400
0.1200
0.1800
0.1200
0.2400
0.3600
0.1800
1.50882
1.49578
1.48317
1.45620
1.44508
1.43388
1.40707
1.39105
1.37769
1.36198
1.36124
1.34846
1.33518
1.30923
1.30437
1.29611
7.71
22.24
19.04
10.57
3.01
7.21
1.82
3.82
3.47
23.34
13.53
13.33
2.24
3.77
4.98
1.87
01-086-2270;
01-086-2340;
01-072-1259;
01-080-1385
01-072-1259;
01-076-1407
01-086-2270;
01-072-1259
01-076-1407
01-072-1259;
01-085-0335
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340;
01-076-1407
01-075-1862
01-080-2171
01-080-2172
01-080-2173
01-072-1259
01-076-1407
01-080-1385.
01-077-2064
01-075-1862;
00-022-1235;
01-072-1259;
01-076-1407;
01-085-0335
00-004-0864;
01-086-2270;
01-086-2340
01-074-1132;
01-075-1620;
01-086-2340;
01-076-1407
01-075-1862;
01-072-1259
01-076-1407
01-075-1620;
01-076-1407
01-086-2270;
01-086-2340;
01-072-1259;
295

-------
01-076-1407;
01-077-2064
73.3714	647.91	0.1200	1.28937	0.98 01-076-1407;
01-085-0335
74.0685	1184.03	0.2400	1.27895	1.80 01-075-1862;
01-074-1132;
01-086-2270
74.5461	833.85	0.1800	1.27193	1.27 01-072-1259;
00-043-1022;
01-076-1407
74.8780	754.54	0.1200	1.27026	1.15
75.6288	6835.58	0.2400	1.25639	10.38 01-080-2171
01-080-2172
01-080-2173
01-072-1259
01-080-1385
01-085-0335
75.9112	3420.15	0.1800	1.25553	5.19
76.4155	2335.48	0.1800	1.24540	3.55 01-075-1620;
01-086-2340;
01-072-1259
77.1109	1331.94	0.2400	1.23590	2.02 01-075-1862;
01-086-2270;
01-072-1259;
01-076-1407
77.7687	1006.97	0.1800	1.22708	1.53 00-022-1235;
01-086-2270;
01-076-1407;
01-085-0335
78.2064	3277.07	0.3000	1.22130	4.97 01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
78.5099	2391.77	0.1800	1.22036	3.63
78.9543	1824.91	0.2400	1.21160	2.77 01-080-2171
01-080-2172
01-080-2173
01-072-1259
01-076-1407
01-080-1385
79.9484	1551.68	0.1800	1.19902	2.36 01-080-2171
01-080-2172
01-080-2173
01-086-2270
01-072-1259
01-080-1385.
01-085-0335
296

-------
81.2908	7179.39	0.1800	1.18257	10.90 01-075-1620;
01-086-2340;
01-085-0335
81.5632	4917.04	0.1200	1.18224	7.46
82.2448	4830.36	0.1800	1.17126	7.33 01-085-1327;
00-022-1235;
01-072-1259;
01-076-1407
82.5167	3265.87	0.1800	1.17099	4.96
83.6769	2053.03	0.1800	1.15481	3.12 01-086-2340;
01-072-1259;
01-076-1407;
01-085-0335
84.1675	2810.75	0.2400	1.14933	4.27 01-075-1862
01-080-2171
01-080-2172
01-086-2270
01-072-1259
01-080-1385.
01-077-2064
85.3205	592.62	0.1800	1.13672	0.90 00-022-1235;
01-072-1259;
01-076-1407
86.2058	1707.77	0.1800	1.12730	2.59 01-075-1862;
01-086-2340;
01-072-1259
87.1898	2766.08	0.3000	1.11710	4.20 00-004-0864;
01-072-1259;
01-076-1407;
01-085-0335
89.4417	6330.92	0.1800	1.09471	9.61 01-072-1259;
01-076-1407
89.7595	3742.49	0.1800	1.09437	5.68
90.5856	3714.44	0.1800	1.08384	5.64 00-022-1235
90.9191	3247.10	0.1800	1.08073	4.93
91.2729	1067.48	0.1200	1.08014	1.62
91.5569	498.21	0.1800	1.07486	0.76
92.5706	590.13	0.1200	1.06573	0.90
93.5794	547.34	0.1200	1.05688	0.83 00-022-1235
93.8842	680.94	0.1200	1.05424	1.03 00-043-1022
95.1623	6721.50	0.1800	1.04344	10.20
95.4951	3635.39	0.1800	1.04326	5.52
95.8950	4283.35	0.1800	1.03740	6.50
96.2522	2278.36	0.1800	1.03706	3.46
97.0674	2781.37	0.2400	1.02796	4.22
98.3724	2311.36	0.1800	1.01779	3.51
98.6921	1426.52	0.1800	1.01787	2.17
297

-------
99.5205	617.27	0.1800
100.1590	3204.27	0.3000
101.1385	947.40	0.3600
102.2341	1153.96	0.3000
102.9864	1382.75	0.2400
104.9259	1324.18	0.2400
105.4911	2289.81	0.3000
105.9462	3318.26	0.1800
106.3177	1482.23	0.2400
106.8275	619.40	0.1200
109.5047	1650.65	0.2400
1.00911	0.94
1.00439	4.86
0.99729	1.44
0.98955	1.75
0.98436	2.10 00-022-1235
0.97142	2.01
0.96777	3.48 00-043-1022
0.96486	5.04 00-004-0864;
00-043-1022
0.96490	2.25
0.95932	0.94
0.94322	2.51 00-043-1022
7.4: 2551-H-BHD
7.4.1: Measurement Conditions of2551-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
2551-H-Slow
M:\XRD-BHD\2551-H-Slow.rd
2551-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/9/2013 2:15:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
298

-------
Incident Beam Monochromator No
Spinning	Yes
7.4.2: Main Graphics, Analyze View of2551-H
WVVV V V WW v V V W V V VV V WV V V
V V WW WW V V
M A/U
\MM ti
50	60	70
Position [°2Theta] (Copper (Cu))
90	100
Sodium Chloride 13 %
Aluminum Oxide Nitride 9 %
Quartz low 16 %
Aluminum oxide 9 %

. Elpasolite, syn 1 %
Aluminum Nitride 9 %
Calcite 1 7c
u fate 2 %
Anhydrite 7 %
A uminum Oxide 4 %
Magnesium Aluminum Oxide 7 %
Aluminum Oxide Nitride 6 %
Alurr Fluorite, syn 3 % |j % |
299

-------
7.4.3: Pattern List of2551-11
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
33
Aluminum
A12 03
4
13
0
1862

Oxide




00-004-
16
Sylvite, syn
K CI
3
7
0
0587






01-077-
48
Sodium
Na CI
13
9
0
2064

Chloride




01-074-
38
Magnesium
Mg A12 04
7
12
0
1132

Aluminum
Oxide




01-075-
47
Aluminum
A1N
9
11
0
1620

Nitride




01-080-
12
Aluminum
A12.85
9
11
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
13
Aluminum
A12.81
6
9
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
14
Aluminum
A12.78
6
8
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
42
Aluminum
A1
3
5
0
1327






00-004-
16
Fluorite, syn
Ca F2
3
4
0
0864






00-022-
15
Elpasolite,
K2 Na A1
1
12
0
1235

syn
F6



01-086-
27
Anhydrite
Ca ( S 04 )
7
33
0
2270






01-086-
6
Calcite
Ca (C 03)
1
20
0
2340






01-072-
9
Magnesium
Mg S 04
2
38
0
1259

Sulfate




00-043-
14
Periclase,
Mg O
1
5
0
1022

syn




01-080-
15
Aluminum
A12.667 04
9
10
0
1385

Oxide




01-085-
16
Quartz low
Si 02
16
14
0
0335






300

-------
7.4.4: Peak List of2551-H
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.4749
6.0381
6.8727
7.6478
8.7122
10.7015
13.8245
15.3796
16.2683
17.0812
18.0753
18.9735
19.8955
20.8049
21.7386
22.9063
23.2349
23.9225
24.6320
25.2485
25.4799
26.1676
26.5414
27.3357
28.0404
28.4988
29.3292
29.8270
30.2638
31.2220
31.6387
202.29
369.96
570.77
511.95
256.27
15.95
221.86
197.23
732.20
1276.83
1525.48
5968.01
971.03
1232.94
519.18
3770.23
1471.97
1964.37
4973.44
19030.86
14617.00
2170.88
6548.52
23882.40
95923.55
37187.39
3949.95
6445.71
3488.61
12559.58
171639.10
0.5904
0.2952
0.2952
0.2952
0.2460
0.1476
0.1476
0.1476
0.1476
0.1476
0.1476
0.1968
0.2952
0.1968
0.1968
0.1968
0.0984
0.1476
0.1968
0.1968
0.0984
0.0984
0.1476
0.1968
0.1968
0.1476
0.1476
0.1968
0.0984
0.0984
0.1968
16.14213
14.63765
12.86195
11.56003
10.14992
8.26717
6.40584
5.76144
5.44865
5.19115
4.90782
4.67747
4.46273
4.26967
4.08836
3.88252
3.82834
3.71983
3.61428
3.52740
3.49589
3.40556
3.35844
3.26264
3.18221
3.13206
3.04525
2.99555
2.95330
2.86482
2.82804
0.12
0.22
0.33
0.30
0.15
0.01
0.13
0.11
0.43
0.74
0.89
3.48
0.57
0.72
0.30
2.20
0.86
1.14
2.90
11.09
8.52
1.26
3.82
13.91
55.89
21.67
2.30
3.76
2.03
7.32
100.00
01-074-1132;
00-022-1235;
01-086-2270
01-085-0335
00-022-1235
01-086-2270;
01-086-2340
01-086-2340
01-072-1259
01-086-2270
01-075-1862;
01-086-2270
01-072-1259;
01-085-0335
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864;
01-086-2270
01-086-2340
01-074-1132;
00-022-1235;
01-086-2270;
01-086-2340
01-077-2064;
01-080-2171;
301

-------
32.5801
33.1375
34.0553
34.5733
35.0696
36.0184
36.8099
37.8564
38.4500
38.8890
39.2474
40.1016
40.7639
41.2014
42.1903
42.8261
43.2941
44.0097
44.6759
45.3860
46.9686
47.4730
48.6371
15751.05
36296.23
4079.91
8661.56
9572.62
30140.57
26743.57
18936.71
38680.47
4354.60
3003.11
60092.09
29130.50
5101.17
2531.96
4349.36
13391.50
3293.34
29744.75
112294.60
6755.87
5889.09
3368.41
0.1476
0.1968
0.1476
0.1476
0.1968
0.1968
0.2460
0.1968
0.1968
0.0984
0.1968
0.2460
0.1476
0.1476
0.1968
0.1476
0.1968
0.1476
0.1968
0.1968
0.2460
0.2460
0.1476
2.74844
2.70347
2.63269
2.59441
2.55883
2.49357
2.44175
2.37662
2.34129
2.31587
2.29554
2.24859
2.21358
2.19107
2.14198
2.11164
2.08990
2.05756
2.02841
1.99832
1.93461
1.91522
1.87207
9.18
21.15
2.38
5.05
5.58
17.56
15.58
11.03
22.54
2.54
1.75
35.01
16.97
2.97
1.48
2.53
7.80
1.92
17.33
65.42
3.94
3.43
1.96
01-080-2172;
01-080-1385
01-075-1620
01-072-1259
01-075-1862
01-075-1620;
01-086-2340
01-074-1132;
00-043-1022
01-075-1862;
01-075-1620
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-072-1259
01-080-2171;
01-080-2172;
01-080-2173;
01-086-2340;
01-080-1385
01-086-2270;
01-072-1259
01-086-2270
00-043-1022
01-075-1862;
01-086-2270;
01-086-2340
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-077-2064;
01-086-2270
00-004-0864;
01-086-2270;
01-086-2340;
01-072-1259
01-086-2270
00-022-1235;
01-086-2270
302

-------
49.6851
50.5214
51.4092
51.9352
52.4498
53.0505
53.7911
54.2535
55.6481
56.3776
57.3852
58.1369
59.2919
60.7625
62.1854
62.6663
63.5766
65.0511
65.6511
66.1147
66.3790
66.8995
68.0773
20773.64
8500.05
2779.13
2447.64
5766.35
6290.18
6215.88
8994.65
3531.14
31905.26
8072.43
10152.57
24435.56
1453.89
2316.38
2236.39
1956.98
18458.89
22675.16
28763.65
15911.11
10096.14
5766.38
0.2460
0.1968
0.1476
0.2460
0.1968
0.1476
0.1476
0.2460
0.1968
0.2460
0.2460
0.3444
0.2460
0.1476
0.3444
0.1968
0.1476
0.3444
0.2460
0.1200
0.1200
0.1800
0.2400
1.83501
1.80658
1.77745
1.76068
1.74461
1.72627
1.70424
1.69080
1.65168
1.63203
1.60575
1.58677
1.55859
1.52434
1.49284
1.48253
1.46348
1.43383
1.42217
1.41215
1.41067
1.39748
1.37614
12.10
4.95
1.62
1.43
3.36
3.66
3.62
5.24
2.06
18.59
4.70
5.92
14.24
0.85
1.35
1.30
1.14
10.75
13.21
16.76
9.27
5.88
3.36
01-075-1620
01-072-1259;
01-085-0335
01-075-1862;
01-086-2270
01-077-2064
01-072-1259
01-074-1132;
00-004-0864;
01-086-2270
01-077-2064;
01-072-1259
01-075-1862;
01-086-2340;
01-085-0335
01-074-1132;
01-075-1620;
01-086-2270
01-080-2173;
01-086-2270;
01-086-2340;
01-072-1259
01-086-2270;
00-043-1022
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340
01-086-2270;
01-085-0335
01-077-2064;
01-075-1620;
01-072-1259
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
303

-------
68.8967	3207.86
69.4647	4390.94
69.7095	3427.77
71.3172	6972.63
71.5641	4317.64
72.4848	2561.66
72.9867	9512.00
74.3027	5895.28
75.1793	30949.98
76.7365	2353.47
77.2719	2396.16
78.1902 10060.95
78.4623	5847.40
79.7153	814.15
80.2812	394.86
81.0564	958.57
82.4022	4424.42
0.2400	1.36176
0.2400	1.35201
0.1800	1.35121
0.3000	1.32137
0.1200	1.32069
0.1800	1.30293
0.4200	1.29521
0.1800	1.27549
0.1800	1.26278
0.1800	1.24099
0.3600	1.23372
0.1800	1.22152
0.1200	1.22099
0.1800	1.20194
0.1200	1.19488
0.4800	1.18540
0.1800	1.16942
1.87 00-004-0864;
01-086-2270;
01-086-2340
2.56 00-022-1235
2.00
4.06 01-075-1620;
01-080-2172;
01-080-2173;
01-086-2270;
01-072-1259;
01-080-1385
2.52
1.49 01-075-1620;
01-086-2340
5.54 01-077-2064;
01-086-2270;
01-072-1259
3.43 01-075-1862;
01-074-1132;
01-086-2270
18.03 01-077-2064
1.37 01-075-1862;
01-086-2340;
01-072-1259
1.40	01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
5.86 01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
3.41
0.47 01-080-2171;
01-086-2270;
01-072-1259;
01-085-0335
0.23 01-075-1862;
01-080-2172;
01-080-2173;
01-086-2340;
01-080-1385;
01-085-0335
0.56 01-075-1620;
01-086-2340;
01-085-0335
2.58 01-074-1132;
01-085-1327;
304

-------
82.6830	3893.72	0.1800
83.8799	21537.89	0.1200
84.1728	12273.33	0.1200
85.8576	860.46	0.1800
86.8297	1939.28	0.3600
87.2354	1482.42	0.1800
88.4603	1788.30	0.2400
89.4823	854.79	0.1800
90.3091	1511.71	0.1800
90.6125	1262.11	0.1200
91.0098	1370.43	0.2400
92.7218	284.29	0.2400
93.3314	2945.02	0.4200
94.7243	5046.72	0.1800
95.1068	5237.84	0.1800
95.4585	4760.46	0.1800
96.0097	2013.74	0.1800
96.3560	1231.31	0.2400
97.0348	748.89	0.1800
98.1916	1353.67	0.2400
99.0648	1103.20	0.1800
100.0870	2210.88	0.2400
101.0582	9430.84	0.1800
101.4237	5052.08	0.1200
102.5378	1313.33	0.2400
104.8221	885.91	0.1200
107.7007	2711.90	0.1800
108.0934	1240.24	0.1800
00-022-1235;
01-072-1259
1.16616	2.27 01-074-1132;
01-085-1327;
01-086-2270;
01-072-1259
1.15254	12.55 01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335
1.15213	7.15
1.13098	0.50 01-074-1132;
01-075-1620;
01-086-2270;
01-086-2340;
01-072-1259
1.12080	1.13 01-085-0335
1.11940	0.86
1.10430	1.04 01-086-2270;
01-072-1259
1.09432	0.50 01-086-2270;
01-072-1259
1.08644	0.88 00-022-1235
1.08628	0.74
1.07989	0.80
1.06439	0.17
1.05903	1.72 00-022-1235
1.04710	2.94 00-004-0587
1.04390	3.05
1.04098	2.77
1.03904	1.17
1.03365	0.72
1.02822	0.44
1.01918	0.79
1.01252	0.64
1.00491	1.29
0.99786	5.49
0.99773	2.94
0.98745	0.77
0.97210	0.52
0.95396	1.58
0.95394	0.72
305

-------
7.5: 2552-H-BHD
7.5.1: Measurement Conditions of2552-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2552-H-Slow
M:\XRD-BHD\2552-H-Slow.rd
2552-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/10/2013 1:56:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
306

-------
7.5.2: Main Graphics, Analyze View of2552-H
V vw
2552-H-S ow
V

VhjV W

50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum Nitride 13.1 %
Anhydrite 10.1 %
Magnesium Sulfate 10.1 %
Quartz low 33.3 %
F'ericlase, syn 1 %
¦"-.vivii h >^vi i i r
\J Aluminum Oxide 1 %
Uiaspore J % |
Magnesium Aluminum Oxide 6.1 % | | Alumil E'pasolite, syn 5;1 %]
307

-------
7.5.3: Pattern List of2552-H
Ref. Code Score Compound Chemical SemiQuant Matched Strong
Name	Formula	[%]	Lines Unmatched
Lines
01-075-
22 Aluminum
A12 03

6
17
0
1862
Oxide





00-004-
11 Sylvite, syn
K CI

1
4
1
0587






01-074-
27 Magnesium
Mg A12 04

6
13
0
1132
Aluminum
Oxide





01-075-
10 Aluminum
A1N

13
6
1
1620
Nitride





01-085-
40 Aluminum
A1

3
5
0
1327






00-004-
23 Fluorite, syn
Ca F2

2
6
0
0864






00-022-
23 Elpasolite,
K2 Na A1

5
17
0
1235
syn
F6




01-086-
27 Anhydrite
Ca ( S 04 )

10
30
0
2270






01-072-
16 Magnesium
Mg S 04

10
44
1
1259
Sulfate





00-043-
13 Periclase,
Mg O

1
6
0
1022
syn





01-076-
12 Silicon
Si3 N4

5
38
1
1407
Nitride





01-080-
7 Aluminum
A12.667 04

1
12
0
1385
Oxide





01-074-
8 Diaspore
A1 O ( O H

3
36
0
1879

)




01-085-
14 Quartz low
Si 02

33
21
0
0335






7.5.4: Peak List of2552-H
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
6.0730
680.18
0.1968
14.55374

1.76

6.7723
3498.20
0.1968
13.05231

9.05

7.7373
1631.75
0.1476
11.42641

4.22

8.8184
4147.04
0.2460
10.02791

10.73

9.8228
7671.00
0.2460
9.00466

19.85

10.2899
4515.33
0.1476
8.59698

11.69

11.2556
3503.03
0.1968
7.86141

9.07

12.7656
624.37
0.1476
6.93472

1.62

308

-------
13.3455
614.05
0.2952
6.63466
1.59
01-076-1407
14.0372
993.54
0.1476
6.30923
2.57

14.5329
839.51
0.1476
6.09513
2.17

15.5047
2740.75
0.1968
5.71524
7.09

16.2079
1309.26
0.1968
5.46882
3.39

16.7341
1895.14
0.3444
5.29803
4.90

17.5824
1439.89
0.1968
5.04428
3.73

17.9786
1605.65
0.3936
4.93399
4.16

18.9702
2206.01
0.1968
4.67826
5.71
01-074-1132;





00-022-1235;





01-086-2270;





01-074-1879
19.5132
2370.19
0.1968
4.54929
6.13
01-080-1385
20.5401
1789.40
0.1968
4.32412
4.63
01-072-1259;





01-076-1407
20.9164
1164.45
0.1968
4.24716
3.01
01-085-0335
21.6742
1752.66
0.1476
4.10036
4.54
00-022-1235
22.1654
2139.96
0.1476
4.01058
5.54
01-074-1879
23.3141
3706.36
0.1968
3.81551
9.59

24.0168
2351.10
0.1476
3.70545
6.08

24.7516
11350.49
0.2460
3.59709
29.38
01-072-1259
25.4774
5176.97
0.2952
3.49623
13.40
01-075-1862;





01-086-2270
26.0753
2526.49
0.1968
3.41741
6.54

26.6424
4815.41
0.1476
3.34593
12.46
01-072-1259;





01-076-1407;





01-085-0335
27.4882
38638.59
0.1968
3.24487
100.00
01-072-1259
28.2034
7444.02
0.2952
3.16420
19.27
00-004-0587;





00-004-0864
28.8778
1693.92
0.2460
3.09182
4.38

29.8849
2506.55
0.1476
2.98988
6.49

30.5097
2457.20
0.2460
2.93006
6.36

31.3860
10910.82
0.3936
2.85022
28.24
01-074-1132;





00-022-1235;





01-086-2270
32.5100
4937.48
0.2460
2.75421
12.78

33.1666
7793.05
0.3444
2.70116
20.17
01-075-1620
33.7132
2906.35
0.1476
2.65861
7.52

34.1872
2724.93
0.1968
2.62282
7.05

35.2680
4816.30
0.2952
2.54489
12.46
01-075-1862;





01-076-1407;





01-074-1879
36.1046
22941.70
0.2460
2.48782
59.38
01-075-1620;





01-086-2270
309

-------
36.8030
8323.33
0.2952
2.44219
21.54
01-074-1132;
00-043-1022;
01-074-1879
37.1647
5897.27
0.1476
2.41926
15.26
00-043-1022;
01-074-1879
38.5659
8630.05
0.1968
2.33452
22.34
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-072-1259
39.6284
1823.67
0.1968
2.27434
4.72
01-076-1407;
01-085-0335
40.0034
2033.49
0.1968
2.25388
5.26

40.8725
3947.61
0.1968
2.20795
10.22
01-086-2270;
01-072-1259;
01-074-1879
41.2772
10419.79
0.1968
2.18723
26.97
01-086-2270
41.7636
5729.62
0.1968
2.16287
14.83
01-075-1862;
01-072-1259;
01-076-1407
43.3018
10226.86
0.2460
2.08954
26.47
01-075-1862;
01-086-2270;
01-076-1407
44.0746
6790.88
0.2952
2.05468
17.58
01-072-1259
44.8142
5706.39
0.2460
2.02247
14.77
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
46.2742
4047.10
0.2460
1.96201
10.47
01-075-1862
47.0549
4767.19
0.3444
1.93126
12.34
00-004-0864;
01-086-2270;
01-072-1259;
01-076-1407
47.5257
3652.52
0.2460
1.91322
9.45
01-086-2270
48.7204
7911.62
0.2460
1.86907
20.48
00-022-1235;
01-086-2270;
01-076-1407
50.2168
2430.90
0.1968
1.81683
6.29
00-004-0587;
00-022-1235;
01-080-1385;
01-074-1879;
01-085-0335
50.7386
3162.19
0.2460
1.79936
8.18
01-072-1259;
01-076-1407;
01-085-0335
51.6847
2278.20
0.3936
1.76862
5.90
01-076-1407
310

-------
52.4120
3080.16
0.2952
1.74578
7.97
01-075-1862;
01-086-2270;
01-076-1407
54.3422
31158.39
0.3444
1.68825
80.64
01-072-1259
55.6216
3842.80
0.1968
1.65241
9.95
01-074-1132;
00-004-0864;
00-022-1235;
01-086-2270
56.6439
10213.39
0.2952
1.62499
26.43
01-072-1259;
01-080-1385
57.4722
3399.58
0.1968
1.60353
8.80
01-075-1862;
01-076-1407;
01-074-1879;
01-085-0335
58.3065
3627.37
0.1476
1.58256
9.39

59.3818
4176.46
0.3444
1.55644
10.81
01-074-1132;
01-075-1620;
01-086-2270;
01-076-1407
59.8836
3029.70
0.2460
1.54459
7.84
01-075-1862;
01-076-1407;
01-085-0335
60.9195
2018.10
0.1476
1.52079
5.22
01-075-1862;
01-086-2270;
01-072-1259;
01-074-1879
61.5284
3177.28
0.2460
1.50719
8.22
01-072-1259;
01-076-1407
62.1959
4220.42
0.1968
1.49261
10.92
01-086-2270;
00-043-1022
62.7711
4952.82
0.3444
1.48031
12.82
01-074-1879
64.1129
4040.17
0.3444
1.45253
10.46
01-074-1879;
01-085-0335
65.1787
3636.50
0.3444
1.43133
9.41
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-074-1879
66.4847
994.46
0.1968
1.40635
2.57
01-075-1862;
00-004-0587;
01-072-1259;
01-076-1407;
01-080-1385
67.2209
927.19
0.1476
1.39273
2.40
01-086-2270
68.2581
1940.06
0.2952
1.37408
5.02
01-075-1862;
00-022-1235;
01-072-1259;
01-076-1407:
311

-------





01-074-1879;





01-085-0335
68.9911
9961.04
0.3444
1.36126
25.78
01-086-2270;
01-074-1879
69.7839
5561.32
0.2952
1.34772
14.39
01-074-1132;
01-075-1620;
01-076-1407;
01-080-1385
70.6333
2168.94
0.0984
1.33358
5.61
01-072-1259
71.8200
1141.99
0.2952
1.31444
2.96
01-072-1259
72.4003
1567.35
0.2952
1.30533
4.06
01-075-1620;
01-076-1407;
01-074-1879
72.9305
1377.86
0.1476
1.29714
3.57
01-086-2270;
01-072-1259;
01-076-1407
73.5272
972.34
0.3936
1.28808
2.52
00-004-0587;
00-022-1235;
01-074-1879;
01-085-0335
74.6699
1236.99
0.1200
1.27013
3.20
01-072-1259;
00-043-1022;
01-076-1407
75.2289
649.04
0.1476
1.26312
1.68

75.7071
1170.49
0.1968
1.25632
3.03
00-004-0864;
01-072-1259;
01-080-1385;
01-074-1879;
01-085-0335
76.4951
2094.82
0.1476
1.24533
5.42
01-075-1862;
01-075-1620;
01-072-1259;
01-074-1879
78.2697
2678.70
0.2952
1.22148
6.93
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
79.0411
2534.23
0.1968
1.21149
6.56
01-072-1259;
01-076-1407;
01-080-1385
80.0229
1640.55
0.0984
1.19908
4.25
01-075-1862;
01-086-2270;
01-072-1259;
01-080-1385;
01-085-0335
81.4217
1583.11
0.1476
1.18198
4.10
01-086-2270;
01-076-1407:
312

-------





01-074-1879;





01-085-0335
82.2417
3431.73
0.3444
1.17226
8.88
01-085-1327;





00-022-1235;





01-072-1259;





01-076-1407;





01-074-1879
83.5584
1868.86
0.0984
1.15711
4.84
01-072-1259;





01-076-1407;





01-074-1879;





01-085-0335
84.2856
2574.91
0.2460
1.14897
6.66
01-075-1862;





01-086-2270;





01-072-1259;





01-080-1385;





01-074-1879
85.1245
1412.11
0.1476
1.13978
3.65
01-075-1862;





00-022-1235;





01-072-1259;





01-076-1407;





01-074-1879;





01-085-0335
86.5211
1739.65
0.0984
1.12494
4.50
01-075-1862;





01-072-1259;





01-076-1407
87.5196
1593.94
0.1476
1.11466
4.13
00-004-0587;





00-004-0864;





01-072-1259;





01-080-1385;





01-074-1879;





01-085-0335
88.0742
989.14
0.1200
1.10815
2.56
01-086-2270;





01-072-1259;





01-076-1407
88.4092
1303.88
0.1476
1.10573
3.37
01-086-2270;





01-072-1259;





01-076-1407
89.5076
4258.10
0.1968
1.09498
11.02
01-086-2270;





01-072-1259;





01-076-1407;





01-074-1879
90.6822
3023.00
0.1968
1.08384
7.82
00-022-1235
91.9267
352.96
0.1200
1.07150
0.91

92.5707
741.53
0.1476
1.06661
1.92

93.9220
557.45
0.2952
1.05479
1.44
00-004-0864;





00-043-1022
95.1821
3869.79
0.2460
1.04413
10.02

313

-------
95.9672
2636.37
0.2400
1.03681
6.82

96.2794
1773.62
0.1800
1.03684
4.59

97.1603
1482.04
0.2400
1.02723
3.84

98.3937
723.26
0.3600
1.01762
1.87
00-022-1235
99.3704
802.38
0.1200
1.01023
2.08

100.1803
779.45
0.1200
1.00423
2.02

101.1629
885.44
0.3600
0.99711
2.29
00-004-0587
102.2184
671.29
0.2400
0.98966
1.74

102.9746
1247.31
0.1200
0.98445
3.23
00-022-1235
104.1018
602.97
0.2400
0.97685
1.56

105.0322
1496.10
0.4200
0.97073
3.87

106.0354
1663.27
0.2400
0.96429
4.30
00-004-0864;
00-043-1022
106.4009
1250.42
0.1800
0.96438
3.24

107.4318
484.38
0.2400
0.95560
1.25
00-022-1235
108.0751
519.90
0.1800
0.95169
1.35

108.7339
544.26
0.1200
0.95011
1.41

109.2719
956.61
0.1800
0.94458
2.48

109.6745
908.60
0.1800
0.94458
2.35

7.6: 2558-H-BHD
7.6.1: Measurement Conditions of2558-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
2558-H-Slow
M:\XRD-BHD\2558-H-Slow.rd
2558-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/10/2013 1:37:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
314

-------
K-Beta [A]	1.39225
K-A2 / K-Al Ratio	0.50000
Generator Settings	40 mA, 45 kV
Diffractometer Type	XPert MPD
Diffractometer Number	1
Goniometer Radius [mm]	200.00
Dist. Focus-Diverg. Slit [mm]	91.00
Incident Beam Monochromator	No
Spinning	Yes
7.6.2: Main Graphics, Analyze View of2558-H
2558-H-Slow
ft 
-------
Aluminum Oxide Nitride 8.1 %
Anhydrite 8.1 %
Aluminum Nitride 8.1 %

Aluminum Oxide 6.1 % |
Magnesium Aluminum Oxide 6.1 %

Fluorite, syn 5.1 %
Sodium Chloride 15.2 % |
Quartz low 17.2 %]
Ca cite 1 %
Sylvite, syn 4 %
Eloasolite. syn 2 % |
Aluminum Oxide 3 % H
	Wrzr
III IUI I I VAIU'j IHILI I
5.1 % |
7.6.3: Pattern List of2558-H
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
31
Aluminum
A12 03
3
13
0
1862

Oxide




00-004-
18
Sylvite, syn
K CI
4
7
0
0587






01-077-
49
Sodium
Na CI
15
9
0
2064

Chloride




01-074-
32
Magnesium
Mg A12 04
6
14
0
1132

Aluminum
Oxide




01-075-
44
Aluminum
A1N
8
10
0
1620

Nitride




01-080-
11
Aluminum
A12.85
8
10
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
10
Aluminum
A12.81
4
9
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
12
Aluminum
A12.78
5
8
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
43
Aluminum
A1
4
5
0
1327






00-004-
18
Fluorite, syn
Ca F2
5
6
0
0864






00-022-
16
Elpasolite,
K2 Na A1
2
13
0
1235

syn
F6



01-086-
24
Anhydrite
Ca ( S 04 )
8
33
0
2270






316

-------
01-086-
8
Calcite
Ca (C 03)
1
19
0
2340






01-072-
12
Magnesium
Mg S 04
3
38
0
1259

Sulfate




01-080-
14
Aluminum
A12.667 04
6
9
0
1385

Oxide




01-085-
16
Quartz low
Si 02
17
18
0
0335






7.6.4: Peak List of2558-H
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.8743
541.31
0.1476
15.04551
0.31

6.7481
669.18
0.1476
13.09901
0.39

7.5650
966.47
0.1476
11.68637
0.56

8.6304
865.94
0.3936
10.24590
0.50

11.4285
952.91
0.3936
7.74285
0.55

13.7125
923.54
0.5904
6.45790
0.53

15.0178
1236.58
0.1476
5.89941
0.71

15.3251
1220.72
0.1476
5.78182
0.71

16.2104
1182.43
0.2460
5.46797
0.68

17.0418
1445.72
0.1968
5.20306
0.84

18.1106
1816.15
0.1968
4.89832
1.05

18.9388
4650.56
0.1968
4.68596
2.69
01-074-1132;





00-022-1235;





01-086-2270
19.8657
1751.70
0.1476
4.46936
1.01

20.7547
2739.10
0.2952
4.27988
1.58
01-085-0335
21.1799
1456.91
0.0984
4.19492
0.84

22.7972
3368.62
0.2952
3.90084
1.95
01-086-2270
23.2534
2296.83
0.1476
3.82533
1.33
01-086-2340
23.8917
3087.55
0.1476
3.72457
1.78

24.5983
5010.66
0.1476
3.61916
2.89
01-072-1259
25.2701
22923.83
0.2952
3.52445
13.24
01-086-2270
26.1454
2152.76
0.0984
3.40840
1.24

26.5183
8974.60
0.1476
3.36131
5.18
01-072-1259;





01-085-0335
27.3097
22468.73
0.1968
3.26568
12.98
01-077-2064;





01-072-1259
28.0441
103949.30
0.2460
3.18180
60.05

317

-------
28.4731
41091.23
0.0984
3.13484
23.74
00-004-0587;





00-004-0864;





01-086-2270
29.3075
5504.90
0.1476
3.04746
3.18
01-086-2340
29.7956
6702.36
0.1476
2.99863
3.87

30.2458
4845.66
0.1476
2.95502
2.80

31.6138
173091.50
0.1476
2.83020
100.00
01-077-2064;





01-080-2171;





01-080-1385
32.5348
9829.83
0.2952
2.75216
5.68

33.1151
29477.57
0.1968
2.70525
17.03
01-075-1620
34.0468
3430.28
0.1968
2.63332
1.98

34.5391
9399.34
0.1476
2.59690
5.43
01-072-1259
35.0453
7414.24
0.1476
2.56055
4.28
01-075-1862
36.0021
26249.07
0.2460
2.49466
15.16
01-075-1620;





01-086-2340
36.7790
20151.54
0.2460
2.44373
11.64
01-074-1132
37.8299
16133.45
0.1968
2.37823
9.32
01-075-1862;





01-075-1620
38.4164
39140.80
0.1968
2.34326
22.61
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
39.1302
3340.13
0.1476
2.30214
1.93
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
40.1020
64731.76
0.2952
2.24857
37.40
01-085-0335
40.7358
26811.43
0.1476
2.21504
15.49
00-004-0587;





01-086-2270;





01-072-1259
41.1707
4974.50
0.1968
2.19264
2.87
01-086-2270
42.1330
3650.93
0.1968
2.14476
2.11

42.6123
3269.26
0.2460
2.12174
1.89
01-085-0335
43.2726
9415.52
0.1968
2.09088
5.44
01-075-1862;





01-086-2270;





01-086-2340
43.9370
3310.72
0.1476
2.06080
1.91
01-072-1259
44.6630
34455.62
0.1968
2.02897
19.91
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3569
100801.70
0.1968
1.99953
58.24
01-077-2064;





01-086-2270
46.9255
9818.48
0.1968
1.93628
5.67
00-004-0864;





01-086-2270;





01-072-1259
318

-------
47.4685
5242.89
0.1968
1.91540
3.03
01-086-2270
48.1914
2123.71
0.1476
1.88834
1.23
01-086-2340;





01-072-1259
48.5979
2843.87
0.1476
1.87349
1.64
01-086-2270;





01-086-2340
49.0674
2401.26
0.1968
1.85666
1.39
01-074-1132;





01-086-2270
49.6791
20951.62
0.2952
1.83522
12.10
01-075-1620
50.4905
7665.58
0.1476
1.80762
4.43
01-072-1259;





01-085-0335
51.3689
1593.56
0.1476
1.77875
0.92

51.9738
2471.70
0.2460
1.75947
1.43

52.4549
4093.35
0.1476
1.74445
2.36
01-075-1862;





01-086-2270
53.0257
4923.22
0.1968
1.72702
2.84

53.7440
5938.02
0.1476
1.70562
3.43
01-077-2064
54.2230
8056.08
0.2460
1.69168
4.65
01-072-1259
55.6214
4330.27
0.2460
1.65242
2.50
01-074-1132;





00-004-0864;





01-086-2270
56.3414
29354.68
0.2952
1.63299
16.96
01-077-2064;





01-072-1259
57.3695
6849.67
0.2460
1.60615
3.96
01-075-1862;





01-086-2340;





01-085-0335
58.0775
11252.02
0.2952
1.58825
6.50
01-072-1259
59.2718
20070.24
0.2952
1.55906
11.60
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270
60.7359
1929.75
0.1476
1.52494
1.11
01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259
62.1218
1758.75
0.2460
1.49421
1.02
01-086-2270;





01-072-1259
62.6402
2128.27
0.1968
1.48309
1.23

63.5654
1766.70
0.1476
1.46371
1.02
01-072-1259
63.9323
1132.64
0.1476
1.45620
0.65
01-072-1259;





01-085-0335
65.0038
17390.96
0.3444
1.43476
10.05
01-085-1327;





00-022-1235;





01-086-2340
65.6835
19988.53
0.2460
1.42155
11.55
01-086-2270;





01-085-0335
319

-------
66.0837
26676.40
0.1968
1.41391
15.41
01-077-2064;





01-075-1620;





01-072-1259
66.8718
9354.67
0.1968
1.39915
5.40
01-086-2270
68.0434
3643.79
0.3444
1.37789
2.11
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
68.8842
2816.79
0.1968
1.36311
1.63
01-074-1132;





00-004-0864;





01-086-2270;





01-086-2340
69.3967
3924.53
0.2400
1.35317
2.27
00-022-1235
69.6749
2957.10
0.1800
1.35180
1.71

71.2983
5193.74
0.3000
1.32168
3.00
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
72.4733
2319.01
0.1200
1.30311
1.34
01-075-1620;





01-086-2340
72.9471
10557.42
0.4200
1.29581
6.10
01-077-2064;





01-086-2270;





01-086-2340;





01-072-1259
74.2727
5340.82
0.2400
1.27593
3.09
01-075-1862;





01-074-1132;





01-086-2270
75.1482
27760.21
0.1800
1.26323
16.04
01-077-2064
75.4193
13933.66
0.1200
1.26249
8.05

76.7209
1817.59
0.1800
1.24120
1.05
01-075-1862;





01-086-2340;





01-072-1259
77.1546
1854.98
0.2400
1.23530
1.07
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.1411
8495.24
0.2400
1.22216
4.91
01-085-1327;





00-022-1235;





01-072-1259
78.4155
4708.06
0.1200
1.22160
2.72

79.5982
946.95
0.1800
1.20341
0.55
01-072-1259
80.9648
857.40
0.3000
1.18651
0.50
01-075-1620;





01-086-2340;





01-085-0335
320

-------
82.3689
4920.90
0.2400
1.16980
2.84
01-085-1327;





00-022-1235;





01-072-1259
83.8475
19865.88
0.1800
1.15290
11.48
01-077-2064;





01-086-2340;





01-072-1259;





01-085-0335
84.1428
10805.07
0.1800
1.15246
6.24

86.6754
2258.19
0.3000
1.12240
1.30
01-072-1259
86.8457
2369.39
0.1800
1.12342
1.37

87.2423
2320.02
0.2400
1.11656
1.34
00-004-0864;





01-072-1259;





01-085-0335
87.5758
1729.73
0.1200
1.11593
1.00

88.4312
1701.78
0.3000
1.10459
0.98
01-086-2270;





01-072-1259
89.4552
1186.56
0.2400
1.09458
0.69
01-072-1259
90.2663
1605.00
0.1800
1.08684
0.93
00-022-1235
90.5758
1499.51
0.1200
1.08663
0.87

91.0333
1136.53
0.1800
1.07968
0.66

93.4792
4436.48
0.3000
1.05775
2.56
00-022-1235
94.0630
4392.21
0.1800
1.05533
2.54

95.0813
4178.95
0.1800
1.04411
2.41

95.4424
4351.12
0.1800
1.04111
2.51

95.8760
1800.39
0.1800
1.04013
1.04

96.2744
1301.64
0.2400
1.03431
0.75

96.9282
1032.33
0.3000
1.02907
0.60

98.2013
1402.86
0.6000
1.01910
0.81

99.0648
2211.78
0.1800
1.01252
1.28

99.3706
1835.96
0.1200
1.01274
1.06

100.3593
4030.18
0.3000
1.00292
2.33

101.0285
9116.43
0.2400
0.99808
5.27

101.3905
4910.53
0.1800
0.99796
2.84

102.4816
1791.28
0.2400
0.98784
1.03

103.0810
319.40
0.3600
0.98616
0.18

104.6839
378.19
0.1800
0.97300
0.22

105.7998
321.21
0.6000
0.96579
0.19
00-004-0864
107.2198
1404.93
0.1800
0.95690
0.81
00-022-1235
107.6460
3360.41
0.1800
0.95666
1.94

108.0669
1787.91
0.1800
0.95174
1.03

321

-------
7.7: 2565-H-BHD
7.7.1: Measurement Conditions of2565-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
2565-H-Slow
M:\XRD-BHD\2565-H-Slow.rd
2565-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/11/2013 1:19:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
322

-------
Incident Beam Monochromator No
Spinning	Yes
7.7.2: Main Graphics, Analyze View of2565-H
VWVW VV V V W V V
www vvvvvv
Ufii.
y y
j/,jv \
wvv
"MjKj'i A. A J U H iWiA,
w v vvV" H/yvv V.^wiluy
50	60	70
Position [°2Theta] (Copper (Cu))
Quartz low 75.2 %
>' ' I r4- -1	
A urninurn Nitride 1 %
II i-.L-.i ¦ --I¦¦¦	I
Aluminum Oxide 1 %
!i lurn Oxide 3 %
Elpa Magnesium Sulfate 3 %
Alum
Silicon Nitride 3 %
323

-------
7.7.3: Pattern List of2565-H
Ref. Code
Score Compound
Chemical
Semi Quant
Matched
Strong

Name
Formula
[%]

Lines
Unmatched
Lines
01-075-
19 Aluminum
A12 03

1
13
0
1862
Oxide





01-074-
11 Magnesium
Mg A12 04

3
13
0
1132
Aluminum
Oxide





01-075-
6 Aluminum
A1N

1
8
0
1620
Nitride





01-085-
44 Aluminum
A1

6
5
0
1327






00-022-
21 Elpasolite,
K2 Na A1

4
18
0
1235
syn
F6




01-086-
12 Anhydrite
Ca ( S 04 )

2
32
0
2270






01-086-
26 Calcite
Ca (C 03)

1
25
0
2340






01-072-
23 Magnesium
Mg S 04

3
44
0
1259
Sulfate





01-076-
21 Silicon
Si3 N4

3
39
0
1407
Nitride





01-074-
13 Diaspore
A1 O ( O H

1
37
0
1879

)




01-085-
26 Quartz low
Si 02

76
28
0
0335






7.7.4: Peak List of2565-H
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
7.8691
512.64
0.1476
11.23540

0.52

8.8107
536.60
0.1476
10.03665

0.55

9.3805
836.67
0.1476
9.42824

0.85

10.5291
458.35
0.0984
8.40215

0.47

11.5266
758.83
0.0984
7.67720

0.77

12.2350
977.46
0.1968
7.23427

1.00

14.3118
1241.72
0.1476
6.18879

1.27

15.4193
624.91
0.7872
5.74669

0.64

17.8523
1152.82
0.1968
4.96862

1.18

18.7303
2672.72
0.2952
4.73764

2.72
00-022-1235;
01-074-1879
324

-------
19.7089
1610.46
0.1968
4.50457
1.64

20.7658
9854.64
0.2460
4.27762
10.04
01-076-1407;





01-085-0335
21.9097
2023.36
0.1476
4.05680
2.06
00-022-1235
22.3714
176.66
0.0984
3.97412
0.18
01-072-1259;





01-074-1879
22.9793
2100.25
0.1968
3.87034
2.14
01-086-2270;





01-086-2340;





01-076-1407
23.3814
715.77
0.0984
3.80469
0.73

23.8939
12048.89
0.1968
3.72422
12.28

24.6274
8742.69
0.1968
3.61494
8.91
01-072-1259
25.3971
1729.63
0.1476
3.50710
1.76
01-075-1862;





01-086-2270
26.5376
58627.99
0.2460
3.35891
59.76
01-072-1259;





01-076-1407;





01-085-0335
27.3442
44383.00
0.1968
3.26164
45.24
01-072-1259
27.8063
5795.94
0.1476
3.20848
5.91
01-074-1879
28.8629
9103.64
0.1476
3.09338
9.28

29.3125
21006.03
0.2460
3.04695
21.41
01-086-2340
30.8666
11527.96
0.2952
2.89700
11.75
01-076-1407
32.3900
4516.61
0.2460
2.76413
4.60

33.3573
1209.03
0.1476
2.68616
1.23
01-075-1620
34.5010
21770.05
0.2952
2.59969
22.19
01-072-1259;





01-076-1407
35.4136
7275.78
0.1476
2.53476
7.42
01-076-1407
35.9745
25910.63
0.2460
2.49651
26.41
01-075-1620;





01-086-2340;





01-072-1259
36.5079
10075.08
0.1968
2.46126
10.27
01-086-2270;





01-085-0335
36.9703
4204.89
0.1476
2.43153
4.29
01-074-1132;





01-074-1879
38.3668
98110.16
0.2952
2.34617
100.00
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259;





01-074-1879
39.3465
11865.14
0.1968
2.28998
12.09
01-086-2340;





01-085-0335
40.1008
12065.12
0.3444
2.24864
12.30
01-076-1407;





01-085-0335
41.1231
13927.89
0.2952
2.19507
14.20
01-086-2270;





01-074-1879
42.3373
5280.34
0.2460
2.13488
5.38
01-074-1879;





01-085-0335
325

-------
43.0917
6607.30
0.2460
2.09924
6.73
01-075-1862;
01-086-2340
43.9553
6553.15
0.1476
2.05998
6.68
01-072-1259
44.6032
50360.34
0.2952
2.03155
51.33
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
45.6942
4249.79
0.2460
1.98555
4.33
01-074-1879;
01-085-0335
47.0227
2222.00
0.1476
1.93251
2.26
01-086-2270;
01-086-2340;
01-072-1259;
01-076-1407
47.4270
4954.89
0.2460
1.91697
5.05
01-086-2270
48.6007
10417.12
0.3444
1.87339
10.62
00-022-1235;
01-086-2270;
01-086-2340
49.2138
1748.82
0.1968
1.85148
1.78
01-074-1132;
01-086-2270
50.0071
9555.16
0.2460
1.82395
9.74
01-075-1620;
00-022-1235;
01-085-0335
50.6145
4838.65
0.2460
1.80348
4.93
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
51.1938
7632.92
0.2952
1.78442
7.78

51.9860
723.33
0.0984
1.75908
0.74
01-076-1407
53.5048
3513.79
0.1476
1.71268
3.58
01-074-1879
54.2129
36107.37
0.2952
1.69197
36.80
01-072-1259
54.7898
4234.92
0.1476
1.67551
4.32
01-076-1407;
01-074-1879;
01-085-0335
55.1785
1758.27
0.1476
1.66462
1.79
00-022-1235;
01-085-0335
56.5213
11477.73
0.2952
1.62822
11.70
01-086-2340;
01-072-1259;
01-074-1879
57.1562
3438.85
0.2460
1.61164
3.51
01-076-1407;
01-074-1879;
01-085-0335
58.0575
6704.25
0.3444
1.58875
6.83
01-086-2270;
01-072-1259
59.8501
9778.61
0.3444
1.54538
9.97
01-075-1862;
01-076-1407;
01-085-0335
326

-------
60.6209
3845.92
0.2460
1.52756
3.92
01-086-2270;





01-086-2340;





01-072-1259
61.4599
4018.06
0.2460
1.50871
4.10
01-075-1862;





01-072-1259;





01-076-1407
62.0881
2940.08
0.2460
1.49494
3.00
01-086-2270;





01-072-1259
62.6570
5814.42
0.2460
1.48273
5.93
01-076-1407
63.9175
7522.36
0.3444
1.45650
7.67
01-072-1259;





01-085-0335
64.9667
34070.20
0.3936
1.43549
34.73
01-085-1327;





00-022-1235;





01-086-2340;





01-076-1407
67.5731
5146.16
0.1476
1.38633
5.25
01-085-0335
68.1270
8246.12
0.3444
1.37640
8.40
01-075-1862;





00-022-1235;





01-072-1259;





01-076-1407;





01-074-1879;





01-085-0335
68.8694
13362.20
0.1968
1.36336
13.62
01-074-1132;





01-086-2270;





01-086-2340;





01-074-1879
69.3743
8693.99
0.1200
1.35355
8.86
00-022-1235;





01-076-1407
69.6790
6997.30
0.1476
1.34949
7.13
01-074-1132;





01-075-1620;





01-086-2340;





01-076-1407
70.7330
468.82
0.2460
1.33195
0.48
01-074-1879
71.6770
1029.84
0.0984
1.31671
1.05
01-075-1620;





01-086-2270;





01-072-1259
72.8702
3332.84
0.2952
1.29807
3.40
01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
73.3846
2221.75
0.1968
1.29023
2.26
01-086-2340;





01-076-1407;





01-074-1879;





01-085-0335
74.0311
1704.08
0.1476
1.28056
1.74
01-075-1862;





01-074-1132;
327

-------





01-086-2270;





01-074-1879
75.5036
3091.04
0.1968
1.25920
3.15
01-072-1259;
01-074-1879;
01-085-0335
76.1763
1211.54
0.1800
1.24871
1.23
01-075-1620;
01-072-1259;
01-076-1407
76.4610
1767.55
0.1476
1.24580
1.80
01-075-1620;
01-086-2340;
01-072-1259;
01-074-1879
78.0948
33792.53
0.4800
1.22277
34.44
01-085-1327;
00-022-1235;
01-072-1259
78.3747
13537.75
0.1200
1.22213
13.80

79.6949
4217.13
0.3000
1.20219
4.30
01-086-2270;
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
79.9631
3013.37
0.1200
1.20181
3.07

81.2260
3464.16
0.1200
1.18335
3.53
01-075-1620;
01-086-2340;
01-074-1879;
01-085-0335
82.2708
11349.19
0.4200
1.17095
11.57
01-085-1327;
00-022-1235;
01-072-1259;
01-076-1407;
01-074-1879
83.6804
3877.00
0.2400
1.15478
3.95
01-086-2340;
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
84.0445
2782.67
0.1800
1.15356
2.84

84.8767
1089.32
0.3000
1.14153
1.11
01-075-1862;
01-086-2340;
01-074-1879;
01-085-0335
85.2749
392.46
0.1800
1.14004
0.40

86.7224
938.33
0.1200
1.12191
0.96
01-072-1259;
01-076-1407
87.6327
859.79
0.1200
1.11259
0.88
01-072-1259;
01-074-1879;
01-085-0335
328

-------
89.4075
4752.81
0.3000
1.09504
4.84
01-072-1259;





01-076-1407;





01-074-1879
89.7361
2400.55
0.1800
1.09460
2.45

90.5915
4306.90
0.2400
1.08379
4.39
00-022-1235
91.0058
1502.70
0.3000
1.08261
1.53

91.7113
175.28
0.1800
1.07346
0.18

92.4303
923.46
0.1800
1.06698
0.94

92.7362
885.73
0.1800
1.06426
0.90

93.8707
328.79
0.1800
1.05436
0.34
00-022-1235
94.4045
1326.68
0.1800
1.04980
1.35

95.1474
5691.11
0.4200
1.04356
5.80

95.9011
4600.08
0.2400
1.03735
4.69

96.1776
3141.70
0.1200
1.03767
3.20

96.9416
3653.81
0.3000
1.02896
3.72

97.4801
701.61
0.1800
1.02725
0.72

98.5847
3222.03
0.1200
1.01616
3.28
00-022-1235
98.9424
5228.01
0.3000
1.01345
5.33
00-022-1235
100.3754
2307.88
0.1200
1.00280
2.35

101.2684
221.73
0.1200
0.99636
0.23

101.5891
502.28
0.1800
0.99408
0.51
00-022-1235
102.4188
1221.10
0.1800
0.98827
1.24

102.8356
1716.68
0.2400
0.98540
1.75
00-022-1235
104.0320
1079.40
0.1800
0.97731
1.10

104.9239
1299.47
0.3600
0.97144
1.32

105.9330
2039.14
0.3600
0.96494
2.08

106.3624
2535.57
0.2400
0.96462
2.58

7.8: 2567-H-BHD
7.8.1: Measurement Conditions of2567-H
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
2567-H-Slow
M:\XRD-BHD\2567-H-Slow.rd
2567-H-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/11/2013 1:02:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
329

-------
Irradiated Length [mm]
15.00
Specimen Length [mm]
10.00
Receiving Slit Size [mm]
0.2500
Measurement Temperature [°C]
0.00
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Diffractometer Number
1
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
Incident Beam Monochromator
No
Spinning
Yes
7.8.2: Main Graphics, Analyze View of2567-H
w\
^ V11


^V'
50	60	70
Position [°2Theta] (Copper (Cu))
330

-------
Quartz low 85 %
^fide 1 %
Pair-ftp 1 '::i
Anhydrite 1 % |		
•i	1 j.-	g, I
Magnesium Aluminum Qxide 1 %|
III ¦	-1	11 I l-H I LI I jL
I~j Magnesium Sulfate 2 %
7.8.3: Pattern List of2567-H
Ref. Code Score Compound Chemical SemiQuant Matched
Name	Formula	\%\	Lines
Strong
Unmatched
Lines
01-075-
1862
01-074-
1132
01-075-
1620
01-085-
1327
00-022-
1235
01-086-
2270
01-086-
2340
01-072-
1259
01-076-
1407
01-085-
0335
15 Aluminum A12 03
Oxide
9 Magnesium Mg A12 04
Aluminum
Oxide
9 Aluminum A1N
Nitride
42 Aluminum A1
18 Elpasolite,
syn
13 Anhydrite
24 Calcite
K2 Na A1
F6
Ca ( S 04 )
Ca(C 03)
26 Magnesium Mg S 04
Sulfate
21 Silicon	Si3 N4
Nitride
25 Quartz low Si 02
1
1
2
3
2
1
1
2
2
85
15
12
5
17
35
25
52
43
28
7.8.4: Peak List of2567-H
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%] Matched by
6.4262
2.35
0.1476
13.75450
0.00
6.8707
40.89
0.0984
12.86556
0.05
7.2708
149.54
0.3936
12.15855
0.20
7.8000
254.32
0.2952
11.33474
0.34
8.4909
426.03
0.3936
10.41397
0.57
9.3612
920.67
0.1968
9.44763
1.23
331

-------
9.9751
352.26
0.1476
8.86756
0.47

10.3824
219.98
0.1476
8.52054
0.29

10.6756
90.41
0.0984
8.28718
0.12

10.9720
117.67
0.0984
8.06400
0.16

11.5241
787.02
0.1476
7.67885
1.05

12.3780
446.80
0.2460
7.15100
0.60

13.6062
284.95
0.2952
6.50810
0.38

14.1527
608.15
0.2952
6.25803
0.81

16.4556
620.27
0.3936
5.38706
0.83

17.5282
698.78
0.1968
5.05976
0.94

18.6638
3342.47
0.1968
4.75438
4.48

19.2265
519.65
0.0984
4.61649
0.70
01-074-1132;





01-086-2270
19.5816
1063.76
0.2460
4.53356
1.42

20.7055
15200.06
0.1476
4.28993
20.36
01-072-1259;





01-076-1407;





01-085-0335
21.1854
1354.03
0.0984
4.19383
1.81

21.9218
2944.03
0.1476
4.05459
3.94
00-022-1235
22.9513
2831.98
0.1968
3.87501
3.79
01-086-2270;





01-086-2340;





01-076-1407
23.8714
16266.61
0.1968
3.72769
21.79

24.5900
12893.44
0.1968
3.62036
17.27
01-072-1259
25.3656
2419.73
0.1968
3.51139
3.24
01-075-1862;





01-086-2270
26.4962
74652.19
0.1968
3.36407
100.00
01-072-1259;





01-076-1407;





01-085-0335
27.3020
60136.66
0.1968
3.26658
80.56
01-072-1259
27.7793
7873.19
0.1968
3.21153
10.55

29.2738
29445.73
0.1968
3.05089
39.44
01-086-2340
30.8052
9817.68
0.3444
2.90262
13.15
01-076-1407
32.3159
7039.73
0.1968
2.77030
9.43

33.0053
3231.49
0.1968
2.71400
4.33
01-075-1620
34.4605
14557.11
0.2460
2.60265
19.50
01-072-1259;





01-076-1407
35.1207
5328.42
0.1476
2.55522
7.14
01-075-1862
35.3823
6309.44
0.0984
2.53693
8.45
01-076-1407
35.9267
32733.22
0.1968
2.49973
43.85
01-075-1620;





01-086-2340;





01-072-1259
36.4203
8138.72
0.0984
2.46698
10.90
01-086-2270;





01-085-0335
36.9269
4105.42
0.1476
2.43428
5.50
01-074-1132
332

-------
38.3278
62155.72
0.2460
2.34847
83.26
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
39.3277
14032.70
0.1968
2.29104
18.80
01-086-2340;





01-085-0335
40.0429
9204.55
0.2952
2.25175
12.33

41.0730
17871.03
0.2952
2.19763
23.94
01-072-1259
41.6422
1705.34
0.1476
2.16890
2.28
01-075-1862;





01-072-1259
42.2825
7788.73
0.1968
2.13752
10.43
01-085-0335
43.0325
8553.51
0.1476
2.10199
11.46
01-086-2340
43.9095
7531.23
0.1968
2.06202
10.09
01-072-1259
44.5510
34382.88
0.2460
2.03381
46.06
01-085-1327;





00-022-1235;





01-072-1259
45.6641
4442.08
0.1968
1.98679
5.95
01-085-0335
46.9431
4103.59
0.1968
1.93560
5.50
01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
47.4081
9275.64
0.1968
1.91769
12.43
01-086-2270
48.5360
13782.65
0.3444
1.87574
18.46
01-086-2270;





01-086-2340;





01-076-1407
48.9834
2868.64
0.1476
1.85965
3.84
01-074-1132;





00-022-1235;





01-086-2270;





01-076-1407
49.9230
12905.63
0.2460
1.82682
17.29
01-075-1620;





01-085-0335
50.5616
6186.69
0.1476
1.80524
8.29
01-072-1259;





01-076-1407;





01-085-0335
50.9835
3912.79
0.1800
1.78981
5.24

51.2221
3413.14
0.2460
1.78351
4.57

51.7114
958.37
0.0984
1.76777
1.28
01-076-1407
52.1367
1486.91
0.1476
1.75435
1.99
01-086-2270;





01-076-1407
53.4616
2907.07
0.1476
1.71396
3.89

54.1605
42922.96
0.2952
1.69348
57.50
01-072-1259
54.7270
4778.76
0.1476
1.67728
6.40
01-076-1407;





01-085-0335
55.1928
1875.17
0.0984
1.66423
2.51
00-022-1235;





01-085-0335
56.4641
13958.34
0.2952
1.62974
18.70
01-086-2340;





01-072-1259
333

-------
57.0300
4683.40
0.2400
1.61357
6.27
01-076-1407;
01-085-0335
57.2747
3534.81
0.1200
1.61125
4.74

58.0045
4081.19
0.2400
1.58876
5.47
01-086-2270;
01-072-1259
59.7859
9746.11
0.3600
1.54560
13.06
01-075-1862;
01-076-1407;
01-085-0335
60.6166
5540.31
0.3000
1.52639
7.42
01-086-2270;
01-086-2340;
01-072-1259
61.3917
5577.77
0.3600
1.50897
7.47
01-075-1862;
01-072-1259;
01-076-1407
62.1162
4898.21
0.1800
1.49310
6.56
01-086-2270;
01-072-1259
62.5749
7563.79
0.3000
1.48325
10.13
01-076-1407
63.8176
14200.75
0.3000
1.45733
19.02
01-072-1259;
01-085-0335
64.9137
20370.21
0.5400
1.43535
27.29
01-085-1327;
00-022-1235;
01-086-2340;
01-076-1407
65.6326
2777.69
0.1200
1.42135
3.72
01-086-2270;
01-076-1407;
01-085-0335
66.1255
860.58
0.1200
1.41195
1.15
01-075-1620;
01-072-1259
67.5497
7283.69
0.1800
1.38560
9.76
01-085-0335
67.9370
12733.32
0.2400
1.37864
17.06
01-075-1862;
01-072-1259;
01-076-1407;
01-085-0335
68.1706
8405.05
0.1200
1.37790
11.26

68.8182
16254.10
0.2400
1.36312
21.77
01-074-1132;
01-086-2270;
01-086-2340
69.6374
8399.60
0.2400
1.34908
11.25
01-074-1132;
01-075-1620;
01-086-2340;
01-076-1407
70.7169
1912.36
0.1800
1.33111
2.56

72.1614
2466.23
0.2400
1.30798
3.30
01-076-1407
72.7415
3874.91
0.2400
1.29897
5.19
01-075-1620;
01-086-2270;
01-086-2340;
334

-------





01-072-1259;





01-076-1407
73.2970
3430.18
0.1800
1.29049
4.59
01-076-1407;
01-085-0335
74.1011
2094.62
0.2400
1.27846
2.81
01-075-1862;
01-074-1132;
01-086-2270
75.4325
2947.27
0.2400
1.25917
3.95
01-085-0335
76.3681
1919.69
0.3000
1.24606
2.57
01-075-1620;
01-086-2340;
01-072-1259
78.0574
20218.12
0.4200
1.22326
27.08
01-085-1327;
00-022-1235
78.8803
1065.11
0.2400
1.21255
1.43
01-086-2270;
01-072-1259;
01-076-1407
79.7016
6247.25
0.1800
1.20211
8.37
01-086-2270;
01-072-1259;
01-076-1407;
01-085-0335
79.9336
4390.28
0.1800
1.20218
5.88

81.0164
3496.67
0.1800
1.18588
4.68
01-075-1620;
01-086-2340;
01-085-0335
81.3430
6593.02
0.1800
1.18195
8.83
01-075-1620;
01-086-2340;
01-076-1407;
01-085-0335
82.2122
9259.86
0.3600
1.17164
12.40
01-085-1327;
00-022-1235;
01-072-1259;
01-076-1407
83.6222
5970.53
0.2400
1.15543
8.00
01-086-2340;
01-072-1259;
01-076-1407;
01-085-0335
84.1586
3456.08
0.2400
1.14943
4.63
01-075-1862;
01-086-2270;
01-086-2340;
01-072-1259
84.3773
2584.85
0.1200
1.14986
3.46

84.7600
1822.72
0.1800
1.14280
2.44
01-086-2270;
01-086-2340;
01-085-0335
85.0849
1114.45
0.1200
1.14210
1.49

335

-------
86.5023
1346.68
0.4800
1.12420
1.80
01-075-1862;
01-072-1259;
01-076-1407
87.2319
1613.08
0.1800
1.11666
2.16
01-072-1259;
01-076-1407;
01-085-0335
87.7361
999.91
0.2400
1.11154
1.34
01-085-0335
88.4768
773.43
0.1200
1.10414
1.04
01-086-2270;
01-072-1259;
01-076-1407
89.3905
6488.17
0.3000
1.09521
8.69
01-072-1259;
01-076-1407
90.5947
6429.35
0.2400
1.08376
8.61
00-022-1235
90.9161
3238.80
0.1200
1.08345
4.34

91.4736
599.52
0.1800
1.07562
0.80

91.9803
887.57
0.1200
1.07102
1.19

92.5680
1408.78
0.2400
1.06575
1.89

95.0787
7614.61
0.4200
1.04413
10.20

95.8272
5559.17
0.1800
1.03795
7.45

96.1147
5666.80
0.1800
1.03561
7.59

96.9637
3981.82
0.3600
1.02879
5.33

97.3228
2199.11
0.1200
1.02849
2.95

98.4208
2733.62
0.2400
1.01742
3.66
00-022-1235
98.9367
5493.55
0.2400
1.01349
7.36
00-022-1235
99.5896
3098.71
0.1800
1.01110
4.15

100.1474
2239.95
0.4800
1.00447
3.00

101.1198
1321.27
0.3600
0.99742
1.77

102.0559
2025.99
0.2400
0.99080
2.71
00-022-1235
102.4134
2198.62
0.1800
0.98831
2.95

102.8808
2729.11
0.2400
0.98509
3.66
00-022-1235
103.6688
1503.97
0.1200
0.97974
2.01

104.0040
2099.22
0.1800
0.97750
2.81

104.3715
1596.79
0.1800
0.97506
2.14

104.9029
1776.48
0.1800
0.97399
2.38

105.9177
3235.72
0.2400
0.96504
4.33

106.3391
3717.48
0.3600
0.96238
4.98

106.8716
1413.10
0.1800
0.96143
1.89

107.8713
1109.01
0.1800
0.95292
1.49

109.5789
1146.59
0.1200
0.94279
1.54

336

-------
Facility I
8.1: 2524-I-BHD
8.1.1: Measurement Conditions of2524-1
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2524-I-Slow
M:\XRD-BHD\2524-I-Slow.rd
2524-I-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/5/2013 9:01:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
337

-------
8.1.2: Main Graphics, Analyze View of2524-1
VW
i
1 !1 / Vi J
VI.
I V1-,
Jl 1
Vv'"' V.	
50	60	70
Position [°2Theta] (Copper (Cu))
Sylvite, syn 10.1 %
Magnesium Aluminum Oxide 10.1 % \
Aluminum Oxide 9.1 %
Aluminum Oxide Nitride 7.1 % 1
_n
Aluminum Oxide Nitride 6.1
Aluminum Oxide Nitride 6.1 % |
Sodium Chloride 10.1 %
Anhydrite 13.1 %
Danr-l-a-ra
Aluminum 1 %
CTpcrsOTTrc, iyi i
%

\ Qi| Magnesium Sulfate 3 % ]
Alij Aluminum Nitride 4 %
338

-------
8.1.3: Pattern List of2524-1
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
47
Aluminum
A12 03
6
20
0
1862

Oxide




00-004-
48
Sylvite, syn
K CI
10
10
0
0587






01-077-
45
Sodium
Na CI
10
9
0
2064

Chloride




01-074-
42
Magnesium
Mg A12 04
10
15
0
1132

Aluminum
Oxide




01-075-
31
Aluminum
A1N
4
10
0
1620

Nitride




01-080-
18
Aluminum
A12.85
7
14
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
19
Aluminum
A12.81
6
13
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
20
Aluminum
A12.78
6
13
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
15
Aluminum
A1
1
5
0
1327






00-004-
23
Fluorite, syn
Ca F2
6
8
0
0864






00-022-
18
Elpasolite,
K2 Na A1
3
18
1
1235

syn
F6



01-086-
28
Anhydrite
Ca ( S 04 )
13
46
0
2270






01-072-
12
Magnesium
Mg S 04
3
48
1
1259

Sulfate




00-043-
26
Periclase,
Mg O
1
8
0
1022

syn




01-080-
21
Aluminum
A12.667 04
9
13
0
1385

Oxide




01-085-
3
Quartz low
Si 02
4
24
0
0335






8.1.4: Peak List of2524-1
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A] Rel.
Int. [%]
Matched by


[°2Th.]



5.2316

299.34
0.1476
16.89215
0.43

6.1569

929.91
0.2460
14.35553
1.34

339

-------
6.9134
7.8891
8.7306
9.8211
11.0307
11.8518
13.6338
15.5213
17.2758
19.0807
20.2720
20.9621
23.0799
23.7840
24.6752
25.6474
27.3870
28.4051
30.3597
31.7365
33.1695
34.0781
35.1751
36.5715
36.9186
37.9207
38.6302
584.78
718.74
988.61
477.89
279.57
601.31
721.38
177.69
791.46
2631.48
646.44
494.91
577.81
309.56
1285.36
14964.57
7012.33
64268.59
1624.93
69507.63
5307.62
563.56
3707.34
15226.75
20354.79
4655.02
2343.44
0.1968
0.3936
0.6888
0.2460
0.1476
0.2952
0.4920
0.5904
0.2460
0.3444
0.0984
0.1968
0.2952
0.3444
0.3936
0.3936
0.3444
0.4428
0.2460
0.4920
0.4428
0.1968
0.3936
0.2460
0.3444
0.2952
0.1476
12.78633
11.20693
10.12853
9.00620
8.02119
7.46724
6.49503
5.70915
5.13309
4.65142
4.38070
4.23801
3.85371
3.74119
3.60805
3.47345
3.25664
3.14218
2.94420
2.81954
2.70093
2.63097
2.55140
2.45712
2.43482
2.37275
2.33078
0.84
1.03
1.42
0.69
0.40
0.87
1.04
0.26
1.14
3.79
0.93
0.71
0.83
0.45
1.85
21.53
10.09
92.46
2.34
100.00
7.64
0.81
5.33
21.91
29.28
6.70
3.37
01-074-1132
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-086-2270
01-080-1385
01-072-1259
01-085-0335
01-086-2270
01-072-1259
01-075-1862;
01-086-2270
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864;
01-086-2270
01-077-2064
01-080-2171
01-080-2172
01-080-2173
01-086-2270.
01-080-1385
01-075-1620
01-075-1862
01-086-2270;
01-085-0335
01-074-1132;
00-043-1022
01-075-1862;
01-075-1620
01-074-1132;
01-085-1327;
00-022-1235;
340

-------
39.0676
40.6529
42.9591
43.4176
44.8522
45.4789
47.1650
48.2654
49.1238
50.2182
50.5940
51.5033
52.5368
53.2088
53.8751
54.7583
55.0380
56.4381
2006.99
54251.31
3863.57
8578.17
22176.17
63707.13
2193.87
943.84
555.95
17175.21
13889.68
2602.78
6077.43
3841.73
3210.18
814.41
844.22
20187.67
0.1968
0.5412
0.1476
0.2460
0.1968
0.3444
0.3444
0.1476
0.0984
0.2460
0.1476
0.1476
0.2460
0.2460
0.1968
0.2400
0.1476
0.2952
2.30569
2.21936
2.10541
2.08424
2.02085
1.99445
1.92701
1.88562
1.85466
1.81678
1.80416
1.77443
1.74193
1.72150
1.70178
1.67501
1.66854
1.63043
2.89
78.05
5.56
12.34
31.90
91.65
3.16
1.36
0.80
24.71
19.98
3.74
8.74
5.53
4.62
1.17
1.21
29.04
01-086-2270;
01-072-1259
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385
00-004-0587;
01-086-2270;
01-072-1259
00-043-1022
01-075-1862;
01-086-2270
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-077-2064
01-080-2171
01-080-2172
01-080-2173
01-086-2270.
01-080-1385
00-004-0864;
01-086-2270
01-072-1259
01-074-1132;
00-022-1235;
01-086-2270
00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-080-1385
01-085-0335
01-072-1259;
01-085-0335
01-075-1862;
01-086-2270
01-077-2064
01-085-0335
01-085-0335
01-077-2064;
01-080-2171;
01-080-2172;
341

-------
57.4831
58.2899
58.6694
59.3693
61.1355
62.3187
63.7102
65.2655
66.4175
66.9483
68.1558
69.6216
71.4073
9872.79
6917.17
11074.36
19204.20
3195.99
2179.72
1003.72
23259.89
24623.33
14733.89
5792.13
625.08
2346.29
0.2460
0.1476
0.2460
0.2952
0.0984
0.2460
0.1476
0.4920
0.2460
0.2460
0.2952
0.2952
0.1968
1.60325
1.58297
1.57363
1.55674
1.51593
1.48996
1.46074
1.42964
1.40761
1.39774
1.37589
1.35046
1.32102
14.20
9.95
15.93
27.63
4.60
3.14
1.44
33.46
35.43
21.20
8.33
0.90
3.38
01-072-1259;
01-080-1385
01-075-1862;
01-085-0335
00-004-0587;
01-072-1259
01-075-1862;
01-074-1132;
01-075-1620;
00-022-1235;
01-086-2270
01-075-1862;
01-086-2270;
01-072-1259
01-086-2270;
00-043-1022
01-072-1259;
01-085-0335
01-074-1132;
01-085-1327;
01-086-2270
01-075-1862
00-004-0587
01-077-2064
01-080-2171
01-080-2172
01-080-2173
01-072-1259.
01-080-1385
01-080-2173;
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
01-074-1132;
01-075-1620;
01-080-2171;
00-022-1235
01-075-1620
01-080-2171
01-080-2172
01-080-2173
01-086-2270
01-072-1259.
01-080-1385
342

-------
72.5803	1831.27
73.6712 10117.52
74.3282 10838.57
75.2168
75.4791
76.8147
77.3334
78.2579
78.5810
79.6962
80.3211
80.6432
82.5341
19435.20
9670.59
2451.68
3606.26
1763.63
1565.05
539.65
612.26
792.34
2559.50
0.1476	1.30253
0.1968	1.28592
0.1476
0.2400
0.1200
0.2400
0.3600
0.1800
0.1800
0.3600
0.1800
0.1800
0.1800
1.27617
1.26225
1.26163
1.23992
1.23289
1.22063
1.21642
1.20218
1.19439
1.19043
1.16788
2.63
14.56
15.59
27.96
13.91
3.53
5.19
2.54
2.25
0.78
0.*
1.14
3.68
01-075-1620;
01-086-2270
00-004-0587;
00-022-1235;
01-085-0335
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259;
00-043-1022
01-077-2064
01-075-1862;
01-086-2270;
01-072-1259
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259;
01-085-0335
01-074-1132
01-085-1327
00-022-1235
01-086-2270
01-072-1259.
00-043-1022
01-074-1132
01-080-2171
01-085-1327
01-086-2270
01-072-1259
00-043-1022.
01-080-1385
01-080-2171;
01-086-2270;
01-072-1259;
01-080-1385;
01-085-0335
01-075-1862
01-080-2171
01-080-2172
01-080-2173
01-086-2270
01-080-1385.
01-085-0335
01-075-1862
01-074-1132;
01-085-1327;
343

-------
00-022-1235;
01-086-2270;
01-072-1259
83.9036 12795.67	0.1800	1.15227	18.41 01-075-1862;
01-077-2064;
01-086-2270;
01-072-1259;
01-085-0335
84.2174	5897.83	0.1800	1.15163	8.49
85.1964	185.38	0.1800	1.13806	0.27 01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335
86.0068	494.39	0.9600	1.12940	0.71 01-075-1862;
01-074-1132;
01-075-1620;
01-086-2270;
01-072-1259
87.6801	2220.94	0.4800	1.11211	3.20 00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-004-0864
01-072-1259
01-080-1385.
01-085-0335
88.4640	2446.81	0.1800	1.10427	3.52 01-086-2270;
01-072-1259
88.8382	1688.48	0.2400	1.10058	2.43 01-075-1862;
01-086-2270;
01-072-1259
90.2805	1150.63	0.3600	1.08671	1.66 00-022-1235
91.0562	1534.19	0.3000	1.07946	2.21
92.9589	782.11	0.1800	1.06229	1.13
94.4714	8136.69	0.2400	1.04923	11.71 00-004-0587;
00-004-0864
95.1320	6882.86	0.1800	1.04369	9.90
95.4625	6042.85	0.1800	1.04095	8.69
97.0628	746.17	0.1800	1.02800	1.07
98.3084	695.30	0.4800	1.01828	1.00
99.3198	2278.33	0.8400	1.01061	3.28
101.0190	6192.97	0.1800	0.99815	8.91
101.4136	5825.13	0.1800	0.99533	8.38 00-004-0587;
00-022-1235
101.7839	3446.39	0.1800	0.99517	4.96
102.4713	2744.09	0.3000	0.98791	3.95 00-022-1235
103.4217	674.82	0.4800	0.98141	0.97
344

-------
104.6757	405.87
105.8313	680.67
107.6804	2446.62
108.5217	4288.06
108.9222	5418.15
0.2400	0.97306
0.3600	0.96559
0.2400	0.95408
0.1800	0.94901
0.2400	0.94664
0.58
0.98 00-004-0864;
00-043-1022
3.52
6.17 00-004-0587
7.80 00-004-0587
8.2: 2526-I-BHD
8.2:1: Measurement Conditions of2526-1
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2526-I-Slow
M:\XRD-BHD\2526-I-Slow.rd
2526-I-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/6/2013 8:41:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
345

-------
82.2: Main Graphics, Analyze View of2526-1
WWW vwvvvv
100000 -
50000 -
Position [°2Theta] (Copper (Cu))
Sylvite, syn 7.8 %
Aluminum Oxide 6.9 %
Magnesium Aluminum Oxide 5.9 %
Sodium Chloride 12.7 % |

Fluorite, syn 5.9 % |



Anhydrite 5.9 % J
Aluminum Oxide Nitride 4.9 % I

Aluminur
Aluminum Oxide 3.9 %
Quartz ow 17.6 %
Periclase, syn 2 %
Aluminum Nitride 2 9 %
Aluminum_2_9_|^% |
AluminumOxide Nitride 2.9 % ]
Ul I IMILI IUC -J.-Ii
346

-------
8.2.3: Pattern List of2526-1
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
25
Aluminum
A12 03
4
16
0
1862

Oxide




00-004-
46
Sylvite, syn
K CI
8
10
0
0587






01-077-
48
Sodium
Na CI
13
9
0
2064

Chloride




01-074-
41
Magnesium
Mg A12 04
6
14
0
1132

Aluminum
Oxide




01-075-
26
Aluminum
A1N
3
8
0
1620

Nitride




01-080-
11
Aluminum
A12.85
5
11
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
12
Aluminum
A12.81
5
11
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
13
Aluminum
A12.78
3
12
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
40
Aluminum
A1
3
5
0
1327






00-004-
27
Fluorite, syn
Ca F2
6
7
0
0864






00-022-
26
Elpasolite,
K2 Na A1
3
13
0
1235

syn
F6



01-086-
22
Anhydrite
Ca ( S 04 )
6
35
0
2270






01-086-
27
Calcite
Ca (C 03)
3
20
0
2340






01-072-
17
Magnesium
Mg S 04
3
38
0
1259

Sulfate




00-043-
28
Periclase,
Mg O
2
6
0
1022

syn




01-085-
12
Quartz low
Si 02
18
20
0
0335






01-076-
13
Silicon
Si3 N4
4
30
1
1407

Nitride




01-080-
14
Aluminum
A12.667 04
7
11
0
1385

Oxide




347

-------
2.4: Peak List of2526-1
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.1916
5.9305
6.9778
7.7801
8.7149
9.2452
10.1551
11.2527
13.6651
14.4178
14.7219
15.4286
16.2424
17.1061
17.9894
18.9655
20.0104
20.7082
21.4747
21.8805
22.6658
23.0134
23.4173
23.9690
24.6041
24.9902
25.4897
26.5327
27.3160
28.2791
29.3433
33.58
533.63
675.34
1211.41
908.09
1362.16
1874.95
6883.15
178.59
142.61
280.44
269.04
1269.74
1050.72
6012.91
4018.49
362.14
1268.76
738.38
912.28
3239.68
3562.16
3001.41
1160.03
3181.78
2900.27
21551.38
6410.91
15062.01
74735.42
22186.78
0.1476
0.1968
0.1476
0.2460
0.1476
0.1968
0.1968
0.1968
0.3936
0.0984
0.0984
0.1968
0.3444
0.1476
0.3444
0.1968
0.1968
0.1968
0.1968
0.2460
0.2460
0.0984
0.1968
0.1476
0.1476
0.1476
0.1476
0.2460
0.1968
0.1968
0.2460
17.02218
14.90289
12.66843
11.36378
10.14674
9.56592
8.71077
7.86348
6.48022
6.14356
6.01731
5.74324
5.45728
5.18365
4.93107
4.67943
4.43738
4.28938
4.13798
4.06216
3.92316
3.86468
3.79893
3.71272
3.61832
3.56327
3.49457
3.35952
3.26495
3.15590
3.04382
0.03
0.40
0.51
0.92
0.69
1.03
1.42
5.22
0.14
0.11
0.21
0.20
0.96
0.80
4.56
3.05
0.27
0.96
0.56
0.69
2.46
2.70
2.28
0.88
2.41
2.20
16.35
4.86
11.43
56.70
16.83
01-074-1132;
00-022-1235;
01-086-2270
01-072-1259;
01-085-0335;
01-076-1407
00-022-1235
01-072-1259
01-086-2270;
01-086-2340;
01-076-1407
01-072-1259
01-075-1862;
01-086-2270
01-072-1259;
01-085-0335;
01-076-1407
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864
01-086-2340
348

-------
30.2875
30.6473
31.1030
31.6534
40.4632
40.7931
42.1643
3342.64
5184.22
11181.76
131810.70
44808.78
19375.32
3637.09
0.0984
0.1476
0.1968
0.1476
0.1476
0.1476
0.1968
2.95104
2.91722
2.87551
2.82676
2.22933
2.21206
2.14324
2.54
3.93
8.48
100.00
32.2269
9830.33
0.1968
2.77775
7.46
32.7178
8258.71
0.1968
2.73718
6.27
33.1577
9160.92
0.1476
2.70187
6.95
34.0406
13788.49
0.1968
2.63378
10.46
34.5788
5220.30
0.0984
2.59402
3.96
35.0983
3575.66
0.1476
2.55680
2.71
35.4174
1651.23
0.0984
2.53450
1.25
35.9148
3751.11
0.1968
2.50053
2.85
36.3829
11178.17
0.1476
2.46942
8.48
36.8231
19429.24
0.2460
2.44091
14.74
38.1953
21008.23
0.1968
2.35632
15.94
38.4619
19744.11
0.1476
2.34059
14.98
38.9088
5141.58
0.1476
2.31473
3.90
39.3634
4351.97
0.1968
2.28904
3.30
33.99
14.70
2.76
01-074-1132;
00-022-1235;
01-086-2340;
01-076-1407
01-077-2064
01-080-2171
01-080-2172
01-080-2173
01-076-1407
01-080-1385
01-075-1620
01-072-1259;
01-076-1407
01-075-1862
01-076-1407
01-075-1620;
01-086-2340;
01-072-1259
01-086-2270;
01-085-0335
01-074-1132;
00-043-1022
00-022-1235;
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-072-1259
01-076-1407
01-080-2171
01-080-2172
01-080-2173
01-086-2340
01 -085-0335
01-080-1385
00-004-0587;
01-085-0335;
01-076-1407
01-086-2270;
01-072-1259
349

-------
42.8587
43.3313
44.2173
44.6980
45.3971
46.9828
47.4352
48.4709
49.6367
50.1243
50.5460
50.7889
51.4211
52.4443
53.1092
53.7798
54.2834
55.6288
56.3901
57.4111
12907.20
6593.31
4018.48
17330.12
84428.64
18504.48
8466.39
5823.40
7177.35
15154.18
10071.51
8140.24
2201.63
4261.91
3028.35
5549.51
4248.67
7269.87
25184.45
4736.78
0.1968
0.1968
0.2460
0.1968
0.2460
0.2952
0.1476
0.2952
0.2952
0.1968
0.2400
0.1800
0.1800
0.3000
0.1800
0.1800
0.3000
0.2400
0.3000
0.3000
2.11011
2.08819
2.04838
2.02746
1.99785
1.93406
1.91666
1.87810
1.83669
1.81996
1.80427
1.80067
1.77560
1.74334
1.72307
1.70316
1.68854
1.65084
1.63035
1.60376
9.79
5.00
3.05
13.15
64.05
14.04
6.42
4.42
5.45
11.50
7.64
6.18
1.67
3.23
2.30
4.21
3.22
5.52
19.11
3.59
00-043-1022
01-075-1862;
01-086-2270;
01-086-2340;
01-076-1407
01-072-1259
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-077-2064;
01-080-2171;
01-086-2270
00-004-0864;
01-086-2270;
01-086-2340;
01-072-1259;
01-076-1407
01-086-2270
01-086-2340;
01-076-1407
01-075-1620
00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-085-0335
01-080-1385
01-072-1259;
01-085-0335;
01-076-1407
01-075-1862;
01-086-2270;
01-076-1407
01-077-2064
01-072-1259
01-074-1132;
00-004-0864;
01-086-2270
01-077-2064;
01-072-1259;
01-076-1407
01-075-1862;
01-086-2340;
350

-------
58.1407
58.5729
59.2807
60.7180
62.2158
63.5746
64.2099
65.1320
66.3301
66.9159
68.1074
68.7021
4071.45
6367.69
11823.50
4796.24
8870.79
218.23
526.67
12732.06
20798.08
6932.65
1823.38
796.38
69.4636	1056.97
70.0809	480.81
0.3000
0.1800
0.4200
0.3600
0.4200
0.1200
0.1800
0.4200
0.4200
0.1800
0.2400
0.1800
0.2400
0.1800
1.58536
1.57469
1.55756
1.52409
1.49095
1.46231
1.44937
1.43106
1.40809
1.39718
1.37561
1.36514
1.35203
1.34162
3.09
4.83
8.97
3.64
6.73
0.17
0.40
9.66
15.78
5.26
1.38
0.60
0.80
0.36
01-085-0335;
01-076-1407
00-004-0587;
01-072-1259
01-074-1132;
01-075-1620;
00-022-1235;
01-086-2270;
01-076-1407
01-080-2172
01-080-2173
01-086-2270
01-086-2340
01-072-1259.
01-080-1385
01-086-2270;
00-043-1022
01-072-1259;
01-076-1407
01-085-0335
01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340
01-075-1862
00-004-0587
01-077-2064
01-080-2171
01-080-2172
01-072-1259
01-076-1407.
01-080-1385
01-086-2270
01-075-1862;
00-022-1235;
01-072-1259;
01-085-0335;
01-076-1407
01-074-1132;
00-004-0864;
01-086-2270;
01-072-1259
00-022-1235;
01-076-1407
01-080-2171;
01-080-2172;
01-080-2173;
351

-------
71.6288	1952.63
72.5147	1989.97
72.9613	2296.88
73.6123	7982.79
74.3180	4980.01
75.1904	23674.00
76.7822	1400.63
77.3699	2603.88
78.1737	4879.34
78.4835	3517.24
79.6768	516.40
80.2256	507.42
0.1800	1.31639
0.1800	1.30247
0.1200	1.29560
0.2400	1.28574
0.1800	1.27527
0.1800	1.26262
0.1200	1.24037
0.3600	1.23240
0.1800	1.22173
0.1800	1.22071
0.1800	1.20242
0.1800	1.19557
01-086-2270;
01-086-2340;
01-076-1407;
01-080-1385
1.48 01-075-1620;
01-086-2270;
01-072-1259
1.51 01-075-1620;
01-086-2340;
01-076-1407
1.74 01-077-2064;
01-086-2270;
01-086-2340;
01-072-1259;
01-076-1407
6.06 00-004-0587;
00-022-1235;
01-086-2340;
01-085-0335
3.78 01-075-1862;
01-074-1132;
01-086-2270
17.96 01-077-2064
1.06 01-075-1862;
01-086-2340;
01-072-1259;
01-076-1407
1.98 01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259;
01-076-1407
3.70 01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
2.67
0.39 01-086-2270;
01-072-1259;
01-085-0335;
01-076-1407
0.38 01-075-1862;
01-080-2171;
01-080-2172;
01-080-2173;
01-086-2340;
01-085-0335;
01-080-1385
352

-------
81.3226	2886.31	0.3600	1.18219	2.19 01-075-1620;
01-086-2340;
01-085-0335
81.8844	2106.26	0.3000	1.17550	1.60 01-086-2270;
01-072-1259;
01-076-1407
82.7207	2489.14	0.2400	1.16572	1.89 01-074-1132;
01-085-1327;
01-086-2270;
01-072-1259
83.1067	2161.36	0.1800	1.16417	1.64
83.8900 15888.75	0.1800	1.15242	12.05 01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335;
01-076-1407
84.1837	8687.94	0.1200	1.15200	6.59
85.7710	868.54	0.1800	1.13190	0.66 01-074-1132;
01-075-1620;
01-086-2270;
01-086-2340;
01-072-1259
86.2361	1262.40	0.1800	1.12699	0.96 01-075-1862;
01-086-2340;
01-072-1259
87.5767	2985.28	0.1800	1.11316	2.26 00-004-0587
01-080-2171
01-080-2172
01-080-2173
00-004-0864
01-072-1259
01 -085-0335
01-080-1385
88.4391	1172.30	0.2400	1.10451	0.89 01-086-2270;
01-072-1259;
01-076-1407
90.3283	1596.84	0.1800	1.08626	1.21 00-022-1235
91.0702	1062.86	0.6000	1.07933	0.81
92.8662	755.08	0.6000	1.06311	0.57
94.4616	6591.04	0.1800	1.04932	5.00 00-004-0587;
00-004-0864
94.7766	4297.27	0.1800	1.04926	3.26
95.1834	3109.13	0.1200	1.04326	2.36
95.4837	3243.93	0.1800	1.04077	2.46
96.3708	853.99	0.2400	1.03353	0.65
97.0521	340.50	0.2400	1.02808	0.26
98.2257	514.26	0.1800	1.01891	0.39
353

-------
99.2679	1497.27	0.7200
100.2414	1085.01	0.3600
101.0658	5585.50	0.1800
101.4201	5268.37	0.1200
101.7769	1589.73	0.1800
102.5389	1054.96	0.3600
104.2415	148.94	0.4800
105.6783	804.84	0.3000
107.6970	1425.06	0.2400
108.5249	1787.48	0.1800
1.01099	1.14
1.00378	0.82
0.99781	4.24
0.99775	4.00
0.99276	1.21 00-004-0587;
00-022-1235
0.98744	0.80
0.97592	0.11
0.96657	0.61 00-004-0864;
00-043-1022
0.95398	1.08
0.94899	1.36 00-004-0587
354

-------
Facility J
9.1: 2514-J-BHD
9.1.1: Measurement Conditions of 2514-J
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2514-J-Slow
M:\XRD-BHD\2514-J-Slow.rd
2514-J-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/6/2013 8:22:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
355

-------
9.1.2: Main Graphics, Analyze View of2514-J
vvv vv
V* vw
¦Aa/' A'lllH
,f< l/w' -'WIMU
w "v,;
. wi L lu . ml * I* a,
50	60	70
Position [°2Theta] (Copper (Cu))
80	90

Sodium Chloride 9.9 %
Aluminum Oxide Nitride 6.9 % jr--

Anhydrite 6.9 %

Sylvite, syn 6.9 %
Aluminum Oxide 6.9 %
Magnesium Aluminum Oxide 5
Aluminum Oxide Nitride 5.9 % ]"
Quartz low 22.8 %~|
Magnesium Sulfate 2 %
i-.:--		i or I
Periclase, syn 1 %
Aluminum 2 1
l_lfJ.J Ji.ilHi.., JJ
Aluminum Uxide 3 %
Silicon Nitride 3 %
S§]
lt%]
356

-------
9.1.3: Pattern List of 2514-J
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
32
Aluminum
A12 03
3
19
0
1862

Oxide




00-004-
36
Sylvite, syn
K CI
7
10
0
0587






01-077-
48
Sodium
Na CI
10
9
0
2064

Chloride




01-074-
39
Magnesium
Mg A12 04
5
14
0
1132

Aluminum
Oxide




01-075-
30
Aluminum
A1N
3
10
0
1620

Nitride




01-080-
14
Aluminum
A12.85
7
13
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
17
Aluminum
A12.81
6
12
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
18
Aluminum
A12.78
4
13
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
39
Aluminum
A1
2
5
0
1327






00-004-
16
Fluorite, syn
Ca F2
6
5
0
0864






00-022-
21
Elpasolite,
K2 Na A1
2
18
0
1235

syn
F6



01-086-
33
Anhydrite
Ca ( S 04 )
7
43
0
2270






01-086-
18
Calcite
Ca (C 03)
1
21
0
2340






01-072-
19
Magnesium
Mg S 04
2
50
0
1259

Sulfate




00-043-
13
Periclase,
Mg O
1
7
0
1022

syn




01-076-
19
Silicon
Si3 N4
3
44
0
1407

Nitride




01-080-
15
Aluminum
A12.667 04
7
12
0
1385

Oxide




01-074-
18
Diaspore
A1 O ( O H
2
38
0
1879


)



01-085-
19
Quartz low
Si 02
23
22
0
0335






357

-------
9.1.4: Peak List of 2514-J
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.7950
6.8083
7.8418
10.2833
11.1290
13.2053
14.7352
15.0667
16.9809
18.3679
18.9433
20.7720
22.8222
23.2295
24.0302
24.5767
25.3875
26.6665
27.2862
28.1666
28.4973
29.3112
29.9303
30.2847
31.6118
32.5195
33.1072
33.9309
129.86
259.02
336.24
1565.86
2437.90
854.13
252.30
305.39
571.71
881.61
2043.21
1591.77
4387.92
4544.96
5866.12
1947.17
13390.42
19592.28
9406.12
58349.15
21215.15
9482.26
5412.10
3102.88
92721.50
2288.73
6404.78
774.25
0.3936
0.2952
0.3936
0.1476
0.2460
0.1476
0.1476
0.0984
0.1968
0.1968
0.3444
0.1968
0.1968
0.1968
0.1968
0.1968
0.2460
0.1476
0.1968
0.2460
0.1476
0.2460
0.0984
0.1476
0.2460
0.1968
0.2460
0.0984
15.25123
12.98336
11.27448
8.60244
7.95060
6.70479
6.01193
5.88039
5.22158
4.83029
4.68484
4.27636
3.89662
3.82921
3.70342
3.62228
3.50841
3.34297
3.26844
3.16825
3.13223
3.04708
2.98545
2.95132
2.83038
2.75342
2.70587
2.64205
0.14
0.28
0.36
1.69
2.63
0.92
0.27
0.33
0.62
0.95
2.20
1.72
4.73
4.90
6.33
2.10
14.44
21.13
10.14
62.93
22.88
10.23
5.84
3.35
100.00
2.47
6.91
0.84
01-076-1407
01-074-1132;
00-022-1235;
01-086-2270;
01-074-1879
01-076-1407;
01-085-0335
01-086-2270;
01-076-1407
01-086-2340
01-072-1259
01-075-1862;
01-086-2270
01-076-1407;
01-085-0335
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864
00-004-0587;
00-004-0864;
01-086-2270
01-086-2340
01-077-2064;
01-080-2171;
01-076-1407;
01-080-1385
01-075-1620
358

-------
34.5902	2961.17
35.0387	2012.47
35.4336	1503.68
36.2536	11275.42
36.7781	12282.85
37.6948	5702.26
38.4461	16414.88
39.3286	3467.16
40.3203	42814.25
40.7480	16623.99
41.7031	1139.08
42.3385	2587.05
43.2856	7099.16
44.6965	22061.85
0.2952	2.59319
0.1476	2.56101
0.0984	2.53338
0.1476	2.47794
0.1968	2.44379
0.2460	2.38644
0.2460	2.34152
0.1968	2.29099
0.2460	2.23690
0.1476	2.21440
0.1476	2.16587
0.1476	2.13482
0.2460	2.09028
0.2460	2.02753
3.19 01-072-1259;
01-076-1407
2.17 01-075-1862;
01-074-1879
1.62 01-076-1407
12.16 01-075-1620;
01-086-2270;
01-086-2340
13.25 01-074-1132;
00-043-1022;
01-074-1879;
01-085-0335
6.15 01-075-1862;
01-075-1620;
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385;
01-074-1879
17.70 01-074-1132;
01-085-1327;
00-022-1235;
01-086-2270;
01-072-1259;
01-074-1879
3.74 01-080-2171;
01-080-2172;
01-080-2173;
01-086-2340;
01-080-1385;
01-085-0335
46.18 00-004-0587;
01-076-1407;
01-085-0335
17.93 00-004-0587;
01-086-2270;
01-072-1259
1.23 01-075-1862;
01-072-1259;
01-076-1407
2.79 01-074-1879;
01-085-0335
7.66 01-075-1862;
01-086-2270;
01-086-2340;
01-076-1407
23.79 01-074-1132;
01-085-1327;
359

-------
45.3505
46.6892
47.1656
48.5133
49.9651
50.4965
51.3884
52.0721
53.0817
53.8164
55.0676
56.3650
57.3686
58.4028
59.0200
71499.87
3354.29
6666.10
2298.61
12832.22
5249.61
1180.82
3188.07
1606.76
3125.66
1363.97
20198.39
3588.74
7598.51
9550.77
0.2460
0.1476
0.2460
0.2460
0.2952
0.1968
0.1968
0.1476
0.1968
0.3444
0.2460
0.2952
0.2952
0.4428
0.3000
1.99980
1.94553
1.92699
1.87656
1.82538
1.80742
1.77812
1.75637
1.72532
1.70349
1.66771
1.63237
1.60618
1.58017
1.56382
77.11
3.62
7.19
2.48
13.84
5.66
1.27
3.44
1.73
3.37
1.47
21.78
3.87
8.19
10.30
00-022-1235;
01-072-1259
01-077-2064;
01-086-2270;
01-074-1879
01-086-2270;
01-072-1259;
01-076-1407
00-004-0864;
01-086-2270;
01-086-2340
01-086-2270;
01-086-2340;
01-076-1407
00-004-0587
01-075-1620
01-080-2171
01-080-2172
01-080-2173
00-022-1235
01-080-1385.
01-085-0335
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
01-086-2270;
01-076-1407
01-074-1879
01-077-2064
01-074-1879;
01-085-0335
01-077-2064;
01-072-1259;
01-076-1407;
01-074-1879
01-075-1862;
01-086-2340;
01-076-1407;
01-074-1879;
01-085-0335
00-004-0587
00-022-1235;
01-086-2270;
01-072-1259;
01-074-1879
360

-------
59.3188	9088.66
59.8448	7728.70
60.7656	4174.94
62.3323	3420.93
65.1168	17122.38
66.0966	25204.26
66.8676	8114.76
68.0733	4252.88
69.4536	2141.83
70.6739	936.87
71.4960	1772.48
73.4109	8270.86
74.2767	4618.60
0.1968	1.55794
0.1476	1.54550
0.1968	1.52427
0.3444	1.48967
0.4428	1.43255
0.3936	1.41367
0.1968	1.39923
0.2460	1.37735
0.1968	1.35332
0.1476	1.33292
0.2460	1.31960
0.2952	1.28984
0.1968	1.27693
9.80 01-074-1132;
01-075-1620;
01-086-2270;
01-076-1407
8.34 01-075-1862;
01-076-1407;
01-085-0335
4.50 01-080-2172;
01-080-2173;
01-086-2270;
01-086-2340;
01-072-1259;
01-074-1879
3.69 01-086-2270;
00-043-1022;
01-076-1407
18.47 01-074-1132;
01-085-1327;
00-022-1235;
01-086-2340;
01-076-1407;
01-074-1879
27.18 01-077-2064;
01-075-1620;
01-072-1259
8.75 01-080-2173;
01-086-2270;
01-074-1879
4.59 01-075-1862;
00-022-1235;
01-072-1259;
01-076-1407;
01-085-0335
2.31 00-022-1235;
01-076-1407
1.01 01-074-1879
1.91	01-075-1620;
01-080-2173;
01-086-2270;
01-072-1259;
01-076-1407
8.92	01-086-2340;
01-076-1407;
01-074-1879;
01-085-0335
4.98 01-075-1862;
01-074-1132;
361

-------
75.1585
75.4293
76.2214
77.2122
79.6743
80.5864
81.3858
82.4755
82.7994
83.8483
84.1613
85.0292
21141.32
10790.74
1318.19
2006.11
78.1989	5907.51
1020.84
460.18
498.00
2797.24
2453.11
14768.45
7573.42
514.65
0.2400
0.1200
0.1800
0.6000
0.4200
0.1800
0.3600
0.1200
0.3000
0.2400
0.2400
0.1800
0.1800
1.26308
1.26234
1.24809
1.23453
1.22140
1.20245
1.19112
1.18143
1.16856
1.16771
1.15289
1.15225
1.13987
22.80
11.64
1.42
2.16
6.37
1.10
0.50
0.54
3.02
2.65
15.93
8.17
0.56
01-086-2270;
01-074-1879
01-077-2064
01-075-1620;
01-086-2340;
01-072-1259;
01-076-1407
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259;
01-076-1407
01-074-1132;
01-085-1327;
00-022-1235;
01-072-1259
01-086-2270;
01-072-1259;
01-076-1407;
01-074-1879;
01-085-0335
01-075-1862;
01-086-2340;
01-076-1407;
01-074-1879
01-086-2270;
01-086-2340;
01-076-1407;
01-074-1879;
01-085-0335
01-074-1132;
01-085-1327;
01-086-2270;
01-072-1259;
01-074-1879
01-077-2064
01-086-2340
01-072-1259
01-076-1407
01-074-1879.
01-085-0335
01-075-1862;
00-022-1235;
01-086-2340;
01-072-1259;
362

-------
01-076-1407;
01-074-1879;
01-085-0335
85.8181	205.34	0.2400	1.13140	0.22 01-074-1132
01-075-1620
01-086-2270
01-086-2340
01-072-1259
01-074-1879
87.3103	1851.48	0.2400	1.11586	2.00 01-080-2171
00-004-0864
01-072-1259
01-076-1407
01-074-1879
01-085-0335
87.8734	1233.92	0.1200	1.11016	1.33 00-004-0587;
01-080-2172;
01-080-2173;
01-076-1407;
01-080-1385
88.4594	1445.91	0.3000	1.10431	1.56 01-086-2270;
01-072-1259;
01-076-1407
90.2314	1066.93	0.2400	1.08717	1.15 00-022-1235
90.7747	1381.62	0.1200	1.08477	1.49
91.2316	647.28	0.3600	1.07785	0.70
92.1717	588.58	0.1200	1.06930	0.63
92.4369	584.56	0.1800	1.06692	0.63
94.1138	5545.37	0.3600	1.05228	5.98 00-004-0864;
00-043-1022
95.4369	3595.31	0.2400	1.04116	3.88
96.4760	684.32	0.1800	1.03269	0.74
97.1393	467.46	0.3600	1.02739	0.50
98.6214	657.01	0.2400	1.01588	0.71 00-022-1235
98.9919	1250.84	0.1800	1.01559	1.35
101.0317	7603.70	0.2400	0.99805	8.20
101.4135	4480.88	0.2400	0.99780	4.83
102.4950	1657.25	0.2400	0.98774	1.79
103.6575	216.29	0.7200	0.97982	0.23
105.4292	159.79	0.4800	0.96817	0.17 00-043-1022
106.4300	107.69	0.1800	0.96181	0.12
106.7348	506.91	0.1800	0.95990	0.55
107.6412	1774.89	0.1800	0.95432	1.91
108.1305	2644.89	0.2400	0.95136	2.85
363

-------
9.2: 2516-J-BHD
9.2:1: Measurement Conditions of 2516-J
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2516-J-Slow
M:\XRD-BHD\2516-J-Slow.rd
2516-J-Slow
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/7/2013 8:03:00AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
364

-------
9.2.2: Main Graphics, Analyze View of2516-J
/V WW
l\ yl v\y W

\m,A
j
50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum Oxide 9.1 %
Aluminum Oxide Nitride S.1 %
Miagnesium Aluminum Oxide S.1 %
Fluorite, syn 7.1 %



Sylvite, syn 7.1 %

Aluminum Nitride 6.1 %
Anhydrite 9.1 %
Aluminum Oxide Nitride 9.1 % 1
Sodium Chloride 11.1
I Periclase. svn 2 %
Aluminum 2 %
Elpasolite, syn 2 % |% I
L'l I MILI IUC ,^_L		'
Aluminum Oxide 4 %

365

-------
9.2.3: Pattern List of 2516-J
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
24
Aluminum
A12 03
4
15
0
1862

Oxide




00-004-
28
Sylvite, syn
K CI
7
9
0
0587






01-077-
47
Sodium
Na CI
11
9
0
2064

Chloride




01-074-
43
Magnesium
Mg A12 04
8
15
0
1132

Aluminum
Oxide




01-075-
42
Aluminum
A1N
6
11
0
1620

Nitride




01-080-
12
Aluminum
A12.85
9
14
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
16
Aluminum
A12.81
8
13
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
17
Aluminum
A12.78
5
13
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
30
Aluminum
A1
2
5
0
1327






00-004-
21
Fluorite, syn
Ca F2
7
6
0
0864






00-022-
15
Elpasolite,
K2 Na A1
2
13
0
1235

syn
F6



01-086-
35
Anhydrite
Ca ( S 04 )
9
45
0
2270






01-072-
10
Magnesium
Mg S 04
3
50
1
1259

Sulfate




00-043-
28
Periclase,
Mg O
2
6
0
1022

syn




01-076-
16
Silicon
Si3 N4
4
41
0
1407

Nitride




01-080-
15
Aluminum
A12.667 04
9
13
0
1385

Oxide




01-085-
21
Quartz
Si 02
3
24
0
0930






366

-------
9.2.4: Peak List of 2516-J
Pos. [°2Th.] Height [cts]
FWHM
[°2Th.]
d-spacing [A] Rel. Int.
Matched by
5.9602
6.6959
7.0171
8.3788
8.7661
10.9340
11.8889
13.2178
13.9546
14.5324
15.4651
16.1276
16.6736
17.0682
18.4721
18.9402
20.5977
20.9733
22.4063
22.8683
23.2784
24.0077
24.6014
25.3830
26.6515
27.2887
28.1633
28.4885
29.3755
29.9223
30.2752
259.68
366.61
385.45
504.51
479.90
497.71
474.74
1069.14
792.79
364.64
3468.50
1536.24
655.46
732.54
3791.88
4792.66
1790.76
5577.63
1457.19
6489.06
5616.01
3218.18
2040.34
13606.71
17348.16
11757.31
65615.96
27558.44
7238.17
8362.25
4109.94
0.2952
0.1968
0.1476
0.1476
0.1476
0.2952
0.1968
0.1968
0.1476
0.1476
0.1968
0.1968
0.0984
0.1476
0.2460
0.1968
0.0984
0.1968
0.1476
0.1476
0.1968
0.2460
0.1968
0.2460
0.2460
0.1968
0.1476
0.0984
0.1968
0.1476
0.1476
14.82893
13.20100
12.59746
10.55299
10.08760
8.09191
7.44404
6.69845
6.34640
6.09534
5.72976
5.49587
5.31712
5.19507
4.80329
4.68562
4.31216
4.23576
3.96801
3.f
3.82129
3.70683
3.61870
3.50902
3.34482
3.26814
3.16861
3.13318
3.04056
2.98623
2.95222
0.26
0.37
0.39
0.51
0.48
0.50
0.48
1.08
0.80
0.37
3.50
1.55
0.66
0.74
3.83
4.84
1.81
5.63
1.47
6.55
5.67
3.25
2.06
13.73
17.50
11.86
66.20
27.80
7.30
8.44
4.15
01-076-1407
01-074-1132;
00-022-1235;
01-086-2270
01-072-1259;
01-076-1407
01-085-0930
01-072-1259
01-086-2270;
01-076-1407
01-072-1259
01-075-1862;
01-086-2270
01-076-1407;
01-085-0930
01-077-2064;
01-072-1259
00-004-0587;
00-004-0864
00-004-0587;
00-004-0864;
01-086-2270
367

-------
31.2603
31202.79
0.1476
2.86140
31.48
01-074-1132;





00-022-1235;





01-086-2270
31.6341
99120.41
0.1968
2.82844
100.00
01-077-2064;





01-080-2171
32.6338
25686.47
0.1968
2.74404
25.91

33.1571
18658.76
0.1476
2.70192
18.82
01-075-1620
33.8246
4921.77
0.0984
2.65011
4.97

34.0819
3695.67
0.0984
2.63069
3.73

34.6183
3214.42
0.1476
2.59114
3.24
01-072-1259;





01-076-1407
35.0838
6297.96
0.1968
2.55782
6.35
01-075-1862
35.9791
11042.15
0.1476
2.49621
11.14
01-075-1620
36.2493
12707.69
0.1476
2.47822
12.82
01-086-2270
36.8098
22551.72
0.1968
2.44176
22.75
01-074-1132;





00-043-1022
37.8525
17821.03
0.1968
2.37686
17.98
01-075-1862;





01-075-1620
38.4798
17613.46
0.1968
2.33955
17.77
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
39.1634
5403.46
0.1968
2.30027
5.45
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
40.2864
39708.46
0.2460
2.23870
40.06
01-076-1407;





01-085-0930
40.7609
17731.60
0.1476
2.21373
17.89
01-086-2270;





01-072-1259
41.2578
2936.61
0.1968
2.18821
2.96
01-086-2270
42.0609
1834.68
0.1476
2.14827
1.85
01-076-1407
42.8233
12485.61
0.1968
2.11177
12.60
00-043-1022
43.3222
8903.37
0.1968
2.08860
8.98
01-075-1862;





01-086-2270;





01-076-1407
44.7295
28251.85
0.1968
2.02611
28.50
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3843
67981.74
0.1968
1.99839
68.59
01-077-2064;





01-086-2270
46.8388
7599.53
0.1968
1.93966
7.67
00-004-0864;





01-086-2270;





01-072-1259;





01-076-1407
47.2772
5224.72
0.1968
1.92270
5.27
01-086-2270
368

-------
49.1083	1895.66
49.8890	12369.89
50.5258	6636.18
51.4444	2335.48
51.8920	1771.87
52.4470	3017.54
53.0856	3346.71
53.8359	3147.31
54.2956	1575.80
54.7933	3774.53
55.6366	4519.61
56.3853	18380.69
57.4270	8892.45
58.2186	11460.48
59.3063	17718.39
60.7829	4641.13
61.4707	2786.74
62.2340	8522.94
63.0287	2115.50
63.5916	2314.78
65.2009	20768.38
66.1126	26206.13
0.1476	1.85521
0.2952	1.82799
0.1968	1.80644
0.1476	1.77632
0.1476	1.76205
0.2460	1.74470
0.1476	1.72521
0.2460	1.70292
0.1476	1.68959
0.2460	1.67541
0.1476	1.65200
0.1968	1.63183
0.2460	1.60468
0.2952	1.58474
0.1968	1.55824
0.1476	1.52388
0.1476	1.50847
0.2952	1.49179
0.1476	1.47488
0.1476	1.46317
0.2952	1.43090
0.2952	1.41336
1.91 01-074-1132;
01-086-2270
12.48 01-075-1620;
01-080-2171;
01-080-2172;
01-080-2173;
01-080-1385
6.70 01-072-1259;
01-076-1407;
01-085-0930
2.36
1.79 01-076-1407
3.04 01-075-1862;
01-086-2270
3.38
3.18 01-077-2064
1.59	01-072-1259
3.81 01-076-1407;
01-085-0930
4.56 01-074-1132;
00-004-0864;
01-086-2270
18.54 01-077-2064;
01-072-1259;
01-076-1407
8.97 01-075-1862;
01-076-1407;
01-085-0930
11.56
17.88 01-074-1132;
01-075-1620;
01-086-2270
4.68 01-080-2173;
01-086-2270;
01-072-1259
2.81 01-072-1259;
01-076-1407
8.60	01-086-2270;
00-043-1022
2.13 01-072-1259
2.34 01-072-1259;
01-076-1407
20.95 01-074-1132;
01-085-1327;
01-086-2270
26.44 01-077-2064;
01-075-1620;
01-072-1259
369

-------
66.9057	9546.31	0.1476	1.39852	9.63 01-086-2270
68.1122	6218.19	0.2460	1.37666	6.27 01-075-1862;
00-022-1235;
01-072-1259;
01-076-1407;
01-085-0930
69.6405	2846.65	0.1968	1.35014	2.87 01-074-1132;
01-075-1620;
01-076-1407
71.3502	4335.35	0.2460	1.32194	4.37 01-075-1620
01-080-2172
01-080-2173
01-086-2270
01-072-1259.
01-076-1407
72.5265	1985.55	0.1968	1.30337	2.00 01-075-1620;
01-076-1407
73.3654	6151.80	0.2952	1.29052	6.21 01-076-1407;
01-085-0930
74.2856	4132.58	0.1476	1.27680	4.17 01-075-1862;
01-074-1132;
01-086-2270
75.1834 15793.50	0.1476	1.26377	15.93 01-077-2064
76.3314	1453.90	0.1476	1.24760	1.47 01-075-1620;
01-072-1259;
01-076-1407
77.2847	2357.53	0.2952	1.23457	2.38 01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
78.2124	4262.05	0.2400	1.22122	4.30 01-074-1132;
01-085-1327;
01-072-1259
78.5263	3240.97	0.1800	1.22015	3.27
79.6773	479.42	0.1800	1.20241	0.48 01-072-1259;
01-085-0930
81.0200	832.19	0.1800	1.18584	0.84 01-075-1620;
01-085-0930
81.7869	304.02	0.1800	1.17665	0.31 01-086-2270;
01-076-1407;
01-085-0930
82.4203	1866.35	0.1200	1.16920	1.88 01-074-1132;
01-085-1327;
01-072-1259
82.7126	2764.20	0.3600	1.16581	2.79 01-074-1132;
01-086-2270;
01-072-1259
370

-------
83.8815	10888.29	0.1800
84.1755	6083.95	0.1200
87.2936	1850.05	0.1800
87.9811	1028.23	0.1200
88.4359	985.31	0.2400
89.2174	204.96	0.2400
89.5299	367.15	0.1800
90.0019	328.58	0.4800
91.0285	1131.86	0.4800
92.1769	302.51	0.1800
94.0574	5644.62	0.2400
94.8375	4158.43	0.1800
95.4818	3072.22	0.1800
96.2127	1341.14	0.4800
97.0116	566.28	0.2400
98.2288	310.03	0.3600
99.1601	1641.75	0.2400
101.0490	6651.46	0.1800
101.4044	3872.82	0.1800
102.5389	1191.54	0.1200
104.0599	98.78	0.2400
104.7199	354.86	0.6000
106.0248	135.13	0.1800
106.5794	440.49	0.1800
107.6986	1530.03	0.1800
108.0594	1664.23	0.1800
1.15252	10.98 01-077-2064;
01-072-1259;
01-076-1407;
01-085-0930
1.15210	6.14
1.11603	1.87 01-080-2171;
00-004-0864;
01-072-1259;
01-085-0930
1.10908	1.04 01-080-2173;
01-076-1407
1.10455	0.99 01-086-2270;
01-072-1259;
01-076-1407
1.09688	0.21 01-072-1259;
01-076-1407
1.09386	0.37 01-086-2270
1.08935	0.33 01-086-2270;
01-076-1407
1.07972	1.14
1.06925	0.31
1.05276	5.69 00-004-0864;
00-043-1022
1.04615	4.20
1.04079	3.10
1.03481	1.35
1.02840	0.57
1.01889	0.31
1.01180	1.66
0.99793	6.71
0.99787	3.91
0.98744	1.20
0.97712	0.10
0.97277	0.36
0.96436	0.14 00-004-0864;
00-043-1022
0.96087	0.44
0.95397	1.54
0.95178	1.68
371

-------
Facility K
10.1: 2583-K-BHD
10.1.1: Measurement Conditions of2583-K
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2583-K-SLOW
M:\XRD-BHD\2583-K-SLOW.rd
2583-K-SLOW
Exported by X'Pert SW
Generated by Xiaolan in project Project.
3/7/2013 7:43:00PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
372

-------
10.1.2: Main Graphics, Analyze View of2583-K
2583-K-SLOW
WWW vv


aAv	I1 f\f U„
/VA, I
50	60	70
Position [°2Theta] (Copper (Cu))
80	90
Magnesium Sulfate 17 % |
Aluminum 28 % |
Calcite 3 % |
Quartz 17 %
Aluminum Oxide 3 %
Anhydrite 7 %
Silicon Nitride 13 %
Magnesium Aluminum Oxide 12 % |
373

-------
10.1.3: Pattern List of2583-K
Ref. Code
Score Compound
Chemical
Semi Quant
Matched
Strong

Name
Formula
[%]

Lines
Unmatched
Lines
01-075-
6 Aluminum
A12 03

3
11
1
1862
Oxide





01-074-
6 Magnesium
Mg A12 04

12
9
0
1132
Aluminum
Oxide





01-085-
45 Aluminum
A1

28
5
0
1327






01-086-
6 Anhydrite
Ca ( S 04 )

7
28
0
2270






01-086-
18 Calcite
Ca (C 03)

3
21
0
2340






01-072-
18 Magnesium
Mg S 04

17
34
0
1259
Sulfate





01-076-
11 Silicon
Si3 N4

13
29
0
1407
Nitride





01-085-
49 Quartz
Si 02

17
25
0
0930






10.1.4: Peak List of2583-K
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
5.5880
737.21
0.1968
15.81554

0.51

7.9628
958.01
0.2952
11.10337

0.66

8.6762
1490.58
0.1968
10.19193

1.02

9.3074
655.86
0.1476
9.50212

0.45

10.6609
504.04
0.0984
8.29860

0.35

12.3248
931.55
0.2460
7.18175

0.64

12.6272
800.08
0.0984
7.01040

0.55

13.4187
1165.89
0.1476
6.59861

0.80

14.8598
820.84
0.3936
5.96177

0.56

16.5724
903.76
0.0984
5.34935

0.62

18.6617
3568.99
0.1968
4.75491

2.45

19.7648
1534.92
0.2952
4.49195

1.05

20.6932
13963.50
0.1968
4.29247

9.59
01-072-1259;
01-076-1407;
01-085-0930
21.8655
3035.78
0.1968
4.06491

2.08

22.8451
2830.43
0.1968
3.89277

1.94
01-086-2270;
01-086-2340;
01-076-1407
374

-------
23.8328
13448.05
0.2460
3.73363
9.23

24.5398
1523.75
0.1476
3.62764
1.05
01-072-1259
25.0732
2222.12
0.2460
3.55167
1.53

25.3760
1778.84
0.0984
3.50997
1.22
01-075-1862;





01-086-2270
26.4636
70530.15
0.2460
3.36814
48.43
01-072-1259;





01-076-1407;





01-085-0930
27.3136
5466.63
0.2952
3.26522
3.75
01-072-1259
27.8939
8461.99
0.2460
3.19860
5.81

29.2555
14029.41
0.2952
3.05276
9.63
01-086-2340
30.4809
2373.18
0.0984
2.93277
1.63

30.7253
2065.07
0.0984
2.90999
1.42

31.6204
2562.19
0.1476
2.82963
1.76
01-076-1407
32.2536
2006.67
0.1476
2.77551
1.38

32.7169
2346.61
0.1476
2.73726
1.61

34.4667
26925.17
0.4428
2.60219
18.49
01-072-1259;





01-076-1407
35.3105
3879.84
0.2952
2.54192
2.66
01-075-1862;





01-076-1407
35.8745
4745.42
0.1968
2.50324
3.26
01-086-2340;





01-072-1259
36.3382
7302.87
0.1968
2.47236
5.01
01-086-2270
36.9296
815.44
0.0984
2.43411
0.56
01-074-1132
38.2902
145625.30
0.3444
2.35069
100.00
01-085-1327;





01-072-1259
39.3230
9467.21
0.3444
2.29130
6.50
01-086-2340;





01-085-0930
40.0517
17331.77
0.4428
2.25128
11.90
01-076-1407
40.9853
2788.45
0.1968
2.20213
1.91
01-086-2270;





01-072-1259
41.4192
2755.59
0.1476
2.18006
1.89
01-075-1862;





01-086-2270
42.2803
6294.15
0.2460
2.13763
4.32
01-085-0930
43.0394
4775.05
0.1968
2.10167
3.28
01-086-2340
44.5681
76632.04
0.4428
2.03307
52.62
01-085-1327;





01-072-1259
45.6155
5000.74
0.2460
1.98880
3.43
01-086-2270;





01-085-0930
47.3406
4170.43
0.2460
1.92027
2.86
01-086-2270;





01-086-2340
48.3642
5583.88
0.3444
1.88199
3.83
01-086-2340;





01-072-1259;





01-076-1407
49.9793
14211.78
0.1968
1.82490
9.76
01-085-0930
51.0124
2242.58
0.1968
1.79034
1.54

51.3375
1528.60
0.1476
1.77977
1.05

375

-------
52.0513
1085.27
0.2952
1.75703
0.75
01-086-2270;
01-076-1407
52.6730
996.67
0.0984
1.73775
0.68
01-075-1862;
01-086-2270
53.4581
2977.83
0.1476
1.71406
2.04

54.1658
4857.55
0.2460
1.69333
3.34
01-072-1259
54.7331
4695.75
0.2952
1.67711
3.22
01-076-1407;
01-085-0930
56.3817
2070.58
0.3444
1.63192
1.42
01-072-1259;
01-076-1407
57.1290
3413.42
0.1968
1.61234
2.34
01-076-1407;
01-085-0930
57.9858
9303.28
0.3936
1.59054
6.39
01-086-2270;
01-072-1259;
01-076-1407
59.7691
12024.99
0.2952
1.54728
8.26
01-075-1862;
01-076-1407;
01-085-0930
60.8084
5840.13
0.1476
1.52330
4.01
01-075-1862;
01-086-2270;
01-086-2340;
01-072-1259
62.4283
2822.05
0.1476
1.48761
1.94
01-086-2270;
01-076-1407
62.9835
2668.13
0.2952
1.47583
1.83
01-086-2340;
01-072-1259
63.8209
3959.45
0.2460
1.45847
2.72
01-072-1259;
01-085-0930
64.8913
46777.63
0.4428
1.43698
32.12
01-085-1327;
01-086-2340;
01-076-1407
66.1222
839.65
0.1968
1.41318
0.58
01-072-1259
66.6735
652.99
0.1200
1.40167
0.45
01-075-1862;
01-076-1407
66.9791
1146.75
0.0984
1.39717
0.79
01-086-2270
67.5251
6825.05
0.1476
1.38720
4.69
01-085-0930
67.9726
13747.18
0.2460
1.37915
9.44
01-075-1862;
01-072-1259;
01-076-1407;
01-085-0930
69.3010
11168.84
0.3936
1.35592
7.67
01-086-2340;
01-076-1407
70.6727
1981.62
0.1968
1.33294
1.36

71.8231
2675.22
0.2952
1.31439
1.84
01-072-1259
72.6837
4401.93
0.2400
1.29986
3.02
01-086-2270;
01-086-2340;
01-076-1407
376

-------
72.8762
4566.98
0.1200
1.30012
3.14

73.1954
3664.12
0.1800
1.29203
2.52
01-072-1259;
01-076-1407;
01-085-0930
73.9304
2505.67
0.3600
1.28099
1.72
01-075-1862;
01-074-1132;
01-086-2340
75.4305
2791.95
0.3600
1.25920
1.92
01-085-0930
78.0137
50642.95
0.4800
1.22384
34.78
01-085-1327;
01-085-0930
79.6438
4931.98
0.4200
1.20283
3.39
01-072-1259;
01-076-1407;
01-085-0930
79.9288
3196.78
0.1200
1.20224
2.20

80.7783
2152.41
0.1800
1.18878
1.48
01-075-1862;
01-076-1407
81.3333
4208.00
0.2400
1.18206
2.89
01-086-2340;
01-076-1407;
01-085-0930
81.7230
5347.76
0.1200
1.18033
3.67

82.2459
13870.66
0.6000
1.17124
9.52
01-085-1327;
01-072-1259;
01-076-1407
82.9874
1329.18
0.1800
1.16265
0.91
01-075-1862;
01-086-2270;
01-072-1259
83.5800
3858.14
0.2400
1.15591
2.65
01-072-1259;
01-076-1407
83.8227
2649.22
0.1800
1.15604
1.82

84.7384
1073.47
0.6000
1.14304
0.74
01-075-1862;
01-086-2270;
01-086-2340;
01-085-0930
85.8456
542.69
0.2400
1.13111
0.37
01-074-1132;
01-086-2270;
01-086-2340;
01-072-1259
86.4801
1486.60
0.3600
1.12443
1.02
01-075-1862;
01-072-1259;
01-076-1407
86.7224
1507.44
0.1200
1.12470
1.04

87.1755
339.60
0.1800
1.11724
0.23
01-072-1259;
01-076-1407;
01-085-0930
87.7018
317.49
0.2400
1.11189
0.22
01-085-0930
88.6321
330.03
0.1800
1.10261
0.23
01-075-1862;
01-086-2270;
377

-------
01-072-1259;
01-076-1407
89.4411	1447.43	0.1800	1.09472	0.99 01-086-2270;
01-072-1259;
01-076-1407
90.5684	3652.76	0.3600	1.08400	2.51
90.8794	2149.33	0.1800	1.08379	1.48
91.6821	369.42	0.1200	1.07372	0.25
92.5359	1562.26	0.1800	1.06604	1.07
93.3241	254.98	0.1800	1.05910	0.18
94.4231	2344.82	0.3000	1.04964	1.61
94.7244	3238.17	0.1800	1.04710	2.22
95.9789	1959.05	0.3000	1.03671	1.35
96.7633	3379.80	0.4200	1.03038	2.32
97.9327	269.16	0.1800	1.02118	0.18
98.4815	3873.92	0.1800	1.01695	2.66
98.8343	7953.75	0.3600	1.01426	5.46
100.2310	3430.21	0.5400	1.00386	2.36
102.3749	1404.37	0.1800	0.98858	0.96
102.7820	770.65	0.1800	0.98821	0.53
103.8822	1588.22	0.3000	0.97831	1.09
104.7817	644.91	0.1200	0.97236	0.44
105.0647	817.08	0.1200	0.97052	0.56
106.3000	2635.84	0.2400	0.96262	1.81
107.8857	275.14	0.1800	0.95283	0.19
108.3791	679.82	0.1800	0.94986	0.47
109.3324	898.38	0.2400	0.94423	0.62
10.2: 2585-K-BHD
10.2:1: Measurement Conditions of2585-K
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
2585-K-Slow
M:\XRD-BHD\2585-K-Slow.rd
2585-K-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/14/2013 12:11:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
378

-------
Divergence Slit Type
Automatic
Irradiated Length [mm]
15.00
Specimen Length [mm]
10.00
Receiving Slit Size [mm]
0.2500
Measurement Temperature [°C]
0.00
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Diffractometer Number
1
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
Incident Beam Monochromator
No
Spinning
Yes
10.2.2: Main Graphics, Analyze View of2585-K
2585-K-Slow
150000 -
100000 -
50000
Position [°2Theta] (Copper (Cu))
379

-------
Quartz low 31.2 %
Aluminum Oxide 1 %
CHTUTTE I To
iviayi ic-mlji 11 Aluminum Qxide 3 %
f Anhydrite 2 % e 3 %
Aluminum 7.9 % |
10.2.3: Pattern List of2585-K
Ref. Code Score Compound Chemical SemiQuant Matched
Name	Formula	\%\	Lines
Strong
Unmatched
Lines
01-075-
1862
01-077-
2064
01-074-
1132
01-085-
1327
01-086-
2270
01-086-
2340
01-072-
1259
01-085-
0335
11 Aluminum A12 03
Oxide
35 Sodium Na CI
Chloride
8 Magnesium Mg A12 04
Aluminum
Oxide
45 Aluminum A1
10 Anhydrite
18 Calcite
Ca ( S 04 )
Ca(C 03)
20 Magnesium Mg S 04
Sulfate
28 Quartz low Si 02
2
1
3
82
9
10
5
29
20
36
25
10.2.4: Peak List of2585-KJ
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%] Matched by
5.9488
448.50
0.9840
14.85719
0.23
7.8712
577.39
0.1968
11.23238
0.30
8.2191
626.29
0.1476
10.75765
0.33
8.7685
414.79
0.1968
10.08490
0.22
9.2774
477.69
0.1476
9.53280
0.25
11.0244
516.94
0.2460
8.02578
0.27
11.5093
375.44
0.2952
7.68867
0.20
380

-------
13.6014
353.68
0.3936
6.51039
0.18

15.0607
462.34
0.4920
5.88270
0.24

16.2804
112.67
0.1476
5.44462
0.06

17.0768
222.46
0.0984
5.19246
0.12

17.8126
466.89
0.1968
4.97959
0.24

18.6689
3160.81
0.1968
4.75309
1.65

19.7827
1583.37
0.1476
4.48793
0.83

20.7022
14638.40
0.1968
4.29062
7.66
01-072-1259;





01-085-0335
21.8860
2483.47
0.1968
4.06115
1.30

22.8846
3926.58
0.1968
3.88614
2.05
01-086-2270;





01-086-2340
23.8418
17681.79
0.1476
3.73225
9.25

24.5641
5532.44
0.1476
3.62412
2.89
01-072-1259
25.3371
5354.51
0.1968
3.51527
2.80
01-075-1862;





01-086-2270
26.4743
88374.37
0.1968
3.36680
46.21
01-072-1259;





01-085-0335
27.2767
24970.15
0.1968
3.26955
13.06
01-077-2064;





01-072-1259
27.6961
6054.93
0.1476
3.22099
3.17

28.1218
10547.23
0.1968
3.17320
5.52

29.2522
25432.48
0.2460
3.05309
13.30
01-086-2340
30.1523
2439.17
0.1968
2.96397
1.28

30.6320
2836.04
0.1968
2.91864
1.48

31.5383
16742.97
0.1968
2.83681
8.76
01-077-2064;





01-086-2270
32.2943
4663.31
0.1968
2.77211
2.44

32.8521
2837.35
0.3936
2.72630
1.48

34.4397
40113.15
0.2460
2.60417
20.98
01-072-1259
35.3153
8104.93
0.1968
2.54159
4.24
01-075-1862
35.8870
16523.03
0.1968
2.50240
8.64
01-086-2340;





01-072-1259
36.3712
10265.03
0.1968
2.47019
5.37
01-086-2270;





01-085-0335
38.3087
191224.50
0.2952
2.34960
100.00
01-085-1327;





01-072-1259
39.2962
14383.74
0.1968
2.29280
7.52
01-086-2340;





01-085-0335
39.9986
25028.16
0.2952
2.25414
13.09

41.0608
7322.33
0.2460
2.19825
3.83
01-086-2270;





01-072-1259
42.2683
7955.79
0.1968
2.13821
4.16
01-085-0335
43.0293
7390.72
0.1968
2.10214
3.86
01-086-2340
43.8634
6068.80
0.1476
2.06408
3.17
01-072-1259
381

-------
44.5552
100836.80
0.3444
2.03363
52.73
01-085-1327;
01-072-1259
45.2525
10791.89
0.1968
2.00390
5.64
01-077-2064;
01-086-2270
45.6510
4814.75
0.1476
1.98733
2.52
01-077-2064;
01-086-2270;
01-085-0335
46.9255
3567.88
0.1968
1.93629
1.87
01-086-2270;
01-086-2340;
01-072-1259
47.3580
6716.38
0.1968
1.91961
3.51
01-086-2270;
01-086-2340
48.4824
8287.80
0.3444
1.87768
4.33
01-086-2270;
01-086-2340
48.9829
2580.13
0.1476
1.85966
1.35
01-074-1132;
01-086-2270
49.9342
14235.35
0.2460
1.82644
7.44
01-085-0335
50.5184
2988.64
0.1968
1.80668
1.56
01-072-1259;
01-085-0335
51.2353
1856.24
0.2460
1.78308
0.97

52.0768
1455.92
0.0984
1.75623
0.76
01-086-2270
53.4720
4049.68
0.1968
1.71365
2.12

54.1295
17288.93
0.2460
1.69438
9.04
01-072-1259
54.6755
6101.45
0.1476
1.67874
3.19
01-085-0335
55.1095
3331.02
0.1476
1.66654
1.74
01-085-0335
56.4155
7547.62
0.3444
1.63102
3.95
01-077-2064;
01-072-1259
57.9849
13475.62
0.2460
1.59056
7.05
01-086-2270;
01-072-1259
58.9754
1432.93
0.1968
1.56619
0.75
01-086-2270;
01-072-1259
59.7640
12556.85
0.2460
1.54740
6.57
01-075-1862;
01-085-0335
60.6064
5691.38
0.1968
1.52789
2.98
01-086-2270;
01-086-2340;
01-072-1259
61.3316
2696.19
0.1968
1.51155
1.41
01-075-1862;
01-086-2270;
01-072-1259
61.9285
2247.96
0.1968
1.49841
1.18
01-072-1259
62.5868
4016.07
0.1968
1.48422
2.10

63.8146
4329.02
0.2460
1.45860
2.26
01-072-1259;
01-085-0335
64.5438
22774.48
0.1800
1.44267
11.91
01-086-2340;
01-072-1259
64.8904
56068.47
0.3444
1.43699
29.32
01-085-1327;
01-086-2340
382

-------
66.0182
3830.38
0.2400
1.41398
2.00
01-077-2064;





01-086-2270;





01-072-1259;





01-085-0335
66.2251
2860.16
0.2400
1.41357
1.50

67.5025
8900.15
0.2400
1.38646
4.65
01-085-0335
67.9484
12143.51
0.4200
1.37844
6.35
01-075-1862;





01-072-1259;





01-085-0335
68.7900
8451.99
0.3000
1.36361
4.42
01-074-1132;





01-086-2270
69.3138
13675.05
0.2400
1.35458
7.15
01-086-2340
70.8743
206.01
0.1800
1.32854
0.11

71.9776
1101.97
0.4800
1.31086
0.58
01-072-1259
72.8906
4659.40
0.1800
1.29668
2.44
01-077-2064;





01-086-2270;





01-086-2340;





01-072-1259
73.2511
3138.68
0.1800
1.29439
1.64

74.0136
2500.10
0.1800
1.27976
1.31
01-075-1862;





01-074-1132;





01-086-2270
74.2212
2330.35
0.1800
1.27669
1.22
01-075-1862;





01-074-1132;





01-086-2270
75.0472
3737.96
0.1800
1.26468
1.95
01-077-2064
75.4579
4601.49
0.3000
1.25881
2.41
01-077-2064;





01-072-1259;





01-085-0335
76.3089
1355.39
0.1800
1.24688
0.71
01-086-2340;





01-072-1259
77.5311
16445.32
0.1800
1.23024
8.60
01-074-1132;





01-086-2270;





01-072-1259;





01-085-0335
78.0283
57142.20
0.3000
1.22364
29.88
01-085-1327
78.3087
25521.29
0.1800
1.22299
13.35

79.6640
4550.46
0.3000
1.20258
2.38
01-086-2270;





01-072-1259;





01-085-0335
79.9218
3178.02
0.1200
1.20233
1.66

80.9323
3794.69
0.1200
1.18690
1.98
01-086-2340;





01-085-0335
81.2823
5163.07
0.1800
1.18267
2.70
01-086-2340;





01-085-0335
82.2465
17923.81
0.2400
1.17124
9.37
01-085-1327;





01-072-1259
383

-------
82.5327
7971.48
0.1200
1.17080
4.17

83.7018
4872.73
0.4200
1.15453
2.55
01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335
85.1658
728.92
0.3000
1.13839
0.38
01-075-1862;
01-072-1259;
01-085-0335
86.6835
1920.17
0.2400
1.12231
1.00
01-075-1862;
01-072-1259
87.2905
1148.08
0.1800
1.11607
0.60
01-072-1259;
01-085-0335
89.3782
2371.48
0.3000
1.09533
1.24
01-072-1259
90.5873
4435.54
0.2400
1.08383
2.32

90.9367
1812.99
0.1800
1.08326
0.95

91.6259
305.94
0.1800
1.07423
0.16

92.0309
357.35
0.3000
1.07056
0.19

92.4629
993.14
0.1200
1.06669
0.52

93.3240
737.35
0.1800
1.05910
0.39

94.4741
2693.01
0.1800
1.04921
1.41

94.8293
4142.47
0.1800
1.04622
2.17

95.1231
4065.28
0.1800
1.04376
2.13

96.0870
3815.20
0.3600
1.03583
2.00

96.9131
4661.41
0.3000
1.02919
2.44

98.9062
9107.38
0.1800
1.01372
4.76

99.2822
4691.35
0.1200
1.01340
2.45

99.6625
1750.04
0.1800
1.00805
0.92

100.3418
3800.72
0.3000
1.00305
1.99

101.0003
1489.64
0.1800
1.00076
0.78

102.0212
1734.59
0.3000
0.99104
0.91

102.4384
1708.96
0.1200
0.99059
0.89

102.9277
1412.28
0.3000
0.98477
0.74

104.0335
1700.91
0.2400
0.97730
0.89

104.9476
1237.82
0.2400
0.97128
0.65

106.4318
2686.20
0.1800
0.96179
1.40

106.8525
1511.89
0.1800
0.96155
0.79

107.5213
823.14
0.3600
0.95505
0.43

108.2031
904.33
0.2400
0.95328
0.47

108.8762
608.68
0.1200
0.94691
0.32

384

-------
10.3: 2587-K-BHD
10.3:1: Measurement Conditions of2587-K
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2587-K-Slow
M:\XRD-BHD\2587-K-Slow.rd
2587-K-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/14/2013 11:52:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
385

-------
10.3.2: Main Graphics, Analyze View of2587-K
wvvwvw V vvvw
o 1 I I I I I I I
''•A/ \,„./l ,/v	L.In A'

10	20	30	40
50	60	70
Position [°2Theta] (Copper (Cu))
90	100
Quartz low 68 %
Aluminum Oxide 1 %
Calcite 1 %
1 ^
k

Magnesium Aluminum Oxide 9 %
Aluminum 17 %
386

-------
10.3.3: Pattern List of2587-K
Ref. Code
Score Compound
Chemical
SemiQuant Matched
Strong

Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
5 Aluminum
A12 03

1 12
1
1862
Oxide




01-074-
9 Magnesium
Mg A12 04

9 9
0
1132
Aluminum
Oxide




01-085-
40 Aluminum
A1

17 5
0
1327





01-086-
11 Anhydrite
Ca ( S 04 )

4 20
0
2270





01-086-
11 Calcite
Ca (C 03)

1 13
0
2340





01-085-
25 Quartz low
Si 02

68 21
0
0335





10.3.4: Peak List of2587-KJ
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel. Int. [%]
Matched by
8.1143
890.31
0.4920
10.89636
0.48

9.4696
515.12
0.2460
9.33971
0.28

12.3043
208.41
0.2952
7.19367
0.11

13.4376
452.94
0.2952
6.58938
0.24

16.1257
299.44
0.5904
5.49652
0.16

17.0254
288.91
0.0984
5.20804
0.16

18.7180
1634.06
0.1968
4.74074
0.88

19.7844
910.33
0.2460
4.48755
0.49

20.7813
7573.86
0.1968
4.27446
4.09
01-085-0335
21.9819
2454.59
0.1968
4.04364
1.33

23.1164
1601.15
0.1476
3.84770
0.87
01-086-2270;
01-086-2340
23.8079
8609.93
0.2460
3.73749
4.65

24.0787
16097.10
0.0984
3.69607
8.70

25.3610
4704.62
0.2952
3.51202
2.54
01-075-1862;
01-086-2270
26.4023
39839.94
0.1968
3.37582
21.54

26.7082
51251.12
0.1476
3.33784
27.71
01-085-0335
27.3404
5605.60
0.1968
3.26208
3.03

27.7855
9706.78
0.0984
3.21083
5.25

28.3825
6344.87
0.1476
3.14463
3.43
01-086-2270
29.3688
5156.74
0.4428
3.04124
2.79
01-086-2340
387

-------
30.7404
2888.46
0.1968
2.90859
1.56

31.4869
6044.03
0.4428
2.84132
3.27
01-074-1132;





01-086-2270
32.7673
2062.69
0.1476
2.73317
1.12

34.5452
41328.03
0.5412
2.59646
22.34

36.3630
8684.16
0.1476
2.47073
4.69
01-086-2270;





01-085-0335
36.6544
7951.94
0.1476
2.45175
4.30
01-074-1132;





01-085-0335
37.9690
68081.43
0.1476
2.36984
36.81
01-075-1862
38.4141
184969.60
0.3936
2.34340
100.00
01-074-1132;





01-085-1327;





01-086-2270
39.2749
5868.64
0.1476
2.29399
3.17
01-086-2340;





01-085-0335
40.0767
30954.04
0.2952
2.24993
16.73
01-085-0335
41.6188
4461.18
0.2460
2.17006
2.41
01-075-1862
42.2894
6850.34
0.2952
2.13719
3.70
01-085-0335
43.1355
3841.62
0.1476
2.09721
2.08
01-075-1862;





01-086-2270;





01-086-2340
44.2610
53294.11
0.0984
2.04646
28.81

44.6067
126289.50
0.3444
2.03140
68.28
01-074-1132;





01-085-1327
45.8262
4274.71
0.1968
1.98014
2.31
01-085-0335
47.5291
1997.35
0.2460
1.91309
1.08
01-086-2270
48.4243
2532.51
0.3444
1.87980
1.37
01-086-2340
48.8675
1876.73
0.1968
1.86378
1.01
01-074-1132;





01-086-2270
49.7249
6294.23
0.1476
1.83364
3.40

50.0368
7462.57
0.2952
1.82294
4.03
01-085-0335
50.6197
1597.06
0.1476
1.80330
0.86
01-085-0335
51.3141
911.07
0.1968
1.78052
0.49

53.3409
2440.45
0.1476
1.71755
1.32

54.1294
2704.72
0.2952
1.69438
1.46

54.4250
3353.98
0.0984
1.68587
1.81

55.2739
1905.46
0.2952
1.66198
1.03
01-085-0335
56.4713
1955.19
0.2952
1.62955
1.06
01-086-2340
57.6556
10035.44
0.1476
1.59886
5.43
01-075-1862;





01-086-2270;





01-086-2340
57.9958
17392.36
0.3444
1.59029
9.40
01-086-2270
59.7095
7941.18
0.2952
1.54868
4.29
01-075-1862;





01-085-0335
60.7022
3264.67
0.1968
1.52571
1.76
01-086-2270;





01-086-2340
61.9296
2813.02
0.2952
1.49839
1.52

388

-------
62.4671
3090.09
0.1476
1.48678
1.67
01-086-2270
63.8202
4128.54
0.1476
1.45848
2.23
01-085-0335
64.6014
39850.41
0.1800
1.44153
21.54
01-086-2340
64.9180
80223.74
0.4428
1.43645
43.37
01-085-1327;





01-086-2340
66.2661
2502.38
0.1968
1.41046
1.35
01-075-1862
67.4521
6819.22
0.1800
1.38737
3.69

67.6242
8215.24
0.1476
1.38540
4.44
01-085-0335
68.0268
16156.05
0.1968
1.37818
8.73
01-075-1862;





01-085-0335
69.0257
15397.35
0.3000
1.35953
8.32
01-086-2340
69.3607
19827.62
0.2460
1.35490
10.72

70.6829
2220.29
0.1476
1.33277
1.20

71.9018
2238.51
0.1968
1.31315
1.21

72.6449
5466.06
0.1800
1.30046
2.96
01-086-2270;





01-086-2340
72.9118
6826.29
0.2460
1.29743
3.69
01-086-2270;





01-086-2340
74.0628
8340.66
0.1476
1.28009
4.51
01-075-1862;





01-074-1132;





01-086-2270
75.2471
4065.02
0.1476
1.26286
2.20

77.7003
49135.45
0.1800
1.22799
26.56
01-086-2270;





01-085-0335
78.0312
96070.76
0.3444
1.22462
51.94
01-085-1327
79.8765
3410.52
0.3444
1.20091
1.84
01-086-2270;





01-085-0335
81.1821
4660.37
0.1968
1.18486
2.52
01-086-2340;





01-085-0335
81.9290
13933.09
0.1200
1.17497
7.53
01-086-2270
82.2248
25405.04
0.3444
1.17246
13.73
01-085-1327
83.6303
9946.72
0.1200
1.15534
5.38
01-086-2340;





01-085-0335
83.9041
5041.73
0.1200
1.15513
2.73

84.5275
800.80
0.1800
1.14535
0.43
01-075-1862;





01-086-2270;





01-086-2340
84.9446
839.83
0.2400
1.14079
0.45
01-075-1862;





01-086-2340;





01-085-0335
86.3731
2586.39
0.1800
1.12555
1.40
01-075-1862
86.6456
3134.74
0.2400
1.12271
1.69
01-075-1862
88.6969
2793.23
0.1800
1.10197
1.51
01-075-1862;





01-086-2270
89.0076
3344.61
0.1200
1.09893
1.81
01-075-1862;





01-086-2270
89.3594
1301.27
0.1800
1.09823
0.70

389

-------
89.6288
1070.88
0.1800
1.09291
0.58
90.6157
3333.93
0.1800
1.08356
1.80
90.9214
1818.49
0.1200
1.08340
0.98
92.0740
84.24
0.1200
1.07017
0.05
92.5093
2356.54
0.1800
1.06628
1.27
92.8246
1539.95
0.1200
1.06612
0.83
93.2842
660.98
0.1800
1.05944
0.36
94.3742
1784.43
0.6000
1.05006
0.96
94.8429
2569.66
0.1800
1.04870
1.39
95.2279
1339.32
0.1800
1.04289
0.72
95.9042
1838.60
0.1800
1.03732
0.99
96.8307
7570.53
0.4200
1.02984
4.09
98.2149
2123.46
0.1800
1.01900
1.15
98.8764
14602.49
0.3000
1.01395
7.89
99.2531
6896.82
0.1800
1.01362
3.73
100.2295
7176.73
0.4200
1.00387
3.88
101.9771
1336.79
0.2400
0.99135
0.72
103.2098
650.21
0.1800
0.98284
0.35
103.9233
1093.64
0.4800
0.97804
0.59
104.9420
856.37
0.3600
0.97132
0.46
105.8097
813.69
0.1800
0.96573
0.44
106.4501
2573.54
0.2400
0.96168
1.39
106.8436
1311.66
0.1800
0.96161
0.71
107.7415
491.02
0.3600
0.95371
0.27
108.2105
596.40
0.2400
0.95087
0.32
109.0750
931.49
0.4200
0.94574
0.50
10.4: 2589-K-BHD
10.4:1: Measurement Conditions of2589-K
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
2589-K-Slow
M:\XRD-BHD\2589-K-Slow.rd
2589-K-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/15/2013 11:32:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
390

-------
Divergence Slit Type
Automatic
Irradiated Length [mm]
15.00
Specimen Length [mm]
10.00
Receiving Slit Size [mm]
0.2500
Measurement Temperature [°C]
0.00
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Diffractometer Number
1
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
Incident Beam Monochromator
No
Spinning
Yes
10.43.2: Main Graphics, Analyze View of2589-K
Counts
150000 -
100000 -
50000 -
o - , , , , |	|	|	|	|	|	|	|	|	| ,
10	20	30	40	50	60	70	80	90	100
Position [°2Theta] (Copper (Cu))
391

-------
Quartz low 73 %
Magnesium Sulfate 5 % |
Magnesium Aluminum Oxide 7 %
Aluminum 15 %
10.4.3: Pattern List of2589-K
Ref. Code
Score Compound
Chemical
SemiQuant Matched
Strong

Name
Formula
[%]
Lines
Unmatched





Lines
01-074-
6 Magnesium
Mg A12 04

7 9
0
1132
Aluminum





Oxide




01-085-
45 Aluminum
A1

15 5
0
1327





01-072-
12 Magnesium
Mg S 04

5 31
0
1259
Sulfate




01-085-
25 Quartz low
Si 02

73 23
0
0335





10.4.4: Peak List of2589-KJ
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A]
Rel. Int. [%]
Matched by

[°2Th.]



6.0759
258.61
0.1968
14.54663
0.13

8.0216
105.50
0.2952
11.02214
0.05

9.6758
79.79
0.0984
9.14120
0.04

10.1164
89.98
0.1476
8.74402
0.05

11.8312
267.57
0.1968
7.48024
0.14

12.8687
413.28
0.1476
6.87938
0.21

13.6541
603.87
0.1476
6.48541
0.31

14.5104
533.30
0.0984
6.10453
0.27

15.7234
244.24
0.0984
5.63623
0.12

16.1500
219.57
0.1968
5.48831
0.11

18.4863
2248.71
0.1476
4.79961
1.15

392

-------
19.0754
520.81
0.0984
4.65269
0.27
01-074-1132
19.5209
1108.93
0.2460
4.54752
0.57

20.5371
9998.03
0.1476
4.32474
5.10
01-072-1259
21.7071
1861.53
0.1476
4.09420
0.95

22.7684
1348.09
0.1968
3.90571
0.69

23.3384
1761.61
0.0984
3.81160
0.90

23.6799
14211.58
0.1968
3.75739
7.25

24.4032
3070.44
0.1476
3.64765
1.57

25.2208
1713.31
0.1968
3.53122
0.87

26.3186
59740.07
0.1968
3.38637
30.49
01-072-1259
27.1254
15011.74
0.1968
3.28745
7.66

27.6155
4478.38
0.1968
3.23021
2.29

28.0066
3528.69
0.1968
3.18599
1.80

29.1120
17497.79
0.1968
3.06748
8.93

29.8744
1349.29
0.1476
2.99090
0.69

30.4302
1251.27
0.2460
2.93753
0.64

31.3934
4874.36
0.2460
2.84957
2.49
01-074-1132
32.1254
3566.30
0.1968
2.78629
1.82

32.5955
1920.10
0.1476
2.74717
0.98

34.2939
40139.38
0.2460
2.61491
20.49
01-072-1259
35.1857
4481.13
0.1476
2.55065
2.29

35.7283
13639.47
0.2460
2.51315
6.96
01-072-1259
36.2568
7960.46
0.2460
2.47772
4.06

37.1497
1924.43
0.1476
2.42020
0.98

38.1557
195916.80
0.2952
2.35867
100.00
01-072-1259
39.1761
13818.32
0.1968
2.29955
7.05

39.8762
23429.17
0.1968
2.26078
11.96

40.4917
3665.17
0.1476
2.22782
1.87
01-085-0335
40.9242
6238.37
0.1968
2.20528
3.18
01-072-1259
42.1457
6298.13
0.1476
2.14414
3.21

42.9102
5478.96
0.2460
2.10770
2.80

43.7387
5807.31
0.1476
2.06968
2.96

44.4077
99423.65
0.2460
2.04004
50.75

45.1156
5851.12
0.1476
2.00966
2.99

45.5151
6274.46
0.1968
1.99295
3.20

46.8168
3362.69
0.1476
1.94053
1.72
01-072-1259
47.2336
5994.61
0.2460
1.92437
3.06

48.3822
6693.34
0.3444
1.88134
3.42

48.8822
2409.39
0.1476
1.86326
1.23
01-074-1132
49.8196
11376.71
0.2460
1.83038
5.81

50.4319
2314.41
0.1968
1.80958
1.18
01-072-1259;
01-085-0335
51.1528
1342.57
0.1968
1.78576
0.69

51.8128
216.43
0.1968
1.76455
0.11

52.2384
397.47
0.1968
1.75118
0.20

393

-------
52.8176
1491.67
0.1968
1.73333
0.76

53.2995
2298.91
0.1968
1.71879
1.17

54.0127
13316.72
0.2460
1.69777
6.80

54.5530
4550.78
0.1968
1.68222
2.32
01-072-1259
55.0268
1212.88
0.1476
1.66885
0.62
01-085-0335
56.3188
4652.88
0.2460
1.63360
2.37
01-072-1259
57.1646
3773.78
0.1968
1.61142
1.93
01-085-0335
57.8463
15520.64
0.1968
1.59404
7.92
01-072-1259
58.9284
330.00
0.2952
1.56733
0.17
01-072-1259
59.6285
9930.37
0.2952
1.55059
5.07

60.1450
2593.81
0.0984
1.53850
1.32
01-072-1259;





01-085-0335
60.4944
3530.84
0.1968
1.53045
1.80
01-072-1259
61.2718
1336.77
0.3444
1.51288
0.68
01-072-1259
61.9192
1823.58
0.1476
1.49861
0.93
01-072-1259
62.4389
2326.64
0.1968
1.48738
1.19

62.9741
1372.15
0.1476
1.47603
0.70
01-072-1259
63.7153
4409.46
0.2460
1.46063
2.25
01-072-1259
64.7647
66193.38
0.2460
1.43948
33.79

66.2739
1637.77
0.1476
1.41031
0.84
01-072-1259
66.9927
2058.04
0.0984
1.39692
1.05

67.4115
7867.90
0.1968
1.38926
4.02

67.9035
8067.24
0.2460
1.38038
4.12
01-072-1259;





01-085-0335
68.7079
7451.17
0.1968
1.36617
3.80
01-074-1132
69.1920
15954.98
0.1968
1.35779
8.14

70.6160
636.92
0.1968
1.33387
0.33
01-072-1259
71.9447
1108.57
0.1476
1.31247
0.57

72.7547
5143.58
0.1800
1.29877
2.63
01-072-1259
73.1657
2726.82
0.1200
1.29569
1.39

73.9797
3128.72
0.3000
1.28026
1.60
01-074-1132
74.8220
1307.28
0.2400
1.26792
0.67
01-072-1259
75.3360
3367.90
0.1800
1.26054
1.72

76.1712
1474.68
0.3600
1.24879
0.75
01-072-1259
76.8277
1633.63
0.2400
1.23974
0.83
01-072-1259
77.4488
15304.18
0.1800
1.23135
7.81
01-074-1132;





01-072-1259;





01-085-0335
77.9117
63731.50
0.2400
1.22518
32.53
01-085-0335
78.1991
30441.74
0.1800
1.22443
15.54

79.0249
1044.44
0.1200
1.21069
0.53
01-072-1259
79.5648
4226.24
0.2400
1.20383
2.16
01-072-1259
79.8307
3490.14
0.1800
1.20347
1.78

80.8608
2575.07
0.1200
1.18777
1.31

81.1998
5360.18
0.1800
1.18367
2.74
01-085-0335
82.1275
19195.09
0.2400
1.17263
9.80
01-072-1259
394

-------
82.4248
9278.31
0.1200
1.17206
4.74

83.5281
5743.37
0.2400
1.15649
2.93
01-072-1259
84.8116
1321.26
0.3600
1.14224
0.67
01-085-0335
86.5788
2216.22
0.1800
1.12340
1.13
01-072-1259
87.0730
969.66
0.1800
1.12107
0.49

88.3830
290.67
0.1800
1.10507
0.15
01-072-1259
89.2522
2389.67
0.3000
1.09655
1.22
01-072-1259
90.5410
4298.93
0.2400
1.08426
2.19

90.9937
2415.04
0.2400
1.08273
1.23

91.3251
4420.74
0.1800
1.07699
2.26

92.5996
948.62
0.3600
1.06547
0.48

93.4191
457.88
0.1200
1.05827
0.23

94.3825
2195.12
0.1200
1.04999
1.12

95.0059
3544.65
0.4800
1.04474
1.81

96.0046
3982.88
0.1800
1.03650
2.03

96.8278
4877.53
0.3600
1.02987
2.49

97.2712
823.01
0.1800
1.02890
0.42

98.1715
2187.87
0.1200
1.01933
1.12

98.5022
8486.48
0.1800
1.01679
4.33

98.8270
11508.95
0.1800
1.01432
5.87

99.2092
4516.69
0.1800
1.01395
2.31

100.2210
4229.70
0.3000
1.00393
2.16

101.9926
2012.14
0.2400
0.99124
1.03

102.3318
1697.28
0.1200
0.99133
0.87

102.7926
663.06
0.2400
0.98569
0.34

103.9687
898.39
0.2400
0.97773
0.46

104.8054
434.42
0.3600
0.97221
0.22

105.7820
1036.28
0.2400
0.96591
0.53

106.3837
3173.30
0.2400
0.96210
1.62

106.7784
1379.82
0.1200
0.96201
0.70

107.7625
202.74
0.1800
0.95358
0.10

108.7164
287.50
0.1800
0.94786
0.15

395

-------
Facility L
11.1: 2483-L-BHD
11.1.1: Measurement Conditions of2483-L
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2483-L-Slow
M:\XRD-BHD\2483-L-Slow.rd
2483-L-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/15/2013 11:13:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
396

-------
11.1.2: Main Graphics, Analyze View of24832-L
V vw vvv
WW WW
M JJV
MA

,„A.
. y i,
50	60	70
Position [°2Theta] (Copper (Cu))

Aluminum Oxide Nitride 9 %
Aluminum Oxide Nitride 7 %


Anhydrite 7 % j

Aluminum Oxide Nitride 7 % |
Magnesium Aluminum Oxide 7 %
Sylvite, syn 7 %


Quartz low 6 %
Aluminum Oxide 11 %
Sodium Chloride 12%
C'anrlara ryn 1 %
Calcite 1 % ^=^=-
1 \ \/ n Elpasolite, syn 3 % |
Fiuorite, syn 5 %
|
Alumir Aluminum 4 %
397

-------
11.1.3: Pattern List of2483-L
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
35
Aluminum
A12 03
4
17
0
1862

Oxide




00-004-
39
Sylvite, syn
K CI
7
9
0
0587






01-077-
47
Sodium
Na CI
12
9
0
2064

Chloride




01-074-
38
Magnesium
Mg A12 04
7
14
0
1132

Aluminum
Oxide




01-075-
48
Aluminum
A1N
6
11
0
1620

Nitride




01-080-
11
Aluminum
A12.85
9
12
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
11
Aluminum
A12.81
7
10
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
13
Aluminum
A12.78
7
10
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
40
Aluminum
A1
4
5
0
1327






00-004-
16
Fluorite, syn
Ca F2
5
5
0
0864






00-022-
16
Elpasolite,
K2 Na A1
3
12
0
1235

syn
F6



01-086-
24
Anhydrite
Ca ( S 04 )
7
40
0
2270






01-086-
6
Calcite
Ca (C 03)
1
16
0
2340






01-072-
11
Magnesium
Mg S 04
3
38
1
1259

Sulfate




00-043-
23
Periclase,
Mg O
1
6
0
1022

syn




01-085-
11
Quartz low
Si 02
6
18
0
0335






01-080-
13
Aluminum
A12.667 04
11
12
0
1385

Oxide




398

-------
11.1.4: Peak List of2483-L
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.3324
157.51
0.2952
16.57302
0.11

6.0712
605.25
0.3936
14.55796
0.42

6.9058
579.95
0.2952
12.80035
0.40

7.7413
618.73
0.2952
11.42062
0.43

8.3723
546.52
0.1968
10.56119
0.38

9.4066
439.51
0.2952
9.40218
0.30

11.1669
925.84
0.2460
7.92365
0.64

13.3188
333.79
0.1476
6.64789
0.23

14.0733
208.99
0.0984
6.29315
0.14

14.7585
79.26
0.2952
6.00246
0.05

16.3222
276.71
0.1476
5.43078
0.19

17.1546
786.02
0.1968
5.16910
0.54

18.0664
480.15
0.2952
4.91022
0.33

19.0239
4488.40
0.1968
4.66518
3.09
01-074-1132;





00-022-1235;





01-086-2270
19.9861
913.55
0.1968
4.44271
0.63

20.7940
1204.33
0.1476
4.27188
0.83
01-085-0335
22.3893
1028.23
0.2460
3.97097
0.71
01-072-1259
23.0465
1156.45
0.1476
3.85921
0.80
01-086-2270;





01-086-2340
23.4378
554.57
0.1968
3.79565
0.38

24.0647
456.14
0.1968
3.69818
0.31

24.6593
2709.49
0.1968
3.61034
1.86
01-072-1259
25.5120
15477.59
0.2952
3.49157
10.65
01-075-1862;





01-086-2270
26.6539
2860.66
0.1476
3.34452
1.97
01-085-0335
27.3735
14071.48
0.1968
3.25821
9.68
01-077-2064;





01-072-1259
28.2769
67301.68
0.2460
3.15614
46.30
00-004-0587;





00-004-0864
28.5778
32492.92
0.0984
3.12358
22.35
01-086-2270
29.3736
1934.19
0.0984
3.04075
1.33
01-086-2340
29.8734
4345.25
0.1476
2.99100
2.99

30.3313
2903.48
0.1968
2.94689
2.00

31.7075
145357.80
0.1968
2.82206
100.00
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
32.4137
2662.91
0.1476
2.76216
1.83

33.1893
20483.54
0.2460
2.69937
14.09
01-075-1620
399

-------
34.0879
1884.62
0.1476
2.63024
1.30

34.6252
8457.15
0.1968
2.59064
5.82
01-072-1259
35.1333
5903.07
0.1968
2.55434
4.06
01-075-1862
36.0080
12370.04
0.2460
2.49427
8.51
01-075-1620;





01-086-2340
36.3746
11591.73
0.0984
2.46997
7.97
01-086-2270;





01-085-0335
36.8678
23926.48
0.1968
2.43805
16.46
01-074-1132;





00-043-1022
37.8759
15261.78
0.2460
2.37545
10.50
01-075-1862;





01-075-1620
38.5038
36193.01
0.2460
2.33814
24.90
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
38.9825
2687.26
0.0984
2.31053
1.85
01-080-2171
40.4540
42907.54
0.3444
2.22981
29.52
00-004-0587;





01-085-0335
40.8358
23860.96
0.1476
2.20985
16.42
01-086-2270;





01-072-1259
42.8814
7713.62
0.1968
2.10905
5.31
00-043-1022
43.3726
9799.30
0.1968
2.08630
6.74
01-075-1862;





01-086-2270;





01-086-2340
44.7470
35079.30
0.2460
2.02535
24.13
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.4433
103184.90
0.2460
1.99593
70.99
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-080-1385
47.0318
3228.20
0.2460
1.93215
2.22
00-004-0864;





01-086-2270;





01-086-2340;





01-072-1259
48.2755
962.97
0.0984
1.88525
0.66
01-086-2340;





01-072-1259
49.7851
10779.24
0.2460
1.83156
7.42
01-075-1620;





01-080-2171;





01-080-1385
50.1103
12408.90
0.2460
1.82044
8.54
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173:
400

-------





00-022-1235;





01-085-0335;





01-080-1385
50.5876
6598.08
0.1476
1.80437
4.54
01-072-1259;





01-085-0335
51.4804
1497.26
0.1476
1.77516
1.03

52.4887
4253.33
0.1968
1.74341
2.93
01-075-1862;





01-086-2270
53.0943
4020.59
0.2460
1.72495
2.77

53.8345
4449.99
0.2460
1.70296
3.06
01-077-2064
54.7974
843.17
0.1968
1.67530
0.58
01-085-0335
55.6649
3227.34
0.2460
1.65123
2.22
01-074-1132;





00-004-0864;





01-086-2270
56.4302
29807.08
0.2952
1.63064
20.51
01-077-2064;





01-080-2171;





01-072-1259
57.4497
7380.41
0.1968
1.60410
5.08
01-075-1862;





01-086-2340;





01-085-0335
58.1828
8019.80
0.2460
1.58562
5.52

59.3322
20369.74
0.4920
1.55762
14.01
01-074-1132;





01-075-1620;





01-086-2270
60.8388
3204.18
0.1476
1.52261
2.20
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259
61.2378
1458.26
0.1968
1.51364
1.00
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259
62.2707
4007.36
0.4920
1.49100
2.76
01-086-2270;





00-043-1022
63.5983
1266.75
0.2460
1.46304
0.87
01-072-1259
65.1398
25102.15
0.3936
1.43209
17.27
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340
66.1808
31652.51
0.4428
1.41207
21.78
00-004-0587;





01-077-2064;





01-075-1620;





01-072-1259
66.9414
9462.06
0.1476
1.39786
6.51
01-086-2270
68.1472
6620.06
0.2460
1.37604
4.55
01-075-1862;





00-022-1235:
401

-------





01-072-1259;





01-085-0335
69.5240
5145.51
0.1968
1.35212
3.54
01-074-1132;





01-075-1620;





00-022-1235
71.3790
5328.05
0.3936
1.32147
3.67
01-075-1620;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
72.5234
2017.58
0.2460
1.30342
1.39
01-075-1620;





01-086-2340
73.0642
4327.57
0.1968
1.29510
2.98
01-077-2064;





01-086-2270;





01-072-1259
73.5707
6649.87
0.2460
1.28743
4.57
00-004-0587;





00-022-1235;





01-086-2340;





01-085-0335
74.3401
5251.93
0.1968
1.27600
3.61
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
75.2230
30748.90
0.2400
1.26216
21.15
01-077-2064
75.4860
13732.85
0.1200
1.26154
9.45

76.7938
1391.56
0.1800
1.24021
0.96
01-075-1862;





01-086-2340;





01-072-1259
77.3765
2521.81
0.4800
1.23232
1.73
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.2318
18507.04
0.1800
1.22097
12.73
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
78.5146
8802.82
0.1200
1.22030
6.06

79.6805
534.13
0.1800
1.20237
0.37
01-086-2270;





01-072-1259;





01-085-0335
80.0156
1043.33
0.1800
1.19818
0.72
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;
402

-------





01-085-0335;





01-080-1385
80.6263
829.42
0.1200
1.19064
0.57
01-075-1862;





01-086-2340
80.9053
1016.65
0.1800
1.18723
0.70
01-075-1862;





01-075-1620;





01-085-0335
81.3351
575.88
0.1200
1.18498
0.40

82.4259
5109.04
0.2400
1.16914
3.51
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
83.9192
20781.51
0.1800
1.15210
14.30
01-077-2064;





01-086-2340;





01-072-1259;





01-085-0335
84.2194
9544.64
0.1200
1.15161
6.57

85.7738
698.92
0.2400
1.13187
0.48
01-074-1132;





01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259
87.5323
2058.38
0.4800
1.11360
1.42
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-004-0864;





01-072-1259;





01-085-0335;





01-080-1385
88.5081
2003.12
0.2400
1.10383
1.38
01-086-2270;





01-072-1259
89.5380
28.81
0.1800
1.09379
0.02
01-086-2270
90.3343
1896.97
0.2400
1.08620
1.31
00-022-1235
91.2133
1389.14
0.4800
1.07801
0.96

94.0644
6535.92
0.3000
1.05270
4.50
00-004-0864;





00-043-1022
94.3656
7517.63
0.2400
1.05013
5.17
00-004-0587;





00-004-0864
95.4821
4253.66
0.2400
1.04079
2.93

96.1963
1014.11
0.2400
1.03495
0.70

97.0243
592.89
0.4200
1.02830
0.41

98.1377
682.33
0.6000
1.01959
0.47

99.0875
1984.80
0.2400
1.01235
1.37

99.4106
2092.36
0.2400
1.00993
1.44

100.4789
3241.44
0.1800
1.00205
2.23

101.0831
10830.75
0.2400
0.99769
7.45

403

-------
101.4373
5962.73
0.1800
0.99763
4.10
102.5474
1955.82
0.1800
0.98738
1.35
103.4271
156.63
0.2400
0.98137
0.11
104.0553
207.68
0.2400
0.97716
0.14
104.6741
592.89
0.3600
0.97307
0.41
106.4754
598.18
0.1800
0.96152
0.41
107.6896
2313.74
0.1800
0.95402
1.59
108.1083
2241.19
0.2400
0.95149
1.54
108.4592
1321.23
0.1800
0.95174
0.91
11.2: 2485-L-BHD
11.2.1: Measurement Conditions of2485-L
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2485-L-Slow
M:\XRD-BHD\2485-L-Slow.rd
2485-L-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/16/2013 10:54:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
404

-------
11.2.2: Main Graphics, Analyze View of2485-L
V WW V V
1/ V V
2485-L-S ow
50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum Oxide 11 %
Aluminum Oxide Nitride 3 % |
Anhydrite S % |
"Quartz low 7 % |
Aluminum Oxide Nitride 7 % |
Magnesium Aluminum Oxide 6 % |
Aluminum Oxide Nitride 12 %
Sodium Chloride 15 %



I


Periclase, syn 1 % |
| Fluorite, syn 4 %
Aluminum Oxide 3 %
Magnesium Sulfate 4 % |
405

-------
11.2.3:Pattern List of2485-L
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
35
Aluminum
A12 03
3
16
0
1862

Oxide




00-004-
19
Sylvite, syn
K CI
3
7
0
0587






01-077-
51
Sodium
Na CI
15
9
0
2064

Chloride




01-074-
35
Magnesium
Mg A12 04
6
13
0
1132

Aluminum
Oxide




01-075-
42
Aluminum
A1N
5
11
0
1620

Nitride




01-080-
8
Aluminum
A12.85
12
8
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
11
Aluminum
A12.81
7
9
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
12
Aluminum
A12.78
8
7
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
44
Aluminum
A1
4
5
0
1327






00-004-
13
Fluorite, syn
Ca F2
4
4
0
0864






00-022-
16
Elpasolite,
K2 Na A1
2
13
0
1235

syn
F6



01-086-
22
Anhydrite
Ca ( S 04 )
8
34
0
2270






01-072-
13
Magnesium
Mg S 04
4
36
1
1259

Sulfate




00-043-
24
Periclase,
Mg O
1
6
0
1022

syn




01-080-
12
Aluminum
A12.667 04
11
9
0
1385

Oxide




01-085-
10
Quartz low
Si 02
7
18
0
0335






406

-------
11.2.4: Peak List of2485-L
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.2934
115.08
0.2952
16.69526
0.06

5.9481
673.29
0.3936
14.85902
0.35

6.8863
805.87
0.2952
12.83658
0.42

7.7064
1073.35
0.1476
11.47227
0.56

9.6035
571.04
0.4920
9.20985
0.30

13.3415
350.38
0.1968
6.63667
0.18

15.4268
282.98
0.1968
5.74392
0.15

16.2261
185.19
0.1968
5.46273
0.10

17.0890
786.95
0.1476
5.18877
0.41

17.9365
466.77
0.1968
4.94548
0.24

18.9696
3738.98
0.1968
4.67841
1.94
01-074-1132;





00-022-1235;





01-086-2270
19.8243
1001.71
0.1476
4.47859
0.52

20.7701
1021.73
0.2952
4.27675
0.53
01-085-0335
21.6210
637.74
0.2952
4.11032
0.33

22.3209
785.57
0.1476
3.98299
0.41
01-072-1259
22.8430
2946.16
0.1476
3.89313
1.53
01-086-2270
23.8869
611.69
0.1476
3.72530
0.32

24.6033
3476.21
0.1968
3.61844
1.80
01-072-1259
25.2865
15452.10
0.2952
3.52220
8.00
01-086-2270
26.1531
1350.74
0.0984
3.40741
0.70

26.5512
2809.05
0.1476
3.35722
1.45
01-072-1259;





01-085-0335
27.3108
17545.80
0.1968
3.26555
9.09
01-077-2064;





01-072-1259
28.0595
73293.73
0.2460
3.18010
37.96

28.4958
42603.14
0.1476
3.13239
22.06
00-004-0587;





00-004-0864;





01-086-2270
29.3470
2759.66
0.1476
3.04345
1.43

29.8399
2916.28
0.1968
2.99429
1.51

30.2551
3880.02
0.1968
2.95414
2.01

31.6398
193103.00
0.1968
2.82793
100.00
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
32.5929
7972.17
0.1476
2.74739
4.13

33.1347
16935.01
0.2460
2.70369
8.77
01-075-1620
34.0171
1834.63
0.1476
2.63555
0.95

34.5694
9839.68
0.1968
2.59470
5.10
01-072-1259
407

-------
35.0875
7402.40
0.1968
2.55757
3.83
01-075-1862
36.0106
15171.75
0.3444
2.49410
7.86
01-075-1620
36.8044
19610.44
0.2460
2.44210
10.16
01-074-1132;





00-043-1022
37.7960
12007.93
0.2460
2.38028
6.22
01-075-1862;





01-075-1620
38.4354
41418.36
0.1968
2.34215
21.45
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259
38.9274
2476.48
0.0984
2.31367
1.28

40.1332
49091.42
0.2952
2.24689
25.42
01-085-0335
40.7716
27910.47
0.1968
2.21318
14.45
00-004-0587;





01-086-2270;





01-072-1259
41.9173
1455.06
0.1968
2.15530
0.75

42.8389
9819.29
0.2460
2.11104
5.09
00-043-1022
43.3123
11101.68
0.1968
2.08906
5.75
01-075-1862;





01-086-2270
44.6828
33031.69
0.1968
2.02812
17.11
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3845
125975.70
0.2460
1.99838
65.24
01-077-2064;





01-080-2171;





01-086-2270
46.6561
4596.35
0.2460
1.94684
2.38
01-086-2270;





01-072-1259
47.3266
3012.47
0.1476
1.92080
1.56
01-086-2270
48.3042
2532.66
0.1968
1.88419
1.31
01-072-1259
49.6992
15722.89
0.3444
1.83453
8.14
01-075-1620
50.5268
8369.98
0.1968
1.80640
4.33
01-072-1259;





01-085-0335
51.4324
1614.29
0.1968
1.77671
0.84

52.4503
4147.34
0.1968
1.74460
2.15
01-075-1862;





01-086-2270
53.0479
3412.10
0.2460
1.72635
1.77

53.7851
5687.77
0.2460
1.70441
2.95
01-077-2064
54.7852
746.81
0.1476
1.67564
0.39
01-085-0335
55.6137
3810.75
0.1968
1.65263
1.97
01-074-1132;





00-004-0864;





00-022-1235;





01-086-2270
56.3818
37943.67
0.2952
1.63192
19.65
01-077-2064;





01-072-1259
408

-------
57.3903
8239.80
0.2460
1.60562
4.27
01-075-1862;





01-085-0335
58.1436
12479.90
0.2952
1.58660
6.46

59.3148
16033.91
0.4428
1.55804
8.30
01-074-1132;





01-075-1620;





01-086-2270
60.7779
2239.35
0.1476
1.52399
1.16
01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259
61.1794
1408.44
0.1476
1.51495
0.73
01-075-1862;





01-086-2270;





01-072-1259
62.2262
5609.79
0.3936
1.49196
2.91
01-086-2270;





00-043-1022
63.5315
1433.31
0.2460
1.46441
0.74
01-072-1259
65.0462
26120.53
0.3444
1.43393
13.53
01-074-1132;





01-085-1327;





00-022-1235
66.1142
27747.01
0.1968
1.41333
14.37
01-077-2064;





01-075-1620;





01-072-1259
66.8929
10933.10
0.1968
1.39876
5.66
01-086-2270
68.1034
5032.42
0.3444
1.37682
2.61
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
69.4585
3565.71
0.2460
1.35324
1.85
01-075-1620;





00-022-1235
71.2932
3957.32
0.3936
1.32285
2.05
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
72.9769
9191.43
0.3936
1.29643
4.76
01-077-2064;





01-086-2270;





01-072-1259
74.2960
6842.23
0.1968
1.27665
3.54
01-075-1862;





01-074-1132;





01-086-2270
75.1739
36901.57
0.2400
1.26286
19.11
01-077-2064
75.4442
16493.03
0.1200
1.26213
8.54

76.2702
711.68
0.1200
1.24741
0.37
01-075-1620;





01-072-1259
409

-------
76.7700
1980.36
0.1800
1.24053
1.03
01-075-1862;





01-072-1259
77.2309
2449.64
0.1800
1.23428
1.27
01-075-1862;





01-074-1132;





01-086-2270;





01-072-1259
78.1898
13939.25
0.2400
1.22152
7.22
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
78.4652
8004.00
0.1800
1.22095
4.14

79.6777
891.81
0.2400
1.20241
0.46
01-086-2270;





01-072-1259;





01-085-0335
80.6058
753.17
0.1200
1.19089
0.39
01-075-1862
81.0076
560.17
0.4800
1.18599
0.29
01-075-1620;





01-085-0335
81.4274
287.68
0.1800
1.18387
0.15

82.3813
5098.58
0.2400
1.16966
2.64
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
83.8688
26050.39
0.2400
1.15266
13.49
01-077-2064;





01-072-1259;





01-085-0335
84.1749
12234.93
0.1200
1.15210
6.34

85.7861
676.72
0.3600
1.13174
0.35
01-074-1132;





01-075-1620;





01-086-2270;





01-072-1259
86.8238
2182.05
0.3600
1.12086
1.13
01-085-0335
88.3859
2295.40
0.3000
1.10504
1.19
01-086-2270;





01-072-1259
88.8950
1084.99
0.1800
1.10276
0.56

90.3008
2487.18
0.1800
1.08652
1.29
00-022-1235
90.6242
1952.00
0.1200
1.08617
1.01

90.9696
1449.17
0.1800
1.08027
0.75

93.6065
4440.85
0.4200
1.05664
2.30
00-022-1235
94.0357
4951.42
0.1800
1.05556
2.56

95.1149
4404.41
0.1800
1.04383
2.28

95.4413
4584.22
0.2400
1.04112
2.37

96.1025
963.27
0.2400
1.03571
0.50

96.9780
1346.33
0.2400
1.02867
0.70

98.3216
545.58
0.1800
1.01818
0.28

98.9864
1715.66
0.2400
1.01311
0.89
00-022-1235
100.3612
3891.12
0.3000
1.00291
2.02

410

-------
101.0390
10567.65
0.3000
0.99800
5.47

101.4117
5544.56
0.1800
0.99781
2.87

102.4930
2226.25
0.3000
0.98776
1.15

103.2508
657.97
0.2400
0.98256
0.34
00-022-1235
103.9238
221.43
0.1200
0.98046
0.11

104.4742
721.81
0.1200
0.97438
0.37

107.0068
502.50
0.1200
0.95821
0.26
00-022-1235
107.6754
3446.43
0.3000
0.95411
1.78

108.1019
1859.83
0.2400
0.95389
0.96

11.3: 2487-L-BHD
11.3.1: Measurement Conditions of2487-L
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2487-L-Slow
M:\XRD-BHD\2487-L-Slow.rd
2487-L-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/16/2013 10:34:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
411

-------
11.3.2: Main Graphics, Analyze View of2487-L
wvwvvvv
/.	vv/


. JL A i\.
50	60	70
Position [°2Theta] (Copper (Cu))
V V WW
A
Magnesium Aluminum Oxide 7.1 %
Anhydrite 8.1 %
Quartz ow 7.1 %
Aluminum 7.1 % |
Ca crte 6.1 %
Aluminum Nitride 6.1 % |


Aluminum Oxide 6.1 %



Sylvite, syn 5.1 %
Aluminum Oxide Nitride 9.1 %
Sodium Chloride 13.1 %

Periclase, syn 1 % |^_
%
im | j j-1 I -r >'j |
Man Aluminum Oxide Nitride 3 %
Ald^
412

-------
11.3.3: Pattern List of2487-L
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
41
Aluminum
A12 03
6
16
0
1862

Oxide




00-004-
21
Sylvite, syn
K CI
5
8
0
0587






01-077-
46
Sodium
Na CI
13
9
0
2064

Chloride




01-074-
34
Magnesium
Mg A12 04
7
13
0
1132

Aluminum
Oxide




01-075-
42
Aluminum
A1N
6
11
0
1620

Nitride




01-080-
9
Aluminum
A12.85
9
9
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
12
Aluminum
A12.81
3
7
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
13
Aluminum
A12.78
2
7
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
42
Aluminum
A1
7
5
0
1327






00-004-
14
Fluorite, syn
Ca F2
4
5
0
0864






00-022-
21
Elpasolite,
K2 Na A1
2
13
0
1235

syn
F6



01-086-
29
Anhydrite
Ca ( S 04 )
8
34
0
2270






01-086-
13
Calcite
Ca (C 03)
6
18
1
2340






01-072-
14
Magnesium
Mg S 04
4
36
1
1259

Sulfate




00-043-
13
Periclase,
Mg O
1
5
0
1022

syn




01-080-
11
Aluminum
A12.667 04
5
9
0
1385

Oxide




01-074-
12
Diaspore
A1 O ( O H
4
36
0
1879


)



01-085-
7
Quartz low
Si 02
7
20
0
0335






413

-------
11.3.4: Peak List of2487-L
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.2901
83.08
0.1968
16.70552
0.04

6.0026
445.65
0.2952
14.72411
0.20

6.9391
813.48
0.1968
12.73899
0.36

7.6866
1709.44
0.1968
11.50173
0.75

9.3395
518.43
0.2952
9.46951
0.23

11.0704
701.19
0.1968
7.99249
0.31

12.1247
293.40
0.2952
7.29983
0.13

13.2230
565.45
0.1476
6.69587
0.25

13.9737
464.20
0.1476
6.33780
0.20

14.6184
332.34
0.1476
6.05969
0.15

15.4239
553.54
0.1476
5.74501
0.24

16.2602
803.48
0.1968
5.45136
0.35

17.0645
798.50
0.1968
5.19619
0.35

18.1277
764.69
0.2952
4.89376
0.34

18.9545
5004.97
0.1476
4.68211
2.20
01-074-1132;





00-022-1235;





01-086-2270;





01-074-1879
20.7410
1985.05
0.1476
4.28269
0.87
01-085-0335
22.2691
1811.61
0.1476
3.99215
0.79
01-074-1879
22.9508
3491.21
0.1476
3.87509
1.53
01-086-2270;





01-086-2340
23.8939
1996.77
0.1476
3.72423
0.88

24.5907
4725.04
0.1968
3.62026
2.07
01-072-1259
25.3882
20875.66
0.2460
3.50832
9.16
01-075-1862;





01-086-2270
26.1563
2407.07
0.1476
3.40701
1.06

26.5336
4222.57
0.1476
3.35941
1.85
01-072-1259;





01-085-0335
27.2918
21378.07
0.1476
3.26778
9.38
01-077-2064;





01-072-1259
28.1393
84489.02
0.1968
3.17126
37.07
00-004-0587;





00-004-0864
28.4874
49985.54
0.1476
3.13330
21.93
00-004-0587;





01-086-2270
29.3547
3715.97
0.1476
3.04266
1.63
01-086-2340
29.8097
6522.53
0.1968
2.99726
2.86

30.2540
4604.84
0.1476
2.95424
2.02

31.1866
12370.68
0.0984
2.86799
5.43
01-074-1132;





00-022-1235;





01-086-2270;





01-086-2340
414

-------
31.6262
227943.00
0.1968
2.82912
100.00
01-077-2064;





01-080-2171
32.3518
4049.24
0.0984
2.76731
1.78

33.1243
27113.57
0.1968
2.70452
11.89
01-075-1620
34.0129
4518.44
0.2460
2.63587
1.98

34.5572
20470.10
0.1476
2.59559
8.98
01-072-1259
35.0740
16893.48
0.1968
2.55852
7.41
01-075-1862;





01-074-1879
35.9462
16294.46
0.1968
2.49842
7.15
01-075-1620;





01-086-2340;





01-072-1259
36.2417
14354.77
0.1476
2.47872
6.30
01-075-1620;





01-086-2270;





01-086-2340
36.7923
25790.99
0.2460
2.44288
11.31
01-074-1132;





00-043-1022;





01-074-1879
37.8002
20918.08
0.2460
2.38003
9.18
01-075-1862;





01-075-1620;





01-074-1879
38.4260
81406.88
0.1968
2.34270
35.71
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259;





01-074-1879
38.8972
5490.29
0.1476
2.31540
2.41
01-074-1879
39.3676
1556.47
0.1476
2.28881
0.68
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2340;





01-080-1385;





01-085-0335
40.2254
52691.68
0.2952
2.24196
23.12
01-085-0335
40.7506
34567.09
0.1476
2.21427
15.16
00-004-0587;





01-086-2270;





01-072-1259
41.7742
1423.60
0.1968
2.16235
0.62
01-075-1862;





01-072-1259
42.8016
5776.64
0.1476
2.11279
2.53
00-043-1022
43.2839
19255.12
0.1968
2.09036
8.45
01-075-1862;





01-086-2270;





01-086-2340
44.6661
53552.37
0.2460
2.02883
23.49
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
415

-------
45.3649
142954.60
0.1968
1.99920
62.72
01-077-2064;





01-086-2270;





01-074-1879
46.9316
6175.54
0.1968
1.93605
2.71
00-004-0864;





01-086-2270;





01-072-1259
47.2917
4892.32
0.1968
1.92214
2.15
01-086-2270;





01-086-2340
48.5328
488.62
0.1476
1.87585
0.21
01-086-2270;





01-086-2340
49.7378
15214.09
0.4428
1.83319
6.67
01-075-1620
50.5004
10569.55
0.1476
1.80728
4.64
01-072-1259;





01-074-1879;





01-085-0335
51.4109
4363.65
0.1476
1.77740
1.91

52.4441
8001.60
0.1968
1.74479
3.51
01-075-1862;





01-086-2270
53.0419
5070.12
0.2460
1.72653
2.22
01-074-1879
53.7769
6901.98
0.2460
1.70465
3.03
01-077-2064;





01-074-1879
54.7721
1244.06
0.1968
1.67601
0.55
01-074-1879;





01-085-0335
55.5928
3887.87
0.1968
1.65320
1.71
01-074-1132;





00-004-0864;





00-022-1235;





01-086-2270
56.3597
43179.96
0.2952
1.63251
18.94
01-077-2064;





01-072-1259;





01-074-1879
57.3818
17427.11
0.2952
1.60584
7.65
01-075-1862;





01-086-2340;





01-074-1879;





01-085-0335
58.1113
14010.66
0.1968
1.58740
6.15

59.2880
22681.78
0.2460
1.55868
9.95
01-074-1132;





01-075-1620;





01-086-2270
60.7471
4035.97
0.1476
1.52469
1.77
01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259;





01-074-1879
61.2176
2376.64
0.1968
1.51410
1.04
01-075-1862;





01-086-2270;





01-086-2340;





01-072-1259
416

-------
62.1680
2885.83
0.3444
1.49321
1.27
01-086-2270;





00-043-1022
63.5244
1992.91
0.1968
1.46456
0.87
01-072-1259
65.0322
36270.96
0.2460
1.43420
15.91
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340
66.0860
36478.13
0.1968
1.41387
16.00
01-077-2064;





01-075-1620;





01-072-1259
66.8812
12415.25
0.1476
1.39898
5.45
01-086-2270;





01-074-1879
68.0764
9926.25
0.1968
1.37730
4.35
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
69.4373
6169.28
0.1968
1.35360
2.71
00-022-1235
70.2775
299.04
0.1476
1.33946
0.13
01-075-1862;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-074-1879
71.2886
5653.51
0.2400
1.32183
2.48
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
71.5252
4328.13
0.1800
1.32131
1.90

72.4880
2031.01
0.2400
1.30289
0.89
01-075-1620;





01-086-2340;





01-074-1879
72.9624
6588.57
0.2400
1.29558
2.89
01-077-2064;





01-086-2270;





01-086-2340;





01-072-1259
73.4321
5181.02
0.4200
1.28845
2.27
01-086-2340;





01-074-1879;





01-085-0335
74.2757
6466.00
0.2400
1.27589
2.84
01-075-1862;





01-074-1132;





01-086-2270;





01-074-1879
75.1593
40664.05
0.1800
1.26307
17.84
01-077-2064
75.4263
19161.28
0.1200
1.26239
8.41

417

-------
76.2801
994.42
0.1800
1.24728
0.44
01-075-1620;
01-086-2340;
01-072-1259
76.7453
2789.30
0.1800
1.24087
1.22
01-075-1862;
01-086-2340;
01-072-1259;
01-074-1879
77.0966
3131.26
0.2400
1.23609
1.37
01-075-1862;
01-086-2270;
01-072-1259
78.1484
21370.40
0.2400
1.22206
9.38
01-085-1327;
00-022-1235;
01-072-1259
78.4287
12849.25
0.1200
1.22142
5.64

79.6492
823.75
0.1800
1.20277
0.36
01-072-1259;
01-074-1879;
01-085-0335
81.0736
877.00
0.2400
1.18519
0.38
01-075-1620;
01-086-2340;
01-074-1879;
01-085-0335
82.3602
6408.11
0.2400
1.16991
2.81
01-085-1327;
00-022-1235;
01-072-1259;
01-074-1879
82.6566
5295.14
0.2400
1.16646
2.32
01-074-1132;
01-085-1327;
01-086-2270;
01-072-1259
83.8579
28331.76
0.1800
1.15278
12.43
01-077-2064;
01-086-2340;
01-072-1259;
01-085-0335
84.1518
14549.85
0.1200
1.15236
6.38

84.8723
404.77
0.1200
1.14158
0.18
01-075-1862;
01-086-2340;
01-074-1879;
01-085-0335
85.6852
528.77
0.2400
1.13282
0.23
01-074-1132;
01-075-1620;
01-086-2270;
01-074-1879
86.8174
1907.63
0.3000
1.12093
0.84

87.2458
2637.12
0.2400
1.11652
1.16
00-004-0864;
01-072-1259;
01-074-1879;
01-085-0335
418

-------
88.4194	2742.44	0.3000	1.10471	1.20 01-086-2270;
01-072-1259
88.8659	1465.27	0.1200	1.10304	0.64
89.1715	847.06	0.3000	1.09733	0.37 01-072-1259;
01-074-1879
90.2815	2214.25	0.1800	1.08670	0.97 00-022-1235
90.5802	1521.62	0.1800	1.08659	0.67
91.0767	2071.88	0.3000	1.07927	0.91
92.6261	162.39	0.2400	1.06524	0.07
93.6917	3699.63	0.1800	1.05590	1.62 00-022-1235
94.0402	6149.75	0.3000	1.05291	2.70 00-004-0864;
00-043-1022
95.1099	5533.96	0.1800	1.04387	2.43
95.4502	5498.29	0.1800	1.04105	2.41
96.2328	963.61	0.3600	1.03465	0.42
97.0201	1566.61	0.3000	1.02834	0.69
98.3315	942.72	0.2400	1.01810	0.41
99.0466	2332.95	0.2400	1.01266	1.02
99.3444	2518.09	0.3000	1.01042	1.10
100.4465	3549.18	0.2400	1.00228	1.56
101.0243	13430.72	0.2400	0.99811	5.89
101.4079	6878.95	0.1800	0.99784	3.02
102.4898	2047.84	0.3000	0.98778	0.90
103.1742	361.08	0.1200	0.98553	0.16
104.6928	858.37	0.3600	0.97295	0.38
106.5841	256.18	0.2400	0.96084	0.11
107.6735	3789.12	0.2400	0.95412	1.66
108.0688	2715.54	0.1800	0.95409	1.19
11.4: 2489-L-BHD
11.4.1: Measurement Conditions of2489-L
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
2489-L-Slow
M:\XRD-BHD\2489-L-Slow.rd
2489-L-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/18/2013 9:06:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
419

-------
Offset [°2Th.]
0.0000
Divergence Slit Type
Automatic
Irradiated Length [mm]
15.00
Specimen Length [mm]
10.00
Receiving Slit Size [mm]
0.2500
Measurement Temperature [°C]
0.00
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Diffractometer Number
1
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
Incident Beam Monochromator
No
Spinning
Yes
11.4.2: Main Graphics, Analyze View of2489-L
V VV VV WWW V vw
W V V
WVVVVV VV
100000 -
50000 -
/' l, / "I ¦ IW' i \l
I'i V

AAr y

50	60	70
Position [°2Theta] (Copper (Cu))
420

-------
Aluminum Oxide 11.1 %
Magnesium Aluminum Oxide S.1 %
Quartz low 7.1 %
Anhydrite 7A~%]
Aluminum Oxide Nitride 6.1 % ]
Aluminum Oxide Nitride 6.1 % ]
Aluminum 6.1 %~|
Aluminum Oxide Nitride 11.1
Sodium Chloride 12.1 %
I Elpasolite, syn 4
J~j Fluorite, syn 3 %lj~g^
. Aluminum Oxide 4 %|
Sylvite, syn 4 % |j
11.4.3: Pattern List of2489-L
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
37
Aluminum
A12 03
4
18
0
1862

Oxide




00-004-
33
Sylvite, syn
K CI
4
8
0
0587






01-077-
45
Sodium
Na CI
12
9
0
2064

Chloride




01-074-
34
Magnesium
Mg A12 04
8
13
0
1132

Aluminum
Oxide




01-075-
44
Aluminum
A1N
6
11
0
1620

Nitride




01-080-
11
Aluminum
A12.85
11
11
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
14
Aluminum
A12.81
6
10
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
13
Aluminum
A12.78
6
8
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
40
Aluminum
A1
6
5
0
1327






00-004-
16
Fluorite, syn
Ca F2
3
4
0
0864






421

-------
00-022-
21 Elpasolite,
K2 Na A1

4 14
0
1235
syn
F6



01-086-
21 Anhydrite
Ca ( S 04 )

7 39
0
2270





01-072-
15 Magnesium
Mg S 04

4 45
1
1259
Sulfate




01-080-
17 Aluminum
A12.667 04

11 11
0
1385
Oxide




01-085-
14 Quartz low
Si 02

7 20
0
0335





11.4.4: Peak List of2489-L
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A]
Rel. Int. [%]
Matched by

[°2Th.]



5.1769
97.89
0.0984
17.07063
0.09

6.6587
589.91
0.3936
13.27484
0.53

7.5921
685.58
0.2952
11.64471
0.62

9.5660
349.90
0.4920
9.24583
0.31

11.0895
616.62
0.1968
7.97881
0.55

12.2024
254.23
0.3936
7.25352
0.23

13.9707
348.40
0.1476
6.33913
0.31

14.5839
215.75
0.1968
6.07394
0.19

15.5225
274.59
0.2460
5.70873
0.25

16.2444
262.19
0.1968
5.45663
0.24

17.0694
353.32
0.1476
5.19469
0.32

17.8711
116.49
0.1476
4.96342
0.10

18.8760
2658.05
0.2952
4.70140
2.39
01-074-1132;





00-022-1235;





01-086-2270
19.7585
606.03
0.3936
4.49337
0.54

20.7739
1044.73
0.1476
4.27597
0.94
01-085-0335
22.2699
930.27
0.1968
3.99200
0.83

22.9283
1503.06
0.1476
3.87884
1.35
01-086-2270
23.3521
567.71
0.1476
3.80939
0.51

23.8986
572.50
0.1476
3.72350
0.51

24.5212
2043.75
0.1476
3.63035
1.83
01-072-1259
25.3945
8467.38
0.2952
3.50746
7.60
01-075-1862;





01-086-2270
26.4807
2049.37
0.1476
3.36600
1.84
01-072-1259;





01-085-0335
27.2238
9995.09
0.1968
3.27579
8.97
01-077-2064;





01-072-1259
28.0844
27908.71
0.1968
3.17733
25.04
00-004-0587;





00-004-0864
422

-------
28.4170
26576.88
0.1476
3.14089
23.85
00-004-0587;





00-004-0864;





01-086-2270
29.7401
2831.65
0.1968
3.00411
2.54

30.1758
2329.94
0.1476
2.96172
2.09

30.7988
3632.22
0.0984
2.90321
3.26

31.5545
111440.00
0.2460
2.83539
100.00
01-077-2064;





01-086-2270
32.2698
2080.16
0.0984
2.77415
1.87

33.0594
14825.15
0.2460
2.70968
13.30
01-075-1620
33.9515
2076.00
0.1968
2.64049
1.86

34.4835
13035.03
0.1968
2.60097
11.70
01-072-1259
34.9998
7021.71
0.1476
2.56377
6.30
01-075-1862
35.8714
8824.23
0.1968
2.50345
7.92
01-075-1620;





01-072-1259
36.7105
14914.27
0.2460
2.44813
13.38
01-074-1132;





01-085-0335
37.7324
13191.51
0.2460
2.38415
11.84
01-075-1862;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
38.3583
57399.44
0.2460
2.34668
51.51
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
40.2786
22025.78
0.4428
2.23912
19.76
01-085-0335
40.6759
17677.17
0.1476
2.21816
15.86
00-004-0587;





01-086-2270;





01-072-1259
41.7377
1459.32
0.2952
2.16415
1.31
01-075-1862;





01-072-1259
42.3113
2319.92
0.4920
2.13613
2.08
01-085-0335
43.1896
10750.46
0.2460
2.09471
9.65
01-075-1862;





01-086-2270
44.5836
40647.23
0.2460
2.03240
36.47
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.2825
79581.61
0.2460
2.00264
71.41
01-077-2064;





01-086-2270
47.1833
5564.59
0.3936
1.92630
4.99
00-004-0864;





01-086-2270
49.6116
6995.55
0.2460
1.83756
6.28
01-075-1620
49.9997
5890.96
0.2460
1.82420
5.29
00-004-0587;





01-075-1620;
423

-------





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-080-1385;





01-085-0335
50.4179
5513.18
0.1968
1.81005
4.95
00-004-0587;





00-022-1235;





01-072-1259;





01-085-0335
51.3291
2151.25
0.2460
1.78004
1.93

52.3649
4961.78
0.1968
1.74724
4.45
01-075-1862;





01-086-2270
52.9709
3747.96
0.2460
1.72867
3.36
01-086-2270
53.6841
4027.41
0.2952
1.70738
3.61
01-077-2064
54.7851
799.46
0.2952
1.67564
0.72
01-085-0335
55.5398
3678.18
0.1968
1.65465
3.30
01-074-1132;





00-004-0864;





00-022-1235;





01-086-2270;





01-085-0335
56.2856
23064.49
0.2952
1.63448
20.70
01-077-2064;





01-072-1259
57.3224
8355.43
0.2460
1.60736
7.50
01-075-1862;





01-085-0335
58.0580
8496.18
0.2460
1.58873
7.62
01-086-2270;





01-072-1259
58.8947
11423.87
0.1800
1.56685
10.25
00-004-0587;





00-022-1235;





01-086-2270;





01-072-1259
59.1989
16173.82
0.2952
1.56081
14.51
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270
60.6328
2670.84
0.1476
1.52729
2.40
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
61.1522
1498.28
0.2952
1.51556
1.34
01-075-1862;





01-086-2270;





01-072-1259
61.8449
1236.28
0.1968
1.50024
1.11
01-072-1259
63.5111
1435.62
0.3444
1.46483
1.29
01-072-1259
64.3639
3834.70
0.1476
1.44747
3.44
01-072-1259
424

-------
64.9753
27341.81
0.3444
1.43532
24.54
01-074-1132;





01-085-1327;





00-022-1235
66.0236
23621.56
0.2952
1.41505
21.20
01-077-2064;





01-075-1620;





01-086-2270;





01-072-1259;





01-085-0335
66.7938
7905.38
0.1968
1.40059
7.09
01-080-2172;





01-080-2173;





01-086-2270
67.9919
4830.12
0.2952
1.37880
4.33
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
69.3901
5630.77
0.2460
1.35440
5.05
00-022-1235
71.3057
3439.42
0.4920
1.32265
3.09
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
72.3892
1627.89
0.1968
1.30550
1.46
01-075-1620
72.9056
4393.17
0.1476
1.29752
3.94
01-077-2064;





01-075-1620;





01-086-2270;





01-072-1259
73.4194
2948.00
0.2460
1.28971
2.65
01-085-0335
74.1829
4623.69
0.1968
1.27831
4.15
01-075-1862;





01-074-1132;





01-086-2270
75.0806
22927.56
0.1968
1.26524
20.57
01-077-2064
76.2311
1332.71
0.1968
1.24899
1.20
01-075-1620;





01-072-1259
77.5784
5662.54
0.1476
1.23063
5.08
01-074-1132;





01-086-2270;





01-072-1259;





01-085-0335
78.0893
23433.58
0.3600
1.22284
21.03
01-085-1327;





00-022-1235;





01-072-1259
78.3688
13087.30
0.1200
1.22221
11.74

79.6606
400.69
0.3000
1.20262
0.36
01-080-2171;





01-086-2270;





01-072-1259;





01-085-0335
425

-------
80.4172
409.34
0.3600
1.19320
0.37
01-075-1862;





01-080-2173
80.9211
524.97
0.2400
1.18704
0.47
01-075-1862;





01-075-1620;





01-085-0335
82.3086
6593.12
0.2400
1.17051
5.92
01-085-1327;





00-022-1235;





01-072-1259
83.2962
5215.23
0.1800
1.15912
4.68
01-075-1862;





01-086-2270
83.7830
16889.10
0.2400
1.15362
15.16
01-077-2064;





01-072-1259;





01-085-0335
84.0817
8145.42
0.1200
1.15314
7.31

85.3390
322.41
0.1800
1.13652
0.29
01-075-1862;





00-022-1235;





01-072-1259
85.9919
733.86
0.7200
1.12956
0.66
01-075-1862;





01-074-1132;





01-075-1620;





01-086-2270;





01-072-1259
87.8539
2243.80
0.1800
1.11036
2.01
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
88.3647
2031.30
0.3600
1.10525
1.82
01-086-2270;





01-072-1259
88.8246
828.09
0.1200
1.10345
0.74

90.1718
1617.06
0.1200
1.08774
1.45
00-022-1235
90.5129
1474.00
0.1200
1.08452
1.32
00-022-1235
91.0718
1313.73
0.2400
1.07932
1.18

91.5276
496.07
0.1200
1.07780
0.45

93.4676
2023.98
0.2400
1.05785
1.82
00-022-1235
93.9658
4183.97
0.3600
1.05354
3.75
00-004-0864
95.0275
5303.57
0.1800
1.04456
4.76

95.3690
4080.88
0.1800
1.04172
3.66

96.9213
1340.03
0.3000
1.02912
1.20

98.0687
514.63
0.1800
1.02012
0.46

98.9512
3090.50
0.2400
1.01338
2.77
00-022-1235
99.3222
2604.88
0.2400
1.01059
2.34

100.9576
9404.18
0.1800
0.99859
8.44

101.3321
4468.04
0.1800
0.99838
4.01

102.4181
1419.07
0.3000
0.98828
1.27

103.2190
214.36
0.2400
0.98278
0.19
00-022-1235
426

-------
104.6731	438.51	0.1800	0.97307	0.39
106.4364	407.09	0.3000	0.96177	0.37
107.5604	2440.73	0.3000	0.95481	2.19 00-022-1235
107.9163	1794.88	0.1800	0.95501	1.61
Facility M
12.1: 2604-M-BHD
12.1.1: Measurement Conditions of2604-M
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2604-M-Slow_002
M:\XRD-BHD\2604-M-Slow_002.rd
2604-M-Slow_002
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/22/2013 12:31:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
427

-------
12.1.2: Main Graphics, Analyze View of2604-M
2604-M-Slow_002
20000 -
10000 -
U I I I I | I I I I I I I I
10
20
30
40
50
60
70
80
90
100
Position [°2Theta] (Copper (Cu))
Quartz low 82.8 %
all imini im Pi
Calcite 1 %
ide Nitride 1 %
Aluminum Oxide Nitride 1 %
| tSp55L...L.-,
[ All Silicon Nitride 2 %
Ar Magnesium Sulfate 2 % |
428

-------
12.1.3: Pattern List of2604-M
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
22
Aluminum
A12 03
1
14
0
1862

Oxide




01-077-
30
Sodium
Na CI
1
9
0
2064

Chloride




01-075-
13
Aluminum
A1N
1
8
1
1620

Nitride




01-080-
14
Aluminum
A12.81
1
10
1
2172

Oxide
Nitride
03.56
NO.44



01-080-
11
Aluminum
A12.78
1
12
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
43
Aluminum
A1
2
5
0
1327






00-022-
27
Elpasolite,
K2 Na A1
2
17
0
1235

syn
F6



01-086-
33
Anhydrite
Ca ( S 04 )
3
39
0
2270






01-086-
23
Calcite
Ca (C 03)
1
22
0
2340






01-072-
22
Magnesium
Mg S 04
2
42
0
1259

Sulfate




01-076-
19
Silicon
Si3 N4
2
39
0
1407

Nitride




01-085-
27
Quartz low
Si 02
82
27
0
0335






12.1.4: Peak List of2604-M
Pos. | 2Tli.| Height [cts] FWHM d-spacing [A] Rel. Int. [%] Matched by
[°2Th.]
5.8635
227.27
0.0984
15.07312
0.95
7.3719
167.26
0.3936
11.99200
0.70
7.9295
184.54
0.1968
11.15001
0.77
8.5530
224.38
0.3936
10.33850
0.94
10.1580
309.73
0.2952
8.70824
1.30
11.5009
660.81
0.2952
7.69429
2.77
12.5171
178.68
0.0984
7.07181
0.75
13.3302
273.79
0.1968
6.64225
1.15
14.5105
602.63
0.2952
6.10451
2.53
15.9225
272.77
0.0984
5.56620
1.14
429

-------
16.3203
234.91
0.1476
5.43141
0.98

16.9791
416.27
0.0984
5.22212
1.75

17.5930
471.77
0.2952
5.04125
1.98

18.5423
1452.77
0.1968
4.78525
6.09

19.5244
1133.75
0.2952
4.54671
4.75
01-080-2172;





01-080-2173
20.6493
6250.17
0.1968
4.30149
26.20
01-072-1259;





01-076-1407;





01-085-0335
21.7293
1354.31
0.1476
4.09008
5.68
00-022-1235
22.7575
2505.53
0.2952
3.90756
10.50
01-086-2270;





01-072-1259;





01-076-1407
23.7838
5178.52
0.2460
3.74122
21.71

24.5038
3602.46
0.2952
3.63290
15.10
01-072-1259
25.2302
8255.68
0.3444
3.52993
34.61
01-086-2270
26.4165
23854.62
0.2952
3.37404
100.00
01-072-1259;





01-076-1407;





01-085-0335
27.1752
8517.37
0.3444
3.28154
35.71
01-077-2064;





01-072-1259
27.6589
2721.37
0.1476
3.22523
11.41
01-072-1259
29.1616
8234.00
0.3444
3.06237
34.52
01-086-2340
31.0917
3771.77
0.1476
2.87653
15.81
00-022-1235;





01-086-2270;





01-086-2340;





01-076-1407
31.4973
4707.01
0.1968
2.84041
19.73
01-077-2064;





01-086-2270
32.4429
7561.08
0.5412
2.75975
31.70

34.3853
3743.29
0.2460
2.60817
15.69
01-072-1259;





01-076-1407
34.8284
968.13
0.1476
2.57599
4.06
01-072-1259;





01-076-1407
35.2859
1558.63
0.1968
2.54364
6.53
01-075-1862;





01-076-1407
35.8261
3363.87
0.2460
2.50651
14.10
01-075-1620;





01-086-2340;





01-072-1259
36.2866
2527.64
0.2460
2.47576
10.60
01-075-1620;





01-086-2270;





01-086-2340;





01-085-0335
37.4693
768.49
0.1476
2.40029
3.22
01-080-2172;





01-080-2173
430

-------
38.2484
18743.33
0.3444
2.35317
78.57
01-085-1327;
00-022-1235;
01-072-1259
39.2105
4919.88
0.3444
2.29761
20.62
01-080-2172;
01-080-2173;
01-086-2340;
01-085-0335
39.9935
2942.01
0.2460
2.25442
12.33

40.5459
2731.72
0.1968
2.22497
11.45
01-086-2270;
01-076-1407;
01-085-0335
40.9379
2519.03
0.1476
2.20457
10.56
01-086-2270;
01-072-1259
42.0676
2504.00
0.1800
2.14616
10.50
01-076-1407
42.2719
2611.36
0.1968
2.13803
10.95
01-085-0335
43.0669
4037.91
0.2460
2.10039
16.93
01-075-1862;
01-086-2340
43.7972
6513.81
0.2952
2.06705
27.31
01-072-1259
44.4437
12564.09
0.3444
2.03847
52.67
00-022-1235;
01-072-1259
45.1858
4043.71
0.1968
2.00670
16.95
01-077-2064;
01-086-2270
46.9055
2426.12
0.1476
1.93706
10.17
01-086-2270;
01-086-2340;
01-072-1259;
01-076-1407
48.3097
4713.82
0.2460
1.88399
19.76
01-086-2340;
01-072-1259;
01-076-1407
49.0720
6219.95
0.2460
1.85649
26.07
00-022-1235;
01-086-2270;
01-076-1407
49.8967
8118.02
0.2952
1.82773
34.03
01-075-1620;
01-080-2172;
01-080-2173;
00-022-1235;
01-085-0335
51.1174
909.47
0.2952
1.78691
3.81

52.0284
1254.32
0.3936
1.75775
5.26
01-086-2270;
01-076-1407
52.7777
732.25
0.1476
1.73455
3.07
01-075-1862;
01-086-2270
53.2759
1219.01
0.0984
1.71949
5.11

53.9863
5047.33
0.3444
1.69853
21.16
01-077-2064
55.3812
3681.01
0.2952
1.65901
15.43
00-022-1235;
01-085-0335
431

-------
56.3296
2882.24
0.3444
1.63331
12.08
01-077-2064;





01-072-1259;





01-076-1407
57.1934
2598.74
0.2460
1.61068
10.89
01-075-1862;





01-076-1407;





01-085-0335
57.8748
1392.37
0.3000
1.59201
5.84
01-086-2270;





01-072-1259;





01-076-1407
58.0138
1083.51
0.1800
1.59247
4.54

58.9792
896.06
0.2400
1.56480
3.76
00-022-1235;





01-086-2270;





01-072-1259
59.6320
4012.62
0.3600
1.54922
16.82
01-075-1862;





01-075-1620;





01-076-1407
60.5861
2580.25
0.3000
1.52709
10.82
01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259
62.1134
1726.60
0.1200
1.49316
7.24
01-086-2270;





01-072-1259
62.4854
1648.80
0.3000
1.48516
6.91
01-086-2270;





01-076-1407
63.6670
1709.43
0.2400
1.46041
7.17
01-072-1259;





01-076-1407
64.8612
6673.05
0.5400
1.43638
27.97
01-085-1327;





00-022-1235;





01-086-2340;





01-076-1407
66.2262
1915.15
0.1800
1.41005
8.03
01-075-1862;





01-077-2064;





01-075-1620;





01-072-1259;





01-076-1407
67.3743
2089.81
0.2400
1.38878
8.76

68.0077
4509.96
0.4200
1.37738
18.91
01-075-1862;





00-022-1235;





01-072-1259;





01-076-1407;





01-085-0335
68.6683
1622.64
0.3600
1.36573
6.80
01-086-2270;





01-072-1259
69.4403
1328.09
0.4800
1.35243
5.57
01-075-1620;





00-022-1235;





01-076-1407
432

-------
70.4912
717.86
0.1800
1.33482
3.01
01-075-1862;





01-086-2270;





01-072-1259
71.7171
1278.88
0.1800
1.31498
5.36
01-075-1620;





01-086-2270;





01-072-1259
72.7463
1480.41
0.2400
1.29890
6.21
01-077-2064;





01-075-1620;





01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
73.3657
1920.83
0.2400
1.28945
8.05
01-077-2064;





01-086-2340;





01-076-1407;





01-085-0335
74.0143
1793.67
0.2400
1.27975
7.52
01-075-1862;





00-022-1235;





01-086-2270
74.3642
1127.81
0.1800
1.27776
4.73

75.3192
1751.21
0.1800
1.26078
7.34
01-077-2064
75.5451
1259.65
0.1800
1.26070
5.28

78.0584
6776.95
0.4800
1.22325
28.41
01-085-1327;





00-022-1235;





01-072-1259
79.4668
1375.50
0.1800
1.20507
5.77
01-072-1259;





01-076-1407
79.7292
1813.06
0.1800
1.20176
7.60
01-086-2270;





01-072-1259;





01-076-1407;





01-085-0335
81.1380
1661.68
0.1800
1.18441
6.97
01-075-1620;





01-086-2340;





01-085-0335
82.1029
2533.87
0.2400
1.17292
10.62
00-022-1235;





01-072-1259;





01-076-1407
83.6644
1992.59
0.7200
1.15496
8.35
01-077-2064;





01-086-2340;





01-072-1259;





01-076-1407;





01-085-0335
84.7013
1498.11
0.3600
1.14344
6.28
01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;
433

-------





01-072-1259;





01-085-0335
85.5697
1023.70
0.1800
1.13405
4.29
00-022-1235;
01-086-2270;
01-072-1259;
01-076-1407
86.3336
797.31
0.1200
1.12596
3.34
01-075-1862;
01-086-2340;
01-072-1259
88.0326
1787.55
0.2400
1.10856
7.49
01-080-2172;
01-080-2173;
01-086-2270;
01-072-1259;
01-076-1407
89.2700
1325.22
0.2400
1.09637
5.56
01-072-1259;
01-076-1407
90.5326
2104.15
0.1800
1.08434
8.82
00-022-1235
92.5279
1036.87
0.1200
1.06611
4.35

93.8709
741.62
0.1200
1.05436
3.11
00-022-1235
94.4177
1545.90
0.1800
1.04969
6.48

94.9968
2154.90
0.6000
1.04482
9.03

95.9552
1487.27
0.2400
1.03690
6.23

96.2810
1092.68
0.1800
1.03683
4.58

97.0175
888.95
0.4800
1.02836
3.73

98.5216
960.30
0.2400
1.01664
4.03
00-022-1235
98.8377
1240.49
0.7200
1.01424
5.20
00-022-1235
100.1292
741.28
0.1800
1.00460
3.11

100.9210
739.34
0.6000
0.99885
3.10

101.9315
931.24
0.1800
0.99167
3.90
00-022-1235
102.3421
1139.10
0.1800
0.99126
4.78

103.0772
435.07
0.1800
0.98375
1.82
00-022-1235
103.3738
648.34
0.1200
0.98173
2.72

103.6249
806.57
0.1200
0.98003
3.38

104.2075
771.72
0.9600
0.97614
3.24

105.8320
866.86
0.2400
0.96559
3.63

106.2816
1114.37
0.1800
0.96274
4.67

106.7206
1018.80
0.2400
0.95999
4.27

107.6172
453.00
0.1200
0.95446
1.90
00-022-1235
109.0863
382.88
0.2400
0.94567
1.61

434

-------
12.2: 2608-M-BHD
12.2.1: Measurement Conditions of2608-M
Dataset Name
File name
Sample Identification
Comment
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2608-M-Slow_002-r
M:\XRD-BHD\2608-M-Slow_002-r.RD
2608-M-Slow_002
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
435

-------
12.2.2: Main Graphics, Analyze View of2608-M
2608- M-S low_002-r
20000 -
10000 -
yyy.'V .tyyy/.
90
10
20
30
40
50
60
70
80
100
Position [°2Theta] (Copper (Cu))

Aluminum 10 %
Magnesium Sulfide 9 %

Quartz 10 %
Elpasolite, syn 11 %~|
Anhydrite 9 %
- Sodium Chbride 1 %
I Periclase, syn 2 %
Silicon Nitride y %
Sylvite. syn 2 %
de 3 %

Fluorite, syn 6 % |
Magnesium Aluminum Oxide 5 % I

Aluminum
Diaspore 4 %
Aluminum Oxide Nitride 3 % |
Aluminum uxiae ivinriae j ->>¦ \
AlUi	hi 11 ^jAiLjc~J Tb |
436

-------
12.2.3: Pattern List of2608-M
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
28
Aluminum
A12 03
3
25
0
1862

Oxide




00-004-
23
Sylvite, syn
K CI
2
10
0
0587






01-077-
17
Sodium
Na CI
1
9
0
2064

Chloride




01-074-
20
Magnesium
Mg A12 04
5
16
0
1132

Aluminum
Oxide




01-075-
20
Aluminum
A1N
4
12
0
1620

Nitride




01-080-
19
Aluminum
A12.85
3
16
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
21
Aluminum
A12.81
3
16
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
20
Aluminum
A12.78
3
16
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
45
Aluminum
A1
10
5
0
1327






00-004-
38
Fluorite, syn
Ca F2
6
8
0
0864






00-022-
35
Elpasolite,
K2 Na A1
11
22
0
1235

syn
F6



01-086-
33
Anhydrite
Ca ( S 04 )
9
50
0
2270






01-086-
20
Calcite
Ca (C 03)
3
27
0
2340






01-072-
28
Magnesium
Mg S 04
9
62
0
1259

Sulfate




00-043-
20
Periclase,
Mg O
2
8
0
1022

syn




01-076-
30
Silicon
Si3 N4
9
57
0
1407

Nitride




01-080-
21
Aluminum
A12.667 04
3
16
0
1385

Oxide




01-074-
15
Diaspore
A1 O ( O H
4
54
0
1879


)



01-085-
34
Quartz
Si 02
10
29
0
0930






437

-------
12.2.4: Peak List of2608-M
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.1582
42.49
0.1476
17.13249
0.18

5.5755
123.69
0.1476
15.85122
0.52

5.9726
187.38
0.0984
14.79797
0.78

7.8278
302.14
0.6888
11.29459
1.26

8.8944
216.51
0.2952
9.94240
0.91

10.0594
483.05
0.2952
8.79340
2.02

11.2679
1499.22
0.2952
7.85284
6.28

11.9217
59.84
0.1476
7.42363
0.25

13.2344
128.62
0.2952
6.69009
0.54
01-076-1407
13.8519
109.24
0.1968
6.39325
0.46

14.7211
442.98
0.0984
6.01763
1.85

16.1742
1385.68
0.4428
5.48013
5.80

17.9751
4942.93
0.4428
4.93494
20.69

18.7670
906.78
0.1968
4.72846
3.80
01-074-1132;





00-022-1235;





01-074-1879
19.5559
433.07
0.1476
4.53945
1.81
01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385
20.7870
3505.62
0.1968
4.27331
14.68
01-076-1407;





01-085-0930
21.4216
492.97
0.1476
4.14813
2.06

21.9100
925.52
0.1968
4.05675
3.87
00-022-1235
22.6628
1063.21
0.2460
3.92366
4.45
01-072-1259
22.8409
1345.89
0.1476
3.89348
5.63
01-086-2270;





01-086-2340;





01-076-1407
23.9464
3807.16
0.1968
3.71618
15.94

25.4007
4617.83
0.4920
3.50661
19.33
01-075-1862;





01-086-2270
26.5843
19300.20
0.2460
3.35312
80.80
01-072-1259;





01-076-1407;





01-085-0930
27.3728
2986.52
0.1476
3.25829
12.50
01-077-2064;





01-072-1259
28.0913
8080.19
0.3936
3.17657
33.83
00-004-0587;





00-004-0864
28.6207
1813.81
0.1476
3.11900
7.59
01-086-2270
29.3595
2999.06
0.2460
3.04218
12.56
01-086-2340
30.3890
1875.53
0.1476
2.94143
7.85

30.6683
3509.80
0.2460
2.91527
14.69

438

-------
31.0636
3612.90
0.1968
2.87907
15.13
01-074-1132;





00-022-1235;





01-086-2340;





01-076-1407
32.2315
4474.04
0.1968
2.77736
18.73
01-086-2270
34.0270
12795.07
0.4428
2.63481
53.57

34.5788
3762.05
0.1968
2.59401
15.75
01-072-1259;





01-076-1407
35.3776
939.64
0.1968
2.53726
3.93
01-075-1862;





01-076-1407;





01-074-1879
36.0032
2908.24
0.1968
2.49459
12.18
01-075-1620;





01-086-2340;





01-072-1259
36.4711
2248.02
0.0984
2.46365
9.41
01-086-2270;





01-085-0930
38.4190
23885.53
0.4920
2.34311
100.00
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259;





01-074-1879
39.3897
2508.13
0.2460
2.28758
10.50
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2340;





01-076-1407;





01-080-1385;





01-085-0930
40.1528
1951.52
0.1968
2.24585
8.17
01-076-1407;





01-085-0930
40.7874
1402.21
0.1968
2.21236
5.87
00-004-0587;





01-086-2270;





01-072-1259;





01-074-1879
41.1974
1321.50
0.2460
2.19128
5.53
01-086-2270;





01-074-1879
42.3597
3748.05
0.4920
2.13381
15.69
01-074-1879;





01-085-0930
43.2290
1201.05
0.2460
2.09289
5.03
01-075-1862;





01-086-2270;





01-086-2340;





01-076-1407
44.6646
9777.35
0.2952
2.02890
40.93
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
439

-------
45.4489
4035.31
0.1968
1.99570
16.89
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-080-1385;





01-074-1879
46.9851
13131.11
0.6396
1.93397
54.98
00-004-0864;





01-086-2270;





01-086-2340;





01-072-1259;





01-076-1407
48.2195
1414.13
0.1476
1.88730
5.92
01-086-2340;





01-072-1259;





01-076-1407
48.5709
2032.38
0.2952
1.87447
8.51
00-022-1235;





01-086-2270;





01-086-2340;





01-076-1407
49.6789
3579.78
0.3936
1.83523
14.99
01-075-1620;





01-080-2171
50.0209
4930.98
0.1476
1.82348
20.64
00-004-0587;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





00-022-1235;





01-080-1385;





01-085-0930
50.6746
7557.70
0.3936
1.80148
31.64
01-072-1259;





01-076-1407;





01-074-1879;





01-085-0930
51.3328
883.08
0.1476
1.77992
3.70

51.9735
832.50
0.0984
1.75947
3.49
01-076-1407
52.8800
944.13
0.0984
1.73143
3.95
01-086-2270;





01-074-1879
54.1973
6355.43
0.3444
1.69242
26.61
01-072-1259
55.3125
3821.60
0.1476
1.66091
16.00
00-022-1235;





01-085-0930
55.6819
3713.99
0.3444
1.65076
15.55
01-074-1132;





00-004-0864;





00-022-1235;





01-086-2270
56.6099
1234.24
0.1476
1.62589
5.17
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173:
440

-------





01-086-2340;





01-072-1259;





01-080-1385;





01-074-1879
57.3190
1473.14
0.2460
1.60745
6.17
01-075-1862;





01-086-2340;





01-076-1407;





01-074-1879;





01-085-0930
58.1282
1022.52
0.2460
1.58698
4.28
01-072-1259
59.8276
3713.38
0.2952
1.54591
15.55
01-075-1862;





01-076-1407;





01-085-0930
60.6205
3658.33
0.5412
1.52757
15.32
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-086-2340;





01-072-1259;





01-080-1385;





01-074-1879
62.1186
5577.26
0.1968
1.49428
23.35
01-086-2270;





01-072-1259;





00-043-1022
62.5791
4146.42
0.3444
1.48439
17.36
00-043-1022;





01-076-1407
63.6916
2021.45
0.2400
1.45991
8.46
01-072-1259;





01-076-1407
63.9354
2733.85
0.1200
1.45854
11.45

65.0299
6430.53
0.6000
1.43306
26.92
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2340;





01-076-1407;





01-074-1879
66.4743
1716.98
0.1200
1.40538
7.19
01-075-1862;





00-004-0587;





01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-072-1259;





01-076-1407;





01-080-1385;





01-074-1879
68.0142
3710.92
0.3000
1.37727
15.54
01-075-1862;





00-022-1235;





01-072-1259;
441

-------





01-076-1407;





01-085-0930
68.2305
2199.27
0.1800
1.37684
9.21

68.9266
1498.46
0.1800
1.36125
6.27
01-074-1132;





00-004-0864;





01-086-2270;





01-086-2340;





01-074-1879
69.3680
1694.57
0.3000
1.35366
7.09
00-022-1235;





01-086-2340;





01-076-1407;





01-074-1879
69.7758
998.82
0.1800
1.34674
4.18
01-074-1132;





01-075-1620;





01-080-2171;





01-080-2172;





01-086-2340;





01-076-1407;





01-080-1385
70.6305
412.15
0.2400
1.33252
1.73
01-075-1862;





01-072-1259;





01-074-1879
71.3795
1828.52
0.1800
1.32037
7.66
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-076-1407;





01-080-1385
71.7100
2447.63
0.2400
1.31510
10.25
01-075-1620;





01-086-2270;





01-072-1259
74.1053
870.87
0.4800
1.27840
3.65
01-075-1862;





01-074-1132;





01-086-2270;





01-074-1879
75.5316
3175.49
0.4200
1.25776
13.29
01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-072-1259;





01-080-1385;





01-074-1879;





01-085-0930
78.1471
7397.19
0.4800
1.22208
30.97
01-074-1132;





01-085-1327;
442

-------





00-022-1235;





01-072-1259
79.9141
1235.79
0.7200
1.19944
5.17
01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385;





01-074-1879;





01-085-0930
80.5865
621.62
0.2400
1.19112
2.60
01-075-1862;





01-086-2340;





01-076-1407;





01-074-1879
80.9761
2628.10
0.4200
1.18637
11.00
01-075-1620;





01-086-2340;





01-076-1407;





01-074-1879;





01-085-0930
81.4180
4029.95
0.3000
1.18105
16.87
01-086-2270;





01-086-2340;





01-076-1407;





01-074-1879;





01-085-0930
82.4710
2138.07
0.4200
1.16862
8.95
01-074-1132;





01-085-1327;





00-022-1235;





01-086-2270;





01-072-1259;





01-074-1879
83.5105
1160.08
0.3600
1.15669
4.86
01-086-2270;





01-072-1259;





01-076-1407;





01-074-1879
84.3241
1764.16
0.9600
1.14759
7.39
01-075-1862;





01-077-2064;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385;





01-074-1879
84.7829
1816.46
0.2400
1.14539
7.60

85.9826
731.89
0.6000
1.12966
3.06
01-075-1862;





01-074-1132;





01-075-1620;





01-086-2270;
443

-------





01-086-2340;





01-072-1259
87.4709
918.39
0.4800
1.11423
3.84
00-004-0587;





01-080-2171;





01-080-2172;





01-080-2173;





00-004-0864;





01-072-1259;





01-080-1385;





01-074-1879;





01-085-0930
88.2280
740.73
0.3600
1.10661
3.10
01-086-2270;





01-072-1259;





01-076-1407
89.4101
725.72
0.4800
1.09502
3.04
01-086-2270;





01-072-1259;





01-076-1407;





01-074-1879
90.5786
1895.08
0.3000
1.08391
7.93
00-022-1235
91.8378
645.19
0.1200
1.07231
2.70

92.5462
1332.36
0.3000
1.06595
5.58

93.0169
1914.62
0.1800
1.06178
8.02

93.7349
981.25
0.1800
1.05553
4.11
00-022-1235;





00-043-1022
94.2227
941.75
0.1800
1.05135
3.94
00-004-0587;





00-004-0864;





00-043-1022
94.9792
2086.42
0.3600
1.04496
8.74

96.0582
1622.92
0.3600
1.03607
6.79

96.9114
787.88
0.4800
1.02920
3.30

98.6665
2359.15
0.2400
1.01554
9.88
00-022-1235
99.2276
1555.92
0.1200
1.01381
6.51

100.0253
900.50
0.1800
1.00537
3.77

102.1171
878.80
0.6000
0.99037
3.68
00-022-1235
102.5314
847.72
0.1800
0.98995
3.55

102.8811
585.47
0.2400
0.98509
2.45
00-022-1235
103.9871
654.64
0.6000
0.97761
2.74

104.8594
724.54
0.1800
0.97186
3.03

106.3535
1341.49
0.3600
0.96229
5.62

107.2426
1087.41
0.1800
0.95676
4.55
00-022-1235
107.9778
782.07
0.3600
0.95228
3.27

109.6186
465.01
0.1200
0.94256
1.95
00-043-1022
444

-------
Facility N
13.1: 2495-N-BHD
13.1.1: Measurement Conditions of2495-N
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2495-N-Slow
M:\XRD-BHD\2495-N-Slow.rd
2495-N-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/23/2013 11:13:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
445

-------
13.1.2: Main Graphics, Analyze View of2495-N
2495-N-Slow
300000 -
200000 -
100000 -
10
20
30
40
50
60
70
80
90
100
Position [°2Theta] (Copper (Cu))
Sodium Chloride 26 %
Quartz low 17 %
Aluminum Oxide Nitride y %
Aluminum 2 %
Anhydrite 8 % |
de 3 %
IUIIIII IUIII VAIUC I Ml LI I
Aluminum Oxide Nitride '2. %
Aluminum uxiae j %
Elpasflifa		l
Aluminum Nitride 3 % |

Diaspore 7 %

Aluminum Oxide 7 % |
446

-------
13.1.3: Pattern List of2495-N
Ref. Code
Score
Compound
Chemical
Semi Quant
Matched
Strong


Name
Formula
[%]
Lines
Unmatched
Lines
01-075-
39
Aluminum
A12 03
7
15
0
1862

Oxide




00-004-
14
Sylvite, syn
K CI
2
5
0
0587






01-077-
43
Sodium
Na CI
26
9
0
2064

Chloride




01-074-
19
Magnesium
Mg A12 04
3
9
0
1132

Aluminum
Oxide




01-075-
22
Aluminum
A1N
3
7
0
1620

Nitride




01-080-
7
Aluminum
A12.85
9
8
0
2171

Oxide
Nitride
03.45
NO.55



01-080-
8
Aluminum
A12.81
3
4
0
2172

Oxide
Nitride
03.56
NO.44



01-080-
8
Aluminum
A12.78
2
5
0
2173

Oxide
Nitride
03.65
NO.35



01-085-
29
Aluminum
A1
2
5
0
1327






00-004-
17
Fluorite, syn
Ca F2
2
3
0
0864






00-022-
21
Elpasolite,
K2 Na A1
3
12
0
1235

syn
F6



01-086-
18
Anhydrite
Ca ( S 04 )
8
28
0
2270






01-072-
6
Magnesium
Mg S 04
3
32
0
1259

Sulfate




01-080-
8
Aluminum
A12.667 04
3
6
0
1385

Oxide




01-074-
11
Diaspore
A1 O ( O H
7
29
0
1879


)



01-085-
10
Quartz low
Si 02
17
10
0
0335






447

-------
13.1.4: Peak List of2495-N
Pos. [°2Th.]
Height [cts]
FWHM
[°2Th.]
d-spacing [A]
Rel. Int. [%]
Matched by
5.1640
129.49
0.0984
17.11331
0.04

6.9147
819.80
0.1476
12.78387
0.24

7.6608
1001.74
0.2952
11.54037
0.29

9.6365
649.91
0.4920
9.17832
0.19

11.0188
491.25
0.9840
8.02980
0.14

13.8296
693.86
0.4920
6.40347
0.20

15.5667
782.94
0.2460
5.69262
0.23

16.2159
1137.87
0.1968
5.46613
0.33

17.9093
644.81
0.2952
4.95293
0.19

18.9229
1764.12
0.2460
4.68984
0.52
01-074-1132;





00-022-1235;





01-086-2270;





01-074-1879
19.7872
1483.04
0.1968
4.48691
0.44

20.7313
2457.99
0.2952
4.28467
0.72
01-085-0335
21.1307
1262.30
0.1476
4.20458
0.37

21.9325
1361.23
0.0984
4.05264
0.40
00-022-1235
22.3088
1103.78
0.1476
3.98513
0.32
01-072-1259;





01-074-1879
22.8491
4825.55
0.2460
3.89210
1.42
01-086-2270
23.8804
2381.75
0.1968
3.72630
0.70

24.5479
5703.16
0.1968
3.62647
1.67
01-072-1259
25.1988
14544.21
0.1476
3.53425
4.27

25.4753
12483.02
0.0984
3.49652
3.66
01-075-1862;





01-086-2270
26.1180
3260.77
0.0984
3.41192
0.96

26.5110
11616.99
0.1476
3.36223
3.41
01-072-1259;





01-085-0335
27.2539
31400.03
0.1476
3.27224
9.21
01-077-2064;





01-072-1259
27.9851
72789.34
0.1968
3.18838
21.35
01-074-1879
28.4373
70146.19
0.1476
3.13870
20.58
00-004-0587;





00-004-0864;





01-086-2270
29.2837
7248.93
0.1476
3.04988
2.13

30.1989
7951.93
0.1476
2.95950
2.33

31.5871
340892.90
0.1968
2.83253
100.00
01-077-2064;





01-080-2171
32.5461
26547.09
0.1968
2.75123
7.79

33.0975
12163.48
0.1968
2.70665
3.57
01-075-1620
33.8941
4027.93
0.1968
2.64483
1.18

34.5026
6348.63
0.1476
2.59957
1.86
01-072-1259
448

-------
35.0405
18580.83
0.1968
2.56089
5.45
01-075-1862;





01-074-1879
35.9840
14290.58
0.1968
2.49587
4.19
01-075-1620
36.7408
9042.21
0.1476
2.44619
2.65
01-074-1132;





01-074-1879;





01-085-0335
37.2803
7159.97
0.1968
2.41202
2.10
01-080-2171
37.7021
11319.06
0.2952
2.38600
3.32
01-075-1862;





01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-080-1385;





01-074-1879
38.3750
19858.51
0.1968
2.34569
5.83
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259;





01-074-1879
38.8455
6025.80
0.1476
2.31836
1.77
01-086-2270;





01-074-1879
40.0542
45849.05
0.2460
2.25114
13.45

40.7099
51059.11
0.1476
2.21639
14.98
00-004-0587;





01-086-2270;





01-072-1259
41.7370
3545.21
0.1476
2.16419
1.04
01-075-1862;





01-072-1259
42.0789
4465.66
0.1968
2.14739
1.31
01-074-1879
43.2549
22017.77
0.1968
2.09170
6.46
01-075-1862;





01-086-2270
44.6084
16984.05
0.1968
2.03133
4.98
01-074-1132;





01-085-1327;





00-022-1235;





01-072-1259
45.3338
217117.70
0.1968
2.00049
63.69
01-077-2064;





01-086-2270;





01-074-1879
46.6319
8778.48
0.1968
1.94779
2.58
01-086-2270;





01-072-1259
46.9414
10212.86
0.2460
1.93567
3.00
00-004-0864;





01-086-2270;





01-072-1259
48.1699
3985.57
0.1476
1.88913
1.17
01-072-1259
49.6220
16002.61
0.2460
1.83720
4.69
01-075-1620
50.4667
16539.53
0.1476
1.80841
4.85
01-072-1259;





01-074-1879;





01-085-0335
449

-------
51.3714
5986.38
0.1968
1.77867
1.76

52.4093
12077.97
0.1968
1.74587
3.54
01-075-1862;





01-086-2270
53.0600
3635.52
0.1968
1.72598
1.07
01-074-1879
53.7351
10829.55
0.2460
1.70588
3.18
01-077-2064;





01-074-1879
54.7187
2809.08
0.1968
1.67752
0.82
01-074-1879;





01-085-0335
55.6290
4837.00
0.1476
1.65221
1.42
01-074-1132;





00-004-0864;





01-086-2270
56.3239
68621.28
0.2952
1.63346
20.13
01-077-2064;





01-072-1259;





01-074-1879
57.3488
19101.65
0.2460
1.60668
5.60
01-075-1862;





01-074-1879;





01-085-0335
58.1131
11462.15
0.2952
1.58736
3.36

59.0053
11994.85
0.1800
1.56417
3.52
00-022-1235;





01-086-2270;





01-072-1259;





01-074-1879
59.2783
10225.21
0.1476
1.55891
3.00
01-074-1132;





01-075-1620;





00-022-1235;





01-086-2270
59.8967
4951.02
0.1968
1.54429
1.45
01-075-1862;





01-085-0335
60.6977
5268.33
0.1476
1.52581
1.55
01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385;





01-074-1879
61.1499
3074.68
0.1476
1.51561
0.90
01-075-1862;





01-086-2270;





01-072-1259
62.4503
1963.78
0.1968
1.48714
0.58
01-086-2270
63.5530
1734.60
0.1968
1.46397
0.51
01-072-1259
64.9671
10154.38
0.2952
1.43548
2.98
01-085-1327;





00-022-1235
65.6172
17062.79
0.1968
1.42283
5.01
01-086-2270;





01-074-1879;





01-085-0335
66.0707
36499.68
0.1476
1.41416
10.71
01-077-2064;





01-075-1620;





01-072-1259
450

-------
66.8494
18530.99
0.1476
1.39956
5.44
01-080-2173;





01-086-2270;





01-074-1879
68.0330
15183.91
0.2400
1.37693
4.45
01-075-1862;





00-022-1235;





01-072-1259;





01-085-0335
68.2626
9587.79
0.1200
1.37627
2.81

69.4254
2419.06
0.2400
1.35268
0.71
00-022-1235
70.2210
681.12
0.3600
1.33929
0.20
01-075-1862;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385;





01-074-1879
71.2674
3116.07
0.2400
1.32217
0.91
01-075-1620;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-072-1259;





01-080-1385
71.5233
2873.64
0.1800
1.32134
0.84

72.8955
10855.58
0.3600
1.29660
3.18
01-077-2064;





01-086-2270;





01-072-1259
74.2494
11596.29
0.2400
1.27628
3.40
01-075-1862;





01-074-1132;





01-086-2270;





01-074-1879
75.1341
63828.70
0.1800
1.26343
18.72
01-077-2064
76.7268
4352.38
0.1800
1.24112
1.28
01-075-1862;





01-072-1259;





01-074-1879
78.1224
5138.51
0.2400
1.22241
1.51
01-085-1327;





00-022-1235;





01-072-1259
78.4349
2941.21
0.1800
1.22134
0.86

79.6555
1859.42
0.3000
1.20269
0.55
01-072-1259;





01-074-1879;





01-085-0335
80.5498
1221.36
0.1800
1.19157
0.36
01-075-1862;





01-074-1879
80.9280
735.62
0.1800
1.18991
0.22

82.3765
2610.85
0.1800
1.16972
0.77
01-085-1327;





00-022-1235;
451

-------





01-072-1259;





01-074-1879
83.8366
43673.61
0.1800
1.15302
12.81
01-077-2064;





01-072-1259;





01-074-1879;





01-085-0335
84.1310
22793.12
0.1200
1.15259
6.69

86.6579
2182.29
0.7200
1.12258
0.64
01-075-1862;





01-072-1259
87.8788
1417.85
0.1800
1.11011
0.42
00-004-0587;





01-080-2172;





01-080-2173;





01-080-1385
88.4011
3650.07
0.3000
1.10489
1.07
01-086-2270;





01-072-1259
88.8419
1676.22
0.1800
1.10328
0.49

89.2243
1156.38
0.1800
1.09682
0.34
01-072-1259;





01-074-1879
90.2637
4142.36
0.1800
1.08687
1.22
00-022-1235
90.5833
2863.23
0.1200
1.08656
0.84

91.0596
2533.90
0.1800
1.07943
0.74

91.3787
1359.50
0.1200
1.07917
0.40

93.3601
3883.10
0.2400
1.05878
1.14
00-022-1235
93.6633
3782.34
0.1800
1.05877
1.11

95.1075
5665.51
0.1800
1.04389
1.66

95.4208
7742.76
0.2400
1.04129
2.27

95.9908
2101.85
0.1800
1.03919
0.62

96.8759
292.96
0.2400
1.02948
0.09

97.6115
118.28
0.2400
1.02368
0.03

98.2791
796.94
0.1800
1.01850
0.23

99.0458
643.73
0.2400
1.01266
0.19
00-022-1235
100.0482
2167.35
0.4800
1.00520
0.64

101.0152
15335.21
0.1800
0.99817
4.50

101.3812
8176.99
0.1800
0.99803
2.40

102.4929
3400.80
0.2400
0.98776
1.00

103.2096
458.91
0.2400
0.98284
0.13
00-022-1235
103.8222
204.86
0.1200
0.98114
0.06

104.6780
215.21
0.1800
0.97304
0.06

105.1048
191.53
0.2400
0.97026
0.06

105.6685
36.54
0.1200
0.96903
0.01

105.9759
108.58
0.1200
0.96467
0.03
00-004-0864
107.0123
970.64
0.2400
0.95818
0.28
00-022-1235
107.6575
5068.24
0.1800
0.95659
1.49

108.0404
2562.79
0.1800
0.95190
0.75

452

-------
13.2: 2497-N-BHD
13.2.1: Measurement Conditions of2497-N
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2497-N-Slow
M:\XRD-BHD\2497-N-Slow.rd
2497-N-Slow
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/19/2013 8:09:00 PM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
453

-------
13.2.2: Main Graphics, Analyze View of2497-N
W V V
2497-N-Sow
50	60	70
Position [°2Theta] (Copper (Cu))
Anhydrite 13.1 %
Aluminum Oxide 12.1 % |
Fluorite, syn 8.1 %
Aluminum Qxide Nitride 7.1 % 1
Sodium Chloride 32.3 %
Periclase, syn 1 % |
. j Mgnnpg-inm Jl li imini im pvjrj^ ^ ^ I
I-4 Aluminum 2 % 2%,z	'
I AlU	.-HI I I I Mill	|
Aluminum Qxide Nitride 6.1 % |
Sylvite Magnesium Sulfate 4 % |
454

-------
13.2.3: Pattern List of2497-N
Ref. Code Score Compound Chemical SemiQuant Matched Strong
Name	Formula	[%]	Lines Unmatched
Lines
01-075-
11
Aluminum
A12 03

2
11
0
1862

Oxide





00-004-
22
Sylvite, syn
K CI

6
7
0
0587







01-077-
53
Sodium
Na CI

32
9
0
2064

Chloride





01-074-
21
Magnesium
Mg A12 04

3
10
0
1132

Aluminum
Oxide





01-075-
8
Aluminum
A1N

3
5
1
1620

Nitride





01-080-
9
Aluminum
A12.85

7
8
0
2171

Oxide
Nitride
03.45
NO.55




01-080-
7
Aluminum
A12.81

6
6
0
2172

Oxide
Nitride
03.56
NO.44




01-085-
36
Aluminum
A1

2
5
0
1327







00-004-
9
Fluorite, syn
Ca F2

8
4
0
0864







01-086-
22
Anhydrite
Ca ( S 04 )

13
25
0
2270







01-072-
9
Magnesium
Mg S 04

4
25
1
1259

Sulfate





00-043-
19
Periclase,
Mg O

1
5
0
1022

syn





01-080-
5
Aluminum
A12.667 04

12
7
0
1385

Oxide





13.2.4: Peak List of2497-N
Pos. [°2Th.]
Height [cts] FWHM d-
spacing [A]
Rel. Int. [%]
Matched by


[°2Th.]




5.1720

24.73
0.1476
17.08676

0.01

6.1253

836.33
0.2460
14.42953

0.17

6.9156

661.80
0.1968
12.78219

0.13

7.7151

444.59
0.2952
11.45928

0.09

8.4557

681.08
0.3936
10.45726

0.14

9.7601

387.48
0.5904
9.06238

0.08

13.7971

212.67
0.2952
6.41851

0.04

15.4636

209.87
0.2952
5.73032

0.04

455

-------
17.0464
363.40
0.3936
5.20166
0.07

18.9426
2196.30
0.1476
4.68503
0.44
01-074-1132;





01-086-2270
20.6157
1911.12
0.1968
4.30842
0.39
01-072-1259
21.6552
2105.67
0.2952
4.10391
0.43

22.9171
2850.41
0.1476
3.88070
0.58
01-086-2270
23.2907
3378.06
0.1476
3.81929
0.68

24.6055
11415.04
0.1476
3.61811
2.31
01-072-1259
25.3491
43879.33
0.1968
3.51364
8.87
01-075-1862;





01-086-2270
26.1770
6996.03
0.1476
3.40436
1.41

26.8959
5812.15
0.0984
3.31498
1.18

27.3146
50694.13
0.1476
3.26510
10.25
01-077-2064;





01-072-1259
28.1271
206803.10
0.1968
3.17261
41.82
00-004-0587;





00-004-0864
28.5119
120566.00
0.0984
3.13066
24.38
00-004-0587;





01-086-2270
30.2703
11954.16
0.1476
2.95269
2.42

31.6535
494545.10
0.1476
2.82675
100.00
01-077-2064;





01-080-2171;





01-080-2172;





01-080-1385
32.6118
8897.25
0.1476
2.74584
1.80

33.1639
6843.53
0.1476
2.70138
1.38
01-075-1620
34.5545
9658.98
0.1476
2.59579
1.95
01-072-1259
35.0962
6035.10
0.1476
2.55695
1.22
01-075-1862
36.1767
28573.80
0.1968
2.48302
5.78
01-075-1620;





01-086-2270
36.8195
11445.57
0.1968
2.44114
2.31
01-074-1132;





00-043-1022
37.3994
7051.79
0.1476
2.40461
1.43
01-080-2171;





01-080-2172;





01-080-1385
38.4297
31252.44
0.1968
2.34248
6.32
01-074-1132;





01-085-1327;





01-086-2270;





01-072-1259
40.2176
118630.60
0.2952
2.24237
23.99

40.7802
81802.46
0.1476
2.21273
16.54
01-086-2270;





01-072-1259
42.8643
16817.23
0.1968
2.10985
3.40
00-043-1022
43.3518
11565.74
0.1476
2.08725
2.34
01-075-1862;





01-086-2270
44.6762
25558.14
0.1968
2.02840
5.17
01-074-1132;





01-085-1327;





01-072-1259
456

-------
45.4078
47.0752
48.2478
49.8200
50.5365
51.4295
52.1150
52.4969
53.1085
53.8066
55.6396
56.3886
57.4156
58.1477
59.0773
61.0499
62.2217
63.0489
63.5542
65.0087
65.8415
66.1298
66.3738
66.9161
67.5893
68.1090
69.4624
71.5683
271877.20
3947.20
5517.38
32678.43
25398.74
3487.18
4779.83
4095.94
2449.41
13541.59
3133.91
92760.94
5089.78
14872.05
14892.81
1412.91
7665.32
1594.60
1199.07
21973.18
26654.71
56735.96
26913.68
24837.21
1562.51
2724.29
3476.02
1933.50
0.1476
0.3936
0.1476
0.3444
0.1476
0.1476
0.1968
0.1476
0.1476
0.1968
0.1968
0.2952
0.1968
0.3444
0.1476
0.1968
0.3444
0.1476
0.1476
0.2460
0.1200
0.1800
0.1200
0.1800
0.1800
0.2400
0.2400
0.2400
1.99741
1.93047
1.88626
1.83036
1.80608
1.77680
1.75503
1.74316
1.72452
1.70378
1.65192
1.63174
1.60497
1.58650
1.56373
1.51785
1.49205
1.47446
1.46395
1.43467
1.41735
1.41187
1.41076
1.39717
1.38489
1.37558
1.35205
1.31735
54.98
0.80
1.12
6.61
5.14
0.71
0.97
0.83
0.50
2.74
0.63
18.76
1.03
3.01
3.01
0.29
1.55
0.32
0.24
4.44
5.39
11.47
5.44
5.02
0.32
0.55
0.70
0.39
01-077-2064;
01-080-2171;
01-086-2270;
01-080-1385
00-004-0864
01-072-1259
01-075-1620;
01-080-2171;
01-080-2172;
01-080-1385
01-072-1259
01-086-2270
01-075-1862;
01-086-2270
01-077-2064
01-074-1132;
00-004-0864;
01-086-2270
01-077-2064;
01-072-1259
01-075-1862
01-086-2270
01-075-1862;
01-086-2270
01-086-2270;
00-043-1022
01-072-1259
01-072-1259
01-085-1327
01-075-1620;
01-086-2270;
01-072-1259
01-077-2064;
01-075-1620;
01-072-1259
01-086-2270
01-075-1862;
01-072-1259
01-075-1620;
01-086-2270;
01-072-1259
457

-------
72.9865
73.2195
74.3200
75.1968
75.4644
76.8632
77.3837
78.1794
78.4698
79.6923
80.4092
81.4382
82.4002
82.6407
83.8983
84.1883
86.9752
88.4761
90.3274
90.6394
91.1326
93.7199
94.4331
95.4703
96.4175
97.0234
98.9983
99.3190
100.4576
15562.88
17499.50
16002.73
87285.21
43287.75
1796.29
1336.00
10529.44
6160.86
2007.47
261.96
149.58
4205.01
3674.23
59859.79
32339.45
3511.80
4259.86
4930.44
2980.33
533.66
7919.56
3949.63
8014.45
526.89
925.89
1009.99
1225.94
4960.49
0.2400
0.1800
0.1800
0.1800
0.1200
0.3600
0.2400
0.1800
0.1200
0.1800
0.1800
0.2400
0.2400
0.1800
0.1800
0.1200
0.4200
0.2400
0.1200
0.1800
0.3000
0.4200
0.1800
0.2400
0.1800
0.2400
0.1800
0.1800
0.1800
1.29521
1.29166
1.27524
1.26253
1.26184
1.23926
1.23222
1.22166
1.22089
1.20222
1.19330
1.18080
1.16944
1.16954
1.15233
1.15195
1.11930
1.10415
1.08627
1.08334
1.08144
1.05566
1.04956
1.04088
1.03316
1.02831
1.01302
1.01312
1.00220
3.15
3.54
3.24
17.65
8.75
0.36
0.27
2.13
1.25
0.41
0.05
0.03
0.85
0.74
12.10
6.54
0.71
0.86
1.00
0.60
0.11
1.60
0.80
1.62
0.11
0.19
0.20
0.25
1.00
01-077-2064;
01-086-2270;
01-072-1259
01-077-2064;
01-072-1259
01-075-1862;
01-074-1132;
01-086-2270
01-077-2064
01-075-1862;
01-086-2270;
01-072-1259
01-075-1862;
01-074-1132;
01-086-2270;
01-072-1259
01-074-1132;
01-085-1327;
01-072-1259
01-072-1259
01-075-1862
01-086-2270
01-074-1132;
01-085-1327;
01-072-1259
01-077-2064;
01-072-1259
01-086-2270;
01-072-1259
00-004-0587;
00-004-0864
458

-------
101.0830	21297.56	0.1800	0.99769	4.31
101.4368	11356.71	0.1800	0.99763	2.30
102.5305	4616.88	0.2400	0.98750	0.93
103.4137	449.93	0.1800	0.98146	0.09
104.7556	225.07	0.9600	0.97253	0.05
105.6807	160.91	0.1800	0.96655	0.03 00-004-0864;
00-043-1022
107.7018	9239.47	0.1800	0.95395	1.87
108.1058	5429.33	0.1800	0.95387	1.10
13.3: 2499-N-BHD
13.3.1: Measurement Conditions of2499-N
Dataset Name
File name
Sample Identification
Comment
Measurement Date / Time
Raw Data Origin
Scan Axis
Start Position [°2Th.]
End Position [°2Th.]
Step Size [°2Th.]
Scan Step Time [s]
Scan Type
Offset [°2Th.]
Divergence Slit Type
Irradiated Length [mm]
Specimen Length [mm]
Receiving Slit Size [mm]
Measurement Temperature [°C]
Anode Material
K-Alphal [A]
K-Alpha2 [A]
K-Beta [A]
K-A2 / K-Al Ratio
Generator Settings
Diffractometer Type
Diffractometer Number
Goniometer Radius [mm]
Dist. Focus-Diverg. Slit [mm]
Incident Beam Monochromator
Spinning
2499-N-Slow_002
M:\XRD-BHD\2499-N-Slow_002.rd
2499-N-Slow_002
Exported by X'Pert SW
Generated by Tolaymat in project Baghous
3/23/2013 11:33:00 AM
PHILIPS-binary (scan) ( RD)
Gonio
5.0250
109.9750
0.0500
20.0000
Continuous
0.0000
Automatic
15.00
10.00
0.2500
0.00
Cu
1.54060
1.54443
1.39225
0.50000
40 mA, 45 kV
XPert MPD
1
200.00
91.00
No
Yes
459

-------
13.3.2: Main Graphics, Analyze View of2499-N
WWV
2499-N-Slow 002


50	60	70
Position [°2Theta] (Copper (Cu))
Aluminum Oxide Nitride 16.8 %~|
Aluminum Oxide 13.9 %
Sylvite, syn 11.9 %
Aluminum Oxide Nitride 9.9 % ]
Sodium Chloride 20.3 % |
inum Oxide l %
Aluminum 1 %
Quartz low 5.9 %
Anhydrite 6.9 %
Aluminum Oxide Nitride 7.9 % |
460

-------
13.3.3: Pattern List of2499-N
Ref. Code Score Compound Chemical SemiQuant Matched Strong
Name	Formula	[%]	Lines Unmatched
Lines
01-075-
11 Aluminum
A12 03

3
11
0
1862
Oxide





00-004-
46 Sylvite, syn
K CI

12
10
0
0587






01-077-
51 Sodium
Na CI

21
9
0
2064
Chloride





01-074-
18 Magnesium
Mg A12 04

2
10
0
1132
Aluminum
Oxide





01-080-
10 Aluminum
A12.85

17
9
0
2171
Oxide
Nitride
03.45
NO.55




01-080-
8 Aluminum
A12.81

10
9
0
2172
Oxide
Nitride
03.56
NO.44




01-080-
10 Aluminum
A12.78

8
8
0
2173
Oxide
Nitride
03.65
NO.35




01-085-
40 Aluminum
A1

1
5
0
1327






01-086-
18 Anhydrite
Ca ( S 04 )

7
28
0
2270






00-043-
15 Periclase,
Mg O

-
5
0
1022
syn





01-080-
8 Aluminum
A12.667 04

14
10
0
1385
Oxide





01-085-
10 Quartz low
Si 02

6
17
0
0335






13.3.4: Peak List of2499-N
Pos. [°2Th.]
Height [cts] FWHM d-
[°2Th.]
spacing [A]
Rel.
Int. [%]
Matched by
5.1536
27.97
0.1476
17.14786

0.01

5.9089
320.40
0.1476
14.95752

0.11

6.5815
293.33
0.4920
13.43023

0.10

7.4005
273.12
0.1968
11.94579

0.09

8.4715
349.39
0.4920
10.43779

0.12

9.4183
336.47
0.4920
9.39048

0.11

10.6761
181.87
0.1476
8.28678

0.06

11.7288
169.29
0.1476
7.54528

0.06

461

-------
13.7289
168.73
0.2952
6.45023
0.06

15.3843
217.59
0.2460
5.75970
0.07

15.9888
133.38
0.1476
5.54328
0.05

16.8378
344.87
0.1476
5.26563
0.12

18.7935
974.64
0.3936
4.72186
0.33
01-074-1132
19.9116
941.27
0.1968
4.45915
0.32

20.6828
1605.60
0.1476
4.29461
0.55
01-085-0335
22.2556
1228.91
0.1476
3.99453
0.42

22.5557
1082.88
0.1476
3.94206
0.37

23.2731
1427.25
0.1476
3.82215
0.49

23.7924
516.18
0.2952
3.73988
0.18

24.4720
4945.22
0.2460
3.63755
1.68

25.3363
30158.63
0.1968
3.51538
10.27
01-075-1862;





01-086-2270
26.0220
3438.78
0.1968
3.42429
1.17

26.4300
3041.61
0.1968
3.37235
1.04
01-085-0335
27.1721
26743.53
0.1968
3.28190
9.10
01-077-2064
28.1193
157462.80
0.2952
3.17347
53.60
00-004-0587
30.1153
5347.52
0.1968
2.96753
1.82

31.4983
293766.10
0.2460
2.84032
100.00
01-077-2064;





01-074-1132;





01-086-2270
33.3065
2223.78
0.3444
2.69014
0.76

34.4321
4090.33
0.1968
2.60473
1.39

34.8964
751.80
0.1968
2.57113
0.26
01-075-1862
36.2217
26222.26
0.1968
2.48004
8.93
01-086-2270
36.6804
4002.36
0.1476
2.45007
1.36
01-074-1132;





01-085-0335
37.2438
3551.81
0.1968
2.41430
1.21

38.3023
18845.84
0.2460
2.34998
6.42
01-085-1327
40.2861
123125.20
0.1968
2.23872
41.91
01-085-0335
40.6499
47252.14
0.1476
2.21952
16.08
00-004-0587;





01-086-2270
42.7089
5796.90
0.2460
2.11717
1.97
00-043-1022
43.2110
6459.83
0.1476
2.09372
2.20
01-075-1862;





01-086-2270
44.5256
11601.88
0.0984
2.03491
3.95
01-085-1327
45.2313
217940.50
0.2460
2.00479
74.19
01-077-2064;





01-086-2270
46.1365
2861.45
0.1476
1.96754
0.97
01-075-1862
47.6797
2489.61
0.1476
1.90740
0.85

48.0892
2933.14
0.1968
1.89211
1.00

49.9429
39460.90
0.2460
1.82614
13.43
01-080-2171;





01-080-2172;





01-080-2173;
462

-------





01-080-1385;





01-085-0335
50.3898
16604.55
0.1476
1.81099
5.65
00-004-0587;





01-085-0335
51.3313
1177.67
0.1476
1.77997
0.40

52.2596
4831.91
0.1968
1.75051
1.64
01-075-1862;





01-086-2270
53.6449
9871.26
0.2952
1.70853
3.36
01-077-2064
56.2376
67562.10
0.2952
1.63576
23.00
01-077-2064
57.2828
1375.97
0.1476
1.60838
0.47
01-075-1862;





01-085-0335
58.3895
17088.44
0.2460
1.58050
5.82

58.9905
14379.29
0.2460
1.56583
4.89
01-086-2270
59.6644
1716.23
0.1476
1.54974
0.58
01-075-1862
60.7955
857.93
0.1968
1.52359
0.29
01-080-2173;





01-086-2270
61.3415
218.46
0.1476
1.51133
0.07
01-075-1862;





01-086-2270
62.1081
1998.32
0.4920
1.49451
0.68
01-086-2270;





00-043-1022
62.9838
1074.75
0.2460
1.47582
0.37

64.8860
6865.64
0.2460
1.43708
2.34
01-085-1327
65.3780
9148.32
0.1968
1.42745
3.11
01-074-1132;





01-085-1327;





01-086-2270
66.1204
59543.85
0.3936
1.41322
20.27
01-077-2064
66.7528
18907.86
0.1968
1.40136
6.44
01-080-2172;





01-080-2173;





01-086-2270;





01-080-1385
67.9416
1335.33
0.2952
1.37970
0.45
01-075-1862;





01-085-0335
69.4120
1346.56
0.1968
1.35403
0.46

69.9485
438.25
0.1968
1.34495
0.15
01-074-1132;





01-080-2171;





01-080-2172;





01-080-2173;





01-086-2270;





01-080-1385
71.4290
1250.25
0.2460
1.32067
0.43
01-080-2172;





01-080-2173;





01-086-2270
72.0294
505.83
0.1968
1.31113
0.17

72.8138
4792.55
0.1968
1.29893
1.63
01-077-2064;





01-086-2270
73.4377
26488.92
0.2952
1.28943
9.02
01-085-0335
463

-------
74.1623
12705.47
0.1968
1.27862
4.33
01-075-1862;





01-074-1132;





01-086-2270
75.0377
70307.40
0.1800
1.26481
23.93
01-077-2064
75.3160
33354.36
0.1200
1.26396
11.35

77.2275
2282.10
0.2400
1.23432
0.78
01-075-1862;





01-074-1132;





01-086-2270
78.1047
5180.68
0.3600
1.22264
1.76
01-085-1327
78.4069
2690.21
0.1800
1.22171
0.92

79.5252
1665.77
0.3600
1.20433
0.57

80.8760
198.91
0.1200
1.18759
0.07
01-075-1862
81.2423
284.39
0.1800
1.18316
0.10
01-085-0335
82.2484
1770.46
0.1800
1.17121
0.60
01-085-1327
82.9162
3734.12
0.2400
1.16347
1.27
01-075-1862;





01-074-1132;





01-086-2270
83.7451
48965.13
0.1800
1.15405
16.67
01-077-2064;





01-085-0335
84.0523
23562.98
0.1800
1.15347
8.02

87.4016
7312.91
0.1800
1.11493
2.49
00-004-0587;





01-080-2171;





01-080-2172;





01-080-1385;





01-085-0335
87.7211
3357.49
0.1200
1.11446
1.14

88.3205
3632.51
0.3000
1.10569
1.24
01-086-2270
89.2728
412.56
0.1800
1.09635
0.14

90.1786
4093.88
0.2400
1.08767
1.39

90.4979
2324.32
0.1800
1.08736
0.79

91.2957
388.84
0.2400
1.07726
0.13

92.8276
288.06
0.1800
1.06345
0.10

93.5672
1476.18
0.2400
1.05698
0.50

94.2854
16110.32
0.2400
1.05081
5.48
00-004-0587;





00-043-1022
94.6302
7779.06
0.1200
1.05050
2.65

95.3303
7055.59
0.2400
1.04204
2.40

96.1204
288.02
0.2400
1.03556
0.10

97.0173
414.37
0.2400
1.02836
0.14

98.2183
98.29
0.2400
1.01897
0.03

98.9355
595.28
0.2400
1.01350
0.20

99.8194
872.89
0.1800
1.00689
0.30

100.9440
16871.29
0.1800
0.99868
5.74

101.2835
17596.81
0.1800
0.99625
5.99
00-004-0587
101.6264
5274.49
0.1200
0.99629
1.80

102.4089
4444.76
0.3000
0.98834
1.51

464

-------
103.3299
463.22
0.1800
0.98203
0.16

105.0284
173.14
0.1200
0.97076
0.06

105.5823
1269.77
0.3000
0.96718
0.43
00-043-1022
107.5859
5350.07
0.2400
0.95465
1.82

107.9802
2917.71
0.1200
0.95463
0.99

108.3730
7449.88
0.2400
0.94990
2.54
00-004-0587
108.7790
2910.26
0.1800
0.94984
0.99

465

-------
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
APPENDIX D Temperature Profiles
APPENDIX D Contents	Error! Bookmark not defined.
Facility A	467
Facility B	469
Facility C	469
Facility D	470
Facility E	471
Facility F	472
Facility H	474
Facility 1	475
Facility J	477
Facility K	478
Facility L	478
Facility M	480
Facility N	481
466

-------
Facility A
Eight baghouse dust (BHD) samples were collected from Facility A on Nov. 12, 2009, Dec. 28, 2009, Feb. 2,
2010 and Feb. 24, 2010, respectively. If the ATmax was less than 1.5° C (three times the sensitivity of the
thermocouples) in the whole process, it is assumed that the temperature change in the reaction was not detected
(ND).
Four samples did not have responses after reacting with water till a week at both 37°C and 50°C enviromnental
temperature. However, sample 2574-A, and 2576-A had rigorously responses (Type B) at both enviromnental
conditions, while sample 2576-A had two peaks.
The effect of organic matter and phosphate in liquid on the 2576-A temperature profiles were also indicated that
the chemical composition can change the temperature indices, even the patterns. Phosphate in liquid can
significantly reduce the intensity of reaction.
Table APPENDIX D-l: The Temperature Profile Indices of Facility A
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(ll)
(°C)
(h)
2573-A-BHD
ND
ND
3.2
2.3
2574-A-BHD
54.8
5.4
48.7
1.3
2575-A-BHD
ND
ND
3.2
2.8
2576-A-BHD
10.2
22.4
50.5
12.3
2577-A-BHD
ND
ND
ND
ND
2578-A-BHD
ND
ND
ND
ND
2579-A-BHD
ND
ND
5.9
ND
2580-A-BHD
ND
ND
1.5
0.3
60
^—2576-A
ATmax=54.8°C
(10 g/10 ml,@37°C)
^—2574-A
50
40
20
10
0
24
48
72
96
120
144
168
192
Time ( h)
Figure APPENDIX D-l-1: Temperature profile of two BHD from Facility A at 37 °C.
467

-------
58
ATmax=50.5°C
(10 g/10 ml, @50°C)
2573-A
48
2574-A
2575-A
38
^—2576-A
28
18
8
2
24
48
96
Time ( h)
Figure APPENDIX D-1-2: Temperature profile of four BHD from Facility A at 50°C.
2576-A-BHD
(10 g/10 ml @ 50°C)
Humic acid(1%)
Mixed organic acid
60
50
40
30
20
Time (h)
10
0
¦10
Time (h)
Figure APPENDIX D-1-3: Effect of organic matter in liquid on the 2576-A Temperature profile at 50°C.


2576-A-BHD
DIW


(10 g/
0 ml, @5C
°C)
	NaH2P04( 0.2 M)

50


50

Na2HPO4(0.2M)

40


40;


(On) IV
30
20


o o o o o
(On) IV
X


10
,

24
Time (h)
48

°<
' v"^24
48
72 96 120 144
168 192 216

,0


Time (h)

Figure APPENDIX D-1-4: Effect of phosphate in liquid on the 2576-A Temperature profile at 50°C.
468

-------
Facility B
Facility B had four samples, which were collected on Jan. 26, 2010, Feb. 24, 2010, and Mar. 19, 2010,
respectively.
All of them did not have temperature response at both enviromnental temperatures (t@,37°C or 50°C).
Facility C
Two samples were collected from Facility C on Nov. 25, 2009, and Dec 15, 2009, respectively. Sample 2434-C
had response at both conditions, while sample 2432-C only had response at the higher enviromnental
temperature.
6
AT =4 5 °C
^ 1 max
(10 g/10 ml,@37°C)
^—2434-C
^—2432-C
4
2
0
24
48
72
96
120
2
Time ( h)
Figure APPENDIX D- 3-1: Temperature profile of two BHD samples from Facility C at 37°C.
469

-------
6 T


ATmax-5.0°C 2432-C

A (10 g/10 ml, @50°C) 	2434_c
4

tj
o

h 9 - -
< 1

0 H
24 48 72 96 120
-2


Time ( h)
Figure APPENDIX D- 3-2: Temperature profile of two BHD samples from Facility C at 50°C.
Table APPENDIX D- 3: The Temperature Profile Indices of Facility C

37°C

50°C

Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2432-C-BHD
ND
ND
5.0
7.4
2434-C-BHD
4.5
2.1
1.6
3.7
Facility D
Four samples were collected fromFacility D onNov.15, 2009, Jan.15, 2010, February 15 and 24, 2010,
respectively.
Under both temperature conditions, sample 2537-D and 2539-D had responses while sample 2541-D did not
have response. On the other hand, sample 2533-D only had response at the high temperature conditions.
Table APPENDIX D- 4: The Temperature Profile Indices of Facility D
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2533-D-BHD
ND
ND
5.1
1.7
2537-D-BHD
48.2
0.7
38.8
0.5
2539-D-BHD
4.0
2.1
5.8
2.2
2541-D-BHD
ND
ND
ND
ND
470

-------

48
38
ATmax=48.2°C
(10 g/10 ml,@37°C)
^—2533-D
^—2537-D
— 2539-D

u
28



1-
<1
00 00




-2
24 48 72
Time ( h)
96
120
Figure APPENDIX D- 4-1: Temperature profile of three BHD samples from Facility D at 37°C.
38
ATmax=38.8°C
(10 g/10 ml, @50°C)
2533-D
2537-D
30
2539-D
u 22
o
I-
<1
14
24
48
72
96
120
Time ( h)
Figure APPENDIX D- 4-2: Temperature profile of three BHD samples from Facility D at 50°C.
Facility E
Facility E had two samples, collected from Jan. 15, 2010 and Feb. 24, 2010. Both of them only had responses at
the high enviromnental temperature conditions with multiple peaks. The maximum temperature increase was
4.2°C.
Table APPENDIX D-5: The Temperature Profile Indices of Facility E
Sample ID	37°C	50°C
ATmax	tmax-T	ATmax	tmax-T
	(°C) (h)	(°C) (h)
2436-E-BHD	ND	ND	4.2	1.7
471

-------
2438-E-BHD	ND	ND
2.3	0.4
6
AT =4 2°C
° 'max
(10 g/10 ml, @50°C)
2436-E
2438-E
4
2
0
48
72
96
120
2
Time ( h)
Figure APPENDIX D-5-1: Temperature profile of BHD samples from Facility E at 50°C.
Facility F
Facility H lias five samples, collected from November 20, 2009 to April 6, 2010. Four samples had the responses
at 50°C, while only two samples had the response at 37°C. The maximum temperature increase was 12.8°C at
50°C conditions (2505-F) and 15.2°C at 37°C condition (2511-F).
Table APPENDIX D-6: The Temperature Profile Indices of Facility F	
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(ll)
2503-F-BHD
2.2
2.3
6.7
45.1
2505-F-BHD
ND
ND
12.8
0.6
2507-F-BHD
ND
ND
6.2
17.9
2509-F-BHD
ND
ND
ND
ND
2511-F-BHD
15.2
21
4.7
34.5
472

-------
18
AT =15 2 °c
1 max
(10 g/10 ml#@37°C)
2505-F
	2511-F

tj
o



H
< 8



-2 -
f 24 48 72
Time ( h)
96
120
Figure APPENDIX D-6-1: Temperature profile of two BHD samples from facility F at 37 °C.
ATmax=12.8°C
(10 g/lOml, @50°C)
2503-F
13
2505-F
2507-F
2511-F
8
u
<1
3
24
48
72
96
120
2
Time ( h)
Figure APPENDIX D-6-2: Temperature profile of four BHD samples from facility F at 50°C.
7
2507-F
(10g/10 ml, 50°C)
DIW
6
0.2M NaH2P04
5
— 0.2IW Na2HP04
4
3
<
2
1
0
24
48
96
120
168
192
216
240
144
¦1
Time (h)
Figure APPENDIX D-6-3: Effect of phosphorus species in liquid on the temperature
profiles of 2507-F-BHD at 50°C.
473

-------
7
2507-F
(10g/10 ml, 50°C)
DIW
6
Humic acid
Mixed organic acid
5
leach ate
4
3
<
2
1
0
24
48
96
120
168
192
216
240
144
¦1
Time (h)
Figure APPENDIX D-6-4: Effect of organic matter in liquid on the temperature
profiles of 2507-F-BHD at 50°C.
The results further confirmed that chemical composition of liquid significantly changed the pattern of
temperature change. Phosphate in liquids might diminish the intensity of reaction, as results, ATmax decreased and
t-maxT increased.
Facility H
Facility H had 20 samples, which were collected from Nov. 13, 2009 to Mar. 12, 2010 with 6 times. About half
samples (11) had responses at 37°C, while 75% samples (15) had responses at 50°C. The maximum temperature
increased was 9.2 °C at 37°C and 13.4°C at 50°C, respectively. Many of them had multiple peaks at both
temperatures.
Table APPENDIX D-7: The Temperature Profile Indices of Facility H
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2044-H-BHD
ND
ND
1.4
0.4
2045-H-BHD
2.0
21.7
1.7
18.2
2047-H-BHD
ND
ND
3.4
5.7
2048-H-BHD
ND
ND
3.8
0.2
2049-H-BHD
1.9
45.2
2.8
5.8
2050-H-BHD
ND
ND
3.0
5.8
2545-H-BHD
3.6
1.8
7.5
1.6
2549-H-BHD
9.2
0.6
8.8
0.3
2551-H-BHD
3.8
22.4
13.4
3.7
2552-H-BHD
4.2
0.5
5.1
0.3
2556-H-BHD
2.2
2.4
5.3
1.5
2558-H-BHD
2.5
2.9
7.3
3.9
474

-------
2560-H-BHD
2563-H-BHD
2564-H-BHD
2565-H-BHD
2566-H-BHD
2567-H-BHD
2569-H-BHD
2570-H-BHD
ND	ND
4.6	1.6
2.2	3.5
ND	ND
ND	ND
ND	ND
ND	ND
4.4	2.3
ND	ND
7.9	0.3
ND	ND
ND	ND
ND	ND
ND	ND
3.8	5.8
4.8	5.8
10
ATmax=9.2°C
(10 g/10 ml,@37°C)
2570-H
2564-H
2563-H
2558-H
u
2549-H
I-
<
2045-H
24
48
72
96
120
Time ( h)
Figure APPENDIX D-7-1: Temperature profiles of selected six BHD sample from Facility H at 37 °C.
ATmax=13.4°C
(10 g/10 ml, (5>50°C)
2045-H
13
2549-H
2563-H
2569-H
8
u
o
2570-H
i-
<1
2551-H
3
24
48
72
96
120
2
Time ( h)
Figure APPENDIX D- 7-2: Temperature profile of six BHD samples from Facility H at 50°C.
Facility I
475

-------
Facility I had eight samples, collected from Nov. 5, 2009 to Feb. 8, 2010 by four times. All of them had
responses at 50°C, while only 5 of eight samples had response at 37°C. The maximum increased temperature was
Sample 2527-1 (23.9°C 50°C).
Table APPENDIX D-8: The Temperature Profile Indices of Facility I
Sample ID	37°c	50°C

ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2522-l-BHD
ND
ND
4.5
0.4
2523-l-BHD
ND
ND
10.5
1.2
2524-l-BHD
2.1
10.9
15.5
0.4
2525-l-BHD
6.5
1.3
14.8
0.4
2526-l-BHD
8.1
1.1
13.8
0.5
2527-l-BHD
2.8
2.6
23.9
0.6
2528-l-BHD
2.6
2.7
4.4
0.7
2529-l-BHD
ND
ND
5.8
0.5
10
AT =8.1 °C
" "max
(10 g/10 ml,@37°C)
2524-
8
2525-
2526-
6
2527-
2528-
4
2529-
2
0
24
48
72
96
120
2
Time ( h)
Figure APPENDIX D-8-1: Temperature profiles of BHD from Facility I at 37 °C.
476

-------


23 -
ATmax-23.9°C 2522-1

(10 g/10 ml, @50°C) 	2523.,
18


^—2524-1

^—2525-1
u 13 ¦
^—2526-1
P

<1
^—2527-1
8 -
1 ^—2528-1

1 ^—2529-1
3 ¦



-2 <
24 48 72 96 120

Time ( h)
Figure APPENDIX D-8-2: Temperature profile of BHD samples from Facility I at 50°C.
Facility J
Four samples from Facility J were collected from Nov 11, 2009 to Feb. 5, 2010. All of them had responses at
both conditions. The maximum increased temperature at 37°C and 50°C was 7.2°C (2513-J) and 10.2°C (2514-J),
respectively.
	Table APPENDIX D- 9: The Temperature Profile Indices of Facility J
	3TC	 	50T	
Sample ID ATmax	Wt	ATmax Wt
	(°C)	(h)	(T)	(h)_
2513-J-BHD	7.2	1.8	8.7 0.7
2514-J-BHD	1.7	11.6	10.2 0.4
2516-J-BHD 2.3	2.3	8.5 0.5
2518-J-BHD 6.9	0.8	7.0 0.2
8
ATmax =6.9°C
(10g/10ml,@37°C)
^—2513-J
^—2514-J
6
2516-J
2518-J
4
2
0
24
48
72
96
120
144
168
•2
Time{ h)
477

-------
Figure APPENDIX D-9-1: Temperature profiles of BHD from Facility J at 37 °C.
Figure APPENDIX D-9-2: Temperature profiles of BHD from Facility J at 50°C.
Facility K
Facility K had six samples, collected from Dec. 2, 2009 to Mar. 19, 2010. All of them had response at 50°C
while five of them also had response at 37°C. The maximum increased temperature at 37 and 50°C was 13.4 °C
and 23.5°C (2587-K), respectively. It is noted that temperature change of sample 2582-K was observed only after
100 hours at 37°C (t-maxT =128 h).
Facility L
Facility L had five samples, collected from Dec. 2, 2009 to Apr. 6, 2010. All of them had response at both
conditions. The maximum increased temperature at 37 and 50°C was 27.4 °C and 36°C (2483-L), respectively.
Table APPENDIX D-10: The Temperature Profile Indices of Facility K
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2582-K-BHD
2.5
128
2.9
5.8
2583-K-BHD
7.6
21.8
22.2
3.7
2585-K-BHD
2.3
41.6
17.3
4.0
2587-K-BHD
13.4
9.5
23.5
1.9
2588-K-BHD
ND
ND
2.1
0.2
2589-K-BHD
1.8
11.2
2.6
23.9
478

-------
ATmax=13.4°C
(10g/10ml,@37°C)
14
2582-K
2583-K
2585-K
10
2587-K
2589-K
u
i-
<
24
120
144
168
Time{ h)
Figure APPENDIX D-10-1: Temperature profiles of BHD from Facility K at 37 °C.
23
ATmax=23.5°C
(10 g/10 ml, (5>50°C)
2582-K
2583-K
18
2585-K
2587-K
13
2588-K
2589-K
8
3
24
48
72
96
120
144
2
Time ( h)
Figure APPENDIX D-10-2: Temperature profiles of BHD from Facility K at 50°C.
Table APPENDIX D-21: The Temperature Profile Indices of Facility L
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2483-L-BHD
27.4
4.7
36.0
2.5
2485-L-BHD
6.5
11.0
16.4
4.6
2487-L-BHD
6.3
43.7
11.3
4.9
2489-L-BHD
5.8
14.6
23.9
6.1
2491-L-BHD
2.6
14.9
5.2
6.0
479

-------
28 -
ATmax =27.4°C
| (10 g/10 ml,@B7°C) 	2483 1

I 2485-L
23


2487-L

2489-L
18

tj
2491-L
P
< 13

8

3 -

2 1
24 48 72 96 120 144 168

Time ( h)
Figure APPENDIX D-ll-3: Temperature profiles of BHD from Facility L at 37 °C.
38

ATmax=36°C
(10 g/10 ml, @50°C)
^—2483-L
2485-L
28


2487-L
^—2489-L
^ 18
H
<
8


2491-L
-2 j

j—¦—¦—¦—'i 1 1 1
24 48 72
Time ( h)
96 120
Figure APPENDIX D-ll-4: Temperature profiles of BHD from Facility L at 50°C
Facility M
Facility M had five samples, collected from Dec. 2, 2009 to Apr. 6, 2010. All of them had response at both
conditions. The maximum increased temperature at 37 and 50°C was 27.4 °C and 36°C (2483-L), respectively.
Table APPENDIX D-12: The Temperature Profile Indices of Facility M
37°C	50°C
Sample ID
ATmax
tmax-T
ATmax
tmax-T

(°C)
(h)
(°C)
(h)
2602-M-BHD
NS
NS
2.7
3.8
2604-M-BHD
NS
NS
3.4
5.9
2606-M-BHD
1.9
13.1
1.6
5.3
2608-M-BHD
27.1
4.6
33.6
0.4
480

-------
2610-M-BHD	ND	ND	ND	ND
2612-M-BHD	37.5	0.7	36.1	0.6

ATmax =37.5°C

(10 g/10 ml,@37°C) 	2604 M
33 -
2606-M

2608-M
28 -


I 2610-M
E 23
1 2612-M
t-

< 18

:

3

20
24 48 72 96 120 144 168

Time ( h)
Figure APPENDIX D-12-1: Temperature profiles of BHD from Facility M at 37 °C.

38 -f




ATmax=36°C
2602-M


(10 g/10 ml, @50°C)
2604-M

28 -

^—2606-M



^—2608-M
U
o
18 =

^—2610-M
<3


^—2612-M

2 J
24 48 72
96 120


Time( h)

Figure APPENDIX D-12-2: Temperature profiles of BHD from Facility M at 50°C
Facility N
Facility L had five samples, collected from Dec. 2, 2009 to Apr. 6, 2010. All of them had response at both
conditions. The maximum increased temperature at 37 and 50°C was 27.4 °C and 36°C (2483-L), respectively.
Table APPENDIX D-13: The Temperature Profile Indices of Facility N
	3TC	 	50T	
Sample ID	ATmax	Wt	ATmax	Wt
	(°C)	(h)	(T)	(h)_
2493-N-BHD	ND	ND	1-5	13.0
2495-N-BHD	ND	ND	ND	ND
481

-------
2497-N-BHD ND ND ND ND
2499-N-BHD	ND	ND	ND	ND
2
ATmax=1.5°C
(10 g/10 ml, @50°C)
2493-N
— 2495-N
1.5
2497-N
2499-N
1
u 0.5
0
48
96
120
Time ( h)
-0.5
¦1
Figure APPENDIX D-13-1: Temperature profiles of BHD from Facility N at 50°C
482

-------
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
APPENDIX E: Gas Productivity
List of Figures
Figure E-l: Distribution of total gas productivity by BHD reaction	484
Figure E-2: Distribution of hydrogen productivity by BHD reaction	484
Figure E-3: Distribution of methane productivity by BHD reaction	485
Figure E-4: Distribution of ammonia gas, liquid NH4 and total NH3 productivity	486
Figure E-5: Distribution of Percentage Unreacted Metallic Aluminum in BHD after Reaction	486
List of Tables
Total generated gas volume and composition from baghouse dust reactivity
BHD Gas Productivity (|amol g"1)
Ammonia Gas (NH3) Productivity (|.imol g-1)
482
483
485
481

-------
Table E-l: Total generated gas volume and composition from baghouse dust reactivity
Sample ID
Gas
productivity
(mL g1)
H 2
(%)
CH4
(%)
N2O
(ppmv)
NH3-gas
(%)
NHj-liquid
(mg L"1)
2573-A
1.3
80.5
0.0
1,200
19.4
46
2574-A
69
100
0.0
5.1
0.04
99
2575-A
13
99.5
0.0
2,100
0.25
288
2576-A
102
100
0.0
3.9
0.02
184
2577-A
0.8
85.2
0.0
2,500
14.6
17
2578-A
94
99.7
0.0
7.2
0.26
323
2579-A
67
100
0.0
1.2
0.01
25
2580-A
0.3
87.4
0.0
120,000
1.03
0.9
2455-B
16
94.7
5.2
7.8
0.12
506
2479-B
9.1
99.8
0.0
10
0.15
315
2481-B
10
97.5
1.1
14
1.4
492
2432-C
1.3
43.8
50.3
230
5.8
1488
2434-C
17
89.8
8.0
80
2.3
3333
2533-D
37
99.4
0.0
57
0.60
618
2537-D
101
99.0
0.7
6.7
0.31
6371
2436-E
10
95.1
3.9
6,000
0.41
1162
2503-F
23
98.7
1.0
3.5
0.27
1176
2505-F
36
90.2
9.7
22
0.12
4229
2507-F
5.0
82.7
0.0
50
17.3
3370
2511-F
177
99.5
0.5
1.8
0.04
420
2045-H
25
95.2
4.4
3.5
0.39
1315
2545-H
90
98.9
1.0
18
0.08
907
2549-H
32
98.8
0.0
14
1.2
61
2551-H
28
92.8
6.6
18
0.63
1789
2552-H
12
100
0.0
23
0.04
19
2558-H
25
97.0
2.6
4.0
0.43
1523
2565-H
0.1
0.0
0.0
960,000
3.8
25
2567-H
0.0
0.0
0.0
850,000
15.9
29
2524-1
9.4
72.5
27
45
0.58
4244
2526-1
25
97.4
2.3
920
0.22
3045
2514-J
41
93.6
5.8
6.4
0.57
5353
2516-J
25
72.3
4.4
33
23.2
9461
2583-K
83
100
0.0
7.4
0.02
218
2587-K
125
100
0.0
5.0
0.01
236
2589-K
82
100
0.0
2.0
0.01
19
2485-L
49
93.6
6.0
11
0.42
7890
2483-L
33
91.9
8.0
14
0.14
11427
2487-L
31
97.2
2.4
3.3
0.39
1496
2489-L
131
97.7
2.1
1.8
0.23
1421
2604-M
35
99.6
0.0
14
0.39
22
2608-M
43
99.3
0.0
5.0
0.72
8.3
2495-N
19
94.7
5.1
35
0.19
6254
2497-N
29
95.5
4.0
4.2
0.41
693
2499-N
21
98.6
0.0
3.4
1.42
136
482

-------
Table E-2: BHD Gas Productivity (i-imol g*)
Sample
H 2
CH4
NHj ( gas)
N2O
Total Gas
ID
productivity
productivity
productivity
productivity
productivity
2573-A
44
UD
11
0.063
54
2574-A
2810
UD
1.1
0.014
2811
2575-A
510
UD
1.3
1.087
513
2576-A
4151
UD
0.9
0.016
4152
2577-A
27
UD
4.6
0.081
32
2578-A
3836
UD
9.9
0.028
3846
2579-A
2731
UD
0.2
0.003
2731
2580-A
11
UD
0.1
1.504
13
2455-B
602
33
0.7
0.005
635
2479-B
370
UD
0.6
0.004
371
2481-B
399
4.5
5.6
0.006
409
2432-C
22
26
3.0
0.012
51
2434-C
610
54
15
0.056
679
2533-D
1515
UD
9.2
0.086
1524
2537-D
4085
28
13
0.028
4126
2436-E
402
16
1.7
2.552
423
2503-F
933
9.6
2.5
0.003
945
2505-F
1345
145
1.8
0.032
1491
2507-F
169
UD
35
0.010
204
2511-F
7189
33
2.6
0.013
7225
2045-H
989
46
4.0
0.004
1040
2545-H
3647
38
3.0
0.066
3688
2549-H
1303
UD
16
0.019
1319
2551-H
1048
75
7.1
0.020
1130
2552-H
471
UD
0.2
0.011
471
2558-H
1004
27
4.5
0.004
1035
2565-H
UD
UD
0.2
4.703
4.9
2567-H
UD
UD
0.2
0.947
1.1
2524-1
279
104
2.2
0.017
386
2526-1
987
23
2.3
0.929
1014
2514-J
1563
97
9.6
0.011
1670
2516-J
748
46
240
0.034
1034
2583-K
3411
UD
0.7
0.025
3411
2587-K
5110
UD
0.7
0.026
5111
2589-K
3339
UD
0.4
0.007
3340
2485-L
1859
162
2.9
0.028
2023
2483-L
1264
81
5.6
0.015
1350
2487-L
1235
30
5.0
0.004
1270
2489-L
5252
114
12
0.009
5378
2604-M
1437
UD
5.6
0.020
1443
2608-M
1728
UD
13
0.009
1740
2495-N
724
39
1.5
0.027
765
2497-N
1137
48
4.9
0.005
1190
2499-N
841
UD
12
0.003
853
*UD: under detectable
483

-------
H ho I	1
41%
32%
9%
7%
1 5% 5%
2%
¦¦¦¦«H
0	2000	4000	6000 8000
Total gas Productivity
Figure E-l: Distribution of total gas productivity by BHD reaction
K
-0.50
-0.40
-0.30 s
-0.20
-0.10
2000	4000
H2 Productivity
6000 8000
Figure E-2: Distribution of hydrogen productivity by BHD reaction
484

-------
-0.50
-0.30 2
-0.10
2% 2%
50	100
CH4 Productivity
Figure E-3: Distribution of methane productivity by BHD reaction
Table E-3: Ammonia Gas (NH3) Productivity (|-imol g-1)
Facility
n
Mean
UCL95
Range
A
8
3.3±4.3
6.6
0.1-11
B
3
3.1±2.5
9.3
0.6-5.6
C
2
12±4.1
49
9.2-15
D
2
7.4±8.0
79
1.7-13
E
1
2.5
NA
2.5
F
4
11±16
37
1.8-35
H
8
4.2±5.4
8.7
0.2-16
I
2
6.0±5.2
52
2.3-9.6
J
2
120±170
1640
0.7-240
K
3
1.3±1.4
4.7
0.4-2.9
L
4
7.1±3.3
12
5-12
M
2
7.3±8.1
80
1.5-13
N
3
8.5±5.0
54
4.9-12
All Facilities
44
11±36
22
0.1-240
485

-------
1 2 3 4567-10 20 40 60100 3M»O1000 """lOOOO
Liquid NH4 Productivity
¦I 2 3 4S6710 20 4O0O1QO MD5OO1000 «°°10000
Total NH3 productivity
NH3 (g) Productivity
Figure E-4: Distribution of ammonia gas, liquid NH-t and total NH3 productivity
K
-0.30
-0.25
-0.20
>.
-0.15.2
2
Q.
-0.10
-0.05
0	20	40	60	80	100
Percentage of the Unreacted Metallic Al
Figure E-5: Distribution of Percentage Unreacted Metallic Aluminum in BHD after Reaction
486

-------
Secondary Aluminum Processing Waste:
Baghouse Dust Characterization and Reactivity
APPENDIX F: QAPP
National Risk Management Research Laboratory
Office of Research and Development
U.S. Environmental Protection Agency
Cincinnati, Ohio 45268

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 489 of 72
Amendment 2
Quality Assurance Project Plan
Category IV Measurement Project
Management Options for the Safe Deposit
of Secondary Aluminum Processing Waste
Original QA ID: L-13928
U.S. Environment Protection Agency Contract No. EP-C-11-006
Work Assignment No. 2-26 (1-26, 0-26)
Prepared for:
Thabet Tolaymat, PhD, Principal Investigator
Robert Ford, PhD, Co-Principal Investigator
U.S. Environmental Protection Agency
Office of Research and Development
National Risk Management Research Laboratory
Land Remediation and Pollution Control Division
5995 Center Hill Ave, Cincinnati, Ohio, USA
Prepared by:
Xiaolan Huang, PhD
Pegasus Technical Services, Inc.
Cincinnati, OH 45219
Revision 1
June 6, 2013
489

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 490 of 72
SUMMARY OF WORK ASSIGNMENT 2-26 AMENDMENT 2
QUALITY ASSURANCE PROJECT PLAN CHANGES
The Work Assignment (WA) 1-26 Amendment 2 Quality Assurance Project Plan (QAPP) titled
Management Options for the Safe Deposit of Secondary Aluminum Processing Waste, dated
February 19, 2013, QA ID No. L-13928, is being revised to address the deficiencies identified
during the EPA QA Audit that was conducted on April 9, 2013.
The following Sections in this QAPP have been revised:
Quality Assurance Project Plan Approval List
Section 2.1.2 (page 10, 11)
Section 3.4.1 (page 16)
Section 3.4.3 (page 20, 22)
Section 3.6.4 (page 25)
Section 3.6.5 (page 26)
Section 4.5 (page 27)
Section 6.1 (Table 6.1) ( page 35, 36)
490

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 491 of 72
Quality Assurance Project Plan Approval List
Pegasus Technical Services, Inc. Concurrences:
1. Raghu Venkatapathy, PhD, On-Site Technical Manager
Signature	Date
2. Xiaolan Huang, PhD, WA Leader
Signature	Date
3. Steven Jones, ASQ CQA/CQE, Contract Quality Assurance Manager
Signature	Date
U.S. Environmental Protection Agency Approval for Implementation:
1. Thabet Tolaymat, PhD, Principal Investigator
Signature
2. Robert Ford, PhD, Principal Investigator
Signature	Date
3. Jim Voit, LRPCD Quality Assurance Manager
Signature	Date
Distribution List:
Dr. Thabet Tolaymat, Principal Investigator , NRMRL, U.S. EPA.
-	Dr. Robert Ford, Co-PI, NRMRL, U. S. EPA.
Mr. Stephen Wright, Project Officer, NRMRL, U.S. EPA.
-	Mr. Jim Voit, QA Manager, LRPCD, U. S. EPA.
Mr. David Carson, Branch Chief, NRMRL, U.S. EPA*.
Dr. Raghu Venkatapathy, On-Site Technical Manager, PTSI.
Mr. Steven Jones, Contract QA Manager, Shaw Environmental & Infrastructure, Inc.
Dr. Xiaolan Huang, Dr. Mahendranath Arambewela, Ms. Wenwen Yang, Ms. Renata
Adkins and Dr. Amro El Badawy, On-Site Contractors, PTSI.
Mr.Cluxton Phillip, On-Site Contractor
Mr. Casey Warren, U.S. EPA Student Contractors.
* These individuals are receiving copies of the QAPP and subsequent revisions at their request.
491

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 492 of 72
TABLE OF CONTENTS
List of Tables	6
List of Figures	7
1.0 Project Description and Objectives	8
1.1	Proj ect Description	8
1.2	Proj ect Obj ectives	8
2.0 Organization and Responsibilities	10
2.1	Proj ect Personnel	10
2.2	Proj ect Schedule	11
3.0 Scientific Approach	12
3.1	Site Identification and SAP Waste Sampling	12
3.2	Sample Processing	12
3.3	Sample Characterization	12
3.4	SAP Waste Reactivity Testing	14
3.5	Toxicity Characteristic Leaching Procedure (TCLP) of SAP Waste	23
3.5 Model Thermal Change in landfills Accepting SAP Waste	24
4.0 Sampling Procedures	26
4.1 Site Preparation	26
4.2. Sample Procedures	26
4.3	Sample Containers/Quantities	26
4.4	Sample Preservation/Hold Time	26
4.5	Sample Identification	26
5.0 Measurement Procedures	28
5.1 SAP Waste Characterization	28
492

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 493 of 72
5.2	Experimental Sampling	29
5.3	Measurement Methods	30
6.0 Quality Metrics (QA/QC Checks)	32
6.1	Data Quality Objectives and Criteria	32
6.2	Types of QC Samples	36
6.3	Model Calibration and Validation	37
7.0 Data Analysis, Interpretation and Management	38
7.1	Data Reporting	3 8
7.2	Data Handling and Disposal	3 8
7.3	Data Reduction and Validation	39
7.4	Data Storage	39
8.0 Reporting	40
9.0 Reference	41
10.0 Appendix SOP	43
493

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 494 of 72
LIST OF TABLES
Table 2.1 Project Organization and Responsibilities	12
Table 3.1 Test Results of the Gas Volume Measurement Using Syringe	18
Table 3.2 The Relation of Heat Generation with Resistance, Current and Time	22
Table 5.1 Summary of Solid Sampling and Schedule	28
Table 5.2 Sample Containers, Preservation and Storage Time	28
Table 5.3 Summary of Sampling of the Waste Reactivity Testing	29
Table 5.4 Outline of Analysis Methods	30
Table 6.1 Summary of QA/QC Checks	33
Table 6.2 MDL, Precision and Accuracy for ICP-AES Method 6010B	36
Table 7.1 Reporting Units	38
494

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 495 of 72
LIST OF FIGURES
Figure 2.1	Project Schedule	12
Figure 3.1	Temperature Generation Potential Apparatus	18
Figure 3.2	Reactivity Test Apparatus for Gas Production	19
Figure 3.3	Gas Volume Verification Test Apparatus	20
Figure 3.4	Reactivity Test Apparatus for Measuring Heat Change	22
Figure 3.5	Example: Calibration Curve of Generated Heat and the Sum of	23
Temperature Change
495

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 496 of 72
SECTION 1.0
PROJECT DESCRIPTION AND OBJECTIVES
1.1	Project Description
Secondary aluminum processing (SAP) wastes result from the smelting of primary aluminum
(Al) waste and processing of recycled aluminum. These wastes include 'saltcake,' and air
pollution control filter dust (bag house dust) that might contain oxidized aluminum, small
particles of aluminum metal, aluminum nitrides, aluminum carbides, and metal oxides. In 1999,
it was reported that approximately 2 billion pounds of SAP waste was disposed of in U.S.
landfills (U.S. DOE, 1999).
The disposal of vast amounts of SAP wastes containing various Al species can pose a potential
threat to the management of landfills. This is because SAP waste can react with water and
generate heat as well as flammable gases such as hydrogen and methane. Additionally, when
placed in a municipal waste landfill, this reaction may be sufficiently exothermic to initiate the
combustion or pyrolysis of other waste materials.
Some municipal waste landfills across the country have experienced significant problems
attributed to the SAP wastes in landfills. Some of these events are subsurface heating, excessive
subsidence and slope instability, engineering component failure, and dangerous onsite working
conditions. Aside from these potential impacts, there may be environmental and community
health impacts associated with air emissions, surface water, and groundwater releases.
In light of these problems, the U.S. Environmental Protection Agency (EPA) is initiating a
collaborative research effort to examine safe management practices for SAP wastes. The EPA is
seeking to better understand SAP waste material, its potential risk, and strategies to prevent,
arrest, or exhaust potential peril for safe management of municipal landfills. It is expected that
inroads will be made towards the creation of technologies or management practices whereby
SAP wastes can be safely deposited in landfills, avoiding future problems.
The EPA has established a coordinating committee to provide technical assistance and project
guidance through project advisory meetings, report reviews, and participation in an online
research collaboration website.
1.2	Project Objectives
The current study aimed at exploring the chemical composition and mineral phase of the waste
from SAP industry. Furthermore, temperature change and gas generation after reaction with
water or landfill leachate is studying the potential reactivity in laboratory setting. This allows for
a better understanding of the behavior of the SAP wastes when disposed in landfills.
Additionally, this work provides the methodology to investigate such reactions and thus provides
496

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 497 of 72
the criteria for determining whether a particular sample of salt cake or baghouse dust can be
landfilled.
It is noted that this is a preliminary study. The potential relationship between the chemical
composition and reactivity, either gas or heat generation, will be tested and identified in the
laboratory setting. Based on the findings, further research will be carried out to investigate and
validate the relationships identified in this work.
The specific objectives of the study are:
•	To identify and characterize the metal constituents in SAP wastes.
•	To identify and semi-quantify the dominant mineral phase present in the SAP wastes
using XRD analysis.
•	To evaluate temperature change after SAP wastes exposure to water and/or landfill
leachate.
•	To identify and characterize the generated gas quantity and quality when SAP waste
reacts with water and/or landfill leachate.
•	To investigate the metal composition of SAP waste leachate after SAP reaction with
water and /or landfill leachate.
•	To conduct Toxicity Characteristics Leaching Procedure (TCLP) to evaluate the
possibility of heavy metal leaching from SAP waste.
•	To evaluate heat generation after SAP wastes exposure to water and/or landfill leachate.
•	To simulate the thermal changes in Municipal Solid Waste (MSW) landfills as a result of
co-disposal of SAP waste with MSW using the TEMP/W model.
•	To develop methodology to assess the potential risk of SAP reaction with water and /or
landfill leachate.
497

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 498 of 72
SECTION 2.0
ORGANIZATION AND RESPONSIBILITIES
2.1 Project Personnel
2.1.1	EPA Staff
The EPA Principal Investigators (PI)_for this project are Dr. Thabet Tolaymat and Dr. Robert
Ford. Dr. Tolaymat is responsible for overseeing the paperwork associated with the management
of the project, and the research procedures associated with total metals analysis. Dr. Ford is
responsible for overseeing and conducting research procedures associated with X-ray diffraction,
Fourier-transformation infrared spectroscopy, scanning electron microscopy, and
thermogravimetric analysis. Dr. Tolaymat and Dr. Ford will also be responsible for coordinating
the collection of SAP waste samples through the Aluminum Association and the Environmental
Research and Education Foundation. Dr. Tolaymat and Dr. Ford will meet monthly to discuss
the progress of the research. Mr. Stephen Wright is the EPA Project Officer for EPA Contract
No EP-C-05-056. Mr. Jim Voit is the EPA Land Remediation and Pollution Control Division
(LRPCD) Quality Assurance (QA) Manager responsible for approving the Quality Assurance
Project Plan (QAPP). Mr. Casey Warren, EPA Student Contractors, and Mr.Cluxton Phillip,
EPA On-Site Contractor, are responsible for providing support to the PTSI WA Leader and EPA
WA Manager for operation of the experiment, data collection, analysis and reporting.
2.1.2	PTSI Staff
- Dr. Karen Koran is the Pegasus Technical Services, Inc. (PTSI) Project Manager. Dr.
Raghuraman Venkatapathy, PTSI On-Site Technical Manager, is responsible for
supervision of the PTSI staff. Mr. Steven Jones, ASQ CQA/CQE, of Shaw
Environmental & Infrastructure, Inc. (Shaw), a subcontractor to Pegasus in this contract,
is the PTSI Contract QA Manager and is responsible for oversight PTSI quality program
implementation and the review of this QAPP. Dr. Xiaolan Huang ,the Pegasus WA
Leader, is responsible for preparation of the QAPP, setup and operation of the
experiment, data collection, analysis and reporting. Dr. Mahendranath Arambewela, Ms.
Wenwen Yang, Ms. Renata Adkins and Dr. Amro El-Badawy, PTSI On-Site Technical
Staff, are responsible for providing support to the PTSI WA Leader for operation of the
experiment, data collection, analysis and reporting. Dr. Mahendranath Arambewela is
also responsible for ICP and AA analysis, and Ms. Wenwen Yang for IC and GC
analysis.
498

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 499 of 72
Table 2.1 _Project Organization and Responsibilities
Name
Phone/email
Responsibilities
Mr. Stephen Wright
(513) 569-7610
wright.stephen(ff>epa.gov
EPA Project Officer
Dr. Thabet Tolaymat
(513) 487-2860
tolavm at.thabet a.c pa. g o v
EPA Principal Investigator
Dr. Robert Ford
(513) 569-7501
robert. ford e/,cpa.gov
EPA Co-Principal Investigator
Mr. Jim Voit
(513) 487-2867
voit ,j im'<7,cpa.gov
EPA LRPCD QA Manager
Mr. Steven Jones
(513) 782-4655
Steve.S.Jones(ff>shawgrp.com
PTSI Contract QA Manager
Dr. Karen Koran
(513) 569-7304
Koran. Korcne/,cpa.gov
PTSI Project Manager
Dr. Raghu Venkataphathy
(513) 569-7077
Venkatapathy. Raglui ram anc/,epa.gov
PTSI On-Site Technical
Manager
Dr. Xiaolan Huang
(513) 569-7409
Huang. Xiaolan c/,cpa.gov
PTSI On-Site Staff
Dr. Amro El Badawy
(513) 569-7688
e 1 -badawy. am ro 'a.c pa. go v
PTSI On-Site Staff
Dr. Mahendranath
Arambewela
(513) 569-7127
mahendranath.arambewclac/,epa.gov
PTSI On-Site Staff
Ms. Renata Adkins
(513)487-2127
adkins. renata'c/,epa.gov
PTSI On-Site Staff
Ms. Wenwen Yang
(513)487-2559
yang.wenwen(ff>epa.gov
PTSI On-Site Staff
Mr.Cluxton Phillip
(513)487-2875
CI uxton ,ph i 11 i pc/,epa.gov
On-Site Contractor
Mr. Casey Warren
(513)569-7257
Warren.Casey(ff>epa.gov
Student Contractor
2.2 Project Schedule
The projected schedule and the main activities are shown in Figure 2.1.
Activities
Sept.-10
May-11
Sept-11
May-12
Sept-12
May-13
Sept.-13
QAPP/HASP writing







Samples being produced







Sample characterization







Modeling







Report/manuscript writing






499

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 500 of 72
SECTION 3.0
SCIENTIFIC APPROACH
3.1	Site Identification and SAP Waste Sampling
Facilities that generate SAP wastes will be identified in collaboration with the Aluminum
Association and the Environmental Research and Education Foundation. Each facility will
sample both salt cake (SC) and bag house dust (BHD) at different times. The average number of
samples to be obtained from each facility is 4. The number of SC samples to be obtained will be
at least 35 and the number of BHD samples will be at least 50.
3.2	Sample processing
Upon receipt, samples will be logged and then stored in a Hazardous Storage Unit located at the
EPA Center Hill Laboratory (CHL) Facility. The storage unit is equipped with a chemical fire
suppression system in case any unintended SAP waste reaction occurs. The fire extinguishing
system is a chemical system that does not use water since the samples may be water reactive.
Within two weeks of receipt, in order to obtain representative subsamples, the individual samples
will be processed as follows:
•	The samples will be placed in a stainless steel pan and crushed to pass a 9-mm sieve.
•	After thorough mixing, approximately 0.5 kg of the 9-mm sieved materials will be further
size reduced down to a size of 2 mm using a grinding machine (Preiser Scientific).
•	Approximately 50 gm of the 2 mm size SAP waste will be further reduced to a size of 0.05
mm using a sealed stainless steel jar mill equipped with zirconia grinding beads. The jar
mill will be rotated at 20 rpm for 24 hours.
•	The 2- mm size will be used for the chemical and physical analysis (pH, conductivity,
moisture content and water holding capacity) in the laboratory and the 0.05-mm size will
be used for the chemical and XRD analysis.
3.3	Sample Characterization
3.3.1 Physical Characterization
3.3.1.1	Moisture Content (MC)
The moisture content of the salt cake samples will be determined. The oven temperature will be
set at 105 °C following ASTM Method D-2216 (refer to SOP 4).
3.3.1.2	Water Holding Capacity
Following the principles of ASTM Method F1815-06 (SOP 5), approximately 10 g of sample
will be placed into a cylinder and cold water (Temperature <12 °C) will be added to make it
saturated. The saturated samples will be placed on top of an absorbent membrane until the excess
water is drawn away by gravity. Once equilibrium is reached (usually 16 h, overnight), the water
500

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 501 of 72
holding capacity will be calculated based on the weight of the water held in the sample versus
the sample dry weight.
3.3.1.3 pH and Conductivity (EC)
The salt cake samples will be reacted with water (1:20, 5 gram/100 ml DIW) and will be incubated
for a week at 50 °C. At the end of the incubation period, the samples will be filtered using a 0.45
|im PVDF media and the pH and EC will be determined (SOP 3).
3.3.2 Metal Composition
•	The SAP waste will be acid digested using EPA SW846 Method 3051 A, Microwave
assisted acid digestion of sediments, sludges, soils and oils. Following the suggestion of
3051 A, the mixed acid (1 HC1 and 3 HNO3) will been employed instead of concentrated
HNO3 only, a temperature will be set as 185 °C instead of 175 °C, and hold time will be
extended from 10 to 30 minutes. The amount of SAP waste to be digested will be 0.1 g
instead of 0.5 g because of the high metal content (refer to SOP 8).
•	The macro-elements (Al, Ag, Ba, Fe, Mn, Cu, Zn, K, Na, Ca, and S) will be determined
by EPA Method 6010B using a Thermo ICP-AES located at the Kirby laboratory at the
EPA Center Hill Facility. Trace metals (Pb, Cd, Cr, As and Se) will be analyzed by a
Perkin-Elmer graphite furnace AA separately (refer to SOP 9) or Thermo ICP-AES.
3.3.3 Mineral Phase
Mineral phase of the 0.05 mm size SAP waste (prepared as described in section 3.2) will be
investigated using a Philips X'Pert-MPD system at the EPA CHL Facility (refer to SOP 10). The
XRD will be operated under the following conditions:
Scan Axis
Gonio
Start Position [°2Th.]
10.0000
End Position [°2Th.]
106.7800
Step Size [°2Th.]
0.0100
Scan Step Time [s]
5.0000
Scan Type
Pre-set time
Offset [°2Th.]
0.0000
Irradiated Length [mm]
10.00
Specimen Length [mm]
10.00
Receiving Slit Size [mm]
0.1000
Anode Material
Cu
K-Alphal [A]
1.54060
K-Alpha2 [A]
1.54443
K-Beta [A]
1.39225
K-A2 / K-Al Ratio
0.50000
Generator Settings
40 mA, 45 kV
Diffractometer Type
XPert MPD
Goniometer Radius [mm]
200.00
Dist. Focus-Diverg. Slit [mm]
91.00
501

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 502 of 72
Incident Beam Monochromator No
Spinning
Yes
The powder diffraction file (PDF) patterns database from the International Centre for Diffraction
Data (ICDD) will be employed for the search, match, and identification. A subset of reference
patterns will built for all studied salt cake samples. The semi-quantitative phase analysis will used
by the X'Pert HighScore Plus software, based on the CHUNG Normalized RIR Method [66], The
relative intensity of each phase is given by the scale factor, which is determined by least squares
fit through all matching reference pattern lines in X'Pert HighScore. The concentration X of phase
a is calculated using:
where RIRoc is Reference Intensity Ratio, based on the relative net peak height ratio of the strongest
line (Irel = 100%) of the phase and of the strongest line of corundum, measured with copper Ka
radiation in a mixture of equal weight percentages and I(hkl)K is Intensity of reflection of hkl in
phase a. hkl is reflection indices.
It is important to note that the normalization used in this method assumes that the sum of all
identified phases is 100%. This means that there are no unidentified crystalline phases or an
amorphous phase present in the sample. Only under these conditions can meaningful, semi-
quantitative results be obtained.
3.4 SAP Waste Reactivity Testing
The reactivity of SAP waste with liquids will be evaluated using two approaches. The first one is
to quantify the temperature change and the second one is to measure the chemical changes
including gas and leachate quality. Different effects of key variables on the temperature change
of selected samples will be tested. The samples will be selected based on the mineral phase types
(i.e., high metallic aluminum, high aluminum nitride, high aluminum oxide and a combination of
the 3 mineral phases) obtained from the XRD analysis. These variables include the solid to liquid
ratio, particle size of salt cake, the chemical composition of the solution, and the environmental
temperature. Based on these preliminary investigations, a protocol of the temperature profile
study for all samples will be prepared. More details in regards to the evaluation of the impact of
the previously mentioned key variables on the temperature change upon liquid addition to the
SAP waste are described below:
A. Effect of Solid to Liquid Ratio and Mass of Aluminum Dross
The change in temperature will be influenced by the amount of liquid and the mass of SAP waste.
Four samples of SAP waste will be selected to investigate the effect of solid to liquid ratio on the
temperature change upon reaction with water. Three sets of experiments will be conducted at 50
°C. The samples will be prepared as outlined in section 3.4.1 with the following changes as follows:
X
1 (hkl) oc
1
(2-1)
502

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 503 of 72
•	Experiment 1: the solid mass is fixed (10 gm) and the liquid volume will be 3, 5, 10 and
15 ml of preheated DI water.
•	Experiment 2: the liquid volume is fixed (3 ml) and the solid weight will be 5, 10 and 15
gm.
•	Experiment 3: The ratio of solid to liquid is fixed at 10:3, 10:5 and 1:1. For example in the
case of 10:3 ratio the investigated amounts will be 5g: 1.5 ml, 10g:3ml, 15g:4.5 ml and
20g:6ml of liquid.
B.	Effect of Particle Size of Aluminum Dross
Particle size is another major factor that may have an impact on the temperature change upon the
reaction of SAP waste with liquids. The smaller the particle size the higher the surface area to
volume ratio and consequently the reactivity is expected to be higher. Four samples will be tested
as follows:
•	Three different particle sizes will be tested (0.05 mm, 2 mm, and 9 mm) for salt cake.
•	The environmental temperature will be maintained at 37°C and 50°C.
•	The solid to liquid ratio will be 1 to 1 (lOg salt cake with 10 ml DI water).
C.	Effect of Liquid Chemical Composition
Once SAP waste is disposed in landfills, the chemical composition of the leachate (such as,
volatile fatty acids, organic matter, pH) will influence the reactivity of this waste. Therefore,
various chemical composition of the liquid will be investigated as follows:
•	DI water (pH 6.5), 0.1 MHC1 (pH 1.0), 0.1 M NaOH (pH 13), 0.1M H3PO4 (pH1.65),
0.1M NaH2P04 (pH 5.6), 0.1M Na2HP04 (pH 8.2), and landfill leachate (pH 6.2, DOC-
20,000mg/L).
The ratio of solid to liquid will be fixed at 1 to 1 (10 g salt cake with 10 ml liquid).
D.	Effect of Environmental Temperature
High temperature may trigger the reaction of metallic aluminum with liquid . Additionally, some
components of the SAP waste such as aluminum nitride and aluminum carbide can react at low
temperature. Thus, the impact of environmental temperature on the reactivity of SAP waste will
be evaluated as follows:
•	The environmental temperatures to be investigated will be 20, 37 and 50°C.
•	The solid to liquid ratio will be fixed at 1 to 1 (10 g aluminum dross with 10 ml liquid).
DI water will be used as the liquid.
3.4.1. Temperature Generation Potential
503

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 504 of 72
Temperature increase is one of the key parameters indicating a reaction between salt cake and,
usually, water. The increase in temperature caused by the reaction of salt cake and baghouse dust
with liquid will be evaluated as follows:
•	A sample of 10 gram of the size reduced salt cake (<2 mm) or baghouse dust will be placed
in a 60 ml VOA vial.
•	The vial will be sealed and purged with argon for 10 minutes.
•	The vial will be then connected to a 1-L Tedlar bag (for pressure relief).
•	The VOA vial with the sample will be pre-heated to a certain temperature (37 and 50°C)
for 6 hours in order to achieve the required temperature.
•	The vial temperature will be monitored and logged using a thermocouple wire placed in
the sample.
•	A 10 ml of pre-heated DI water (same sample temperature) will be then added to the vial.
The temperature change will be recorded over time for at least 72 hours till no temperature
change due to the reaction.
•	After the reaction completion, the gas in the Tedlar Bag will be released in the hood.
Usually, 6 to 12 vials will be grouped as one set in an insulated box placed in a temperature
controlled system. For quality assurance, at least one control sample will be included with each
sample group. The control sample is composed of pure quartz sand having the same sample
weight and will be processed as the SAP waste samples. The temperature of the control should
be within 2 degrees of the set temperature. It was assumed that the average temperature
difference between the control and sample was 0 in the last 10 hours of measurement. To isolate
the heat transfer among the vials insulation materials will be placed between the vials in the box.
Figure 3.1 presents a schematic as well as a photo of the experimental setup. Moreover,
reference materials (sodium chloride, potassium chloride, aluminum nitride, aluminum carbide,
aluminum oxide and powder metallic aluminum) will be tested to evaluate the interactions of
pure aluminum compounds upon liquid addition under the same experimental conditions. The
evaluation will follow the same steps outlined earlier for SAP waste samples.
3.4.2. Gas Generation and Leachate Chemistry
Gas production potential and leachate chemistry of salt cake as a result of liquid addition will be
evaluated under anaerobic conditions in order to mimic most MSW landfills conditions. The
experimental procedure for measuring the gas generation and leachate quality is summarized
below and schematic of the experimental setup is presented in Figure 3.2:
•	A 5 g of size reduced SAP Waste Sample (salt cake sample (<2 mm) or baghouse dust)
will be placed into a 500 ml lined media bottle. Reference materials (sodium chloride,
potassium chloride, aluminum nitride, aluminum carbide, aluminum oxide and powder
metallic aluminum) will also be tested.
•	The bottle will be then capped using a lypholization rubber stopper.
•	The sealed bottle will be purged with argon for 10 minutes.
•	A 100 ml of oxygen-free pre-heated DI water (50°C ) will be added to the bottle.
504

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 505 of 72
Temperature Data Logger
Tedlar bag (gas
capture) for relief
pressure
Thermocouple wire
60 ml VoA Vial
1:1 Ratio of aluminum
dross
arid Water
lOg solids: 10 ml water
Figure 3.1: Temperature generation potential apparatus.
A 1-L Tedlar bag will be connected to the bottle for the collection of the generated gas.
The bottle will then be incubated for 7 days at 50°C.
The Tedlar bag will be disconnected and equilibrated to room temperature and then the
gas quantity and quality will be measured. The gas quantity will be measured using a gas
syringe and the quality will be measured using Agilent Gas Chromatograph (SOPs 1 and
2).
A 20 ml liquid sample will be taken (using a syringe) from the sealed bottle for liquid
ammonia analysis (SOP 7).
The rest of the liquid will be filtered using a 0.45 |im PVDF filter media and the pH and
conductivity ofleachate will be measured (SOP 3).
After measuring the pH and conductivity, the liquid samples will be used for anions and
metals analysis. The solution for metal analysis will be preserved by acidification using
trace metal grade nitric acid to a pH < 2.0 (SOP 9); the solution for anions analysis will be
505

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 506 of 72
stored at 4°C (SOP 10).
The experimental setup will be checked for leaks using a gas leak detection fluid ( e.g. LEAK-
SEEK®, or soap) before and after the experiment. If any leak is found, the experiment will
repeated.
Tedlarbag (gas capture) for off-
line analysis
Three-port teflon cap
One-way gas valve
Headspace
Dl-Water
SAP Waste Sample or
Reference Materials
Figure 3.2: Reactivity test apparatus for gas production.
3.4.2.1 Gas Volume and Composition
The Gas quantity will be measured using a 60 ml air tight gas syringe per EPA OPPTS method
835.3400. The accuracy of measuring gas volume in a Tedlar bag using a syringe was confirmed
in our lab by performing the following test (the experimental setup mimics the test condition and
the schematic is presented in Figure 3.3):
•	A 5 g of sand sample was placed into a 500 ml lined media bottle and 100 mL of DI water
was added to the sand.
•	The bottle was capped using a lypholization rubber stopper.
•	The sealed bottle was connected to a 1 L Tedlar bag.
•	The bottle was then purged with argon at a known flow rate for a certain time (Table 3.1).
A flow meter (Cole Parmer) calibrated to argon gas flow was used to measure the actual
flow rate from an argon gas cylinder.
•	After purging, the gas volume in the Tedlar bag was measured using a syringe and the
results were compared to theoretical volume of argon purged.
506

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 507 of 72
• The results show that the difference between the actual volume of gas purged and the
collected volume using a syringe was < 5% (Table3.1).
Tedlarbag (gas capture)
Gas flow meter
One-way gas valve
Gas flow direction
Argon Tank
Heads oace
Dl-Water
Sample
Figure 3.3: Gas volume verification test apparatus. Green arrows show the gas flow
direction
Table 3.1 Test results of the gas volume measurement using syringe
Gas flow rate
Purging
time
(min)
Actual gas
volume
Gas
measured
%
(ml per min)
purged
(mL)
using syringe
(mL)
Difference
120
4
480
495
3.0
120
4
480
505
5.0
117
4
468
480
2.5
117
4
468
465
0.6
115
2
225
230
2.2
115
3
345
345
0.0
The gas composition will be analyzed for CH4, CO2, N2, H2, O2 and N2O and H2S. The CH4,
CO2, N2, H2 and O2 concentration will be measured using a GC TCD/FID, the N2O
concentration will be measured using GC/ECD (SOP 2) and the H2S will be measured using a
Jerome meter (instrument manual). Additionally, the ammonia concentration in the gas will be
measured using an ammonia selective electrode.
507

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 508 of 72
3.4.2.2 Leachate Quality Analysis
The leachate will be analyzed for pH, conductivity (SOP 3), ammonia (SOP 7) and metals (SOP
9). The pH and conductivity will be measured using pH and conductivity probes. The dissolved
ammonia in the leachate will be analyzed using Ammonia ion selective electrode. The metal
analysis will be performed using a Thermo ICP-AES or Graphite Furnace AA based on the metal
concentration. The target metals include Al, As, Cr, Cd, Pb, Se, Fe, Cu, Zn, K, Na, Ca, and Mn.
3.4.3. Heat Generation
Heat generation is one of the key parameters to access the safety of aluminum dross disposal in
landfills. A custom reaction calorimeter with double vessels has be designed and fabricated to
determine the heat generation rate from the aluminum dross reaction (Figure 3.4). In order to
obtain the isoperibol condition (constant temperature in the thermal jacket surrounding the
reaction vessel), the whole device will be set up in a temperature controlled environment (e.g.
temperature room 37.5°C or incubation oven, 50°C). Ethylene Glycol will be used as a thermal
buffer since it has a low specific heat capacity. The experimental procedure for measuring the
heat generation is summarized as follows:
•	A sample of 5 gram of the size reduced salt cake (<0.05 mm) or baghouse dust or sand (as
control) will be placed in a 40 ml inner-vessel (e.g. 40 mL VOA vial with screw cap).
•	The inner-vessel with sample will be capped and then put into an outer-vessel (custom
made 250 ml vial with a three-port Teflon cap, see Figure 3.4), which contains pre-
equilibrium 90 ml Ethylene Glycol. Three thermocouple wires will be placed in the
Ethylene Glycol solution. The Ethylene Glycol solution temperature will be allowed to
equilibrate overnight (16 h).
•	The inner-vessel will then be connected to a 1-L Tedlar bag (for pressure relief).
•	A 10 ml of pre-heated liquid (e.g., DI water) (same sample temperature) will be then
injected to the inner-vessel by syringe into sample or sand (control). The Ethylene Glycol
solution temperature will be recorded over time for at least 72 hours till no temperature
change is observed from the reaction.
•	.The Ethylene Glycol solution temperature will be monitored every two minutes and logged
using date logger.
•	The average temperature readings from the three thermocouple wires in the outer vessel
from the test sample will be used to calculate the difference with the control (Sand) (AT).
The sum of temperature change with control ( EAT) will be used to access the released
heat from sample.
•	After the reaction completion, the gas in the Tedlar Bag will be released in the laboratory
hood.
508

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 509 of 72
Syringe pusher
Tedlar bag, 1L
Temperature
Controlled Room
Temperature
data logger
One-way gas valve
Three-port Telfon Cap
Thermocouple wii
Thermal buffer:
Ethylene Glycol Solution
Saltcake with
water, e.g.
5g/10 ml DIW
Thermal insulation materials
Figure 3.4: Reactivity Test Apparatus for Measuring Heat Change
Table 3.2 (below) will be used for calibration as the standard heat generated in the experiments.
The heat from the resistance or from the reaction of aluminum dross will be monitored for
temperature change. The standard value of heat is based on resistance with different currents and
time. Figure 3.5 (below) is the standard curve from the sum of temperature change to the
released heat, which is based on the resistance (from Table 3.2). With the Table 3.2 and Figure
3.5, the heat from the reaction of aluminum dross can be estimated.
•	A calibration between the above mentioned sum of temperature change (EAT) and the
input heat, generated by a fixed resistance (R) with the adjustable electric current (I) with
time. The power (P) and voltage (V) was calculated as follows:
P 1 Y
Y I - R
•	The generated heat (Q) from resistance is the function of power with time (Q = P * t).
The following Table 3.2 is the example of the input energy (released heat) with the
adjusted current and time, used for calibration.
•	Relationship between the generated heat (Q) and the sum of temperature change (EAT)
has been demonstrated as linear, and it was also confirmed that there were no difference
of EAT among the heat time with the same inputted heat (Q). The calibration curve in
the current laboratory setting at temperature room and input energy (generated heat Q,
kJ) is as following:
Q = 0.006EAT
509

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 510 of 72
Table 3.2 The Relation of Heat Generation with Resistance, Current and Time
Energy
(Joules)
Time
Energized
(Minutes)
Power
Applied
(Watts)
Current
(Amps)
Potential
(Volts)
Resistance (Ohms)
3000
60
0.8333
0.1349
6.1779
45.80
5000
60
1.3889
0.1741
7.9757
45.80
6000
60
1.6667
0.1908
8.7369
45.80
10000
60
2.7778
0.2463
11.2793
45.80
20000
60
5.5556
0.3483
15.9513
45.80
30000
60
8.3333
0.4266
19.5363
45.80
10000
120
1.3889
0.1741
7.9757
45.80
20000
120
2.7778
0.2463
11.2793
45.80
1000 2000 3000 4000 5000 6000
Sum of Temperature change ATsum (C/2min)
Figure 3.5: Example of calibration curve of generated heat and the sum of temperature
change (37°C temperature controlled room)
Usually, 4 double-vessels will be grouped as one set in an insulated box placed in a temperature
controlled system. For quality assurance, at least one double-vessel will be included as standard
or control with each sample group. Two or three thermocouples will be placed in the control
vessel. The relative standard deviation of the temperature in the control vessel should be within
5%. If the temperature of control fails, the experiment will be repeated. It was assumed that 0
heat generation in the last 10 hours of measurement and the average temperature difference
between the control and sample was 0 in that period. The system will be verified every 6 months
with one standard, and the slope of £AT/ Q will be calculated. The variation limit of £AT/ Q is
± 15%. If the verification fails, the heat experiment in that period will be repeated. To isolate the
heat transfer among the vials, insulation materials will be placed between the vials in the box.
510

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 511 of 72
Similar to the temperature profile study, many factors might influence the heat generation
process, e.g. the mass of salt cake, particles size, composition of liquids, and environmental
temperature. These factors will also be tested.
Moreover, reference materials (sodium chloride, potassium chloride, aluminum nitride,
aluminum carbide, aluminum oxide and powder metallic aluminum) will be tested to evaluate the
interactions of pure aluminum compounds upon liquid addition under the same experimental
conditions. The evaluation will follow the same steps outlined earlier for SAP waste samples.
3.4.4 Hydrogen production from metallic aluminum — mechanism study
A pre-test study of reference materials indicated that the hydrolysis process of aluminum
nitride (A1N) can significantly enhance the reaction of metallic aluminum with water, even at
room temperature conditions. It was found that the rate of hydrogen generation can be quite
high, e.g. 300 ml H2/min/0.5 g A1 at 37C. The promotion effect of the product of A1N
hydrolysis on the rate of hydrogen generation from the reaction of metallic aluminum as well as
the interaction of salt will provide some insight for understanding the mechanisms of the
reaction of SAP waste with water. It is known that the product of A1N hydrolysis is related to
time, the relation of aging process and its promotion effect will be studied on the generated gas
volume, composition and rate.
•	Experiment 1 (aging process of A1N hydrolysis): The product of A1N hydrolysis is
changeable with the aging process, different species of aluminum hydroxide or oxide
might be formed. The pH in the suspension will be monitor. The hydrogen generation
from the reaction of metallic aluminum with water will be studied with the different aged
byproduct of A1N hydrolysis. The suspension of A1N will be made as 1 g A1N with 20 ml
DI water in a closed container (e.g. 40 mL VOA vial with screw cap). The aging time
will be from less than 2 h , 24h, 72h, ... till 15 week. Adding aged A1N suspension into
the reactivity test apparatus (e.g. 60 mL VOA vial with screw cap) with metallic
aluminum, monitor the volume of gas generated using a gas syringe, and count the time.
The pH of the product generated from the aluminum reaction will be monitor after gas
collection. The experiment will be studied at the room temperature (25°C).
•	Experiment 2 (the effect of mass of product of hydrolysis A1N): The amount of metallic
aluminum and the total volume of water will be fixed, the initial mass of A1N will be 0.5,
1 and 2.0 gm (20 ml). Adding aged A1N suspension into the reactivity test apparatus (e.g.
60 mL VOA vial with screw cap) with metallic aluminum, monitor the volume of gas
generated using a gas syringe, and count the time. The reaction process will be repeated
if the promotion effect is observed.
•	Experiment 3 (the effect of mass of metallic aluminum): The amount of suspension of
A1N and total volume of solution will be fixed, the initial metallic aluminum mass will
be 0.1, 0.5 and 1.0 gm. Adding aged A1N suspension into the reactivity test apparatus
(e.g. 60 mL VOA vial with screw cap) with metallic aluminum, monitor the volume of
gas generated using a gas syringe, and count the time. The reaction process will be
repeated if the promotion effect is observed.
511

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 512 of 72
3.5. Toxicity Characteristic Leaching Procedure (TCLP) of SAP Waste
The toxicity characteristic leaching procedure (TCLP) will be conducted on SAP waste to
determine if the SAP waste is characteristically hazardous. The TCLP will be performed
according to the EPA method 1311. The following minor modification to the test will be applied:
1) 10 g SAP waste sample will be used instead of 100 g sample but the liquid to solid ratio will
be 20:1 as per the standard procedure, and 2) Whatman 0.45 |j,m PVDF filters will be used
instead of the 0.7 |j,m glass fiber filters mentioned in the standard procedure. Other than those
two modifications, all other steps will be conducted according to the TCLP standard procedure.
3.6 Model Thermal Changes in Landfills Accepting SAP waste
3.6.1	Model Selection
The selected model will be used to estimate thermal changes in MSW landfills accepting SAP
waste. The model will not be used to make definitive conclusions, rather it will be used to
provide information about the trends that are likely to occur.
3.6.2	Model Attributes/Capabilities
To simulate the thermal changes in MSW landfills as a result of co-disposal of SAP waste with
MSW, the selected model must be able to run on an Intel Pentium Dual-Core processor and have
the following capabilities:
•	Analyze steady-state and transient energy flow, 2-D energy flow in a cross section of in
plan view
•	Include boundary condition types such as temperature, flux, convective surfaces and
imported climate data.
3.6.3	Model to be Used
TEMP/W is a finite element CAD software product for analyzing thermal changes in the ground
due to environmental factors or the construction of facilities such as buildings or pipelines. The
comprehensive formulation makes it possible to analyze both simple and highly complex
geothermal problems. TEMP/W can be applied to the geothermal analysis and design of
geotechnical, civil, landfill, and mining engineering projects, including facilities subjected to
freezing and thawing temperature changes. It was selected as the model to be used for simulating
thermal changes in MSW landfills as a result of co-disposal of SAP waste with MSW.
A SOP for the TEMP/W is provided in Appendix A (see SOP 13).
3.6.4	Requirements, Parameters, and Assumptions
The requirements needed for application of the selected model include information for input
parameters using characterization tests, literature, and other references.
512

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 513 of 72
The parameters involved TEMP/W Software include the thermal properties of the waste
materials (solid waste and SAP waste), liners and final covers in addition to the boundary
conditions (e.g., climate, subgrade temperature, biological activity and chemical reactions of
SAP with liquid). These input parameters are classified to three types:
•	Type 1: data for parameters that is generated in our laboratory under this approved
QAPP which means it is not secondary data.
•	Type 2: data for parameters to be collected from peer-reviewed articles, text books
and interviews with regulators and facility owners/operators (secondary data).
•	Type 3: data for parameters that is being assumed by the research team because there
is lack of information in the literature regarding those parameters.
For type 2 (secondary data): since textbooks and peer-reviewed articles have been through a
rigorous review process, it may be a valid if we assumed that the data are accurate. However, the
research team will take two actions to make sure the secondary data are accurate: 1) Try to
identify more than one source for the each input parameter and approve the value of the required
parameter if 2 sources or more agree on the value/range for that parameter, 2) contact experts in
the field and get their opinion on that obtained values for each parameters.
For type 3 data: the research team will conduct sensitivity analysis on the assumed parameters
and if the parameter prove to impact the results significantly then the team will try to find a
justifiable value for the parameter by further deep literature search or by contacting experts in the
filed to get their recommendations for the more realistic values for the required parameter. In the
event there is still no consensus on the value of the parameter, the model will be run based on 2-3
different scenarios for that particular parameter (e.g., a low, medium and high value), and results
from all three scenarios will be presented.
• Assumptions and Explanations
o Only the parameters that have a large impact on the thermal changes over time in
the MSW landfills will be included as input into the model,
o MSW landfill cell that accepts 1000 tons per year of MSW over 2 years period of
time.
o Two scenarios of disposing of SAP waste in MSW landfills will be assumed 1)
the SAP waste is being discharged at a dedicated spot within the landfill cell, and
2) the SAP waste is being mixed with the MSW.
o The proportion of SAP waste to MSW will be varied in order to test different
disposal scenarios of SAP waste,
o The total heat generation from SAP waste (obtained from the experimental work)
will be converted to heat generation rates by assuming three possible scenarios: 1)
the heat will be generated over a period of 1 month, 2) heat will be generated over
a period of 1 year, and 3) the heat will be generated over a period of 10 year.
3.6.5 Quality of the Model Output
513

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 514 of 72
The TEMP/W model does not generate any QC outputs. Nonetheless, in order to ensure the
quality of the model output, accuracy and precision will be checked as follows:
•	The accuracy of the model output will be verified by using the TEMPW/W model to
calculate the thermal changes of a standard material. For example, the thermal changes of
water as a result of applying different ambient temperatures as boundary conditions will
be tested using the TEMP/W model. The output results will be compared to results from
the literature.
•	The output of model will be verified by another independent research laboratory with the
same input parameters and boundary conditions.
•	The output of model is a report or paper or presentation related to the managment of
secondary aluminum dross.
514

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 515 of 72
SECTION 4.0
SAMPLING PROCEDURES
4.1	Site Preparation
The main facilities that generate SAP wastes will be identified in collaboration with the
Aluminum Association and the Environmental Research and Education Foundation. The SAP
waste samples will be collected monthly from various secondary aluminum processing facilities.
The selected facilities have been identified by the Aluminum Association to cover a wide range
of SAP processes.
4.2	Sampling Procedures
In order to achieve a representative sampling of SAP wastes, double samples (BHD and SC) will
be taken from the facility directly. The SAP waste will be piled at the generation site per waste
type . After cooling (usually 72-120 hrs), each pile would be reduced following ASTM Method
C702 - 98 (2003) "standard practice for reducing samples of aggregate to testing size". Two
samples will be collected with pre-cleaned sampling equipment.
4.3	Sample Containers/Quantities
The first sample will be approximately 400 to 800 g sample collected in a tightly coved plastic
container that will be delivered to the EPA CHL Facility within 24 hours in a shipping container.
The second sample (10-20 kg) will be stored unpreserved in a tightly covered plastic container at
the test site or the sampling company (not at CHL facility) for further analysis, based on findings.
4.4	Sample Processing/Holding Times
Within two weeks of receipt, in order to obtain representative subsamples, the individual samples
will be processed as follows:
•	The samples will be placed in a stainless steel pan and crushed to pass a 9-mm sieve.
•	After thorough mixing, approximately 0.5 kg of the 9-mm sieved materials will be further
size reduced down to a size of 2 mm using a grinding machine (Preiser Scientific).
•	Approximately 50 gm of the 2 mm size SAP waste will be further reduced to a size of 0.05
mm using a sealed stainless steel jar mill equipped with zirconia grinding beads. The jar
mill will be rotated at 20 rpm for 24 hours.
•	The 2- mm size will be used for the chemical and physical analysis (pH, conductivity,
moisture content and water holding capacity) in the laboratory and the 0.05-mm size will
be used for the chemical and XRD analysis.
4.5	Sample Identification
The sample label should include the following:
1. Waste type (salt cake (SC) or baghouse dust (BHD))
515

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 516 of 72
2.	Sampling location (Each facility will be identified using a letter of the alphabet)
3.	Sampling ID (4 digit)
An example label will be BHD-A-2452 meaning that the sample 2452 is a baghouse dust sample
collected from facility A.
Each generated sample will have a unique ID that describes and differentiates each sample. All
vials will also be labeled following the procedure explained above. Labels for samples to be
processed will contain the sample matrix (leachate or solid), sample port number or location,
date and time of sampling, the test (e.g., metals, NH3) that will be performed on this sample. A
laboratory notebook will be used to record the results of the analysis.
516

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 517 of 72
SECTION 5.0
MEASUREMENT PROCEDURES
The following laboratory protocols will be carried out to achieve the research objectives as
required by the Aluminum Association and the Environmental Research and Education
Foundation.
5.1 SAP Waste Characterization
The experimental plan involves the determination of the total metal composition and mineral
phases for the SAP waste. Additionally, the moisture content, density and water holding capacity
will be measured for all SAP waste samples. The quantity of samples to be tested as well as the
frequency of sampling are summarized in Table 5.1. The samples containers specifications, the
preservation methods and holding times are presented in Table 5.2.
Table 5.1 Summary of Solid Sampling and Schedule
Parameter
Type of
measurement
Frequency
Total # of
samples
Moisture
Critical
Once
100
Water capacity
Non-Critical
Once
100
Metals
Critical
Once
50
Mineral
Non-Critical
Once
50
Table 5.2 Sample Containers, Preservation and Storage Time
Parameter
Amount
of sample
Vial type and
volume
Preservation
Max. holding
time
Matrix: Solid
Moisture
10 g
50 ml plastic
vial
NA
NA
Metals
o.i g
50 ml plastic
vial
hno3,
refrigerate
6 months
Mineral
2g
50 ml plastic
vial
NA
NA
Matrix: Aqueous
517

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 518 of 72
pH
NA
50 ml plastic
vial
NA
<3 h
Conductivity
NA
50 ml plastic
vial
NA
<3 h
Dissolved Metals
20 ml
50 ml plastic
vial
HNO3,
refrigerate
6 months
Anions (SO42", F3\ and
CI")
25 ml
Plastic/Glass
Cool @ 4 °C
28 days
Dissolved NH3
5 ml
50 ml EPA glass
vial
H2SO4,
refrigerate
7 days
Matrix: Gas
Composition and
concentration
20 ml
Plastic/Glass
N/A
<3 hours
5.2. Experimental Sampling
The total number of samples and the sampling frequency for the gas and leachate generated from
the SAP waste reactivity testing presented in Section 3.4 are summarized in Table 5.3.
Table 5.3 Summary of Sampling of the Waste Reactivity Testing
Parameter
Type of
measurement
Frequency
Total # of samples
Temperature
Critical
Continuously
200
Heat
Critical
Continuously
80
Gas volume, ml
Critical
Once
50
Gas Composition, % (CH4,
C02, h2, 02, N2)
Critical
Once
50
N2O Concentration, ppm
Non-Critical
Once
50
NH3 (Gas)concentration,
Critical
Once
50
Dissolved metal, mg kg"1
Critical
Once
50
Dissolved ammonia, mg
kg"1
Critical
Once
50
TCLP metals (Ag, As, Ba,
Cr, Cd, Se, and Pb),mg kg"1
Critical
Once
50
pH
Critical
Once
50
EC
Non-Critical
Once
50
518

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 519 of 72
5.3 Measurement Methods
The analytical methods for the SAP waste reactivity testing are outlined in Table 5.4. It is noted
that the temperature measurements will be recorded automatically and the results will be logged
directly to a 34970 Agilent data logger system. The recorded data can then be exported to
Microsoft Excel spreadsheets from the Agilent software program.
Table 5.4 Outline of Analysis Methods
Parameter
Measurement
Instru inent
Analytical
Method SOI'
Leachate
pH
Critical
Automatic Temperature and
Compensation electrode
I.M./EPA Method
150.1 pH/SOP 3
Conductivity
Non-Critical
Electrodless Toroidal
Conductivity Sensor
I.M./EPA Method
120.1/SOP 3
Ammonia (NH4 in
solution)
Non-Critical
Orion 4-Star pH/ISE
Benchtop Meter
I.M., EPA method 350.3
Nitrogen-Ammonia /
SOP 7
Dissolved Metals
Critical
Thermo Elemental 61 E trace
analyzer ICP-AES
SW-846 Method 6010B
/SOP 9
TCLP metals (Ag, As, Ba,
Cr, Cd, Se, and Pb)
Critical
Thermo Elemental 61 E trace
analyzer ICP-AES
SW-846 Method 6010B
/SOP 9
Dissolved Anions
Non-Critical
Ion Chromatograph (IC), using
AS-18 Dionex chromatography
column.
EPA Method 300 / SOP
#10
Solids
Temperature
Critical
Type T Thermocouple.
N.A./I.M.
Heat
Critical
Type T Thermocouple.
N.A./I.M
Moisture
Critical
4 digit balance and 105°C
oven
SOP 4
Density
Non-Critical
2 digit balance and 20.0 ml
cylinder
SOP 5
Water Holding
Capacity
Non-Critical
2 digit balance and 50 ml
cylinder
SOP 6
Total Metals
Critical
IRIS Intrepid ICP-AES
Method 3051 for acid
digestion and Method
6010 B for ICP
analysis, SOP 8, and
SOP 9
Crystallinity (XRD)
Non-Critical
Philips instruments
X'Pert-MPD system
N.A./I.M.
SOP 10
519

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 520 of 72


X-ray Diffraction
Spectrometer

Gas
Gas volume
Critical
Gas Syringe
N. A./I.M./EPA
method OPPTS
835.3400
Gas Composition (CO2,
H2, 02, N2, CH4)
Critical
Gas Chromatograph (GC/TCD)
Agilent 6890 N Series
SOP 1
Gas Composition, N2O
Non-Critical
Gas Chromatograph (GC/ECD)
Agilent 6890 N Series
SOP 2
Gas Composition, NH3
Critical
Orion 4-Star pH/ISE
Benchtop Meter
EPA method 350.3
Nitrogen-
Ammonia/SOP 7
H2S
Non-Critical
Jerome 63IX Hydrogen Sulfide
Meter
I.M.
ST. A: Not applicable
I.M: Instrument Manual
520

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 521 of 72
SECTION 6.0
Quality Metrics (QA/QC CHECKS)
6.1 Data Quality Objectives and Criteria
The accuracy checks, precision, calibration of instrumentation, and the determination of
detection limits are used to ensure the quality control and the confidence level of the obtained
results. Precise, documented and valid data are needed for the ultimate decisions to be made. To
ensure the quality of the data, all instrumentation will be regularly calibrated. QA/QC checks
will be done to ensure the precision and accuracy of the data. Table 6.1 summarizes the QA/QC
checks for each monitoring parameter.
6.1.1 Definitions
Accuracy is the nearness of a test result to the true value (recovery). Both, standard addition
(spiking) and standard checks are common techniques for checking the accuracy. For matrix
spikes, the percent recovery could be calculated as follows:
%R - ^Cs - Cu^ x 100
Ca
Where: Cs = Concentration in spiked aliquot
Cu = Concentration in unspiked aliquot
Ca = Actual concentration of spike added
For standard checks, the percent recovery will be calculated as follows:
Cm
%R =	x 100
Ca
Where: Cm = measured concentration of the check standard.
Ca = actual concentration of the check standard.
Precision is how repeated measurements closely agree with each other. Laboratory duplicates
and triplicates will be used to ensure precision; the relative percent difference (RPD) between
duplicates will be calculated as follows:
|C1 - C2|
% RPD = —1	!— x 100
0.5(C1 + C2)
Where: Ci = Concentration of the analyte in the sample
C2 = Concentration of the analyte in the matrix duplicate
The relative standard deviation between replicates will be calculated as follows:
521

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 522 of 72
% RSD = (—) X 100
/
Where: S = Standard deviation
y' = Mean of the replicates
Method Detection Limit (MDL) is the lowest concentration that is different from zero with a
99% level of confidence. To determine the MDL, the lowest standard concentration used for the
calibration will be injected number of times and the MDL will be calculated using the following
equation:
MDL = t(n-l, 1-a = 0.99) x S
Where: n = the number of replicates
S = Standard deviation of the replicates
The MDLs for ICP-AES analysis performed at the EPA CHL Facility is provided in Table 6.2.
Table 6.1 Summary of QA/QC Checks
Parameter
<)( ' ( 'heck
Method
Frequency
\cccplaiicc
Criteria
Corrective Action
pH
Initial
Calibration*
2 point
calibration
At the
beginning
Within ±0.1 pH unit
of the correct value
1. Re-calibrate
Conductivity
Initial
Calibration*
1 point
calibration
At the
beginning
Within ±2 % of the
full range of the probe
1. Re-calibrate
Ammonia
(NH4)
Initial
calibration
4 point
calibration
As needed
R2 > 0.995
1. Re-calibrate

Continuing
calibration
Run mid
point
standard
Every 12
samples
±20 % of the actual
concentration
1. Re-calibrate

Precision
Sample
duplicate
Every 6 samples
< 20% RPD
1.	Re do triplicate
2.	Investigate the
problem

Blank
Laboratory
blank
Every 6 samples
< Reported detection
limit
1.	Investigate
problem
2.	Remove
contamination
3.	Check other
blanks

Accuracy
Matrix
Spike
Every 6 samples
100 ± 20 % recovery
1.	Re-run spike
2.	Check
calculations
522

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 523 of 72





3. Re-run samples as
required
Metals
Calibration
4 point
calibration
Before each run
R2 > 0.995
1. Re-calibrate

Precision
Sample
Duplicate
Every 12
samples
<	15 % RPD for macro
elements (Al, Fe, Ca,
K, Na, S and Mg) and
<	25% for trace metals
(Ag, Ba, Cu, Mn, Zn
,Cd, As, Se, Cr and
Pb).
1.	Re-analyze
2.	Investigate the
problem

Blank
Laboratory
blank
Every 12
samples
< Reported detection
limit
1.	Investigate
problem
2.	Remove
contamination
3.	Check other
blanks

Accuracy
Check
Standard
Every 12
samples
100 ± 15 % recovery
for major metals and
100 ±25% for trace
metals
1. Re-calibrate
2- Re-run samples
as required
Anions (SO42"
, F" and CI )
Calibration
4 point
calibration
As needed
R2 > 0.995
1. Re-calibrate

Precision
Sample
duplicate
Every 6 samples
< 20% RPD
1.	Re do triplicate
2.	Investigate the
problem

Blank
Laboratory
blank
Every 10
samples
< Reported detection
limit
1.	Investigate
problem
2.	Remove
contamination
3.	Check other
blanks

Accuracy
Check
Standard
Following
calibration and
every 10
samples
100 ± 15 % recovery
1.	Re-run
2.	Check
calculations
3.	Re-run samples as
required
523

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 524 of 72
Temperature
Initial
Calibration*
1 point
calibration
At the
beginning, and
once a year
Within ± 2 % of the
full range of the probe
1. Use new
thermocouple (
within 1 year)
Heat
measurement
Initial
Calibration*
1 point
calibration
Every 6 month
Within ± 15 %
1.	Re-do sample
2.	Investigate the
problem- Flag data
Moisture
Content
Initial
Calibration*
1 point
calibration
At the
beginning
Within ± 5 % of the
full range of the probe
1. Re-calibrate
Density
Initial
Calibration*
1 point
calibration
At the
beginning
Within ± 5 % of the
full range of the probe
1. Re-calibrate
Water
holding
capacity
Initial
Calibration*
1 point
calibration
At the
beginning
Within ± 5 % of the
full range of the probe
1. Re-calibrate
Total metal
Calibration
5 point
calibration
Before each run
R2 > 0.99
1. Re-calibrate
Precision
Sample
duplicate
Every 12
samples
< 25% RPD
1.	Rerun
2.	Prepare new
standards
2. Check
calculations
Accuracy
Standard
check
With every run
75-125 % recovery
Re calibration
Crystallinity
(XRD)
Calibration
Reference
standard
Prior to sample
analysis


Gas volume
Initial
Calibration*
1 point
calibration
At the
beginning
Within ± 5 % of the
full range of the probe
1. Re-calibrate
Gas
Composition
*
Initial
Calibration
6 point
calibration
Monthly
R2 > 0.990
1. Re-calibrate
Precision
Sample
Duplicate
Every 12
samples
< 20% RPD
1.	Re-do sample
2.	Investigate the
problem- Flag data
Accuracy
Standard
Check
Twice a Week
100 ± 20 % recovery
1. Re-calibrate
*	Calibration for the probes, electrodes, thermocouples and TDR.
*	Calibration of the Gerome meter (for H2S) is performed annually by the manufacturer. Calibration
verification samples will be analyzed prior to each analysis using a known hydrogen sulfide standard
and must be within ± 20 % of the standard value. If the calibration verification sample exceeds the
set criteria, the meter will be sent to the manufacturer for NIST-traceable calibration.
524

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 525 of 72
6.2 Types of QC Samples
Method Blank is a generated sample prepared from a clean matrix (generally deionized water
and it could be gas or solid according to the type of matrix), and it is treated exactly as a sample.
It is prepared to check for contamination.
Calibration Blank is a volume of reagent water without the analyze. The concentration of the
analyze should be less than three times the instrument detection limit
Matrix Svike is a sample with a known concentration of the analyze added to original sample
and is used to assure that the recovery of the target compounds is acceptable for the matrix
involved.
Standard Check is a sample with a known concentration of the analyze is used to assure that
the recovery of the target compounds is acceptable for the matrix involved.
Table 6.2 MDL and Accuracy for ICP-AES Met
hod 6010E
t
COMPOUND
NAME
True Value
(ug/ml)
Mean
Concentration
(ug/ml)
Accuracy
(%)
STDEV
(ug/ml)
MDL
(ug/ml)
MRL
(ug/ml)
Al
0.040
0.031
79%
0.001
0.004
0.013
Ag
0.010
0.011
108%
0.000
0.001
0.003
Ba
0.020
0.020
100%
0.001
0.002
0.007
As
0.050
0.055
110%
0.001
0.004
0.011
Ca
0.100
0.074
74%
0.015
0.048
0.154
Cd
0.020
0.023
113%
0.0002
0.001
0.002
Cr
0.050
0.053
106%
0.0004
0.001
0.004
Cu
0.020
0.020
98%
0.001
0.004
0.011
Fe
0.040
0.045
111%
0.001
0.002
0.008
K
0.100
0.134
134%
0.039
0.123
0.390
Mg
0.100
0.073
73%
0.001
0.004
0.012
Mn
0.008
0.007
93%
0.000
0.001
0.002
Na
0.100
0.111
111%
0.009
0.027
0.087
P
0.100
0.144
144%
0.038
0.119
0.379
Pb
0.050
0.053
106%
0.002
0.005
0.015
S
0.050
0.046
93%
0.005
0.015
0.049
Se
0.050
0.052
104%
0.001
0.003
0.010
Zn
0.008
0.008
94%
0.000
0.000
0.001
: The results of As, Cd, Cr, Pb and Se are based on the results of July, 2012 and the others are based on the results of
Nov, 2011.
525

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 526 of 72
6.3 Model Calibration and Validation
Many authors have shown TEMP/W to be accurate at simulating thermal changes of various
problems as a result of changes in boundary conditions. The software has been successfully used
for many applications such as thermal design of roads and airstrips, ground freezing for soil
stabilization, insulation design for shallow buried piping, thawing or freezing beneath heated or
chilled structures, convective cooling of surfaces and many geotechnical applications (Thermal
Modeling with TEMP/W, 2007). Although the parameters and problem setup may vary from any
one specific study, the conclusion holds true that TEMP/W is a reliable program. For details of
the modeling procedure please see SOP 13.
526

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 527 of 72
SECTION 7.0
DATA ANALYSIS, INTERPRETATION, AND MANAGEMENT
7.1 Data Reporting
Table 7.1 summarizes the reporting units for the various analyses. At the end, each monitoring
parameter will be averaged on treatment scale and analysis of variance will be carried out to
determine the effect of SAP on temperature and gas emission under different experimental
conditions.
Temperature will be recorded by the data logger system and transferred into Microsoft Excel ™
spreadsheets. The remaining analysis results will be recorded in a laboratory notebook and each page
will be dated and signed by the person who performs the analysis, then, those data will be fed
manually to Excel spreadsheets for statistical analysis. Calculations will be carried out on a
computer and will be checked initially by the analyst for gross error and miscalculation. The
calculations and data entered into computer spreadsheets will be checked by a second analyst for
accuracy by printing out the calculation or data spreadsheet and checking the calculation by hand
or checking each entry of data from the original. These copied spreadsheets will be initialed and
dated by the second analyst doing the checking, noting the errors.
Table 7.1 Reporting Units
Paraniclcr
1 nil
pH
pH Units
Conductivity
l_iS/cm
Ammonia (NH3, Gas)
ppm
Metals
mg/L
Anions
mg/L
Crystallinity (XRD analysis)
--
Temperature
°C
Moisture Content
% M/M
Heat
kJ/g
Water holding capacity
g/g
Gas volume
L or ml
Gas Composition
% V/V or ppm
Statistical analysis and graphical representation of the data will be performed using Microsoft
Excel 2007, Software JMP9.0 and SigmaPlotl 1.0. The mean, standard error, minimum and
maximum values will be used to summarize the elemental composition, mineral phases, and the
temperature change as well as the gas composition, and productivity. For the correlations
between the temperature change and mineral phases, or relation between heavy metal content
and aluminum content, the Pearson product-moment correlation and Spearman's rank correlation
will be employed to calculate the p level. The Pearson product-moment correlation coefficient is
527

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 528 of 72
a measure of the correlation (linear dependence) between two variables X and Y, giving a value
between +1 and -1 inclusive. Spearman's rank correlation coefficient is a non-parametric
measure of statistical dependence between two variables. It assesses how well the relationship
between two variables can be described using a monotonic function. If there are no repeated data
values, a perfect Spearman correlation of+1 or -1 occurs when each of the variables is a perfect
monotone function of the other. If p<0.05, it is assumed that the relation is significant; and if
p<0.01, the correlation is very significant. If p>0.05, it is believed that there is no correlation.
7.2	Data Handling and Disposal
Original project records that are generated by PTSI will be maintained by the WA Leader in
accordance with the ORD Policies and Procedures Manual, Section 13.2 Paper Laboratory
Records.
7.3	Data Reduction and Validation
Data reduction and validation will be done using Microsoft Excel spreadsheets to minimize the
calculation errors. A second reviewer will check the reduced data. The reviewed data will
include calibration and QC data. The reviewer will also review the laboratory notebooks on a
monthly basis. Any detected errors will be corrected before the data is released to the EPA.
7.4	Data Storage
Laboratory records will be maintained in accordance with Section 13.2, Paper Laboratory
Records, of the Office of Research and Development (ORD) Policies and Procedures Manual.
Controlled access facilities that provide a suitable environment to minimize deterioration,
tampering, damage, and loss will be used for the storage of records. Whenever possible,
electronic records will be maintained on a secure network server that is backed up on a routine
basis. Electronic records that are not maintained on a secure network server will be periodically
backed up to a secure second source storage media, transferred to an archive media (e.g.,
compact discs, optical discs, magnetic tape, or equivalent), or printed. Electronic records that are
to be transferred for retention will be transferred to an archive media or printed, as directed by
EPA.
528

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 529 of 72
SECTION 8.0
REPORTING
8.1	Project Deliverables
Monthly reports will be prepared by the PTSI WA Leader and sent to the PTSI On-site Technical
Manager and Project Manager, and submitted to EPA on the 20th of every month. Every ten
months an interim report will be prepared to cover all aspects of the project such as the work
progress, a summary and discussion of the results, any problems encountered, the adopted
solution to the problem and any deviations from the procedures described in the QAPP.
8.2	Final Report
The final report will be prepared at the end of the project to summarize all the project aspects,
give the final results, the conclusions and the recommendations. The reports will be submitted in
both hard and electronic copies. All the reports will be submitted to the EPA Project Officer
through the EPA Work Assignment Manager.
8.3	Draft Manuscript
The produced final report will be the basis for draft manuscripts that will be produced by Dr.
Xiaolan Huang and the project personnel as directed by the EPA WA Manager.
529

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 530 of 72
SECTION 9.0
REFERENCES
Bruckard, W. J., and Woodcock, J.T. (2007) Characterisation and treatment of Australian salt cakes
by aqueous leaching. Minerals Engineering 20, 1376-1390.
Chambino, T., et al. (2008) Aluminium Salts Hydrolysis Products from Industrial Anodising Sludges
in Wastewater Treatment. In Colloids for Nano- and Biotechnology, 65-69.
Davies, M., et al. (2008) Treatment of salt cakes by aqueous leaching and Bayer-type digestion.
Minerals Engineering 21, 605-612.
European-Commission, COMMISSION DECISION of 3 May 2000 replacing Decision 94/3/EC
establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste
and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4)
of Council Directive 91/689/EEC on hazardous waste. In L226/3, European-Commission, Ed.
Official Journal of the European Communities, 2000; p 22.
Gil, A. (2007) Management of Salt Cake Generated at Secondary Aluminum Melting Plants by
Disposal in a Controlled Landfill: Characteristics of the Controlled Landfill and a Study of
Environmental Impacts. Environmental Engineering Science 24, 1234.
Hind, A.R., et al. (1999) The surface chemistry of Bayer process solids: a review. Colloids and
Surfaces A: Physicochemical and Engineering Aspects 146, 359-374.
Hiraki, T., et al. (2007) Process for Recycling Waste Aluminum with Generation of High-Pressure
Hydrogen. Environmental Science & Technology 41, 4454-4457.
IAI Global Aluminium Recycling: A Cornerstone of Sustainable Development; International
Aluminium Institute: 2009.
Kashcheev, I., et al. (2008) Secondary Aluminum Production Waste — A Raw Material for the
Refractory Industry. Refractories and Industrial Ceramics 49, 167-170
Lopez-Delgado, A., H. Tayibi and F. Lopez (2007) Treatments of Aluminum Dust-A Hazardous
Residue From Secondary Aluminum Industry. In Focus on Hazardous Materials Research (Mason,
L.G., ed), 1-52, Nova Science Publishers, Inc.
Manfredi, O., et al. (1997) Characterizing the physical and chemical properties of aluminum dross.
JOM Journal of the Minerals, Metals and Materials Society 49, 48-51.
Peterson, R. D.; Newton, L., Review of aluminum dross processing. Light Metals 2002, 1029-
1037.
530

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 531 of 72
SINTEF In Roadmap from Europe and North America Workshop on Aluminum Recycling,
Roadmap from Europe and North America Workshop on Aluminum Recycling, Tronheim,
Norway, 2010; SINTEF, The Research Council of Norway, NTNU: Tronheim, Norway, 2010; p
28.
Schlesinger, M. E., Aluminum Recycling. CRC Press: Boca Raton, FL, 2007.
Thermal Modeling with TEMP/W 2007, An Engineering Methodology, Third Edition, March
2008, GEO-SLOPE International Ltd.
USDOE Recycling of aluminum dross/salt cake; Office of industrial technologies,Energy
Efficiency and Renewable Energy, U.S. Department of Energy: 1999; p 2.
Yoshimura, H.N., et al. (2008) Evaluation of aluminum dross waste as raw material for refractories.
Ceramics International 34, 581-591
531

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 532 of 72
SOP1
SOP for Major Gas Analysis using Gas Chromatography (GC)
Refer SOP: LRPCD SOP M 02.0
NRMRL LRPCD M 02 0 GC Headspace Analysis for Bioreactor Landfill Gas.pdf
532

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 533 of 72
SOP 2
SOP for N2O Gas Analysis using Gas Chromatography (GC-ECD)
Refer SOP: LRPCD SOP M 09.0
NRMRL LRPCD M 09 OAnalysisofNitrousOxideHeadspaceSamplesbvGC-ECD.pdf
533

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 534 of 72
SOP 3
PH/Conductivity measurement using the Accumet® Portable AP85 Waterproof Meter
Scope
This procedure is used to measure the pH and EC for samples generated during the different tests (
EPA methods 150.1 and 120.1).
Apparatus
pH and Conductivity meter, Accumet® Portable AP85 Waterproof Meter or equivalent
pH electrode, Conductivity probe
-	Disposable plastic container, 75 ml or larger
Reagents and materials
Standard buffer, pH 4.01
Standard buffer, pH 7.00
Standard buffer, pH 10.01
Conductivity Standard Solution
-	Deionized water (DI)
Procedure
1. pH Calibration
It is recommend that calibration be done at least two buffers that bracket (one above and one below) the
expected sample range.
1.1. Preparing for pH calibration
This meter can calibrate up to 5 pH buffer values to ensure accuracy across the entire
pH range. Selection is made from the following buffer options:
USA: pH 1.68, 4.01, 7.00, 10.00, 12.45
NIST: pH 1.68, 4.01, 6.86, 9.18, 12.45
The meter automatically recognizes these standard buffer values, which makes pH calibration faster and
easier.
The protective electrode storage bottle or rubber cap of the probe is removed before calibration or
measurement. If the electrode has been stored dry, the probe is re-hydrated in tap water for 10 minutes
before use to saturate the pH electrode surface and minimize drift. The probe in rinsed with deionized
water after use, and stored in electrode storage solution. If storage solution is not available, pH 4.0 or
7.0 buffer is used.
534

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 535 of 72
1.2. To calibrate for pH
1. If necessary, the MODE key is pressed to select pH measurement mode. The pH indicator
appears in the upper right hand corner of the display.
7777
L
ME"AS
BEADY	"7 ~t l~l'
*. o
Pr'.f,
2. The pH electrode is rinsed thoroughly with deionized water or a rinse solution. Wiping the probe
is not advisable; this causes a build-up of electrostatic charge on the glass surface.
3.	The pH electrode is dipped into the calibration buffer. The end of the probe must be completely
immersed into the sample. The probe is gently stirred to create a homogeneous sample.
Notes: The temperature element is in the conductivity cell. For temperature compensated
readings, the conductivity cell is dipped into the calibration buffer as well.
4.	CAL/MEAS is pressed to enter pH calibration mode. The CAL indicator lights up. The primary
display shows the measured reading while the smaller secondary display indicates the pH
standard buffer solution.
READY
CAL
~t ~>cr
I.-I u
i,uu '

5. The measured pH value is allowed to stabilize. If the READY indicator has been activated the
READY annunciator lights when the reading is stable.
1. Press ENTER to confirm calibration. The meter is now calibrated to the current buffer. The lower
display scrolls through the remaining buffer options.
'> White performing a multipoint calibration, step 7 is followed next.
> While performing a one-point calibration, step 9 is followed next.
535

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 536 of 72
2.	The electrode is rinsed with deionized water or a rinse solution, and dipped in the next pH buffer.
3.	Steps 5 to 8 are followed for additional calibration points.
4.	When calibration is complete, CAL/MEAS is pressed to return to pH measurement mode.
f	MEAS
I READY	n /"/P |
t,u u
J DC
I	CC.O *rc
Notes:
To exit from pH Calibration mode without confirming calibration, ENTER is not pressed in step 6.
Instead CAL/MEAS is pressed.
If the selected buffer value is not within ±1.0 pH from the measured pH value: the electrode and buffer
icon blink and the ERR annunciator appears in the lower left corner of the display.
2. Conductivity calibration
Up to 5 conductivity points can be calibrated, using a maximum of one point per range (listed
below):
Range	Conductivity:
R1	0.00-19.99 [iS
R2	0.00-199.90 ^S
R3	0.00-1999.0 ^S
R4	0.00-19.99 mS
R5	0.00-199.9 mS
>	While measuring in more than one range, it is made sure to calibrate each of the ranges being
measured. All new calibration data will over-ride existing stored calibration data for each
measuring range calibrated.
>	While measuring in ranges near to or greater than 20 mS (10 ppt), or near to or lower than 100
US (50 ppm), the meter is calibrated at least once a week to get specified ±1% full scale accuracy.
>	While measuring in the mid ranges and the probe is rinsed in deionized water and stored dry.
The meter is calibrated at least once a month.
>	While taking measurements at extreme temperatures, the meter is calibrated at least once a week.
536

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 537 of 72
2.1.	Preparing for conductivity/TDS calibration
For best results, a calibration standard value close to the sample value being measured is selected.
Alternatively, a calibration solution value is used that is approximately 2/3 the full scale value of the
measurement range planned to be used. For example, in the 0 to 1999 |_iS conductivity range, a 1413 |_iS
solution is used for calibration.
Normalization temperature: The factory default value for normalization temperature is 25°C.
2.2.	To calibrate conductivity:
1. If necessary, the MODE key is pressed to select conductivity mode.
f	MEA5
,'he.dv QDU .
DC. t *

DD >°c
l J. > atc

2. The probe is rinsed thoroughly with deionized water or a rinse solution, then with a small
amount of calibration standard.
3. The probe is dipped into the calibration standard. The probe tip is immersed beyond the upper
steel band. The probe is stirred gently to create a homogeneous sample.
Lore pcbe
I

guard en










measure! men*

a


¦




prat*? bf^ond




tjjper steel




k Kncl




f

—^

4.	The measured conductivity is allowed value to stabilize. If the READY indicator has been
activated the READY annunciator lights up when the reading is stable.
5.	CAL/MEAS is pressed to enter conductivity calibration mode. The CAL indicator will appear
above the display.
537

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 538 of 72
f.
CAL


6. ~ or ~ is pressed to change the value on the primary display to match the value of the
calibration standard. The secondary display shows the factory calibrated value.
i
«!	1
RE*DV
7.	The calibration is confirmed by pressing ENTER. The meter returns to the MEAS
(measurement) mode.
8.	Steps 1-7 are repeated for other ranges.
Notes: When entering calibration mode, the meter will display the factory default value. If the
meter was previously calibrated, the display may "jump" to the factory default value when
switching from measurement to calibration mode.
To exit from Conductivity Calibration mode without confirming calibration, CAL/MEAS is
pressed without pressing ENTER. This will retain the old calibration data in the measuring range
of the calibration. The conductivity reading can be offset up to ±40% from the default setting. If
the measured value differs by more than ±40%,
probe is cleaned or replaced as needed.
3. Taking pH Measurements
To take readings:
1.	The pH electrode is rinsed with deionized or distilled water before use to remove any impurities
adhering to the probe body. If the pH electrode has dehydrated, it is soak 30 minutes in electrode
storage solution, pH buffer, or a 2M-4M KC1 solution.
2.	Meter is switched on by pressing ON.
3.	The MODE key is pressed to select pH measurement mode. The MEAS annunciator appears on
the top center of the LCD. The ATC indicator appears in the lower right hand corner to indicate
Automatic Temperature Compensation.
538

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 539 of 72
O —
READY
NOTE: For pH manual temperature compensation, the conductivity cell must be disconnected
from the 6-pin connector. The ATC indicator will disappear from the display. A manual
temperature compensation value also needs to be set for this (although this function will not be
used.)
4.	The pH electrode is dipped into the sample. Since the conductivity cell contains the temperature
sensor, it is also immersed in the solution. When dipping the probe into the sample, the sensor
or the glass bulb of the electrode must be completely immersed into the sample. The probe is
stirred gently in the sample to create a homogenous sample.
5.	The reading is allowed to stabilize. The reading on the display is noted. If the Ready indicator is
selected on, it will appear when the reading is stable.
6.	The MODE key is pressed to toggle between pH and conductivity readings.
4. Taking Conductivity Measurements
To take readings:
1.	The probe is rinsed with deionized or distilled water before use to remove any impurities
adhering to the probe body and is dried by shaking in air. To avoid contamination or dilution of
the sample, the probe is rinsed with a small volume of the sample liquid.
2.	Meter is switched on by pressing ON.
3.	The MODE key is pressed to select conductivity (or TDS) measurement mode. The ME AS
annunciator appears on the top center of the LCD. The ATC indicator appears in the lower right
hand corner to indicate Automatic Temperature Compensation.
I
MEAS
READY

539

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 540 of 72
4. The probe is dipped into the sample. When dipping the probe into the sample, the tip of the
probe must be immersed above the second steel band. The probe is stirred gently in the sample
to create a homogenous sample.
5. The reading is allowed to stabilize. The reading on the display is noted. If the Ready indicator
is selected on, it will appear when the reading is stable.
5. References
APHA. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public
Health Association, Washington, DC.
Hach Company. 1992. Hach water analysis handbook. 2nd ed. Loveland, CO.
540

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 541 of 72
SOP 4
Moisture Measurement
Scope
This procedure is used to measure the moisture content of the samples during the characterization
(ASTM Method D-2216).
Apparatus
Mettler Toledo Model AL54 Balance or equivalent
Aluminum weighing dish
Spatula
Blue M (105°C Oven)
Procedure
1.0 Balance Calibration
1.1 Calibrate the analytical balance as described in Use of Analytical Balance SOP
No.05.SOP.009.00 of LRPCD.
2.0 Sample Drying
2.1	Place the weighing dish on the balance and tare the balance.
2.2	Weigh out about lOg net weight of the sample into a drying dish using a clean spatula.
Record it as Wi.
2.3	Dry sample at 105°C for 48 hours.
2.4	Weigh and record dried sample weight in lab book.
2.5	Return sample to oven for 6 hours.
2.6	Reweigh and record dried sample weight in lab book.
2.7	If weight is unchanged < 1%, continue to Step 3.0.
2.8	If weight changed > 1%, return to Step 2.5 and repeat the following steps until a <1%
change is observed.
3.0 Weighing
3.1 Record the final weight of the dried sample as W2.
Analysis
The moisture content of the sample can be found out using the formula:
% Moisture Content = (Wi-W2)/W 1 x 100
541

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 542 of 72
SOP 5
Bulk Density Measurement
Scope
Bulk density is defined as the weight per unit volume of material. This procedure is used to measure
the bulk density of the samples during the characterization (ASTM method for Saturated Hydraulic
Conductivity, Water Retention, Porosity and Bulk Density of Putting Green and Sports Turf Root
Zones, 2006).
Apparatus
Mettler Toledo Model AL54 Balance or equivalent
Graduated Cylinder or equivalent
Procedure
1.0 Balance Calibration
1.1 Calibrate the analytical balance as described in Use of Analytical Balance SOP
No.05.SOP.009.00 of LRPCD.
2.0 Fill the sample into a known volume Cylinder
2.1	Measure Volume of cylinder ( V, cm3)
2.2	Place the Cylinder on the balance and tare the balance.
2.2 Fill in the sample through a funnel which is suspended above
the cylinder, and the excess material on top of the
measuring cylinder is scraped off with a straight edge.
(Figure 1)
3.0 Weighing
3.1 Record the net weight of sample in the cylinder as W ( g)
Analysis
The bulk density of the sample can be found out using the formula:
Bulk density (g cm"3) = W/V
Since the variation of bulk density is usually high, five replications are required.
542

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 543 of 72
SOP 6
Water Holding Capacity Measurement
Scope
Water holding capacity is defined as the solid that hold generous amounts of water are less subject
to leaching. This procedure is used to measure the Water holding capacity of the samples during the
characterization (ASTM Method F1815-06).
Apparatus
Mettler Toledo Model AL54 Balance or equivalent
Graduated Cylinder or equivalent
Absorbent membrane or equivalent
Procedure
1.0 Balance Calibration
1.1 Calibrate the analytical balance as described in Use of Analytical Balance SOP
No.05.SOP.009.00 of LRPCD.
2.0 Fill around 10 g sample into Cylinder and add the water to make it saturated. Put the saturated
sample with the cylinder into the absorbent membrane until the excess water is drawn away by
gravity. Once equilibrium is reached, the water holding capacity is
calculated based on the weight of the water held in the sample vs. the
sample dry weight.
2.1	Weight the cylinder with a saturated filtered paper as the
bottom, Wo
2.2	Fill around 10 gram sample into the known weight cylinder,
weight the total weight, Wi.
2.3	Make the Cylinder with sample saturated and then placed it on
an absorbent membrane until the excess water is drawn away by
gravity (see diagram at right).
2.4	Once equilibrium is reached (usually overnight), weight the Absorbent Membrane
cylinder with sample again (W2).
Analysis
The water holding capacity of the sample can be found out using the formula:
Water holding capacity (g g"1) = (W2-Wi)/(Wi-Wo)
543

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 544 of 72
SOP 7
SOP for Ammonia Measurement by ISE
Scope and Application
This method is applicable to the measurement of 0.03 to 1400 mg NH3-N/L in solution, e.g.
surface waters and domestic and industrial wastes (EPA method 350.3). High concentrations of
dissolved ions affect the measurement, but color and turbidity do not. Sample distillation is
unnecessary.
Summary of Method
The ammonia-selective electrode uses a hydrophobic gas-permeable membrane to separate the
sample solution from an electrode internal solution of ammonium chloride. Dissolved ammonia
(NH3(aq) and NH4+) is converted to NH3(aq) by raising pH to above 11 with a strong base. NH3(aq)
diffuses through the membrane and changes the internal solution pH that is sensed by a pH
electrode. The fixed level of chloride in the internal solution is sensed by a chloride ion-selective
electrode that serves as the reference electrode. Potentiometric measurements are made with the
Orion 95-12 gas-sensing electrode on the Orion Star meter or a pH meter with expanded millivolt
scale capable of 0.1 mV resolution between -700 mV and +700 mV or a specific ion meter, which
will determined ammonia content in solution directly. The method requires no titration and has no
turbidity or color interferences.
Sample Handling and Preservation
Refrigerate at 4°C for samples to be analyzed within 24 h. Preserve samples high in organic and
nitrogenous matter, and any other samples for longer storage, by lowering pH to 2 or less with
cone H2SO4.
Interferences
The problems with ISE measurements are variable stabilization times, changes in the measured
potential during repeated analysis, and the effect of variable ionic strength of the solutions. These
problems can be minimized by frequent re-calibration.
Apparatus and Reagents
1. Apparatus
a.
2. Reagents
b.
c.
a.
b.
c.
Electrometer: Orion Star meter or a pH meter with expanded millivolt scale
capable of 0.1 mV resolution between -700 mV and +700 mV or a specific ion
meter.
Ammonia-selective electrode: Ammonia electrode (Orion 9512HPBNWP)
Magnetic stirrer, thermally insulated, with TFE-coated stirring bar (Orion 096019).
Deionized water: Use for making all reagents.
Sodium hydroxide, 10N ( e.g. Orion 951011).
Stock ammonium chloride solution: Ammonia standard, 100 ppm ammonia as N (
e.g. Orion 951207).
544

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 545 of 72
Procedure for Ammonia analysis
1.	Preparation of standards: Prepare a series of standard solutions covering the
concentrations of 1000, 100, 10, 1, and 0.1 mg NH3-N/L by making decimal dilutions of
stock NH4C1 solution with water.
2.	Electrometer calibration: Place 100 mL of each standard solution in a 150-mL beaker.
Immerse electrode in standard of lowest concentration and mix with a magnetic stirrer.
Limit stirring speed to minimize possible loss of ammonia from the solution. Maintain the
same stirring rate and a temperature of about 25°C throughout calibration and testing
procedures. Add a sufficient volume of 1 OA' NaOH solution (1 mL usually is sufficient) to
raise pH above 11. If it is necessary to add more than 1 mL of NaOH solution, note volume
used, because it is required for subsequent calculations. Keep electrode in solution until a
stable millivolt reading is obtained. Do not add NaOH solution before immersing
electrode, because ammonia may be lost from a basic solution. Repeat procedure with
remaining standards, proceeding from lowest to highest concentration. Wait until the
reading has stablized (at least 2 to 3 min) before recording millivolts for standards and
samples containing < 1 mg NH3-N/L.
3.	Preparation of standard curve: Using semilogarithmic graph paper, plot ammonia
concentration in milligrams NH3-N per liter on the log axis vs. potential in millivolts on
thelinear axis starting with the lowest concentration at the bottom of the scale. If the
electrode is functioning properly a tenfold change of NH3-N concentration produces a
potential change of about 59 mV.
4.	Measurement of samples: Dilute if necessary to bring NH3-N concentration to within
calibration curve range. Place 100 mL sample in 150-mL beaker and follow procedure in
46above. Record volume of 1 ON NaOH added. Read NH3-N concentration from standard
curve.
References
1.	BANWART, W.L., J.M. BREMNER & M.A. TABATABAI. 1972. Determination of ammonium in
soil extracts and water samples by an ammonia electrode. Comm. Soil Sci. Plant Anal.
3:449.
2.	MIDGLEY, C. & K. TERRANCE. 1972. The determination of ammonia in condensed steam
and boiler feed-water with a potentiometric ammonia probe. Analyst 97:626.
3.	BOOTH, R.L. & R.F. THOMAS. 1973. Selective electrode determination of ammonia in water
and wastes .Environ. Sci. Technol. 7:523.
4.	U.S. ENVIRONMENTAL PROTECTION AGENCY. 1979. Methods for Chemical Analysis of
Water and Wastes. EPA-600/4-79-020, National Environmental Research Center,
Cincinnati, Ohio. AMERICAN SOCIETY FOR TESTING AND MATERIALS. 1979. Method
1426-79. American Soc Testing & Materials, Philadelphia, Pa.
5.	Method 4500-NH3 D, E. Standard Methods for the Examination of Water and Wastewater,
20th Edition, 1998. APHA, AWWA, & WEF, Washington, D.C.
www.standardmethods.org
545

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 546 of 72
SOP 8
Microwave Acid Digestion
Scope
This procedure is used to prepare ICP-AES metal analysis sample generated during the different
experiments (EPA SW846-3051A).
Summary of Method
A representative sample of up to 0.1 g is digested in 12 ml of mixed concentrated HCI-HNO3 for
30 min (for solid samples) using microwave heating with a suitable laboratory microwave unit.
The sample and acid are placed in a fluorocarbon (PFA or TFM) microwave vessel. The vessel is
capped and heated in the microwave unit. After cooling, the vessel contents are filtered,
centrifuged, or allowed to settle and then diluted to volume and analyzed by the appropriate SW-
846 method. .
Apparatus
Microwave Accelerated Reaction System (MARS) with Teflon holders
Fluorocarbon (PFA or TFM) digestion vessels (120 mL capacity) capable of withstanding
pressures up to 7.5 ± 0.7 atm (110 ± 10 psig) and capable of controlled pressure relief at pressures
exceeding 7.5 ± 0.7 atm (110 ± 10 psig).
Reagents and Materials
Cone. HNO3
Cone. HC1
Deionized (DI) water
Pipetter, 10 ml capacity
Interferences
Very reactive or volatile materials that may create high pressures when heated may cause venting
of the vessels with potential loss of sample and analytes. The complete decomposition of either
carbonates, or carbon based samples, may cause enough pressure to vent the vessel if the sample
size is greater than 0.25 g when used in the 120 mL vessels with a pressure relief device that has
an upper limit of 7.5 ± 0.7 atm (110 ± 10 psi). This is required to retain the heat characteristics of
546

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 547 of 72
the calibration procedure. Limits of quantitation will change with sample quantity (dilution) as
with instrumentation."
Sample Collection, Preservation, and Handling
All sample containers must be prewashed with detergents, acids, and water. Plastic containers are
preferable. See SOP 10, Step 3.1.3 of this manual, for further information. Aqueous waste waters
must be acidified to a pH of < 2 with HNO3.
Procedure
1.	Weigh a well-mixed sample to the nearest 0.001 g into the fluorocarbon sample vessel
equipped with a single-ported cap and a pressure relief valve. For SAP sample, no more
than 0.10 g sample will be used. This sample is added into the digestion vessel with the
number of the vessel recorded on the preparation sheet.
2.	A reference standard and a master control without sample are treated in the same manner
along with spikes and duplicates.
3.	Add 3 ± 0.1 mL concentrated HC1 firstly, then 9± 0.1 mL concentrated HNO3 to the vessel
in a fume hood. Check to make sure the pressure relief disks are in the caps with the
smooth side toward the sample and start the caps a few turns on the vessels.
4.	Evenly distributed the vessels in the carousel according to the manufacturer's
recommended specifications. Blanks are treated as samples for the purpose of balancing
the power input. When fewer than the recommended numbers of samples are digested, the
remaining vessels should be filled with 0.1 g of reference standards andl2 mL of mixed
HCI-HNO3 to achieve the full complement of vessels.
5.	Program the microwave unit according to the manufacturer's recommended specifications
and, if used, connect the pressure vessels to the central overflow vessel with PFA-
fluorocarbon tubes. The chosen sequence will bring the samples to 185 deg C ± 5 deg C in
30 minutes and will hold at 185 deg C during the second 30 minutes. Start the turntable
motor and be sure the vent fan is running on high and the turntable is turning. Start the
microwave generator.
6.	At the end of the microwave program, allow the vessels to cool for at least 5 minutes in the
unit before removal to avoid possible injury if a vessel vents immediately after microwave
heating. The samples may be cooled outside the unit by removing the carousel and
allowing the samples to cool on the bench or in a water bath. When the vessels have cooled
to room temperature, weigh and record the weight of each vessel assembly. If the weight of
the sample plus acid has decreased by more than 10% discard the sample.
7.	Complete the preparation of the sample by carefully uncapping and venting each vessel in
a fume hood. Transfer the sample to an acid-cleaned bottle. If the digested sample contains
547

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 548 of 72
particulates which may clog nebulizers or interfere with injection of the sample into the
instrument, the sample may be filtered.
8.	Filtering: The filtering apparatus must be thoroughly cleaned and pre-rinsed with dilute
(approximately 10% V/V) nitric acid. Filter the sample through qualitative filter paper into
a second acid-cleaned container.
9.	The concentration values obtained from analysis must be corrected for the dilution factor
from the acid addition. If the sample will be analyzed by ICP-MS additional dilution will
generally be necessary. The dilutions used should be recorded and the measured
concentrations adjusted accordingly.
Quality Control
1.	For each analytical batch of samples processed, analytical reagent blanks (also field blanks
if they were taken) should be carried throughout the entire sample preparation and
analytical process. These blanks will be useful in determining if samples are being
contaminated.
2.	Duplicate samples should be processed on a routine basis. A duplicate sample is a real
sample brought through the whole sample preparation and analytical process. A duplicate
sample should be processed with each analytical batch or every 20 samples, whichever is
the greater number.
3.	Spiked samples or standard reference materials should be employed to determine accuracy.
A spiked sample should be included with each group of samples processed and whenever a
new sample matrix is being analyzed.
548

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 549 of 72
SOP 9
ICP-AES Total Metals Measurement
Refer SOP: LRPCD SOP 08.0
NRMRL LRPCD M 08 0 ICP-OES Analytical Procedure for IRIS Intrepid.pdf
549

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 550 of 72
SOP 10
SOP for Ion Chromatography (IC) Anions Measurement
Refer SOP: LRPCD SOP 07.0
NRMRL LRPCD M 07 0 Ion Chromatographic Analysis of Inorganic Anions in Aqueous
Samplesx.pdf
550

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 551 of 72
SOP 11
SOP for X-ray Diffraction Spectroscopy Measurements
1.0 Scope and Application
X-ray Diffraction (XRD) Spectroscopy is used to determine the crystalline structure of non-
amorphous materials.
2.0 Summary of Method
The three-dimensional structure of nonamorphous materials, such as minerals, is defined by
regular, repeating planes of atoms that form a crystal lattice. When a focused X-ray beam
interacts with these planes of atoms, part of the beam is transmitted, part is absorbed by the
sample, part is refracted and scattered, and part is diffracted. Diffraction of an X-ray beam by
a crystalline solid is analogous to diffraction of light by droplets of water, producing the
familiar rainbow. X-rays are diffracted by each mineral differently, depending on what atoms
make up the crystal lattice and how these atoms are arranged.
Figure X2. (a) Simplified configuration sketch of the X-ray source (X-ray tube), the X-ray
detector, and the sample during an X-ray scan. In this configuration, the X-ray tube and the
detector both move through the angel theta (9), and the sample remains stationary, (b) Example of
an X-ray powder diffractogram produced during an X-ray scan. The peaks represent positions
where the X-ray beam has been diffracted by the crystal lattice. The set of 6/-spacings (the
distance between adjacent planes of atoms), which represent the unique "fingerprint" of the
mineral, can easily be calculated by the 2-theta (29) values shown. The use of degrees 2-theta in
depicting X-ray powder diffraction scans is a matter of convention, and can easily be related back
to the geometry of the instrument, shown in Figure 5a. The angle and the 6/-spacings are related to
Bragg's Law, as described in the text.
600

b
5 10 15 20 25 30 35 40 45 50 S5 SO 65 70
Degrees 2-theta
551

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 552 of 72
3.0 Definitions
X-ray. A form of electromagnetic radiation with a wavelength in the range of 0.01 to 10
nanometers. X-rays are primarily used for diagnostic radiography and crystallography.
4.0 Sample Handling and Preservation
Samples will be collected in glass or plastic vials. Analysis of the collected sample will occur
within 48 hour of collection. No preservation techniques will be required after collection and
prior to analysis. Samples will be disposed of after analysis negating the need for further
preservation.
5.0 Apparatus
Philips Instruments X'Pert® MPD System X-ray Diffraction Spectrometer
6.0 Procedure for Crystal Structure Determination
In X-ray powder diffractometry, X-rays are generated within a sealed tube that is under
vacuum as in the Phillips X'Pert X-ray diffractometer employed in these studies. A current is
applied that heats a filament within the tube; the higher the current the greater the number of
electrons emitted from the filament. This generation of electrons is analogous to the
production of electrons in a television picture tube. A high voltage, typically 15-60 kilovolts,
is applied within the tube. This high voltage accelerates the electrons, which then hit a target,
commonly made of copper. When these electrons hit the target, X-rays are produced. The
wavelength of these X-rays is characteristic of that target. These X-rays are collimated and
directed onto the sample, which has been ground to a fine powder or deposited as a wet paste
onto filter paper. A detector detects the X-ray signal; the signal is then processed either by a
microprocessor or electronically, converting the signal to a count rate. Changing the angle
between the X-ray source, the sample, and the detector at a controlled rate between preset
limits is an X-ray scan (Figures X2a and X2b).
When an X-ray beam hits a sample and is diffracted, we can measure the distances between
the planes of the atoms that constitute the sample by applying Bragg's Law.
Bragg's Law is: n = 2Jsin
where the integer n is the order of the diffracted beam, is the wavelength of the incident X-
ray beam, d is the distance between adjacent planes of atoms (the d-spacings), and is the
angle of incidence of the X-ray beam. Since we know X and we can measure 0, we can
calculate the d-spacings. The geometry of an XRD unit is designed to accommodate this
measurement (Figure 5b). The characteristic set of d-spacings generated in a typical X-ray
scan provides a unique diffraction pattern for specific crystal structures. When properly
interpreted, by comparison with standard reference patterns and measurements, this
"fingerprint" allows for identification of the crystal structure and mineral phases present.
552

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 553 of 72
7.0 Method
1.	Mount sample in XRD sample cell and load in it into the instalment
2.	Open the instalment software control package on the adjacent computer (X'Pert)
3.	S el ect data acqui siti on
4.	Input the parameters for the current measurement.
a.	For the current project samples will be analyzed from 5 to 110 degrees 2 0
b.	Data points will be collected every 0.1 degrees for 2 seconds
5.	The resulting scan will be compared to a reference diffraction pattern data base provided
by Philips Instruments
8.0 Quality Control
- Prior to analyzing any samples the instrument will be calibrated using a reference material (Si
111 crystal) to ensure the angle measurements are correct.
References
Philips Instruments X'Pert® MPD System X-ray Diffraction Spectrometer Users Manual
Kittel, C. Introduction to Solid State Physics, Seventh Edition. J Wiley & Sons, Inc. New York.
NY. 1996.
553

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 554 of 72
SOP 12
Laboratory Glassware Cleaning
Scope
This procedure is used to clean laboratory glassware for use in general laboratory activities that
include: acid digestions, bench-scale experiments, etc. Additional cleaning steps might be needed
for some particularly contaminated glassware or analytical procedures.
Summary
All the laboratory equipment and glassware that come in contact with the soil, extraction fluid or
leachate must be rinsed off and soaked in soap water for two hours, then soaked in 5% nitric acid
followed by rinsing with deionized (DI) water to remove any residual deposits. This equipment
includes supplies, utensils and containers or any surface that will come into direct contact with the
above materials.
Reagents and Materials
Cleaning Brush - Soft, non-damaging brush (e.g. Fisher Scientific or equivalent)
Detergent - viz: Sparkleen, Fisher Scientific or equivalent.
Reagent Grade Water - Deionized (DI) water with a resistivity of 18.2 mohm can be
provided by commercially available deionization systems (e.g., Milli-Q Plus, Millipore, or
equivalent grade).
5% Nitric Acid - Made by dilution of ACS grade nitric acid (e.g. Fisher Scientific or
equivalent grade) with DI water.
Procedure
1.	Rinse loose debris from the surface of the object using tap water.
2.	Wash the object thoroughly using a brush, soap and water. Triple rinse with tap water.
3.	Soak the obj ect in a soap bath for two hours.
4.	Triple rinse with tap water.
5.	Soak the object in a 5% nitric acid bath overnight
6.	Remove the object from the water bath and triple rinse all surfaces with DI water.
7.	Dry the object using drying racks. Take care to limit the exposure of the objects to air-borne
particulates or any source of contamination.
8.	Objects that are not of immediate use should be stored in an area where the exposure to air-
borne particulates is a minimum.
Acid Bath Neutralization
The acid bath needs to be periodically prepared in order to keep it clean. To assure the safe and
environmental disposal of the 5% nitric acid solution, it will be neutralized to obtain a pH in the
range of 6-9. The neutralization will be done with sodium carbonate and a pH-meter or pH-paper
will be used to verify the final pH.
554

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 555 of 72
SOP 13
SOP for TEMP/W Modeling of Thermal Changes
1.0 Scope and Application
TEMP/W will be used to simulate thermal changes in MSW after disposal of SAP waste.
2.0 Background
TEMP/W is a finite element CAD software product for analyzing thermal changes in the
ground due to environmental changes or due to the construction of facilities such as
buildings or pipelines. The comprehensive formulation makes it possible to analyze both
simple and highly complex geothermal problems. TEMPAV can be applied to the
geothermal analysis and design of geotechnical, civil, mining and solid waste engineering
projects, including facilities subjected to freezing and thawing temperature changes.
a. Hardware Requirements
To run the program the following hardware requirements are necessary:
•	Intel Pentium processor or higher
•	16Mb RAM
•	Hard disk with at least 20 Mb free disk space
•	VGA graphics (High Color recommended)
•	MS Windows 95, 98, NT, 2000, XP, Vista (32/64 bit) or Window 7 (32/64 bit)
3.0 Procedure and Parameters
For this work, the following parameters should be placed in the correct fields within the
TEMP/W program:
Geometry Information:
•	Landfill cell shape
Materials Information:
•	Thermal function
•	Unfrozen andfrozen water content
•	Thermal conductivity
•	Volumetric heat capacity
Boundary Conditions Information:
•	Specify the boundary conditions that describe the various landfilling scenarios of
SAP waste
•	Assign boundary conditions to the appropriate regions of the landfill cell
555

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 556 of 72
Running TEMP/W
•	Select the analysis type (steady state or transient)
•	Select the run duration and the number of runs
•	From the Tools Menu select Verify/Optimize and then select Solve Analyses
Results
•	View the results through Contours from the Draw Menu and Graph from the Draw
Menu
•	View results as needed
556

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 557 of 72
SOP 14
Test Method for Toxicity Characteristics Leaching Procedure
Scope
The TCLP is designed to determine the mobility of both organic and inorganic analytes present in
liquid, solid, and multiphasic wastes. This is a standardized test that determines the potential
mobility of contaminants in a liquid or solid under simulated landfill conditions. The TCLP uses
an acidic leachant (acetic acid) to depict a 'worst case scenario' of a hazardous waste co-disposed
into a municipal solid waste landfill.
Summary of Test Method
The TCLP procedure can be found in SW 846, Method 1311. In order to perform the TCLP analysis,
an initial pH measurement of the sample must be made in order to determine the appropriate
extraction fluid. Sample (< 9.5 mm) will be used in this test. The type of extraction fluid (pH=4.93
or pH=2.88) is decided based on the characteristics of the sample. The sample will be mixed with
the extraction fluid at a liquid-solid ratio (L/S) of 20, rotated in a tumbler at 30±2 rpm for 18±2
hours. The leachate will be filtered, acid digested and analyzed for the metal content.
Reagents
1.	"Unless otherwise noted, it is assumed that ACS reagent grade chemicals or their
equivalent are used. Also, unless otherwise noted, references to water are understood to
mean reagent grade water as described in 05.SOP.011.00, Reagent Water Quality and
Monitoring."
2.	D.I. water (ASTM Type 2)
3.	Hydrochloric acid (IN), HC1
4.	Nitric acid (IN), HN03
5.	Sodium hydroxide (IN), NaOH
6.	Glacial acetic acid, CH3CH2OOH
Equipment
1.	Analytical Balance
2.	Bottle Extraction Vessel, 2000 mL HDPE bottles
3.	pH meter and buffers
4.	Agitation apparatus: The agitation apparatus must be capable of rotating the extraction vessel
in an end-over-end fashion at 30 ± 2 rpm.
5.	Filter Holder
6.	Borosilicate glass fiber filter.
7.	Extraction Fluid Transfer Devices such as positive displacement unit.
8.	Beaker or Erlenmeyer flask, glass, 500 mL.
9.	Magnetic stirrer
Procedure
557

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 558 of 72
1.0 Particle size reduction
1.1 Particle size reduction to less than 9.5 mm will be performed as follows:
¦	The samples will be placed in a stainless steel pan and crushed to pass a 9-
mm sieve.
¦	After thorough mixing, approximately 0.5 kg of the 9-mm sieved materials
will be further size reduced down to a size of 2 mm using a grinding machine
(Preiser Scientific).
¦	The 2 mm size samples will be used for the TCLP test.
2.0 Extraction fluid preparation
2.1	Extraction Fluid # 1: Add 5.7 mL glacial CH3CH2OOH to 500 mL of reagent water,
add 64.3 mL of IN NaOH, and dilute to a volume of 1 liter. When correctly prepared,
the pH of this fluid will be 4.93 ± 0.05.
2.2	Extraction Fluid # 2: Add 5.7 mL glacial CH3CH2OOH to 1L of reagent water. When
correctly prepared, the pH of this fluid will be 2.88 ± 0.05.
3.0 Preliminary TCLP preparation
3.1 pH measurement
3.1.1	Calibrate pH meter according to SOP 3.
3.1.2	Weigh out a small subsample of the solid phase of the waste, reduce the solid (if
necessary) to a particle size of approximately 1 mm in diameter or less, and
transfer 5.0 grams of the solid phase of the waste to a 500 mL beaker or
Erlenmeyer flask.
3.1.3	Add 96.5 mL of reagent water to the beaker, cover with a watchglass, and stir
vigorously for 5 minutes using a magnetic stirrer. Measure and record the pH. If
the pH is <5.0, use extraction fluid #1.
3.1.4	If the pH is > 5.0, add 3.5 ml N HC1, slurry briefly, cover with a watchglass, heat
to 50°C, and hold at 50°C for 10 minutes.
3.1.5. Let the solution cool to room temperature and record the pH. If the pHis <5.0, use
extraction fluid #1. If the pH is >5.0, use extraction fluid #2.
4.0 TCLP test
4.1 Weigh out 10 g of the sample in a 500 mL plastic bottle.
54.2 Add 200 mL of the extraction fluid to the sample bottle.
4.3	Rotate the bottle rotary agitator at 30 ± 2 rpm for 18 ± 2 hours.
4.4	Following the agitation, filter the extract using Whatman 0.45 |j,m PVDF filters..
4.5	Following filtration, acidify the sample to pH less than < 2 using concentrated nitric
acid and store at 4°C.
4.6	Analyze sample for total metals after acid digestion following method 3015A.
5.0 Precision and Controls
5.1	A duplicate sample will be prepared and processed every 15 samples.
5.2	Controls are provided by running the bottles with the extraction fluid but no sample in
them.
558

-------
WA 2-26, Amendment 2 QAPP Secondary Aluminum Processing Waste
Date: June 6 2013
Revision No.: 1
Page 559 of 72
Expression of Results
Compare the analyte concentrations in the TCLP extract with the levels identified in the appropriate
regulations to determine if sample is a hazardous waste or not.
Quality Control
The procedures given in EPA Method 1311 will be followed.
1.	A minimum of one blank (using the same extraction fluid as used for the samples) must
be digested and analyzed for every 15 samples.
2.	A sample duplicate will be conducted every 15 samples.
3.	A standard check will be analyzed every 10 samples for the ICP analysis.
4.	All analyses that fall outside the range for precision and accuracy will be repeated.
559

-------