EPA-600/R-9 5-113
July 1995
NEW CHEMICAL ALTERNATIVES FOR THE
PROTECTION OF STRATOSPHERIC OZONE
by
Darryl D. DesMarteau and Adolph L. Beyerleiri
Department of Chemistry
Clemson University
Clemson, SC 29634-1905
EPA Cooperative Agreement CR-815134
EPA Project Officer
N. Dean Smith
U.S. Environmental Protection Agency
National Risk Management Research Laboratory
Research Triangle Park, NC 27711
Prepared for:
U.S. Environmental Protection Agency
Office of Research and Development
Washington, D.C. 20460
-------
FOREWORD
The U.S. Environmental Protection Agency is charged by Congress with pro-
tecting the Nation's land, air, and water resources. Under a mandate of national
environmental laws, the Agency strives to formulate and implement actions lead-
ing to a compatible balance between human activities and the ability of natural
systems to support and nurture life. To meet this mandate, EPA's research
program is providing data and technical support for solving environmental pro-
blems today and building a science knowledge base necessary to manage our eco-
logical resources wisely, understand how pollutants affect our health, and pre-
vent or reduce environmental risks in the future.
The National Risk Management Research Laboratory is the Agency's center for
investigation of technological and management approaches for reducing risks
from threats to human health and the environment. The focus of the Laboratory's
research program is on methods for the prevention and control of pollution to air,
land, water, and subsurface resources; protection of water quality in'public water
systems; remediation of contaminated sites and groundwater; and prevention and
control of indoor air pollution. The goal of this research effort is to catalyze
development and implementation of innovative, cost-effective environmental
technologies; develop scientific and engineering information needed by EPA to
support regulatory and policy decisions; and provide technical support and infor-
mation transfer to ensure effective implementation of environmental regulations
and strategies.
This publication has been produced as part of the Laboratory's strategic long-
term research plan. It is published and made available by EPA's Office of Re-
search and Development to assist the user community and to link researchers
with their clients.
E. Timothy Oppelt, Director
National Risk Management Research Laboratory
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
i i
-------
ABSTRACT
Chlorofluorocarbons (CFCs) and their brominated analogs (halons) are recognized as
potent contributors to depletion of the Earth's stratospheric ozone layer. By international
agreement (Montreal Protocol on Substances That Deplete the Ozone Layer, 1987), such
chemicals are to be phased out of the worldwide marketplace. In the United States and other
developed countries, CFC production phaseout is to be completed by the end of the year 1995. In
amendments to the Montreal Protocol, certain partially hydrogenated derivatives of the CFCs and
halons have likewise been recognized as stratospheric ozone depleters and are also to be phased
out of production by developed countries in a step-wise progression over the period 1996 to
2030. For these reasons, and because these ozone-depleting substances (ODSs) have enormous
commercial importance, the U. S. Environmental Protection Agency (EPA) and the Electric
Power Research Institute (EPRI) sponsored a study of potential alternative chemicals which
may serve to replace the ODSs. This report presents laboratory synthesis routes and
thermophysical property data for 15 hydrofluorocarbons (HFCs), 9 hydrochlorofluorocarbons
(HCFCs), and 1 hydrofluoroether (HFE).
iii
-------
CONTENTS
Abstract ii
Tables iv
Preface vi
I. Introduction 1
II. Conclusions 4
ill. Experimental Methods and Modified Corresponding States Estimations 6
IV. Results and Data Quality 10
References 18
Appendix (Synthesis Methods and Data Tables) 19
1. HFE-125 20
2. HFC-227ea 26
3. HFC-227ca 31
4. HFC-236fa 36
5. HFC-236ea 41
6. HFC-236cb 47
7. HFC-236ca 52
8. HFC-245fa 57
9. HFC-245ca 62
10. HFC-245cb 67
11. HFC-254cb 73
12. HFC-329ccb 78
13. HFC-338eea 83
14. HFC-338cca 88
15. HFC-338ccb 93
16. HFC-347ccd 98
17. HCFC-226da 103
18. HCFC-226ea 108
19. HCFC-235ca 113
20. HCFC-244ca 118
21. HCFC-225da 123
22. HCFC-225ba 128
23. HCFC-234da 133
24. HCFC-243da 138
25. cy-HCFC-326d 143
iv
-------
TABLES
Number Page
1 Compounds investigated by ASHRAE refrigerant designation, chemical
formula, boiling point, and critical temperature 2
2 Selected possible alternatives for commercially important CFCs and HCFCs . . 4
3 Boiling point, melting point, heat of vaporization at the boiling point, critical
properties, and liquid phase heat capacity for the 25 compounds studied. . . 11
4 Comparision of measured liquid densities and modified corresponding states
vapor densities with literature values for CFC-12 12
5 Comparison of measured liquid densities and modified corresponding states
vapor densities with literature values for HFC-245cb 12
6 Comparision of measured and modified corresponding states vapor densities
with values obtained by Hoechst Chemicals for HFC-227ea 13
7 Comparison of measured and modified corresponding states vapor pressures
with literature values for CFC-12 14
8 Measured vapor pressures for HFC-245cb compared with the measured
values of Shank (1967) and vapor pressures estimated by modified corresponding
states methods 15
9 Measured vapor pressures for HFC-227ea compared with the measured
values of Hoechst Chemicals (1991) and vapor pressures estimated by modified
corresponding states methods 16
1 0 Measured vapor pressures for HFE-125 compared with measured values of
Wang et al. (1991) and vapor pressures estimated by modified corresponding
states methods 17
1A-1 D Physical properties of HFE-125 21-25
2A-2D Physical properties of HFC-227ea 27-30
3A-3D Physical properties of HFC-227ca 32-35
4A-4D Physical properties of HFC-236fa 37-40
5A-5D Physical properties of HFC-236ea 42-46
6A-6D Physical properties of HFC-236cb 48-51
v
-------
TABLES (Continued)
Number Page
7A-7D Physical properties of HFC-236ca 53-56
8A-8D Physical properties of HFC-245fa i 58-61
9A-9D Physical properties of HFC-245ca 63-66
10A-10D Physical properties of HFC-245cb 68-72
11A-11D Physical properties of HFC-254cb 74-77
12A-12D Physical properties of HFC-329ccb 79-82
13A-13D Physical properties of HFC-338eea 84-87
14A-14D Physical properties of HFC-338cca . 89-92
15A-15D Physical properties of HFC-338ccb 94-97
16A -16D Physical properties of HFC-347ccd 99-102
17 A -17 D Physical properties of HCFC-226da 104-107
18 A-18D Physical properties of HCFC-226ea 109-112
19A-19D Physical properties of HCFC-235ca 114-117
20A-20D Physical properties of HCFC-244ca 119-122
21 A-21D Physical properties of HCFC-225da 124-127
22A-22D Physical properties of HCFC-225ba 129-132
23A-23D Physical properties of HCFC-234da 134-137
24A-24D Physical properties of HCFC-243da 139-142
25A-25D Physical properties of cy-HCFC-326d 144-147
vi
-------
PREFACE
In the mid-1980's, it was becoming increasingly apparent that fully halogenated
chlorofluorocarbons (CFCs) and their bromine-containing relatives (halons) were capable of
depleting the Earth's stratospheric ozone layer. As the world's nations considered the
ramifications of restricting future production and use of these chemicals, it also became clear
that few, if any, alternative chemicals were readily available or had been proven acceptable for
use in the numerous applications in which these compounds were employed.
This situation prompted the search for other chemicals which might take the place of the
ozone-depleting substances. This report describes the results of one such study which was
jointly sponsored by the U. S. Environmental Protection Agency (EPA) and the Electric Power
Research Institute (EPRI). From this study, a number of chemicals were synthesized which
have properties indicative that the chemicals may serve as more environmentally benign
alternatives for the ozone-depleting substances. Several of the chemicals synthesized in this
effort had not been prepared previously. For nearly all of those chemicals which had been
reported in prior literature, physical property data were typically limited to a boiling point.
This study not only resulted in improved synthesis routes for many of the compounds reported
in the literature, but also generated a sizeable body of new thermophysical property data.
Following completion of the work described in this report, additional property
determinations of several of the candidate alternatives have been performed by other
researchers. More extensive thermophysical properties have been obtained for HFC-245ca,
HFC-245fa, HFC-236ea, and HFE-125 by the National Institute of Standards and Technology
(NIST) under the sponsorship of the EPA's Air and Energy Engineering Research Laboratory
(AEERL).* An expanded set of thermophysical properties for HFC-236fa has also been
compiled by NIST under the sponsorship of the U. S. Navy and AEERL. These thermophysical
property data as well as data sets for HFC-227ea and HFC-245cb are archived in the NIST
database REFPROP and are publically available (NIST, 1993).
(*) Recently redesignated the National Risk Management Research Laboratory, Research
Triangle Park (NRMRL-RTP), NC.
vii
-------
I. INTRODUCTION
Research described in this report was conducted over the period of August 1988 through
December 1991 under the joint sponsorship of the U. S. EPA and the Electric Power Research
Institute (EPRI). This report describes evaluations of 24 fluorinated propane and butane
derivatives (HFCs) and one hydrofluoroether (HFE) as alternatives for chlorofluorocarbons
(CFCs) and hydrochlorofluorocarbons (HCFCs). Boiling points for these chemicals range from
-34.6°C to 76.7°C. Therefore, these chemicals provide potential alternatives for a broad range
of applications, e.g., as refrigerants, blowing agents, and solvents. Emphasis Is on hydrogen-
containing compounds that are expected to have finite atmospheric lifetimes which reduce their
global warming potential. Sixteen of the chemicals investigated contain no chlorine or bromine
and therefore have zero ozone depletion potential. The remaining 9 chlorine-containing
chemicals were selected for investigation before regulatory restrictions were imposed on
HCFCs. Nevertheless, the low chlorine content of the 9 HCFCs studied coupled with a finite
atmospheric lifetime may in some cases yield an alternative with a negligible ozone depletion
potential. Chemical formulas, ASHRAE (American Society of Heating, Refrigerating and Air-
Conditioning Engineers) refrigerant code designations, boiling points, and critical temperatures
of the 25 compounds evaluated in this study are given in Table 1.
Selection as well as evaluation of the compounds as alternatives requires: (1) a
knowledge of appropriate physical properties and (2) possible synthesis routes. Both of these
requirements were investigated in this research. This study emphasized synthesis routes using
relatively inexpensive commercially available starting materials and established synthesis
procedures (chlorination, hydrogenation, and HF addition) which are carried out industrially.
This is important in order for a chemical to be an economically viable alternative for other than
a small specialty market.
Physical property determinations in this study included measurement of the melting
point, boiling point, vapor pressure below the boiling point, heat of vaporization at the boiling
point, critical properties {temperature, density and pressure), liquid densities, and liquid
phase heat capacities. Measured vapor pressures are reported from below the boiling point, Tb,
up to the critical temperature, Tc, for four of the compounds: HFE-125 (Tb = -34.6°C, Tc =
80.7°C), HFC-227ea (Tb = -18.3oC, Tc = 102.8°C), HFC-245cb (Tb = -18.3°C, Tc =
108.5°C), and HFC-236ea (Tb = 6.5°C, Tc = 141.1° C). Vapor density in the liquid-vapor
coexistence region and vapor pressure between the boiling point and the critical point were
1
-------
Table 1. Compounds investigated by ASHRAE refrigerant designation, chemical formula, boiling
point, and critical temperature.
Compound
Chemical
Boiling Point
Critical Temperature
(ASHRAE Code)
Formula
(°C)
(oC)
HFE-125
CF3OCF2H
-34.6
80.7
HFC-227ea
CF3CHFCF3
-18.3
102.8
HFC-227ca
CF3CF2CF2H
-16.3
106.3
HFC-236fa
CF3CH2CF3
- 1.1
130.6
HFC-236ea
CF3CHFCF2H
6.5
141.1
HFC-236cb
CF3CF2CFH2
- 1.4
130.1
HFC-236ca
CF2HCF2CF2H
12.6
155.2
HFC-245fa
CF3CH2CF2H
15.3
157.5
HFC-245ca
CF2HCF2CFH2
25.0
178.4
HFC-245cb
CF3CF2CH3
-18.3
108.5
HFC-254cb
CF2HCF2CH3
- 0.8
146.1
HFC-329ccb
CF3CF2CF2CF2H
15.1
140.2
HFC-338eea
CF3CFHCFHCF3
25.4
148.5
HFC-338cca
CF2HCF2CF2CF2H
42.5
186.4
HFC-338ccb
CF3CF2CF2CFH2
27.8
160.5
HFC-347ccd
CF3CF2CF2CH3
15.1
144.2
HCFC-225ba
CF3CFCICFHCI
51.9
212.9
HCFC-225da
CF3CHCICF2CI
50.8
206.2
HCFC-226da
CF3CHaCF3
14.1
158.2
HCFC-226ea
CF3CHFCF2a
17.6
158.3
HCFC-234da
CF3CHCICFHCI
70.1
242.5
HCFC-235ca
CF3CF2CH2a
28.1
170.3
HCFC-243da
CF3CHCICH2a
76.7
251.9
HCFC-244ca
CF2HCF2CH2CI
54.8
221.0
cy-HCFC-326d
cy-(CF2)3CHCI
38.1
196.9
estimated by a modified corresponding states technique (Beyerlein, et al. 1993; Reid, et al.
1984). The reference fluid for the modified corresponding states calculations was HFC-134a
(1,1,1,2-tetrafluoroethane). The equation of state used for the reference fluid was the
modified Benedict-Webb-Rubin equation with constants obtained by McLinden et al. (McLinden,
et al. 1989). Heats of vaporization between the boiling point and critical point were calculated
from the heat of vaporization at the boiling point, the boiling point temperature, and the critical
temperature using the method of Thek and Stiel (1966, 1967) with the Viswanath modification
(Viswanath and Kuloor 1967). Ideal gas heat capacities were estimated by a functional group
method using the extensive database of S. W. Benson (Benson, et al. 1969). Vapor phase
2
-------
thermal conductivities were estimated using the functional group method of Roy and Thodos
(1968 and 1970).
The body of this report describes methods, summarizes the data, and provides
conclusions. In order to keep this portion of the report compact, comprehensive tabulations of
the data by compound are given in both SI and English units In the Appendix of this report.
Descriptions of the synthesis and possible applications of each compound are also contained in
the Appendix.
3
-------
II. CONCLUSIONS
From the data acquired in this study, it appears that several of the chemicals synthesized
are worthy of consideration as alternatives for the ozone-depleting CFCs and HCFCs. Table 2
presents selected apparent best candidate alternatives from this study based on a comparison of
their thermophysical properties with those of commercially important CFCs and HCFCs and the
fact that these candidates have zero ozone depletion potentials. Also, preference was given to
fluorinated propanes over fluorinated butanes on the premise that the latter would likely be
more expensive to produce (cost generally correlates with total fluorine content) and that, for
insulation foam production, the butane derivatives would likely have higher vapor thermal
conductivities than the propane derivatives. These presumptions are somewhat tenuous,
however, and the possibility that certain of the fluorinated butanes may be excellent candidates
should not be discounted.
Table 2. Selected possible alternatives for commercially important CFCs and HCFCs
CFC or HCFC
to be Replaced
ASHRAECode
of Alternative
Chemical Formula
of Alternative
Chemical Name J
of Alternative
CFC-11,
HCFC-123,
HCFC-141b
HFC-245ca
HFC-245fa
CF2HCF2CFH2
cf3ch2cf2h
1,1,2,2,3-pentafluoropropane
1,1,1,3,3-pentafluoropropane
CFC-12
HFC-227ea
HFC-227ca
HFC-245cb
CF3CHFCF3
cf3cf2cf2h
CF3CF2CH3
1,1,1,2,3,3,3-heptafluoropropane
1,1,1,2,2,3,3-heptafluoropropane
1,1,1,2,2-pentafluoropropane
CFC-114
HFC-236ea
HFC-236fa
HFC-236cb
HFC-254cb
CF3CHFCF2H
CF3CH2CF3
CF3CF2CFH2
cf2hcf2ch3
1,1,1,2,3,3-hexafluoropropane
1,1,1,2,2,2-hexafluoropropane
1,1,1,2,2,3-hexafluoropropane
1,1,2,2-tetrafluoroproparie
CFC-115,
HCFC-22
HFE-125
CF3OCF2H
peritafluorodimethylether
No fluorinated propane derivatives with as low a boiling point as that of CFC-12
(dichlorodifluoromethane, Tb = -29.8°C) were found. After some searching, HFC-245cb was
synthesized with a boiling point of -18.3°C. Its critical temperature of 108.5°C compares well
with the critical temperature of CFC-12 (112°C). Therefore, HFC-245cb might be an
4
-------
alternative for CFC-12 for some applications as would HFC-227ca and HFC-227ea with boiling
points of -16.3°C and -18.3QC, and critical temperatures of 106.3°C and 102.8°C,
respectively.
HFE-125, with a boiling point of -34.6°C and critical temperature of 80.7°C appears to
be the best candidate alternative for CFC-115 (1,1,1,2,2-pentafluorochloroethane, Tb =
-39.2°C, Tc = 79.9°C) and HCFC-22 (difluorochloromethane, Tb = -40.6°C, Tc = 96.15°C).
HFC-245ca and HFC-245fa with boiling points of 25.0°C and 15.3°C and critical
temperatures of 178.4°C and 157.50C, respectively, are promising candidates to replace CFC-
11 (fluorotrichloromethane, Tb = 23.8°C, Tc = 198.1°C), HCFC-123 (1,1,1-trifluoro-2,2-
dichloroethane, Tb = 27.9<>C, Tc = 183.8°C), and HCFC-141b (1 -fluoro-1,1-dichloroethane,
Tb = 32.2°C, Tc = 204.2°C) as a refrigerant in low pressure chillers and/or as a blowing agent
in the manufacture of polyisocyanurate insulation foam. All HFC-245 isomers possess a
hydrogen content sufficient to possibly render them borderline flammable. Therefore, the
flammabilities of these chemicals should be evaluated.
A number of CFC-114 (1,1,2,2,-tetrafluoro-1,2,-dichloroethane, Tb = 3.7°C)
alternatives are possible from the chemicals synthesized. HFCs-236ea, -236fa, and -236cb
with boiling points of 6.5, -1.1, and -1.4°C, respectively, and HFC-254cb with a boiling point
of -0.8°C are especially attractive. However, the relatively high hydrogen to fluorine atom
ratio of HFC-254cb poses a concern for this compound from a flammability standpoint.
5
-------
111. EXPERIMENTAL METHODS AND MODIFIED CORRESPONDING STATES ESTIMATIONS
Property Measurement Methods
With the exception of the hydrofluoroether (HFE-125), all compounds investigated in
this study were synthesized and purified to 99.5 percent purity. HFE-125 was obtained
commercially at 98 percent purity and was repurified to 99.5 percent purity. Synthesized
chemicals were identified and their purities checked by a combination of nuclear magnetic
resonance spectrometry, high pressure Fourier transform infrared spectrometry, gas
chromatography, and mass spectrometry. Vapor pressures were measured with a mercury
isoteniscope up to one atmosphere to determine the boiling point. Melting (freezing)points
were determined as the thermocouple temperature at which a solidified ring of the compound
disappeared from the surface of a sample tube. Critical temperatures were measured by slowly
raising the temperature of the sample in a sealed tube until the disappearance of the meniscus
was observed.
Liquid densities in the liquid-vapor coexistence region were determined by enclosing a
weighed sample in a 1.5 mL tube and measuring the displacement of the meniscus to within 0.05
mm from the bottom of the tube with a Gaertner cathetometer. Sample temperatures were
controlled to within ±0.1 °C and measured to the same accuracy. Cathetometer readings were
converted to volume by a calibration procedure with weighed amounts of water in the tube.
These experiments were performed for several samples of differing weight, their weights
ranging from about 0.2 g to 1.0 g. Since the rectilinear diameters, d (= [pi + pg]/2, where pi
and pg are the liquid and vapor densities, respectively), are most accurately obtained by this
technique, the sample mass, m, may be expressed in terms of the diameter by the equation,
m/V = d + Ad[(V| -Vg)/V] (1)
where Ad = (pi - pg)/2, (2)
In Equation 1, V is the sample volume, and V| and Vg are the liquid and vapor volumes,
respectively. The Ad is obtained to within 2 percent by comparing samples with widely
differing weights, i.e.,
Ad = [(m/V)2 - (m/V)1]/[(V,-Vg/V)2 - (Vi-Vg/Vh] (3)
where the subscripts 1 and 2 denote data obtained from measurements on two separate samples.
The diameter, d, is then accurately obtained (to within 0.5 percent) from measurements on
6
-------
samples where V| and Vg are comparable in value. For such cases, the second term in Equation 3
is small and the measured d is only sensitive to m and V, both of which are precisely measured.
Normally, measurements are obtained to within 20 percent of the critical point, and the critical
density is calculated to within about 2 percent accuracy by extrapolating the diameters to the
critical temperature. Liquid densities for the 16 HFCs in this study are obtained to within 2
percent from d and Ad with the relation,
pi = d + Ad {4)
Density measurements for some of the HCFCs were obtained early in this research effort
and did not have the consistent precision obtained with measurements on the HFCs. Therefore,
for the 9 HCFC compounds liquid densities were calculated from measured diameters, and the
vapor densities calculated from measured critical parameters and modified corresponding states
methods described in the next section. Vapor densities can also be obtained from measured d and
Ad as pg = (d-Ad). However, experiments in this work were not precise enough to obtain
accurate saturated vapor densities, and these were calculated for all compounds by modified
corresponding states methods. These methods, using HFC-134a (1,1,1,2-tetrafluoroethane) as
a reference fluid, are demonstrated to be accurate to within about 4 percent.
Vapor pressures above the boiling point were measured with a Baratron MKS 315™
pressure sensor with a vacuum on its reference side. The pressure sensor was connected to a
stainless steel sample cell immersed in a bath thermostatted to within ±0.1 °C. The total volume
of the pressure sensor and cell combination was 50 mL. To measure pressures near the critical
pressure, about 20 g of sample was required. Since the pressure sensor was external to the
temperature bath, both the sensor and its connection to the sample cell were heated to a
temperature well above the critical temperature of the sample. The electronic readout via an
MKS 272C power supply automatically compensated for the temperature effect on the pressure
sensor.
Liquid phase heat capacities were measured using a Perkin Elmer DSC-4™ differential
scanning calorimeter and sapphire reference standards. Samples were contained in stainless
steel sample capsules of 75 jxL capacity with an O-ring seal. Sample capsules were
manufactured by Perkin Elmer and the leakage during a calorimeter experiment was negligible.
Capsules were filled using a microliter syringe in a cold room with a temperature below
the boiling point of the sample (as low as -40°C). The DSC measurement was corrected for
vapor volume and heat of vaporization effects due to changes in the relative sizes of the liquid
and vapor phases. Vapor volume was kept at a minimum by using sample sizes of 60 mg or
7
-------
larger. For these sample sizes, the corrections ranged from 1 to 4 percent.
Modified Corresponding States Methods
In order to evaluate these compounds as refrigerants, vapor pressures and vapor
densities are needed up to temperatures approaching the critical point. Vapor pressures were
measured from below the boiling point up to the boiling point for all of the compounds. Vapor
densities and vapor pressures between the boiling point and the critical point were estimated
from measured critical constants and the boiling point with modified corresponding states
estimation methods (Beyerlein, et al. 1993). Accuracy of these estimation methods was
evaluated by comparisons of the estimated vapor pressures with measured values obtained in
this work for CFC-12, HFE-125, HFC-227ea, HFC-245cb, and HFC-236ea. Modified
corresponding states methods used for this evaluation are based on the following equations for
the compressibility, Z (Beyerlein, et al. 1993; Reid, et al. 1984).
where co is the Pitzer acentric factor for the system of interest, and (or is the same factor for
the HFC-134a reference fluid. The quantity p is the density, P is the pressure, T is the Kelvin
temperature, and R is the universal gas constant. Superscript and subscript r refer to the
reference fluid. Z(0) is the compressibility of a simple fluid which is defined by the Benedict-
Webb-Rubin equations with the simple fluid constants of Lee and Kesier (1975). The modified
Benedict-Webb-Rubin equation of state with constants obtained by McLlnden et al. (1989) was
used to obtain the reference fluid compressibility ZW. The acentric factor was calculated from
the equations of Lee and Kesier as
where Pc is the critical pressure in units of atmospheres and
f<°HTred) = 5.92714 - (6.09648)/TreCi - 1.28862 ln(Tred) + 0.16934(Tred) (9)
f(1 )(Tred) = 15.2518 - (15.6875)/Tred - 13.4721 ln(Tred) + 0.43577(Tred) (1 0)
TreCj is the reduced temperature (T/Tc) and Tb,red is the reduced boiling point.
Refrigerant HFC-134a was selected as the reference fluid because excellent equation of
state data were available for the compound, and its acentric factor is comparable in value to the
acentric factor for most of the fluorinated propane and butane derivatives. The latter fact
increases the accuracy of the modified corresponding state methods because the correction from
Z = P/pRT
Z = Z(0) + (bZ - Z<0)]/(0r
(5)
(6)
(7)
co = -[In Pc + f<°)(Tb,red]/f(i)(Tbired)
(8)
8
-------
the reference fluid equation of state to that for the compounds being investigated is small. This
becomes evident if one rewrites Equation (7) so that the reference fluid compressibility is the
primary zero order term,
Z = Z(r) + (©-cor)Z(D (11)
in which the correction term, (co-cor)Z(i), clearly is small when w and wr are comparable in
value.
The procedure is to calculate Z(°) and Z(1> for the critical point (temperature, density,
and pressure are each unity in reduced units), and then solve Equations (8) to (10) and the
relation below
Zc = Pc/pcRT = Zc(0) + wZc(1) (12)
for the critical pressure and acentric factor using the measured value for the critical density,
pc. The subscript c in Equation (12) refers to the critical point. The vapor pressure may then
be evaluated from the following equation for a reduced temperature TreCj.
ln[P/Pc] = f(0)(Tred) + wf(D(Tred) (13)
Vapor pressure and temperature are then converted to vapor density using Equations (5) to
(7).
Heats of vaporization, AHvap, as a function of temperature are calculated using the
measured heat of vaporization at the boiling point, AHb, and the relation
AHvap = AHb[(1-Tred)/(1-Tb,red)Jn (14)
where n = [0.00264(AHb/RTb) + 0.8794], (Benson, et al. 1969). (1 5)
9
-------
IV. RESULTS AND DATA QUALITY
Measured melting points, boiling points, critical parameters, heats of vaporization at
the boiling point, and liquid phase heat capacities (at 40°C) for the 25 compounds studied are
given in Table 3. Critical pressures in Table 3 are measured values for HFE-125, HFC-236ea,
HFC-245cb, and HFC-227ea. For the remaining compounds, the critical pressure was
calculated from the measured critical temperature and critical density using modified
corresponding states equations. Freezing points and boiling points are accurate to within
+0.1 °C and the critical temperature is accurate to within about ±0.5°C. Critical densities are
accurate to within about 2 percent except for HCFC-234da, HCFC-243da, and cyclic-HCFC-
326d. Measurements for these 3 compounds were obtained over a very limited temperature
range and only approximate critical densities could be obtained by a rectilinear diameter
extrapolation. Liquid phase heat capacities are accurate to within about 3 percent.
Measured liquid density, pi, in the coexistence region has been given an analytic
representation using least squares methods and the following relation
pi = A + Bt +Ct2 (16)
where t is the Celsius temperature. Values for the empirical constants A, B, and C where t is in
degrees Celsius are presented in Part D of Tables 1A to 25A of the Appendix. Analogous values
for the empirical constants where t is in degrees Fahrenheit are given in Part D of Tables 1B to
25 B of the Appendix.
Ideal gas heat capacities are also needed to evaluate alternative refrigerants. These
values were estimated using the extensive functional group database of Benson et al. (Benson, et
al. 1969) and are presented in Part C of Tables 1A-25A and 1B-25B in the Appendix.
Assurance of Data Quality
Liquid densities were also measured for CFC-12 to check the accuracy of measurement
and estimation methods. Measured liquid densities and calculated vapor densities are compared
with available literature values for CFC-12 (Stoecker and Jones, 1982) in Table 4. Near the
end of this study, literature data of Shank (1967) were found for HFC-245cb and it was
learned that Hoechst Chemicals had obtained an extensive database for HFC-227ea (Hoechst,
1991). These databases included measured densities, and comparisons are made with densities
obtained in this study in Tables 5 and 6 for HFC-245cb and HFC-227ea, respectively.
Measured liquid densities from this work are well within 1 percent of the literature values for
CFC-12 and HFC-245cb. For HFC-227ea, the discrepancy between liquid densities reported
1 0
-------
Table 3. Boiling point, melting point, heat of vaporization at the boiling point, critical
properties, and liquid phase heat capacity for the 25 compounds studied.
Compound
Tb («C)
Tm(°C)
AHwap @ T
(kJ/mol)
Tc <"C)
Pc (kPa)
Pc (kg/ma)
Cp. i
@ 40°C
(kj/kg °C)
HFE-125
-34.6
-156.1
21.92
80.7
3253
584 ! 1.327
HFC-227ea
-18.3
-126.8
22.29
102.8
2943
580 1.258
HFC-227ca
-16.3
-140.3
23.69
106.3
2874
594 | 1.254
j
HFC-236fa
-1.1
-94.2
25.66
130.6
3177
556
1.371
HFC-236ea
6.5
-146.1
26.83
141.1
3533
571
1.304
HFC-236cb
-1.4
-105.4
25.25
130.1
3118
545
1.438
HFC-236ca 12.6
-123.3
26.59
155.2
3405
558
NA
HFC-245fa 15.3
HFC-245ca 25.0
-102.1
27.96
157.5 | 3623
529
1.422
-73.4
29.21
178.4 i 3855
529
1.454
HFC-245cb -18.3
-81.1
23.59
108.5 3264
499 ! 1.457
HFC-254cb ! -0.8
-121.1
24.86
146.1 3753
467 ; 1.590
HFC-329ccb i 15.1
-122.3
26.71
140.2 2391
600 1.223
HFC-338eea j 25.4
-91.5
27.79
148.5 2475
581 , NA
HFC-338cca j 42.5
-91 0
31.13
186.4 2792
578 ! 1.333
HFC-338ccb 27.8
-119.4
26.36
160.5 2552
144.2 2570
562 | 1.342
HFC-347ccd 15.1
-124.9
25.82
532
1.383
HCFC-225ba 51.9
-132.7
29.38
212.9
206.2
3074
586
1.087
HCFC-225da 50.8
-130.3
25.89
3006
589
1.087
HCFC-226da 14.1
-119.6
24.64
158.2 j 3024
591
1.207
HCFC-226ea | 17.6
HCFC-234da | 70.1
-134.0
26.26
158.3 2939
I
584
1.205
-98.0
31.70
242.5 ! (3353)
(552)
1.176
HCFC-235ca
28.1
-85.0
27.57
170.3 • 3084
550
1.275
HCFC-243da
76.7
-71.6
30.86
251.9 (3496)
(514)
1.234
HCFC-244ca
54.8
-101.8
31.07
221.0 3714
525
1.160
cy-HCFC-326d
38.1
-94.8
28.69
196.9 ; (2749)
(515) 1.158
1 1
-------
here and those reported by Hoechst Chemicals is somewhat larger (approximately 2 percent
difference below 40°C). This discrepancy may be related to the fact that the boiling point found
by this study (-18.3°C) differs from the value of -17.3QC reported by Hoechst Chemicals.
Nevertheless, this still represents excellent agreement and it verifies the estimated accuracy
for the liquid densities measured in this work.
Table 4. Comparison of measured liquid densities and modified corresponding states vapor
densitieswithliteraturevaluesforjDFC-l^^^^^^^^^^^i^^^^^^^^^^^^^
Temp. (°C)
Liquid Liquid
Density Density
(kg/m3) (kg/m3)
This Work Stoecker &
Jones
. (1982)
Percent
Deviation
Vapor
Density
(kg/m3)
This Work
Vapor
Density
(kg/m3)
Stoecker &
Jones
(1982)
Percent
Deviation
20
1313
1329.0
-1.21
32.6
32.49
0.34
30
1286
1292.2
-0.48
42.6
42.54
0.15
40
1250
1253.1
-0.25
55.0
55.03
-0.06
50 M 207
1211.0
-0.33
70.3
70.57
-0.39
60 1156
1165.3
-0.83
89.7
90.00
-0.33
70 1097
11 14.6
-1 .62
1 14.2
114.61
-0.36
80 1030
1056.9
-2.50
146.2
146.66
-0.27
Table 5. Comparision of measured liquid densities and modified corresponding states vapor
densities with literature values for HFC-245cb.
Temp. (°C) Liquid
Density
(kg/m3)
This Work
Liquid
Density
(kg/m3)
Shank
Percent
Deviation
Vapor
Density
(kg/m3)
This Work
Vapor
Density
(kg/m3)
Shank
Percent
Deviation
23.0 1185
1 1 85
0.00
27.6
38.3
27.3
0.97
34.4 1142
1145.0
-0.22
38.1
0.48
43.3 1109
1111.5
-0.19
48.8
48.7
0.21
52.6 1074
1073.2
0.04
62.4
62.8
-0.50
61.5 1034
1033.1
0.08
79.0
79.5
-0.63
71.2 I 986
I
984.3
0.17
102.0
102.6
-0.59
81.2 924
925.4
-0.13
134.1
135.2
-0.86
1 2
-------
Critical temperature, density, and pressure of this work for HFC-245cb (108.5°C,
499 kg/m3, 3264 kPa) and HFC-227ea (102.8°C, 580 kg/m3. 2943 kPa) are in very good
agreement with the values of Shank (107°C, 490 kg/m3, 3137 kPa) and Hoechst Chemicals
(101.9°C, 592 kg/m3, 2952 kPa), respectively. The measured critical density for CFC-12
(567 kg/m3), which is obtained by extrapolation of density data ranging from temperatures 20
Table 6. Comparison of measured and modified corresponding states vapor densities with values
obtained by Hoechst Chemicals for HFC-227ea.
Temp. (°C)
Liquid
Density
(kg/m3)
This Work
Liquid
Density
(kg/m3)
Hoechst
Percent
Deviation
Vapor
Density
(kg/m3)
This Work
Vapor
Density
(kg/m3)
Hoechst
Percent
Deviation
23.0
1380
1404
-1.74
35.3
35.2
0.30
35.0
1314
1347
-2.50
49.8
50.1
-0.60
45.0
1268
1294
-2.05
65.7
66.2
-0.75
55.0
1215
1234
-1 .54
86.1
87.0
CO
0
1
65.0
1 161
1 168
-0.60
112.9
114.0
-0.96
75.0 1096
1094
0.18
149.2
150.4
-0.80
85.0 1013
1006
0.69
201.7
203.0
-0.64
to 85°C, is within 2 percent of the literature value (558 kg/m3). Vapor densities in Tables 4
to 6, which were calculated by modified corresponding states methods with HFC-134a as the
reference fluid, agree with the experimental literature value within 3 percent and provide
confidence for the calculated vapor densities.
Corresponding states methods were also used to estimate vapor pressures for most of the
compounds. In order to evaluate the accuracy of these methods, a complete set of vapor pressure
measurements was obtained up to the critical point for CFC-12, HFC-245cb, HFC-227ea,
HFE-125, and HFC-236ea. Literature values for CFC-12, HFC-245cb, HFC-227ea, and HFE-
125, along with experimental vapor pressures and corresponding states estimates for these
compounds as determined in this study, are presented in Tables 7 to 10.
1 3
-------
Measured vapor pressures tor CFC-12 and HFC-245cb from this work are within 1
percent of the literature values. In the case of HFE-125 and HFC-227ea, measured values from
this work are within 2 percent of the literature values. Similar good agreement is obtained
between measured and estimated vapor pressures for HFC-236ea (see Part B of Table 5A of the
Appendix). Deviations are somewhat larger (approximately 5 percent) for HFC-227ea, but
nevertheless confirm that the modified corresponding states method is useful for estimating
vapor pressures up to the critical point.
Table 7. Comparison of measured and modified corresponding states vapor pressures with
iterature values for CFC-12.
Temp. (°C)
Measured
(This Work)
(kPa)
Literature
(Stoecker &
Jones, 1982)
(kPa)
Percent
Deviation
Corresponding
States (This
Work) (kPa)
Percent
Deviation
Between
Measured &
Corresponding
States (This
Work)
17.1
525.3
522.3
0.58
522.3
0.57
25.5
665.5
660.5
0.74
659.3
0.93
33.1
810.8
807.5
0.41
803.7
0.88
43.8
1056.8
1047.7
0.86
1044.7
1.15
45.0
1091.6
1084.3
0.67
1075.7
1.46
50.3
1234.9
1227.9
0.56
1215.8
1.55
55.9
1394.9
1394.1
0.05
1378.5
1.18
59.9
1524.9
1522.6
0.15
1504.0
1.37
64.9
1695.9
1695.5
0.02
1671.9
1.41
70.3
1894.2
1897.9
-0.20
1867.6
1.40
75.4
2099.5
2104.9
-0.26
2071.3
1.34
79.9
2287.8
2300.3
-0.54
2262.1
1.12
84.8
2510.1
2528.7
-0.74
2484.6
1.02
89.8
2741.1
2778.5
-1 .36
2722.3
0.69
93.4
2919.8
2971.0
-1.75
2915.0
0.13
1 4
-------
Table 8. Measured vapor pressures for HFC-245cb compared with the measured values of
Temp. (°C)
Measured
(This Work)
(kPa)
Shank (1967)
(kPa)
Percent
Deviation
Corresponding
States
(This Work)
(kPa)
% Deviation
Between
Measured &
Corres. States
(This Work)
7.05
263.64
261.34
0.88
263.92
-0.10
10.13
292.64
289.24
1.18
293.07
-0.15
15.05
343.97
340.23
1.10
343.10
0.25
20.03
401.63
398.50
0.79
399.98
0.41
25.05
467.63
464.37
0.70
464.70
0.63
30.04
540.62
537.49
0.58
536.32
0.79
35.12
623.95
620.28
0.59
617.27
1.07
40.14
715.27
710.97
0.61
705.61
1.35
45.37
820.27
815.51
0.58
806.97
1.62
40.15
714.94
71 1.16
0.53
705.79
1.28
45.37
819.93
815.51
0.54
807.97
1.58
50.15
925.26
920.38
0.53
908.94
1.76
55.15
1046.58
1040.46
0.59
1025.68
2.00
60.06
1 175.90
1169.11
0.58
1150.71
2.14
65.06
1319.89
1313.38
0.50
1289.51
2.30
70.25
1483.21
1476.68
0.44
1446.39
2.48
75.18
1650.53
1645.80
0.29
1608.25
2.56
80.34
1839.18
1837.86
0.07
1792.62
2.53
85.50
2044.16
2046.82
-0.13
1992.42
2.53
86.25
2099.49
2078.19
1.02
2022.75
3.66
90.15
2244.15
2250.79
-0.30
2187.33
2.53
95.58
2497.13
2509.71
-0.50
2434.57
2.51
96.06
2556.62
2533.86
0.90
2457.43
3.88
97.56
2610.45
2609.34
0.04
2528.89
3.12
102.07
2877.09
2853.21
0.84
2758.72
4.1 1
104.16
2995.09
2969.50
0.86
2869.90
4.18
15
-------
Table 9. Measured vapor pressures for HFC-227ea compared with the measured values of
Hoechst Chemicals (1991) and vapor pressures estimated by modified corresponding states
methods.
Temp, (oc
Measured
(This Work)
(kPa)
Hoechst
(1991)
(KPa)
Percent
Deviation
Corresponding
States
(kPa)
Percent
Deviation
Between
Corresponding
States and
Measured
(This Work)
3.4
240.3
230.2
4.20
232.69
3.20
4.8
252.3
241.1
4.44
243.98
3.30
9.9
299.6
287.73
4.13
289.18
3.48
15.0
353.3
340.70
3.70
340.71
3.56
20.2
416.0
401.82
3.53
400.11
3.82
25.2
481.0
468.00
2.78
463.72
3.59
30.2
557.6
541.84
2.91
534.94
4.06
35.3
642.0
625.72
2.60
615.54
4.12
40.9
747.3
728.48
2.58
714.56
4.38
45.2
837.9
815.64
2.73
798.04
4.76
50.1
951.6
924.14
2.97
901.18
5.30
55.8
1090.6
1063.94
2.51
1034.00
5.19
60.0
1201.2
1176.70
2.08
1140.61
5.04
65.4
1361.2
1335.26
1.94
1289.89
5.24
70.0
1510.5
1483.20
1.84
1428.25
5.45
74.9
1680.5
1654.97
1.54
1587.26
5.55
80.2
1883.2
1858.90
1.31
1775.92
5.70
84.7
2066.5
2048.12
0.90
1948.99
5.69
90.0
2296.5
2291.90
0.20
2170.13
5.50
95.4
2525.1
2566.50
-1.63
2415.60
4.33
99.8
2751.8
2810.86
-2.14
2632.04
4.35
-------
Table 10. Measured vapor pressures for HFE-125 compared with measured values of Wang et
al. (1991) and vapor pressures estimated by modified corresponding states methods.
Temp. (°C)
Measured
(This Work)
(kPa)
Measured
Wang, et al.
(kPa)
Percent
Deviation
Corresponding
States
(This Work)
(kPa)
Percent
Deviation
Between
Corresponding
States and
Measured
(This Work)
5.4
499.9
491.49
1.68
482.47
3.49
10.1
580.6
572.16
1.45
560.37
3.48
14.8
668.9
661.87
1.05
645.10
3.55
20.0
24.8
776.6
772.38
0.54
754.00
2.91
889.3
885.62
0.41
663.93
2.85
30.4
1034.2
1032.37
0.18
1008.32
2.50
34.7
1159.9
1156.52
0.29
1129.72
2.60
40.0
1326.6
1324.30
0.17
1295.38
2.35
45.3
1508.5
1509.58
-0.07
1478.08
2.02
50.4
1703.2
1705.77
-0.15
1670.92
1.90
54.9
1880.8
1894.64
-0.74
1858.42
1.19
59.9
2100.5
2123.22
-1 .08
2084.52
0.76
65.9
2393.1
2425.86
CO
CO
1
2383.00
0.42
70.0
2610.1
2752.04
-1.61
2607.72
0.09
74.8
2892.1
2938.61
-1.61
2891.90
0.01
78.0
3087.1
3143.68
-1 .83
3098.10
-0.35
80.0
3203.1
3277.90
-2.34
3228.90
-0.81
-------
REFERENCES
Benson, S. W., et al., Additivity Rules for the Estimation of Thermochemical Properties, Chem.
Rev. 69, 279, 1969.
Beyerlein, A. L., et al., Physical Properties of Fluorinated Propane and Butane Derivatives as
Alternative Refrigerants, ASHRAE Transactions, 99, Part 1, 1993.
Hoechst Chemicals, Hoechst Refrigerant R227, January 1991.
Lee, B. I., and M. G. Kesler, A Generalized Thermodynamic Correlation Based on Three-
Parameter Corresponding States, AlChE Journal, 21, 510, 1975.
McLinden, M. O., et al., Measurement and Formulation of the Thermodynamic Properties of
Refrigerants 134a (1,1,1,2-Tetrafluoroethane) and 123 (1,1,-Dichloro-2,2,2-
Trifluoroethane), ASHRAE Transactions, 95, Part 2, (1989).
Montreal Protocol on Substances that Deplete the Ozone Layer - Final Act, United Nations
Environment Programme, 1987.
NIST Standard Reference Database 23, "Thermodynamic Properties of Refrigerants and
Refrigerant Mixtures" (REFPROP) Version 4.0, National Institute of Standards and Technology,
1993, Boulder, CO, 80303-3328.
Reid, R. C., J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids, 4th ed.,
McGraw-Hill, New York, NY,1984.
Roy, D., and G. Thodos, Thermal Conductivity of Gases, Ind. Eng. Chem., Fundam., 7, 529, 1968,
and 9, 71, 1970.
Shank, R. L., Thermodynamic Properties of 1,1,1,2,2-Pentafluoropropane (Refrigerant 245),
J. of Chem. and Eng. Data, 12, 474, 1967.
Stoecker W. F., and J. W. Jones, Refrigeration and Air Conditioning, 2nd ed., McGraw-Hill, New
York, NY, 1982.
Thek, R. E., and L. I. Stiel, A New Reduced Vapor Pressure Equation, AlChE Journal, 12, 599
1966, and 13, 626, 1967.
Viswanath, D. S., and N. R. Kuloor, On a Generalized Watson's Relation for Latent Heat of
Vaporization, Can. J. Chem. Eng., 45, 29, 1967.
Wang, Bao-Hai, et al., Vapor Pressures, Liquid Molar Volumes, Vapor Nonideality, and Critical
Properties of Some Fluorinated Ethers (CF3OCF2OCF3, CF3CF2OCF2H, cyclo-CF2CF2CF2-,
CF3OCF2H, and CF3OCH3, and of CCI3F and CF2CIH, J. Chemical Thermodynamics, 23, 699
(1 991).
1 8
-------
APPENDIX
Synthesis Methods and Data Tables
This Appendix contains a brief description of the synthesis of each compound along with a
statement regarding possible applications as a CFC or HCFC alternative. This presentation for
each compound is followed by a tabulation of data. Data tabulations on each compound are divided
into four parts. The table labeled "A" contains a comprehensive presentation of measured and
calculated data in SI units, while the table labeled "B" provides this same data in English units.
Part A of these tables contains the measured melting point, boiling point, critical temperature,
critical density, and the liquid phase heat capacity (at 40°C).
These data are followed in Part B by densities, vapor pressures, and heat of vaporization
as a function of temperature. Liquid densities in this portion of the table are based on empirical
correlations of the measured data, and vapor pressures labeled "measured" are also calculated
from empirical correlations of measured data. Equations representing these empirical
correlations are given at the bottom of the table (labeled Part D) along with the temperature
range over which the correlation is valid. Outside of this range the liquid densities are
estimated from the law of rectilinear diameters.
Vapor densities given in Part B of the tables are estimated by modified corresponding
states estimation methods. Vapor pressures labeled "corresponding", which are estimated from
modified corresponding states methods, are given in the tables to complement those derived from
measured vapor pressures.
Heats of vaporization in Part B of the tables are estimated using the vapor pressure data
and Equations 14 and 15. Vapor phase properties which include the ideal gas heat capacity and
vapor phase thermal conductivity follow the density and vapor pressure data as Part C of the
tables. Ideal gas heat capacities are estimated from the group contribution method and databases
of Benson et al. (1969), and vapor phase thermal conductivities are estimated at 25°C using the
Roy and Thodos (1968, 1970) method. Tables labeled C and D contain the measured vapor
pressure and liquid density data used to obtain the empirical equations given in Tables A and B.
1 9
-------
1. HFE-125 (CF3OCF2H)
This compound was obtained commerically and repurified to 99.5 percent purity.
Electrochemical synthesis is the most likely synthetic method for commercial production of this
compound. This compound was targeted for investigation of its physical properties because its
low boiling point of -34.6°C makes it a possible alternative for CFC-115, HCFC-22, and
Refrigerant-502 (48.8% HCFC-22: 51.2% CFC-115). A very complete set of physical
properties were measured which included vapor pressure measurements as a function of
temperature from below the boiling point up to the critical temperature. Vapor densities in the
liquid-vapor coexistence region were calculated by modified corresponding states methods.
Measured data along with the estimated data are given in Tables 1A to 1D. HFE-125 may
be a suitable alternative, alone or in blends, as an alternative for Refrigerant-502 In low
temperature supermarket applications or for HCFC-22.
20
-------
TABLE 1A
PART A.
PHYSICAL PROPERTIES OF HFE-125 (CF30CF2H)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
B.P. CRIT. CRIT. CRIT. PRESS.
(C) TEMP. DENSITY MEAS. CORRES.
(C) (KG/M3) (KPA) (KPA)
LIQUID
HEAT CAPACITY
AT 40 C (J/(G-K)
-156.1 -34.6 80.7 584 3353 3253 1.327
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT (
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPOR IZA'
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLI
(KG/M3)
-54.60
1603
2.79
36.3
22.78
-50.60
1590
3.44
45.4
---
22.61
-46.60
1576
4.21
56.3
---
22.44
-42.60
1562
5.11
69.2
---
22.27
-38.60
1549
6.16
84.3
22.10
-34.60
1535
7.32
106.2
101
21.92
-29.99
1518
8.94
131.1
125
21.58
-25.38
1502
10.83
160.2
153
21.23
-20.76
1485
13.01
194.1
186
20.87
-16.15
1467
15.53
233.2
223
20.50
-11.54
1450
18.43
278.0
266
20.12
-6.93
1432
21.73
329.1
315
19.73
-2.32
1413
25.49
386.8
371
19.33
2.30
1394
29.75
451.8
434
18.91
6.91
1375
34.58
524.6
504
18.47
11.52
1351
40.03
605.7
583
18.02
16.13
1333
46.19
695.6
670
17.55
20.74
1313
53.15
794.9
767
17.06
25.36
1291
61.03
904.1
874
16.54
29.97
1267
69.94
1023.9
992
16.00
34.58
1240
80.08
1154.9
1121
15.43
39.19
1212
91.67
1297.8
1262
14.82
43.80
1182
104.99
1453.2
1416
14.16
48.42
1150
120.43
1621.8
1584
13.46
53.03
1116
138.55
1804.6
1767
12.68
57.64
1080
160.09
2002.3
1967
11.83
62.25
1046
186.15
2215.9
2183
10.86
66.86
999
218.39
2446.5
2418
9.72
71.48
943
259.45
2695.3
2674
8.32
76.09
874
314.08
2963.5
2951
6.38
80.70
584
583.60
3252.7
3253
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
1.41E-02
PART D.
300 K
0.800
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.945
1.041
600 K
1.132
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
LIQ. DENS.(KG/M3) =
LN(VAP. PRESS.(KPA))
LN(VAP. PRESS.(KPA))
HEAT CAP.(J/(G-K)) =
EQUATI ON
1388.6 + (-2.6975E+00 )TC
+ (-4.5968E-02 )TC»*2
= 48.9500 - 3862.2 /T
- ( 5.1395 )*LN(T)
* 19.00700 - 11.16979/TR
- 5.588460 LN(TR) + ( 0.250040) TR**6
0.232 + ( 2.307E-03 )T
+ (-1.350E-06 )T«»2
RANGE
9.7 TO 60.8 C
LESS THAN -34.6 C
-34.6 TO 80.7 C
250.0 TO 600.0 K
21
-------
TABLE IB
PART A.
PHYSICAL PROPERTIES OF HFE-125 (CF30CF2H)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS. LIQUID
(F) (F) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(8TU/LB-F)
-249.0 -30.3 177.3 36.4 471.81 471.8 0.3172
PART B. PVT OATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
-66.28
-59.08
-51.88
-44.68
-37.48
-30.28
-21.98
-13.68
-5.38
2.93
11.23
19.53
27.83
36.13
44.43
52.74
61.04
69.34
77.64
85.94
94.24
102.55
110.85
119.15
127.45
135.75
144.05
152.36
160.66
168.96
177.26
100.08
99.24
98.39
97.54
96.67
95.80
94.78
93.74
92.68
91.60
90.50
89.37
88.22
87.03
85.81
84.37
83.23
81.96
80.58
79.07
77.44
75.68
73.81
71.81
69.69
67.45
65.29
62.36
58.87
54.54
36.43
0.174
0.215
0.263
0.319
0.384
0.457
0.558
0.676
0.812
0.970
1.150
1.356
1.591
1.857
2.159
2.499
2.884
3.318
3.810
4.366
• 4.999
5.723
6.554
7.518
8.649
9.994
11.621
13.634
16.197
19.607
36.433
5.27
6.59
8.17
10.04
12.23
15.41
19.01
23.23
28.15
33.82
40.32
47.73
56.10
65.53
76.09
87.84
100.88
115.28
131.13
148.51
167.51
188.23
210.77
235.23
261.73
290.41
321.39
354.84
390.92
429.82
471.77
14.70
18.14
22.19
26.90
32.35
38.60
45.73
53.81
62.92
73.14
84.55
97.22
111.27
126.76
143.81
162.52
183.00
205.37
229.76
256.33
285.22
316.63
350.75
387.81
428.06
471.80
72.06
71.52
70.98
70.44
69.90
69.34
68.26
67.16
66.02
64.85
63.65
62.41
61.13
59.81
58.43
57.01
55.52
53.96
52.33
50.62
48.80
46.87
44.80
42.56
40.12
37.41
34.35
30.76
26.33
20.19
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
8.15E-03
80 F
0.1912
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2259
0.2488
620 F
0.2706
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT
TEMPERATURE AND TR » REDUCED TEMPERATURE)
EQUATI ON
LIQ. DENS.(LB/CU.FT.) = 88.777 + (-3.6870E-02 )TF
+ (-8.8571E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.)) = 50.0402 - 6952.0 /T
- ( 5.1395)#LN(T)
LN(VAP. PRESS.(LB/SQ.IN.)) = 17.07624- 11.16979/TR
- 5-588460 LN(TR) + ( 0.250040) TR**6
HEAT CAP.(BTU/(LB-F)) = 5.5458E-02 + ( 3.064E-04)T
+ (-9.960E-08 )T**2
RANGE
49.5 TO 141.5 F
LESS THAN -30.3 F
-30.3 TO 177.3 C
-9.7 TO 620.3 F
22
-------
Table 1C
Saturated Liquid Density Measurements for HFE-125 (CF3OCF2H)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
9.7 (49.5)
0.6997
1.3621
1.3616 (85.000)
0.4
1.3540
1.3686
22.4 (72.3)
0.6790
1.3009
1.2982 (81.046)
0.5
1.2900
1.3038
32.1 (89.8)
0.6632
1.2576
1.2545 (78.315)
0.4
1.2470
1.2588
42.2 (108.0)
0.6466
1.1997
1.1962 (74.675)
0.4
1.1901
1.1988
51.4 (124.4)
0.6317
1.1392
1.1329 (70.725)
0.5
1.1246
1.1349
60.8 (141.5)
0.6163
1.0569
1.0510 (65.615)
0.4
1.0474
1.0488
23
-------
Table 1D
Vapor Pressure Measurements for HFE-125 (CF3OCF2H)
Part A. Below the Boiling Point
Temp
°C (°F)
Measured
kPa (psi)
-104.3 (155.7)
0.83 (0.120)
-95.7 (-140.3)
1.53 (0.222)
-85.8 (-122.4)
4.20 (0.609)
-74.6 (-102.3)
10.16 (1.474)
-73.4 (-100.1)
10.80 (1.566)
-65.3 (-85.5)
19.47 (2.823)
-63.4 (-82.1)
21.73 (3.152)
-55.6 (-68.1)
34.80 (5.047)
-54.6 (-66.3)
36.00 (5.221)
-53.9 (-65.0)
38.40 (5.569)
-49.5 (-56.4)
49.73 (7.213)
-48.6 (-55.5)
50.73 (7.358)
-44.8 (-48.6)
61.72 (8.953)
.44.4 (44.9)
63.46 (9.204)
-39.3 (-38.7)
80.53 (11.679)
-38.9 (-38.0)
83.06 (12.047)
-38.6 (-37.5)
83.99 (12.182)
-36.9 (-34.4)
90.53 (13.130)
-34.6 (-30.3)
100.86 (14.628)
-34.3 (-29.7)
102.26 (14.831)
-34.2 (-29.6)
102.66 (14.8895
2 4
-------
Table 1D (Continued)
Vapor Pressure Measurements for HFE-125 (CF3OCF2H)
Part B. Between Boiling Point and Critical Point
Temp
°C (°F)
Measured
kPa (psi)
5.4 (41.7)
499.9 (72.50)
10.1 (50.2)
580.6 (84.21)
14.8 (58.6)
668.9 (97.02)
20.0 (68.0)
776.6 (112.64)
24.8 (76.6)
889.3 (128.98)
30.4 (86.7)
1034.2 (150.00)
34.7 (94.5)
1159.9 (168.23)
40.0 (104.0)
1326.6 (192.41)
45.3 (113.5)
1508.5 (218.79)
50.4 (122.7)
1703.2 (247.03)
54.9 (130.8)
1880.8 (272.79)
59.9 (139.8)
2100.5 (304.65)
65.9 (150.6)
2393.1 (347.09)
70.0 (158.0)
2610.1 (378.56)
74.8 (166.6)
2892.1 (419.47)
78.0 (172.4)
3087.1 (447 .75)
80.0 (176.0)
3203.1 (464.57)
80.7 (177.3)
3252.8 (471.78)
25
-------
2. HFC-227ea (CF3CHFCF3)
HFC-227ea is synthesized in 80 percent yield with 99.4 percent purity employing the
reaction
KF
CF3CF=CF2 > CF3CHFCF3
formamide
The reaction conditions are: 0.17 moles of starting material, 22 g of KF in 0.1 L of formamide.
The reaction mixture is placed in a 1-L stirred autoclave for 48 hours at 50°C.
This compound has a boiling point of -18.3°C which is the lowest boiling point obtained
in this study for a fluorinated propane (HFC-245cb also has a boiling point of -18.3<>C). A
very complete set of physical properties was obtained for this compound (see Tables 2A -2D).
Physical property data include vapor pressure measurements from below the boiling point up to
the critical temperature. Since this is one of the lower boiling point fluorinated propanes with
a critical temperature of 102.8OC, it may be considered as a potential alternative for CFC-12
(boiling point = -29.8°C, critical temperature = 112°C) and HFC-134a (boiling point =
-26.5°; critical temperature = 101.1°C) refrigerants in some applications.
26
-------
TABLE 2A
PART A.
PHYSICAL PROPERTIES OF HFC-227EA (CF3CFHCF3)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
8.P.
CRIT.
TEMP.
CRIT.
DENSITY
CRIT.
MEAS
PRESS.
CORRES.
LIQUID
HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G
00
1
00
CO
102.8
580
2943
2787
1.258
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
-38.30
1601
3.76
41.9
22.32
-34.30
1587
4.50
50.7
---
22.19
-30.30
1574
5.34
60.9
---
22.06
-26.30
1560
6.30
72.6
21 .93
-22.30
1546
7.39
86.1
21.79
-18.30
1532
8.61
108.9
101
21.65
-13.46
1515
10.41
132.1
124
21.32
-8.61
1497
12.48
159.0
150
20.99
-3.77
1479
14.85
190.2
180
20.64
1.08
1461
17.57
226.0
214
20.28
5.92
1442
20.67
266.9
253
19.92
10.76
1423
24.19
313.5
297
19.54
15.61
1404
28.16
366.1
347
19.15
20.45
1384
32.65
425.3
403
18.74
25.30
1365
37.70
491.6
465
18.32
30.14
1344
43.38
565.6
534
17.88
34.98
1321
49.77
647.7
610
17.43
39.83
1298
56.96
738.6
694
16.95
44.67
1273
65.05
838.7
787
16.45
49.52
1247
74.19
948.6
888
15.92
54.36
1220
84.54
1068.8
998
15.37
59.20
1191
96.32
1199.9
1119
14.77
64.05
1161
109.81
1342.3
1250
14.14
68.89
1130
125.41
1496.5
1393
13.45
73.74
1098
143.63
1663.0
1547
12.69
78.58
1065
165.21
1842.3
1715
11.86
83.42
1030
191.22
2034.7
1897
10.91
88.27
976
223.24
2240.7
2094
9.79
93.11
920
263.89
2460.6
2307
8.42
97.96
850
318.13
2694.7
2537
6.49
102.80
580
580.00
2943.4
2787
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
1.03E-02
300 K
0.806
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.961
1.066
600 K
1.166
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
EQUATION
LIQ. DENS. (KG/M3) = 1455.8 + (-2.9375E+00 )TC
+ (-2.5913E-02 )TC*#2
LN(VAP. PRESS.(KPA)) = 40.7250 - 3613.1 /T
- { 3.9579 )*LN(T)
LNfVAP. PRESS.(KPA)) = 15.08936 - 7.05801/TR
- 0.044281 LN(TR) + (-0.044039) TR»»6
HEAT CAP.(J/(G-K)) = 0.205 + ( 2.422E-03 )T
+ (-1.375E-06 )T**2
RANGE
23.0 TO 85.0 C
LESS THAN -18.3 C
-18.3 TO 102.8 C
250.0 TO 600.0 K
27
-------
TABLE 2B
PART A.
PHYSICAL PROPERTIES OF HFC-227EA (CF3CFHCF3)
{ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
•196.2
B.P.
(F)
-0.9
CRIT. CRIT. CRIT. PRESS. LIQUID
TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(BTU/LB-F)
217.0
36.2
426.85
404.3
0.3007
PART B. PVT DATA ANO HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
-36.94
99.93
0.235
6.07
56.48
-29.74
99.09
0.281
7.35
56.15
-22.54
98.24
0.333
8.83
55.82
-15.34
97.38
0.393
10.53
55.48
-8.14
96.51
0.461
12.48
55.15
-0.94
95.64
0.538
15.80
14.70
54.79
7.78
94.56
0.650
19.16
17.93
53.96
16.50
93.46
0.779
23.07
21.70
53.10
25.22
92.34
0.927
27.59
26.04
52.23
33.94
91.21
1.097
32.78
31.02
51.33
42.66
90.05
1.291
38.72
36.68
50.40
51 .38
88.86
1.510
45.47
43.10
49.44
60.09
87.64
1.758
53.10
50.32
48.45
68.81
86.39
2.038
61.68
58.40
47.43
77.53
85.21
2.354
71.30
67.42
46.36
86.25
83.89
2.708
82.03
77.43
45.26
94.97
82.49
3.107
93.95
88.49
44.10
103.69
81.01
3.556
107.13
100.69
42.90
112.41
79.46
4.061
121.65
114.09
41.63
121.13
77.84
4.631
137.59
128.76
40.30
129.85
76.13
5.277
155.02
144.80
38.89
138.57
74.36
6.013
174.03
162.29
37.38
147.29
72.50
6.855
194.68
181.32
35.77
156.01
70.57
7.829
217.05
202.00
34.03
164.72
68.57
8.967
241.20
224.44
32.12
173.44
66.48
10.314
267.20
248.77
30.00
182.16
64.33
11.937
295.11
275.12
27.60
190.88
60.95
13.936
324.99
303.67
24.78
199.60
57.44
16.474
356.88
334.57
21.30
208.32
53.09
19.860
390.84
368.03
16.43
217.04
36.21
36.208
426.90
404.28
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.98E-03
80 F
0.1927
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2297
0.2548
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
620 F
0.2787
A FUNCTION OF
TF = FAHRENHEIT
LIQ. DENS.(LB/CU.FT.)
EQUATION
93.633 + (-6.9923E-02 )TF
+ (-4.9929E-04 )TF»*2
LN(VAP. PRESS.(LB/SQ.IN.)) = 41.1206 - 6503.6 /T
- ( 3.9579)#LN(T)
LN(VAP. PRESS.(LB/SQ.IN.)) = 13.15860 - 7.05801/TR
- 0.044281 LN(TR) + (-0.044039) TR**6
HEAT CAP.(BTU/(LB-F))
4.9064E-02 + ( 3.217E-04)T
+ (-1.014E-07 )T*»2
28
RANGE
73.4 TO 185.0 F
LESS THAN -0.9 F
-0.9 TO 217.0 C
-9.7 TO 620.3 F
-------
Table 2C
Saturated Liquid Density Measurements for HFC-227ea (CF3CHFCF3)
Temp.
°C (°F)
Diameter
(Pi + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
23.0 (73.4)
0.7045
1.3715
1.3800 (86.152)
0.6
1.3886
35.0 (95.0)
0.6855
1.3077
1.3139 (82.026)
0.5
1.3201
45.0 (113.0)
0.6696
1.2662
1.2682 (79.172)
0.2
1.2702
55.0 (131.0)
0.6538
1.2141
1.2150 (75.847)
0.07
1.2158
65.0 (149.0)
0.6379
1.1594
1.1610 (72.482)
0.1
1.1627
75.0 (167.0)
0.6220
1.0945
1.0958 (68.407)
0.1
1.0971
85.0 (185.0)
0.6062
1.0130
1.0130 (63.238)
0.0
1.0130
29
-------
Table 2D
Vapor Pressure Measurements for HFC-227ea (CF3CHFCF3)
Part A. Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-48.2 (-54.8)
26.46 (3.838)
-44.2 (-47.6)
32.53 (4.718)
-41.1 (-42.0)
37.60 (5.453)
-38.6 (-37.5)
41.73 (6.052)
-35.8 (-32.4)
47.46 (6.884)
-33.5 (-28.3)
52.53 (7.619)
-31.3 (-24.3)
58.00 (8.412)
-29.0 (-20.2)
63.99 (9.281)
-27.2 (-17.0)
69.06 (10.016)
-25.7 (-14.3)
76.26 (11.061)
-23.0 (-9.4)
83.99 (12.182)
-20.1 (-4.2)
93.86 (13.613)
-18.2 (-0.8)
100.26 (14.542)
-17.8 (-0.04)
104.66 (15.180)
Part B. Above Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
3.4 (38.1)
240.3 (34.85)
4.8 (40.6)
252.3 (36.593)
9.9 (49.8)
299.6 (43.45)
15.0 (59.0)
353.3 (51.24)
20.2 (68.4)
416.0 (60.34)
25.2 (77.4)
481.0 (69.76)
30.2 (86.4)
557.6 (80.87)
35.3 (95.5)
642.0 (93.11)
40.9 (105.6)
747.3 (108.39)
45.2 (113.4)
837.9 (121.53)
50.1 (122.2)
951.6 (138.02)
55.8 (132.4)
1090.6 (158.18)
60.0 (140.0)
1201.2 (174.22)
65.4 (149.7)
1361.2 (197.22)
70.0 (158.0)
1510.5 (219.08)
74.9 (166.8)
1680.5 (243.74)
80.2 (176.4)
1883.2 (273.14)
84.7 (184.5)
2066.5 (299.72)
90.0 (194.0)
2296.5 (333.08)
95.4 (203.7)
2525.1 (366.24)
99.8 (211.6)
2751.8 (399.12)
103.5 (218.3)
2943 (426.8)
30
-------
3. HFC-227ca (CF3CF2CF2H)
HFC-227ca is synthesized in 90 percent yield using the reaction
H2O
CF3CF2CF2C02Na > CF3CF2CF2H
180-200OC
Measured properties for this compound include melting point, boiling point, vapor
pressure below the boiling point, liquid phase density, and critical properties. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. Measured
and estimated physical property data obtained on this compound are given in Tables 3A-3D.
Sufficient data are provided in these tables to evaluate HFC-227ca as a refrigerant by computer
simulation methods. Like HFC-227ea, this is one of the lower boiling point fluorinated
propanes with a boiling point of -16.3°C and a critical temperature of 106.3°C. Therefore, it
may be considered as an alternative for CFC-12 and HFC-134a refrigerants in some
applications.
31
-------
TABLE 3A
PHYSICAL PROPERTIES OF HFC-227CA (CF3CF2CF2H)
PART A.
(Si UNI
TS)
MELTING
POINT, BOILING POINT
, CRITICAL
PROPERTI
ES, AND LIQUID
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CRIT.
CRIT.
. PRESS.
LIQUID
:) (C)
TEMP.
DENSITY
MEAS.
CORRES
. HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-K)
1.3 -16.3
106.3
594
2874
1 .254
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
-36.30
1585
3.49
39.2
24.29
-32.30
1573
4.23
48.1
24.17
-28.30
1561
5.09
58.6
24.05
-24.30
1549
6.08
70.8
...
23.93
-20.30
1537
7.23
85.0
...
23.81
-16.30
1525
8.54
101
23.69
-11.40
1509
10.33
124
23.32
-6.49
1494
12.42
150
22.94
-1.59
1478
14.81
181
22.56
3.32
1461
17.55
216
22.16
8.22
1445
20.68
256
21.75
13.12
1427
24.24
301
21.32
18.03
1410
28.26
352
20.88
22.93
1392
32.81
409
20.43
27.84
1378
37.93
472
19.96
32.74
1357
43.70
543
19.47
37.64
1336
50.20
622
18.96
42.55
1313
57.51
___
708
18.43
47.45
1289
65.74
803
17.87
52.36
1265
75.05
908
17.29
57.26
1239
85.60
1022
16.67
62.16
1213
97.61
...
1146
16.01
67.07
1185
111.39
1282
15.30
71.97
1157
127.32
---
1429
14.53
76.88
1127
145.94
1589
13.70
81.78
1097
168.01
1763
12.77
86.68
1065
194.63
1951
11.73
91.59
1007
227.43
.
2155
10.50
96.49
952
269.10
...
2375
8.99
101.40
882
324.68
...
2615
6.89
106.30
594
593.90
...
2874
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
1.02E-02
300 K
0.800
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.955
1 .074
600 K
1.167
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) » 1475.9 + (-2.9496E+00 )TC
+ (-2.0661E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 38.9706 - 3761.3 /T
- { 3.5521)*LN(T)
ID GAS HEAT CAP.(J/(G-K))
0.155 + ( 2.615E-03 )T
+ (-1.550E-06 )T»*2
RANGE
24.5 TO 86.8 C
LESS THAN -16.3 C
250.0 TO 600.0 K
32
-------
TABLE 38
PHYSICAL PROPERTIES OF HFC-227CA (CF3CF2CF2H)
(ENGLISH UNITS)
PART A. MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. 8.P. CRIT. CRIT. CRIT. PRESS. LIQUID
(F) (F) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
-------
Table 3C
Saturated Liquid Density Measurements for HFC-227ca (CF3CF2CF2H)
Temp.
°C (°F)
Diameter
(P| + Pg )/2
g/cm3
Liquid
Density
g/cm3)
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
<%)
24.5 (76.1)
0.7168
1.4070
1.3886 (86.688)
2.0
1.4097
1.3492
37.6 (99.7)
0.6971
1.3332
1.3459 (84.022)
0.7
1.3573
1.3471
42.0 (107.6)
0.6905
1.3120
1.3092 (81.731)
1.0
1.3244
1 .2913
60.7 (141.3)
0.6624
1.2293
1.2188 (76.087)
1.0
1.2250
1.2022
71.6 (160.9)
0.6460
1.1645
1.1594 (72.379)
0.3
1.1557
1.1579
86.8 (188.2)
0.6232
1.0639
1.0647 (66.467)
0.2
1.0621
1.0680
34
-------
Table 3D
Vapor Pressure Measurements for HFC-227ca (CF3CF2CF2H)
Below Boiling Point
Temp
°C (OF)
Measured
kPa (psi)
-37.4 (-35.3)
37.20 (5.395)
-36.0 (-32.8)
39.86 (5.781)
-34.6 (-30.3)
42.80 (6.208)
-33.1 (-27.6)
46.13 (6.691)
-31.6 (-24.9)
49.60 (7.194)
-29.5 (-21.1)
55.33 (8.025)
-27.9 (-18.2)
59.99 (8.701)
-25.5 (-13.9)
66.66 (9.668)
-24.5 (-12.1)
70.26 (10.190)
-23.7 (-10.7)
73.06 (10.597)
-22.6 (-8.7)
76.59 (11.109)
-20.6 (-5.1)
83.99 (12.182)
-19.4 (-2.9)
88.39 (12.820)
-18.2 (-0.8)
93.59 (13.574)
l
"*n|
b
98.13 (14.233)
-16.1 (3.0)
102.26 (14.832)
-15.2 (4.6)
105.99 (15.373)
35
-------
4. HFC-236fa (CF3CH2CF3)
The synthesis of HFC-236fa is accomplished in 86 percent yield with the following
reaction:
KF
CF3CH=CF2 > CF3CH2CF3
formamide
Reaction conditions employed are: 0.028 moles of CF3CH=CF2 in a mixture of 3 g of KF
and 25 mL formamide at 28°C. The purity of the final product is 99.5 percent. Measured data
obtained on this compound include liquid phase heat capacity, vapor pressure below the boiling
point, liquid phase density, critical properties, melting point, and boiling point. Using the
critical properties, boiling point, and modified corresponding states methods, the vapor
densities in the liquid-vapor coexistence region and vapor pressures were calculated up to the
critical temperature. These data together with other estimated data are given in Tables 4A-4D.
Based on a boiling point of -1.1°C and a critical temperature of 130.6°C, HFC-236fa may be
judged an excellent alternative for CFC-114 (boiling point = 3.770C; critical temperature =
145.7°C).
36
-------
TABLE 4A
PART A.
PHYSICAL PROPERTIES OF HFC-236FA (CF3CH2CF3)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
B.P.
CRIT.
TEMP.
CRIT.
DENSITY
CRIT. PRESS.
MEAS.
CORRES.
LIQUID
HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G'
i.2 -1.1
130.6
556
3177
1.371
PVT DATA
AND HEAT
OF VAPORIZAT
ION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3J
-21.10
1519
3.04
40.8
26.43
-17.10
1506
3.66
49.7
26.28
-13.10
1494
4.38
60.0
26.13
-9.10
1481
5.20
72.0
25.98
-5.10
1469
6.14
85.9
...
25.82
-1 .10
1456
7.18
101
25.66
4.17
1436
8.75
125
25.26
9.44
1420
10.59
153
24.85
14.70
1404
12.71
185
24.42
19.97
1388
15.15
222
23.99
25.24
1370
17.95
264
23.54
30.51
1352
21.14
313
23.08
35.78
1332
24.77
368
22.60
41.04
1313
28.88
429
22.11
46.31
1292
33.53
498
21.59
51.58
1271
38.78
576
21.06
56.85
1249
44.71
...
661
20.51
62.12
1226
51.40
___
756
19.93
67.38
1202
58.96
...
861
19.32
72.65
1178
67.52
976
18.68
77.92
1153
77.24
1102
18.01
83.19
1127
88.34
1240
17.29
88.46
1100
101.09
1390
16.52
93.72
1073
115.87
---
1554
15.69
98.99
1037
133.19
...
1733
14.78
104.26
1001
153.76
...
1927
13.77
109.53
961
178.64
...
2137
12.64
114.80
915
209.38
...
2366
11.31
120.06
860
248.50
...
2615
9.67
125.33
793
300.64
2884
7.39
130.60
556
555.90
3177
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.83E-03
PART D.
300 K
0.852
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1.018
1.131
600 K
1.243
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRAOE TEMPERATURE)
LIQ. DENS.(KG/M3) =
LN(VAP. PRESS.(KPA))
EQUATI ON
1447.4 + (-2.7283E+00 )TC
+ (-1.3537E-02 )TC**2
» 46.0232 - 4324.3 /T
- ( 4.5497)#LN(T)
ID GAS HEAT CAP.(J/(G-K)) = 0.219 + ( 2.526E-03 )T
+ (-1.375E-06 )T**2
RANGE
0.6 TO 97.4 C
LESS THAN -1.1 C
250.0 TO 600.0 K
37
-------
TABLE 4B
PART A.
PHYSICAL PROPERTIES OF HFC-236FA (CF3CH2CF3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, ANO LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
B.P. CRIT. CRIT. CRIT. PRESS. LIQUIO
(F) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(BTU/LB-F)
-137.6 30.0 267.1 34.7 460.8 0.3277
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
-5.98
94.81
1.22
94.04
8.42
93.26
15.62
92.48
22.82
91.69
30.02
90.90
39.50
89.64
48.98
88.68
58.47
87.67
67.95
86.62
77.43
85.52
86.91
84.38
96.40
83.18
105.88
81.95
115.36
80.66
124.84
79.33
134.33
77.95
143.81
76.52
153.29
75.05
162.77
73.53
172.26
71.96
181.74
70.34
191.22
68.68
200.70
66.97
210.19
64.75
219.67
62.50
229.15
59.99
238.63
57.10
248.12
53.70
257.60
49.48
267.08
34.70
0.190
5.92
...
74.80
0.229
7.20
...
74.37
0.273
8.70
...
73.94
0.325
10.45
...
73.51
0.383
12.46
...
73.08
0.448
...
14.70
72.62
0.547
-—
18.11
71.48
0.661
22.12
70.32
0.793
26.78
69.12
0.946
32.16
67.89
1.120
38.33
66.62
1.320
45.35
65.31
1.546
53.30
63.96
1.803
62.26
62.56
2.093
72.29
61.11
2.421
...
83.48
59.61
2.791
...
95.91
58.04
3.209
109.67
56.40
3.681
124.83
54.68
4.215
141.51
52.87
4.822
159.79
50.96
5.515
179.78
48.92
6.311
---
201.61
46.75
7.234
...
225.40
44.40
8.315
251.29
41.83
9.599
279.44
38.98
11.152
310.01
35.76
13.071
343.20
31.99
15.513
...
379.23
27.35
18.768
...
418.34
20.92
34.704
...
460.81
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.68E-03
80 F
0.2037
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2433
0.2704
620 F
0.2971
PART D.
fmpiritai FOLIATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK1NE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATI ON
L.Q. DENS. (LB/CU.FT.) = 93.121 - (;7. ™»«;0|_|TF
LN(VAP. PRESS.(LB/SQ.IN.)) = 46.7667
7783.7 /T
( 4.5497)*LN(T)
ID GAS HEAT CAP . (BTU/(LB-F ) ) = 5.2458E-02
RANGE
33.1 TO 207.4 F
LESS THAN 30.0 F
-9.7 TO 620.3 F
38
-------
Table 4C
Saturated Liquid Density Measurements for HFC-236fa (CF3CH2CF3)
Temp.
°C (°C)
Diameter
(P | + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
0.6 (33.1)
0.7313
1.4083
1.4189
1.5206
1.4493 (90.477)
3.5
5.8 (42.5)
0.7243
1.3992
1.4023
1.4797
1.4271 (89.090)
2.6
36.5 (97.7)
0.6829
1.3307
1.3200
1.3393
1.3300 (83.029)
0.6
51.4 (124.5)
0.6628
1.2591
1.2589
1.2884
1.2688 (79.209)
1.1
66.3 (151.3)
0.6427
1.2080
1.2047
1.2290
1.2139 (75.781)
0.9
83.5 (182.3)
0.6195
1.1236
1.1159
1.1197
1.1198 (69.907)
0.3
97.45 (207.4)
0.6006
1.0590
1.0518
1.0533
1.0547 (65.843)
0.3
39
-------
Table 4D
Vapor Pressure Measurements for HFC-236fa (CF3CH2CF3)
Below Boiling Point
Temp
°C (°F)
Measured
kPa (psi)
-63.8 (-82.8)
2.87 (0.416)
-56.7 (-70.1)
4.93 (0.715)
-52.3 (-62.1)
6.53 (0.947)
-49.3 (-56.7)
8.00 (1.160)
-46.1 (-51.0)
9.87 (1.432)
-42.2 (-43.96)
12.67 (1.838)
-39.1 (-38.4)
15.20 (2.205)
-36.7 (-34.1)
17.73 (2.572)
-32.6 (-26.7)
22.40 (3.249)
-29.2 (-20.6)
27.06 (3.925)
-26.7 (-16.1)
30.66 (4.447)
-24.3 (-11.7)
34.53 (5.008)
-23.1 (-9.6)
36.93 (5.356)
-18.2 (-0.8)
46.80 (6.788)
-15.3 (4.5)
54.00 (7.832)
-12.6 (9.3)
61.06 (8.856)
-10.8 (12.6)
66.53 (9.649)
-8.8 (16.2)
72.53 (10.520)
-7.3 (18.9)
77.59 (11.254)
-5.6 (21.9)
83.73 (12.144)
-3.9 (25.0)
89.46 (12.975)
-2.4 (27.7)
96.26 (13.961)
-1.1 (30.0)
101.33 (14.697)
-0.1 (31.8)
105.59 (15.315)
40
-------
5. HFC-236ea (CF3CHFCF2H)
HFC-236ea is synthesized in high yield using H2 reduction on a Pd/carbon catalyst,
H2
cf3cf=cf2 > cf3chfcf2h
Pd/C
The purity of the desired product obtained by this method was 99.5 percent. This
compound was also purchased commercially for the measurement of physical properties. A
sufficient quantity of the compound was obtained for the measurement of a complete set of
physical properties which included the measurement of the vapor pressure as a function of
temperature up to the critical temperature. Measured and estimated properties are given in
Tables 5A-5D. Vapor densities in the liquid-vapor coexistence region were calculated by
modified corresponding states methods. The boiling point of 6.5°C and critical temperature of
141.1°C indicates HFC-236ea should be an excellent alternative for CFC-114.
41
-------
TABLE 5A
PART A.
PHYSICAL PROPERTIES OF HFC-236EA (CF3CHFCF2H)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
•146.1
B.P.
(C)
6.5
CRIT.
TEMP.
(C)
141.1
CRIT.
DENSITY
(KG/M3)
571
CRIT. PRESS.
MEAS. CORRES.
(KPA) (KPA)
3533
3316
L IQU ID
HEAT CAPACITY
AT 40 C (J/(G-K)
1.304
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT Ol
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZAT
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE
(KG/M3)
-13.50
1510
2.97
41.0
27.58
-9.50
1499
3.56
49.8
...
27.43
-5.50
1487
4.25
60.0
27.28
-1.50
1475
5.03
71.8
27. 13
2.50
1463
5.93
85.4
26.99
6.50
1449
6.97
105.4
101
26.83
11.88
1433
8.53
130.0
125
26.41
17.27
1416
10.34
158.9
153
25.97
22.65
1399
12.44
192.6
186
25.53
28.04
1381
14.87
231.5
224
25.07
33.42
1362
17.65
276.2
268
24.60
38.80
1343
20.84
327.1
317
24.11
44.19
1324
24.46
384.9
374
23.61
49.57
1303
28.58
450.1
437
23.09
54.96
1283
33.25
523.3
509
22.56
60.34
1261
38.52
605.3
589
22.00
65.72
1239
44.49
696.5
677
21.42
71.11
1217
51 .24
797.9
776
20.81
76.49
1193
58.87
910.1
885
20.17
81.88
1170
67.52
1034.1
1004
19.50
87.26
1145
77.37
1170.7
1136
18.79
92.64
1120
88.63
1320.9
1280
18.04
98.03
1104
101.58
1486.0
1437
17.23
103.41
1074
116.62
1667.1
1609
16.36
108.80
1042
134.27
1865.8
1796
15.40
114.18
1006
155.27
2083.5
1999
14.35
119.56
965
180.72
2322.2
2221
13.16
124.95
919
212.21
2583.9
2461
11.77
130.33
864
252.33
2871.0
2723
10.05
135.72
796
305.62
3186.4
3007
7.68
141.10
571
571.00
3533.1
3316
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.71E-03
300 K
0.823
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.992
1.118
600 K
1.227
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
LIQ. DENS.(KG/M3)
EQUATION
1467.7 * (-2. 8121E+00 )TC
+ (-1.0134E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 45.8418 - 4478.1 /T
- ( 4.4756 )*LN(T)
LN(VAP. PRESS.(KPA)) = 19.32756 - 11.58641/TR
- 6.241810 LN(TR) + ( 0.428770) TR»*6
HEAT CAP.(J/(G-K)) =
0.153 + ( 2.688E-03 )T
+ (-1.450E-06 )T**2
RANGE
1.6 TO 94.5 C
LESS THAN 6.5 C
6.5 TO 141.1 C
250.0 TO 600.0 K
-------
TABLE 5B
PART A.
PHYSICAL PROPERTIES OF HFC-236EA (CF3CHFCF2H)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS. LIQUID
(F) (F) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(BTU/LB-F)
-231.0 43.7 286.0 35.6 512.42 481.0 0.3117
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
7.70
94.30
0.185
5.95
78.06
14.90
93.57
0.222
7.22
77.63
22.10
92.84
0.265
8.70
77.21
29.30
92.10
0.314
10.41
76.79
36.50
91.36
0.370
12.39
...
76.37
43.70
90.46
0.435
15.29
14.70
75.93
53.39
89.45
0.532
18.86
18.16
74.74
63.08
88.41
0.645
23.05
22.24
73.51
72.77
87.32
0.777
27.94
27.00
72.25
82.46
86.21
0.928
33.58
32.49
70.95
92.16
85.05
1.102
40.05
38.81
69.62
101.85
83.86
1.301
47.44
46.02
68.25
111.54
82.63
1.527
55.82
54.20
66.83
121.23
81.37
1.784
65.28
63.44
65.36
130.92
80.07
2.075
75.90
73.80
63.84
140.61
78.73
2.405
87.79
85.37
62.25
150.30
77.36
2.777
101.03
98.25
60.61
159.99
75.94
3.199
115.73
112.53
58.89
169.69
74.50
3.675
132.00
128.29
57.08
179.38
73.01
4.215
149.98
145.65
55.18
189.07
71.49
4.830
169.79
164.71
53.18
198.76
69.93
5.533
191.59
185.58
51-04
208.45
68.92
6.342
215.53
208.40
48.76
218.14
67.06
7.280
241.80
233.30
46.29
227.83
65.03
8.382
270.61
260.43
43.60
237.52
62.79
9.693
302.19
289.96
40.61
247.22
60.27
11.282
336.80
322.07
37.24
256.91
57.38
13.248
374.76
356.98
33.30
266.60
53.95
15.753
416.41
394.91
28.44
276.29
49.69
19.079
462.15
436.14
21.72
285.98
35.65
35.646
512.43
480.97
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.61E-03
80 F
0.1967
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2371
0.2673
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 94.547 + (-8.5034E-02 )TF
+ (-1.9526E-04 )TF»*2
LN(VAP. PRESS.(LB/SQ.IN.)) = 46.5417 - 8060.6 /T
- ( 4.4756)#LN(T)
LN(VAP. PRESS.(LB/SQ.IN.)) = 17.39680 - 11.58641/TR
- 6.241810 LN(TR) + ( 0.428770) TR»»6
HEAT CAP.(BTU/(LB-F)) » 3.6550E-02 + ( 3.570E-04JT
+ (-1.070E-07 )T«*2
620 F
0.2933
A FUNCTION OF
TF = FAHRENHEIT
RANGE
34.8 TO 202.2 F
LESS THAN 43.7
43.7 TO 286.0 C
-9.7 TO 620.3 F
-------
Table 5C
Saturated Liquid Density Measurements for HFC-236ea (CF3CHFCF2H)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
1.6 (34.8)
0.7504
1.4415
1.4714 (91.857)
2.0
1.5014
11.9 (53.4)
0.7371
1.3925
1.4206 (88.685)
2.0
1.4487
22.7 (72.8)
0.7233
1.3686
1.3945 (87.056)
1.9
1.4204
32.4 (90.4)
0.7107
1.3604
1.3751 (85.845
1.1
1.3899
44.6 (112.3)
0.6951
1.3031
1.3258 (82.767)
1.7
1.3485
64.4 (148.0
0.6697
1.2088
1.2265 (76.568)
1.4
1.2442
75.2 (167.3)
0.6559
1.2138
1.2167 (75.956)
0.2
1.2197
94.6 (202.2)
0.6310
1 .1032
1.1069 (69.102)
0.3
1.1 107
44
-------
Table 5D
Vapor Pressure Measurements for HFC-236ea (CF3CHFCF2H)
Part A. Below Boiling Point
Temp
°C (°F)
Measured
kPa (psi)
-49.6 (-57.3)
4.87 (0.706)
-43.6 (-46.5)
7.47 (1.083)
-35.3 (-31.5)
12.49 (1.812)
-32.6 (-26.7)
14.89 (2.160)
-29.6 (-21.3)
17.73 (2.572)
-26.6 (-15.9)
21.00 (3.046)
-23.4 (-10.1)
24.73 (3.587)
-20.9 (-5.6)
28.00 (4.061)
-18.5 (-1.3)
31.77 (4.610)
-16.6 (2.1)
34.89 (5.060)
-14.7 (5.5)
38.36 (5.564)
-12.4 (9.7)
42.86 (6.216)
-10.9 (12.4)
46.97 (6.812)
-9.1 (15.6)
50.00 (7.252)
-7.6 (18.3)
54.09 (7.845)
-5.4 (22.3)
59.73 (8.663)
-3.6 (25.5)
64.39 (9.339)
-2.3 (27.9)
69.39 (10.064)
-1.5 (29.3)
72.19 (10.470)
-0.1 (31.8)
76.75 (11.132)
1.7 (35.1)
82.13 (11.912)
2.6 (36.7)
86.39 (12.530)
3.8 (38.8)
90.13 (13.072)
4.6 (40.3)
93.59 (13.574)
5.7 (42.3)
98.39 (14.270)
6.9 (44.4)
102.92 (14.927)
7.2 (45.0)
104.79 (15.199)
45
-------
Table 5D (Continued)
Vapor Pressure Measurements for HFC-236ea (CF3CHFCF2H)
Part B. Between Boiling Point and Critical Point
Temp
°C (°F)
Measured
kPa (psi)
10.3 (50.5)
121.3 (17.59)
14.1 (57.4)
140.7 (20.41)
19.0 (66.2)
169.3 (24.56)
18.9 (66.0)
168.3 (24.41)
24.8 (76.6)
207.2 (30.05)
30.0 (86.0)
246.7 (35.78)
35.2 (95.4)
291.3 (42.25)
40.0 (104.0)
338.3 (49.07)
45.6 (114.1)
402.6 (58.39)
49.8 (121.6)
455.6 (66.08)
54.8 (130.6)
522.6 (75.80)
59.8 (139.6)
597.6 (86.68)
65.2 (149.4)
690.3 (100.12)
69.9 (157.8)
776.6 (112.64)
74.9 (166.8)
878.3 (127.39)
79.7 (175.5)
979.3 (142.04)
85.6 (186.1)
1123.6 (163.0)
90.0 (194.0)
1227.2 (177.99)
93.3 (199.9)
1324.6 (192.12)
94.7 (202.5)
1359.2 (197.14)
97.0 (206.6)
1462.9 (212.18)
101.8 (215.2)
1626.4 (235.89)
106.9 (224.4)
1807.7 (262.19)
115.5 (239.9)
2157.5 (312.92)
119.9 (247.8)
2350.3 (340.88)
125.3 (257.5)
2609.1 (378.42)
130.3 (266.5)
2869.6 (416.20)
135.2 (275.4)
3145.6 (456.23)
138.1 (280.6)
3312.7 (480.47)
141.1 (286.0)
3533 (512.42)
46
-------
6. HFC-236cb (CF3CF2CFH2)
HFC-236cb is synthesized in 65 percent yield using the reaction
SF4
cf3cf2ch2oh > CF3CF2CFH2
8O0C
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density were calculated up
to the critical temperature by modified corresponding states methods. These data are contained
in Tables 6A-6D. Based on a boiling point of -1.4°C and critical temperature of 130.1oC, HFC-
236cb may be judged an excellent candidate alternative for CFC-114.
47
-------
TABLE 6A
PART A.
PHYSICAL PROPERTIES OF HFC-236CB (CF3CF2CH2F)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS. LIQUID
(C) (C) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(C) (KG/M3) (KPA) (KPA) AT 10 C (J/(G-K)
-105.4 -1.4 130.1 545 — 3118 1.438
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT 0
(C)
OENSITY
DENSITY
MEAS.
CORRES.
VAPORIZAT
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE
(KG/M3)
-21.44
1510
3.08
41.2
...
25.87
-17.44
1499
3.69
50.0
...
25.75
-13.44
1487
4.40
60.2
...
25.62
-9.44
1475
5.21
72.0
...
25.50
-5.44
1463
6.14
85.7
...
25.38
-1.44
1451
7.19
...
101
25.25
3.82
1435
8.76
...
125
24.86
9.08
1418
10.58
...
152
24.45
14.34
1402
12.69
...
184
24.04
19.61
1385
15.11
...
221
23.61
24.87
1337
17.88
...
263
23.17
30.13
1329
21.04
...
311
22.72
35.39
1319
24.63
...
365
22.25
40.65
1308
28.69
...
426
21.77
45.91
1294
33.29
...
494
21.27
51.18
1278
38.47
570
20.74
56.44
1260
44.32
654
20.20
61.70
1240
50.91
747
19.63
66.96
1218
58.36
...
850
19.04
72.22
1194
66.79
...
963
18.41
77.48
1168
76.36
...
1087
17.75
82.75
1139
87.28
...
1222
17.04
88.01
1109
99.82
1370
16.29
93.27
1077
114.34
1530
15.47
98.53
1042
131.35
1705
14.58
103.79
1016
151.54
1895
13.59
109.05
977
175.94
2102
12.48
114.32
932
206.07
...
2326
11.17
119.58
880
244.41
2569
9.56
124.84
814
295.55
2832
7.32
130.10
545
544.70
3118
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.73E-03
300 K
0.845
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1.014
1.154
600 K
1 .248
PART D.
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) = 1344.8 + ( 6.0074E-01 )TC
+ (-3.7259E-02 )TC**2
LN(VAP. PRESS.(KPA))
ID GAS HEAT CAP.(J/(G-K))
40.0358 - 4034.0 /T
- { 3.6704)*LN(T)
0.102 + { 3.036E-03 )T
+ (-1.875E-06 )T**2
RANGE
22.5 TO 100.5 C
LESS THAN -1.4 C
250.0 TO 600.0 K
48
-------
TABLE 6B
PART A.
PART B.
PHYSICAL PROPERTIES OF
HFC-236CB
(CF3CF2CH2F)
(ENGLISH
UNITS)
MELT
ING I
POINT, BOILING POINT.
CRITICAL
PROPERTIES,
AND LIQUID
PHASE HEAT CAPACITIES
P. 1
B.P.
CRIT.
CRIT.
CRIT
. PRESS.
LIQUID
(F)
TEMP.
DENSITY
MEAS.
CORRES.
HEAT CAPAC
(F)
(LB/CU.FT.)
(LB/SQ.IN
.) (LB/SQ.IN
.) AT 104 F
(btu/lb-f;
'.7
29.4
266.2
34.0
452.3
0.3437
PVT !
DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION OF
TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
-------
Table 6C
Saturated Liquid Density Measurements for HFC-236cb (CF3CF2CH2F)
Temp.
°C (°F)
Diameter
(P I + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
22.5 (72.5)
0.6806
1.3245
1.3308 (83.079)
0.4
1.3371
42.5 (108.5)
0.6677
1.3096
1.3088 (81.706)
0.6
1.2988
1 .3180
52.5 (126.5)
0.6536
1.2527
1.2646 (78.946)
0.7
1.2667
1.2743
72.5 (162.5)
0.6255
1.1883
1.1909 (74.345)
0.4
1.1972
1.1872
82.5 (180.5)
0.61 14
1.1347
1.1486 (71.705)
1.2
1.1430
1.1682
100.5 (212.9)
0.5860
1.0448
1.0258 (64.039)
1.4
1.0222
1.0103
50
-------
Table 6D
Vapor Pressure Measurements for HFC-236cb (CF3CF2CH2F)
Below Boiling Point
Temp
°C (°F)
Measured
kPa (psi)
-34.4 (-29.9)
20.93 (3.036)
-31.9 (-25.4)
24.00 (3.481)
-29.7 (-21.5)
27.13 (3.935)
-27.7 (-17.9)
30.20 (4.380)
-25.8 (-14.4)
33.13 (4.805)
-23.0 (-9.4)
38.13 (5.530)
-22.0 (-7.6)
40.13 (5.820)
-18.8 (-1.8)
46.93 (6.807)
-16.0 (3.2)
53.20 (7.716)
-14.6 (5.7)
57.33 (8.315)
-12.8 (9.0)
62.13 (9.011)
-11.1 (12.0)
66.66 (9.668)
-9.1 (15.6)
72.79 (10.557)
-7.8 (18.0)
77.86 (11.293)
-5.9 (21.4)
83.79 (12.153)
-4.2 (24.4)
90.53 (13.130)
-2.1 (28.2)
98.39 (14.270)
-1.2 (29.8)
102.52 (14.869)
0.8 (33.4)
111.05 (16.107)
5 1
-------
7. HFC-236ca (CHF2CF2CF2H}
HFC-236ca is synthesized in 90 percent yield using the reaction sequence
NaOH
CF2(CF2C02H)2 > CF2(CF2C02Na)2
H2O
CF2(CF2C02H)2 > CHF2CF2CF2H
220-240OC
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data and estimated data are given in Tables 7 A and 7B.
Measured liquid densities and measured vapor pressures are given in Tables 7C and 7D,
respectively. The boiling point, 12.6°C, and low estimated vapor phase thermal conductivity,
8.48 x 10-3 W/m K), makes HFC-236ca a possible alternative blowing agent in the
manufacture of foam insulation to replace CFC-11 and HCFC-141b. It also may serve as a low
pressure refrigerant with some of the same applications as CFC-11 and HCFC-123.
52
-------
TABLE 7A
PART A.
PHYSICAL PROPERTIES OF HFC-236CA (HCF2CF2CF2H)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
¦123.3
B.P.
(C)
12.6
CRIT. CRIT. CRIT. PRESS.
TEMP. DENSITY MEAS. CORRES.
(C) (KG/M3) (KPA) (KPA)
155.2 558 —- 3405
LIQUID
HEAT CAPACITY
AT 40 C (J/(G-K)
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT Oi
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZAT
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE
(KG/M3)
-7.40
1564
3.06
43.2
27.31
-3.40
1552
3.63
51.9
27.17
0.60
1540
4.28
61.9
27.03
4.60
1528
5.03
73.4
26.89
8.60
1516
5.87
86.5
26.75
12.60
1504
6.82
101
26.59
18.30
1487
8.36
126
26.18
24.01
1475
10.16
154
25.75
29.71
1456
12.25
188
25.31
35.42
1436
14.67
227
24.86
41 .12
1416
17.45
271
24.40
46.82
1395
20.62
322
23.92
52.53
1374
24.24
---
380
23.43
58.23
1353
28.35
446
22.92
63.94
1331
33.00
519
22.39
69.64
1309
38.26
602
21.84
75.34
1286
44.21
693
21.27
81.05
1263
50.93
794
20.67
86.75
1240
58.53
906
20.05
92.46
1216
67.14
...
1030
19.39
98.16
1191
76.92
...
1165
18.69
103.86
1166
88.10
1313
17.95
109.57
1141
100.94
1475
17.15
115.27
1115
115.83
---
1652
16.29
120.98
1074
133.28
---
1844
15.35
126.68
1038
154.01
...
2053
14.31
132.38
997
179.09
...
2281
13.13
138.09
950
210.12
2528
11.76
143.79
894
249.69
2796
10.06
149.50
825
302.72
3088
7.70
155.20
558
558.10
3405
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.22E-03
300 K
0.817
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.986
1.127
600 K
1 .228
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3)
EQUATION
1550.7 + (-3.0040E+00 )TC
+ (-6.7064E-03 )TC*»2
LNfVAP. PRESS.(KPA)) = 44.0467 - 4410.9 /T
M - ( 4.2424)*LN(T)
ID GAS HEAT CAP.(J/(G-K)) - 0.098 + ( 2.904E-03 )J
+ (-1.700E-06 JT**2
RANGE
22.0 TO 120.0 C
LESS THAN 12.6 C
250.0 TO 600.0 K
53
-------
TABLE 7B
PART A.
PHYSICAL PROPERTIES OF HFC-236CA (HCF2CF2CF2H)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
¦189.9
B.P.
(F)
54.7
CRIT.
TEMP.
(F)
311.4
CRIT.
DENSITY
(LB/CU.FT.)
34.8
CRIT. PRESS.
MEAS. CORRES.
(LB/SQ.IN.) (LB/SQ.IN.
493.9
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
(F)
LIQUIO VAPOR PRESSURE HEAT OF
DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
PART C
18.68
97.64
0.191
6.27
77.30
25.88
96.91
0.226
7.52
---
76.90
33.08
96.17
0.267
8.97
---
76.50
40.28
95.42
0.314
10.64
---
76.10
47.48
94.67
0.367
12.55
---
75.70
54.68
93.91
0.426
14.70
75.26
64.95
92.82
0.522
18.23
74.09
75.21
92.07
0.634
22.39
72.88
85.48
90.87
0.765
27.25
71.65
95.75
89.64
0.916
32.89
70.38
106.02
88.39
1.089
39.37
69.07
116.28
87.11
1.287
46.77
67.72
126.55
85.80
1.513
55.18
66.32
136.82
84.47
1.770
___
64.67
64.88
147.08
83.11
2.060
75.34
63.38
157.35
81.72
2.389
87.25
61.83
167.62
80.30
2.760
100.52
60.21
177.89
78.86
3.179
---
115.22
58.51
188.15
77.39
3.654
131.45
56.74
198.42
75.89
4.191
149.33
54.87
208.69
74.37
4.802
---
168.95
52.89
218.96
72.81
5.500
190.44
50.79
229.22
71.24
6.302
- —
213.92
48.54
239.49
69.63
7.231
239.54
46.11
249.76
67.07
8.320
...
267.44
43.45
260.02
64.78
9.615
...
297.79
40.51
270.29
62.22
11.180
...
330.79
37.17
280.56
59.28
13.117
366.64
33.28
290.83
55.82
15.588
....
405.59
28.47
301.09
51.51
18.898
...
447.89
21.80
311.36
34.84
34.841
493.87
0.00
C. VAPOR PHASE THERMAL
CONDUCTIVITY AND
IDEAL GAS HEAT
CAPACITY
THERMAL COND.
HEAT CAPACITY
(BTU/(HR-FT-F))
5.33E-03
80 F
0.1953
260 F
0.2357
(BTU/(LB-F))
440 F
0.2694
620 F
0.2935
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. OENS.(LB/CU.FT.) = 100.011 + (-9.5915E-02 )TF
+ (-1.2922E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.)) = 44.6096 - 7939.6 /T
V - ( 4.2424)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F)) = 2.3474E-02 + ( 3.857E-04)T
+ (-1.254E-07 )T»»2
RANGE
71.6 TO 248.0 F
LESS THAN 54.7 F
-9.7 TO 620.3 F
54
-------
Table 7C
Saturated Liquid Density Measurements for HFC-236ca (HCF2CF2CF2H)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
(g/cm3)
Avg.
Liquid
Density
g/cm3 (ib/ft3)
Std.
Dev.
(%)
22.0 (71.6)
0.7427
1.4545
1.4758
1.5204
1.4836 (92.618)
1.9
40.0 (104.0)
0.7177
1.3964
1.4086
1.4560
1.4204 (88.671)
1.8
60.0 (140.0)
0.6900
1.3231
1.3309
1.3614
1.3385 (83.557)
1.2
80.0 (176.0)
0.6623
1.2586
1.2656
1.2795
1.2679 (79.153)
0.7
100.0 (212.0)
0.6346
1.1725
1.1749
1.2194
1.1890 (74.225)
1.8
110.0 (230.0)
0.6207
1.1350
1.1370
1.1705
1.1475 (71.635)
1.4
120.0 (248.0)
0.6069
1.0747
1.0751
1.1033
1.0844 (67.695)
1.2
-------
Table 7D
Vapor Pressure Measurements for HFC-236ca (HCF2CF2CF2H)
Below Boiling Point.
Temp
0C (Op)
Measured
kPa (psi)
-23.5 (-10.3)
19.20 (2.785)
-21.4 (-6.5)
21.86 (3.171)
-18.0 (-0.4)
25.60 (3.713)
-15.4 (4.3)
29.33 (4.254)
-12.7 (9.1)
33.46 (4.854)
-10.8 (12.6)
36.93 (5.356)
-8.5 (16.7)
40.93 (5.936)
-6.3 (20.7)
45.60 (6.613)
-3.4 (25.9)
52.13 (7.561)
-1.2 (29.8)
57.06 (8.276)
0.6 (33.1)
61.99 (8.992)
2.8 (37.0)
68.66 (9.959)
4.9 (40.8)
73.86 (10.713)
6.3 (43.3)
78.26 (11.351)
8.5 (47.3)
85.46 (12.395)
10.3 (50.5)
92.73 (13.449)
11.7 (53.1)
97.59 (14.155)
12.4 (54.3)
100.66 (14.599)
12.8 (55.0)
103.32 (14.986)
56
-------
0. HFC-245fa (CF3CH2CF2H)
HFC-245fa is synthesized in 98 percent yield with 99.8 percent purity using the
reduction reaction
H2
CF3CH=CF2 > cf3ch2cf2h
Pd/C
Reaction conditions are 0.15 moles CF3CH=CF2, 15 g of 1% Pd on carbon catalyst, and 48 hours
of reaction time in which H2 is added in 3 steps to a final pressure of 1551 kPa (225 psi).
Liquid densities and the critical properties of this compound were measured. These data
and measured vapor pressures up to the boiling point were used to calculate the vapor densities
in the liquid-vapor coexistence region and vapor pressures up to the critical pressure by a
corresponding states method that is modified with the Pitzer acentric factor. The liquid heat
capacity at 40°C was also measured. These and other estimated data are given Tables 8A-8D.
The boiling point of 15.3°C and relatively low estimated vapor phase thermal conductivity,
9.7 x 10-3 w/m K, makes HFC-245fa a possible alternative blowing agent for CFC-11 and
HCFC-141b in the manufacture of foam insulation or as a medium pressure refrigerant.
57
-------
TABLE 8A
PART A.
PHYSICAL PROPERTIES OF HFC-245FA (CF3CH2CF2H)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS. LIQUID
(C) (C) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(C) (KG/M3) (KPA) (KPA) AT 40 C
-------
TABLE 8B
PART A.
PHYSICAL PROPERTIES OF HFC-245FA (CF3CH2CF2H)
(ENGLISH UNITS)
MELTING POINT, 80ILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
-------
Table 8C
Saturated Liquid Density Measurements for HFC-245fa (CF3CH2CF2H)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
<%)
11.3 (52.3)
0.6876
1.3295
1.3424 (83.803)
0.69
1.3469
1.3508
30.6 (87.1)
0.6666
1.3111
1.3176 (82.255)
0.47
1.3159
1.3259
44.1 (111.4)
0.6519
1.2735
1.2823 (80.051)
0.61
1.2808
1.2925
57.3 (135.1)
0.6376
1.2306
1.2375 (77.255)
0.51
1.2362
1.2458
75.0 (167.0)
0.6183
1.1798
1.1871 (74.108)
0.56
1.1855
1.1959
84.5 (184.1)
0.6080
1.1456
1.1505 (71.823)
0.40
1.1491
1.1567
60
-------
Table 8D
Vapor Pressure Measurements for HFC-245fa (CF3CH2CF2H)
Below the Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-56.5 (-69.7)
1.73 (0.251)
-49.0 (-56.2)
3.07 (0.445)
-40.9 (-41.6)
5.33 (0.773)
-35.6 (-32.1)
7.40 (1.073)
-29.4 (-20.9)
11.13 (1.614)
-24.2 (-11.6)
15.07 (2.186)
-15.6 (3.9)
24.46 (3.548)
-15.4 (4.3)
24.66 (3.577)
-11.3 (11.7)
30.40 (4.409)
-10.8 (12.6)
30.70 (4.453)
-9.2 (15.4)
33.40 (4.844)
-7.4 (18.7)
36.66 (5.317)
-6.0 (21.2)
40.66 (5.897)
-4.3 (24.3)
42.80 (6.208)
-2.6 (27.3)
46.17 (6.696)
-0.7 (30.74)
50.76 (7.362)
0.6 (33.08)
53.69 (7.787)
2.5 (36.5)
58.66 (8.508)
3.0 (37.4)
60.20 (8.731)
4.2 (39.6)
63.19 (9.165)
6.2 (43.2)
68.33 (9.911)
7.8 (46.0)
74.13 (10.752)
9.5 (49.1)
79.73 (11.564)
10.7 (51.3)
83.86 (12.163)
11.6 (52.9)
86.86 (12.598)
13.5 (56.3)
94.30 (13.677)
14.0 (57.2)
95.93 (13.914)
15.6 (60.1)
101.66 (14.745)
16.2 (61.2)
104.66 (15.180)
61
-------
9. HFC-245ca (CHF2CF2CFH2)
HFC-245ca is synthesized in 80 percent yield using the reaction
SF4
CHF2CF2CH2OH > CHF2CF2CFH2
80°C
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density were calculated up
to the critical temperature by modified corresponding states methods. These data are contained
in Tables 9A-9D. The boiling point of 25°C and critical temperature of 178.4°C suggests HFC-
245ca may be an excellent alternative for CFC-11 (boiling point = 23.8°C; critical
temperature = 198°C). Its estimated vapor phase thermal conductivity of 8.96 x 10-3 w/m K
is low enough so that HFC-245ca might be used as a blowing agent in the manufacture of foam
insulation. HFC-245ca is particularly desirable in that it is the only nonchlorine-containing
propane derivative which has a boiling point almost identical to CFC-11. Since it also contains
three hydrogen atoms per molecule, the compound has a probable low global warming potential
as well as a zero ozone depletion potential. With the number of C-F bonds equalling the sum of
the C-C and C-H bonds, the compound is apt to be borderline flammable.
62
-------
TABLE 9A
PHYSICAL PROPERTIES OF HFC-245CA (HCF2CF2CH2F)
(SI UNITS)
PART A.
MELT ING
POINT, BO I
ILING POINT,
CRITICAL
PROPERT1ES, AND LIQUID
PHASE HEAT CAPACITIES
P. 8.P.
CRIT.
CRIT.
CRIT.
. PRESS.
L1QU1D
!) (C)
TEMP.
DENSITY
MEAS.
CORRES,
HEAT CAPAC IT'
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-
1.4 25.0
178.4
529
3855
1 .454
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
4.96
1388
2.60
43.6
...
29.02
8.96
1379
3.07
52.2
...
29.06
12.96
1370
3.61
62.0
...
29.10
16.96
1361
4.23
73.4
29.14
20.96
1352
4.94
86.5
29.18
24.96
1336
5.74
101
29.21
31.10
1325
7.10
127
28.75
37.24
1313
8.71
158
28.27
43.37
1300
10.59
193
27.78
49.51
1287
12.77
235
27.28
55.65
1273
15.29
284
26.77
61.79
1258
18.19
340
26.23
67.92
1242
21.51
403
25.68
74.06
1225
25.29
...
476
25.12
80.20
1207
29.59
...
557
24.53
86.34
1189
34.47
649
23.91
92.47
1170
40.00
751
23.28
98.61
1149
46.27
865
22.61
104.75
1128
53.37
......
991
21.91
110.89
1107
61.44
...
1130
21.18
117.02
1084
70.63
___
1283
20.40
123.16
1060
81.14
...
1451
19.58
129.30
1036
93.25
...
1636
18.70
135.44
1011
107.30
1837
17.74
141.57
982
123.80
2057
16.71
147.71
950
143.44
...
2297
15.55
153.85
913
167.26
2558
14.25
159.99
871
196.80
---
2843
12.73
166.12
820
234.58
3152
10.86
172.26
756
285.37
...
3489
8.28
178.40
529
529.10
3856
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
8.96E-03
300 K
0.871
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1 .056
1.225
600 K
1.328
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3) =
LN(VAP. PRESS.(KPA))
EQUATION
1371.4 + (-1.1529E+00 )TC
+ (-1.1143E-02 )TC**2
» 7.9698 - 3138.1 /T
- (-1.2597)*LN(T)
ID GAS HEAT CAP.(J/(G-K)) = 0.037 + ( 3.385E-03 )T >
+ (-2.050E-06 )T**2
RANGE
22.0 TO 140.0 C
LESS THAN 25.0 C
250.0 TO 600.0 K
63
-------
TABLE 9B
PART A.
PHYSICAL PROPERTIES OF HFC-245CA (HCF2CF2CH2F)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS.
(F) (F) TEMP. DENSITY MEAS. CORRES.
(F) (LB/CU.FT.) (LB/SQ.1N.) (LB/SQ.IN.
LIQUID
HEAT CAPACITY
) AT 104 F
(BTU/LB-F)
-100.1 76.9 353.1 33.0 559-2 0.3476
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
-------
Table 9C
Saturated Liquid Density Measurements for HFC-245ca (HCF2CF2CH2F)
Temp.
°C (°F)
Diameter
(P | + Pg )/2
g/cm3
Liquid
Density
g/cm3)
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
22.0 (71.6)
0.6883
1.3520
1.3443 (83.922)
0.51
1.3353
1.3455
60.0 (140.0)
0.6496
1.2422
1.2522 (78.172)
0.66
1 .2518
1.2625
80.0 (176.0)
0.6293
1.2123
1.2079 (75.407)
0.62
1.2142
1.1974
100.0 (212.0)
0.6089
1.1724
1.1522 (71.930)
1.65
1.1575
1.1268
120.0 (248.0)
0.5886
1.0794
1.0760 (67.173)
0.51
1.0683
1.0803
140.0 (284.0)
0.5682
1.0071
0.9870 (61.616)
1.85
0.991 1
0.9629
65
-------
Table 9D
Vapor Pressure Measurements for HFC-245ca (HCF2CF2CH2F)
Below the Boiling Point.
Temp
oC (0F)
Measured
kPa (psi)
-39.1 (-38.4)
4.33 (0.628)
-34.2 {-29.6)
5.60 (0.812)
-29.0 (-20.2)
7.60 (1.102)
-23.5 (-10.3)
10.40 (1.508)
-18.8 (-1.8)
13.40 (1.944)
-13.7 (7.3)
17.80 (2.582)
-10.6 (12.9)
20.53 (2.978)
-6.6 (20.1)
25.53 (3.703)
-3.3 (26.1)
30.00 (4.351)
0.2 (32.4)
35.13 (5.095)
2.7 (36.9)
39.86 (5.781)
6.7 (44.1)
47.46 (6.884)
9.8 (49.6)
54.46 (7.899)
12.7 (54.9)
62.66 (9.088)
14.5 (58.1)
66.66 (9.668)
16.2 (61.2)
71.19 (10.325)
18.9 (66.0)
79.33 (11.506)
20.3 (68.5)
83.99 (12.182)
22.9 (73.2)
91.59 (13.284)
24.6 (76.3)
100.53 (14.581)
25.6 (78.1)
102.92 (14.927)
66
-------
10. HFC-245cb (CF3CF2CH3)
HFC-245cb is synthesized using the reaction
SF4
CF3(CO)CH3 > cf3cf2ch3
150°C
The reaction yield is 60 percent and the purity of the final product is 99.5 percent.
HFC-245cb and HFC-227ea are the two lowest boiling fluorinated propanes synthesized
in this study (boiling point = -18.3<>C). The critical temperature of HFC-245cb is 108.5°C.
HFC-245cb has the largest differential between the boiling point and critical temperature
observed for a fluorinated propane or fluorinated ether compound thus far. This characteristic
provides for potentially improved refrigeration efficiency. Therefore, HFC-245cb should be an
excellent possibility for a fluorinated propane alternative to CFC-12. In addition, the zero
chlorine content and relatively high hydrogen content should translate into zero ozone depletion
and low global warming potentials. Measurements on this compound include the melting point,
boiling point, liquid phase density, critical temperature, critical density, and vapor pressure
up to the critical point. These measured data along with estimated data are presented in Tables
10A-10D. From the measured critical properties and boiling point, the vapor pressure and
vapor density were calculated up to the critical temperature by modified corresponding states
methods. As is the case for HFC-245fa and HFC-245ca, HFC-245cb may be marginally
flammable.
67
-------
TABLE 10A
PART A.
PHYSICAL PROPERTIES OF HFC-245CB (CF3CF2CH3)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
-81.1
B.P.
(C)
-18.3
CRIT.
TEMP.
(C)
108.5
CRIT.
DENSITY
(KG/M3)
499
CRIT. PRESS.
MEAS. CORRES.
(KPA) (KPA)
3264
3113
LIQU ID
HEAT CAPACITY
AT 40 C (J/(G-K)
1.457
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT 01
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPOR 1ZAT
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE
(KG/M3)
-38.30
1374
2.76
39.2
23.67
-34.30
1363
3.34
48.0
...
23.65
-30.30
1351
4.02
58.3
23.64
-26.30
1340
4.80
70.5
23.63
-22.30
1328
5.71
84.7
23.62
-18.30
1317
6.76
97.9
101
23.59
-13.23
1302
8.24
121.7
125
23.22
-8.16
1286
9195
149.6
152
22.85
-3.08
1271
11.94
182.3
184
22.46
1.99
1255
14.22
220.0
221
22.06
7.06
1239
16.83
263.3
264
21.65
12.13
1223
19.80
312.5
312
21.23
17.20
1206
23.17
368.3
366
20.79
22.28
1188
26.99
431.1
427
20.34
27.35
1169
31.30
501.4
496
19.87
32.42
1152
36.16
579.7
572
19.39
37.49
1134
41.63
666.5
657
18.88
42.56
1115
47.80
762.6
750
18.35
47.64
1094
54.76
868.4
853
17.79
52.71
1073
62.62
984.7
966
17.21
57.78
1050
71.54
1112.3
1090
16.59
62.85
1025
81.70
1251.9
1225
15.93
67.92
1000
93.35
1404.6
1373
15.23
73.00
973
106.82
1571.4
1533
14.46
78.07
945
122.57
1753.6
1708
13.63
83.14
912
141.23
1952.5
1897
12.71
88.21
876
163.74
2169.7
2102
11.67
93.28
835
191.51
2407.2
2325
10.45
98.36
786
226.89
2667.1
2567
8.94
103.43
725
274.47
2951.8
2829
6.85
108.50
499
499.10
3264.5
3113
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
1.Q7E-02
300 K
0.899
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1.082
1.228
600 K
1.346
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE
TEMPERATURE AND TR = REDUCED TEMPERATURE)
EQUATION
LIQ. DENS. (KG/M3) = 1237.6 + (-1.3492)TC**2
LN(VAP. PRESS.(KPA)) » 18.2037
2933.3 /T
- [ 0.3749 )*LN(T)
LN (VAP. PRESS.(KPA)) = 20.26775 - 12.65913/TR
- 7.999771 LN(TR) + ( 0.482227) TR**6
HEAT CAP.(J/(G-K))
0.161 + ( 2.949E-03 )T
+ (-1.625E-06 )T**2
RANGE
23.0 TO 82.0 C
LESS THAN -18.3 C
-18.3 TO 108.5 C
250.0 TO 600.0 K
68
-------
TABLE 10B
PART A.
PHYSICAL PROPERTIES OF HFC-245CB (CF3CF2CH3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. 8.P. CRIT. CRIT.
(F) (F) TEMP. DENSITY
(F) (LB/CU.FT.)
CRIT. PRESS.
MEAS. CORRES.
(LB/SQ.IN.) (LB/SQ.IN
LIQU10
HEAT CAPACITY
) AT 104 F
(BTU/LB-F)
-114.0 -0.9 227.3 31.2 473.40 451.4 0.3483
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR
(F) DENSITY DENSITY MEAS.
(LB/CU.FT.) CORRES. (LB/SQ.
(LB/CU.FT.)
-36.94
-29.74
-22.54
-15.34
-8.14
-0.94
8.19
17.32
26.45
35.58
44.71
53.84
62.97
72.10
81.23
90.36
99.49
108.62
117.74
126.87
136.00
145.13
154.26
163.39
172.52
181.65
190.78
199.91
209.04
218.17
227.30
85.76
85.06
84.35
83.64
82.92
82.19
81.26
80.31
79.34
78.36
77.35
76.33
75.27
74.19
72.97
71.92
70.80
69.60
68.32
66.96
65.52
64.01
62.42
60.74
59.00
56.96
54.71
52.14
49.09
45.28
31.16
0.172
0.209
0.251
0.300
0.356
0.422
0.514
0.621
0.745
0.888
1.051
1.236
1.447
1.685
1.954
2.257
2.599
2.984
3.419
3.909
4.466
5.100
5.828
6.669
7.652
8.817
10.222
11.956
14.165
17.135
31.158
5.68
6.96
8.46
10.23
12.29
14.19
17.64
21.70
26.44
31.91
38.18
45.33
53.42
62.53
72.72
84.07
96.67
110.60
125.95
142.82
161.32
181.58
203.73
227.92
254.34
283.18
314.69
349.14
386.83
428.13
473.47
PRESSURE HEAT OF
CORRES. VAPOR IZATI ON
IN.) (LB/SQ.IN.) (BTU/LB)
75.98
75.94
75.90
75.86
75.82
14.70 75.74
18.11 74.56
22.11 73.35
26.75 72.11
32.11 70.83
38.24 69.51
45.22 68.16
53.11 66.76
61.98 65.31
71.91 63.80
82.97 62.24
95.24 60.61
108.80 58.91
123.74 57.13
140.13 55.25
158.09 53.26
177.71 51.15
199.09 48.89
222.37 46.44
247.67 43.77
275.14 40.81
304.94 37.46
337.25 33.54
372.28 28.70
410.26 21.99
451.45 0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
6.17E-03
80 F
0.2149
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2586
0.2935
620 F
0.3218
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT
TEMPERATURE AND TR =• REDUCED TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 78.835 + (-3.4142E-02 )TF
+ (-4.6865E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.))
16.4933 - 5279.9 /T
- ( 0.3749)*LN(T)
LN(VAP. PRESS.(LB/SQ.IN.)) - 18.33699 - 12.65913/TR
- 7.999771 LN(TR) + ( 0.482227) TR**6
HEAT CAP.(BTU/(LB-F)) = 3.8450E-02 + ( 3.917E-04JT
+ (-1.199E-07 )T**2
69
RANCE
73.4 TO 179.6 F
LESS THAN -0.9 F
-0.9 TO 227.3 C
-9.7 TO 620.3 F
-------
Table 10C
Saturated Liquid Density Measurements for HFC-245cb (CF3CF2CH3)
Temp.
°C (°F)
Diameter
(P| + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
23.0 (73.3)
0.6113
1.1692
1.1721
1.2133
1.1849 (73.971)
1.7
34.4 (93.9)
0.5963
1.1301
1.1325
1.1647
1.1424 (71.318)
1 .4
43.3 (109.9)
0.5846
1.1055
1.0993
1.1230
1.1093 (69.251)
0.9
52.6 (126.7)
0.5724
1.0673
1.0628
1.0908
1.0736 (67.023)
1.2
61.5 (142.7)
0.5608
1.0299
1.0250
1.0468
1.0339 (64.544)
0.9
71.2 (160.2)
0.5480
0.9864
0.9802
0.9914
0.9860 (61.554)
0.5
81.2 (178.2)
0.5349
0.9278
0.9193
0.9256
0.9242 (57.696)
0.4
70
-------
Table 10D
Vapor Pressure Measurements for HFC-245cb (CF3CF2CH3)
Part A. Below the Boiling Point.
Temp
Measured
°C (°F)
kPa (psi)
00
i—
00
¦
CVJ
CO
co
1
9.27 (1.345)
¦54.7 (-66.5)
15.73 (2.282)
-51.9 (-61.4)
18.40 (2.669)
-50.1 (-58.2)
20.66 (2.997)
-47.7 (-53.9)
23.73 (3.442)
-46.5 (-51.7)
25.73 (3.732)
-44.3 (-47.7)
28.40 (4.119)
-42.3 (-44.1)
31.86 (4.621)
-38.9 (-38.0)
37.86 (5.491)
-37.3 (-35.1)
41.13 (5.965)
-35.3 (-31.5)
45.73 (6.633)
-33.1 (-27.6)
50.66 (7.348)
-31.0 (-23.8)
56.00 (8.122)
-28.3 (-18.9)
63.99 (9.281)
-25.8 (-14.4)
71.46 (10.364)
-23.4 (-10.1)
79.46 (11.525)
-22.1 (-7.8)
87.59 (12.704)
-20.3 (-4.54)
93.73 (13.594)
-18.5 (-1.3)
99.59 (14.444)
71
-------
Table 100 (Continued)
Vapor Pressure Measurements for HFC-245cb (CF3CF2CH3)
Part B. Between Boiling Point and Critical Point
Temp
°C (°F)
Measured
kPa (psi)
7.05 (44.69)
263.64 (38.238)
10.13 (50.23)
292.64 (42.444)
15.05 (59.09)
343.97 (49.888)
20.03 (68.05)
401.63 (58.252)
25.05 (77.09)
467.63 (67.824)
30.04 (86.07)
540.62 (78.411)
35.12 (95.22)
623.95 (90.497)
40.14 (104.25)
715.27 (103.742)
45.37 (113.67)
820.27 (118.971)
40.15 (104.27)
714.94 (103.694)
45.37 (113.67)
819.93 (118.921)
50.15 (122.27)
925.26 (134.198)
55.15 (131.27)
1046.58 (151.794)
60.06(140.1 1)
1175.90 (170.551)
65.06 (149.11)
1319.89 (191.434)
70.25 (158.45)
1483.21 (215.122)
75.18 (167.32)
1650.53 (239.390)
80.34 (176.61)
1839.18 (266.751)
85.50 (185.90)
2044.16 (296.481)
86.25 (187.25)
2099.49 (304.506)
90.15 (194.27)
2244.15 (325.488)
95.58 (204.04)
2497.13 (362.179)
96.06 (204.91)
2556.62 (370.808)
97.56 (207.61)
2610.45 (378.615)
102.07 (215.73)
2877.09 (417.288)
104.16 (219.49)
2995.09 (434.403)
108.16 (226.69)
3262.73 (473.221)
72
-------
11. HFC-254cb (CF2HCF2CH3)
HFC-254cb is synthesized in 90 percent yield using the reaction sequence
Tosyl-CI
CF2HCF2CH3 > CF2HCF2CH20-Tosyl
(pyridine, 0°C)
UAIH4
CF2HCF2CH20-Tosyl > CF2HCF2CH3
(diglyme, 90°C)
Tosyl stands for the p-toluenesulfonyl group. Diglyme is (CH30CH2CH2)20.
Measurements on this compound include the melting point, boiling pint, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. These data
and estimated data are presented in Tables 11A-11D. Based on a boiling point of -0.8°C and
critical temperature of 146.1°C, HFC-254cb may be judged to be a possible alternative for
CFC-114. Since the hydrogen content of this compound is relatively high, the compound is
likely to be flammable.
73
-------
TABLE 11A
PHYSICAL PROPERTIES OF HFC-254CB (HCF2CF2CH3)
PART B
(SI UNITS)
MELTING
POINT, BOILING POINT,
CR IT1CAL
PROPERT1
PHASE HEAT CAPAC I
TIES
,P. B.P.
CRIT.
CRIT.
CRIT.
. PRESS.
:) (c)
TEMP.
DENSITY
MEAS.
CORRES
(C)
(KG/M3)
(KPA)
(KPA)
1.1 -0.8
146.1
467
3753
PVT DATA
AND HEAT
OF VAPOR IZAT
ION AS A
FUNCTION
TEMP.
L1QU10
VAPOR
PRESSURE
(C)
DENSITY
DENSITY
MEAS.
CORRES.
(KG/M3)
CORRES.
(KPA)
(KPA)
(KG/M3)
-20.78
1301
2.39
42.2
-16.78
1291
2.85
50.9
---
-12.78
1281
3.38
61.0
-8.78
1272
3.98
72.7
-4.78
1262
4.67
86.1
-0.78
1252
5.44
---
101
5.10
1237
6.73
---
127
10.97
1222
8.25
mmm
158
16.85
1207
10.02
---
193
22.72
1192
12.07
___
235
28.60
1175
14.43
___
284
34.47
1164
17.14
339
40.35
1151
20.24
...
402
46.22
1137
23.76
474
52.10
1121
27.75
555
57.97
1104
32.27
...
645
63.85
1085
37.38
---
746
69.72
1064
43.15
858
75.60
1042
49.68
981
81.47
1019
57.07
1118
87.35
994
65.46
---
1268
93.22
967
75.04
---
1432
99.10
939
86.02
---
1612
104.97
910
98.73
1807
110.85
889
113.60
2021
116.72
858
131.24
2253
122.60
823
152.54
2506
128.47
784
178.89
2780
134.35
736
212.64
___
3078
140.22
677
258.69
3402
146.10
467
467.40
3753
LIQU i D
HEAT CAPACITY
AT 40 C (J/(G-K)
1 .590
HEAT OF
VAPOR IZATI ON
(KJ/MOLE)
25.22
25.15
25.08
25.01
24.94
24.86
24.47
24.08
23.67
23.26
22.83
22.38
21.92
21.45
20.96
20.45
19.92
19.36
18.77
18.16
17.51
16.82
16.08
15.28
14.40
13.43
12.33
11.05
9.46
7.26
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
1.06E-02
300 K
0.937
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1.142
1.321
600 K
1.454
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T » KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) = 1207.7 + (-5.0343E-01 )TC
+ (-2.2255E-02 )TC**2
RANGE
23.0 TO 110.5 C
LN(VAP. PRESS.(KPA))
29.5551 - 3565.6 /T
- ( 2.1126)#LN( T)
LESS THAN
-0.8 C
ID GAS HEAT GAP.(J/(G-K)) = 0.093 + ( 3.350E-03 )T
+ (-1.800E-06 )T**2
250.0 TO 600.0 K
74
-------
TABLE 11B
PART A.
PHYSICAL PROPERTIES OF HFC-254CB (HCF2CF2CH3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
•186.0
B.P.
(F)
30.6
CRIT. CRIT.
TEMP. DENSITY
(F) {LB/CU.FT.)
295.0
29.2
CRIT. PRESS.
MEAS. CORRES.
(LB/SQ.IN.) (LB/SQ.IN.)
544.3
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
0.3801
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
(F)
-5.40
1.80
9.00
16.20
23.40
30.60
41.17
51.75
62.32
72.90
83.47
94.05
104.62
115.20
125.77
136.35
146.92
157.50
168.08
178.65
189.23
199.80
210.38
220.95
231.53
242.10
252.68
263.25
273.83
284.40
294.98
LIQUID VAPOR PRESSURE HEAT OF
DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
81.20
80.60
80.00
79.39
78.78
78.16
77.24
76.31
75.36
74.40
73.36
72.66
71.87
70.98
69.99
68.90
67.73
66.45
65.08
63.61
62.05
60.39
58.64
56.79
55.50
53.57
51.40
48.92
45.97
42.26
29.18
0.149
0.178
0.211
0.248
0.291
0.340
0.420
0.515
0.625
0.753
0.901
1.070
1 .263
1.483
1.732
2.015
2.334
2.694
3.101
3.563
4.087
4.684
5.370
6.164
7.092
8.193
9.523
11.168
13.275
16.149
29.179
6.12
7.38
8.85
10.54
12.48
14.70
18.43
22.85
28.05
34.12
41.13
49.18
58.35
68.74
80.44
93.55
108.17
124.40
142.35
162.13
183.87
207.69
233.73
262.15
293.11
326.79
363.41
403.20
446.42
493.36
544.36
93.54
93.28
93.02
92.76
92.50
92.20
90.77
89.31
87.80
86.25
84.66
83.01
81.31
79.55
77.73
75.84
73.86
71.80
69.63
67.35
64.94
62.38
59.63
56.66
53.42
49.82
45.74
40.98
35.09
26.92
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
6.15E-03
80 F
0.2240
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2730
0.3158
620 F
0.3476
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF '
EQUATION
LIQ. DENS.(LB/CU.FT.) = 75.516 + ( 9.9838E-03 )TF
+ (-4.2881E-04 )TF**2
FAHRENHEIT TEMPERATURE)
RANGE
LN(VAP. PRESS.(LB/Sq.IN.)) =
ID GAS HEAT CAP.(BTU/(LB-F))
28.8661 - 6418.1 /T
- ( 2.1126)*LN(T)
= 2.2231E-02 + ( 4.449E-04)T
+ (-1.328E-07 )T**2
73.4 TO 230.9 F
LESS THAN 30.6 F
-9.7 TO 620.3 F
75
-------
Table 11C
Saturated Liquid Density Measurements for HFC-254cb (HCF2CF2CH3)
Temp.
°C (°F)
Diameter
(P [ +¦ Pg )'2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
q/cm3 (lb/ft3)
Std.
Dev.
<%)
23.5 (74.3)
0.5929
1.1613
1.1724
1.1799
1.1712 (73.116)
0.7
43.5 (110.3)
0.5727
1.2254
1.1603
1.1237
1.1698 (73.028)
3.6
63.5 (146.3)
0.5524
1.0838
1.0824
1.0814
1.0825 (67.578)
0.1
73.5 (164.3)
0.5422
1.0291
1.0420
1.0512
1.0408 (64.975)
0.9
93.5 (200.3)
0.5219
0.9529
0.9605
0.9661
0.9598 (59.918)
0.6
100.5 (212.9)
0.5148
0.9240
0.9290
0.9326
0.9285 (57.964)
0.4
110.5 (230.9)
0.5047
0.8806
0.8907
0.8986
0.8900 (55.561)
0.8
76
-------
Table 11D
Vapor Pressure Measurements for HFC-254cb (HCF2CF2CH3)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-46.2 (-51.2)
10.93 (1.585)
-43.8 (-46.8)
12.53 (1.817)
-42.1 (-43.8)
13.73 (1.991)
-40.2 (-40.4)
15.33 (2.223)
-38.4 (-37.1)
17.07 (2.476)
-35.4 (-31.7)
20.00 (2.901)
-33.3 (-27.9)
22.46 (3.258)
-29.5 (-21.1)
27.46 (3.983)
-14.8 (5.4)
55.60 (8.064)
-12.5 (9.5)
61.99 (8.991)
-8.0 (17.6)
75.39 (10.934)
-5.9 (21.4)
82.52 (11.969)
-3.7 (25.3)
90.12 (13.071)
-1.5 (29.3)
98.13 (14.233)
-0.7 (30.7)
101.33 (14.697)
0.3 (32.5)
105.66 (15.325)
77
-------
12. HFC-329ccb (CF3CF2CF2CF2H)
HFC-329ccb is synthesized in 95 percent yield using the reaction sequence
CH3CN, H2O
CF3CF2CF2CF2I
-> CF3CF2CF2CF2SO2Na
Na2S204> NaHC03
NaOH
CF3CF2CF2CF2S02Na
> CF3CF2CF2CF2H
100OC
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data and estimated data is given in Tables 12A and 12B.
Measured liquid densities and measured vapor pressures are given in Tables 12C and 12D. The
boiling point (15.1QC) and the low estimated vapor phase thermal conductivity (9.25 x 10-3
W/m K) makes HFC-329ccb a possible alternative blowing agent in the manufacture of foam
insulation. It may also serve as an alternative low pressure refrigerant with applications
similar to those of CFC-11. However, since HFC-329ccb has a low hydrogen to fluorine atom
ratio, the compound may have a long atmospheric lifetime and therefore a high global warming
potential.
78
-------
TABLE 12A
PHYSICAL PROPERTIES OF HFC-329CCB (CF3CF2CF2CF2H)
(SI UNITS)
PART A.
PART B.
MELTING
POINT, BOILING POINT,
CRIT1CAL
PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CRIT.
CRIT.
. PRESS.
LIQUID
') !C)
TEMP.
DENSITY
MEAS.
CORRES.
HEAT CAP AC IT'
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G
!.3 15.1
140.3
600
2391
1.223
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
-4.92
1613
4.46
43.6
27.48
-0.92
1600
5.29
52.2
27.33
3.08
1588
6.23
62.2
27.18
7.08
1576
7.31
73.6
27.03
11.08
1564
8.54
86.6
26.87
15.08
1551
9.92
...
101
26.71
20.09
1535
11.84
...
122
26.29
25.10
1515
14.04
146
25.87
30.11
1500
16.54
...
173
25.43
35.12
1483
19.39
203
24.98
40.12
1466
22.62
238
24.51
45.13
1448
26.26
277
24.04
50.14
1429
30.37
321
23.54
55.15
1410
34.98
370
23.03
60.16
1390
40.16
424
22.50
65.17
1369
45.98
484
21.95
70.18
1348
52.50
...
549
21.37
75.19
1325
59.82
622
20.77
80.19
1302
68.07
701
20.14
85.20
1278
77.36
...
787
19.48
90.21
1254
87.89
...
882
18.78
95.22
1228
99.87
...
984
18.04
100.23
1202
113.60
...
1095
17.24
105.24
1176
129.47
...
1216
16.38
110.25
1146
148.02
...
1347
15.43
115.26
1110
170.00
1489
14.39
120.26
1070
196.47
1642
13.21
125.27
1023
229.01
1808
11.82
130.28
968
270.05
1987
10.12
135.29
901
323.78
2181
7.75
140.30
600
599.80
2391
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.25E-03
300 K
0.806
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.963
1.087
600 K
1.176
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC - CENTIGRADE TEMPERATURE)
EQUATI ON
L,«. DENS. (KG/M3 J - 1582.6 . (¦-2...31«,TC..2
LN (VAP . PRESS. (KPA)) - 46.1376 - *526.6
ID GAS HEAT CAP.(J/(G-K))
0.130 + ( 2.764E-03 )T
+• { -1.700E-06 )T**2
RANGE
25.0 TO 110.0 C
LESS THAN 15.1 C
250.0 TO 600.0 K
79
-------
TABLE 12B
PART A.
PHYSICAL PROPERTIES OF HFC-329CCB (CF3CF2CF2CF2H)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
•188. 1
B.P.
(F)
59.1
CRIT.
TEMP.
(F)
284.5
CRIT. CRIT. PRESS.
DENSITY MEAS. CORRES.
(LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.)
37.4
346.8
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
0.2924
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
23.14
100.67
0.278
6.32
53.74
30.34
99.92
0.330
7.58
...
53.44
37.54
99.16
0.389
9.02
...
53.15
44.74
98.39
0.457
10.67
...
52.85
51.94
97.61
0.533
12.56
___
52.55
59.14
96.83
0.619
14.70
52.23
68.16
95.83
0.739
17.68
51.42
77.18
94.59
0.876
21.12
50.58
86.19
93.62
1.033
...
25.05
49.73
95.21
92.59
1.211
...
29.51
48.85
104.22
91.52
1.412
...
34.56
47.94
113.24
90.40
1.640
...
40.23
47.00
122.25
89.24
1.896
...
46.57
46.04
131.27
88.03
2.184
53.64
45.04
140.29
86.78
2.507
- - -
61.47
44.00
149.30
85.47
2.870
70.14
42.92
158.32
84.13
3.277
79.68
41.80
167.33
82.73
3.735
90.17
40.62
176.35
81.29
4.249
101.65
39.39
185.37
79.80
4.829
114.19
38.10
194.38
78.27
5.487
127.86
36.73
203.40
76.69
6.234
142.73
35.27
212.41
75.07
7.092
...
158.89
33.71
221.43
73.40
8.082
...
176.41
32.02
230.44
71.57
9.241
...
195.40
30.18
239.46
69.33
10.613
215.95
28.14
248.48
66.80
12.265
238.19
25.82
257.49
63.89
14.296
262.24
23.12
266.51
60.45
16.859
...
288.25
19.78
275.52
56.22
20.213
...
316.37
15.16
284.54
37.44
37.444
...
346.80
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
80 F
0.1927
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2302
0.2598
620 F
0.2811
5.34E-03
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS * FUNCTION Of -rruorn atiioim
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 101.078 + (-6.2069E-02 )JF
+ (-2.8428E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.)) = 46.8859 - 8147.9 /T
1 - ( 4.5579)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F))
3.1004E-02 + ( 3.671E-04)T
+ (-1.254E-07 )T»*2
RANGE
77.0 TO 230.0 F
LESS THAN 59.1 F
-9.7 TO 620.3 F
80
-------
Table 12C
Saturated Liquid Density Measurements for HFC-329ccb (CF3CF2CF2CF2H)
Temp.
°C (°F)
Diameter
(P | + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
<%)
25.0 {17.0)
0.7656
1 .531 1
1.5155
1.5086
1.5184 (94.792)
0.6
52.5 (126.5)
0.7261
1.4277
1.4169
1.3953
1.4133 (88.230)
1.0
66.6 (151.9)
0.7058
1.3655
1.3572
1.3569
1.3599 (84.895)
0.3
75.0 (167.0)
0.6937
1.3393
1.3332
1.3261
1.3329 (83.208)
0.4
95.0 (203.0)
0.6649
1.2297
1.2278
1.2329
1.2301 (76.793)
0.2
100.5 (212.9)
0.6570
1.2081
1.2037
1.2109
1.2076 (75.386)
0.2
110.0 (230.0)
0.6433
1.1422
1.1385
1.1490
1.1432 (71.369)
0.4
81
-------
Table 12D
Vapor Pressure Measurements for HFC-329ccb (CF3CF2CF2CF2H)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-33.6 (-28.5)
9.67 (1.402)
-27.3 (-17.1)
14.00 (2.030)
-23.6 (-10.5)
17.07 (2.475)
-20.6 (-5.1)
20.27 (2.939)
-16.8 (1.8)
24.53 (3.558)
-13.6 (7.5)
28.66 (4.157)
-10.8 (12.6)
32.93 (4.776)
-7.5 (18.5)
38.66 (5.608)
-5.0 (23.0)
43.33 (6.285)
-1.9 (28.6)
50.05 (7.260)
1.0 (33.8)
57.19 (8.296)
3.0 (37.4)
61.93 (8.982)
5.7 (42.3)
69.33 (10.055)
7.9 (46.2)
75.99 (11.022)
10.3 (50.5)
83.99 (12.182)
12.8 (55.0)
93.06 (13.497)
15.0 (59.0)
101.13 (14.667)
15.4 (59.7)
101.99 (14.793)
82
-------
13. HFC-338eea (CF3CFHCFHCF3)
HFC-338eea is synthesized in 90 percent yield using the reaction
{H2l120°C)
CF3CF=CFCF3 > CF3CFHCFHCF3
(60°C, Pd/C)
Hydrogen reduction may be carried out at 120°C or at 60°C in the presence of a Pd/C catalyst.
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data and estimated data is given in Tables 13A and 13B.
Measured liquid densities and measured vapor pressures are given in Tables 13C and 13D. The
boiling point (25.4°C) and the critical temperature (148.5°C) make HFC-338eea a possible
alternative low pressure refrigerant with some of the same applications as the currently used
CFC-11. Also, the low estimated vapor phase thermal conductivity (9.25 x 10*3 W/m K)
makes HFC-338eea a possible alternative blowing agent in the manufacture of foam insulation.
83
-------
TABLE 13A
PHYSICAL PROPERTIES OF HFC-338EEA (CF3CFHCFHCF3)
PART A.
(SI UNITS)
MELTING
POINT, BOILING POINT,
CRITICAL
PROPERTIES, AND LIQUIO
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CRIT.
CRIT.
. PRESS.
LIQUID
:> (C)
TEMP.
DENSITY
MEAS.
CORRES
. HEAT CAPAC ITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-K)
1.5 25.4
148.5
581
2475
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
5.38
1579
4.09
45.2
.
27.80
9.38
1566
4.80
53.6
27.80
13.38
1553
5.61
63.2
27.80
17.38
1540
6.53
74.2
27.80
21.38
1527
7.57
86.7
27.80
25.38
1514
8.78
101
27.79
30.30
1500
10.49
122
27.36
35.23
1482
12.45
146
26.91
40.15
1464
14.69
173
26.46
45.08
1446
17.24
204
25.99
50.00
1428
20.14
239
25.50
54.93
1409
23.43
278
25.00
59.85
1390
27.13
323
24.49
64.78
1370
31.31
372
23.96
69.70
1350
36.02
- - -
427
23.40
74.63
1330
41.32
488
22.83
79.55
1309
47.27
555
22.23
84.48
1288
53.99
629
21.61
89.40
1267
61.56
...
710
20.95
94.33
1246
70.14
___
799
20.26
99.25
1224
79.87
896
19.53
104.18
1201
91.00
1002
18.75
109.10
1179
103.80
1118
17.92
114.03
1138
118.66
...
1243
17.02
118.95
1106
136.11
1379
16.04
123.88
1070
156.88
1527
14.96
128.80
1031
182.02
1688
13.73
133.73
985
213.04
1861
12.29
138.65
931
252.14
2050
10.51
143.58
866
302.51
---
2254
8.05
148.50
581
580.60
...
2475
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
CONO. (W/M-K)
9.25E-03
300 K
0.829
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.997
1.114
600 K
1.221
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T - KELVIN TEMPERATURE TC =• CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3) =
LN(VAP. PRESS.(KPA))
ID GAS HEAT CAP.(J/(G-K))
EQUATION
1600.4 + {-3.1095E+00 )TC
+ (-6.9214E-03 )TC**2
15.8092 - 3342.0 /T
- ( 0.0000)*LN(T)
0.169 + ( 2.665E-03 )T
+ (-1.525E-06 )T**2
RANGE
26.0 TO 110.0 C
LESS THAN 25.4 C
250.0 TO 600.0 K
84
-------
TABLE 13B
PART A.
PHYSICAL PROPERTIES OF HFC-338EEA (CF3CFHCFHCF3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
¦132.7
B.P,
!F}
77.7
CRIT.
TEMP.
(F)
299.3
CRIT. CRIT. PRESS.
DENSITY MEAS. CORRES.
(LB/CU.FT.) (LB/SQ.IN.) (LB/Sq.lN.)
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
36.2
359.0
PART B. PVT OATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
LIQUIO
VAPOR
PRESSURE
HEAT OF
(F)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(LB/CU.FT.)
CORRES.
(LB/SQ.1
N.) (LB/SQ.IN.
) (BTU/LB)
(LB/CU.FT.;
1
41.68
98.56
0.255
6.55
59.20
48.88
97.77
0.299
7.77
59.20
56.08
96.97
0.350
9.16
59.20
63.28
96.16
0.407
10.76
59.20
70.48
95.35
0.472
12.58
59.20
77.68
94.52
0.548
---
14.70
59.19
86.55
93.63
0.655
...
17.69
58.26
95.41
92.54
0.777
...
21.13
57.32
104.28
91.42
0.917
...
25.08
56.34
113.14
90.28
1.076
29.57
55.34
122.01
89.12
1.258
___
34.66
54.32
130.87
87.94
1.462
40.39
53.25
139.74
86.74
1.694
46.81
52.16
148.60
85.52
1.955
53.98
51.02
157.47
84.28
2.249
61.95
49.84
166.33
83.02
2.579
70.78
48.62
175.20
81.73
2.951
80.53
47.35
184.06
80.43
3.370
91 .26
46.02
192.92
79.10
3.843
103.04
44.62
201.79
77.76
4.378
115.93
43.15
210.65
76.39
4.986
___
130.02
41.60
219.52
75.00
5.681
145.39
39.94
228.38
73.59
6.480
...
162.12
38.17
237.25
71.06
7.408
180.31
36.26
246.11
69.05
8.497
200.07
34.17
254.98
66.83
9.794
221.51
31.85
263.84
64.34
11.363
244.75
29.23
272.71
61.48
13.299
___
269.96
26.17
281.57
58.11
15.741
...
297.28
22.39
290.44
54.05
18.885
---
326.89
17.14
299.30
36.25
36.246
———
359.00
0.00
VAPOR
PHASE THERMAL CONDUCTIVITY AND
IDEAL GAS HEAT
CAPACITY
1ERMAL COND.
HEAT CAPACITY
(BTU/{HR-FT-F))
5.34E-03
80 F
0.1982
(BTU/(LB-F))
260 F 440 F
0.2383
0.2663
620 F
0.2919
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 103.225 + (-9.9308E-02 )TF
+¦ ( - 1.3336E-04 )TF*«2
LN(VAP. PRESS.(LB/SQ.IN.)) = 13.8784 - 6015.6 /T
- ( 0.0000)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F))
4.0315E-02 + ( 3.540E-04JT
+ (-1.125E-07 )T*«2
RANGE
78.8 TO 230.0 F
LESS THAN 77.7 F
-9.7 TO 620.3 F
85
-------
Table 13C
Saturated Liquid Density Measurements for HFC-338eea (CF3CFHCFHCF3)
Temp.
°C (°F)
Diameter
(P I + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
26.0 (78.8)
0.7611
1.4685
1.5147
1.5467
1.5100 (94.263)
2.1
46.0 (114.8)
0.7317
1.4044
1.4641
1.4952
1.4546(90.805)
2.6
56.0 (132.8)
0.7169
1.3673
1.4092
1.4344
1.4036 (87.626)
2.0
66.0 (150.8)
0.7022
1.3188
1.3691
1.3922
1.3600 (84.905)
2.3
86.0 (186.8)
0.6727
1.2351
1.2918
1.3152
1.2807 (79.952)
2.6
100.0 (212.0)
0.6521
1.2357
1.2009
1.21 13
1.2160 (75.910)
1.2
110.0 (230.0)
0.6374
1.1757
1 .1706
1.1910
1.1791(73.610)
0.8
86
-------
Table 13D
Vapor Pressure Measurements for HFC-338eea (CF3CFHCFHCF3)
Below Boiling Point.
Temp
oc (Op)
Measured
kPa (psi)
1
00
¦
0
b>
21.33 (3.094)
-14.2 (6.4)
23.73 (3.442)
-11.1 (12.0)
26.26 (3.809)
-7.8 (18.0)
28.7 (4.157)
2.8 (37.0)
42.53 (6.169)
5.3 (41.5)
46.93 (6.807)
9.4 (48.9)
54.13 (7.851)
11.2 (52.2)
58.53 (8.489)
13.3 (55.9)
62.39 (9.050)
15.9 (60.6)
68.79 (9.978)
17.0 (62.6)
71.59 (10.384)
20.9 (69.6)
87.59 (12.704)
21.7 (71.1)
90.26 (13.091)
23.2 (73.8)
93.46 (13.555)
24.2 (75.6)
96.39 (13.981)
25.0 (77.0)
98.93 (14.348)
26.0 (78.8)
101.13 (14.667)
87
-------
14. HFC-338cca (CF2HCF2CF2CF2H)
HFC-338cca is synthesized in 95 percent yield using the reaction sequence
CH3CN, h2o
ICF2CF2CF2CF2I > NaS02CF2CF2CF2CF2S02Na
Na2S204, NaHC03
NaOH
Na2S02CF2CF2CF2CF2S02Na > CF2HCF2CF2CF2H
100QC
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data along with estimated data is given in Tables 14A and 14B.
Measured liquid densities and measured vapor pressures are given in Tables 14C and 14D. The
high boiling point (42.5°C) means the primary application of this compound may be as a
solvent in the electronics industry to replace CFC-113 (1,1,2-trifluoro-1,2,2-
trichloroethane, boiling point = 47.6°C).
88
-------
TABLE 14A
PHYSICAL PROPERTIES OF HFC-338CCA (HCF2CF2CF2CF2H)
(SI UNITS)
PART A.
PART B.
MELTING
POINT, BO 1
ILING POINT,
CR1T1CAL
PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CRIT.
CRIT
. PRESS.
LIQUID
:) (C)
TEMP.
DENSITY
MEAS.
CORRES,
. HEAT CAPAC1V
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G'
1.0 42.5
186.4
578
2792
1.333
PVT DATA
AND HEAT
OF VAPORIZAT
ION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENS ITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
22.54
1539
3.81
44.9
31.98
26.54
1529
4.49
53.4
31.81
30.54
1519
5.27
63.2
31.64
34.54
1509
6.15
74.3
31.48
38.54
1498
7.14
87.0
31.31
42.54
1480
8.26
101
31.13
48.29
1469
9.97
123
30.64
54.05
1456
11.95
149
30.13
59.80
1443
14.22
...
179
29.61
65.56
1429
16.82
213
29.07
71.31
1413
19.78
252
28.52
77.07
1397
23.15
295
27.95
82.82
1379
26.96
345
27.36
88.58
1360
31.26
....
400
26.76
94.33
1340
36.12
462
26.13
100.08
1319
41.58
530
25.48
105.84
1297
47.74
606
24.80
111.59
1274
54.68
690
24.08
117.35
1250
62.50
782
23.34
123.10
1225
71.36
883
22.56
128.86
1199
81.40
993
21.73
134.61
1172
92.86
1114
20.85
140.36
1158
106.02
1245
19.91
146.12
1129
121.27
- - -
1388
18.89
151.87
1098
139.13
1543
17.78
157.63
1063
160.33
...
1711
16.55
163.38
1024
185.96
...
1894
15.17
169.14
979
217.56
2092
13.55
174.89
925
257.61
2307
11.55
180.65
858
310.39
2540
8.80
186.40
578
578.00
2792
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
8.48E-03
300 K
0.820
HEAT CAPACITY
(J/(K-GRAM))
1*00 K 500 K
0.986
1.128
600 K
1.223
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
Liq. DENS.(KG/M3) = 1529.2 + (-4.6902E-01 )TC
+ (-1.6258E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 50.4524
ID GAS HEAT CAP.(J/(G-K))
5331.9 /T
- ( 5.0297)*LN(T)
0.094 + ( 2.948E-03 )T
+ (-1.775E-06 )T**2
RANGE
22.0 TO 140.0 C
LESS THAN 42.5 C
250.0 TO 600.0 K
89
-------
TABLE 14B
PART A.
PHYSICAL PROPERTIES OF HFC-338CCA (HCF2CF2CF2GF2H)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS.
(F) (F) TEMP. DENSITY MEAS. CORRES.
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.)
LIQU ID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
-131.8 108.6 367.5 36.1 — 405.0 0.3186
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE
-------
Table 14C
Saturated Liquid Density Measurements for HFC-338cca (HCF2CF2CF2CF2H)
Temp.
°C (°F)
Diameter
(p, + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
q/cm3 (lb/ft3)
Std.
Dev.
(%)
22.0 (71.6)
0.7661
1.4918
1.5095(94.237)
1.2
1.5272
40.0 (104.0)
0.7566
1.4482
1.4863 (92.789)
2.6
1.5245
60.0 (140.0)
0.7288
1.4447
1.4395(89.867)
0.4
1.4343
80.0 (176.0)
0.7067
1.3812
1.3977 (87.257)
1.2
1.4141
100.0 (212.0)
0.6830
1.3055
1.3122 (81.920)
0.5
1.3189
120.0 (248.0)
0.6561
1.2372
1.2362 (77.175)
0.1
1.2351
140.0 (284.0)
0.6280
1.1392
1.1479 (71.663)
0.8
1.1566
91
-------
Table 14D
Vapor Pressure Measurements for HFC-338cca {HCF2CF2CF2CF2H)
Below Boiling Point.
Temp
0C (Op)
Measured
kPa (psi)
-9.7 (14.5)
8.93 (1.296)
-3.8 (25.2)
12.27 (1.779)
-0.8 (30.6)
14.27 (2.069)
2.3 (36.1)
17.07 (2.475)
5.5 (41.9)
20.13 (2.920)
9.0 (48.2)
23.73 (3.442)
11.9 (53.4)
27.86 (4.041)
15.1 (59.2)
32.40 (4.699)
17.8 (64.0)
36.40 (5.279)
21.0 (69.8)
42.33 (6.139)
24.0 (75.2)
47.20 (6.845)
29.7 (85.5)
61.00 (8.847)
31.7 (89.1)
66.26 (9.610)
34.4 (93.9)
73.99 (10.732)
37.0 (98.6)
82.26 (11.931)
39.6 (103.3)
90.13 (13.072)
41.9 (107.4)
99.19 (14.387)
42.6 (108.7)
101.33 (14.696)
92
-------
15. HFC-338ccb (CF3CF2CF2CFH2)
HFC-338ccb is synthesized in 80 percent yield using the reaction sequence
SF4
CF3CF2CF2CH2OH > CF3CF2CF2CFH2
85°C
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data and estimated data is given in Tables 15A and 15B.
Measured liquid densities and measured vapor pressures are given in Tables 15C and 15D. The
boiling point (27.8°C) and critical temperature (160.5°C) make HFC-338ccb a probable
alternative for CFC-11. It also has a relatively low estimated vapor phase thermal conductivity
which indicates that HFC-338ccb may serve as a possible blowing agent in the manufacture of
foam insulation.
93
-------
TABLE 15A
PART A.
PHYSICAL PROPERTIES OF HFC-338CCB (CF3CF2CF2CH2F)
(S! UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, ANO LIQUID
PHASE HEAT CAPACITIES
M.P .
B.P.
CRIT.
TEMP.
CRIT.
DENS ITY
CRIT. PRESS.
MEAS. CORRES.
L IQU ID
HEAT CAPACITY
PART B.
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G'
'. 4 27.8
160.5
562
2552
1.342
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
7.76
1562
4.20
46.8
27.89
11.76
1549
4.91
55.3
27.58
15.76
1536
5.71
64.9
27.28
19.76
1524
6.60
75.7
26.98
23.76
1511
7.60
87.8
26.67
27.76
1503
8.70
...
101
26.36
33.07
1491
10.43
---
123
25.96
38.38
1478
12.42
...
147
25.54
43.69
1463
14.70
...
175
25.12
49.00
1448
17.29
...
207
24.68
54.31
1430
20.24
...
244
24.23
59.62
1412
23.57
284
23.77
64.93
1392
27.34
330
23.28
70.24
1370
31.59
382
22.79
75.55
1348
36.36
439
22.27
80.86
1324
41.73
...
502
21.74
86.17
1298
47.76
...
572
21.18
91.48
1271
54.54
...
649
20.59
96.78
1243
62.18
...
733
19.98
102.09
1214
70.81
825
19.33
107.40
1183
80.60
926
18.65
112.71
1151
91.75
1036
17.92
118.02
1117
104.54
...
1155
17.14
123.33
1082
119.35
...
1285
16.30
128.64
1067
136.68
1425
15.38
133.95
1030
157.24
1578
14.36
139.26
990
182.04
1743
13.20
144.57
943
212.58
1922
11.84
149.88
889
251.17
2115
10.16
155.19
822
301.75
2325
7.82
160.50
562
561.70
2552
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
8.86E-03
300 K
0.841
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1.007
1 .148
600 K
1 .237
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC » CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS. (KG/M3) = 1542.8 + (-7.6190E-01 )TC
+ (-2.4118E-02 )TC**2
LNfVAP. PRESS.(KPA)) = 76.3570 - 5916.5 /T
1 - ( 9.1255)#LN(T)
ID GAS HEAT CAP.(J/(G-K))
0.094 + ( 3.061E-03 )T
+ (-1.925E-06 )T##2
RANGE
22.0 TO 124.0 C
LESS THAN 27.8 C
250.0 TO 600.0 K
94
-------
TABLE 15B
PHYSICAL PROPERTIES OF HFC-338CCB (CF3CF2CF2CH2F)
(ENGLISH UNITS)
. MELTING
POINT, BOILING POINT
, CRITICAL
PROPERTIES,
and LiquiD
PHASE HEAT CAPACITIES
.P. B.P.
CR IT.
CRIT.
CRIT
. PRESS.
L 1QU 1D
:) (F)
TEMP.
DENSITY
MEAS.
CORRES.
HEAT CAPAC
(F)
(LB/CU.FT.
) (LB/Sq.lN
.) (LB/Sq.l
N.) AT 104
F
(BTU/LB-
•f:
2.9 82.0
320.9
35.1
370. 1
0.3208
. PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION OF
TEMPERATURE
TEMP.
LiquiD
VAPOR
PRESSURE
HEAT OF
(F)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(LB/CU.FT.)
CORRES.
(LB/SQ.IN.)
(LB/sq.IN
.) (BTU/LB)
(LB/CU.FT.)
45.97
97.51
0.262
6.79
59.40
53.17
96.71
0.306
8.02
58.75
60.37
95.91
0.356
9.41
58.10
67.57
95.11
0.412
10.98
57.46
74.77
94.30
0.474
12.73
56.81
81.97
93.83
0.543
14.70
56.14
91.53
93.09
0.651
17.77
55.28
101.08
92.27
0.775
21.32
54.40
110.64
91.36
0.917
25.40
53.50
120.20
90.37
1.079
30.05
52.56
129.75
89.29
1.263
...
35.32
51.60
139.31
88.13
1.472
...
41.26
50.61
148.87
86.88
1.707
...
47.93
49.59
158.43
85.54
1.972
...
55.37
48.53
167.98
84.13
2.270
...
63.65
47.43
177.54
82.62
2.605
72.82
46.29
187.10
81.04
2.981
82.95
45.10
196.66
79.36
3.405
94.09
43.86
206.21
77.61
3.882
...
106.31
42.55
215.77
75.76
4.421
119.69
41 .18
225.33
73.84
5.032
134.29
39.72
234.88
71.82
5.728
150.20
38.17
244.44
69.73
6.526
...
167.51
36.51
254.00
67.54
7.451
...
186.31
34.72
263.56
66.60
8.533
...
206.70
32.75
273.11
64.32
9.816
228.81
30.57
282.67
61.78
11.365
252.76
28.10
292.23
58.88
13.271
278.69
25.21
301.79
55.47
15.680
...
306.77
21.63
311.34
51.32
18.838
...
337.17
16.65
320.90
35.07
35.066
370.09
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.12E-03
80 F
0.2010
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2407
0.2744
620 F
0.2957
PART D.
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATI ON
LIQ. OENS.(LB/CU.FT.) = 96.682 + ( 3.3164E-03 )TF
+ (-4.6470E-04 )TF»»2
LNjVAP. PRESS.(LB/SQ.IN.)) = 79.7901 - 0649.7 /T
- ( 9.1255)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F))
2.2578E-02 + ( 4.066E-04JT
+ (-1.420E-07 )T#*2
RANGE
71.6 TO 255.2 F
LESS THAN 82.0 F
¦9.7 TO 620.3 F
95
-------
Table 15C
Saturated Liquid Density Measurements for HFC-338ccb (CF3CF2CF2CFH2)
Temp.
°C (°F)
Diameter
(P| + Pg )/2
g/cm3
Liquid
Density
(g/cm3)
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
( % )
22.0 (71.6)
0.7627
1 .5646
1.4839
1.4937
1.5141 (94.521)
2.4
42.0 (107.6)
0.7337
1.4904
1.4337
1 .4852
1.4698(91.755)
1.7
62.0 (143.6)
0.7047
1.4135
1.3602
1.4241
1.3993 (87.354)
2.0
82.0 (179.6)
0.6756
1.3600
1.2735
1.3318
1.3218 (82.517)
2.7
102.0 (215.6)
0.6466
1.2702
1.1876
1.1847
1.2142(75.798)
3.3
114.0 (237.2)
0.6292
1.1722
1.1240
1.1217
1.1393 (71.126)
2.0
124.0 (255.2)
0.6147
1.1066
1.0669
1.0643
1 ..0793 (67.376)
1.8
96
-------
Table 150
Vapor Pressure Measurements for HFC-338ccb {CF3CF2CF2CFH2)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-22.7 (-8.9)
10.26 (1.489)
-15.7 (3.7)
15.33 (2.224)
-0.2 (31.6)
32.73 (4.747)
2.0 (35.6)
36.40 (5.279)
4.9 (40.8)
41.26 (5.985)
8.7 (47.66)
48.53 (7.039)
12.6 (54.7)
57.46 (8.334)
14.8 (58.6)
62.66 (9.088)
17.9 (64.2)
70.86 (10.278)
20.5 (68.9)
77.46 (11.235)
21.3 (70.3)
80.26 (11.641)
24.1 (75.4)
88.93 (12.898)
25.6 (78.1)
94.26 (13.671)
26.2 (79.2)
95.99 (13.923)
26.9 (80.4)
97.73 (14.174)
28.5 (83.3)
103.86 (15.064)
97
-------
16. HFC-347ccd (CF3CF2CF2CH3)
HFC-345ccd is synthesized in 90 percent yield using the reaction sequence
Tosyl-CI
CF3CF2CF2CH2OH > CF3CF2CF2CH20-Tosyl
pyridine, 0°C
UAIH4
CF3CF2CF2CH20-Tosyl —> CF3CF2CF2CH3
diglyme, 85°C
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. From the
measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. A
comprehensive summary of these data and estimated data is given in Tables 16A and 16B.
Measured liquid densities and measured vapor pressures are given in Tables 16C and 16D. The
boiling point (15.1°C) and relatively low estimated vapor phase thermal conductivity makes
HFC-347ccd a possible alternative blowing agent in the manufacture of foam insulation.
98
-------
TABLE 16A
PART A.
PHYSICAL PROPERTIES OF HFC-347CCD (CF3CF2CF2CH3)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
B.P.
CRIT.
TEMP.
CRIT.
DENSITY
CRIT.
MEAS.
PRESS.
CORRES.
LIQUID
HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-K)
^9 15.1
144.2
532
2570
1.383
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
-4.90
1393
3.85
45.0
26.30
-0.90
1383
4.53
53.5
26.20
3.10
1374
5.30
63.3
26.11
7.10
1364
6.17
74.4
26.02
11.10
1354
7.16
87.0
25.93
15.10
1344
8.27
101
25.82
20.26
1331
9.92
123
25.42
25.43
1315
11.82
147
25.01
30.59
1304
14.00
176
24.60
35.76
1292
16.48
208
24.16
40.92
1279
19.30
245
23.72
46.08
1265
22.49
286
23.26
51.25
1250
26.09
332
22.79
56.41
1234
30.15
...
384
22.30
61.58
1218
34.71
___
442
21.79
66.74
1200
39.84
505
21.26
71.90
1182
45.60
...
576
20.71
77.07
1163
52.08
---
653
20.14
82.23
1143
59.38
...
738
19.53
87.40
1122
67.61
...
831
18.90
92.56
1100
76.95
...
933
18.22
97.72
1077
87.58
___
1044
17.51
102.89
1054
99.77
1164
16.74
108.05
1029
113.86
1295
15.91
113.22
1006
130.35
1436
15.01
118.38
975
149.90
...
1590
14.00
123.54
941
173.46
...
1756
12.86
128.71
900
202.47
...
1936
11.53
133.87
852
239.14
...
2131
9.88
139.04
793
287.42
___
2342
7.59
144.20
532
531.60
...
2570
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.72E-03
300 K
0.880
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
1 .057
1.201
600 K
1.308
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3) =
LN(VAP. PRESS.(KPA))
ID GAS HEAT CAP.(J/(G-K))
EQUATION
1357.7 + (-1.2585E+00 )TC
+ (-1.6467E-02 )TC**2
= 33.9170 - 3907.3 /T
- ( 2.7798)*LN(T)
0.136 + ( 3.003E-03 )T
+ (-1.750E-06 )T**2
RANGE
22.5 TO 112.5 C
LESS THAN 15.1 C
250.0 TO 600.0 K
99
-------
TABLE 16B
PART A.
PHYSICAL PROPERTIES OF HFC-347CCD (CF3CF2CF2CH3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
-192.8
B.P.
-------
Table 16C
Saturated Liquid Density Measurements for HFC-347ccd (CF3CF2CF2CH3)
Temp.
°C (°F)
Diameter
(P| + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
22.5 (72.5)
0.6678
1.3302
1.3306
1.3096
1.3235 (82.623)
0.7
42.5 (108.5)
0.6454
1.2775
1.2762
1.2593
1.2710 (79.348)
0.7
70.5 (158.9)
0.6141
1.1883
1.1850
1.1743
1.1825 (73.823)
0.5
82.5 (180.5)
0.6007
1.1494
1 .1499
1 .1369
1.1454 (71.504)
0.5
92.5 (198.5)
0.5895
1.1073
1.1108
1.0966
1.1049 (68.977)
0.5
102.5 (216.5)
0.5783
1.0596
1.0627
1.0499
1.0574 (66.011)
0.5
112.5 (234.5)
0.5671
1.0028
1.0097
0.9981
1.0035 (62.649)
0.5
101
-------
Table 16D
Vapor Pressure Measurements for HFC-347ccd (CF3CF2CF2CH3)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-40.5 (-40.9)
7.20 (1.044)
-35.3 (-31.5)
9.73 (1.412)
-30.3 (-22.5)
13.07 (1.895)
-24.1 (-11.4)
17.87 (2.591)
-20.4 (-4.7)
22.00 (3.191)
-16.0 (3.2)
26.80 (3.887)
-11.3 (11.7)
33.46 (4.854)
-7.4 (18.7)
40.26 (5.840)
-3.8 (25.2)
47.33 (6.865)
-0.1 (31.8)
55.33 (8.025)
2.2 (35.96)
61.20 (8.875)
5.8 (42.4)
70.66 (10.249)
8.6 (47.5)
79.06 (11.467)
10.9 (51.6)
86.26 (12.511)
12.8 (55.0)
93.79 (13.604)
14.4 (57.9)
98.39 (14.271)
16.1 (61.0)
104.26 (15.121)
102
-------
17. HCFC-226da (CF3CHCICF3)
The synthesis of HCFC-226da is accomplished in two steps as follows:
10% KOH
CF3CHCICF2CI > CF3CCI=CF2
20oC
KF
CF3CCI=CF2 > CF3CHCICF3
formamide
The first step produces the intermediate, CF3CCI=CF2, in 66 percent yield and the final step
produces the product in 71 percent yield. For the synthesis of the initial starting material,
CF3CHCICF2CI, from commercially available CF3CCH=CF2, see the description of the synthesis of
HCFC-225da in this Appendix. Removal of HCI from CF3CHCICF2CI with KOH yields the reactant
for the second step. Reaction conditions for the second step are: 0.012 moles of reactant,
CF3CCI=CF2, and 1.75 g of KF in 20 mL formamide for 24 hours at 25°C. The purity of the
final product is 99.2 percent.
Measurements on this compound included the melting point, boiling point, vapor
pressure below the boiling point, liquid phase density, and critical properties. From the
measured critical properties and boiling point, the vapor pressure and vapor density in the
liquid-vapor coexistence region were calculated up to the critical temperature by modified
corresponding states methods. Physical property data obtained on this compound are given in
Tables 17A to 17D. Based on the boiling point of 14.1°C and critical temperature of 158.5QC,
HCFC-226da may be an alternative for CFC-11 for some applications. The compound does have a
low chlorine content which means that, depending on the atmospheric lifetime, there will some
ozone depletion potential associated with the material.
103
-------
TABLE 17A
PART A.
PHYSICAL PROPERTIES OF HCFC-226DA (CF3CHCLCF3)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
B.P.
CRIT.
CRIT.
CRIT. PRESS.
LIQUID
-119
PART B,
i) (C)
TEMP.
DENSITY
MEAS.
CORRES
. HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-K)
'.6 14.1
158.5
591
3024
1.207
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
-5.90
1548
4.06
46.9
—
24.56
-1.90
1538
4.73
55.2
24.58
2.10
1529
5.48
64.6
24.60
6.10
1519
6.33
75.4
24.61
10.10
1509
7.29
87.6
24.63
14.10
1499
8.36
101
24.64
19.88
1485
10.16
...
125
24.27
25.65
1465
12.26
...
152
23.88
31.43
1453
14.68
...
184
23.49
37.20
1439
17.46
...
220
23.08
42.98
1424
20.63
...
262
22.66
48.76
1408
24.23
...
309
22.23
54.53
1391
28.32
...
362
21.78
60.31
1374
32.94
422
21 .32
66.08
1355
38.15
489
20.84
71 .86
1335
44.01
564
20.34
77.64
1314
50.61
647
19.82
83.41
1292
58.03
...
738
19.28
89.19
1269
66.39
838
18.71
94.96
1254
75.83
948
18.11
100.74
1231
86.53
...
1069
17.47
106.52
1206
98.69
...
1200
16.79
112.29
1179
112.62
...
1343
16.07
118.07
1150
128.70
...
1499
15.28
123.84
1119
147.47
...
1668
14.42
129.62
1084
169.68
...
1851
13.47
135.40
1044
196.44
...
2050
12.39
141.17
999
229.42
...
2265
11.12
146.95
944
271.43
2498
9.55
152.72
875
328.22
2751
7.36
158.50
591
591.10
3024
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.31E-03
300 K
0.773
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.896
0.973
600 K
1.055
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3)
EQUATION
1509.4 + (-1.3207E+00 )TC
~ (-1.5462E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 11.6039 - 2819.6 /T
- <-0.4999)*LN(T)
ID GAS HEAT CAP.(J/(G-K))
0.314 + { 1.845E-03 )T
+ (-1.025E-06 )T**2
RANGE
25.6 TO 89.6 C
LESS THAN 14.1 C
250.0 TO 600.0 K
1 04
-------
TABLE 17B
PART A.
PHYSICAL PROPERTIES OF HCFC-226DA (CF3CHCLCF3)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
B.P.
(F)
CRIT.
TEMP.
(F)
CRIT.
DENSITY
(LB/CU.FT.)
CRIT.
MEAS.
(LB/SQ.IN.
PRESS.
CORRES
) (LB/SQ.
LIQUID
HEAT CAPACITY
N.) AT 104 F
(BTU/LB-F)
-183.3 57.4 317.3 36.9 438.6 0.2885
PART 8. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
HEAT OF
VAPORIZATION
) (BTU/LB)
56.67
56.71
56.75
56.79
56.83
56.85
55.99
55.10
54.19
53.25
52.29
51.29
50.26
49.19
48.09
46.94
45.74
44.48
43.17
41.78
40.31
38.75
37.07
35.26
33.28
31.08
28.58
25.66
22.04
16.99
0.00
TEMP.
LIQUID
VAPOR
PRESSURE
(F)
DENSITY
DENSITY
MEAS.
CORRES.
(LB/CU.FT.)
CORRES.
(LB/SQ.
IN.) (LB/SQ.IN
(LB/CU.FT.
)
21.38
96.62
0.254
6.80
___
28.58
96.03
0.295
8.00
...
35.78
95.43
0.342
9.37
...
42.98
94.83
0.395
10.93
50.18
94.22
0.455
12.70
- - -
57.38
93.61
0.522
14.70
67.78
92.70
0.634
18.08
78.17
91.48
0.765
22.04
88.57
90.69
0.916
...
26.63
98.97
89.83
1.090
...
31.91
109.36
88.91
1 .288
...
37.95
119.76
87.92
1.513
...
44.81
130.16
86.87
1.768
—-
52.56
140.55
85.75
2.056
61.26
150.95
84.57
2.381
70.98
161.35
83.32
2.747
81.80
171.74
82.01
3.159
93.79
182.14
80.64
3.623
...
107.03
192.54
79.20
4.145
...
121.58
202.94
78.29
4.734
...
137.55
213.33
76.83
5.402
...
155.02
223.73
75.27
6.161
174.08
234.13
73.61
7.031
194.83
244.52
71.81
8.034
217.41
254.92
69.85
9.206
241.91
265.32
67.67
10.593
268.50
275.71
65.21
12.263
___
297.31
286.11
62.35
14.322
328.52
296.51
58.94
16.945
...
362.32
306.90
54.60
20.490
...
398.93
317.30
36.90
36.901
...
438.60
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(0TU/(HR-FT-F J)
5.38E-03
80 F
0.1848
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2142
0.2326
620 F
0.2522
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF
EQUATION
LIQ. DENS.(LB/CU.FT.) = 95.393 + (-2.6740E-02 )TF
+ (-2.9791E-04 )TF»»2
LN(VAP. PRESS.(LB/SQ.IN.)) =
9.3793 - 5075.3 /T
- (-0.4999)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F)) = 7.5096E-02 + ( 2.451E-04JT
+ (-7.562E-08 )T**2
FAHRENHEIT TEMPERATURE)
RANGE
78.1 TO 193.3 F
LESS THAN 57.4 F
-9.7 TO 620.3 F
105
-------
Table 17C
Saturated Liquid Density Measurements for HCFC-226da (CF3CHCICF3)
Temp.
°C (°F)
Diameter
(P| + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
q/cm3 (lb/ft3)
Std.
Dev.
(%)
25.6 (78.1)
0.7406
1.4816
1.4667 (91.561)
1.2
1.4764
1.4420
36.3 (97.3)
0.7286
1.4488
1.4383 (89.793)
0.6
1.4389
1 .4274
53.7 (128.7)
0.7090
1.4065
1.3968 (87.197)
0.5
1.3898
1.3940
69.5 (157.1)
0.6912
1.3542
1.3419 (83.774)
0.7
1.3321
1.3395
78.2 (172.8)
0.6814
1.3238
1.3109 (81.838)
0.7
1.3008
1.3082
89.6 (193.3)
0.6686
1.2835
1.2674 (79.121)
0.9
1.2549
1.2637
1 06
-------
Table 17D
Pressure Measurements for HCFC*226da (CF3CHCICF3)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-22.5 (-8.5)
22.46 (3.258)
-20.9 (-5.6)
24.44 (3.544)
-18.5 (-1.3)
27.13 (3.935)
-17.2 (1.0)
29.06 (4.215)
-15.6 (3.9)
30.86 (4.476)
-13.9 (7.0)
33.37 (4.840)
-12.5 (9.5)
35.46 (5.144)
-11.1 (12.0)
37.33 (5.414)
-9.3 (15.26)
40.66 (5.898)
-7.7 (18.1)
43.46 (6.304)
-5.5 (22.1)
47.53 (6.894)
-3.1 (26.4)
52.22 (7.574)
-1.6 (29.1)
55.96 (8.116)
1.6 (34.9)
63.19 (9.166)
3.0 (37.4)
67.06 (9.726)
4.3 (39.7)
70.79 (10.268)
7.9 (46.2)
80.93 (11.737)
10.2 (50.4)
88.26 (12.801)
11.4 (52.5)
92.46 (13.410)
12.5 (54.5)
95.82 (13.897)
13.7 (56.7)
99.86 (14.483)
14.4 (57.92)
101.46 (14.715)
15.0 (59.0)
104.12 (15.102)
1 07
-------
18. HCFC-226ea (CF3CHFCF2CI)
HCFC-226ea is synthesized according to the reaction
LiCI, HCI
CF3CF=CF2 > CF3CHFCF2CI
acetic acid
The reactions conditions are: 0.02 moles of starting material, CF3CF=CF2, with 0.03 moles
LiCI and 0.001 moles HCI in 8 mL of acetic acid. The mixture reacts in a 30 mL reactor at
120°C for 72 hours to yield the product in 71 percent yield. The purity of the product is 99.5
percent. Many attempts were made to prepare this compound by reaction of CF3CHFCF2H with
CI2. Under all conditions the latter reaction produced a mixture of CF3CHFCF2CI and
CF3CFCICF2H.
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density in the liquid vapor
coexistence region were calculated up to the critical temperature by modified corresponding
state methods. Measured and estimated physical property data obtained on this compound are
given in Tables 18A-18D. The boiling point of 17.6°C and critical temperature of 158.3°C
suggests HCFC-226ea may be an alternative for CFC-11. The presence of a single chlorine atom
in the molecule indicates the compound will have a measureable ozone depletion potential,
dependent on its residence time in the atmosphere.
108
-------
TABLE 18A
PHYSICAL PROPERTIES OF HCFC-226EA (CF3CHFCF2CL)
(SI UNITS)
PART A
PART 8.
MELT 1NG
POINT, BOILING POINT,
CRITICAL
PROPERT1
ES, AND LIQUID
PHASE HEAT CAPACI
TIES
P. B.P.
CRIT.
CRIT.
CRIT
. PRESS.
LIQUID
i) (C)
TEMP.
DENSITY
MEAS.
CORRES
. HEAT CAPAC IT
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G'
..0 17.6
158.3
584
2939
1.205
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQU1D
VAPOR
PRESSURE
HEAT OF
-------
TABLE 188
PART A.
PHYSICAL PROPERTIES OF HCFC-226EA (CF3CHFCF2CL)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
9.68
16.88
24.08
31.28
38.48
45.68
52.88
63.68
73.81
83.94
94.07
104.20
114.33
124.46
134.59
144.72
154.85
164.98
175.11
185.24
195.38
205.51
215.64
225.77
235.90
246.03
256.16
266.29
276.42
286.55
296.68
306.81
316.94
LIQUID VAPOR
DENSITY DENSITY
(LB/CU.FT.) CORRES.
(LB/CU.FT.)
PRESSURE HEAT OF
MEAS. CORRES. VAPORIZATION
(LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
98.87
98.24
97.60
96.96
96.32
95.67
95.01
94.01
93.06
91.83
90.96
90.03
89.04
88.00
86.90
85.74
84.52
83.25
81.91
80.53
79.08
77.58
76.02
74.40
72.72
70.99
69.54
67.34
64.86
62.00
58.59
54.32
36.43
0.155
0.185
0.220
0.260
0.306
0.357
0.416
0.516
0.626
0.753
0.900
1.068
1.260
1.478
1.725
2.004
2.319
2.674
3.073
3.523
4.030
4.602
5.251
5.990
6.838
7.817
8.963
10.320
11.957
13.974
16.539
19.970
36.433
4.08
4.95
5.95
7.11
8.44
9.96
11.69
14.70
18.02
21.89
26.37
31.52
37.40
44.07
51.60
60.05
69.48
79.98
91.60
104.43
118.54
134.01
150.94
169.42
189.55
211.44
235.21
261.01
288.98
319.30
352.14
387.73
426.31
63.61
63.21
62.80
62.39
61.99
61.58
61.18
60.59
59.65
58.69
57.71
56.69
55.65
54.57
53.46
52.31
51.11
49.87
48.57
47.22
45.80
44.31
42.73
41.04
39.24
37.29
35.17
32.80
30.13
27.00
23.13
17.76
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.29E-03
80 F
0.1810
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2154
0.2383
620 F
0.2579
PART D.
EMPIRICAL EQUATIONS REPRESENTING^ROPERTIESoAS A^UNCTION^, T TEMpERATURE)
Lnr I r% l U^un I i wnw I\*.I — " — - - - — _ _
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE
EQUATION
LIQ DENS (LB/CU.FT.) = 96.866 + (-3.6531E-02 )TF
1 ' + (-2.7896E-04 )TF»*2
LN(VAP. PRESS.(LB/SQ.IN.))
51.8900 - 8445.4 /T
- ( 5.2817)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F)) = 3.8510E-02 +^3^263E-04)T
RANGE
77.8 TO 249.7 F
LESS THAN 63.7 F
-9.7 TO 620.3 F
1 1 0
-------
Table 18C
Saturated Liquid Density Measurements for HCFC-226ea (CF3CHFCF2CI)
Temp.
°C (°F)
Diameter
(Pj + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
q/cra3 (lb/ft3)
Std.
Dev.
<%)
25.5 (77.8)
0.7469
1.4692
1.4781 (92.276)
0.6
1.4871
49.9 (121.8)
0.7169
1.4038
1.4171 (88.465)
0.9
1.4303
67.7 (153.9)
0.6950
1.3400
1.3566 (84.688)
1.2
1.3731
77.7 (171.9)
0.6827
1.2958
1.3156 (82.130)
1.5
1.3354
89.4 (192.9)
0.6683
1.2458
1.2684 (79.185)
1.8
1.2910
104.9 (220.8)
0.6493
1.1904
1.2117 (75.644)
1.8
1.2330
121.0 (249.8)
0.6295
1.1069
1.1244 (70.193)
1.6
1.1419
1 11
-------
Table 18D
Vapor Pressure Measurements for HCFC-226ea (CF3CHFCF2CI)
Below Boiling Point.
Temp
°C <°F)
Measured
kPa (psi)
-38.6 (-37.5)
6.67 (0.967)
-34.8 (-30.6)
8.20 (1.189)
-31.5 (-24.7)
10.13 (1.470)
-28.8 (-19.8)
12.00 (1.740)
-25.9 (-14.6)
13.91 (2.017)
-23.2 (-9.8)
16.40 (2.378)
-21.0 (-5.8)
18.13 (2.630)
-18.4 (-1.1)
20.76 (3.011)
-16.4 (2.5)
22.93 (3.326)
-13.4 (7.9)
26.49 (3.842)
-11.6 (11.1)
29.06 (4.215)
-6.4 (20.5)
37.82 (5.486)
-5.1 (22.8)
40.04 (5.807)
-3.1 (26.4)
43.73 (6.342)
-1.6 (29.1)
46.46 (6.739)
-0.20 (31.6)
49.29 (7.149)
1.9 (35.4)
54.22 (7.864)
2.9 (37.2)
56.40 (8.179)
3.8 (38.8)
58.80 (8.528)
4.9 (40.8)
61.37 (8.901)
5.8 (42.4)
63.99 (9.282)
8.0 (46.4)
69.79 (10.123)
9.8 (49.6)
75.10 (10.892)
12.3 (54.1)
82.46 (11.960)
14.8 (58.6)
90.93 (13.188)
1 12
-------
19. HCFC-235ca (CF3CF2CH2CI)
HCFC-235ca is synthesized in 70 percent yield using the reaction
(KCI, 240°C)
CF3CF2CH20-Tosyl > CF3CF2CH2Ci
diethylene glycol
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density were calculated up
to the critical temperature by modified corresponding states methods. These data are given in
Tables 19A - 19D. The boiling point of 28.1 °C and critical temperature of 170.3°C suggests
HCFC-235ca may be an alternative for CFC-11. Since HCFC-235ca is a chlorine-containing
compound, investigations on its ozone depletion potential are needed to consider it further as a
alternative.
11 3
-------
TABLE 19A
PHYSICAL PROPERTIES OF HCFC-235CA (CF3CF2CH2CL)
(SI UNITS)
MELTING
POINT, BOILING POINT
, CRITICAL
PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CR IT.
CRIT
. PRESS.
L1QU1D
:) (C)
TEMP.
DENSITY
MEAS.
CORRES
. HEAT CAPACITY
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G-I
CO
<\J
o
170.3
550
3084
1.275
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
L IQU ID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
8.10
1426
3.38
45.5
28.67
12.10
1417
3.97
53.9
28.45
16.10
1408
4.64
63.6
28.24
20.10
1400
5.39
74.6
28.02
24.10
1391
6.23
87.1
27.80
28.10
1378
7.19
...
101
27.57
33.79
1367
8.75
...
124
27.14
39.48
1356
10.55
152
26.70
45.16
1343
12.64
183
26.25
50.85
1330
15.04
219
25.79
56.54
1316
17.79
261
25.31
62.23
1301
20.92
308
24.82
67.92
1286
24.47
361
24.31
73.60
1269
28.50
421
23.79
79.29
1252
33.06
...
489
23.24
84.98
1233
38.20
564
22.67
90.67
1214
44.01
647
22.08
96.36
1202
50.56
739
21.46
102.04
1183
57.97
840
20.82
107.73
1163
66.35
952
20.13
113.42
1142
75.88
1074
19.41
119.11
1120
86.76
...
1207
18.65
124.80
1096
99.27
___
1353
17.82
130.48
1070
113.78
1512
16.94
136.17
1042
130.79
1685
15.96
141.86
1010
151.01
1873
14.89
147.55
975
175.47
2077
13.67
153.24
933
205.70
2299
12.24
158.92
883
244.13
2539
10.48
164.61
821
295.05
2801
8.04
170.30
550
549.60
3084
0.00
. VAPOR PHASE THERMAL CONDUCTIVITY AND I
DEAL GAS
HEAT CAPACITY
THERMAL
HEAT CAPACITY
COND. (W/M-K)
9.00E-03
300 K
0.783
(J/(K-GRAM))
400 K 500 K
0.932
1.049
600 K
1.136
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
LIQ. DENS.(KG/M3)
EQUATION
1418.6 + (-1.0797E+00 )TC
+ (-1.2946E-02 )TC**2
LN (VAP. PRESS.(KPA)) » 59.4096 - 5282.9 /T
- ( 6.5274)»LN(T)
ID GAS HEAT CAP.(J/{G-K))
0.151 + I 2.571E-03 )T
+ (-1.550E-06 )T**2
RANGE
24.0 TO 95.0 C
LESS THAN 28.1 C
250.0 TO 600.0 K
1 1 4
-------
TABLE 19B
PHYSICAL PROPERTIES OF HCFC-235CA (CF3CF2CH2CL)
(ENGLISH UNITS)
PART B.
MELT I
NG
POINT, BOILING POINT
, CRITICAL
PROPERTIES,
AND LIQUID
PHASE
HEAT CAPACITIES
P. B
.P.
CRIT.
CRIT.
CRIT
. PRESS.
LIQUID
> (F)
TEMP.
DENSITY
MEAS.
CORRES.
HEAT CAPACITY
(F)
(LB/CU.FT.
) (LB/SQ.IN
.) (LB/SQ.IN
1.) AT 104 F
(BTU/LB-F)
I.O 82.6
338.5
34.3
447.3
0.3048
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION OF
TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(F)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(LB/CU.FT.)
CORRES.
(LB/SQ.IN.)
(LB/SQ.IN.
) (BTU/LB)
(LB/CU.FT.)
46.58
89.00
0.211
6.59
...
73.22
53.78
88.46
0.248
7.82
...
72.67
60.98
87.92
0.289
9.23
-—
72.11
68.18
87.37
0.336
10.83
...
71 .56
75.38
86.82
0.389
12.63
71.00
82.58
86.03
0.449
...
14.70
70.41
92.82
85.36
0.546
...
18.06
69.32
103.06
84.64
0.659
...
21.99
68.20
113.30
83.87
0.789
26.55
67.05
123.53
83.05
0.939
31.81
65.87
133.77
82.17
1.110
37.83
64.65
144.01
81 .24
1.306
44.67
63.39
154.25
80.26
1.528
52.41
62.09
164.49
79.22
1.779
61.12
60.75
174.73
78.14
2.064
70.87
59.35
184.96
77.00
2.385
81.74
57.91
195.20
75.81
2.747
93.80
56.40
205.44
75.03
3.156
107.14
54.82
215.68
73.86
3.619
121.85
53.16
225.92
72.63
4.142
138.01
51.42
236.16
71.32
4.737
155.73
49.58
246.39
69.93
5.416
175.10
47.62
256.63
68.44
6.197
196.25
45.52
266.87
66.83
7.103
...
219.30
43.25
277.11
65.05
8.165
244.38
40.77
287.35
63.08
9.427
271.64
38.02
297.59
60.84
10.954
301.25
34.91
307.82
58.25
12.841
333.41
31.27
318.06
55.14
15.241
368.31
26.77
328.30
51.25
18.419
...
406.21
20.53
338.54
34.31
34.310
...
447.36
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.20E-03
80 F
0.1872
HEAT CAPACITY
(BTU/{L8-F))
260 F 440 F
0.2228
0.2508
620 F
0.2716
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
LIQ. DENS.(LB/CU.FT.)
EQUATION
89.506 + (-2.1482E-02 )TF
+ (-2.4945E-04 )TF»»2
LN{VAP. PRESS.(LB/SQ.IN.)) = 61.3156 - 9509.2 /T
- ( 6.5274)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F))
3.6168E-02 + ( 3.414E-04)T
+ (-1.144E-07 )T**2
RANGE
75.2 TO 203.0 F
LESS THAN 82.6 F
-9.7 TO 620.3 F
1 1 5
-------
Table 19C
Saturated Liquid Density Measurements for HCFC-235ca (CF3CF2CH2CI)
Temp.
°C (°F)
Diameter
(Pi + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
24.0 (75.2)
0.6982
1.3851
1.3847
1.3758
1.3819 (86.269)
0.3
34.0 (93.2)
0.6881
1.3696
1.3642
1.3778
1.3705 (85.558)
0.4
46.0 (114.8)
0.6759
1.3452
1.3378
1.3500
1.3443 (83.923)
0.4
56.0 (132.8)
0.6657
1.3220
1.3152
1.3144
1.3172 (82.229)
0.3
66.0 (150.8)
0.6556
1.3005
1.2863
1.2810
1.2893 (80.485)
0.6
79.0 (174.2)
0.6424
1.2633
1.2427
1.2434
1.2498 (78.020)
0.7
95.5 (203.9)
0.6256
1.2191
1.1882
1.1910
1.1994 (74.879)
1.2
1 16
-------
Table 19D
Vapor Pressure Measurements for HCFC-235ca (CF3CF2CH2CI)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
-27.5 (-17.5)
7.20 (1.044)
-24.7 (-12.5)
8.53 (1.238)
-20.2 (-4.4)
11.13 (1.615)
-16.0 (3.2)
14.13 (2.050)
-12.0 (10.4)
17.47 (2.533)
-8.5 (16.7)
20.8 (3.017)
-4.6 (23.7)
25.33 (3.674)
-2.9 (26.8)
27.46 (3.983)
-0.2 (31.6)
31.20 (4.525)
1.9 (35.4)
34.80 (5.047)
6.0 (42.8)
39.46 (5.724)
8.6 (47.5)
47.20 (6.845)
10.2 (50.4)
50.13 (7.271)
13.3 (55.9)
56.93 (8.257)
16.5 (61.7)
64.79 (9.398)
19.2 (66.6)
72.26 (10.481)
21.2 (70.2)
78.26 (11.351)
22.8 (73.0)
82.13 (11.911)
25.2 (77.4)
90.93 (13.188)
26.0 (78.8)
93.59 (13.574)
1 1 7
-------
20. HCFC-244ca (CF2HCF2CH2CI)
HCFC-244ca is synthesized in 90 percent yield using the reaction sequence
Tosyl-CI
CF2HCF2CH2OH
> CF2HCF2CH20-Tosyl
pyridine, 0°C
KCI
CF2HCF2CH20-Tosyl
> CF2HCF2CH2CI
240°C
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid density, critical temperature, and critical density. A
comprehensive summary of these data and estimated data is given in Tables 20A -20D. From
the measured critical properties and boiling point, the vapor pressure and vapor density were
calculated up to the critical temperature by modified corresponding states methods. The high
boiling point (54.8°C) of this compound means its primary application would be as a solvent or
a heat transfer fluid. Based on its boiling point and critical temperature (221 °C), HCFC-
244ca may be an alternative for CFC-113. HCFC-244ca has a lower chlorine content than any
other alternative with a boiling point above 50°C. This is desirable for obtaining a low ozone
depletion potential. However, this desirable characteristic may be offset by the lower solvent
power one can expect to obtain with the lower chlorine content.
1 1 8
-------
TABLE 20A
PHYSICAL PROPERTIES OF HCFC-244CA (HCF2CF2CH2CL)
PART A.
(SI UNITS)
MELTING
POINT, BOILING POINT,
CRITICAL
PROPERTIES, AND LIQUID
PHASE HEAT CAPAC 1
TIES
P. B.P.
CRIT.
CRIT.
CRIT
. PRESS.
LiquiD
:) (G)
TEMP.
DENSITY
MEAS.
CORRES,
HEAT CAPACITY
(C)
(KG/M3}
(KPA)
(KPA)
AT 40 C (J/(G-K)
1.8 54.8
221.0
525
3714
1.160
PVT DATA
AND HEAT
OF VAPORIZAT
ION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENS 1TY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
34.82
1405
2.90
47.9
31.77
38.82
1397
3.36
56.1
31.63
42.82
1388
3.88
65.5
31.49
46.82
1380
4.47
76.0
31.36
50.82
1371
5.13
87.9
...
31.22
54.82
1369
5.86
---
101
31.07
61.47
1355
7.23
127
30.58
68.11
1341
8.85
156
30.08
74.76
1326
10.73
192
29.57
81.41
1310
12.91
232
29.04
88.06
1294
15.43
280
28.50
94.70
1278
18.32
334
27.94
101.35
1261
21.62
---
396
27.36
108.00
1243
25.38
466
26.76
114.64
1225
29.65
545
26.14
121.29
1206
34.50
633
25.49
127.94
1187
39.98
732
24.82
134.59
1162
46.20
842
24.12
141.23
1142
53.24
963
23.38
147.88
1121
61 .23
---
1097
22.61
154.53
1098
70.33
1245
21.79
161.18
1075
80.73
1407
20.92
167.82
1049
92.72
1584
19.99
174.47
1022
106.63
1778
18.98
181.12
993
122.95
1989
17.88
187.76
960
142.39
2219
16.66
194.41
923
165.95
2470
15.28
201.06
881
195.16
2743
13.67
207.71
830
232.49
3040
11.69
214.35
767
282.52
3363
8.94
221.00
525
524.60
3714
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
8.49E-03
300 K
0.798
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.960
1.099
600 K
1.194
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENT IGRAOE TEMPERATURE]
EQUATION
LIQ. DENS.(KG/M3) = 1462.8 + (-1.3835E+00 )TC
+ (-6.Q315E-03 )TC**2
LN(VAP. PRESS.(KPA)) = 44.2091
5098.1 /T
- ( 4.1512)«LN(T)
ID GAS HEAT CAP.(J/(G-K)) = 0.097 + ( 2.835E-03 )T
+ (- 1.675E-06 )T**2
RANGE
21.0 TO 133.5 C
LESS THAN 54.8 C
250.0 TO 600.0 K
1 1 9
-------
TABLE 20B
PHYSICAL PROPERTIES OF HCFC-244CA (HCF2CF2CH2CL)
(ENGLISH UNITS)
PART A.
-151
PART B.
MELTING
POINT, BOILING POINT
, CRITICAL
PROPERTIES,
AND LIQUID
PHASE
HEAT CAPAC I
TIES
P. B.
P.
CRIT.
CRIT.
CRIT
. PRESS.
L1QU1D
') IF)
TEMP.
DENSITY
ME AS.
CORRES.
HEAT CAPACITY
(F)
(LB/CU.FT.
) (LB/SQ.IN
.) (LB/SQ.IN
1.) AT 104 F
(BTU/LB-F)
.2 130
.7
429.8
32.7
538.7
0.2773
PVT DATA
ANO HEAT
OF VAPORIZATION AS A
FUNCTION OF
TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(F>
DENSITY
DENS ITY
MEAS.
CORRES.
VAPORIZATION
(LB/CU.FT.)
CORRES.
(LB/SQ.IN.)
(LB/SQ.IN.
) (BTU/LB)
(LB/CU.FT.)
94.68
87.73
0.181
6.95
90.85
101.88
87.20
0.210
8.14
90.45
109.08
86.67
0.242
9.50
90.06
116.28
86.13
0.279
11.03
89.66
123.48
85.59
0.320
12.75
89.27
130.68
85.45
0.366
...
14.70
88.84
142.64
84.59
0.452
...
18.36
87.45
154.61
83.69
0.552
...
22.69
86.02
166.57
82.76
0.670
...
27.79
84.55
178.54
81.79
0.806
...
33.72
83.05
190.50
80.79
0.963
...
40.57
81.49
202.47
79.76
1.143
48.44
79.89
214.43
78.70
1 .350
57.41
78.23
226.40
77.60
1.584
67.57
76.52
238.36
76.47
1.851
79.02
74.75
250.33
75.30
2.154
91.85
72.90
262.29
74.11
2.496
106.18
70.98
274.26
72.57
2.884
122.10
68.97
286.22
71.30
3.323
139.72
66.87
298.19
69.97
3.822
159.17
64.65
310.15
68.57
4.390
180.57
62.31
322.12
67.09
5.040
204.05
59.82
334.08
65.51
5.788
229.75
57.15
346.05
63.82
6.656
257.84
54.27
358.01
61.97
7.676
288.49
51.13
369.98
59.92
8.889
321.89
47.65
381.94
57.62
10.360
358.26
43.70
393.91
54.97
12.184
...
397.83
39.10
405.87
51.81
14.514
...
440.89
33.42
417.84
47.86
17.637
...
487.73
25.55
429.80
32.75
32.750
...
538.72
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
4.90E-03
PART D.
80 F
0.1908
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2295
0.2627
620 F
0.2854
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
LIQ. DENS.(LB/CU.FT.)
LN(VAP
ID GAS HEAT CAP.(BTU/(LB-F))
EQUATION
92.736 + (-4.0545E-02 )TF
+ (-1.1621E-04 )TF**2
PRESS.(LB/SQ.IN.)) = 44.7184 - 9176.6 /T
- ( 4.1512)*LN(T)
2.3271E-02 + ( 3.765E-04)T
+ (-1.236E-07 )T**2
RANGE
69.8 TO 272.3 F
LESS THAN 130.7 F
-9.7 TO 620.3 F
1 20
-------
Table 20C
Saturated Liquid Density Measurements for HCFC-244ca (HCF2CF2CH2CI)
Temp.
°C (°F)
Diameter
(P| + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 Ob/ft3)
Std.
Dev.
(%)
21.0 (69.8)
0.7186
1.4287
1.4295
1.4417
1.4333 (89.478)
0.4
41.5 (106.7)
0.6987
1.3924
1.3898
1.3929
1.3917 (86.880)
0.1
61.0 (141.8)
0.6798
1.3589
1.3562
1.3467
1.3539 (84.524)
0.4
84.5 (184.1)
0.6570
1.3032
1.3010
1.3184
1.3076 (81.628)
0.6
104.2 (219.5)
0.6379
1.2506
1.2556
1.2531
1.2531 (78.229)
0.2
113.5 (236.3)
0.6288
1 .2267
1.2275
1.2264
1.2268 (76.589)
0.04
133.5 (272.3)
0.6094
1.1709
1.1688
1.1714
1.1704 (73.064)
0.1
121
-------
Table 20D
Vapor Pressure Measurements for HCFC-244ca (HCF2CF2CH2CI)
Below Boiling Point.
Temp
°C (OF)
Measured
kPa (psi)
-20.3 (-4.5)
2.93 (0.425)
-16.7 (1.9)
3.67 (0.532)
-13.1 (8.42)
4.53 (0.658)
-8.0 (17.6)
6.27 (0.909)
-4.3 (24.3)
7.60 (1.102)
-1.9 (28.6)
8.67 (1.257)
0.2 (32.4)
9.60 (1.392)
2.5 (36.5)
10.87 (1.576)
4.5 (40.1)
12.27 (1.779)
6.8 (44.2)
13.73 (1.992)
8.6 (47.5)
14.93 (2.166)
10.9 (51.6)
16.73 (2.427)
12.4 (54.3)
17.93 (2.601)
13.7 (56.7)
19.07 (2.765)
15.6 (60.1)
20.67 (2.997)
17.1 (62.8)
22.13 (3.210)
18.9 (66.0)
24.07 (3.490)
20.8 (69.4)
26.00 (3.771)
22.2 (72.0)
27.73 (4.022)
41.2 (106.2)
61.99 (8.992)
44.2 (111.6)
69.33 (10.055)
46.4 (115.5)
75.33 (10.925)
49.8 (121.6)
84.66 (12.279)
54.2 (129.6)
98.66 (14.309)
55.1 (131.2)
102.52 (14.870)
1 22
-------
21. HCFC-225da (CF3CHCICF2CI)
Synthesis of HCFC-225da may be accomplished photochemically in 82 percent yield
with the reaction
Cl2
CF3CH=CF2 > CF3CHCICF2CI
fluorescent light
Equimolar amounts (0.031 moles) of the olefin and CI2 are reacted in a 2-L Pyrex®
flask at 20°C. Purity of the product is 99.5 percent. The high boiling point of this compound
means its primary application would be as a solvent or a heat transfer fluid. Based on its
boiling point {50.8°C) and critical temperature (206.2°C), its primary application would be
as a solvent or a heat transfer fluid. HCFC-225da has a non-zero ozone depletion potential by
virtue of its chlorine content.
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density in the liquid-vapor
coexistence region were calculated up to the critical temperature by modified corresponding
states methods. These data are given in Tables 21A to 21D.
1 23
-------
TABLE 21A
PHYSICAL PROPERTIES OF HCFC-225DA
(SI UNITS)
(CF3CHCLCF2CL)
PART A. MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUIO
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS.
(C) (C) TEMP. DENSITY MEAS. CORRES.
(C) (KG/M3) (KPA) (KPA)
LIQUID
HEAT CAPACITY
AT 40 C (J/(G-K)
-130.3 50.8 206.2 589 — 3006 1.087
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
L1QU 1D
VAPOR
PRESSURE
HEAT 01
(C)
DENSITY
DENS 1TY
MEAS.
CORRES.
VAPOR 1ZAT
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE
(KG/M3)
20.80
1569
3.23
37.7
25.90
24.80
1560
3.68
43.5
...
25.90
28.80
1550
4.18
50.0
---
25.90
32.80
1541
4.74
57.2
...
25.90
36.80
1531
5.35
65.2
---
25.90
40.80
1522
6.03
74.1
...
25.90
44.80
1512
6.77
84.0
...
25.90
50.80
1505
8.06
101
25.89
57.02
1490
9.79
124
25.50
63.23
1475
11.80
151
25.11
69.45
1459
14.12
...
182
24.70
75.66
1442
16.78
...
218
24.28
81.88
1425
19.81
...
259
23.85
88.10
1407
23.27
306
23.41
94.31
1388
27.19
359
22.95
100.53
1369
31.63
418
22.47
106.74
1346
36.64
484
21 .97
112.96
1327
42.29
...
557
21.46
119.18
1307
48.65
...
639
20.92
125.39
1286
55.83
___
729
20.36
131.61
1264
63.92
828
19.77
137.82
1242
73.08
937
19.15
144.04
1217
83.47
1057
18.49
150.26
1192
95.31
1187
17.78
156.47
1165
108.91
1329
17.03
162.69
1135
124.64
1484
16.21
168.90
1103
143.06
1652
15.32
175.12
1068
164.92
___
1834
14.33
181.34
1028
191.30
2032
13.20
187.55
981
223.87
2247
11.88
193.77
926
265.26
2480
10.23
199.98
857
320.43
2733
7.93
206.20
589
589.40
3007
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
8.32E-03
300 K
0.731
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.846
0.917
600 K
0.984
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) = 1598.0 + (-1.3868E+00 )TC
+ (-8.8528E-03 )TC**2
LN(VAP. PRESS.(KPA)) =
ID GAS HEAT CAP.(J/(G-K))
14.2235 - 3113.8 /T
- ( 0.0000)*LN(T)
0.268 + ( 1.910E-03 )T
+ (-1.200E-06 )T**2
RANGE
24.3 TO 102.6 C
LESS THAN 50.8 C
250.0 TO 600.0 K
1 24
-------
TABLE 218
PHYSICAL PROPERTIES OF HCFC-225DA (CF3CHCLCF2CL)
(ENGLISH UNITS)
PART A.
(F
PART B,
MELTING
POINT, BOILING POINT
, CRITICAL
PROPERTIES,
AND LIQUID
PHASE HEAT CAPACITIES
P. B.P.
CRIT.
CRIT.
CRIT
. PRESS.
LIQUID
) (F)
TEMP.
DENSITY
MEAS.
CORRES.
HEAT CAPAC
(F)
(LB/CU.FT.
) (LB/SQ.IN
.) (LB/SQ.IN.) AT 104 F
(btu/lb-f;
!.5 123.4
403.2
36.8
436.1
0.2598
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION OF
TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(F)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(LB/CU.FT.)
CORRES.
(LB/SQ.IN.)
(LB/SQ.IN.
) (BTU/LB)
(LB/CU.FT.)
69.44
97.94
0.201
5.47
54.91
76.64
97.36
0.230
6.31
54.91
83.84
96.78
0.261
7.25
54.91
91.04
96.20
0.296
8.29
54.91
98.24
95.61
0.334
9.46
54.91
105.44
95.02
0.376
10.75
54.91
112.64
94.42
0.422
12.18
54.91
123.44
93.94
0.503
14.70
54.89
134.63
93.03
0.611
18.04
54.08
145.82
92.08
0.737
21.94
53.24
157.01
91.08
0.881
...
26.46
52.37
168.20
90.05
1.047
...
31.67
51.49
179.38
88.97
1.237
37.62
50.57
190.57
87.84
1.453
44.37
49.63
201.76
86.68
1.698
...
52.01
48.65
212.95
85.47
1.975
60.58
47.64
224.14
84.05
2.287
___
70.17
46.59
235.33
82.84
2.640
80.85
45.50
246.52
81.59
3.037
92.68
44.36
257.71
80.29
3.485
105.75
43.16
268.89
78.93
3.991
120.15
41.91
280.08
77.50
4.562
135.95
40.59
291.27
76.00
5.211
153.25
39.20
302.46
74.41
5.950
...
172.14
37.71
313.65
72.71
6.799
...
192.75
36.11
324.84
70.87
7.781
...
215.18
34.38
336.03
68.87
8.931
239.55
32.49
347.22
66.65
10.295
266.03
30.38
358.40
64.15
11.943
294.75
27.99
369.59
61.26
13.976
325.91
25.18
380.78
57.82
16.560
359.69
21.69
391.97
53.53
20.004
...
396.32
16.81
403.16
36.80
36.795
436.06
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
4.81E-03
PART D.
80 F
0.1747
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2022
0.2192
620 F
0.2352
EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU,FT.) = 101.125 + (-3.7180E-02 )TF
+ (-1.7057E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.)) = 12.2927 - 5604.8 /T
- ( 0.0000)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F)) = 6.4064E-02 + ( 2.537E-04)T
+ (-8.854E-08 )T#*2
RANGE
75.7 TO 216.7 F
LESS THAN 123.4 F
-9.7 TO 620.3 F
1 25
-------
Table 21C
Saturated Liquid Density Measurements for HCFC-225da (CF3CHCICF2CI)
Temp.
°C (°C)
Diameter
(Pi + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (ib/ft3)
Std.
Dev.
(%)
24.3 (75.7)
0.7830
1.5464
1.5578 (97.250)
1.3
1.5415
1.5855
34.7 (94.5)
0.7720
1.5296
1.5408 (96.189)
1.3
1.5239
1.5690
59.3 (138.7)
0.7458
1.4772
1.4855 (92.737)
1.1
1.4703
1.5090
73.6 (164.5)
0.7306
1.4373
1.4471 (90.337)
1.3
1.4299
1.4739
88.0 (190.5)
0.7152
1.4014
1.4061 (87.782)
1.1
1 .3908
1.4261
102.6 (216.7)
0.6997
1.3589
1.3635 (85.120)
0.9
1.3505
1.381 1
1 26
-------
Table 21D
Vapor Pressure Measurements for HCFC-225da (CF3CHCICF2CI)
Below Boiling Point.
Temp
°C f°F)
Measured
kPa (psi)
7.0 (44.6)
24.00 (3.481)
7.6 (45.7)
25.06 (3.635)
8.8 (47.8)
26.26 (3.809)
10.9 (51.6)
27.73 (4.022)
14.2 (57.6)
30.93 (4.486)
16.0 (60.8)
32.93 (4.776)
17.6 (63.7)
34.66 (5.028)
20.4 (68.7)
38.00 (5.511)
23.3 (73.9)
42.26 (6.130)
26.1 (79.0)
45.73 (6.633)
28.6 (83.5)
49.60 (7.193)
29.1 (84.4)
51.06 (7.406)
34.3 (93.7)
59.86 (8.682)
36.7 (98.1)
64.66 (9.378)
40.3 (104.5)
72.26 (10.481)
41.8 (107.2)
76.26 (11.061)
44.8 (112.6)
83.73 (12.144)
47.0 (116.6)
90.39 (13.110)
47.2 (117.0)
91.06 (13.207)
49.2 (120.6)
95.99 (13.923)
1 27
-------
22. HCFC-225ba (CF3CFCICFHCI)
HCFC-225ba is synthesized in a two-step reaction sequence
KQH
cf3chfcf2h > CF3CF=CFH
dibutyl ether
Ci2
CF3CF=CFH > CF3CFCICFHCI
fluorescent light
The first step removes HF from the reactant to yield CF3CF=CFH in 81 percent yield.
The starting material for this first step is obtained from commercially available CF3CF=CF2 by
reduction on a Pd/carbon catalyst (see synthesis of HFC-236ea in this Appendix). The second
step was carried out in 90 percent yield with 0.02 moles of CFsCF=CFH and 0.022 moles of CI2
in a 1-L Pyrex® container for 4 hours at 22°C. The purity of the final product is 97 percent.
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density were calculated up
to the critical temperature by modified corresponding states methods. Both the measured and
estimated physical property data obtained on this compound are given in Tables 22 A-22D. The
relatively high boiling point and critical temperature suggests the primary use of HCFC-225ba
would be either as a solvent or heat transfer fluid. Since the compound has a chlorine content, it
has a non-zero ozone depletion potential.
1 28
-------
TABLE 22A
PART A.
PHYSICAL PROPERTIES OF HCFC-225BA (CF3CFCLCFHCL)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P .
(C)
B.P.
(C)
CR IT.
TEMP.
(C)
CRIT.
DENSITY
(KG/M3)
CRIT.
MEAS.
(KPA)
PRESS.
CORRES.
(KPA)
LIQUID
HEAT CAPACITY
AT 40 C (J/(G-K)
-132.6 51.9 212.9 586 3074 1.087
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
-------
TABLE 22B
PART A.
PHYSICAL PROPERTIES OF HCFC-225BA (CF3CFCLCFHCL)
(ENGLISH UNITS)
MELTING POI NT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
¦206.7
8.P.
(F)
125.4
CRIT. CRIT. CR1T. PRESS. LIQUID
TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(BTU/LB-F)
415.2
36.6
445.8
0.2598
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
(F)
71 .42
78.62
85.82
93.02
100.22
107.42
114.62
125.42
137.01
148.60
160.20
171.79
183.38
194.97
206.56
218.16
229.75
241.34
252.93
264.52
276.12
287.71
299.30
310.89
322.48
334.08
345.67
357.26
368.85
380.44
392.04
403.63
415.22
LIQUID VAPOR
DENSITY DENSITY
(LB/CU.FT.) CORRES.
(LB/CU.FT.)
98.66
98.08
97.50
96.91
96.32
95.73
95.13
95.16
94.28
93.26
92.09
90.78
89.32
87.72
86.82
85.65
84.45
83.21
81.92
80.59
79.19
77.73
76.19
74.56
72.82
70.95
68.91
66.66
64.12
61.20
57.73
53.36
36.61
0.176
0.205
0.237
0.274
0.316
0.362
0.414
0.501
0.610
0.737
0.883
1.051
1.243
1.461
1.709
1.990
2.306
2.663
3.065
3.518
4.028
4.605
5.260
6.005
6.859
7.847
9.002
10.370
12.021
14.056
16.648
20.132
36.608
PRESSURE HEAT OF
MEAS. CORRES. VAPORIZATION
(LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
4.81
5.67
6.64
7.75
9.00
10.40
11.98
14.70
18.09
22.06
26.67
31.99
38.06
44.98
52.79
61.57
71.39
82.33
94.46
107.86
122.62
138.81
156.54
175.91
197.01
219.98
244.94
272.04
301.43
333.29
367.82
405.26
445.86
63.56
63.40
63.23
63.06
62.89
62.73
62.56
62.29
61.33
60.34
59.33
58.28
57.21
56.10
54.96
53.77
52.54
51.27
49.94
48.54
47.08
45.55
43.92
42.19
40.34
38.34
36.15
33.72
30.97
27.75
23.78
18.25
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
4.74E-03
80 F
0.1688
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.1953
0.2142
620 F
0.2302
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF
EQUATI ON
LIQ. DENS.(LB/CU.FT.) = 95.439 + ( 6.5090E-02 )TF
+ (-5.3679E-04 )TF»*2
LN(VAP. PRESS.(LB/SQ.IN.)) = 31.0152
ID GAS HEAT CAP.(BTU/(LB-F))
7745.6 /T
( 2 . 3681)*LN(T)
6.0717E-02 + ( 2.444E-04)T
+ (-8.116E-08 )T**2
FAHRENHEIT TEMPERATURE)
RANGE
76.1 TO 206.1 F
LESS THAN 125.4 F
-9.7 TO 620.3 F
130
-------
Table 22C
Saturated Liquid Density Measurements for HCFC-225ba (CF3CFCICFHCI)
Temp.
°C (°F)
Diameter
(P J + Pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
24.5 (76.1)
0.7893
1.5410
1.5587 (97.308)
1.7
1.5399
1.5952
38.1 (100.6)
0.7747
1.5332
1.5469 (96.570)
1.1
1.5362
1.5713
49.8 (121.6)
0.7621
1.5137
1.5279 (95.386)
1.3
1.5150
1.5551
66.0 (150.8)
0.7446
1.4676
1.4866 (92.805)
1.8
1.4675
1 .5247
77.8 (172.0)
0.7319
1.4362
1.4590 (91.080)
2.2
1.4364
1.5042
96.7 (206.1)
0.7115
1.3691
1.3770 (85.963)
0.8
1.3699
1.3920
131
-------
Table 22D
Vapor Pressure Measurements for HCFC-225ba (CF3CFCICFHCI)
Below Boiling Point.
Temp
°C (OF)
Measured
kPa (psi)
5.0 (41.0)
15.73 (2.282)
6.8 (44.2)
17.07 (2.475)
8.4 (47.1)
18.40 (2.668)
10.7 (51.3)
20.33 (2.949)
13.5 (56.3)
23.33 (3.384)
15.5 (59.9)
25.33 (3.674)
17.2 (63.0)
27.33 (3.964)
18.9 (66.0)
29.33 (4.254)
20.4 (68.7)
31.33 (4.544)
21.8 (71.2)
33.20 [4.815)
23.0 (73.4)
34.66 (5.028)
24.0 (75.2)
36.26 (5.260)
25.4 (77.7)
38.26 (5.550)
27.2 (81.0)
41.06 (5.956)
28.9 (84.0)
44.00 (6.381)
30.6 (87.1)
46.80 (6.787)
32.1 (89.8)
49.73 (7.213)
33.7 (92.7)
52.80 (7.657)
36.7 (98.1)
59.20 (8.586)
39.4 (102.9)
65.59 (9.514)
42.2 (108.0)
72.39 (10.500)
46.2 (115.2)
83.59 (12.124)
49.8 (121.6)
94.66 (13.729)
51.2 (124.2)
99.06 (14.367)
52.3 (126.1)
102.79 (14.909)
1 32
-------
23. HCFC-234da (CF3CHCICFHCI)
HCFC-234da is synthesized using the reaction
Cl2, 0°C
CF3CH=CFH > CF3CHCICFHCI
fluorescent light
The yield is 85 percent and the purity of the product is 99.5 percent. Measurements on
this compound include the melting point, boiling point, vapor pressure below the boiling point,
liquid phase density, and critical properties. From the measured critical properties and boiling
point, the vapor pressure and vapor density were calculated up to the critical temperature by
modified corresponding states methods. Measured and estimated physical property data obtained
on this compound are given in Tables 23A-23D. The relatively high boiling point and critical
temperature of this compound indicate that its primary use might be as a solvent or heat
transfer fluid. Being an HCFC, the compound will have a non-zero ozone depletion potential.
1 33
-------
TABLE 23A
PART A.
PHYSICAL PROPERTIES OF HCFC-234DA (CF 3 CHCLCF HCL)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
B.P.
CRIT.
TEMP.
CRIT.
DENS ITY
CRIT.
MEAS.
PRESS.
CORRES.
LIQUID
HEAT CAPACITY
PART 8
(C)
(KG/M3)
(KPA)
(KPA)
AT 40 C (J/(G
o
o
242.5
552
3353
1.176
PVT DATA
AND HEAT
OF VAPORIZATION AS A
FUNCTION
OF TEMPERATURE
TEMP.
LIQUID
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPORIZATION
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
40.10
1502
2.46
33.9
33.70
44.10
1493
2.87
39.8
...
33.44
48.10
1485
3.32
46.6
...
33.17
52.10
1476
3.84
54.3
...
32.91
56.10
1468
4.41
62.9
...
32.64
60.10
1459
5.04
72.5
...
32.38
64.10
1450
5.74
83.2
...
32.11
70.10
1439
6.91
101
31 .70
77.00
1428
8.46
126
31 .21
83.89
1406
10.28
154
30.70
90.79
1390
12.39
187
30.18
97.68
1374
14.82
226
29.65
104.58
1358
17.61
270
29.10
111.48
1341
20.79
---
321
28.53
118.37
1323
24.42
...
378
27.94
125.27
1305
28.54
443
27.34
132.16
1287
33.20
___
516
26.71
139.06
1268
38.46
...
597
26.05
145.96
1248
44.41
...
688
25.37
152.85
1228
51.13
788
24.66
159.75
1206
58.71
898
23.92
166.64
1184
67.30
1020
23.13
173.54
1160
77.06
1153
22.30
180.44
1135
88.19
...
1299
21.41
187.33
1109
100.98
...
1458
20.47
194.23
1080
115.79
...
1632
19.44
201.12
1049
133.13
...
1821
18.33
208.02
1015
153.72
...
2027
17.09
214.92
976
178.60
2250
15.69
221.81
931
209.35
...
2493
14.04
228.71
878
248.58
2756
12.02
235.60
812
301.28
3042
9.21
242.50
552
552.30
3353
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
7.86E-03
300 K
0.734
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.851
0.936
600 K
1.010
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T - KELVIN TEMPERATURE TC - CENTIGRADE TEMPERATURE)
EQUATI ON
LIQ. DENS.(KG/M3) = 1626.1 + (-3.7570E+00 )TC
+ ( 1.5435E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 70.1821 - 6546.3 /T
- ( 7.9628)*LN(T)
ID GAS HEAT CAP.{J/(G-K)) = 0.268 + ( 1.880E-03 )T
+ (-1.075E-06 )T**2
RANGE
27.4 TO 77.5 C
LESS THAN 70.1 C
250.0 TO 600.0 K
134
-------
TABLE 23B
PHYSICAL PROPERTIES OF HCFC-234DA (CF3CHCLCFHCL)
(ENGLISH UNITS)
PART A. MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS. LIQUIO
(F) (F) TEMP. DENSITY MEAS. CORRES. HEAT CAPACITY
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.) AT 104 F
(BTU/LB-F)
-144.4 158.2 468.5 34.5 — 486.3 0.2811
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR PRESSURE HEAT OF
(F) DENSITY DENSITY MEAS. CORRES. VAPORIZATION
(LB/CU.FT.) CORRES. (LB/SQ.IN.) (LB/SQ.IN.) (BTU/LB)
(LB/CU.FT.)
104.18
93.75
0.154
4.91
78.41
111.38
93.23
0.179
5.78
77.79
118.58
92.70
0.208
6.76
...
77.17
125.78
92.17
0.239
7.87
76.56
132.98
91.63
0.275
9.12
75.94
140.18
91.09
0.315
10.52
75.32
147.38
90.55
0.358
12.07
74.71
158.18
89.81
0.431
14.70
73.75
170.59
89.17
0.528
18.21
72.60
183.01
87.79
0.642
22.36
71.43
195.42
86.80
0.773
27.19
70.22
207.83
85.79
0.925
32.78
68.97
220.24
84.75
1.099
39.21
67.69
232.66
83.69
1.298
...
46.56
66.37
245.07
82.61
1.525
...
54.89
65.01
257.48
81.49
1.782
...
64.29
63.60
269.90
80.34
2.072
74.84
62.14
282.31
79.15
2.401
86.62
60.62
294.72
77.91
2.772
99.72
59.03
307.13
76.63
3.192
114.24
57.37
319.55
75.30
3.665
130.26
55.64
331.96
73.90
4.202
...
147.88
53.81
344.37
72.43
4.811
...
167.22
51.88
356.78
70.88
5.506
188.39
49.82
369.20
69.22
6.304
211.50
47.62
381.61
67.43
7.228
236.70
45.24
394.02
65.49
8.311
264.13
42.64
406.44
63.34
9.596
293.96
39.76
418.85
60.93
11.149
...
326.37
36.49
431.26
58.15
13.069
...
361.56
32.68
443.67
54.84
15.518
...
399.76
27.96
456.09
50.69
18.808
...
441.25
21.43
468.50
34.48
34.479
486.30
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
4.54E-03
80 F
0.1755
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2034
0.2237
620 F
0.2414
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF a FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 105.991 + (-1.4933E-01 )TF
+ ( 2.9740E-04 )TF**2
LN(VAP. PRESS.(LB/SQ.IN.)) =
ID GAS HEAT CAP.(BTU/(LB-F))
72.9318 - 1783.3 /T
- ( 7.9628)*LN(T)
= 6.3980E-02 + ( 2.497E-04)T
+ (-7.931E-08 )T**2
RANGE
81.3 TO 171.5 F
LESS THAN 158.2 F
-9.7 TO 620.3 F
1 35
-------
Table 23C
Saturated Liquid Density Measurements for HCFC-234da (CF3CHCICFHCI)
Temp.
°C (°F)
Diameter
(P i + Pg >'2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
27.4 (81.2)
0.7652
1.5509
1.6256
1.4676
1.5069
1.5377 (95.998)
3.8
37.4 (99.4)
0.7552
1.5466
1.5468
1.4511
1 .4601
1.5012 (93.715)
3.0
48.0 (118.4)
0.7447
1.5333
1.5306
1.4308
1.4387
1.4834 (92.603)
3.3
56.5 (133.7)
0.7363
1.5028
1.5078
1.4204
1.4296
1.4651 (91.466)
2.8
77.5 (171.5)
0.7156
1 .4714
1.4760
1.3760
1.3843
1.4269 (89.080)
3.3
1 36
-------
Table 23D
Vapor Pressure Measurements for HCFC-234da (CF3CHCICFHCI)
Below Boiling Point.
Temp
°C (°F)
Measured
kPa (psi)
3.7 (38.7)
6.00 (0.870)
6.8 (44.2)
6.93 (1.006)
10.1 (50.2)
8.13 (1.180)
12.7 (54.9)
9.47 (1.373)
15.6 (60.1)
10.80 (1.566)
18.0 (64.4)
12.27 (1.779)
20.0 (68.0)
13.60 (1.972)
22.2 (72.0)
15.07 (2.185)
25.9 (78.6)
18.00 (2.610)
27.5 (81.5)
19.60 (2.843)
29.9 (85.8)
21.60 (3.133)
33.1 (91.6)
25.06 (3.635)
36.1 (97.0)
28.80 (4.177)
38.5 (101.3)
31.86 (4.622)
42.4 (108.3)
37.46 (5.434)
48.0 (118.4)
47.20 (6.845)
50.7 (123.3)
52.26 (7.580)
53.1 (127.6)
57.06 (8.276)
54.7 (130.5)
60.40 (8.760)
56.7 (134.1)
64.66 (9.378)
57.1 (134.8)
65.66 (9.523)
58.7 (137.7)
68.79 (9.978)
60.2 (140.4)
72.93 (10.577)
62.9 (145.2)
78.26 (11.351)
63.4 (146.1)
81.33 (11.795)
64.0 (147.2)
82.39 (11.950)
66.5 (151.7)
89.46 (12.975)
67.3 (153.1)
92.26 (13.381)
69.1 (156.4)
97.39 (14.126)
1 37
-------
24. HCFC-243da (CF3CHCICH2CI)
HCFC-243da is synthesized by the chlorination reaction
Cl2
CF3CH=CH2 > CF3CHCICH2CI
FeCI3
The reaction conditions are: 0.02 moles of starting material with 0.025 moles of CI2 and
0.028 g of FeCb in a 50-mL reactor at 23°C for 12 hours. The purity of the final product is
99.5 percent. Measurements on this compound include the melting point, boiling point, vapor
pressure below the boiling point, liquid phase density, and critical properties. From the
measured critical properties and boiling point, the vapor pressure and vapor density in the
liquid-vapor coexistence region were calculated up to the critical temperature by modified
corresponding states methods. Measured and estimated physical property data obtained on this
compound are given in Tables 24 A through 24 D. The relatively high boiling point of 76.7°C
for this compound means its primary use would be either as a solvent or heat transfer fluid. Its
relatively high hydrogen content implies a short atmospheric lifetime and corresponding low
ozone depletion potential and global warming potential.
138
-------
TABLE 24A
PART A.
PHYSICAL PROPERTIES OF HCFC-243DA (CF3CHCLCH2CL)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
-71.6
B.P.
(C)
76.7
CR IT.
TEMP.
(C)
251.9
CRIT.
DENSITY
(KG/M3)
514
CRIT. PRESS.
MEAS. CORRES.
(KPA) (KPA)
3496
LIQUID
HEAT CAPACITY
AT 40 C (J/(G-K)
1.234
PART B. PVT OATA ANO HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
(C)
LIQUID
DENSITY
(KG/M3)
VAPOR
DENS ITY
CORRES.
(KG/M3)
PRESSURE
MEAS. CORRES.
(KPA) (KPA)
HEAT OF
VAPORIZATION
(KJ/MOLE)
46.70
1406
2.24
34.9
33.19
50.70
1399
2.59
40.6
---
32.88
54.70
1391
2.97
47.1
___
32.57
58.70
1384
3.40
54.4
32.26
62.70
1376
3.87
62.5
31.96
66.70
1368
4.39
71.4
31.65
70.70
1360
4.95
81.3
31.34
76.70
1347
6.11
---
101
30.86
83.71
1330
7.51
126
30.39
90.72
1312
9.14
155
29.90
97.72
1306
11.04
189
29.40
104.73
1291
13.24
228
28.89
111.74
1276
15.77
274
28.36
118.75
1260
18.66
326
27.82
125.76
1244
21.96
—-
385
27.25
132.76
1228
25.72
452
26.67
139.77
1211
29.97
527
26.06
146.78
1194
34.79
611
25.44
153.79
1176
40.23
704
24.78
160.80
1157
46.39
808
24.09
167.80
1137
53.35
...
923
23.38
174.81
1117
61 .25
—
1049
22.62
181.82
1095
70.24
1188
21.82
188.83
1072
80.50
1341
20.96
195.84
1048
92.31
1507
20.05
202.84
1021
105.99
1689
19.06
209.85
993
122.05
1887
17.98
216.86
961
141.14
2102
16.78
223.87
925
164.24
2336
15.42
230.88
884
192.85
2591
13.83
237.88
835
229.35
2868
11.87
244.89
774
278.25
3169
9.13
251.90
514
514.40
3496
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
7.94E-03
300 K
0.768
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.893
0.984
600 K
1.066
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) = 1467.2 + (-7.8266E-01 )TC
+ (-1.0200E-02 )TC**2
LN(VAP. PRESS.(KPA)) = 78.9119 - 6962.6 /T
* - ( 9.2916)#LN(T)
ID GAS HEAT CAP.(J/(G-K)) = 0.280 + ( 1 .952E-03 )J
+ (-1.075E-06 ) T**2
RANGE
24.1 TO 93.3 C
LESS THAN 76.7 C
250.0 TO 600.0 K
1 39
-------
TABLE 24B
PART A.
PHYSICAL PROPERTIES OF HCFC-243DA (CF3CHCLCH2CL)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(F)
B.P.
(F)
CRIT. CRIT.
TEMP. DENSITY
(F) (LB/CU.FT.)
¦96.9 170.1
485.4
32.1
CRIT. PRESS.
MEAS. CORRES.
(LB/SQ.IN.) (LB/SQ.IN.)
507.1
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
0.2950
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
(F)
116.06
123.26
130.46
137.66
144.86
152.06
159.26
170.06
182.67
195.29
207.90
220.52
233.13
245.75
258.36
270.98
283.59
296.20
308.82
321.43
334.05
346.66
359.28
371.89
384.50
397.12
409.73
422.35
434.96
447.58
460.19
472.81
485.42
LIQUID VAPOR
DENSITY DENSITY MEAS.
(LB/CU.FT.) CORRES. (LB/SQ.
(LB/CU.FT.)
PRESSURE HEAT OF
CORRES. VAPORIZATION
IN.) (LB/SQ.IN.) (BTU/LB)
87.79
87.32
86.85
86.37
85.89
85.41
84.93
84.10
83.04
81.92
81.51
80.58
79.64
78.67
77.68
76.66
75.60
74.51
73.39
72.22
70.99
69.71
68.36
66.94
65.41
63.77
61.98
60.00
57.77
55.20
52.13
48.29
32.11
0.140
0.161
0.186
0.212
0.242
0.274
0.309
0.381
0.469
0.571
0.689
0.827
0.984
1.165
1.371
1.605
1 .871
2.172
2.512
2.896
3.331
3.824
4.385
5.026
5.762
6.617
7.619
8.811
10.253
12.039
14.318
17.371
32.113
5.06
5.89
6.84
7.89
9.06
10.36
11.79
14.70
18.27
22.48
27.41
33.13
39.72
47.26
55.83
65.52
76.42
88.60
102.18
117.24
133.88
152.22
172.36
194.43
218.57
244.91
273.62
304.87
338.86
375.81
415.97
459.62
507.07
85.54
84.75
83.95
83.15
82.36
81.56
80.76
79.53
78.31
77.06
75.78
74.46
73.09
71.69
70.24
68.73
67.17
65.55
63.86
62.10
60.25
58.29
56.23
54.03
51.68
49.13
46.35
43.26
39.75
35.65
30.58
23.53
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
4.59E-03
80 F
0.1836
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.2135
0.2352
620 F
0.2548
PART D EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = FAHRENHEIT TEMPERATURE)
EQUATION
LIQ. DENS.(LB/CU.FT.) = 92.261 + (-1.4567E-02 )TF
V + (-1.9653E-04 )TF»*2
LN(VAP. PRESS.(LB/SQ.IN.)) = 82.4426
2532.7 /T
( 9.2916)*LN(T)
ID GAS HEAT CAP.(BTU/(LB-F)) = 6.6992E-02 + ( 2.593E-04)T
+ (-7.931E-08 )T»*2
RANGE
75.4 TO 199.9 F
LESS THAN 170.1 F
-9.7 TO 620.3 F
1 40
-------
Table 24C
Saturated Liquid Density Measurements for HCFC-243da (CF3CHCICF2CI)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
g/cm3 (lb/ft3)
Std.
Dev.
(%)
24.1 (75.4)
0.7241
1.4628
1.4402 (89.907)
2.6
1.4695
1.3882
37.2 (99.0)
0.7121
1.4458
1.4281 (89.151)
2.1
1.4524
1.3860
53.2 (127.7)
0.6974
1.4156
1.3959 (87.144)
2.4
1.4233
1.3489
67.5 (153.4)
0.6842
1.3841
1.3671 (85.346)
2.2
1 .3927
1.3245
79.5 (175.1)
0.6731
1.3551
1.3391 (83.597)
2.3
1.3653
1.2968
93.3 (199.9)
0.6604
1.3214
1.3066 (81.569)
2.3
1 .3338
1.2646
141
-------
Table 240
Vapor Pressure Measurements for HCFC-243da (CF3CHCICH2CI)
Below Boiling Point.
Temp
°C (OF)
Measured
kPa (psi)
3.7 (38.7)
4.50 (0.666)
7.7 (45.9)
5.50 (0.800)
9.4 (48.9)
6.40 (0.928)
13.0 (55.4)
7.60 (1.102)
15.7 (60.3)
8.73 (1.267)
18.0 (64.4)
9.73 (1.412)
20.6 (69.1)
11.13 (1.615)
22.6 (72.7)
12.07 (1.750)
25.2 (77.4)
13.96 (2.025)
27.1 (80.8)
15.33 (2.224)
28.4 (83.1)
16.13 (2.340)
29.9 (85.8)
17.20 (2.494)
34.2 (93.6)
20.66 (2.997)
35.9 (96.6)
22.4 (3.249)
39.0 (102.2)
25.33 (3.674)
43.8 (110.8)
31.2 (4.525)
47.0 (116.6)
35.2 (5.105)
48.4 (119.1)
37.33 (5.414)
51.2 (124.2)
41.60 (6.033)
53.0 (127.4)
44.26 (6.420)
1 42
-------
25. Cy-HCFC-326d (cyclic-[CF2]3CHCI)
This cyclic compound is synthesized by the reaction
200°C
CF2=CF2 + CF2=CHCI > cyclic-(CF2)3CHCI
Reaction conditions are: 0.02 moles of CF2=CF2 and 0.06 moles of CF2=CHC1 in a 30 mL reactor
for 48 hours at 200°C. The yield is 19 percent and the purity is 99.2 percent. The boiling
point (38.1 oC) and critical temperature (196.9°C) are such that cy-HCFC-326d could be used
as a blowing agent.
Measurements on this compound include the melting point, boiling point, vapor pressure
below the boiling point, liquid phase density, and critical properties. From the measured
critical properties and boiling point, the vapor pressure and vapor density In the liquid-vapor
coexistence region were calculated up to the critical temperature by modified corresponding
states methods. Physical property data obtained on this compound are given in Tables 25A-25D.
Although the compound has one chlorine atom per molecule, the hydrogen content plus the
strained ring structure should give the compound a relatively short atmospheric lifetime.
Despite the desirable properties of the compound, the low synthetic reaction yield suggests that
the material may not be an economical alternative.
143
-------
TABLE 25A
PART A.
PHYSICAL PROPERTIES OF CY-HCFC-326D (CY-(CF2)3CHCL)
(SI UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P.
(C)
B.P.
(C)
CRIT.
TEMP.
(C)
CRIT.
DENSITY
(KG/M3)
CRIT. PRESS.
MEAS. CORRES.
(KPA) (KPA)
LIQUID
HEAT CAPACITY
AT 40 C (J/{G-K)
-94.8 38.1 196.9 515 — 2749 1.158
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP.
L1QU1D
VAPOR
PRESSURE
HEAT OF
(C)
DENSITY
DENSITY
MEAS.
CORRES.
VAPOR IZATI ON
(KG/M3)
CORRES.
(KPA)
(KPA)
(KJ/MOLE)
(KG/M3)
18.10
1516
3.97
46.8
29.39
22.10
1504
4.63
55.1
...
29.25
26.10
1492
5.38
64.6
29.11
30.10
1480
6.22
75.4
28.98
34.10
1468
7.16
87.5
28.84
38.10
1459
8.24
...
101
28.69
44.45
1439
9.95
...
124
28.24
50.80
1419
11.94
...
150
27.79
57.16
1399
14.21
...
180
27.32
63.51
1378
16.81
...
215
26.83
69.86
1357
19.76
254
26.34
76.21
1336
23.10
299
25.82
82.56
1314
26.86
___
349
25.29
88.92
1292
31.10
...
405
24.74
95.27
1268
35.86
467
24.17
101.62
1245
41.21
536
23.58
107.97
1221
47.19
...
612
22.97
114.32
1196
53.91
...
696
22.32
120.68
1171
61.44
788
21 .65
127.03
1145
69.92
889
20.94
133.38
1117
79.49
998
20.19
139.73
1089
90.34
...
1118
19.39
146.08
1059
102.72
___
1247
18.53
152.44
1027
116.96
...
1388
17.60
158.79
992
133.52
1540
16.59
165.14
955
153.05
1704
15.47
171.49
914
176.48
1882
14.20
177.84
867
205.29
2074
12.72
184.20
813
242.05
2282
10.89
190.55
745
292.32
2506
8.34
196.90
515
514.70
2749
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL
COND. (W/M-K)
9.06E-03
300 K
0.678
HEAT CAPACITY
(J/(K-GRAM))
400 K 500 K
0.824
0.952
600 K
1.030
PART 0. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T a KELVIN TEMPERATURE TC = CENTIGRADE TEMPERATURE)
EQUATION
LIQ. DENS.(KG/M3) = 1566.2 + (-2.6251E+00 )TC
~ (-5.2222E-03 )TC**2
LN(VAP . PRESS.(KPA)) » 43.5150
ID GAS HEAT CAP.(J/(G-K))
4735.1 /T
- ( 4.1260)*LN(T)
0.015 + ( 2.714E-03 )T
+ (- 1.700E-06 )T**2
RANGE
6.7 TO 93.3 C
LESS THAN 38.1 C
250.0 TO 600.0 K
1 44
-------
TABLE 25B
PART A.
PHYSICAL PROPERTIES OF CY-HCFC-326D (CY-(CF2)3CHCL)
(ENGLISH UNITS)
MELTING POINT, BOILING POINT, CRITICAL PROPERTIES, AND LIQUID
PHASE HEAT CAPACITIES
M.P. B.P. CRIT. CRIT. CRIT. PRESS.
(F) (F) TEMP. DENSITY MEAS. CORRES.
(F) (LB/CU.FT.) (LB/SQ.IN.) (LB/SQ.IN.)
LIQUID
HEAT CAPACITY
AT 104 F
(BTU/LB-F)
-138.6 100.6 386.4 32.1 398.7 0.2768
PART B. PVT DATA AND HEAT OF VAPORIZATION AS A FUNCTION OF TEMPERATURE
TEMP. LIQUID VAPOR
(F) DENSITY OENSITY
(LB/CU.FT.) CORRES.
(LB/CU.FT.
PRESSURE
MEAS. CORRES.
(LB/SQ.IN.) (LB/SQ.IN.
HEAT OF
VAPOR IZATI ON
) (BTU/LB)
64.58
94.63
0.248
6.79
63.71
71.78
93.88
0.289
8.00
63.41
78.98
93.14
0.336
9.37
63.11
86.18
92.39
0.388
10.93
62.82
93.38
91.63
0.447
12.69
62.52
100.58
91.06
0.514
14.70
62.19
112.01
89.85
0.621
17.97
61.23
123.45
88.61
0.745
21.77
60.24
134.88
87.35
0.887
26.15
59.22
146.31
86.06
1.049
31.17
58.17
157.75
84.74
1.233
36.88
57.09
169.18
83.39
1.442
43.34
55.98
180.62
82.03
1.677
50.60
54.83
192.05
80.63
1.942
58.72
53.64
203.48
79.15
2.239
67.75
52.41
214.92
77.70
2.572
___
77.77
51.12
226.35
76.22
2.946
88.83
49.79
237.78
74.69
3.365
100.99
48.39
249.22
73.11
3.836
114.32
46.93
260.65
71.47
4.365
128.90
45.39
272.08
69.76
4.962
144.80
43.76
283.52
67.97
5.640
162.10
42.02
294.95
66.09
6.412
180.89
40.17
306.38
64.09
7.302
201.27
38.16
317.82
61.95
8.335
223.33
35.97
329.25
59.62
9.554
247.19
33.54
340.69
57.04
11.017
...
272.99
30.79
352.12
54.13
12.816
300.87
27.57
363.55
50.73
15.111
330.98
23.60
374.99
46.48
18.249
363.52
18.09
386.42
32.13
32.132
398.68
0.00
PART C. VAPOR PHASE THERMAL CONDUCTIVITY AND IDEAL GAS HEAT CAPACITY
THERMAL COND.
(BTU/(HR-FT-F))
5.23E-03
80 F
0.1621
HEAT CAPACITY
(BTU/(LB-F))
260 F 440 F
0.1970
0.2276
620 F
0.2462
PART D. EMPIRICAL EQUATIONS REPRESENTING PROPERTIES AS A FUNCTION OF
TEMPERATURE (T = RANK INE ABSOLUTE TEMPERATURE TF = riUBr"u
RANK INE ABSOLUTE TEMPERATURE
EQUATION
LIQ. DENS.(LB/CU.FT.) = 100.588 + (-8.4603E-02 )TF
+ (-1.0062E-04 )TF«*2
LN(VAP. PRESS.(LB/SQ.IN.)) = 44.0094 - 8523.2 /T
1 - ( 4.1260)*LN(T)
ID GAS HEAT CAP. (BTU/(LB-F) ) = 3.6335E-03 -t- ( 3.604E-04)T
+ (-1.254E-07 )T**2
FAHRENHEIT TEMPERATURE!
RANGE
44.1 TO 199.9 F
LESS THAN 100.6 F
-9.7 TO 620.3 F
1 45
-------
Table 25C
Saturated Liquid Density Measurements for cy-HCFC-326d
(cyclic-(CF2)3CHCI)
Temp.
°C (°F)
Diameter
(p, + pg )/2
g/cm3
Liquid
Density
g/cm3
Avg.
Liquid
Density
q/crn3 (ib/ft3)
Std.
Dev.
(%)
6.7 (44.1)
0.7760
1.5657
1.5487 (96.685)
1.1
1.5318
22.2 (72.0)
0.7547
1.5242
1.4998 (93.632)
1.6
1.4755
31.2 (88.2)
0.7424
1.5128
1.4876 (92.870)
1.7
1.4625
53.2 (127.8)
0.7121
1.4397
1.4075 (87.864)
2.3
1.3752
75.3 (167.5)
0.6818
1.3818
1.3402 (83.665)
3.1
1.2985
93.3 (199.9)
0.6571
1.3285
1.2791 (79.852)
3.9
1.2297
1 46
-------
Table 250
Vapor Pressure Measurements for cy-HCFC-326d (cyclic-(CF2)3CHCI)
Below Boiling Point.
Temp
°C f°F)
Measured
kPa (psi)
-33.7 (-28.7)
3.07 (0.445)
-30.8 (-23.4)
3.73 (0.541)
-26.1 (-15.0)
5.07 (0.735)
-21.9 (-7.4)
6.53 (0.948)
-18.4 (-1.1)
7.73 (1.122)
-16.3 (2.7)
9.40 (1.363)
-13.5 (7.7)
10.67 (1.547)
-11.6 (11.1)
11.60 (1.682)
-9.7 (14.5)
12.53 (1.818)
-6.4 (20.5)
14.13 (2.050)
-4.9 (23.2)
16.67 (2.417)
-2.4 (27.7)
18.93 (2.746)
3.6 (38.5)
24.53 (3.558)
6.5 (43.7)
28.13 (4.080)
9.4 (48.9)
32.00 (4.641)
12.7 (54.9)
36.86 (5.347)
15.6 (60.1)
42.26 (6.130)
18.1 (64.6)
46.40 (6.729)
21.1 (70.0)
53.00 (7.686)
23.0 (73.4)
56.80 (8.237)
27.6 (81.7)
67.99 (9.862)
33.3 (91.9)
85.19 (12.356)
37.4 (99.3)
99.19 (14.387)
39.0 (102.2)
105.46 (15.295)
1 47
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before comple II11||| IIII III 111111III III II III
1. REPORT NO. 2.
EPA-600/R-9 5-113
3. in nil ii null iiiiiiiiii ii in
t PB95-260220
4. TITLE AND SUBTITLE
New Chemical Alternatives for the Protection of
Stratospheric Czone
5. REPORT DATE
July 1995
6. PERFORMING ORGANIZATION CODE
7. AUTHOR(S)
Darryl D. DesMarteau and Adolph I,. Beyerlein
8. PERFORMING ORGANIZATION REPORT NO.
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Clemson University
Department of Chemistry
Clemson, South Carolina 29634-1905
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
CR815134
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Air Pollution Prevention and Control Division
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Final; 8/88 - 12/91
14. SPONSORING AGENCY CODE
EPA/600/13
15. supplementary NOTES AppCD pr0]ect officer is N. Dean Smith, Mail Drop 62B. 919/541
2708.
16. abstractThe repQrt gives results of a study that focused on the investigation of fluor-
inated derivatives of propane and butane to determine if synthesis routes of such
compounds were feasible and economical, and to measure the physical properties
needed to evaluate the compounds as alternatives to stratospheric ozone depleters
that are to be phased out of production by developed countries in a step-wise progres-
sion over the period 1S96 to 2030. This work resulted in the investigation of 25 com-
pounds including 15 hydrofluorocarbons (UFCs), 9 hydrochlorofluorocarbons (HCFCs)
and 1 hydrofluoroether (HFE). Several of the compounds studied had not been pre-
viously synthesized and, for many of those which had been reported in the literature,
this study resulted in improved synthesis methods. Also, most compounds which
had a prior literature reference had only a boiling point measured. This study, in
addition to the synthesis effort, resulted in a sizeable body of thermophysical pro-
perty data for each chemical.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COS ATI Field/Group
Pollution Halohydrocarbons
Ozone Ethers
Stratosphere
Refrigerants
Solvents
Foaming Agents
Pollution Prevention
Stationary Sources
Stratospheric Czone
13B 07 C
07B
04A
13 A
UK
UG
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
21. NO. OF PAGES
154
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
------- |