EPA/600/2-85/044
April 1985
ENVIRONMENTAL RELEASE OF ASBESTOS
FROM COMMERCIAL PRODUCT SHAPING
by
Dennis A. Falgout
Engineering-Science
Fairfax, Virginia 22030
EPA Contract 68-03-3040
Project Officer
Thomas J. Powers
Industrial Wastes & Toxics Technology Division
Water Engineering Research Laboratory
Ci nci nnati, OH 45268
WATER ENGINEERING RESEARCH LABORATORY
OFFICE OF RESEARCH AND DEVELOPMENT
U. S. ENVIRONMENTAL PROTECTION AGENCY
CINCINNATI, OHIO 45268

-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before completing)
1. REPORT NO. 2
EPA/600/2-8S/044
3RECTO?AtEงW8M|
4. title and subtitle
Environmental Release of Asbestos
Commercial Product Shaping
5 REPORT DATE
April 1985
6. PERFORMING ORGANIZATION CODE
7. AUTHORIS)
Dennis A. Falgout
8. PERFORMING ORGANIZATION REPORT NO.
0RD, 0EET, WERL-Ci
9. PERFORMING ORGANIZATION NAME AND ADDRESS
En gineeri ng-Sci ence
Fairfax, VA 22030
10. PROGRAM ELEMENT NO.
< •
11. CONTRACT/GRANT NO.
12. SPONSORING AGENCY NAME AND ADDRESS
Water Engineering Research Laboratory, Cin., OH
Office of Research and Development
U. S. Environmental Protection Agency
Cincinnati, Ohio 45264
13. TYPE OF REPORT AND PERIOD COVERED
Final 1QR1 - 1QR4
14. SPONSORING AGENCY COOE
EPA/600/14
15. SUPPLEMENTARY NOTES
Project Officer: Thomas J. Powers,
(513)684-7506
16. ABSTRACT
^ For the first time, the release of respirable asbestos fibers has been quantified
in terms of standard mechanical forces using widely accepted methodology and specified
3A/QC procedures. Both fabrication of new products from asbestos containing materials
and repair or removal of in-use asbestos containing products contribute to the total
snvironmental exposure to asbestos. There is a need to assess these materials and
operations according to the potential severity of their fiber releases. This research
:onsisted of performing several simulated industrial/commercial shaping operations on
several asbestos containing products. The rates of fiber release, expressed as fibers
Der cubic centimeter of air inside an enclosed test chamber per gram of asbestos milled,
f/ere measured. The filter samples were analyzed by the transmission electron microscope
(TEM) method. Lengths, widths, and type of asbestos were reported for fibers and other
asbestos structures. In addition, samples were taken for phase contrast microscopic
(PCM) analysis during most of the experiments. The results of these analyses are
:ompared.
Research on the release of asbestos/substitutes resulting from commercial product
nanufacture, use, and disposal is of continuing importance. More information about the
quantities and dimensions of fibers released during these activities is required in
jrder to develop effective control methods to help protect the public health...
17. KEY WORDS AND DOCUMENT ANALYSIS
a DESCRIPTORS
b.IDENTIFIERS/OPEN ENDED TERMS
c. COSATi Held/Group
Asbestos
Environmental Release


18. DISTRIBUTION STATEMENT
I
RELEASE UNLIMITED
1
19 SECURITY CLASS (This Report)
JNCLASST FIED
21. NO. OF PAGES
39 6
20 SECURITY CLASS (This page)
'NCI ASSTFTFn
22. PRICE
EPA Form 2220.1 (Rev. 4-77) previous edition is obsolete
i

-------
DISCLAIMER
The information in this document has been funded wholly or in part by
the United States Environmental Protection Agency under Contract No. 68-03-
3040 to Engineering-Science. It has been subject to the Agency's peer and
administrative review, and it has been approved for publication as an EPA
document. Mention of trade names or commercial products does not consti-
tute endorsement or recommendation for use.
i i

-------
FOREWORD
The U.S. Environmental Protection Agency is charged by Congress with
protecting the Nation's land, air, and water systems. Under a mandate of
national environmental laws, the agency strives to formulate and imple-
ment actions leading to a compatible balance between human activities and
the ability of natural systems to support and nurture life. The Clean
Water Act, the Safe Drinking Water Act, and the Toxics Substances Control
Act are three of the major congressional laws that provide the framework
for restoring and maintaining the integrity of our Nation's water, for
preserving and enhancing the water we drink, and for protecting the
environment from toxic substances. These laws direct the EPA to perform
research to define our environmental problems, measure the impacts, and
search for solutions.
The Water Engineering Research Laboratory is that component of
EPA's Research and Development program concerned with preventing, treat-
ing, and managing municipal and industrial wastewater discharges; esta-
blishing practices to control and remove contaminants from drinking water
and to prevent its deterioration during storage and distribution; and
assessing the nature and controllability of releases of toxic substances
to the air, water, and land from manufacturing processes and subsequent
product uses. This publication is one of the products of that research
and provides a vital communication link between the researcher and the
user community.
There is a need to assay the potential environmental fiber release
from various asbestos products subjected to standardized use factors such
as those that occur during installation and/or repair in-situ since this
contributes to the burden of asbestos exposures. This research project
attempts to evaluate the rate of release per unit weight of material
machined as quantified by weight and number of fibers and the analysis
of fibers according to length and width using the transmission electron
microscope (TEM) methodology.
Francis T. Mayo, Director
Water Engineering Research Laboratory
iii

-------
ABSTRACT
The overall objectives of this research were to develop and verify
testing protocols for quantifying fiber release from commercial asbestos
products and proposed substitute materials during common fabricating op-
erations, and to obtain actual fiber release data for specific asbestos
products. The test protocol is to be well-defined and the effects of
varying parameters were documented so as to provide applicable standard
procedures for use under various conditions. The protocol is intended
to provide industry and government with a scientifically reliable tech-
nique with which to rank the fiber release potential of various asbestos
product/commercial operation combinations. This technique will measure
the release of respirable asbestos particles/fibers during the perfor-
mance of routine fabrication operations (sawing, sanding, drilling, etc.)
from commercially used asbestos products (sheets, tile, etc.). The re-
sults from this technique can be used to define a "release potential
index" which could be of significant value in assessing the risk asso-
ciated with various combinations of operations and products. The tech-
nique can be used to rank, preliminarily, the most common asbestos mate-
rials/operations to determine which combinations potentially present the
greatest environmental risk. For the first time, the release of respir-
able asbestos fibers in terms of standard mechanical forces using widely
accepted methodology and specified QA/QC procedures has been defined.
Both fabrication of new products from asbestos containing materials
and repair or removal of in-use asbestos containing products contribute
to the total environmental exposure to asbestos. There is a need to as-
sess these materials and operations according to the potential severity
of their fiber releases. This research consisted of performing several
simulated industrial/commercial shaping operations on several asbestos
containing products. The rates of fiber release, expressed as fibers
per cubic centimeter of air inside an enclosed test chamber per gram of
asbestos milled, were measured. The filter samples were analyzed by the
transmission electron microscope (TEM) method. Lengths, widths, and type
of asbestos were reported for fibers and other asbestos structures. In
addition, samples were taken for phase contrast microscopic analysis dur-
ing most of the experiments. The results of these analyses are compared
to the analyses of the samples that were taken simultaneously and ana-
lyzed by TEM.
Research on the release of asbestos/substitutes resulting from com-
mercial product manufacture, use, and disposal is of continuing impor-
tance. More information about the quantities and dimensions of fibers
released during these activities is required in order to develop effec-
tive control methods to help protect the public health.


-------
CONTENTS
Foreword 			iv
Abstract 		-v-
Figures 		vi
Tables 		vii
1.	Introduction 		1
2.	Conclusions 		5
3.	Recommendations 		7
4.	Equipment and Methods for Measuring Airborne
Asbestos Fibers 		8
Equipment		8
Laboratory procedures 		16
Data reduction		23
Personnel protection 		27
5.	Experimental Results 		28
Preliminary experiments 		29
Cleanup runs and blanks 		36
Experimental parameters 		36
Particle stratification tests 		42
Filter orientation tests 		44
Reproducibility 		44
Asbestos fiber release potential index 		44
6.	References 		65
A.	Representative log-normal distributions 		66
B.	TEM data - background and blanks 		70
C.	TEM data - material/operation experiments 		131
Index to TEN data		382
D.	PCM data 	184
v ฆ

-------
FIGURES
Number	Page
1	Controlled atmosphere glove box 		9
2	Sawing/grinding table 		12
3	Material feed apparatus 		13
4	Drilling apparatus 		15
5	Sample laboratory data sheet 		18
6	Types of asbestos structures 		22
7	Sample TEM data sheet		24
8	Fiber length distribution filter 176, fibers only 		58
9	Relationship between lengths & diameters, fibers
only, filter 176 		62
10	Electron photomicrograph of fibers, bundles, and
matrix particles - asbestos cement sheet/saw 		63
vi

-------
TABLES
Number	Page
1	Summary of gravimetric analysis 		32
2	Summary of SEM analysis 		33
3	Summary of initial TEM analysis 		35
4	Summary of size characteristics 		37
5	Summary of background fiber counts and concentrations 		38
6	Experimental parameters 		39
7	Mass of asbestos milled during the various
material/operation experiments 		41
8	Results of particle stratification tests 		43
9	Results of upright vs. inverted filter experiments 		45
10	"t" test of paired upright/inverted results 		46
11	Summary of results for ten identical runs 		47
12	Asbestos fiber release potential index 		49
13	Results of tests for significance of difference
between material/operation pairs 		50
14	Distribution of structure types generated during
asbestos release experiments 		51
15	Distribution of asbestos structure types generated
during asbestos release experiments 		52
16	Comparison of EPA and IITRI results 		53
17	Comparison of transmission electron microscope (TEM)
and phase contrast microscope (PCM) results 		55
18	Correlation between phase contract microscope (PCM)
results and transmission electron microscope (TEM)
results 		57
19	Summary of log-normal plots of transmission electron
microscope data 		59
20	Summary of log-normal statistics for fibers and
other structures 		61
v-i-i.

-------
SECTION 1
INTRODUCTION
The scientific community is in general agreement that exposure to
asbestos dust increases the risk of: (1 ) .asbestosis, a fibrotic disease
of the lung whereby imbedded dust fibers are surrounded by scar tissue;
(2) lung cancer; (3) mesothelioma, a cancer of the membrane lining the
chest and abdomen; and (4) cancers of the gastrointestinal tract. Pre-
vailing opinion is that there is no minimum dose causing the various
cancers. The environmental release of asbestos fibers from the use and
disposal of numerous products may present widespread harmful exposure to
the general public.
Therefore, research on the release of asbestos/substitutes resulting
from commercial product manufacture, use, and disposal is of continuing
importance. More information about the quantities and dimensions of fi-
bers released during these activities is required in order to develop
effective control methods to help protect the public health.
Presently, government agencies such as the National Institute for
Occupational Safety and Health (NIOSH) and the Occupational Safety and
Health Administration (OSHA) are directing attention to the hazards of
asbestos exposure through proposal of more stringent regulations. Cur-
rent OSHA standards limit asbestos exposure to a time-weighted average
of two fibers per cubic centimeter over an 8-hour period, with a 15-
minute ceiling limit of ten fibers per cubic centimeter. The existing
standard is based on counts of fibers 5 microns or longer in length and
having an aspect ratio greater than 3:1 using phase contrast microscopy
(PCM) to analyze samples collected from the breathing zone.
This notwithstanding, the total risk from the manufacture, process-
ing, use, and disposal of asbestos products is regulated under the Toxic
Substances Control Act (TSCA) by the EPA Office of Pesticides and Toxic
Substances (OPTS). In addition, the EPA leads an Interagency Task Force
investigating asbestos hazards.
The EPA Industrial Environmental Research laboratory in Cincinnati
(IERL-Ci) provides technical services to the program offices. In this
instance, IERL was requested to support OPTS in rulemaking and related
TSCA activities concerning the Asbestos/Substitutes Program. Engineering-
Science (ES) was subsequently retained by IERL as the contractor to carry
out the laboratory and field experiments to support the proposed rules.
1

-------
The overall objective of the research to be performed was to develop
(if unavailable) and verify testing protocols for fiber release of com-
mercial asbestos products and product substitute materials. A secondary
objective was to obtain release data for specific asbestos products where
possible. Because of the large number of asbestos products and the dif-
ficulties of making field measurements IERL developed an incremental ap-
proach to achieving the program objectives. The research would be con-
ducted sequentially. First a series of glove box tests would be conducted
to develop and verify sampling and analytical measurement techniques. If
successful, a model would be developed to estimate field concentrations
based on the glove box results. However, before the model could be used,
it would be tested in a controlled environment (a standard test room) re-
presentative of the field conditions. If the model proved to be an accep-
table prediction under controlled conditions, it would then be verified
in the field by testing it out under actual working conditions. There-
fore, the overall program was divided into four research areas:
o Research Area I - perform glove box experiment of asbestos release
rates to develop and verify consistent fiber generation and sam-
pling analytical procedures.
o Research Area II - develop a mathematical model that accounts for
the environmental field parameters and predicts asbestos breathing
zone concentration in the field using glove box release rate data.
o Research Area III - perform full room tests (in a standard test
room) simulating field conditions in an attempt to calibrate the
field model.
o Research Area IV - conduct field experiments to verify the useful-
ness of the model in predicting asbestos breathing zone concen-
trations in the field from glove box asbestos release data.
ES was requested by IERL to conduct the glove box testing program
identified in Research Area I. The project objectives were similar to
the overall program objectives, namely, to verify testing protocols for
fiber release of commercial asbestos products and proposed substitute
materials. However, the project would be limited to developing test
protocols for experiments conducted on the glove box scale. As in the
overall program, a secondary objective of the glove box experiments was
to obtain release data for specific asbestos products. The glove box
project was divided into three phases:
o Phase I - preliminary assessment to define the status and applic-
ability of any existing methods.
o Phase II - develop a standard test method.
o Phase III - test the potential fiber release of some representa-
tive asbestos products.
2

-------
Phase I was an assessment of previously existing laboratory procedures
used to estimate asbestos release rates and/or exposure in the atmosphere.
No reproducible methods could be found for generating and measuring the
release of asbestos fibers during industrial operations on asbestos-con-
taining materials. Also, no procedure that could be considered controlled
and reproducible was identified. Therefore, IERL-Ci proceeded with the
design, construction, and testing of the apparatus and identification of
the analytical techniques that together would constitute such a method
and tested the reproducibility of the method. The result of Phase I was
a recommendation of a test procedure for measuring the asbestos fiber re-
leased during commercial product use. Phase II fully developed and tested
the laboratory procedure. The objective of Phase II was to evaluate the
precision of the laboratory procedure and to determine its sensitivity to
variation of fiber generating and sampling factors. Phase III included
additional precision tests and a compilation of an asbestos fiber release
potential index that ranked various pairs of material operations according
to their potential for causing worker and environmental exposure to as-
bestos fibers. In addition, simultaneous samples were taken and analyzed
by NIOSH methods during 32 of the experiments. The results of these tests
were compared to the transmission electron microscope results. Nucleporeฎ
filters from five runs were divided and portions submitted to the U.S.
EPA/IERL-Ci laboratory for duplicate analysis.
The test method that was developed for the project is referred to
in this document as the "glove box" method. An apparatus was developed
that allows reproducible generation of a cloud of asbestos fibers within
a confined volume. The fibers are generated by means that are physically
similar to common industrial operations. The equipment was constructed
from readily available parts so that it could be reproduced by other in-
vestigators. The apparatus consists of a table top glove box, a con-
trolled, variable speed work feeder, a remote power source coupled to
the tool by a flexible drive shaft, a fan to provide consistent mixing
within the glove box, a filter holder, and means to withdraw up to four
samples at constant rates.
Development of an asbestos fiber release potential index required
some means of generation of an aerosol that would allow ranking of indus-
trial or commercial operations on the various products. To this end,
the tools and the machining rates and materials to be used mimicked, as
closely as is possible, those operations commonly employed. The intent
was to reproduce the mechanism of the commercial operation, it was not an
attempt to reproduce the commercial operation. The tools were actuated
mechanically rather than by hand to enhance the precision and repeatabil-
ity of the experiments.
The test materials were obtained directly from manufacturers insofar
as is possible. Direct contact was made with the quality control depart-
ment (or other appropriate division) in order to be sure of obtaining
materials for which manufacturing specifications were known. These data
included the percent asbestos, the nature and composition of binders and
extenders, and the results of any other physical and chemical analyses
3

-------
that are available. The information attainable from manufacturers was
inadequate in some cases so the fiber release potential index computa-
tions were based on bulk analyses. These analyses were performed at the
Mt. Sinai School of Medicine, Environmental Science Laboratory.
A test procedure and a Quality Assurance plan were developed. The
analytical procedure of choice was the provisional EPA transmission elec-
tron microscopy (TEM) method that was developed for EMSL/RTP by the Illi-
nois Institute of Technology Research (IITRI) under a separate contract.
The reproducibility of the procedures was tested during this project by
replicate performance of the same experiment (sawing of an asbestos
cement sheet) and found to be good. Ultimately, the TIM analysis was
chosen over the PCM method because of its superior capacity to provide
information about the concentration of very small particles.
There is debate among asbestos researchers as to which configura-
tions of small asbestos particles are hazardous. Some adhere to a strict
definition of fibers; others include other structures such as bundles of
of fibers, agglomerations of fibers, and fibers adhered to small pieces
of binder or other material. The TEM data include counts of all of these
structures but fiber release potential factors were calculated only for
fibers. All data have been reported to facilitate alternate computations
by any reader.
The sampling procedures employed are described in detail in Section
4. The quality assurance and quality control procedures are described
in Appendix D, Quality Assurance Plan for Development of a Sealed Test
Chamber (Glove Box) Method for Estimating Asbestos Fiber Release from
Shaping Operations on Durable Materials (March 1982). The sampling pro-
cedure conforms to the method described in USPHS/NIOSH Membrane Filter
Method for Evaluating Airborne Asbestos Fibers (DHEW/NIOSH Publications
Number 79-127) in all of its major aspects except that Nucleporeฎ (poly-
carbonate) filters are used in lieu of cellulose ester filters. The TEM
analysis requires that the filter substrate be dissolved from under the
carbon coated fibers. The polycarbonate material is much more readily,
and gently, dissolved than the cellulose ester material.
The results of the testing program indicate that the primary objec-
tive of the project has been achieved. A test procedure has been devel-
oped to measure asbestos release rates in a glove box under controlled
conditions. In addition, the release rates measured for various product
generated by different mechanical operations can be quantified. The
results suggest that the overall program can proceed to the subsequent
research areas of developing a predictive model and field validation.
4

-------
SECTION 2
CONCLUSIONS
The literature survey carried out in the early stages of this pro-
ject revealed that no procedure that could be considered controlled and
reproducible existed for generation of an asbestos aerosol by operations
similar to commercial/industrial machining of non-friable asbestos bear-
ing products.
A technique was developed for generating such an aerosol. The tech-
nique is simple and relatively inexpensive, and is sufficiently flexible
to be adapted to mimic a variety of industrial milling operations on a
variety of products.
Transmission electron microscopy (TEM) was selected for analysis of
the sampled particles because of its ability to discern extremely small
particles and to differentiate asbestos from other fibers.
The reproducibility of the technique of the combined generation/ana-
lytical system was found to be excellent. Relative standard deviations
for repetitive performances of an experiment were typically in the 40% to
80% range.
An index that rates the propensity of six industrial/commercial
operations on three asbestos bearing materials was developed. The units
of the index are:
	Asbestos Fibers	
(Gram Asbestos Machined) (cc Air Sampled)
The experimental procedure maintains the amount of asbestos machined
relatively constant so that errors of scale are eliminated and so that
the filter samples collected are all loaded properly for TEM analysis.
Normalizing the data on the grams of asbestos actually machined during
an experiment removes the residual variance within an experimental set
and the residual variance among the various experiments. The various
material operations tested are listed below in decreasing order of their
propensity to generate asbestos fibers.
5

-------
Material
Operation
Environmental
Re lease
Index Value
Brake Shoes
Asbestos Cement Sheet
Millboard
Saw (Cut-Off Wheel)
Saw (Toothed Blade)
Grind
1838
647
465
305
283
105
Asbestos Cement Sheet
Asbestos Cement Sheet
Millboard
Saw (Toothed Blade)
Drill
Drill
Stratification of particles within the aerosol was tested by sam-
pling simultaneously at high and low elevations within the glove box.
The aerosol was found to be homogeneous.
Differences in concentrations measured by upward facing as opposed
to downward facing filters was tested by sampling simultaneously with
upright and inverted filters. No significant difference was found.
Fiber and structure lengths were found to be log-normally distri-
buted. Fiber and structure diameters do not fit the log-normal dis-
tribution as well because of the large number of 0.0625 (approximate)
micron diameter fibers.
Correlation between TEM results and PCM results was attempted.
Samples were taken with Millipore filters during 32 of the experiments,
representing four different Material/Operation pairs. No correlation of
the PCM analysis of these filters with the TEM analysis of the Nucleporeฎ
filters that were exposed simultaneously could be found. It was deter-
mined that only approximately 1% of the structures identified by TEM
were longer than 5 microns. It was determined that none of the structures
identified as being fibers by the TEM have diameters sufficiently larger
to be seen by the PCM. We were unable to correlate any subset of the
TEM data with the PCM results.
6

-------
SECTION 3
RECOMMENDATIONS
The results of this study have suggested several avenues of future
research.
1.	The testing should be extended to include additional asbestos
products and to products containing different types of asbestos fibers.
2.	It has been reported that reducing tool speed significantly re-
duces fiber release. Future work should include testing of slow speed
cutting equipment.
3.	The efficiency of various vacuum and wetting devices in reducing
the amount of asbestos released into the environment should be investi-
ga ted.
4.	The effects of agglomeration and settling on the fiber concen-
tration in the aerosol should be investigated. Agglomeration may signi-
ficantly affect the concentration and size distribution of suspended
fibers.
5.	Work on development of a correlation between the transmission
electron microscope and phase contrast microscope methods should continue
in order to determine whether data collected by the latter may be corre-
lated with health effects data.
6.	Means should be developed for relating the data provided by this
technique to worker and environmental exposures.
7

-------
SECTION 4
EQUIPMENT AND METHODS FOR MEASURING AIRBORNE ASBESTOS FIBERS
In order to test the potential for release of fibers from commercial
asbestos product use, an asbestos fiber generation system was designed and
built to simulate commercial product use. The material/operation (M/0)
chosen for evaluating the technique was sawing asbestos cement sheet. The
fiber generation system is contained in a controlled atmosphere glove box,
as is the sample collection apparatus. Samples are collected on polycar-
bonate filters and sent to the laboratory for TEM measurement of asbestos
fibers. Detailed descriptions of the equipment, general laboratory proce-
dures, and data reduction procedures used in the above steps are given in
the following sections. Specific results for each set of tests are des-
cribed in Section 5.
EQUIPMENT
The equipment used for generating and measuring airborne asbestos
consists of the following components:
o	Controlled atmosphere glove box
o	Fiber generation system
o	Air sampling system
o	Glove box decontamination unit
o	Carbon coating unit
o	Transmission electron microscope (TEM)
The first four components were designed, constructed, and operated by ES
in the Fairfax, Virginia laboratory. The carbon coating unit was located
at the George Washington University in Washington, D.C. and was operated
by ES. The TEM was operated by Illinois Institute of Technology Research
Institute in their Chicago, Illinois laboratory.
Glove Box
A Labconco controlled atmosphere glove box (Figure 1) served as the
sealed test chamber for the fiber generation and air sampling system.
The interior volume of the glove box is about 0.33 cubic meters. The
glove box provides a completely sealed environment in which to conduct
the experiments. The glove box has a 0.01 cubic meter interchange com-
partment to prevent contamination of room air during passage of materials
into or out of the main chamber. Two 20 centimeter diameter glove ports
8

-------
Figure 1. Controlled atmosphere glove box.

-------
are located on the front of the box, with a pair of neoprene gloves
clamped to the ports for use in manipulating components inside the test
chamber. The glove box was also equipped with a 70 by 48 cm safety glass
viewing panel, two 115 volt electrical outlets, and one 15 watt fluore-
scent light. The glove box was made of fiberglass reinforced polyester
material.
The glove box was modified to include ports for four air sampling
lines and Swagelokฎ tube fittings located in the lower back left wall.
The Fibrous Aerosol Monitor (FAM) sample line and tube fitting port were
installed in the middle of the ceiling of the box. Ports for the circu-
lar saw power cable and vacuum (cleaning) tube were installed in the lower
back right wall. The saw table and circular saw were bolted to the floor
of the glove box. A port for the material feed rod was made in the lower
middle of the left side wall. When received, the glove box was equipped
with two laboratory style gas valves which allowed ventilation of the box.
These were removed and replaced with Mine Safety Appliance Company Type S
filter cartridges. Air exhausted from the glove box during vacuuming was
replaced by room air that was cleaned as it was drawn through these fil-
ters .
A small (Dayton 4C 549) electronics cooling fan was placed inside
the glove box and operated during the material cutting portions of the
experiments. The purpose of the fan was to insure that the aerosol in-
side the glove box was homogeneous. The adequacy of the fan was assessed
by placing smoke pellets in the center of the glove box and observing the
smoke dispersion patterns. It was observed that the dispersion of the
smoke was complete within 5 to 10 seconds after the fan was turned on.
Fiber Generation System
The original concept of the sawing mechanism pushing a saw into a
stationary piece of material was rejected for several reasons. First,
it was concluded that the windings of the electric saw motor would become
contaminated with asbestos fibers and would become a secondary source of
fiber generation. Use of a sealed pneumatic motor was considered imprac-
tical. Second, controlling the rate of advance of the saw would have been
difficult. Third, it would have been difficult to propel the bulky saw
in a straight line which is necessary to minimize fiber generation by
the sides of the saw blade. In short, installation of the saw in the
box would have required insertion of excessive mechanical equipment in
the glove box. That would have resulted in an increase in the interior
surface area with a concomitant increase in the difficulty of clean-up
between runs. We, therefore, chose to place the motor outside the box,
drive the saw blade with a flexible shaft, and feed the material into
the blade.
The secondary manufacturing operation initially simulated in the
glove box was the sawing of asbestos cement sheet. The fiber generation
system consisted of a circular saw, saw table, material feed mechanism,
1 0

-------
and asbestos cement sheet. The design of the system attempted to mini-
mize the number of components inside the box and to use off-the-shelf
components to the extent possible.
A Dayton (Stock No. 4X631) portable power circular saw wheel was
used. The masonry type saw wheel is commonly used for sawing concrete,
tile, brick, slate, and similar materials. This type of saw is not re-
commended for use in cutting asbestos containing materials because it
is known to create high fiber concentrations. It was chosen for these
preliminary experiments because its use would insure generation of mea-
surable fiber concentrations and because its use eliminated a possible
variable - blade tooth sharpness. The saw wheel is 15.2 cm in diameter,
and 0.32 cm thick. The silicon-carbide wheel is reinforced with resin-
bonded fiberglass for safety. The saw is powered by a Dayton (Stock No.
6K553) 0.25 horsepower motor at 1,725 revolutions per minute. A Dayton
(Stock No. 2Z325) flexible power shaft was used to rotate the saw wheel.
A small saw table (Figure 2) was fabricated to support the saw and
power shaft, as well as the asbestos cement sheet. The table is 30 cm
long, 13 cm wide, and 18 cm high, and is bolted to the floor of the
glove box. Two spring clips and metal bar hold the materials firmly
in place as it is fed to the saw.
A material feed mechanism (Figure 3) was fabricated that would
push the asbestos sheet into the saw blade at a known and constant rate.
The work feeder was built around a standard 26 turns per inch lathe worm
gear. The worm gear was driven by a Dayton variable speed gearmotor
(Stock No. 42128) and thus the work feed rate was controlled by a Day-
ton motor speed controller (Stock No. 6X165). An 85 cm rod was attached
to the threaded block that rode on the worm gear. The end of this rod
extended into the glove box through a rubber gland and clamped to the
material to be sawn. It was possible to feed the material at reproduc-
ible rates of 0.1 to 30 cm/min.
The asbestos cement sheet was Transiteฎ, a registered Johns-Manvilie
product. The sheet was scored into 40 cm by 11 cm coupons with 0.635 cm
thickness. The average composition by weight of the sheet was 35% chry-
sotile absestos.
The second fiber generation system used was identical to the first
in every respect except that a toothed saw blade replaced the masonry
blade. A Vermont American No. M4661 2, 6-1/2 inch blade with 40 carbide
tipped teeth was used. The blade was used to cut the same Transiteฎ
sheet that was used in the first set of experiments and to cut millboard.
The millboard, obtained from the Quinn-T-Corp, was their standard #E101
electrical insulation product. It was 1/4 inch thick and contained 77.5%
asbestos.
The third fiber generation system was also similar to the first and
second; it differed only in that the saw blade was replaced by a 6 inch x
3/4 inch Grade N, Grit 36 grinding wheel (Sears 9^ 64232). The material
11

-------
Figure 2. Sawing/grinding table.

-------
Figure 3. Material
feed apparatus

-------
ground was Raybestos Manhattan, Inc., N 9531 brake shoe lining. This
material contained 37.5% asbestos.
The fourth fiber generation system was created by replacing the saw
table with two tripods (Figure 4). These were bolted to the floor of
the glove box. One tripod supported the work feed mechanism shaft but
allowed the shaft to be moved in and out freely. The material to be
drilled was clamped to a vertical plate that was attached to the end of
the work feed shaft. The hole in the center of this plate allowed the
drill bit to fully penetrate the material. The flexible drive shaft was
held by the second tripod. The saw arbor on the shaft was replaced by a
drill chuck. Carbide tipped masonry drill bits were used in the drilling
experiments. The asbestos cement sheet was drilled with a 3/8 inch diam-
eter bit and the millboard with a 1/4 inch bit. These hole sizes have
the same area as the slots that were cut in these materials during the
sawing experiments. The ratio of hole sizes (and slot sizes) is approx-
imately equal to the inverse of the ratio of asbestos content in the two
materials.
Air Sampling System
Air samples were collected by passing a known volume of air through
a polycarbonate membrane filter. Real time measurements of the fiber
concentration inside the glove box were made using the FAM.
A Thomas vacuum pump pulled air through four independent sample lines.
The samples were connected to Matheson (Model R7630 series) flowmeters
that were calibrated with a bubble tube flowmeter before testing and op-
erated at flow rate ranging from 0.3-2.2 liters/min. The pressure drop
across each filter was measured by a Dwyer Slack Tube manometer (Model
1211-36). Samples were collected on 37 mm diameter Nucleporeฎ polycar-
bonate disc membranes (Stock No. 110807) with a pore hole size of 0.4
microns. The Nucleporeฎ filter was placed on a celluose pad for support
and to distribute air flow over the entire filter surface. The filter
and cellulose pad were placed in a 37 mm Millipore disposable plastic
filter holder (Model MAWP 03 AO). A filter retaining ring between the
top and bottom half of the filter holder permits the removal of the top
halve for open faced sampling, while at the same time holding the filter
firmly in place. The filters were positioned vertically, open face up,
on a metal sampling head. The vacuum lines were connected to the bottom
orifice of the filter holder. The sampling head was clamped to a ring
stand positioned in the back of the glove box. The sampling head was
positioned six inches directly above the saw blade.
Real time monitoring of asbestos fibers was conducted using the GCA
Fibrous Aerosol Monitor (Model FAM-1). The FAM is designed to automat-
ically count airborne fibers for sample times of 1, 10, 100, and 1000
minutes and display the count and resulting concentration on a digital
display. Air pulled through FAM first passes through a chamber in which
laminar flow is developed. The air is then drawn through the sensing
region where the particles are exposed to an oscillating electric field.
Fibers are counted by detecting the light scattering signature resulting
14

-------
Figure 4. Drilling apparatus.


-------
from the oscillation of the fibers while being illuminated by a helium
neon laser-generated light beam. An in-line membrane filter collects
the particles from the instrument exhaust to prevent contamination of
room air.
Glove Box Decontamination Unit
A Dayton vacuum (Model No. 27564) and Dayton asbestos filtering sys-
tem (Model No. 6X724) were used to decontaminate the glove box. The va-
cuum line runs from the glove box to the vacuum unit and filtering system,
which was located outside the building. The vacuum is rated at about 90
cubic feet per minute. The asbestos filter system meets OSHA standards
for vacuuming asbestos, and consists of a HEPA cartridge filter to back
up the primary collection bag. The decontamination unit was designed to
remove asbestos in the box without contaminating room air during the
cleaning cycle.
Disposable polyvinyl gloves were used to transfer used asbestos ce-
ment sheet from the glove box to sealed plastic bags. Whenever the glove
box was opened for washing, a personal respirator with a NIOSH approved
filter cartridge was worn in addition to the disposable gloves. Dispos-
able towels were placed in sealed plastic bags after use in washing the
glove box interior.
Carbon Coating Unit
Carbon coating of the polycarbonate filters was performed using a
Thermionics (Model TL1-10) Vacuum Evaporator rented from the Department
of Anatomy of the George Washington University in Washington, D.C. ES
personnel were trained to perform the carbon coating procedure.
Transmission Electron Microscope
Fiber counting and sizing was performed using IITRI's 100 KV trans-
mission electron microscope (TEM). The filters were prepared in a clean
room adjacent to the TEM room. The filters were transferred to an EM
grid, and the filter was dissolved in a modified Jaffe Wick Washer. The
EM grid was viewed under a fluorescent viewing screen inscribed with grad-
uations to estimate the length and width of fibrous particles. More de-
tailed information on the TEM can be found in Reference 1 .
LABORATORY PROCEDURES
The laboratory procedures for generating and measuring airborne as-
bestos consist of:
o Sample preparation
o Fiber generation
o Sample collection
o Glove box decontamination
o Carbon coating
1 6

-------
o Transfer to EM grid
o TEM examination and data collection
The first five tasks were performed by ES, while the last two tasks were
performed by IITRI. The description of the procedures performed at IITRI
was extracted from Reference 1.
Sample Preparation
Air samples were taken on 37-mm diameters, 0.4-micron pore size
polycarbonate filters. The shiny, smooth side was used as the particle
capture surface. The filter was supported by a cellulose pad in a 37-mm
plastic filter holder. A piece of tape, which also served as a label,
was placed on the filter cartridge so that it formed an air tight seal
between the bottom half and middle ring of the plastic filter holder.
The label insured that air did not enter through the sides of the unit.
The label listed the date, ES project number (8401), and filter identi-
fication number. The filter ID number was a seven digit code, the first
three digits were the run number, the next was a letter specifying the
location on the sampling head, and the final three digits were a filter
identification number.
Prior to each experimental run, a data sheet was prepared similar
to Figure 5. The sequential run number, beginning with 101, was recorded
along with the time and date of the run. A battery powered wet bulb/dry
bulb thermometer was used to measure the temperatures inside the glove
box and the room temperatures. Atmospheric pressure was also recorded.
Before each run, the FAM was used to test the fiber concentration in-
side the glove box. A ten minute average concentration of less than 0.10
f/cc indicated that the glove box was sufficiently clean to proceed with
the run. If the FAM reading exceeded 0.10 f/cc, then the run was post-
poned until the glove box had been revacuumed and/or washed, and retested
with the FAM.
Once the FAM indicated that the glove box was clean enough to pro-
ceed, the plastic filter holders were placed in the metal sampling head,
the plastic filter tops were removed, and the top of the metal sampling
head replaced to protect the open face filters. The sampling head is
clamped to the ringstand in the glove box so that the bottom of the sam-
pling head was six inches above the sawblade. The sample lines were con-
nected and the plastic filter holder tops were placed in the air inter-
change chamber. The glove box was locked and the system was ready for
a run.
Fiber Generation
For the initial set of runs, the sawing of asbestos cement sheet
was the method for the generation of fibers. The asbestos cement sheet
was fed into the saw wheel at a constant rate by a variable speed motor.
The length of material cut and the time required for the cut were recorded
on the data sheet. Prior to the cut, the fan in the front left corner of
17

-------
ENGINEERING-SCIENCE
EPA ASBESTOS RELEASE PROJECT
SAMPLING AND SHIPPING RECORD
Run #: ) 5*3
Date: M/ai/gaT
Tine: IQOO -
Cut Lengths Start _
'ฆCut Time; Star t
Ope ration/Ma ter ial:
Location of' Sampler
i
Flow Rate Readings
o.-oo
Dry Bulb T:
Wet Bulb T:
Pressure: 	
Stop
Stop
Glove Box
Glove Box
-SL^S" In
•3-O.fc *F
Room -90.& ฐF
Roฐm fe*a.Q " !
9 Vi<
30
ฑb
Length of Cut
Elapsed Time
I '//*>
3Q
in.
sec
SawiftA AC sheet
^ 1 *	^^	ftP5vCN	1 ft .A fli ,


Rotameter
Settings


Wait
Sample
1 PiIter
]
TT>
(Glass
Float)
Pressure Drop
Time
Time
! I^O
A
3o
mm
l.s
in. H2O
400 sec
6OO sec
:• i-u
B
6H
SHI
\a.fl
in. H2O
in. H20
in. H2O
6O0 sec
&OO sec
1 m
C

m
IS.*>
&OO sec
&O0 sec
i-i'i
D
0
Willi
0
&OO sec
O sec
PAM Readings





BeforeCijt Q.Q4
During &? overtofejT
After Cut
After Cut
After Cut
Sampling Time
Sampling Time
Sampling Time
Sampling Time
Sampling Time
IP /*%> A
IP POiQ
10 rtio
IP f*\ A
Oper a to it	) ฃcXtT
Coated by:
Shipped to:
Shipping Method:
Initials
Mk.
Date

ped ex
S/?/ga
Time
>>
cPm
Filter ID
m
l*ป3

1>3
Remarks
(initial and
ID
date)
average.
EfiiSfa-
c%ปr
-EfiSl
Airbill No.:
- O.QS

o,s
Figure 5. Sample laboratory data sheet.
18

-------
the glove box was switched on to circulate the air inside the box during
the cut. The fan operated during the cut, but was switched off at the
end of the cut because large cement particles from the bottom of the box
were reentrained if the fan were left on.
The theoretical settling rate data are in close agreement with ac-
tual settling data obtained under working conditions. Fibers 1 to 5 mi-
crons in length with an aspect ratio of roughly 5:1 are a common material
dispersed from overhead insulation in buildings. The settling velocities
for fibers 5, 2, and 1 microns in length with a 5:1 aspect ratio and with
an axis attitude varying between vertical and horizontal would be approxi-
mately 2 x 10~2, 4 x 10~3, and 1 x 10~3 cm/sec, respectively. The theo-
retical times needed for such fibers to settle from a 3 meter (9 feet)
ceiling are 4, 20, and 80 hours ill still air. Turbulence will prolong
their suspension.
The observations made above led to the standardization of mixing
within the test chamber and adoption of a 10-minute waiting period be-
tween the end of the mechanical operation on the material and the sam-
pling of the aerosol. The former is to standarized the suspension times
of the fibers of interest and the latter is to allow the larger particles
(>30 microns) that mask the smaller particles to settle prior to sampling.
The need for the 10-minute waiting period became obvious during the early
stages of the development of the method when it was observed that filter
samples that were taken immediately upon cessation of sawing were coated
with a thin layer of dust. Microscopic examination of these filters re-
vealed that the dust layer was composed of relatively large particles of
cement binder, particles with aerodynamic diameters larger than 30 microns.
Not only did these particles mask the smaller fibers of interest, making
the TEM analysis difficult and uncertain, they contributed to erratic
concentration measurements since they arrived on the filter by settling
rather than by sampling. Various periods of time (1-, 4-, and 10-minute)
with the filters covered prior to beginning of sampling were evaluated.
It was found that 10 minutes was the minimum sufficient time required to
allow the larger particles to settle from the aerosol and thereby elimi-
nate this interference. This phenomenon was confirmed by another inves-
tigator who observed during the course of experiments, in a room-sized
chamber, that it was necessary to wait 15 minutes after the cessation
of machining before beginning sampling in order to obtain reproducible
results.
Sample Collection
During the sawing period, the filters were positioned in the sampling
head and covered with the top of the sampling head. After the cut was com-
pleted, the filters remained covered for a period of ten minutes to allow
larger particles to settle out. After the ten minute wait period, the
sampling head cover was removed, the sampling pump and FAM switched on,
and a ten minute sample drawn through the polycarbonate filters and FAM.
The rotameter settings were preset to provide flow rates of about 0, 0.5,
1.0, and 1.75 liters/min. No air was drawn through one of the filters so
that the effect of particles settling onto the filters or contamination
19

-------
during handling could be determined. The rotameter settings, pressure
drop across the polycarbonate filters, particle settling wait time, sam-
ple collection time, and FAM readings were recorded on the data sheet.
The sampling pump was switched off after ten minutes, the inside inter-
lock door opened, the plastic filter holder tops placed on the filter
holders, and the filters holders placed in the interlock chamber. Then
the inside interlock door was closed and the glove box was ready for
cleaning. The outside interlock door was then opened, the filter hold-
ers removed with polyvinyl gloves, and the filter holders removed. The
filter holders were stored horizontally until transport to the carbon
coater.
Glove Box Decontamination
Immediately after the filters were removed from the glove box, the
glove box was thoroughly vacuumed, including the floor, saw table, side
walls, ring stand, fan, and rubber gloves. Makeup air was pulled through
the NIOSH approved filter cartridges mounted on the side of the box. The
vacuuming took about ten minutes. A ten minute sample was then taken with
the FAM to determine if the box was sufficiently clean to proceed with
another experiment. The criterion of a FAM reading of less than 0.10 f/
cc for a ten minute average was selected for the indication of a clean
glove box. If the FAM reading exceeded 0.10 f/cc, the glove box was re-
vacuumed and/or washed using water, paper towels, disposable gloves. A
respirator was worn during all these operations.
Carbon Coating
The carbon coating of the polycarbonate filters was performed at
the George Washington University, about ten miles from the ES laboratory.
The polycarbonate filters remained in the plastic filter holder at all
times, so there was no handling of the filters prior to the application
of the carbon film to the filter.
The plastic filter holder was placed on a mount about 10 cm below
the carbon electrodes. The pointed end of one electrode, the neck of
which was 0.1 cm in diameter and 0.5 cm long, rested against the flat
surface of the other electrode. The bell jar of the evaporator was
pumped down for a period of three minutes to obtain a vacuum of about
1 x 10~4 torr. The plastic filter holder was rotated while the elec-
trode current was increased to about 15 amperes for a period of 10
seconds. The amperage was dropped to zero for about one minute, then
raised to 25-30 amperes for a period of 25-30 seconds. The evaporation
of the electrode neck continued in 30 second segments until about three-
fourths of the neck was evaporated. The plastic filter holder was con-
tinually rotated during evaporation so that particles were evenly coated
on all sides and undesirable shadows eliminated. After the electrode
neck was evaporated, the bell jar was returned to atmospheric pressure,
the filter holders removed and placed in a small box for overnight deliv-
ery to IITRI by a small parcel delivery service.
20

-------
Transfer to Em Grid
At IITRI, the collected particles from the carbon coated polycarbo-
nate filter were transferred to an electron microscope grid. The trans-
fer was accomplished in a modified Jaffe Wick Washer. Briefly, the Jaffe
Wick Washer is a petri dish containing a substrate to support the EM grid
and carbon coated polycarbonate filter. Solvent is added to cause dis-
solution of the polycarbonate membrane with a minimum loss or dislocation
with of the particles. The result is a membrane free EM grid with par-
ticles embedded in the carbon coating. More detail on the Jaffe Wick
Washer can be found in Reference 1 .
TEM Examination
The EM grid was examined in the TEM at a magnification of 250X to
assess the quality of the EM grid. The grid was rejected if the carbon
film over most of the grids was damaged or if the specimen was dark due
to incomplete dissolution of the polycarbonate filter. At a magnifica-
tion of 1000X, the particle loading is assessed. The grid is rejected
if the particle loading were too light (unless a blank) or too heavy
(particle-particle interaction or overlap). If the grid were accepted,
a field of view or grid opening was defined and measured at 1000X. The
selection of the grid opening was done on a random basis. At the film
magnification of 20,000X, a series of parallel traverses were made
across the grid opening until the entire grid opening was scanned. As-
bestos structures were identified morphologically and counted as they
were scanned.
Since asbestos fibers were found isolated as well as with each other
or with other particles in varying configurations, the fibrous particles
were characterized as asbestos structures of the following types:
o A fiber was defined as a particle with an aspect ratio of 3:1 or
greater with substantially parallel sides.
o A bundle was a particle composed of fibers in a parallel arrange-
ment with each fiber closer than one fiber diameter.
o A cluster was a particle with fibers in a random arrangement such
that all fibers were intermixed and no single fiber was isolated
from the group.
o A matrix was a fiber or fibers with one end free and the other
end embedded or hidden by a particle.
Figure 6 demonstrates the different types of asbestos structures.
The asbestos fiber count was given in terms of the number of asbestos
structures that were identified. Thus, a cluster counted as one asbestos
structure, even though there were numerous individual fibers comprising
the cluster. Similarly, a bundle counted as one asbestos structure, even
21

-------
ฆCOUNT-JtS .L.EIBER.	
	
i
ฆCO.UNJ„ AS_2^FIBERS.				
	po u. NI r,AS_3T,FIBERS..		....
J.O.U.O.TJS.] „B,UN.DL.E,	
.COUNT. AS 1 CLUSTER
CO.UN .T_ AS J. MATRIX,,		
< r
Figure 6. Types of asbestos structures.
22

-------
though the bundle was comprised of several (though not always distinguish-
able) fibers.
Width and length measurements were obtained for individual fibers,
and a cylindrical shape was assumed for volume calculations. Bundles and
clusters were sized by estimating their width and length. A summation of
individual diameters was used to obtain total width and an average length
for the total length. A laminar sheet shape was assumed with the average
diameter of the individual fiber as the thickness. Matrices were sized
by summation of the best estimate of individual fiber components. A lam-
inar or sheet structure was assumed for volume calculation.
The selected area electron diffraction (SAED) pattern was obtained
for the fiber portion of each structure by use of the field limiting
aperture. Electron diffraction patterns from single fibers of asbestos
minerals fall into distinct groups. Transmission electron micrographs
and SAED patterns obtained with standard samples were used as guides to
fiber identification. From the visual examination of the electron dif-
fraction pattern, the structure was classified as belonging to one of
the following categories:
o	Chrysotile
o	Amphibole group
o	Ambiguous
o	No identification
There are several reasons for the absence of a recognizable diffraction
pattern for some fibers. A few reasons include contamination of the
fiber, interference from nearby particles, too small a fiber, or too
thick a fiber.
Asbestos structure identification continued until the total number
of structures counted exceeded 100, or a minimum of 10 grid openings were
scanned, whichever came first. The TEM data were recorded by the micro-
scopist on a data form which includes sample information, instrument pa-
rameters, and sequence of operations. Figure 7 is an example of the TEM
data sheet.
DATA REDUCTION
The basic quantities to be calculated are air flow rate, fiber num-
ber concentration, and fiber mass concentration.
Some means for assuring comparability among diverse M/0 combinations
was needed. This was done by weighing the material before and after each
experiment to determine the amount of material actually machined. These
weights were measured on a laboratory balance having a 160 gram capacity
and a sensitivity of 0.1 mg. The weight loss, together with the percent
asbestos (as per phase contrast microscope and x-ray fluorescence analysis)
in the material provide a factor by which the results were normalized.
This factor was merely the mass of asbestos machined from the piece of
23

-------
Sample No. CO(o470-3-4A|
Filitrr Tyav I\Juc
. Fi 1 ter Arpd__
Grid Opening Area
JCLVepore	
.Qoi*~y
flfMnv* C'lirrpn p'-*'1- |'p)Q I | ^
Hagni fiotion	ZQ, fu^D V
Commen fj
Da te
find Box
B/fi/fil

Grid location C- g
Dimpns i nn
Strue t.
| Struct.
SAFO Ohsprv-i 11 on
-I I
' J	i_ J9
i : 20
&
B
_F_
I
9
JO.
1L
Ji.
J3
J4-
_l5_
_I_T_
J8
_L/ ! :	:
-I3—I :_^_1. 	!	L
	:	:
JS_
191'	!
j_7. J i y. i
3* I' i
J

J	15_.J L
j	15 J i
7 ! 1
. i _ .
1 ~
33 I B	I !_4.
	i	-34	i_M . I'.J
35 K\ _ ' I L
...
L ' _ J38_1_F	11 ~"l "
._ 1-3A-L.. *A_J! I .1 D_
!o __40_1_ F
_!__4I i _B_
4Z_L_fL
_ l.._4.3	L_
SAE3 Obsป-v?*.• : -
I C^rvs Amph
a/

i/
—1--

v/
i 44
P I
jlZ]
J_ 2A
I _j4_J Z05
;_5_J	is
I	I	1	I L
I
~"

_45_[
_4b__i
_j4L
_46_
j4C_.
v/"

Figure 7. Sample TEM data sheet.

-------
material. The concentration of asbestos fiber measured was divided by
the mass of asbestos machined so that the units of the concentration mea-
sured were:
	Fibers/cc	
(Gram Milled)(Fraction of Asbestos)
The mass of asbestos removed from each product by each operation were
held constant so that the sawing, drilling, and sanding experiments have
a common basis. The fiber concentrations in the aerosol generated dur-
ing these experiments are then a true release potential index. In addi-
tion, a normalization on the volume of material milled will be developed.
Other factors affecting worker exposure, such as the length of time of
his operation on a material, the mass of asbestos machined away during
the operation, and the effectiveness of any control devices can be tested
later so that the index values can be used to project potential exposures.
Air Flow Rate
The air flow rate passing through the polycarbonate filter during
sampling was determined from the rotameter setting and the rotameter
calibration curve. This flow rate was converted to standard conditions
using the following equation:
where:
Qs =
Q =
Pa =
pd =
T =
Qs = Q
Pd
1 3.6
530
1/2
29.92 x T
flow rate (cc/min) converted to standard conditions
flow rate (cc/min) from rotameter calibration curve
atmosphere pressure (in. Hg)
pressure drop across filter (in. H2O)
glove box temperature (ฐR)
The sample volume was obtained by multiplying the standard flow rate and
the sample time.
Fiber Number Concentration
The asbestos structure number concentration was calculated using:
N y Af
Cn = Ng	Ag
V
where: Cn = asbestos structure number concentration (number/cc)
N = asbestos structure count (number)
Ng = number of grid openings examined
Af = total effective filter area (cm2)
Ag = area of EM grid opening (cm^)
V = volume of air sampled (cc)
25

-------
The number concentration can either be calculated for isolated fibers
only, or all asbestos structures.
Fiber Mass Concentration
The asbestos fiber mass concentration was estimated from the size
measurements of the structures, the density of the asbestos and the sam-
ple volume. The fiber mass for both chrysotile and amphiboles was cal-
culated assuming the individual fiber had a circular cross-section (cy-
lindrical shape) and that the width measurement was the diameter. The
density of chrysotile was assumed to be 2.6 g/cm^ and of amphibole to
be 3.0 g/cm^. The individual fiber mass is calculated for each type
of asbestos from the following equation:
/D2\	-6
Mf = 3.14 (L) l(p) x 10
where: Mf = mass of individual fiber (yg)
L = fiber length (ym)
D = fiber diameter (ym)
o = fiber density (g/cm^)
The individual mass of bundles, clusters, and matrices was calculated by
assuming a laminar or sheet like structure with an average thickness of
the fiber makeup of the structure. The individual mass was calculated
from:
Ms = (L)(W)(T)(p) x 10"6
where: Mg = mass of individual asbestos structure (yg)
L = fiber length (ym)
W = fiber width (ym)
T = fiber thickness (ym)
P = density of fiber (g/cm^)
The total asbestos mass was calculated for each type of asbestos by sum-
ming the individual structure masses. The mass concentration was then
obtained from:
M + Ms Af
cm = Ng X Ag
V
where: Cm = total asbestos fiber mass concentration (yg/cc)
M = sum of individual fiber masses (yg)
Ms = sum of individual structure masses (yg)
Ng = number of grid openings examined
= effective area of the filter (cm2)
Ag = area or EM grid opening (cm^)
V = volume of air sampled (cc)
26

-------
Other characterizing parameters of the asbestos structures are:
o Length and width distribution of fibers
o Aspect ratio distribution of fibers
o Fiber, bundle, cluster, matrix relationship
The acquired data and their subsequent reduction was maintained on a com-
puter file.
Weight of Material Machined
Appropriately sized coupons of the various materials to be machined
were desiccated in a constant humidity room (50% RH) for at least 24 hours
prior to their use. Their initial mass was measured on a Mettler H-10
torsion balance. They were weighed again (after 24 hours desiccation)
after the experiment. Because all of the materials tested were prone to
increase weight by absorption of moisture from the more moist air outside
of the balance room, a blank coupon was weighed and handled in exactly
the same manner as the experimental coupon. It was placed inside the
glove box along with the experimental coupon and re-weighed with it.
The weight of material machined was calculated using:
Weight Cut = [IC - IC (IB - FB^ _ FC
FB
where: IC = initial weight of experimental coupon
IB = initial weight of blank coupon
FB = final weight of blank coupon
FC = final weight of experimental coupon
PERSONNEL PROTECTION
At the conclusion of each experimental run the operator removed the
filters from the main glove box chamber and placed them into the smaller
chamber. This smaller chamber (0.01 m^) was sealed off from the contami-
nated larger chamber during the experiment. During removal of the filters
from the smaller compartment, and during his subsequent vacuuming of the
larger chamber, the worker wore a mask (MSA-Type S filter or equivalent)
for his protection from fugitive particles. The air in the room was
tested for fibers periodically with the Fibrous Aerosol Monitor (FAM).
The large chamber was opened only after completion of a second va-
cuuming (in addition to the cleaning that occurred after each run), and
after confirmation, by the FAM, that it contained no suspended fibers.
27

-------
SECTION 5
EXPERIMENTAL RESULTS
The experimental design at this study has been based upon achieving
the following objectives:
o Determining the precision of the entire fiber release analyti-
cal system (comprised of fiber generation system, air sampling
system, carbon coating unit, and transmission electron microscope
(TEM) particle counting methods).
o Comparing TEM results to phase contrast microscope (PCM) results.
o Collecting data for a fiber release potential index.
The first of these objectives is of primary concern because determination
of the precision of the analytical system must precede all subsequent ef-
forts to evaluate asbestos containing products in the laboratory. The
second objective is important because broad application of the method for
testing will require knowledge of how the methods may be compared. Col-
lecting data for the fiber release potential index was done to determine
if the resulting values were significantly different and if the various
experimental parameters could be measured accurately.
Approximately 20 preliminary tests were conducted in Phase I of the
project to establish the values for several of the test variables. After
these values were established and it was determined that fiber loading
tests results could be repeated. Pase II consisted of nine reproducibi-
lity tests, using the cut-off wheel on asbestos cement sheet to establish
the transmission electron microscope (TEM) sampling and analysis proce-
dures. Phase III, consisting of five material/operation tests of eight
runs each, was designed to determine whether a fiber release potential
index could be developed and if so, what were the range of values.
During this effort, two additional tests were run to determine the effect
of inverting the sample filters. In addition, two tests were run with
the filters located at the top and bottom of the glove box to determine
if there was stratification of the fibers. A test matrix of the three
phases of the project is as follows:
No. of
Phase Desription Tests	Operation
Material
Analysis
I
Preliminary	20
Experiments
Cut off wheel Asbestos	Gravimetric
Cement Sheet	& SEM
28

-------
Phase	Desription
No. of
Tests
Operation
Material
Analysis
II Reproducibility
Tests
III Fiber Environ-
mental Release
Index Tests
Cut off Asbestos Cement TEM
wheel	Sheet
Sawing	Asbestos Cement TEM
Sheet
III
•	Inverted
Samples
•	Stratifica-
tion Tests
Fiber Environ-
mental Release
Index Tests
Sawing	Asbestos Cement
Sheet
Sawing	Asbestos Cement
Sheet
Sawing	Millboard
TEM
TEM
TEM, PCM
III Fiber Environ-
mental Release
Index Tests
Grinding
Brake Lining TEM, PCM
III Fiber Environ-
mental Release
Index Tests
Drilling
Asbestos Cement
Sheet
TEM, PCM
III Fiber Environ-
mental Release
Index Tests
Drilling
Millboard
TEM, PCM
The results of all of these experiments are discussed in this Section,
as are the TEM/PCM comparative results and the development of the fiber
release potential index. The results are not necessarily presented in
the order in which the tests were conducted, but rather in a sequence
in which the scientific questions are raised.
PRELIMINARY EXPERIMENTS
The primary purpose of a series of preliminary runs was to develop
a set of laboratory procedures that would obtain a representative and un-
biased sample. For the purposes of the TEM particle counting analysis,
a particle mass loading of 5-10 micrograms/cm2 of filter is optimal for
analysis. Loadings greater than 20-25 micrograms/cm2 require a dilution
treatment that may effect the particle size and shape distribution. Thus,
before the precision testing could begin, a set of laboratory procedures
29

-------
needed to be developed that would consistently provide samples with a
particle loading in the range required for the TEM analysis.
Several variables in the analytical system affect the particle load-
ing. Some of these variables are controllable, including:
o Cut length - the length (cm) of asbestos cement sheet cut during
the run.
o Cut time - the period of time (seconds) required to cut the
length of asbestos cement sheet.
o Wait time - the period of time (seconds) after the cut is com-
pleted but before air sampling begins to allow large particles
to settle. The filters are covered during this time.
o Sample time - the period of time (seconds) during which air is
drawn through the polycarbonate filter.
o Rotameter setting - determines the approximate flow rate through
the polycarbonate filter.
There are other factors that may affect the filter particle loading that
are not easily controlled, such as filter contamination or particle loss
during handling or transport. The preliminary runs were designed to ob-
tain a rough idea of the effects of the controllable variables, while
trying to minimize the effects of filter handling and transport.
Several techniques were used during the preliminary runs to deter-
mine the effect of variation of key parameters on obtaining a proper load-
ing on the filters. For a relatively quick and cheap estimate, filters
were weighed in the ES laboratory before and after each run to determine
the mass collected on the filter. This method had the major drawback of
requiring several filter handling steps, but provided order of magnitude
estimates of particle loading. The second method was a scanning elec-
tron microscopy analysis that quickly determined if a filter was properly
loaded for further analysis. This method required carbon coating each
filter and sending the collected samples to the 1ITRI laboratory. The
third method was to use the real time Fibrous Aerosol Monitor (FAM) to
obtain an approximate particle loading level in the glove box. The draw-
back of this method is that the FAM measures fiber loading and not par-
ticle loading. In addition to these three analysis techniques, several
filters were analyzed under the TEM to determine the size and shape dis-
tribution of the collected particles. The results of each of these anal-
yses are discussed in the following paragraphs.
Before any of the above analyses were conducted, the values for the
flow rates and sample times were assigned. Flow rates for 37-mm filters
are recommended in Reference 3 to be approximately 0.5-2.5 liters/minute.
Flow rates were set at 0.5, 1.25, and 2.0 liters per minute in order to
30

-------
bracket the particle loading so that at least one filter would be direct-
ly usable for TEM analysis. Sample times were set at ten minutes, since
longer sample times would begin to introduce the problem of dilution with-
in the glove box, while shorter sample times might not have produced a
representative sample. The air sampling parameters were defined before
any experiments were made so that the proper particle loading could be
obtained by varying the fiber generation parameters (cut length, cut
time, wait time).
Gravimetric Analysis
Several runs were made and the filters were weighed to determine
approximately the amount of particulate matter collected on each filter.
The ideal particulate matter loading for TEM analysis is 5-10 micrograms/
cm^ of exposed filter area. Table 1 summarizes the important parameters
of these runs. The last column in the table represents the average of
the mass collected on four different filters at four different flow
rates during the run, divided by the exposed filter area.
Runs 116 and 118 had short cut times and different wait times during
which the filters were covered. The average mass collected per unit area
of filter was significantly lower for Run 116, with a long wait time, than
for Run 118 with a short wait time. During the ten minute wait period of
Run 116, a light coating of particles settled and were visible on the top
of the sampling head cover. Since these particles were visible, it is
probable that they are greater than 50 microns and therefore not respir-
able.
Runs 124, 126, and 128 tested the effect of varying the wait period.
The runs were conducted in an identical manner except for the differing
wait times. There was not much difference in the average mass collected
per unit filter area for the one minute and four minute wait times, but
was significantly less for the ten minute wait period. These results
indicate that a long wait period, on the order of ten minutes is neces-
sary to allow large particles to settle.
The results of the gravimetric analysis indicated that the best op-
erating conditions for producing the desired particle loading were a cut
length of about 3 cm, a cut time of 60 seconds, and a wait time of 600
seconds. SEM and FAM analysis were performed subsequently to confirm
these results and to better define the optimum operating conditions.
SEM and FAM Analysis
Five runs were made and the filters were carbon coated for analysis
under the scanning electron microscope. An experienced microscopist can
determine if a filter has the proper particle loading for the TEM analysis
by examining the filter under the SEM. The results of this examination
are shown in Table 2. The five runs were made with a wait period of ten
minutes and varying cut lengths to determine if the amount of material cut
had an effect on the particle loading. Run 136 had a cut length of 5.5 cm
31

-------
TABLE 1. SUMMARY OF GRAVIMETRIC ANALYSIS
Run
Number
Cut
Length
(cm)
Cut
Time
(sec)
Feed
Rate
(cm/min)
Wait
Time
(sec)
Average Mass Collected
Per Unit Area of Filter
• (ug/cm2)
107
19.4
450
2.6
60
55
1 11
4.8
600
0.5
60
26
113
6.5
600
0.7
60
21
1 16
2.9
60
2.9
600
6
118
3.0
60
3.0
60
33
1 24
5.9
60
5.9
60
77
1 26
5.4
60
5.4
240
66
1 28
5.2
60
5.2
600
23
32

-------
TABLE 2. SUMMARY OF SEM ANALYSIS
Cut Cut Feed Wait FAM
Run Length Time Rate Time Reading
Number	(cm)	(sec)	(cm/min)	(sec)	(f/cc)
Comment
1 36
5.5
60
5.5
600
9.75
Loading
slightly
heavy
1 37
2.9
30
5.7
600	4.54	Loading
about right
1 38
2.9
30
5.7
600	3.49	Loading
about right
1 39
1 .6
15
6.4
600
1 .49
Loading
slightly
light
1 40
1 .6
15
6.4
600
1 .33
Loading
slightly
light
33

-------
and cut time of 60 seconds. After a filter from this run was examined by
SEM, it was determined that the operating conditions of Run 136 produced a
particle loading that was usable for a TEM analysis, although the loading
was slightly on the heavy side. The cut length and time were halved in
Runs 137 and 138. Filters from these two identical runs were examined
under the SEM, the results being that the particle loading deposited on
the filters during these runs were ideal for TEM analysis. Runs 139 and
140 had cut lengths and times that were a quarter of those in Run 136.
The SEM examination showed that the loading on these filters were light,
and could be doubled or tripled in order to provide a desirable loading.
Also shown in Table 2 are the FAM readings for each run. The FAM
readings were taken during the same ten minute sample period as the poly-
carbonate filter sample. The FAM readings are highly correlated with the
length of material cut, so that the FAM might be useful in this study as
an approximate indicator of the loading that might be deposited on the
polycarbonate filter during a ten minute sample.
TEM Analysis
Four filters from the preliminary runs were analyzed to determine
the amount and type of asbestos structures collected on the polycarbonate
filters. Table 3 summarizes the results of the initial TEM analysis.
The first important point shown in Table 3 is the large number of
matrix type particles deposited on the filters. A matrix is a fiber or
fibers with one end attached to or hidden by a non-fiber particle, which
in most cases is larger than the individual fiber component. This in-
dicates that the sawing action does not completely release all of the
asbestos from the cement binder. No size measurements of the non-fiber
part of the matrices were made.
The second important point in the table is the large number of chry-
sotile structures, which was expected since the asbestos cement sheet
contains only chrysotile asbestos. Only 3.5% of the structures were pos-
itively identified as being non-asbestos. About 65% of the structures
were positively identified as being chrysotile asbestos. The remaining
structures did not have a recognizable electron diffraction pattern be-
cause of interference from nearby particles, the fiber was too small or
thick, or the fiber was not suitably oriented for analysis. The large
number of ambiguous electron diffraction patterns was due mainly to the
large number of matrix structures, which interfere with the pattern
identification.
The third important point in Table 3 is the asbestos number con-
centration. All four filters have very high asbestos fiber concentrations.
There is a very rough correlation between the amount of material cut and
the fiber concentration, but even the short cut lengths have a high fiber
concentration. Thus, only a small amount of material needs to be cut in
order to generate a high fiber concentration.
34

-------
TABLE 3. SUMMARY OF INITIAL TIM ANALYSIS
Filter Identification Number
Parameter
107-B-028
113-A-043
116-B-054
116-C-055
Operating Conditions
Cut Length (cm)
Cut Time (sec)
Wait Time (sec)
Sample Time (sec)
Flow Rate (1/min)
19.4
450
60
600
1 .76
6.5
600
60
600
0.63
2.9
60
600
600
1 .29
2.9
60
600
600
1 .77
Count by Shape of
Structure
Fiber
Bundle
Cluster
Matrix
35
1 2
7
47
55
4
10
32
20
0
0
17
38
9
3
69
Count by Type of
Asbestos
Chrysotile
Amph ibole
Ambiguous
Not Asbestos
No Pattern
54
0
44
3
0
81
0
16
2
2
22
1
8
5
1
75
0
40
3
1
Number of Grid Openings
1
10
Asbestos Fiber Concen-
tration (f/cc)
236
259
18
85
Asbestos Structure Con-
centration (f/cc)
681
475
34
267
35

-------
Table 4 summarizes the size characteristics of the collected as-
bestos structures. For matrix structures, the dimensions are for the
fiber portion of the particle. Nearly all of the fibers are less than
five microns in length, the average being about 1.3 microns. The aver-
age widths depend on the type of asbestos structure.
CLEANUP RUNS AND BLANKS
Several types of cleanup runs and blank runs were made in order to
document that the response (the TEM analysis of the sample filters) was
due to the machining of the sample coupon and not due to background or
filter contamination. These tests are summarized in Table 5. The con-
clusion made was that if the FAM reports less than 0.1 fiber/cc that the
TEM result will be less than 0.4 fibers/grid opening. Further, it ap-
pears that this is the result of low grade filter contamination. That
is, the unused filters are slightly contaminated with asbestos fibers
and that the experimental apparatus adds nothing to that contamination.
This background is significant only in comparison to the results obtained
for the drilling of millboard. The background accounts for approximate-
ly 4.0% of the total response observed during these experiments.
The question of how to account for the background counts was consi-
dered and a decision was made to ignore it. Subtracting blank values
generated in association with each individual set of experiments (the
last five entries in Table 5) did not seem advisable. The number of fi-
bers on a blank appears to be a random number between 0 and 9. Making
this subtraction would have unnecessarily increased the dispersion of the
data. Note that using this procedure would have resulted in subtraction
of 0 from the millboard drilling results and relatively small amounts
from the other results. It would have had no impact on the ranking of
the various product/operation experiments. Subtracting an average blank
value from every experiment would have decreased each concentration value
by approximately the same amount (0.2 to 4%).
EXPERIMENTAL PARAMETERS
As was mentioned in Section 4, consistency of experimental parame-
ters (i.e., sample flow rate and valid material milled), were desired.
The results of tests conducted in Phase II and III, as presented in Ta-
bles 6 and 7 demonstrate that consistency was in fact, attained. Tests
145 through 167 conducted in Phase II did not attempt to hold the flow
rates constant. Beginning with Run Number 169, the A and B positions in
the filter holder were occupied by Nucleporeฎ filters; upright in the B
position, inverted in the A position. Positions C and D were occupied
by Millipore filters; upright in the D position, inverted in the C posi-
tion. For these tests, all Nucleporeฎ sample volumes were approximate-
ly 4950 cc (0.5 1pm); all Milliporeฎ sample volumes were approximately
17,500 cc (1.7 1pm).
36

-------
TABLE 4. SUMMARY OF SIZE CHARACTERISTICS
Filter Identification Number
Parameter	1 07-B-028	11 3-A-043	11 6-B-054	11 6-C-055
Fiber
Average Width3 0.09 + 0.04 0.09 _+ 0.04 0.10 _+ 0.06 0.09 + 0.06
(microns)
Average Length 1 .40 +_ 1 .1 3 1.03 +_ 0.83 1 .08 _+ 0.70 1 .86 +_ 1 . 35
(microns)
Length/Width	17.3 ^ 18.1 12.5+8.6 13.7 + 12.0 21.0 +_ 11.8
Ratio
Bundle
Average Width 0.33 +_ 0.1 2 0.45 +_ 0.13	0	0.49 _+ 0.34
(microns)
Average Length 2.07 _+ 1 .06 5.47 _+ 0.74	0	4.27 _+ 1 .80
(microns)
Length/Width	6.8 _+ 2.6 13.0 + 4.8	0	13.0 + 9.1
Ratio
Cluster
Average Width 0.91 +_ 1 .00 0.55 +_ 0.70	0	0.83 + 0.91
(microns)
Average Length 2 .95 _+ 2.95 2.45 _+ 1 .34	0	1.40+0.58
(microns)
Length/Width	3.8 _+ 1.4	7.5 +_ 4.4	0	2.9 +_ 1.6
Ratio
Matrix
Average Width : 0.09 i 0.10 0.10 +_ 0.06 0.16 _+ 0.17 0.21 +_ 0.43
(microns)
Average Length 0.85_+0.43 0.96+_0.64 0.83 +_0.43 1.12 + 0.95
(microns)
Length/Width	9.7^6.8 11.3 +_ 9.1	7.5 + 3.9 10.2^9.2
Ratio
a Geometric means of lengths and width are more appropriate since the
particle sizes appear to be log-normally distributed. The differ-
ences between the geometric means and arithmetic averages are rela-
tively small and do not change conclusions to the overall shapes of
the various structures.
37

-------
TABLE 5. SUMMARY OF BACKGROUND FIBER COUNTS AND CONCENTRATIONS
Analysis
Mass	TEM	FAM
Experiment
Number
Cleanup
Description
Mass
Collected
(yg)
Mass
Cone.
(mg/m^)
Asbestos
Fibers
Coun ted
(F)a
Cone.
(f/cc)
Cone.
(f/cc)
113-K-051
	b
0.01
NA
0.5
NA
	
115-C-052
Vacuum & Wash
0.01
0.5
0.4
2.3
	
121-A-071
Vacuum
0.01
0.5
	
	
	
122-A-072
Vacuum & Wash
0.03
1 .5
	
	
	
142-B-144
Vacuum
	
	
	
	
0.00
1 44-B-1 49
Vacuum
	
	
	
	
0.04
146-B-154
Vacuum
	
	
	
	
0.01
152-B-169
Vacuum & Wash
	
	
0.6
7.1
0.09
162-B-196
Vacuum & Wash
	
	
0.4
4.3
0.00
158-B-183
Vacuum
	
	
0
0.0
0.02
158-K-185
	b
	
	
0.3
	
	
160-B-190
Vacuum
	
	
0.6
6.0
0.06
162-B-196
Vacuum & Wash
	
	
0.4
7.1
0.00
185-A-290
Vacuum
	
	
0.9
	
	
190-A-310
Vacuum
	
	
0.8
	
	
199-A-346
Vacuum
	
	
0.4
	
	
208-A-382
Vacuum
	
	
0
	
	
a Fibers per grid opening.
b These are reagent blanks, i.e., unexposed filters taken from the
manufacturer's packaging, carbon coated then analyzed.
38

-------
TABLE 6. EXPERIMENTAL PARAMETERS



Grams
Grams

Sample Volumes (cc)

Run


Material
Asbestos
Filter
Filter
Filter
Filter
Number
Material
Operation
Milled
Milled
A
B
C
D
145
AC Sheet
Cut-Off Wheel
0.979a
0.343
6,071
11,727
15,627
0
1 47


1.119a
0.392
5,887
1 1, 81 3
1 5, 231
0
1 49


1 ,04^
0.364
5,451
12,062
15,103
0
1 51


1.119a
0.392
5,869
1 1 ,847
14, 1 19
0
1 53


1 ,186a
0.41 5
6,096
1 2,513
17,315
0
1 55


1.119a
0.392
6,1 18
12,858
17,601
0
1 57


1.189a
0.416
5,896
12,664
17,426
0
1 59


1.119a
0.392
5, 468
12,797
16,975
0
1 61


1.119a
0.392
5,461
12,705
17,117
0
1 65
AC Sheet
Saw
1.293a
0.453
4,51 3
4,956
4, 730
4,951
1 67


1.003a
0.351
4,677
4,937
4,923
4,936
HiLo-1


1 .085
0. 380
4,984
4,981
4,970
4,977
HiLo-2


1 .1 09
0.388
4,950
4,949
4,931
4,946
169


1 .076
0.376
4,950
4,946
17,607
17,624
170


0.693
0.243
4,949
4,947
17,590
17,627
171


1.312
0.459
4,963
4,954
17,640
17,656
1 72


0.967
0.338
4,961
4,958
17,590
17,662
173


1 .041
0.364
4,949
4,950
17,559
17,608
174


1 .143
0.400
4,933
4,925
17,521
17,581
175


1 .038
0.363
4,964
4,958
17,597
17,646
176


1 .078
0.377
4,956
4,954
17,580
17,591
177
Millboard
Saw
0.563
0.436
4,908
4, 908
17,507
17,460
178


0.441
0.342
4,941
4,933
17,617
17,601
179


0.691
0.535
4,91 9
4,91 3
17,558
17,516
180


0.606
0.469
4,915
4,906
17,318
17,502
181


0.091
0.535
4,921
4,91 0
17,437
17,505
1 82


0.622
0.482
4,922
4,917
17,479
17,485
183


0.669
0.518
4,940
4,933
17,594
17,540
184


0.700
0.543
4,91 2
4,902
17,444
17,484
(Continued)

-------
TABLE 6. CONTINUED
Grams	Grams		Sample Volumes (cc)
Run Material Asbestos Filter Filter Filter Filter
Number	Material	Operation	Mi lied	Milled	A	B	C	D
186
Brakes Grind
1 .310
0.491
4,925
4,917
17,512
17,555
187

1 .267
0.475
4,91 8
4,91 4
17,471
17,493
188

0.654
0.245
4,924
4,915
17,474
17,505
189

1 .503
0.564
4,920
4,91 2
17,474
17,496
1 91

1 .077
0.404
4,939
4,937
17,554
17,576
192

1.118
0.419
4,938
4,935
17,539
17,587
193

0.502
0.118
4,043
4,940
17,549
17,582
194

1 .226
0.460
4,931
4,931
17,516
17,547
195
AC Sheet Drill
1 .107
0.387
4,955
4,951
17,624
17,618
196

1 .029
0.360
4,971
4,965
17,656
17,676
197

0.998
0.349
4,951
4,953
17,596
17,618
198

1 .008
0.353
4,951
4,953
17,596
17,615
200

1 .017
0.356
4,952
4,950
17,584
17,630
201

1.054
0.369
4,949
4,953
17,585
17,607
202

1 .014
0.355
4,961
4,961
17,616
17,676
203

1 .007
0.352
4,954
4,953
17,613
17,648
204
Millboard Drill
0.238
0.184
4,953
4,953
17,592
17,625
205

0.259
0.201
4,950
4,948
17,592
17,649
206

0.210
0.163
4,956
4,959
17,664
17,681
207

0.293
0.227
4,955
4, 954
17,601
17,627
209

0.275
0.213
4,946
4,939
17,563
17,588
210

0.297
0.230
4,950
4,948
17,582
17,600
211

0.254
0.197
4,930
4,928
17,510
17,5 28
21 2

0.221
0.171
4,951
4,949
17,574
17,603
a Mass of material milled was calculated from volume of material milled and the density of the
material.

-------
TABLE 7. MASS OF ASBESTOS MILLED DURING THE
VARIOUS MATERIAL/OPERATION EXPERIMENTS
Number Average Mass Standard
Material/ of Asbestos Milled Deviation Relative Standard3
Operation	Runs	(gm)	(gm)	Deviation (%)
AC Sheet		9	0.389	0.023	5.9
Cut-Off Wheel
AC Sheet	12	0.374	0.055	14.8
Saw
Millboard	8	0.483	0.068	14.1
Saw
Brakes	8	0.397	0.146	36.7
Grind
AC Sheet	8	0.360	0.012	3.3
Drill
Millboard	8	0.198	0.025	12.4
Drill
Overall	53	0.368	0.105	28.5
Relative Standard Deviation = dev x -| oo
mean
41

-------
The grams of material milled during all the tests conducted in Phase
II and III varied from material to material because the asbestos content
varied. The grams of asbestos milled was held constant, however (Table
7). The amount of asbestos drilled from the millboard was approximately
half the amount milled from the other materials by the other operations.
This was because the millboard tended to form a sizable flashing around
the edge of the back of the hole. The amount of material ground from the
brake shoes varied more than we would have liked; this was a difficult
operation to control.
PARTICLE STRATIFICATION TESTS
Early in the development of the experimental procedure the mixing
inside the glove box was assessed qualitatively by observing the disper-
sion of smoke released within the box. The observation was made that the
small electronics cooling fan provided adequate mixing. Two runs (H/L-1
and H/L-2) were done to quantify this observation. Two pairs of filters
were exposed during each of these tests, each pair consisted of one up-
right and one inverted filter. One pair of filters was located at the
standard sampling location (approximately six inches above the operation)
during each test. The second pair was located five inches above this
location during Run No. H/L-1. The second pair was located five inches
below the standard location during Run No. H/L-2. The experimental op-
erations were identical and these tests are included with the rest of
the asbestos cement sheet/saw (toothed blade) experiments. The results
are summarized in Table 8. Though the individual results are somewhat
variable, the average fiber concentration does not vary with position.
As noted, these concentration results are quite variable. The anal-
ysis displayed in the four columns at the right of Table 8 provides more
conclusive information. Log-normal distributions on length and on diam-
eter were plotted for all structures, except matrices, whether they were
identified as being asbestos or not. If the cloud of particles were
stratified due to settling the size of the particles and the percent of
large particles should increase at the lower sampling locations. Neither
of these results occurred, indicating that the particles were not strat-
ified. Filter No. 235 appears to have a large percent of long fibers.
There were just 12 total particles counted on this filter, however, one
of these was a fiber with dimensions: length = 12.9 microns; diameter =
0.062 microns. This one anomalous fiber skewed the distribution and re-
sulted in the relatively high projected percent of structures longer than
5 microns. The fiber is termed anomalous because the correlation coeffi-
cient (r^) for the length distribution on Filter No. 235 was only 0.77.
The r^ values for the other seven length distributions ranged from 0.89
to 0.97 and averaged 0.94. Correlation coefficients for the diameter
distributions were not nearly so good; they ranged from 0.52 to 0.64 and
averaged 0.59. These correlations are poor because almost all fibers
(which comprise approximately 75% of the structures) have a diameter of
0.062 microns. This point will be discussed in more detail in the sec-
tion on comparison between TEM and PCM results.
42

-------
TABLE 8. RESULTS OF PARTICLE STRATIFICATION TESTS
(ASBESTOS CEMENT SHEET/CUT OFF WHEEL)
Experiment
Number
Filter
Number
Location
Filter
Orientation
Asbestos Fiber
Concentration
F/cc/gm Asbestos
All Structures Except Matrices
Length	 	Diameter
Geomet. %
Mean	yi > 5
Geomet.	%
Mean y > 0.3
H/L-1
H/L-1
H/L-1
H/L-1
H/L-2
H/L-2
H/L-2
H/L-2
230
231
232
233
234
235
236
237
+ 5"
+ 5"
0"
0"
0"
0"
-	5"
-	5"
Upright
Inverted
Upright
Inverted
Upright
Inverted
Upright
Inve r ted
Average at + 5" Position:
Average at 0" Position:
Average at - 5" Position:
381 .7
300.0
688.9
787.1
66.9
43.7
422.3
69.4
340.9
396.7
245.9
0.74
0.88
0.85
0.74
0.63
0.77
0.77
0.96
0.81
0.75
0.86
0.16
3.3
1 .2
0.54
0.02
11.2
0.91
1 .39
1 .73
3.24
1.15
0.082
0.090
0.088
0.086
0.070
0.081
0.084
0.081
0.086
0.081
0.083
6.1
7.6
8.7
4.2
1 .2
7.0
3.8
4.8
6.9
5.3
4.3

-------
FILTER ORIENTATION TESTS
One objective was to test whether filter orientation had an effect
on the measured concentration of fibers. This was done by sampling
pairs of filters one with the filter surface upright and one with the
filter surface inverted. The material used was asbestos cement sheet,
the operation was sawing (toothed blade). A total of seven such pairs
of filters were analyzed. (Thirty-five more inverted filters were col-
lected and carbon coated but not analyzed because funding was not avail-
able. These filters are in storage and can be analyzed in the future if
it becomes desirable to do so.) Two tests of the difference between the
concentrations measured by the upright and the concentrations measured
by the inverted filters are shown in Table 9. The first tests the aver-
age concentration by the inverted filter against the average concentra-
tion by* the upright filters that were exposed simultaneously with them.
The second tests the inverted filters against all upright filters ex-
posed during the sawing of asbestos cement sheet with the toothed blade.
In neither case can we reject the hypothesis that the concentration mea-
sured by the inverted filters is less than or equal to the concentration
measured with the upright filter at the 95% confidence level. Table 10
demonstrates that we must accept the hypothesis that the difference be-
tween the paired data average is zero.
REPRODUCIBILITY
After assembly of the glove box and machining apparatus but before
initiation of the fiber release potential index runs, a series of ten iden-
tical experiments were done to assess the reproducibility of the entire
procedure. Experimentally, these runs consisted of cutting an asbestos
cement sheet with the masonry cut-off wheel. These runs were done before
weighing of the coupons was incorporated into the experimental protocol
so the weight of material milled was calculated from the density of the
material and the volume of the cut. The results, Table 11, demonstrated
that the procedure is reproducible. One of the ten runs (143-B-146) was
reported to be too heavily loaded with particles to be analyzed accurately
by TEM. In fact, the analyst reported that all of the filters were more
heavily loaded than he would have liked them to be. The reproducibility
of the nine runs for which analysis was possible is good. Even had the
tenth value been twice as high as the highest reported value the relative
standard deviation would have been less than 50%. Therefore, it was con-
cluded that the procedure is reproducible and the work proceeded to de-
velopment of the fiber release potential index.
ASBESTOS FIBER RELEASE POTENTIAL INDEX
After gaining assurance that the technique was reproducible, the
experimental effort turned to development of a fiber release potential
index. This index was to be a quantitative measure of the propensity of
asbestos containing materials to release fiberous particles during their
44

-------
TABLE 9. RESULTS OF UPRIGHT VS. INVERTED FILTER EXPERIMENTS
(UNITS OF ASBESTOS FIBERS/cc/gm ASBESTOS MILLED -
ASBESTOS CEMENT SHEET/SAWING)
Average Standard Relative Standard
Filter Orientation	Concentration	Deviation	Deviation	
Inverted	668.3	680.9	101.9
Upright (paired)	361 .7	196.9	54.4
Upright (all runs)	305.4	363.7	119.1
Hypothesis:	Average Inverted <_ Average Upright
:	.05
tฐ: = .05:	-1 .782
t:	-1.144
Result:	Cannot Reject Hypothesis
Hypothesis: Average Inverted <_ Average Upright (all runs)
:	.05
-1 .740
-1 .528
Cannot Reject Hypothesis
t11 = .05:
t:
Result:
45

-------
TABLE 10. "t" TEST OF PAIRED UPRIGHT/INVERTED RESULTS
(UNITS: ASBESTOS FIBERS/cc/gm ASBESTOS MILLED)
Concentration
Run Number	Upright	Inverted	Difference (U - I)
165	271.7	550.3	-278.6
167	236.6	914.3	-677.7
168	463.1	2013.1	-550.0
H/L-1+0	688.9	300.0	388.9
H/L-2+0	66.9	43.7	23.1
H/L-1+5	381.7	787.1	-405.4
H/L-2-5	422.3	69.4	352.9
Average Difference:	-306.8
Standard Deviation:	673.8
Relative Standard Deviation:	219.6
Hypothesis: Average Inverted = Average Upright
:	.05
t* = .05:	2.447
t:	-1.205
Result:	Accept Hypothesis
46

-------
TABLE 11. SUMMARY OF RESULTS FOR TEN IDENTICAL RUNS







Number of


Cut
Cut
Wait
Sample
Flow
Sample
Fibers Per
Asbestos
Filter
Length
Time
Time
Time
Rate
Volume
Grid Opening
Fibers/cc/gm
Identification
(cm)
(sec)
(sec)
(sec)
(1/min)
(L)
(#)
Asbestos Milled
143-B-146
2.38
30
600
600
1 .2
12.0
	a
	a
145-B-151
2.22
30
600
600
1 .2
1 1 .7
55
1774
147-B-156
2.54
30
600
600
1 .2
11.8
83
2323
149-B-161
2.38
30
615
600
1 .2
12.1
64
1860
151-B-166
2.54
30
600
600
1 .2
11 .8
78
2178
153-B-1 71
2.69
30
600
600
1 .3
12.5
86
211 0
155-B-176
2.86
30
600
600
1 .3
12.9
50
1415
157-B-181
2.69
30
605
600
1 .3
12.7
76
1841
159-B-187
2.54
30
600
600
1 .3
1 2.8
71
1754
161-B-193
2.54
30
600
600
1 .3
12.7
51
1 289







Ave rage :
1838







:
338.6







RSD:
18.4%
a Loading too heavy for accurate TEM count.

-------
subjection to various industrial or commercial machining operations.
Sawing (with two different types of saw blades), drilling, and grinding
were selected as the operations to be tested. Asbestos cement sheet
millboard and brake shoes were the materials chosen.
The results (Table 12) appear to form the basis for a system for
ranking various material/operation (M/0) pairs. The t tests for statis-
tical differences between the means of the various M/0 pairs, shown in
Table 13, were for the most part positive.
There are other differences between the various M/0 pairs in terms
of the types of structures that they are prone to produce. For example,
brake shoe grinding produced significantly more bundles and clusters than
any other operation when all structures are considered (Table 14) and
when only asbestos structures are considered (Table 15). Sawing asbestos
cement sheet with the toothed saw blade produced more matrix particles
than any other operation. Interestingly, the percent of all structures
that were identified as asbestos is more or less constant and is not well
correlated with the percent asbestos in the material being milled. This
probably implies that most of the non-asbestos particles generated during
the milling operations are larger and settle from the aerosol during the
ten minute waiting period. This means that the test procedure to a large
extent segregates the important (asbestos related) portions of the dust
created during milling from the less important generation of extraneous
dust.
Interlaboratory Comparative TEM Results
Portions of five filters, one from each of the M/0 except the asbes-
tos cement/masonry cut-off wheel, were submitted to the U.S. EPA/IERL-Ci
laboratory for analysis. These samples were handled exactly as all other
samples except that prior to his sample preparation, the IITRI microscop-
ist cut the Nucleporeฎ filter into pie shaped quarters. He sent one of
these to the EPA laboratory and prepared his own sample from another.
The comparative results were not as good as it had hoped they would
be. This apparently was due to the fact that the EPA microscopist en-
countered considerable difficulty in obtaining positive identifications
for asbestos structures. The data (Table 16) for total fibers and total
structures compare well for the two analyses; but the totals for asbestos
fibers and asbestos structures do not, the EPA analysis is routinely lower.
This trend is apparent in the raw data submitted by the two analysts, the
EPA analysis contains many more citations of "ambiguous" structures than
does the IITRI analysis. There also is some difference in the way the
two microscopists assign the labels, fiber, bundles, cluster, and matrix
to the various structures. This is apparent from the fact that the value
reported for total structures is in close agreement while others, espe-
cially matrices do not agree so well.
Actually, any fiber found on any filter with a diameter less than
0.25 microns was in all probability an asbestos fiber. It seems that the
48

-------
TABLE 12. ASBESTOS FIBER RELEASE POTENTIAL INDEX
Material/
Operation
Number
of Tests
Asbestos Fibers per cc
per gm Asbestos Milled
Average
(f/cc/gm)
Standard
Deviation
Relative
Standard
Deviation
(%)
AC Sheet
Cut-Off Wheel
Millboard
1838.3
646.6
338.6
435.2
18.4
67.3
Saw
Brakes
Grind
465.1
217.3
46.7
AC Sheet
Saw
1 2
305.4
363.7
119.1
AC Sheet
Drill
282.9
222.6
78.7
Millboard
Drill
105.2
32.0
30.5
49

-------
TABLE 13. RESULTS OF TESTS FOR SIGNIFICANCE OF
DIFFERENCE BETWEEN MATERIAL/OPERATION PAIRS
	CO AC	SMB	GB	SAC	DAC	DMB
COAC			Yes	Yes	Yes	Yes	Yes
SMB	Yes			No	Yes	Yes	Yes
GB	Yes	No			No	No	Yes
SAC	Yes	Yes	No			No	Yes
DAC	Yes	Yes	No	No			Yes
DMB	Yes	Yes	Yes	Yes	Yes
Yes	= means statistically different at 95% confidence level
No	= means not statistically different at 95% confidence level
COAC	= asbestos cement sheet/cut-off wheel
SMB	= millboard/saw (toothed blade)
GB	= brake shoes/grind
SAC	= asbestos cement sheet/saw (toothed blade)
DAC	= asbestos cement sheet/drill
DMB	= millboard/drill
50

-------
TABLE 14. DISTRIBUTION OF STRUCTURE TYPES GENERATED
DURING ASBESTOS RELEASE EXPERIMENTS
(TEN ANALYSIS)
Operation
Fibers
%
Bundles
%
Clusters
%
Matrices
%
Cut-Off AC Sheet
76.3
9.5
6.4
7.8
Saw Millboard
77.2
5.2
1 2.3
5.3
Grind Brakes
63.2
14.2
1 8.8
3.8
Saw AC Sheet
62 .4
12.4
5.5
18.7
Drill AC Sheet
82.5
3.8
6.1
7.5
Drill Millboard
93.4
0.0
2.5
4.1
51

-------
TABLE 15. DISTRIBUTION OF ASBESTOS STRUCTURE TYPES
GENERATED DURING ASBESTOS RELEASE EXPERIMENTS
(TEM ANALYSIS)
Asbestos Structure Distribution
Percent Percent Percent Percent
Material/ Asbestos Asbestos Asbestos Asbestos Percent
Operation	Fi bers	Bundles	Clusters	Matrices	Asbestos
AC Sheet	52.8	6.7	4.7	5.4	69.7
Cut-Off Wheel
Millboard	64.6	4.7	10.2	3.4	83.0
Saw
Brakes	45.0	10.6	13.9	2.8	72.4
Grind
AC Sheet	49.3	7.5	4.8	13.6	75.2
Saw
AC Sheet	61.6	3.4	4.3	8.4	77.7
Drill
Millboard	68.5	0.0	1.1	4.5	74.2
Drill
52

-------
TABLE 16. COMPARISON OF EPA AND IITRI RESULTS
(RESULTS IN OBJECTS/cc/gm ASBESTOS MILLED)
Stan-	Relat.
Material:	AC Sheet	AC Sheet Brake Lining Millboard	Millboard	dard	Stand.
Operation: 	Saw		Dri 11	Grind		Saw		Dri 11	IITRI Devia-	Devia-
	EPA IITRI EPA IITRI EPA IITRI EPA IITRI EPA IITRI EPA tion	tion
Asbestos
Fibers	105.8 472.0 76.3 431.5 71.4 249.8 43.4 424.6 2.9 17.2 5.86 2.4	40.9
All
Fibers	232.8 539.4 203.5 462.3 124.9 288.3 1752.4 498.4 34.6 17.2 1.80 1.01 56.1
All
Bundles	63.5 192.6 19.1 15.4 53.6 32.0 115.9 67.7 0.0 0.0 1.30 1.2	94.8
All
Clusters	42.3 96.3 0.0 70.1 35.7 83.3	0.0 166.1 0.0 0.0 2.31 	 	
All
Matrices	95.2 144.5 6.4 61.6 11.9 19.2 391.1 55.4 0.0 0.0 3.22 4.32 134.0
Total
Chrysotile 158.7 664.6 57.2 462.3 95.2 294.7 29.0 627.6 2.9 6.9 7.88 8.00 101.6
Total
Amphibole 21.2 19.3 19.1 38.5 23.8 6.4 29.0 0.0 0.0 10.3 1.06 	 	
Total
Asbestos 179.9 684.0 76.3 500.8 119.0 301.1 57.9 627.6 2.9 17.2 5.93 3.19 42.4
Total
Objects	433.8 972.9 228.9 616.4 226.1 422.8 2245.0 787.6 34.6 17.2 1.53 1.05 68.8

-------
IITRI analysis was more efficient (75% vs. 15%) at making the positive
identifications.
Comparison of TEM to PCM Results
Millipore filter samples were collected for PCM analysis during all
M/0 runs except those for sawing of asbestos cement sheet with the cut-
off wheel. The results of the PCM analyses were compared to the TEM anal-
yses of the Nucleporeฎ filter samples that were collected simultaneously
for four of the M/0 experiments. The samples taken for PCM analysis dur-
ing the brake shoe/grinding experiments and the inverted Milliporeฎ filter
samples have been saved but not analyzed because of budgetary restrictions.
It was first attempted_ to correlate the PCM result to the total as-
bestos fiber result of the; TEM analysis. It was thought that even though
the TEM is able to discern far smaller and therefore far more fibers than
the PCM, that there might be some multiplier which could be applied to the
PCM result to adjust for its lesser sensitivity. The absolute concentra-
tion of asbestos fibers by TEM is in column 3 of Table 17 and the concen-
trations reported by the PCM analyst are in the last column. Slopes and
correlation coefficients are shown in Table 18. The correlation between
the two measurements is decent for the millboard/saw experiment. The
results for the other experiments are poor: the slopes are negative and
the correlation coefficients near zero.
We next tried to correlate all structures (except matrices) found by
TEM to the PCM result. The correlations were similar to those obtained
for the asbestos fibers.
Next, an attempt was made to correlate the total NIOSH fibers (fi-
bers larger than 5 microns with an aspect ratio _> 3.0) actually counted
by the TEM analyst to the PCM result. Such fibers were seed on only 2
of the 32 filters analyzed by TEM. The correlation was uniformly poor.
Next, all structures (again except matrices), asbestos or not, having
a length greater than 5 microns and an aspect ratio _> 3.0 reported by the
TEM were considered. Again, no correlation was found.
The scatter and the large number of zeros in the TEM data for these
last two sets implied that the difficulty might lie in the small proba-
bility that the infitesimal area actually seen by the TEM might not be
representative of the total number of large asbestos fibers on the entire
filter. However, it was felt that there were a sufficient number of par-
ticles analyzed by TEM to define the distribution of all asbestos fibers
(or structures) on the filter. Log-normal distributions were therefore
plotted for all 32 of these samples. Figure 8 is an example; Appendix
B contains all of these plots. These plots are excellent. Correlations
between frequency of occurrence and the logarithm of fiber length ranged
upward from 0.8 and averaged approximately 0.95. The statistics for these
plots are summarized in Table 19, the remarkable observation being that
the geometric mean asbestos fiber length is approximately 0.84 microns and
54

-------
TABLE 17. COMPARISON OF TRANSMISSION ELECTRON MICROSCOPE (TEM)
AND PHASE CONTRAST MICROSCOPE (PCM) RESULTS
(ALL RESULTS IN STRUCTURES/cc)
TEM Results (IITRI)	PCM
Counted	 	Log-Normal Extrapolated	 Result
Material/
Operation
Experiment
Number
Total
All
Asbestos
Fibers
Total
All
Struc-
tures3
NIOSH
Asbestos
Fibers
> 5 p
Total
All
Structures3
> 5 M
Asbestos
Fibers
> 5 p
All
Structures3
> 5 p
Clusters
and
Bundles
> 5 P

AC Sheet
169
56.4
108.3
0
2.3
0.33
2.5
3.75
0. 4')
Saw
170
31 7.4
426.3
0
4.7
0
0.47
5.55
0.26

171
164.9
276.0
0
6.7
0.067
7.07
2.77
2.64

1 72
92.9
132.4
4.64
1 1 .6
4.85
7.55
1 .66
0.60

173
63.1
86.5
0
2.5
0.28
2.23
3.55
0.72

174
25.0
47.7
0
0
0.065
1 .05
1 .02
0.96

175
17.1
43.9
0
2.4
0.68
1 .6
2.26
0.95

176
1 6.9
41 .0
0
0
1 .40
0.58
1 .66
2.15
AC Sheet
195
71 .6
1 06.2
0
2.5
0.26
	
	
0
Drill
196
208.7
271 .7
0 '
3.3
0.02
	
	
0

197
40.3
45.7
0
0
0.14
	
	
0

198
216.1
281 .6
0
0
0.09
	
	
1.19

200
67.7
89.4
0
0
0.03
	
	
0

201
30.4
43.2
0
0
0
0.18
	
0

202
27.1
37.0
0
0
0.03
	
	
0.26

203
1 50.8
172.3
0
2.7
0.15
	
	
0

-------
TABLE 17. CONTINUED
TEM Results (IITRI)	PCM
Counted	 	Log-Normal Extrapolated	 Result


Total
Total
NIOSH
Total


Clusters



All
All
Asbestos
All
Asbestos
All
and

Material/
Experiment
Asbestos
Struc-
Fibers
Structures3
Fibers
Structures3
Bundles

Operation
Number
Fibers
tures3
> 5 u
> 5 VJ
> 5 y
> 5 vj
> 5 v

Millboard
177
220.5
345.0
3.6
14.2
3.64
10.7
10.6
1 .93
Saw
178
229.5
285.1
0
0
0.23
	
0.05
2.64

179
658.9
83 3.6
0
0
4.68
	
0
4.1 1

180
548.0
71 4.8
0
7.9
0.38
	
9.3
2.65

181
42.5
57.5
0
0
0.93
	
0.01
1 .69

1 82
173.7
21 6.6
0
2.5
1 .03
	
1 .1
1 .92

183
201 .1
271 .2
0
6.1
3.52
	
4.1
1 .46

184
360.2
537.5
0
17.15
0.68
	
18.0
3.15
Millboard
204
22.5
37.5
0
0
0
0.0075
	
0
Drill
205
26.4
39.5
0
0
0.042
0.01 2
	
0

207
20.0
22.5
0
0
0.048
0.036
	
0. 27

208
18.0
25.7
0
0
0.112
0.055
	
0

209
32.1
39.5
0
0
0.019
0.044
	
0

210
24.0
24.0
0
2.67
1 .01 3
1 .01 3
	
0

21 1
1 3.0
1 3.0
0
0
0
0
	
0

212
10.4
1 3.0
0
0
1 .45
1 .243
	
0
a All structures except matrices.

-------
TABLE 18. CORRELATION BETWEEN PHASE CONTRAST MICROSCOPE (PCM) RESULTS
AND TRANSMISSION ELECTRON MICROSCOPE (TEM) RESULTS
AC Sheet AC Sheet Millboard Millboard
Material/Operation	Saw	Dri 11	Saw	Drill
PCM vs. All Asbestos Fibers
Slope
r-2
-20.65
0.029
-3.07
0.1 28
198.2
0.718
-3.39
0.002
PCM vs. All Structures3
Slope
r-2
-1 2.83
0.006
126.9
0.28
252.5
.707
-18.4
0.025
PCM vs. Counted Structures
> 5 v
Slope
t2
-0.407
0.008
-1 .26
0.13
-0.16
0.0004
-1 .41
0.02
PCM vs. Counted Asbestos Fibers
> 5 u
Slope
-0.46
0.056
-1 .26
0.1 26
-0.16
0.0004
?b
0
PCM vs. Extrapolated Structures
> 5 V
Slope
0.933
0.078
-1.12
0.04
PCM vs. Extrapolated Asbestos
Fibers > 5 u
Slope
-0.249
0.165
-0.013
0.004
-0.89
0.323
-1 .22
0.042
PCM vs. Extrapolated Asbestos
Clusters and Bundles
> 5 y
Slope
1-2
-0.71
0.165
1 .15
0.029
a All structures except matrices,
b Only one of the eight PCM values was > 0.
57

-------
1/1
CD
U)
c
o
L
u
r.
ฆp
m
c
01
L
Ql
XI
•#H
LL
10 +
1 ..
0. 100
. 01
FIBER LENGTH DISTRIBUTION FILTER 176
FIBERS ONLV
4 &
hti
ftWl
AAAAAAA
4 444
4 4 4
.44
44
,44
44ฐ
44
1
5 10	50	90 95
4
Probability of Length Less Than
Figure.8. Fiber length distribution filter 176, fibers only.
99
99. 99

-------
TABLE 19. SUMMARY OF LOG-NORMAL PLOTS OF
TRANSMISSION ELECTRON MICROSCOPE DATA
(ASBESTOS FIBERS WITH ASPECT RATIO > 3.0)
Material/
Operation
Intercept5
Slope3
Average	Relative
Geometric Standard	Standard	Standard
Mean (p)	DeviationDeviation (%) AverageDeviation
Relative
Standard
Deviation (%)
AC Sheet	0.937	0.988
Saw
0.303
30.6
0.682	0.131
19.2
Millboard	0.967	0.889
Saw
0.1 20
1 3.4
0.722	0.144
20.0
AC Sheet
Drill
0.946	0.695
0.059
8.4
0.617	0.105
17.0
Millboard	0.903	0.709
Drill
0.1 36
19.2
0.821	0.444
54.1
Brakes
Grind
0.950	0.870
0.1 41
16.2
0.705	0.112
15.9
AC Sheet
0.971	0.868
Cut-Off Wheel
0.041
4.7
0.617	0.064
10.4
a From equation of the line: Log L = Log (Intercept) + Z (Slope). Where: L = fiber length, Z = o
units from the mean.

-------
that it does not vary significantly among the various M/0. It is also in-
teresting that the slopes of these lines, except for the millboard drill-
ing experiments, are all similar.
Once these plots (lines of best fit) were available, it was possible
to calculate the percentage of the total asbestos fibers (and structures)
that were longer than 5 microns. Multiplying this fraction by the total
number of structures counted could yield a better estimate of the concen-
tration of asbestos fibers (or total structures) than the actual counts.
This calculation was performed for all structures for two experiments and
for bundles and clusters for two experiments in addition to the computa-
tion for asbestos fibers for all four experiments. The correlations be-
tween these computed concentrations and the PCM measured concentrations
were again very poor.
The numbers and percentages of asbestos fibers, all structures, and
asbestos bundles and clusters that project to be longer than 5 microns
are shown in Table 20. The inescapable conclusion is that almost none
of the structures generated and measured during these tests are longer
than 5 microns, that restricting the analysis to those that exceed 5 mi-
crons is tantamount to deciding to ignore 99% of all the asbestos fibers
generated during the machining operation.
The difficulty in correlating TEM with PCM results appears to be
caused by the fact that almost all of the structures identified by the
TEM are smaller than 0.3 microns in diameter. Figure 9, a scatter dia-
gram of the logarithm of fiber length vs. the logarithm of fiber diam-
eter, illustrates this point. Similar plots for all experiments, except
sawing of asbestos cement sheet with the cut-off wheel were prepared.
Only 14 of the 480 structures reported by TEM for the eight sawing
asbestos cement sheet with the toothed blade were larger than 0.3 microns
in diameter. When only asbestos fibers are considered the situation is
even worse. The TEM has sufficient resolution so that any structure
larger than 0.125 microns in diameter is classified as a bundle or
cluster. There are by definition almost no TEM fibers larger than 0.125
microns. This observation led to the attempt (see Tables 17 and 18) to
correlate the PCM result to the concentration of clusters and bundles
longer than 5 microns with aspect ratios _> 3.0. Table 8 contains clues
as to why this may have failed. In the first place the log-normal dis-
tributions on particle diameter are not well correlated because the
majority (more than 90%) of all fibers have a diameter of 0.0625 microns.
The large number of small diameter particles weighs down the lower end
of the distribution. In the second place there is no correlation between
the fraction of particles longer than 5 microns and the fraction having
a diameter greater than 0.3 microns. We have arbitrarily chosen 0.3
microns as the smallest size particle visible with the PCM. It may be
that 0.2 micron particles are visible to a skilled microscopist but that
would not change the conclusion that the vast majority of particles
reported by TEM are not visible with a light microscope. Figure 10
illustrates the PCM operator's difficulty. This electron photomicrograph
60

-------
TABLE 20. SUMMARY OF LOG-NORMAL STATISTICS FOR FIBERS AND OTHER STRUCTURES
(CONSIDER ONLY STRUCTURES WITH ASPECT RATIO > 3.0)
Asbestos Fibers
All Structures but Matrices Asbestos Bundlen and Clusters
Geomet.	Geomet.	Geomet.
No.	Mean	Mean	Mean
Material/ of Number Length	% Number Number Lenqth	% Number Number Lenqth	% Number
Operation Runs Found	UO	5 u > 5 U Found	UO	>	5 u > 5 u Found	(p)	> 5 y >5 M
AC Sheet
Saw
0 28.6 0.988 2.35 0.67 46.0 1.02	2.57 1.18	6.2 2.23
18.4 1.13
Millboard 0 61 .9 0.889 0.91 0.56 83.3
Saw
10.4 1.59	8.4 0.07
AC Sheet	8 34.6 0.695 0.12 0.04 44.6
Dril I
Millboard 8
Drill
8.1 0.709 2.40 0.20 10.5 0.674 1.79 0.19
Brakes	8 42.4 0.870 0.96 0.41
Grind
AC Sheet
Cut-Off
Wheel
9 68.4 0.868 0.29 0.20

-------
a\
N)
1 _
U)
2
a
ct
u
q:
uj
h-
UJ
2;
<
t—4
a
0. 100 ..
0. 010
0. 100
A
RELATIONSHIP BETWEEN LENGTHS a DIAMETERS
FIBERS ONLY
FILTER 176
A A A A A A A A A A AAA AAA A AA A A A
A AA
1	1	1—^—1—r
~i	1	r— 1—1—rH
10
LENGTH MICRONS
Figure 9. Relationship between lengths & diameters, fibers only, filter 176.

-------
Figure 10. Electron photomicrograph of fibers, bundles, and matrix particles -
asbestos cement sheet/saw.

-------
reveals several structures that are obviously distinct single fibers
and two larger bundles of fibers. The larger of these two would be seen
by PCM and labeled a fiber.
Note that 0.0625 microns is an approximation of the fiber diameter
that results from the rounding to the nearest 1/16 micron. Precision
measurements by other researchers indicate that this smallest diameter
that is regarded as comprising an asbestos fiber lies between 0.03 and
0.07 microns.
The total number of fibers counted during the PCM analyses was
somewhat low; only the filters collected during the millboard sawing
experiments exceeded the 10 counts/100 fields criteria established by
NIOSH. This, in itself, is an interesting result. Ten minutes after
cessation of a shaping operation the PCM analysis shows low levels of
fibers when in fact the concentration of asbestos fibers is in the hun-
dred of fibers per cubic centimeter. Projections of the number of con-
centration of clusters and bundles; which are the structures most likely
to be identified as fibers by a light microscopist, indicate the values
of their cocnentrations to be over twice the concentrations measured by
PCM. If structures identified as fibers, almost all of which have such
small diameters that they are not visible by PCM, are included the error
increases. Further, other researchers have reported that if TEM counts
are extended to thousands of particles (from the hundred or so counted
in these analyses) that more large (>5 microns) structures are found
than is expected based upon the log-normal distribution of the shorter
fibers. This again implies that the PCM method, in addition to not de-
tecting over 99% of the total asbestos particles in the aerosol has un-
derestimated the concentrations of structures it ought to have measured
by a significant margin.
It is not surprising that no correlations between asbestos fiber
counts made by the PCM and TEM methods could be found, this observation
has been made by numerous investigators. Chatfield (4) observed ". . .an
optical fiber count made on an environmental sample usually yields a
definite value, [but] this value is totally unrelated to the presence or
absence of asbestos." Gibbs and Hwang (5) observed that "... fibers
which are visible in the light microscope represent only a small proportion
of that fiber count." Hwang and Wang (6) and Yamate (.7) have made similar
observations. Chatfield (4) offers a possible reason why the attempts at
predicting PCM results from various portions of the TEM data have failed.
He has observed that the apparent log normality of the fiber size
distributions breaks down when large numbers of fibers are counted.
The TEM data contains far more information than the PCM data. It
seems likely that some subset of the TEM data might correlate with the PCM
data. We have not yet been able to define that subset, though we know
that it will not be TEM fibers. It may be that the PCM result is corre-
lated with the population of structures having lengths greater than 5
microns and aspect ratios between 3.0 and 17.0. Placing the upper bound
on the aspect ratio will eliminate those structures that are too small
to be seen on the PCM.
64

-------
SECTION 6
REFERENCES
1.	Yamate, G. "Methodology for the Measurement of Airborne Asbestos by
Electron Microscopy (Draft)." EPA Contract Number 68-02-3266. U.S.
Environmental Protection Agency, Research Triangle Park, North Caro-
lina, 1982.
2.	Engineering-Science. "Testing Environmental Release of Asbestos
from Commercial Products: Preliminary Assessment Report." EPA
Contract Number 68-03-3040, Work Assignment SBE 01. U.S. Environ-
mental Protection Agency, Cincinnati, Ohio.
3.	"Electron Microscope Measurements of Airborne Asbestos Concentrations:
A Provisional Methodology Manual." EPA-600/2-77-178 (revised June
1978). U.S. Environmental Protection Agency, Research Triangle Park,
North Carolina 27711.
4.	Chatfield, Eric J. "Measurement of Asbestos Fibre Concentration in
Ambient Atmospheres. Study Number 10 for the Royal (Canadian)
Commission on Asbestos, Ontario, Canada, May 1983.
5.	Gibbs, G. W. and Hwang, C. Y. "Dimensions of Airborne Asbestos Fibres"
Biological Effects of Mineral Fibres, Vol. 1, ed. Wagner, J. C., IARC
Scientific Publications No. 30, Lyon, France (1980).
6.	Hwang, C. Y. and Wang, Z. M. "Comparison of Methods of Assessing As-
bestos Concentrations," Arch, of Env. Health, Vol. 38, No. 1, (1983).
7.	Yamate, G. A. ITT Research Institute, Chicago, Illinois, Private
Communication to T. J. Powers (1984).
65

-------
APPENDIX A
REPRESENTATIVE LOG-NORMAL DISTRIBUTIONS

cr-*
o-ป
^4-
:C*5
_*J_
0)
s
o
4) 
CSS
re

1/1
Vj
oXj
U-?

'ฃQ
&1
C
2X1
in
eT5
SU
CU.
"I ฆ i—it r~~ 1— r - -f
C33
IS
sn

-------
<7*
F
i
h
e
r
L
e
n
H
i
c
r
o
10
I ฆฆ
IBER LENG
H DISIRIBUT
FIBERS
ON FILTER'23
I0NLV
Geomotri
r2
Fraction
4
Me a
> 5
i Length
ฆlicrons
= 0,721 microns
= 0.908
- 0.04%
Lugt
1 5 19	50	90 95
Probability of Length Less Than
99 99,99

-------
(Tป
00
ft
H
F
I
E
F,
i :ฆ
I 0,100
o
r!
r
0,010
0,100
RELATIONSHIP BETWEEN LENGTHS & DIAMETERS
ALL STRUCTURES EXCEPT MATRIX
FILTER 234
"T
i
[CRONS
"tH
18
Log!

-------

KD
D
I
A
H
E
T
E
R
B
I
C
R
0
N
S
8J.00 -
0.010
0,100
k'fft
RELATIONSHIP BETWEEN LENGTHS * DIAMETERS
FIBERS ONLY
FILTER 234
~T —t~T~T
"r™i~tH
10
LENGTH MICRONS
Lost

-------
APPENDIX B
TEM DATA - BACKGROUND AND BLANKS

o
- ฃ
X X A V



1!


iH





























~

:;


JZ





























.

r


X































,;

=
"J
=
'X





























-

:;

<-
1






























*

II





•0



N
V)



u"

.z






T

•j*j
*T
j*:
T

^*5



',

li
—


O
=>•


'Z*
O



c

'Z








O
' :
0 0
—

O

_

>1

-H
—


O



1'
z



O

c






C-i
c
z,
—
0 -


O
•r


i:

ฆ'-



•
•


•




ซ

ป






•
•
•
•
• •
•

-
—
1

!i

-•
0

•

c
•
•
•t.
z
'
•
•
O
-
0

-
~
-
•
•
C
0

z.
c z-
C.
•

•z

::


;n




























~


r
i

u.
ro
T-
-
j:




























—


;i

ฃ






























•

!|
































w

•i































_
ฃ

1;


c
z
c
c
0
O
•c

ฆ0
c
O
O
C-
c
c

C-
ฆZ>
c
UT
c
O

c

'Z z

O
c-


i;


r*
•
-
•
•
•
•
-
•
•
•
•
~
•
ป
•
~
•
-
•
•
•
*
~
ซ
- •
•
-
•
•z


ฆ 1
V>



rj
rx
-0
>

J'J


*.

•—
iX
ro
r j

u*5
rj
fS
TJ
O
j*:
c
—
-H Tj
O

O

TT
:
•:
ซ

rrt






~






—1






*T
—

' :
—ซ M
-:



-

:i
•i
a

































;!
%


T
-0
T
*v
0
j*
T

—i
T

0-
*T
—*
w*
-*5
T

>*

O
~r
r:
-•;
i> -n
j"
-r
?4
—

~
.!
\n



o
T
CO
:j*5
.•s.

0
:o
ฆ>

-D
*7

'•s
"i
>

zz
r j
•j"
CN
0
*1.
•0 —

*r
•v
• •
—

||
T


~
•
•
~
•
•

•
ป
•
*
•
•
•
•
•

•
•
•
•
ป
-
•
• •
~
~
•
3


•:

z
O
—
O
—
O
—t

Z'
0


O

O
C-
—
O
-<
—
•—
rj
O
0
T
0 ~


'Z
X
LL

































?—


,


































!!

~































..
i:

0
r
•s.

n
CM
r:
;* J
* j
C-4

|

1
•" 1
* j
; j
O
* 1
.1
0
l<*5
.* j
Ci
Ci
-V
r. :j

• j
C i


•-j
ii
mm


X
r-.
-0
ซ-•
•c


• J
-j

M



0
u*.
•O
r 1
l*i
Ci
mJ
•0
-.j
r:


•0
~0
—
—

M
o
rj

-H
rป*i
0
r*"5





-1
—1
0

T-
.2-
':

•0

•0
O
•c>
0
—
0 -z




• 2
'S
::

-ซ
-*
•
-
•
•
•
-
~
-
•

~
•
.
•
-
'
•
-
•
•
•
•
•
•
•
•

ซ
w
Zt
.z.
.i
•jS
c
3

ฆz>
ฆ Z>
c

t1
ฆz
T
~i

Z'


7:
C
ฆZ
z



C'
0

z.
c
;ฆ
ฆ2

_


;l
•ป
-•





























V—
W


.1

jZ
r 1
< J
.^1
* j

' j
z

*.
.* ,
"l

'7_


Cl
ฆz
'i
ii*)

'J*.
z>

' ;

• j

•••.
on
'_

,;
•0
*1

0

0


0
ฆz

•7.



t"
ฆ1,
•
•0
z
0
r.
ii
ri
0

.j
~ -
7

•5

_
—ซ
::
-I'

u.
O
c
0

z>

z

z


z
0

Z-

0


>
ฆc
c

2
'Z Z'
z.
Z


~_

:i
'.j


•









•


•
•
-




•
•

•





^4

::



vt'
c
0

c
O
z
-3,
I-

z>
z>
0


0

C;
•0
ป<*!

0

~
0 c
"•

z>

1^.

;i
• ซ
































C
M
•-J































__
X
n
LZ.


.n

u.
x.
X
Hi
'u.
__
'__




	



_

u
c
X






'I

_L.
i:
o


































;






























•/


:




;*,
rj


Vj
rs
'Zj

z>
-H
1" 1

T
.*j
•j
"v-

N
O

rj
•0
-r
_* -
' X
zz
>
-J


;;
-J

Zi









—
—H

—ซ
—



—
04
Cl
r;
r:
Ci
.*:
;: •
*;
* J


Z'
-j
;!
—

~2




























—	-Z. m ::
-	."T 'I i

70

-------
il l In'K;;e,,i ' 11 in-.11 inil srrair.THKfc ahai <
iini on.h i i haia iauli; u-rniik
1,'itl.l. fhtl AK.il lUf! liHlt-.S 31-AUG-B2
'jacii i.i: cuE'L: coe>5-i5 017
I > r a
llrr, lib.)
b t r
net it,
IJ i ti th
l.i'r.sth
l\3 t 1 (3
1 3ซ>
1
0 . 000
0 . 062
1 . 50
2 -). 0
1 31
1:
0 . 062
0 . 1 25
0.62
5.0
1 32
F
0.000
0 . 062
0 . 75
12.0
1 33
F
0 . 000
0.062
1 . 00
16.0
1 34
F
o . 000
0.062
0 . 75
12.0
1 35
M
0. -137
0 .062
1 .00
16.0
1 36
K
0 . 000
0.062
0.9')
15.0
1 37
f-
0.000
0.062
0 . 75
12.0
1 30
U
0 . 062
0 . 375
A .e?
12.5
1 39
i<
0 . 052
0.1 f(7
2.R1
15.0
1 '10
L
0 . 0 6 2
1 . 250
1 . 25
1 .0
1 -11
F
0 . ooo
0.062
0.9-1
15.0
1 '12
b
0 . 06 2
0 . 1 25
2.63
21.0
1 -13
F
0.000
0.062
1 . '1 ฆ)
23.0
1 1 1
F
0 .000
0.062
1.31
21.0
1 'IS
F
0. 000
0.062
0 . 07
I'1.0
1 '1 6
F
0 . 000
0 . 1 25
0.62
5.0
1 17
1
0 . 000
. 062
0. 56
9.0
1 -1 tl
f
O . 0"O
0.062
0 . -1 •)
7.0
1 'IV
U
0 . 062
0 . 500
3.12
6.2
i 50
C
0.062
I . 250
2 . 50
2.0
1 51
i:
0.062
0.625
1 . 25
2.0
i :,2
F
0 , ooo
O . 1 25
2.63
21.0
i 53
F
0 . OvO
0 . 062
0 . / 5
1 2 . 0
1 Si
il
0 .3
0 . 1 25
O . /5
6 . 0
1 L' L;
U
0. >'62
0. 125
1.31
10.!:,
1 56
1
0 . 000
• '.062
0.62
10.0
i 7
1
O . 000
0.062
0 . 3 >
6.0
l ;>u
1
O .000
O . 06 2
0 • 56
V.O





-= - = - ; ;;
IIIHIO
i*-~i-i)Ni.ii_i:ป f>ri iis iriw M-"hAiK'lx)
(f'i ufy I'oin)
			- 		Mot
ChP'jsotile tWiF-h i i-'01 e Anit>iii Orbf
0 . 0 1 2
0.013
0 . 006
0 . 00b'
0 . 07 1
o.2t<6
o. 0C6
0.00 7
0.053
0.01 1
0.010
0 . 007
I 020
,00')
0. 127
0. 0i;
0 . 02 i
0 . 0 O J
0.00-1

-------
ZL





























. c
zz
c

C3
(X
c
e
Ci
N:
'sj
n:
nj
NJ
N.
\
V
NJ
NJ
cป-
c*ป
0-
CS

CS
Cs
Cs
CS
Cs
Lr !
1 T
N.'
t*-
'__r

Ul
r j
**
o
<•
CO
\

Lp.
1>
U
ro
>-

c
cr
NJ
Cs
Lr

u
rj

ฉ
•< i
1 '-

-
-
n
3.
r.






3
T

T-



T,
T.


n
-r,
-r,
3;
T,

rป
c
c>
O
ฉ
c,
c
c
ฃ;
ฉ
ฉ
c
c
ฉ
c
u
ฉ
ฉ
t^
ฉ
C
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
q
ฉ
ฉ .
r-





























aป
ฉ
o
c
c

o
c
c-
ฉ
c

C-
Lr
c

c-
t>

ฉ
c
r^
ฉ
c
ฉ

c
Lr

ฉ
, T
ฆc-
ฉ
z.
ti-

Cr


Cs
Cs

c-
ฉ
0-

ฆz.
ro
c-



ฉ
z>
ฉ
ฉ
ro
ฉ
ฉ
ฉ

io

ฉ
*
ฃ•

o
ฉ
C
ฉ
o
ฉ
ฉ
ฃ.
-
O
ฃ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฆc>
Z.






























o
o
ฉ
Lp
o

o
ป-ป
—
*-
ป-
W
ro

fc-
ฉ
ป-
ฉ
lฃl
ฉ
ฉ
ฉ
ฉ
u
ฉ

ฉ
ฉ

a

c*
Cs
ฉ

ro
o-
f0
ro
ro
ro
\

ro
CC
0-
ro
(>-
CS
CN
>
0*
cs

CS
Cs
Cs
c*
ro
r-
ro
r 0
IO
o
ro
lh
ro
Lf.
cn
l*
r_r,

ฉ
L"
NJ
'J
LH
rj
f J
rg
rj
rj
r j
ro
ro
ro
10
ro
Ln .
i -
ฉ
o


o
o
c
o




ฉ
C"
*ฆป
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
<2,
ฉ
ฉ
ฉ
ฉ
ฉ
ro i
i rj!
i n,






•




•


•














: ui
u


Lr
ฃ
*0

tn
H-
NJ
>0
NJ
Cs
ฉ
cs
>
V
C



NJ
CS
0-
NJ
>0
a-
Cs
v
; e*

ro
nJ
cs
<•
—*
NJ
o



L*i
f0
iQi
u
ro
wpl
h-
ฉ

c
cr
ro
ro
Ln

ro
ro
C i
1 s*













X.



l .



|.


N-




1 7?
: (u
c.n
o
o
u
N-

J*

>c
cs
\
ro
r-j
ฉ
c
ฉ
Ch
u
D
u.
H-
ro
ฉ
ro
ro
Li
ฉ
ฉ
NJ !
1 rป


•


•




ซ



















ฉ
c
ฉ•
—
c
L*.
ฉ
ฉ
ฉ
o
^r;
sj
Lp
ฉ
V0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
Lr i
1 0

ฉ
ฉ •
ฉ •
ฉ
0,
ฉ

ฉ
i^,
0,
1J •
r,
ฉ •

ฉ • • •

ฉ i
1 0

ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ro
ro

o
L
ฉ

z>
ฉ
ฉ !
1 z
1^;
ฉ
*—
u
ฉ
to-
ป—
+-
a
ฉ
ฉ
NJ
L"
ฉ
c>

ฉ

ป—
ro
Lr
Lr
Lr
s:
ฉ
cn
o

Ul
t J
H-
t J
c*
NJ
u\
lh
w 1
1 nซ
X • • X • • XXX
'	3
I	&ฆ
I	I*
!	IT.
:• i oj
= 1 a
c- I
•T> i
i	I> 2.
I	ir. C
I	T
I	ft
T 2
Ol* 0

-------
i
TIT KEbtAKCII INSTITUTE STKlIt rut-i; ANALYSIS nATA
INDIVlDUAl CIEiirC 7 DAI A I ALU 1 v f l T id Fv 7 ฃi = KUNHLLr C C l. II Li T L R . ri -HA IRIX)
TAKI.E I T\L>'Alv'AI ION DA fl: i 31-AUl! i)2
ฃ>Ah(:'Lt: CODE: C06545 017
Blue (Micron)
Moss (I' 1 coa!• l-in)
(jrti
Not,
No
Ot-n lit". J Str [ifcf-lh Uidth Ltnsth Ratio rhr>jsotile Aซ>F-hi bole Aiiibia As be Pstt X-Kat
Bt)
1
0.000
0 .062
0. 94
15.0
0.007
l>9
1
0.000
0.062
0. 37
6.0
0.003
90
l<
0.062
0.312
3.12
10.0
0. 159
91
r
0. 000
0. 062
1 .25
20.0
0.010
'/ J
K
0. 000
0 . 062
0.3?
6.0
.
93
f
0. 000
0.062
1 . 25
20.0
0.01 0
9 4
r
0 . 000
0.062
0. 75
12.0
0 . 006
95
i
0. 000
0 .062
1 .63
26.0
,
96
t
0.000
0.062
0. 75
12.0
,
77
r
0. 000
0.062
0.01
13.0
0.006
9tf
r
0 .000
0.062
1 . 19
19.0
0.009
V V
h
0 . OO0
0.062
2.13
34.0
0.017
100
H
0.312
0 .062
0 . 56
9.0
.
101
1
0 . 000
0 . 062
2 . U1
45 . 0
0.022
li<2
1
0. 000
0.062
1. ly
19.0
.
1 o>.
f
0 . 000
0 . 062
0.62
10.0
0.005
1 0 4
1
0. 000
0.062
0.37
6 .0
0 .003
1 vS
1
0 . 000
i i. 062
1 . 9-1
31.0
0.015
1 06
rt
1 . 250
0. 1 25
0 . 75
6.0
0. 305
1 0 '
1
0 . OO0
0 . 062
0.9-1
15.0
0.007
\ OU
H
0 . 0ซi'2
0 . 250
1 . 25
5.0
,
10"
h
J 1 0 J J
0 .12^
1 .25
10.0
1 .066
1 1 0
l
0 . 000
0 .062
0 . r • 2
10.0
0.005
1 ] 1
1
(>. OoO
0. 1 25
1.13
9.0
0.036
1 12
h
a . if-".;
0 . 625
0 . 0 2
1 .0
4 .4-13
1 13
r
0 . 000
0 . 062
1 . 69
27 . 0
0.013
1 1-1
1
0. 000
0.062
1 .Is?
30.0
.
1 If,
M
3 . 1 25
0.625
0.62
1 .0
.
1 16
N
5 . 625
0 .625
1 . 25
2.0
.

-------
ill KtLitrtKCH KIS r I TU I C STRUi: TUK'K ANALYSTS Do I A
If/MI'-'IlillAI. (IHJLT.T I'ATA TAW.L i KH-'I fcLK r H^ftUNfiLF , C^CLIISIFR, M~MATf< IX )
1 AfcLt IICtCAKATION UATL! 31-Aliti-<32
tiArtri.f. cunt: c06t.4t.-017
III-
0c

Si (rticron)
Mass (ficuareit)
OL'.J
Sti
L'i?h t h
IJirtth Ler.ath
Rati 0
Chr'Jioti le
Aflipfl 1 t>o 1 G
1 17
K
0.000
0.062 1.13
ia.o
0.009
ซ
110
(
0. 000
0.062 0.75
12.0
0.006
1
1 IV
U
0.062
0.312 1.2S
4.0
,

120
(-
0.000
O.062 1.75
28.0
0.014

121
I
0.000
0.062 1.19
19.0
0.009

122
li
0. 062
0.375 2.01
7.5
.

123
1
0.000
0.062 2.00
32.0
0.016

124
C
0.062
0.625 1.25
2.0
0. 127

1 25
1
0 .000
0.062 1.06
17.0
0. 008

1 26
f
0. 000
0.062 0.62
10.0
0.005

127
r
0. 000
0.062 2.50
40.0
0.020



1 fit
:1 Hdss (F'ico
J r a in > -
1 1 .753
0 . 000


f O t
j 1 Co. 1111
-
B1 .
0.
Not
No
•I 3 ,

-------
11T RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TAPLES
SAMPLE CODE! C06545-017	TAPLE PREPARATION DATE I 31-AUG-G2
Aerosol ObJect Count And Calculated Object M3ss Characteristics



Numbe r
Mass






Ave rase




Actus 1
Concen.
Coricen.
Ave rasle
Ave rs
;ฃle
Length


Object

Object
(Numbe r
(Plend ram
Width

Length

To Ui dt h

St ruetu re
Type
Count
F' e r C u M )
For Cu M)
(Mic ron)
(Mir ron)
Ratio


fiber
Ch rysoti 1 e
5b *
ฃ134590 .
0533.4
0.07
i
0.01
1 .04
1:
0 . 5ฃt
16 . 05
1:
8 . 76

Amphi bo 1e
0.
0 .
0.0
0.00
i
0.00
0.00
1:
0 . 00
0.00
i
0 .00

Ot he r
22
333839.

0.06
1
0 .00
0 . 79
i
0 . 3 7
12 . 60
1
5 . 92

All Fiber
77.
1160437.

o
o
o-
1
0.01
0 . 97
+
0.54
15.09
i
8.16
Bund 1e
Chrysoti1e
15.
227610.
21708.2
0 . 20
J
0.10
2 . 60
1
1 .59
13 . 96
+
9 . 32

Amph i bo 1e
0.
0 .
0.0
0.00
i
0.00
0.00
1
0 . 00
0.00
1
o. 00

tit her
e.
121396 .

0 . 30
i
0.12
1 .60
1
0.91
5.15
t
1 4 0

All Dundle
23 .
349014.

0. 23
1
0 . 1 1
. ""*5
1
1 . 45
10.89
1
0.62
(' 1 u s t <_• r
C h r >j s r> t l le
n
30349.
3852.9
0.62
1
0.00
1 . 25
1:
0 .00
2 . 00
1
0 . 00

Am? h l he 1ป?
0.
0 .
0.0
0.00
1
0 .00
0 .00
1
0 .00
0 . 00
1
0 . oo

Oti i. • r
9 .
136571 .

0.50
1
0.41
1 . '' 7
1
0.53
3 . 1 i;
1
. 4 7
A1 1 l.' 1 lister
J 1 .
166920.
o. j9 i o. 7
1 . 27 ] 0.4H
2.9 7 . 2*
Mat r l;;
CI 11vsotile
Am: 11 i no 1 i?
lit her
A] J hst rr:
0.
7.
16.
136571 .
0 .
10,'.222 .
2 A 27'; 2.
144166.0 0.18 1 0.10
0.0 0.00 1 0.00
0.34 1 0.27
O.
J 0.23
1.0? I O.o'S
0.00 t 0.00
0.99 I 0.4V
1.05 1 0.55
I I . 34	111.65
0.00 I 0.00
5 . ;v> 1 3 . 63
R.6 7 1 9.35
!1 o Col 1 <_* c t. ion a-nd F'reF a ra t i on Data
lirid Iiata
Air Volume	==	1.00 C'.i M
Ijepnsi t Area -	1.00 So Cm
Ashed Areji	-	1.00 So Cm
Redevosit tires ป	1.00 So Cm
Grid IDS 052G2/A - 3
Individual Grid Openings = 0.0000^
Number of fir id OF-pninfls	~	1
Film Magnification	=	20000
'io Cm

-------
9Z.
cn






























2 !
•y
—
—






























^ 5

ฆฆ





























c

n i
n

7?
ic
;o
ro
t j
! J
? J
f J
r j
r c
'ฆ J

—
N*

•—
1—
k—
N-

ta-








n-

fT] J


m
•c
ฃ2
V.
Cs
V.

u
ro
*•
ฉ

c
NJ
Cs

~
u
ro

ฉ

c
v;
Cs
V.
^ w
ro
**
L

^ j


cn




























ir.

O 1
n
5
I*
*Tซ
*


*T|



*T"i
T",
t,
*
"T,
ฆn


T*.

n
"T.
T",
T,
*
-n
*
* ^

w




n-
71





























f—; I
3^

n






























ป• |
7?


ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉฉ
ฉ
ฉ
W
cn


T

•
•
•
•
•
•

•
•
-
•
•
•
•
•
•
•
•

•
•
•
•
•
•
• •
•
•
ft
M
n i
—(

ป—i
ฉ
ฉ
•^1
ฉ

Q.

ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ro
ฉ


ฉ
ฉ
ฉ
ฉ ฉ
ฉ
IJ
zr

IS, i
2.


ฉ
ฉ

ฉ
ฉ
o
ฉ
ฉ
c
ฉ
c
ฉ
o
ฉ
ฉ



ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ

2
r.r i

T
—
ป
•
.
•
• '
•
•
•
•
•
•
•
•
•
•
•
•

•
•
.
•
•
•
•
• •
•
.
m-

I l
s
2>

ฉ
ฉ
ฉ
M-
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
<ฃ.
ฉ
ฉ
ฉ
ฃ.
ฉ
ฉ
N*


ฉ
ฉ
ฉ
h-
ฉฉ

Nซ
0.
n
ฉ l
—H

-H
cs
CS
cs
1 J
Cs
cs

C*
cs
a-
cs
&•

o
Cs

Cs
CK
ro
10
r J
c-
Cs
c*
rj
C-.CS
ro
CD
r**

** 1
m
>
m
rj
ro
rj
tn
rj
'0
ro
ro
ro
to
rj
f0
to
rj
:o
to
rj
to
tn
w
cn
ro
ro
rj
LI
ro 10
LI
Nl
3r
c
CD 1
•ซ































2


—H
t*.




























r
w

CซJ
3>
—<


































ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
rj
ฉ
ฉ
ฉ
ฉ
W
ฉ
ฉ


rj
ฉ
ฉ
ฉ

ro ro
ฉ
cn
r

w 1











•
.





.
.

.
.




•
• •




X '

!**
r>

cn
u.
<
cc

U)
CS

cs
CO
NJ


t*!
0-
NJ
w
ro
ro

N.1
cs
o
O
CD CD
NJ




c




\'

NJ
.ฃป
•-
o
Cv
>c
**
v.


ฉ
CJ
Vi
c^
c.r
r_r
Co
C."
r-
ro
Nl

cn
ฉ
rr

^ 1
?

































f-,
•y































f !
J










ro

.u
M



en
**

**








10
tu

ซ i


*>
ฉ

Cs
NJ

c.
IS,

U5

c.n
1 J
C.1
\!
CO
CD
*0
•o
ฉ
ฉ
>c
to
ฉ
ฉ
C.R
cncs
Cs
e-
r"




2
•
•
•
•
a
.
•
•
•
•
• '
•
•
•
•
.
ซ
•
•
•
•
•
•
•
•
• •
•
•


V\ !

T
3'
ฉ
ฉ
ฉ
Li
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
0
0
ฉ
N.
0

r

r
n

































-c
































<ซ
'v*




























n
3:
































DT
rj


TT
to




























-5
in


1!





























iC
u-


T





























in



c
>
•
ฉ
ฉ
ฉ
•
ฉ
•
ฉ
ฉ
ฉ
ฉ
-
ฉ
ฉ
ฉ
ฉ
.
ฉ
ฉ
•
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
•
ฉ
C



2,


~
•
•

•

-
•
•
-

•
~
•
•

•
-

•
•
•
•
•
• •

•
rป



•3

o o ฉ
ฉ o N-
Ui >0
o
o
o ฉ o o
O N- ฉ 'J
ui ro c* rj
ฉ ฉ o ฉ
ฉ ฉ ฉ ro
sj U
ฉ ฉ
ฉ r o
*ฆ tn
ฉฉฉฉฉฉฉ —
s; c> ฉ o c." ro ro c.n
cs o- ci w ฉ rj w ro
i> 2:
tfi o
3
i:
3
3>
X
t-H
X

-------
LL
1
1





























__


r.
Lr
c
L'

r,"
v,
(.•
c.r

Jป

1+
ii.

ซL>


i.
cป>
Ul
Ul
U
u
u
Lm
u
w
u
5*

i'
ฉ
V
c-
cr

t.w

*ฆป
ฉ
ซ
C-
V
O
Lr>
x.
W
; j
*ฆ"
C

cr

0-
(.f,

u
fO

o


ii
ii
•r




















n
T|
T
n
.
ฆr;
-n
-


"n
o
o
o

ฉ
C

o
o

o
ฉ
/-
C
O
o
C

o
o
o
o
o
o
o
o
O
r>
o

cn
v,





























oj

j-
c-
ฉ
o
o
o
c

Q>
ฉ

r
o

C;

o
-2,
O
o


o
o
o
o
o
o
O


rj

0"
ฉ
o
Q*
cป^
C-

ฃ>
ฉ
c
C
o
o
O
o
o
^5
C'

o
o
(S,
o
o
Ch
o
c
O
o
?-*
t;
I;
rj
ฉ

r j

o

ฉ
o
c
ฉ
ฉ
o
o
o

O
c>
rv
o
o
ro
o
o
IO
o
o
o
o
3*

I;
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
C-
r\
ฉ
ฉ
c
o
c
r
•w
o
o
o
o
o
o
o
!^s
c
o
o
c

I^N


o
O
o
C'
o
C'
o
fHB*

o
C2
o

iL
c
o
o
o

o
ir
r j
Ch
0*
? J
w
CS

!>
•s.'

ฃ
l>
*ป..
Cf-
ฃ.*•
c-
ck

rj
c"
r-.
x.
>
ro
? j
CS
o
c-

fe

!i
t".

rj
C
N.

ro
f J
f.r

ro
r j
rj
f J
r-j
r 2
r j
'-
Cf.
r J
so
V.
ro
(.1
tr
ro
ro
t J
rj
"ฆr
0
it





























r

•i





























r?

i:

*_
ฉ
r
rj

o
*-
*-
ฉ

<2,
ฉ
'Z>

5'

c-
O
O
r

o
o
t-
to
o
o
T
*

:i
T J
o

C*
H-
ro
"k
CD


u
NJ
W
f,
u

I-
-c
<•
V
CI
I-
w
NO
w
cs
CK

o


;i
ii
L',
ฉ
0-
Nj

•Vj
r j

fZi
*"ฆ
~—
L'c

o
+—
"**

1*

>J<

1J
o

Cr>
u
•o
o
o
-

it
i:
•—
4—

ป-*

u

rj


i J





l _









l....

I""
T.
ti

ii
O
Ch
">0


o
O
^0
0*
L1?

rj

CD
(j.

CO
m
'"sJ
ro
Jr
w
o
NJ
ro
f J





r
o
ฉ
o
c

o
c
O
u

O
ฉ
o
O
o

C'
c
".n
O
o
D>
c
^r,
Ui

o
o
o
c

ir,
2>
2
ฉ
e-
ฉ	• ฉ o o ฆ
ฉ	ฉ	ฉ ฉ
?0	O W c
rj\	^	ฉ s;
c
o
o
o
o
o
c- ~
c •

o *
o
o
o
ฉ
o *
o
0
1 —s
















c*

o
o
o
o
o
o
c
c
o
o
c
o
o
o
o
ฉ


o
ป—
o
o
o
o
r,
o
C1
ป-*
o
w
GC
10
o
ฉ .
•—

10
c
c*-
-J
x.
r.i
U
NJ

to
ฑ.
o
ro
#-•
?^rj
S3 .
. C,
' 0
3r
7
_•


2>

•—
72
IT

m
C
ฆr>


m
*Tซ

Vi
5i
c
rn
rn
1>
2^
-n

T


—*





—



c



—4




p
T
Z?
—H
ฆH
in
n
1*
H

-H
ir:
c.;
a-
•H
k—


I
ป—•
'fmm
ฆฃ>
frป
J-,
C

Is
9

C
i-."1
*r,
1!
R


2.

T-
3>

5
L

ซ
"J".'


ป—(

T





C
f.







P





-


—

!•
r-
ฃ
3
J!
X

-------
I IT fvfSlAKlll IMS I 1 III li i.UkUi: I IlkQ ,1NAl iT.IC. I'm TO
INlilO] I'lJriL HHJI l I riATA TAfill (V-\	H-f:l IrJiiLJ ป C-CLllSlfcK. h-hn T K' I X')
(r'ti'fLt" f r.Lr.'if>0v
0 . Uo'J
0 . S 0
B . 0
0 . 00 -1

,
ฆ)
(
0.000
0.062
0 . 69
1 I . 0
0 . 005


6 i
L'
0 . 0 2
0. 187
2 . 00
10. /
.

V
6*1
I
0 . 000
0 . Of,2
0 . so
U . 0


X
i.ti
1:
0 . 0^2
0 .200
0.62
2 ซ ^
0 .01/5


^ฆ6
f
0 .000
0 . 062
2.63
•12.0
0.021

,

1
0 . 000
0.062
2. 1 S
3-1.0
0,017

.
li
1
o. 000
0.062
o. y*s,
12.0
u . 006

.
6 V
|.
0. <->6".'
0 . 1 25
0. so
4.0
.


'0
1
0 . "00
1 >. o 2
0 . i X
S. 0
.

,
'1
1
0 . OuO
o . 062
0 . so
0 . 0
O .00-1

,
7 ฆj
1
0 . OuO
u .062
0 . so
G.O
'ป. w04

,
! J
H
2. fi i
o. my
0.62
3.3
,

\'
'/••)
r
0 . 000
0 .062
1.19
1 9. 0
0 .00?

,
/ S
i-
0 . 000
0 . 062
0 . V •)
1S.0
0 . 00 7

,
•'6
n
I . li .'S
I . . SO
i. ay
1 . S
.

A
r/
rl
3 • 1 2S
0 . 1 >5
1 . 7S
I -1.0
i. r/y

,
/U
K
0 . i.'OO
0 . 062
0. '>-1
I S . 0
0.00/

,
/9
li
0 . 06 2
0 . S1 2
I . 2S
•1 . \ ป
,

X
UO
|:
0 . 062
0 . -.00
3 . 7S
/. !j
,

X
Li 1
|:
O.Oo'J
o.i ye.
i. 3ft
S < /*


>;
:):•
1
O.oOO
0 .062
2 . SO
10.0
,

X
b i
1
0 . 000
0 . 062
0. So
9.0
.

.
0 1
i:
0 . 062
0 . 62S
1 .IP'
H.G
,

X
t)S
i.'
o.o,'.:ป
1 . 250
2 . S 0
2.0
,

V
i.16
r
0 . OA2
J . J;?fj
S . 00
2. /
.

X
ii /'
li
0. 'V-1'
O . 1 2S
0 . 7S
6.0
ซป. 0 1

•
= - .

: ^ : =

	 	

ii
ii
ii
ii
n
li
II
II

r.
Not
tlo

-------
Ill KFREAh'Ctl IMST I TU I F GTRIIC 1 IJkf AHAlYSlf. DATA
imuviiniAi ofuftt data tafu r t r Depth Width Length Rati.i Chiv00
0 .062
1 .63
26.0
0.013

1
103
F
0 . 0O0
0 . 062
3.tif!
62.0
.

1
10-1
1
0 . 000
0 . 062
0.37
6.>.
. .

i ot:> 1 Ms so ( F'i co.s r. in)-
lotbl Count	=
1'. 9 75
67 .
O . 000
0.	25.	1. 11.

-------
J 1 I RESEARCH INSTITUTE.' S1PIJ0 IURF ANAI. Y!'< I i' OATm
SINGLE SAMPLE: SUMMARY TAKLE8
SAMPLE CODE! CO^ti4N-O10	TAfcLE PREPARATION KATE J 31-AUG-82
Aerosol Object Count And Calculated Object Mass Chs r jc tc r i11 ci



Nunibe i
hss i





Ave i-3lit-



Actual
Coneen.
Cnnceri.
Ave r3^e
Ave racJe
Lenath


Object

Object
< Nunibe r
< P l cori r sm
Width

L p n ?! t h

To Wldth

!i t rue tu re
T ype
Count
Per Cu M)
Per Cu h)
< Mici on)
(Mic
ron)
fv o t 1 u


Fiber
Chrysot i1e
53.
13 0 4 2 4 9 .
91,'14 . 2
0.07 i
0 .02
1.10
J:
0.01
16 . 71
i 1
2.6?

Amphibole
0.
0.
0 . 0
0.00 1
0.00
0.00
1
0.00
. 0 . 00
1
0. 00

Other

333039.

0.00 1
0 .07
1.11
i
0 . 00
15.65
11
3.71

All Fiber
75.
1130000.

0.07 L
0 . 04
1.10
I
0.03
16 . 40
H
2.91
li until e
Chi ysot i1e
7 .
1 06222 .
5577.1
0.19 1
0 . 07
1.71
1
I . 54
9. 76
+
e. 11

Amr-h 1 bo 1 e
0 .
0 .
0 . 0
0.00 1
0 . 00
0.00
1
0 .00
0 . 00
t
0.00

Other
6 ,
9104/.

0.26 1
0.16
1 .56
1
t.13
6 . 53
I
3 . "

All fundie
13 .
19/269.

0.22 1
0.12
1 .64
1
1.31
0 . 27
1
6 . 37
L' 1 u t a r
C'hr^iot i 1 e
t/ ป
750/3 .
2 A 1 7 . 7
0.16 1
0 . 00
1 .29
1
0 . 44
9'. -10
i
4 . 76

Amphj bo 1 
1
5.19
Sniit'le Collection ;md P
rera rti t
ion l.ista
Grid Data








Air Vo i i ime
1 .00
L'u M

Grid til! 052102/A-
4






Deposit Area - 1.00
So Cm

1 r id i v i dua 1
lirid Of en ins •-
0.000066 Sn
Cm


Ashed Area
1 .00
G it C iii

Number of tirid (If- pn 11 i;)s ~
1





R e d e f o s 11
Area = 1.00
'3it Cm

Film Magnification
=
20000





-------
18
w
3>
2
I> Z —•
r ฃ
ฆn c
















to*














1.

NN
•n
<

s.

rr,

W->'
J J

ฉ
<0
ce
NJ
z*



r j

ฉ
<ป

NJ
o
en
A.
Ul
r o



i
"T1

cn































i;
7>

n




























cn

o
1,
n
r>-

3"
*
T",
2*
•?*
H


•r,



T*,
T
"T



*
C~;

*
cr
"n
*T*

T,
"!"! T
r-


1,
•n
n
?r




























—


II
2>

n






























ป*
II
77-
o
3
ฉ
o
o
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
c
'f.

il
2>
IT

.
ซ
•
•
•
•
•
•
•
.
•
.
•
•
•
.
•

•
•
•
•
•
•
•
.
•
-
T

n
II

ฃ
ป~
ฃป,


ฃ•.
ฉ
o

ฉฆ
ฉ
ฉ
ฉ
o
ฉ

c
c
ฉ
ฉ
ฉ
r^,
IV
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
T
U
ฉ
;;
toH
rr

ro
c-
ฉ
10
ฉ
c.*.

ฉ
ฉ
ฉ
ฃ
ฉ
ฉ
c
c

ฉ


CS
to
c
o
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
r*
D
CS
II
c
H
en
Ln
ฉ
o
en
ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
c
ฉ
ฉ
to
ฉ
t-o
en
1^,
ro
ฉ ฉ
ฉ
ฉ
ฉ ฉ
3*

en
li
ZeL































—

i:



O
o
c
ฉ
ฉ
c
o
ฉ1
ฉ
c
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
C
3
en
II
tr
c
—H
•
•
•
•
•
•
.
.
•
*
•
•
•
•
.
.
•
•
•
•
•
•
ซ

•
•
•
•
M
to>
i
il

3>
c

c
ฉ

o
to-
c
o
o
o
c
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
V*
ฉ

ฉ
ฉ


ฉ
ฉ
ฉ
ฉ ฉ
a
n
ฉ
II
—

—
ro
cs
CV
f J
cs
ro
Cn
Cs
Cs

cs


cs
c--
t-
c-
X
cs
CD
cs
o-
ro
ro
CS
Cs
Cs
CS CS
r~
-j
**
i:
n i>
n
LI
; j
ro
en
ro
en
ro
rj
ro
ro
ro
ro
ro
rj
u
u
tj
Nj
r-o
NJ
ro
ro
en
en
ro
ro
ro
ro ro
3r
0
OC
n
••































n
2>
ii


cr?




























n






























ft


:i
N-
r-
J"!


o


Nป
c
ฉ
ro
*-
O
ฉ
ฉ


ฉ

to
ฉ
ฉ
ฉ
ฉ
ro
ฉ
ปto

ฉ
0
0
n


li
1
T—
c
•
•
•
.
•
•
.
.
.
ป
•
•
•
•
.
.
•
•
•
ป
•
•
•
•
ฆ
•
•
•
IB


1!
I>
rr
n
C"


tp
c

XJ

ฉ
CO
er
o
er
er
{>•
<
fj
N*

NJ
cs
>0
in

u/
O
NJ
< en
rป-


11


—;
o

e';
o
1^
c
L"
•c
ฉ.
\
o

>•
ฉ
"C

en


en
ro
x>
ฉ

CD

en
^ ฉ
3*

A*
!l
C;

C
































i
ซฆ>.
P?






























i
li
C3
T",
n

10
h-
ro



k-
w
U'

to-

ro
IJ

r j




_
ro

ro
ro
h-

w

P
!!
ro

2>
ro
Cr*
ro
c:
cs

IJ
ta-
to
o
cc
en


*^1
en
r-.
I—
en

ฉ
en
ฉ
NJ
ro

ro
en ce
r*-

4
i;



•
•
•
ซ
.
•
•
•
•
•
•
.
•
•
•
*
•
•
•
•
•
•
•
•
•
•
•
ป
M-


n


2>
o

ฉ
c
o
-
o
o
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
V
ฉ
ฉ
ฉ
ฉ
ฉ
e^
ฉ
ฉ
ฉ
0
0
0


n
ii

n
r"
-<































n

ซ.*





























ri


1;


<—i




























3T
r


































ti

1!































u:
LI
rป
II

?T





























in

0
II

•3
2/
o
o


lฃ.
ฉ
ฉ
o
•
o
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
• ฉ
Q

3
1!




•
•
•
ฆ
•
•
•

•
•
•
•
•
•
•
.
•
•
•
ป
•
*
•
-
ป
.

c*


r



u-
o
ฉ
NJ
ฉ
ฉ
ฉ
ฉ

o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

M

1!



o
to*
ฉ

o
ro
ฉ
ฉ

w-
ฉ
ฉ
ฉ


ฉ
Nซ
o
ฉ
ro
CS
ฉ
en

toป

ฉ


n

il



Ui
UJ
cs
•-
CO
w
cs
en



M

rj
u
NJ
ฉ
N.'
NJ
w
Ul
NJ
**
ฉ


CK

a.
0

ii
































i;

ii
































Qi

li

^i'


-------
I I f Ivl.Sl Ofvl. II I 11' . ( i I ' I I t:
I fllj I 1 IHJAI. Ill; II l I H.Mrt
Iml5 < f:'i eo'; r-?ซt '*
l; r
0:-
lb.)
S1 r
Mop 11.
•J i d t h
Lenr; 111
Iv'.itlf !
II :ฆ l> t 1 1
Mild i 1 1 L " ' J 1 • Mdib I :
.50
|:
0 . 0 6 2
• ฆ. 312
3 . fit;
12.4

*
31
1
0 .000
0 . 0 2
1.31
2 1 . 0
0 . 0 1 < •
.
32
F
0. OO'j
v .06 2
0 . 3">
.-j . 0
,
X
33
F
0 . 000
r,. i 2 5
o . 9 4
? 1.
0.0 so

34
F
. 0"0
o . Oi/2
' > . 75
i 2 . ฆ>
). 0 0 A
.
r
l:
,1, i'ii li
0 .(ซ,•ป2
0 . <17
1 4 . 0
ฆป . 00

. ^ •!>
I
.•. o
ซ.ป . 1 i*2
''. i • /
3 . .
0 . \>i v


l
0.
. 250
O . '5
. . 0
". •-;'o
.
! ( •

c • J
' i .
1 .
2 . < i
•ป. i'
.

h
1 . ,'S"
•••3 12
2 . 1 V
' . V
2 . 222

•to
n
.>,
0. 125
2.63
21 .0
2. 1 :.3

11
i'"
0.062
1 . 250
2. SO
. o
.
X
Q ฆ
F
.000
o. o a;>
0.94
IS


4 ฆ
F
0 • 000
0 062
1
•..)
• "08

a a
F
0 .000
0 . J 2S
0.87
7.0
ฆ ฆ , 028

is
F
0 . 000
a.062
0.37
6-0

, ,
46
F
0 ฆ 000
0.062
1 .06
1 7.0
...(..,8

4.'
F
0-000
0.062
0. 75
1 7 . o
0 . 006

|M
F
0.000
0 .062
1 . 25
20. 0
o . 0 I >'


n
0 .937
0. 437
1 . 25
1.9
,
X
'•0
i
0.0 62
0. 37$
1.13
3.0

X"


ioia 1 Mass
• I i. • ฆ
. t in /
6 . 092
0.000
i J...
I ' . I: I
I o La I Comi'iI
42.
0.
(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
Ill RESEARCH INSTI I HT[r STRUCT UKT ,'iNnl i^IS f'ATA
SINGLE CAriPl.E SUrtriARY TAHLI S
sample com::	-oioa	talle preparation hail: 3i-AtK">-n2
Aeroso1
Object Count
And C J 1 cu 1 a t'J Mbjpc 1
floss i.'h:u cict
t'l ist i c










Nunibt- r
h l b 'j






A v c; i ซ• a >.




Actus 1
Concert.
1 !i>r>ron .
Ave i o
iie

A vp r ,
3i?
1. lM CI t h


Ob Jt'C t

Dtijcct
( Nunibc? r
( P ) r oh r .=>iii
IJidlli


1. p n -1111

To Ui'.ilii

Structure T'jpi'
Coun t
Per Cu h)
Per Cu M?
(ft i c r
o r i '
Hi c ror
)
K';. 1 1 M


f i be r
C h r y s o t i 1 e?
30.
•1!' 'i.' /ฆ1 j
4. 4
0.07
>
o. o:>
1 .04
1
o.;; 7
1 'ฆ . 03
L
6 .39

Aniph l tin 1 ป?
0 .
0 .
0 . 0
0.00
1
0 . 00
0 . 00
1
0. 00
0 . "0

0.00

tithe r
4 .
60690.

0. 06
t
0 .00
0 . V?
1
0.7 7
t 1.
i!2.2-

All Fiber
34 .
M5V33.

0.07
i
0 . 02
1 .02
1
0 . <) 2
i rป. /1
1
• 2.
l0
1
0 .00

0 t fie r
t .
1M /', .

0.31
1
0 . 00
3.00
1
0 . 00
1 . 10
1
0. 00

A1 1 D M r i r i 1 e

.3034V.

o. 22
I
0 . 1 3
3 . 1 9
1
0 . 97
1 6 . 20
1
5.3
L I u :t e r
Chrซ5otl] e
6 .
9].0.
4 4 59 . ?
o. :v.
1
0 . 1 ฃ!
1.16
1
0 . '.V
5 .83
.
<* . 31

Amph l ho I e
0 .
0 .
0.0
0 . 0 0
I
0.00
0 . 00
1
<> . 00
o .1 • <:•
J
0.0

lit ii" r
2 .
3034 9 .

(>.01
I
0 . 62
1 .! 11

0 . 97

1
6.7l

A11 CI ij 1
r 1:1 .
12096 .

0 . 40
1
0 . 30
1 . 32
1
0 . 69

)
3.9"
Mulri;:
C fi r •e o I i 1 e
' J ,
,'5073 .
02452. 1
0 . 1 5
1
0 . 09
2 . 09
i
1 . 09
t 5. c.O
t
8.66

Aim h l bo 1 e
0 .
0 .
0 . 0
0 . 00
1
0 . 00
•>. 00
t
<••. 00
l) . 00
1
L' . .

Other
1 .
15 1 "^J. .

0.44
1
0 . 00
1 . 25
I
0 . 00

I-
0-00

A 1 1 rl.=. 11 l::

VI 0-17 .

o. 20
i
0 . 1 1
1 . "5
.1:
1 .04
1 3 . 4is
i
9.34
Siiiiir- 1 c-
'ollprtuTi ijri• .1
P rcf p r;; ~
I or. Hotfi
[ 1 r 1 rj 11 r, t ,:









Air Uoluiiie -
i. oo i:
h
('• ml in: 0 '.2102 'A- 4


I't'FOtlt Ares
i.vi- s
i in J !"• r l i.i (');= fTi l n i ฆ-
0 .000066 '><
1 I'll!
Ai-iii 'J Arrvt
i ."0 •;
i' in
iJuiiibrT of i)r id ilieiiinii -
1

K'flf'pos i t Ai'.'ct -
l.O"
C rn
( l 1 m M.i':i. t ( i c: a 11 <_>i i -
20000

(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
*8
r o
T r
tr.































2
li 9?
—
—J
































•; ^































2


i) r,
c
3?
?0
i 0
ro
ro
ro
ro
t j
ro
ro
r j
1—

N-
h-
*-



n-










Or


1!

fTl
>C
CD
NJ
rv
m


ro

ฉ
o
cc
N.
Cs


u
ro

ฉ
"C
C5
NJ
0-
ir.

U!
ro

L.


|| *

cn
































II 7?

m





























w


i- r;
3>
!~

*
*


i~
w
T

*
"T",
"T.
T
ฆr
T

*>

T,

-r
TJ

TT-

*T*



f*


n ฆ?































"9

r;
H z>


































" T1
C
3
o
O
o
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
c
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
O
ฉ
ฉ
r
1*5

:: 2>
















•
•

•












*•
r;



ฉ
c

ฉ
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ



ฉ



ฉ
ฉ

ฉ
o
c?

T
r:
ฉ
i •—i
r"
2;
ฉ
o
c
c*
ฉ
c*
c^-
ฉ


C-
ฉ
ฉ
ฉ,
ฉ

r;



r^,
ฉ
ฉ
C*
(V.
ฉ
ฉ
C'-

r>
/t
o-
1! C
n
r.r
ฉ
o
o
ro
o
ro

ฉ
•J
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

lr
rv
ฉ
ฉ

ฉ
ฉ
ro
to
ฉ
ฉ
ro



lp
ii 2:
-<
—i






























'-s
X
J!

t-H
o
o
o
o
ฉ
ฉ
ฉ
ฉ

c
C>
ฉ
ฉ
ฉ

ฉ
rj,
ฉ
ฉ
C-
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
C
3:
l?
11 C
T1
—
•
•
.
.
•
•
•
•
•
*
.
.
.
•
.
•
%
ป
ซ
.
.
ฆ
•
•
.
ป
•
•
•
•-
M
1
11 2>
1>
c.
N-
o
c

ฉ
—*

ฉ
*ป
ฉ
ฉ
ฉ>

ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
**
0-
ฉ
ฉ

>^>
0.
0
ฉ
i: -'

H
ro
<>
cs
rj
CK
r-J
r j
>
ro
c*
0'
oป
ro
c->
CK
0-
Cn
ro
CK


o
c*
ro
ro
CN
o
ro

r*
T

?i r7;
3>
n
in
tv
JO
in
ro
l"
m
f0
m
•J
ro.
ro
ซ_r
ro
ro
ro
ro
in
'0
ro
ro
rj
ro
m
m
ro
ro
m
ro
DT
0
"C

































n

1!
•H
tr






























V

!! U
3>
—j





























?r


II ^
tr

H-
o

ro
ฉ
ฉ
to
ฉ

ฉ
ฉ
ฉ

ฉ
u

ฉ
ฉ
ฉ
u
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ro
r


ii :

c
•
•
•
•
•
-
•
ซ
•
•
•
•
•
•
•
*
•
ป
•
•
•
•
•
•
•
ป
ป
•
•
ia


i: l>
m


in
ro
CD
u

Cs
in
VJ
NJ
<•

ro


r j
ir
\
NJ
in
t n
w
o
m
<
jป.


ฉ
I*-

w
;• ~

—i

ฉ
in



u
ฉ
lr.
C"

ro
lr.
ฑ.

Im
ฉ
Lr
lP:
ฉ

Ch

ฉ
*>
r.
ro
ro
CS
zr

X
1! C*>

































fv


































J'
" ^

rn


10



ro







1"
ro



ip








u
to

OJ
1!
T7
xป
<
c
ฉ

m
NJ

G

ro
m
ฉ
ฉ
NJ
C:
ฉ
Ci

ro
Cr*

c
ir
.u

ฉ
ฉ
m
u
r-


I-
~-1

•
•
•
•
•
•
•
•
.
•
•
•
• -
•
•
•
•

•
.
•
•
•
•
•
*
•
•
ป
^-


1)
T
r>
in
ฉ

ir
ฉ
11
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
m
ฉ


ฉ
0


1.
r
r-
































1.
7:
-c
































1.
ฆm
m





























n
2;

1

>—i






























ST


c

































i































lC
tT

i
77






























ji


l;


o
>
•
o
•
ฉ
ฉ
ฉ
•
•
ฉ
ฉ
•
ฉ
ฉ
ฉ
ฉ
~
ฉ
ฉ
ฉ
•
ฉ
•
ฉ
ฉ
ฉ
ฉ
•
0



"Z.

ป


•

•
•
•


•
•

•
.
•
ป

ป
•
•

•

m
ป
•
ฆ


*T>

1!


ฉ


ro

ฉ
ฉ
ฉ


ฉ
ฉ

ฉ

ฉ
ฉ

ฉ
ฉ
ฉ

ฉ

ฉ
ฉ
ฉ
ฉ

ซ-•
M

II
r

u


CD


m



ฉ
ฉ

ฉ
ro



ฉ
ro
ro

ฉ


ฉ
ฉ
H-


0

II
fr.

CD


CK

*C
Ul



N.'
lr:

Ul
NJ
ฉ
ฉ

CK
e
ฉ



in
m
in
u


5

1!


v
o
S>
a
h
ฆji
0
0' r+
H
T1 r
a o

-------
X
Cฃ
•C
r
U
_l
U
il
C — II
s II
en


1!







i-

.y

•j
ฆ
uj

!l
*1


1

h-i

11
*-
L-
II
PJ
:i
!1
u
U.

il



;!



.1



il
w
u
<1
II

^J

II



il
f—
—
mm


•x
LlI

>—
w
—
si
r-	i	u	,1
h-	r—	"Z	!l
cn	u	c	ii
^	ซ	il
&	
"O
o

<2
'.n
0;	i
o	;
jz	.
c	;
ro <
TOCO
-. ฉ ฉ ฉ
-< ฉ ฉ o
jT
o
o
o
O li* C 111 C ^ f-J ^ 3 f
T-C^OO-O— occ
CO — ฉฉฉฉฉฉฉฉ
• oooocoooooo - ฉ ฉ ฉ
r*i -* m t 'i'i t *r r

^0




ป-




>
PJ
**



pj






-<
Pi




T

jT
pj
o
Irt
p'
ii*5
Pi
•o
Cn
r
T

0



o
PJ

LI
ฉ


rv

•o

r?
CO
fs
>c
J*.
Pi

P-J
Nj
o
-c
ro
T


•Ci
PI
T



rj
ฉ

ฉ
.'0
Ct
'j"j
o
ฉ
ฉ
O
o
ฉ
-
IT)
-
o

o
o
-

o
o
-ป
o
0,
o

-

ฉ
•0
ฉ

o
pj
P-J
PJ
PJ
PJ
PJ
UT
P-J
P-J
PJ


PJ
PJ
p-l
PJ
PI
'J*)

-.1



ll*
...
PJ
PJ
ฉ
in

*0
o

NO
sD
PJ
o

>0
SD

•o

•o
>0
^~5
PJ
o
<
^0
ฆ0
r:
PJ
S3
>0
>0
U"5
pj
o
o
o
ro
o
C

o
o
o
O
—
C"

•z>
o
o
•0

o
c



ฉ
ฉ
ฉ
PJ

ฉ
ฉ
ฉ
ฉ
o
ฉ
o
ฉ
ฉ
o
o
o
o
c.
c
o
o
c
o
o
o
c
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
p i
ฉ
o
o
PJ
O
rv
ฉ
o
rs
o
o
PJ
o

o
o
o

•3,
o
o
o
p.
p-l
ฉ
o
ฉ
p I
y'i
o
ฉ
o
s/t
o
'0
ฉ
c
•ซ*;
o
o
*0
o
o
o

o
0

i.1


•o
•0


ฉ
'C
ฉ
c
ฉ
ฉ
ฉ
ฉ

o
c
>
o

o
o
•1/
c

o

c

c
c-
ฉ
ฉ
ฉ
ฉ
ฉ
c
c
-
o
o
o
o

ฉ
c.
O
o
c
o

o
-
<2,

-


c
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
-

Il
lu

CJ
a.
r
'j.
-

•-L.
-
-
*
*
-


-
-


-
ฆ-
-
ฆ-
Ll.
u
-
o

P-l
ro
T
j"j
-0
\
a
>
o
_
PJ
•o

J*)
•o
rv

>


r.


1 ^
•0
rs.

•n
"1
ro

•*>
^5


r*:


T
T

T
T
T
T
T
"T

J*

Si

'A
j")


"O - I
— u. '
ฃ C i
85

-------
in KCJtAkm msTiTim: stkuctukk analysis uaia
Villi 101 DUAL llIUhTT DATA TAfcLi: (I^;I1HK, K=--l:UfWU; . C=i'LMt-1 ER ป M-hAlKIX )
TAHl.t 1 Khl'AKATION HA It J 31 AUG 02
f>ANIt I Lfllih i C06545-019
Size (Micron)
Mass (Pieoaraiii)
li id
CD
ON
U> j s
r |iฃM-th
IJioth
Leniith
liotlO
C h r ^ o t i 1 e
59
0. 000
0 . 0 6 2
1 * 56
25 . 0
0.012
60
0. 000
0,062
0.62
10.0
0.005
61
0.625
0. 125
0. 75
6.0
0. 152
62
0.000
0.062
1 .07
30.0
0.015
63
0.061'
0 .250
1 . 38
5.5
0.056
6 4
0.000
0.062
1 . 75
28.0
0.014
C> tj
0. 000
0.062
0.50
0.0
0.004
66
0.0ซ0
0.062
0. SO
ฃ). 0
0 .004
67
0.000
0.062
0. 75
12.0
0 .006
68
0.000
0 . 062
0.07
14.0
0.007
a 9
0 . 000
0.062
1 . 1 3
to.o
0.009
70
0 . O00
(1.062
0.69
11.0
0 .005
71
0 . 0(>(.ป
0.062
1.13
18.0
H.009
72
0 . 000
0. 062
1 . 69
27.0
0 . v 1 3
73
0 . <) 3 /
0.062
1 .30
22.0
0 .090
.'•1
0 . 062
O .250
0.01
3.3
.
.'5
0.062
O.J 12
0 . 75
2.4
.
76
0 .000
0 . 062
1 .07
30.0
0 . 015
7?
0 . (.'00
0.062
O.o9
11.0
0 . 'J 05
7 it
0 . •. M.'.O
0 . 0 L> 2
0.75
1 2 . 0
0 .006
/'V
0 . 000
0 . 062
i. :>u
2 4.0
0.012
t;0 h :<. 1 25
0 . ,>21,
1 .25
2.0
.
IIJ II 0.0 C,'2
0 . 1 25
1 . 25
10.0
0.025
02 H O.v'6?
0.312
0. 75
2. 4
0 . 030
O'S L O.062
1 . 2SO
3 . 1 2
2 .5
0.635
0 4
• ' 0.0.-,2
• I.6.1;,
5.9 1
9.5
0. 603
tts 1
0.0 0O
0.062
1 .-11
23.0
0.011
06 (
0 . OoO
0 . 06 J
0.3?
6.0
0.003
iw
0 . OOu
0 . 062
0 . 50
0 . 0
0.0O4
Not
Hi'

-------
II T KESErtkCH (UST I TLO L STKUi: I URL hNiU.YSIS li.Hfi
I N I' IVI Lil It'll- llkJLL-l HATA lAM.E 2
0.62
10.0

0 . 00 5
l! V
I 0.000
0 .062
0.62
10.0

0 . 005
90
1 0.000
0 .062
0 . 56
•?.<)

0.00-1
91
r o.uoo
0.062
0 . (17
1-1.0

0.007
v::
1 0.000
0 . 062
0 . 50
U. 0

0 .00-1
93
t i1.1'OO
(>.062
1 . 25
20. 0

0.010
V-1
( 1 I , Uli(l
0 .062
0. v '1
15.0

0.00 7
V 5
( 0 . OoO
0.062
0 .;! 1
13,0

.
96
1 0 .00 0
0 . 0 o 2
0 . 6 2
10.0

.
*1~>
1 0 . 000
0 . 06
1.25
20.0

0.010
V'll
1 O.V'Oo
0 . 0 6 2
1 .06
17.0

0 . Outj
99
1 0.000
O.062
0 . 5c>
9.0

0 . OO'I
) 00
1 O.OOO
(' . 062
0 . 67
I 1 .0

0 . O05
101
1 0 . •"00
(•. 062
0 . 69
11.0

0 . 005
1 0?
1 O.ooO
0 . ('J>2
o. ;< >
6 .0

0 . 003
lot <1 hsoi: i['iro3raiii);:
l o 1 : I (. c*'.ii i I	~
•1 . 1 79
v5.
c=c.unni::u, h^hatkix)
i a in >
		 		Not Mo
HiiiihiLiole nu.l>ia Asba Poll V I; ฆ,
0 .000
0.	lit. 0.	I

-------
1 I T FilESEARCH 1 Nf>T1 TUTL" STf:UC FHkf- AHALVBI
S HAT A









i>IN(il. K SAMFi f SIJnnAF-'lT
TABLES











SAMF'LE cnrit"! C06i>-l'J-019

=========„
IAKLC fivLF ARAl ION HA TF
: 31-
AUG 02


... ;

- : -- -
Aerosol Object fount
And C
air
.listed Object Mas,; Cha rsctei i s t ic
s









Nutiibe r







Ave r rj.se



Actus 1
Coficen .
Conceri.
Ave vn
5-te

Ave? r

1 ซ>n ah


Object
lib, k>c-t
< N' nil be r
< f' i coa rฃ>m
Ui d t h


I., ens
til

To IJiritli

Structure Tyre
Coun t
Per Cu M)
F'fr Cu h)
(Mir ron >
(Mir ron)
f ' r~ t 1 o


F ii>L?r Chry.iot.ile

64 .
9553.-,A.
9131.3
0 . 06
1
0.01
1 .00
1
0 . vO
1. 0 4
1 1
t . 4 ]
AniF-hi ho 1 e

0.
0 .
0 . (>
o'.oo
1
0 . 00
0 . 00
>
0 . 00
0 . 00
i
0 . vO
Ci t ho- r

9 .
13ซ4|! .

0 . 07
K
0 .02
0 . 90
1
0 . "1
i •;. o
\
l.i . 4 6
All Fiber

73.
IOC'- / 1 'J .

0.07
1
A.
0 . 01
1 .06
ฑ
0 . l> 6
16. ,:;o
u
3 . h 3
Kiiirpili? C'hrvfsot i 1 p

9 .
1 3 4 3 41:.
1 60 70.5
0 . 26
i
0 . 22
1 . ft 7
1
1 . 73
0. 3t>
J
m
Anif-h l bo 1 o

0 .
0 .
0 . 0
0 . 00
1
0 . 00
0 . 00
).
0 . 00
0 . 00
]
0 00
ilthfi'

1.
7463li.

0 . 1 9
f
0 . 09
0 .9 6
1
\>. 4H
6.33
1
4 eo
All (ฆ' iro 1 e

14 .
20ilฐH6 .

0. 23
1
0. 10
i.
I
1 ฆ 4f'.
7 . 6".
1
'• . J 3
1 11.1 ~ tr.> r I h rvo tile

C"
.J .
->4 6 3:';.
I'VVI-l . /
0 . 73
1
o. t:.o
7 . 46
i
1 . 9.;>
3.80
r
l . 72
Amr h J [in 1

•*> )
0 .
0 . 0
0 . Oo
1
0 .no
0 . 00
J-
0 . ',Mj
0.00
i
0 .00
lit In' r

f
-1 4 7 f! .

0.
i
o. ::t,
0 . 92
i
•i . 7 v
J . 4/
;
2 . 76
All ( In 1.<> r
0.
1 1 9 42 1 .

o.
1
. i , .i;,
1 . >:-b
1
1 . 69
3 . .- i7
j
J .76
M j t r iC ("i rv: o 1 i )


163H .
?6i7.3
O.'H)
1
0 .0 3
0 . tl /
1
0 . 4 1
1 7 , :I0
J
7 -
Alllf-ll l bo 1 r-

0.
0 .
0 . 0
0.00
1
o . 00
0 . 00
1
0 . 'H>
0 . 00
:
Q. 00
U t l ie r




(•. 34
1
0 . 4 0
0.1' ฆ'
)
0 .
t >. O 0
F
i.; 4
A 1 1 h." 1 i ]

ฆ7
10 4 4 0''.

0 . 1
1
0 . 21
0.07
1
0 . 40
10.57
i
/ . 48
•ป.miii- 1 f* Collection t rio
I-' re.-
1 V Cป
tiori listfi
li 1 1 i| ll:' t f.)









Air Vol i imt- I .
00 Cu
h

(i r i • i U i; 0
2 1H.VA
ฆ







I'of oi l t A ro3 =•• 1 .
00 ! i l(
(; in

r fiOl V 1 • indl
lin.l U
: 1*
r 11 n ci
^ 0. 0

67 Sa
Cm


A^hed Are;; - 1 ,
00 rjq
(pi

fluiiih.r r.l (j
rid 11;
• '1
.! I •'is
1





l 1 ,1r ..-at ~ 1 .
oo
1 111

f i 1 Hi MAgiiif
l f • o t 1 01 I

..'0000





-------
il l klbl'hkcii iiisnfiiiL [iTfciu:unci anai r. r.; uata
1 (Hi 1011'l)AL 01 Tl.K' > M=MATRIX)
1AKI.E f-'ftl I 'Afv'Al ItJfl HATE! 31-AlUi02
sample coin : CO6545-020
151 - fi>- 146
Si so ihicrori)	Mess i . 062
0 . -1 -1
7.0
0.003
,
19
r o.ooo
>>. 06?
0.37
6.0
0.003
.
20
1 O. 000
0 .062
0.62
10.0
0.005
.
21
f" 0. 000
0.062
o.3>
6.0
.
X
)
f- 0.000
0.062
0.37
6.0
, ,
X,
215
1 0.000
0 . 062
0 . SO
0 . 0
0.004
ซ
2 1
M 0 . 3 1 2
0 . 1 25
0.62
5.0
.
X
25
U 0.062
l* J
o
2.1-7
7.0
0.111
.
v>
1 O.0O0
0 . 062
0.6 V
11.0
0 . 005
.
2 7
1 0.000
M . 1 25
0 . 62
5.0
0.020
.
20
i (i.ooo
0.062
0.56
9.0
.
X
2 V
M 0.250
0.06 2
0 . 75
12.0
0.030
•


„
_^_== = =
= = = = = == = = = = .
= — — = ^ = = =


-------
I IT hLKtftKCII IMGIltUIL 'J I Kill IIIM .'.HOI V:",IS I'lAln
lIUUOll'UtiL I) l: JI CI UATi'i lYifl.E (!•'---!ฆ ฆIHtlo U-UUNI 'l i : r C=l.lUi:T(h >
TrllU.f Pht'lnKAl 10(1 HiUKI "il-CiUU ii.'
Wit. CtU.iL! t' 0., 5 -15 -020
M-MmTKJX)
o 1 e fimb i a nsfrt- l;stt
30
n
3 . 137
o. 3'S
0.62
1 . 7
.
31
t
0 . 000
0 . Oil'
1 . 1 J
10.0
0 .009
3 2
c
0 .0 62
<ซ. 137
0.62
3.3
0.01 ?
33
t
0 . OOo
0.062
0 . SO
ft.O
0 . 004
34
c
0 . 06 2
U . 1 25
0 . 75
6.0
o.oi s
J 5
(
0 . O00
0 . 1 25
S. , 1
42.5
0. 170
io
F
0 . 000
0 . 062
1 . t!7
30. 0
0 . 01 s
J 7
h
t .
0. 1ฃ17
0 . 7S
•1.0
.
3L<
1
, ."•(>< i
0.062
3.12
SO. 0
0.025
39
I
' >. 0 i • 0
0 . 0o2
1.13
lti.0
0 . 00?
40
\
0. ( >00
0.062
0.62
10.0
0.005
4 1
1
0 . 000
0 . 062
o. /
6.0
0 .003
4 2
1
0 . OO"
0 . 0 c> 2
0.6 V
I 1 .0
0.0OS
•13
1
0. 000
u . 062
2 .1! 1
•IS. 0
0.022
•1-1
1-
0 . 000
0.062
0.01
1 3."
0.006
IS
n
0. 6 2S-
o .0.-.2
1 .((7
30 . 0
0. 1 '70
.•I 6
l'
0.0 c, 2
t . b7S
2. SO
I .3
0. 76 2
4 7
f
0. 00'i
" . 062
1 . 7S
2 a. o
0 .014
'It:
U
o.
(i . 11:7
1 .1)7
1 0 . 0
.
-r>
1-
0 . OuO
\ป. 062
1.-11
23 . 0
0.011
SO
l<
0 . o62
0.It 17
4.69
2S . 0
0.113
si
I
0 . 000
2
0.31
S. 0
.
52
1
0. ป'>>0
0. 062
0.37
6 . 0
.
5 '•
I
0 . 000
0 . 0c>2
0.62
10. 0
0 . 005
S '1
1
0 . 000
0 .062
0.4-1
7.0
0.003
t ' . I
1
0.000
<). 062
0.31
S.O
0.002
,ซU
I'
11. 06 2
0 . 2SO
0.62
2 . S
.
S '
<:
0 . 062
0 . 2SO
3.12
12.5
0.127
5li
r
0 . 000
0.062
1 .63
26.0
0.01 3

-------
i ll IvELEAKf.ll INCTITIITL filKIU" TllfCt ANAL'
INIiU'lliUAl OliJECI DATA IAILE < f =f" I
TAKl.E F'RL'I ARA r I OH HATE; 31-AIJf. 62
SAHll.l" LULU: I


i; 1 ~t-
( Mi 1. roii)

)h i
r,t.r
1 i".
U 1 ri t h
L ens th
K' 3110
59
L'
0 .062
0. 11)7
0.9-1
5.0
60
f
0. 000
0.062
2.19
35.0
61
t
0. 000
0 .062
0.91
15.0
6 2
V
0 . 000
0 .062
1 . SO
2 '1.0
63
i:
0 . 062
0. 1 ft 7
1 .31
7.0
6 4
b
0.0/. 2
0 . 1 2 b
1.31
10.5
6 j
t'
0.062
0. 1 ฃj 7
0 . SO
2. 7
66
b
0.062
0.4 37
-1.1; 1
11.0
67
i.
0 . 062
0. 107
0.75
4.0
6ft
f"
0 .000
0 .062
1 . 25
20.0
69
H
0. 062
0 . 1 25
0.62
5.0
70
I
0 .000
0. 1 25
0.62
5.0
71
M
0.750
0.062
0 . SO
0.0
/::
t
0 . 000
0 . 0 6 2
1 .1) >
30.0
73
ปฆ
0 . ('00
0 . 06'.:
0.31
5.0
7 4
1
0 . 000
O . 1D7
0.9-1
5.0
7
1
0 . 000
0 . 062
0.37
6.0
'.'6
!•'
0.062
0 . •! 3 '
6 . IS 7
1 S . 7
7 7
n
2 . t; 12
0 . 2SO
0 . 75
3.0
7 b'
I
0 . 000
0.062
0 . 56
9.0
7 9
I
0 . O00
O .062
0.69
11.0
l!0
f
0 . 000
0 . 062
0.62
10.0
t!)
I
(1. cuO
0 . 06.:
2 . 06
33.0
ft 2
i
0.062
0.312
1 . 25
4. 0
D3
r
0 .000
0.062
0 . SO
8.0
It 4
n
0.062
0.312
2.19
7.0
US
i
0 . OOO
0.062
0.9-1
15.0
1*6
i
0 .000
0 .062
2.31
37.0
U 7
i
0 . OOo
0.062
1.19
19.0
ih/iTa
C-CLlh:rEh'ป M - MA I R1 X )
Mess ((' i c o 4 r a it.)
		Mot- Mo
C'lii'Sjiit 1 lซ riniF h 11 > ci 11> A iii l ฆ 11. Asho
0.017
0.007
0.012
o. or? 7
0 . 01 5
0.010
0.013
0.020
0	. 01 J,
0.002
0.003
1	. 371
0. 005
0.016
0.001
0. 1 t 1
0.007
0 . 0 1 ft
0.009

-------
Ill K'Ei,EAfi a rt = Lปt> Pstt X-I -
Count	~
1. 763
70,
0.000
0,	30, 0, 0,

-------
m RESEARCH INSTITUTE STRUCTURE ANALYSIS hata
SINGLE SAMPLE SUMMARY TAl'LES
BAHPLE L'Oiit:; C06545--020	TAKLE PREPARATION mate: 31-AUG-B2
Aerosol Object Count Arid Calculated Objc-ct M?ct. thsractorulic'
Ob.ieet
Structuro
fr i be r
Tsfe
C'hrvisot 1 li
HBiF h 1 bo 10
ll t hi-ป r
Actus 1
ObJert
Count
jj .
0.
13.
Mijir.be r
Conrt'n .
(Number
F'er Cu M)
8342 IB.
o.
1971 >'9,
rtsns
Concpn .
< P icn5ram
Per Cu H>
I 1 OH5.
0.
Ave rs jle
Width
(hlCT'lJIl)
0,07 1 0.0?
0.00 1 0.00
0.0? I 0.03
Avr> ra?le
I ori'i l ii
(M1cron)
1.12 1 0.V
0.00 1
0. 70 1
0ปoO
0.44
Averaae
Length
To Width
l"< a 11 0
1.5 , -ป/ H 1 . 15
0.00 I 0.00
10,3b' t 7.17
All Fiber
60.
I0.5I3V/,
0.07 I 0,02
t . 0 4 I 0.|V>
I j , 31 HO. 73
Ruri.Jle
Chry&otlie
Auiph 1 bo I e
fit he r
6 .
0.
vlOwA.
0.
75B3U.
41.2 0.21 A 0.09
0.0 0.00 1 0.00
0 . 30 1 0.13
3.0,:> ! :>.M>
0 . 00 I 0,00
3.63 1 2.2/
15.64 113.70
0.00 f 0.00
1 1. i 1 ! S.26
All	1 o
11
16604 4 ,
0.25 > 0.11
, 3,
1 2.31
13.69 110.15
C luster
Chr^sot 1 11
Amrb i hoi e
Oth.-r
0.
6 .
75830.
0.
91006.
14230.0 O.l-2 1 0.76
0.0 <>.00 i 0.00
01 22 J 0,o:ป
1.50 1 1.22
0.00 1 0.00
0.92 1 0.31.
5 . I 7 | -1.44
O . '"'0 J i.'i . O0
4.31 1 1.56
aii riu-tfM-
11,
1A At) 4 I ,
0.36 1 0.51
1 . 1 0 1. 0 , (!6
4.70 t 3-05
f1.il r 1;
Chr<'5p|. 1 le
Aiiir h lbo lซ?
(It ho r
4 .
V ,
6.
.1.0670 .
0.
91006.
37385.0 0.11 f 0.09
0 .0 o . Oo ! 0. 00
0.30 1 0.21
i.70 f I.27
0.00 1 0.00
0.75 1 0 . 2 .*'•
25.00 122.93
O.00 1 0.00
3.73 1 2.5<5
All rt.i til m
10 .
151676.
0.22 i 0.20
1.13 1 0.V1
12,24 117.30
ฆample Collection Jnd I'rer-jrcH ior. Data
Air Uoli in.-.-	-	I. 00	Cl1	M
lier-ar.it Arc1/;	ฆ•=	1,00	ฃ>o	I'm
fished i'irtฃ	-•	1,00	cjii	Cm
KYhU'Po > i t. Arc? r.	~	1,00	f'.o	f'ni
Grid luits
Grid id; 0521 H2/l.<- 1
I rid i v idua) Griil Or- er. i n-: -
Hurtiber of Grid I'lrem r. ?ซ"• -
Film Masim f i r;it i on	=
0.000066 5i4 Cm
1
20000

-------
*6
CO
x>
ro ro to
V
w
NJ
0-
cp

u
to

ฉ
•C

"Ni
0*
cn
A,
u
TO
h-'
ฉ
<•
m
n;
o
cn

u
to
w
i—r
r.
=
r
rj
-r
r:
-r.
cr
T.
2
-r

-r
-n
t;
•n

n
s
T.


-r
2.
T\
-
T

c
ฉ
-
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
f.n



ฉ
ฉ
0
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ

ฉ

ฉ
ฉ
ฉ
ฉ
CD

ฉ
ฉ
c
o
o




r;
ฉ
ฉ


ฉ
r,
ฉ
ฉ
ฉ
ฉ
rj
ฉ
ฉ
ฉ

c*
cn
NJ
o
Cn
ฉ
0*
ฉ
Cn
ฉ

ฉ
ฉ
ฉ
o
ฉ
ฉ
r_-
o
Cn
o
Cn
ฉ
ฉ
r r
ฉ

ฉ
ฉ
rj
to
Lr
r-
ro
ฉ
ro
ฉ
?0

ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
5
10
rj

tv
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
o
ฉ
h-
ฉ
ฉ
o
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o

ฉ
c
ฉ
ฉ
ฉ
ฉ
ฉ






•


*



•













•

ro
Ch
ro
cn
0*
ฉ
h—
ฉ
cn
H-
o>
ฉ

ฉ
ฉ
ฉ
c>
ฉ


ฉ

ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
cn
rj
c*
ฉ
ro
C*
CD


ro
ro
0-
Cn
0-
C"
CK
c-
t>
u
CO
Cn
C
CS
ct-
Cn
Cn
o.
Cn
Cn
ฉ
cn
ฉ
ฉ
cn
f0
NJ
rj
ro
Cซ
cn
ro
rj
f J
ro
r j
ro
rj
NJ
NJ
ro
NJ
to
ro
ro
ro
ro
rj
TO
u
rj

to
cn
ฉ


cn
rj

ro
ฉ
ฉ
ฉ
ฉ

ฉ

ฉ
ฉ
10
ฉ
ฉ

ฉ

ฉ
r>


























•


NJ
LI
to
c
o
NJ

ro
ฉ
u
cc
rs
Cn
^r,
Cs
C*>
u
NJ
c?
CN
cn

J
a
rj


<
C*x

ฉ
Lr
""

cn
u
cn
ฉ
c
NJ
Ul
ro

r j
r j
Cj
cn
NJ
10
ฉ
•o
>c
a
cn


A
IJ







r j






ป—k

r j







ro

,.
h*

CH

N-
cn
c
ro
CS
ฉ
u
>c
u
to
ฉ
OD
ฉ
ฉ
to
to
ro
u
CO
•—

NJ
ฉ
cn
UJ
cn
ฉ






















•






ฉ
ฉ
ฉ

ฉ
o
ฉ
ฉ
f j
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
u
ฉ
n;
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o	o
C. ฉ
C	O
C	Ck
O
ฉ
ฉ
c	• ฉฉฉฉฉ•	ฉฉฉฉฉฉฉฉฉฉฉ
ฉ	ฉ ฉ ฉ ฉ ฉ	ฉ rj ฉ ฉ ฉ ฉ o r j c o o
nj	ro ฉ ฉ ฉ ฉ	ฉ od ** ฉ cn ฉ ฉ cn ฉ n- o
o-	n- cn a cn v\	cn cn >c n. en u ^ nj m. >j
L-
; CO
c i c:
n i
-~ i ft
rr i
0i
r*-
C
r
3:
in
o
0
Li
ฉ
Cn
Cn
ฉ
, ฉ
1>
I
Cป
r
n
rs
rs.
i -
ฉ z.
; '.i o
i zr -
x
6
3>
-

ijr
*




rr
c
X


rr

—
cn
77
(—•
(Tซ
n-
iป
>



3>

r>
7T
c
,
I>
T

—;

M
M
r.
2^
c

CO
2:
w
—1






S
S
c


—H

X*
rr,

-<
cn
u:




T"
!
r-
c
2>
n
n
c

—H
9



ซ-x

f j
i;
n


I*

*-
-v




n
r~


^r

"
CO

T
c:

11


T?



ฃป

2


f—

\\
n
2
r i1
2
x

-------
ill KL'rjLYiRl.'ll I Hi; II Tl) IE tilKUCIUKt Arli'il. V? IS, |iAlA
I fl|i 1I IHJAl IJlJIiLT Li AI A TAlU.t" <1-11 Kflk, Is-I:IJNM I ป C-Cl.DSTLK r
IV,HII. I RLI'ARAT 1 L)ll fi.Uf:; 31 -AlUi- i!2
H-hATI(IX)
SAfll-'L L. roi'f : C065-15- 020h
Uiicrori)
(ji'i	- - -	---'			 	
li: ii fil'.j Si r |it?f-th Ui.)U< I.eiiJth K'st 10 riirwuot 1 1
ซD
MoSS < Pi COS I'rllll )
r'lriit-fi i i>o 1 •
(lot Ho
Mllli.il.-i As I'm? Cstt X I.
:;o
n
0. 0t.2
'J . 500
12.50
25.0
• I.016
31

3. i:>5
0.500
1 . 38
2.0
5.50o
32
i
0 . 000
0.062
1 .87
30.0
0.015
33
c
0. 062
0 . 1 25
1 . 25
10.0
0.025
3-1
r
0 . 000
0.062
0. 75
1 2.0
0.006
35

0 . 000
0.062
0 .69
11.0
0.005
•/
1
0.000
0.062
1 . 56
25.0
0.01 2
37
h
*1 . 0 6 2
0.625
1 . 25
2.0
U.252
3l>
1-
0 . 000
0.062
1 . 25
20. 0
0.010
39
n
2. 500
0. 125
1 • 56
12.5
1 . 270
00
H
0 . 500
0 . 062
1 . 25
20.0
0. 102
11
I
0. 000
('. 062
1.4-1
23.0
0.011
'12
1
0 . 000
0 . 062
1 . 25
20.0
0.010
•13
I
0 . L'OO
0 . 062
0 . 6V
11.0
0 . 005
Total Mass (l'icosrani) =
fot.il l.'OI.IIlt	-
1 t.636
34 .
0 .000
0.	V.
0. 0.

-------
1 IT RESEARCH INSTITUTE-: STRUCTURE ANALYSIS I'AT A
SINGLE SAMFLE SUMMARY TABLES
SAHF'I F COriL": C06545-020A	TABLE FRF'f'ARATION HATE: 31-AU6-02
Aerosol Object Count Arid Calculated Object Mass L'ha rsc te r1 r.t 1 c:
Object
51 ructure
F 1 be r
Type
Chrvr.oti le
Amrh lbole
Ot he r
Actua1
Object
Count
0.
Number	Mass
Concern	Concen.
(Number	(Ficoslrsm
Per L'u h) F'er Cu M)
340055.
o.
30 33 'J.
3833.7
0.0
Ave rasJe
Width
(Mlcron)
0.07 J: 0,
0.00 I 0,
0.06 1 0,
01
00
00
Average
Lendth
(Hie ror.)
1.07 1: 0.A0
0.00 1 0.00
1.00 F 0.53
Avnraile
Lerif t h
lo IJ l d t h
R 31.1 o
U>.26 1- H.J 9
0.00 i 0.00
11>. 00 I U.-I9
Ail Fiber
379190.
0.06 1: 0.01
1 .06 F 0.50
1A.24 + B . 22
l'
C 1 ut.er
Chrssotile
Ampin bo 1 704 . 4
0.0
12420.0
O . 0
0 . ..'9	J.	0 ,
0.00	F	0,
1.03	1	0.
0.59	1	0.
0.5 (,	1	0.
0.00	1	0,
0.35	I	0.
, Id
.On
75
.57
,41
. 00
. 2'I
5.10	F 6.45
0.00	1	0.00
3.9/	F l.-io
4. <->5	I	4 . 2	1	9.16
6.c.V	F	4.1:
0. •10	F	0.00
0.33	F	5.06
ill r 1 u • t e r
V1'J(
0.4i I 0.
. 5!.' 1 1,52
'.50 1 4.64
iKiti i :
l.'i i r' - o I i i i.
Am:-h li'i'lc-
). • r
'5!(3ci.
0 .
2 3 -) 5 3 C
0 . o
0.23 1 0,
O.oO I (i,
0 . v' -1 I •.).
00
4 1
1.31
0	. 00
1	. 56
0.14
0 . 00
0 . 1 1
I 1 .
1 8-84
0.00 I 0.1 '0
2 . 00 ) 1 . •) I
. 1 I fl . I ri
7.
1 Oil .
0.4 A 1
13
1.4 0 I 0.2 4
0 .
I 8-56
• ili.-'le Collect ion ^ r, d I' res- a r ;i t i or, II. I j	lirid Hat;!
Air Oc, 111 ni c-	-	1.00	Cu	M	Grid III: 052102/1' 1
Ht'rriTiit A11* 3	1.00	Sft	Cni	[ i id l v i dna 1 Or id Opening	=	O.OOOO'o Set Cm
A-,i'n"i ,'irr-a	-	1 .00	Set	I m	I Number of 0 r l d flr-eii i riilb	-	1
Redor-os i t ilrtii	-	1.00	Sit	im	film h^'ini f > cation	-	20000
(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
Ill RESEARCH INSTITUTE STRUCTURE ANALYSIS; liATA
INIUVIUUAL OHJtCT HATA TABLE  M-MAIRIX)
TAKLE FREI'ARA I lUH HA I E : 31-AIIG-H2
r.r
())•
CO HE
C065
45-022
IS*
- Ii- IX




Sl2l3
	
(M i crori)

M3ss ( F'icoa rain)

.i
!j t r
I'epth
Width
Leriath
Rat io
Ctwjsotilo An.phibolL*
Allltll
1
C
0.062
0.312
0.91
3.0

X

11
0. 437
0.062
0.62
10.0
. ,
X
3
F
0.000
0.062
0.69
11.0
0.005
.
4
1
0 . 000
0.062
0.56
9.0
, .
X
5
M
0. 750
0,062
0.07
14.0
0.107
,
A
F
0.000
0.062
1 .25
20.0
, .
,
7
F
0.000
0. 125
0.94
7 .5
0.030

li
C
0.062
1 .250
3.12
2.5
. .
X
9
h
3 . 7 SO
0.375
0.62
1 . 7
. .
,
0
F
0 .000
0.0O2
4.06
65 .0
0.032
,
1
F
0 .000
0.062
5.31
05.0
0.04 2
,
rt
F
0 . 000
0 . 062
0.31
5.0
. ,
X
3
1"
0 . 000
0 . 062
0.50
8.0
, .
X
•l
1
0 . 000
0.062
0. 75
12.0
0 . 006


F
0.000
0. 125
o.y-i
7.5
. ,
X
,-i
1
0. (>00
O . 125
0 .50
4.0
0.016

y
ii
2.500
0. 125
1 .07
15.0
1.523
,
t)
F
0.000
<•.062
0.62
10.0
0 . 005

V

0 . 00>>
O.0A2
2 .00
32.0
0.016

0
M
0.31 2
0. 062
0 . 56
9.0
0.029

1
F
0 . 000
0.062
0.56
9.0
0.004
,
2
l:
0.062
0. 125
1 . 1 V
9.5
0.024

i
i:
0 . 062
0 . 375
0.62
1 . 7
. .
X
•1
1
0.062
0.625
1 . 25
2.0
, ,
X

1
0. 000
0.062
1 .25
20.0
0.010
,
6
ri
0. 750
0. 187
0.75
4.0
0.274
,
/
F
0.000
0.062
0.56
9.0
0.004

1!
F
0.000
0.062
0.62
10.0
0.005
,
9
F
0 .000
0.062
0.31
5 . 0
0.002
•



_ ^ ^ = -

- i-- - - =. = =.
			

Hot No

-------
II
II
II
* i-
o in
2: 
ro
in
ri
1/5
IN


ฆ0
'.T
J"

•j)
r;
n

rv
-
O
0
0
0
O
0
0
0
O
O
0
0
C
c
c
0
C
0
"Ci
O
C

0

ij
u. 1
w
•
•
•
•
•
-
•
•
•
•
-
ซ
•ป
•
•
•
•
•
•
•
•
•
•
"21
.I
i
c
1 O
• 0
0
• O
O
0
0
0
O
0
c
0 •
• O
• 0
0
0
O
• 0
O
O
c
O
0


-- II
CJ
0
LJ

UJ li
Ci
u.
J—
—
r— i,1
O
u
~~
•X
';
i
**
r—
L_J
C l|
m'i



il
**

h—
—

j";


u
w' i!
•0
V
z
'-J
>— ii
0
•i
>—
—J
h- .1
C_j
ฆ*4

--
<1 !

v3


W 1
••



•X :
oj


1
1


•x
•X
'!
0

Lm

1
—ป

!S,

Lt i


u.
hm
1
u


O
Lu '



ซ-*



k—
;Zป
X .1
-C

—
21
*T 1
•t


—

/)

JZ
-J
c
0
0
0
0
0
O
O
0
0
U-3
0
0.













CD
T

0
•jn
rs
rs

•/)

c:
ro






T


UT
ii*'


cj
CJ
T
0
-o
C
c
0
O
r-j
O
0
0
0
0
-*
0
0
0
V
0
O
0
O
0
0
0

0
0
c

f-
0
z>
Ci
O
0
0

'j^
n

rj

0
0
0
-0
O
0
0
'v

•0
•3,
-D

0
0
0
0
O
0
0
c
4'
0
c
0
c
c
0
0
0
O
-
0
>
O
0

0
-
-
'-
-
-
-

x
'-
-
-

-
.3,

rj
-
T
•j1
S3

-
•>


s"l
0
0
c
0

0
c
0
0
0

O
O
O
0

0
0
rs
0

>

T

w
ro
*0
CI













U*J
V
,
• j

r-j



O




r-i
•0


Ijv
>c

—
ซ•
O
Js
-1
X
X

O
0
0
0
0
—

0

O
O
O
0
ci ci n m ri fi in rj o n c* Ci ^
•o o *0 r.' -c — r: >; m *0 >0 ^ ••
o o o - o ^ o r j o c o —
o o
c c- c- o o	o	o o o o o o
O O O C	C	ri O *1 r-1 o :ฆ-
O O < O O	C	<3 O < - o o o •";
*5 o c o —
Cs O C O

'• w S - — z.

S3 > c ^ r :
T T ซT j") j*)

98

-------
I([ k(- '„LhK( II lfl!, I 1 fill L 'oTRllCIIUcf AHAI.V
ItllilOllHlrlL DHJIDT U^iTA Ti.t'Lt: (l =KllซLK
TAILC ( Kl I AKfiT 10(1 HATH: 31-.UU'i-l>2
BrWl.L i:riUL; C04545-O22
l,r
fis-


S):: u'
( Ml f I OI1)


li.i.j
ฃ> I r
lie i- Ui
Width I ,
:jri ii 111
I.e. 1 I 1")
59
1
0. OoO
0.062
0.31
5.0
AO
1
0 . i'OO
0.062
1 . 25
20 . 0
6 1
f
0. 000
0.062
0. 75
12.0

r
0.000
0. 125
0.62
5.0
63
i
0 . 000
0.062
0.62
10.0
64
(
0 .000
0.062
1 .07
30.0
65
c
0 . 062
0 . 375
1 .25
3.3
66
M
1 . ft 7 5
0.375
0. 94
2.5
67
K
0.000
0 . 062
1 . 13
1 tl. 0
it)
1
0 . 000
0 . 0o2
0.3/
6.0
69
t
0 .000
0.062
0.62
10.0
70
(r
0 .000
0.062
1 .94
3 1 . 0
71
1
0 . 000
0 . 0 6 2
1 .25
20 . 0
7 2
l:
0 . 0 f,2
0. 10"?
1 .07
10.0
7 :i
1
0 . 000
0 . 062
0.44
7.0
7 1
f
0 . uOO
O . 06 2
0.62
10.0
75
1'
0 . 000
0 . 062
0 . 6 2
I 0. 0
76
f
0 . 00O
0.062
0.44
7.0
77
1
0.000
u.0o2
1 . 56
25. 0
7(1
1
0 . 000
0 .06 2
0.62
10.0
/V
r
0.000
0.062
0.62
10.0
t)0
i
0.000
0 .062
0. 56
V. 0
ill
i
0.000
0 . 062
0. 4 4
7.0
t(2
i
0 .000
0.062
0.31
5.0
(1.5
M
1 .562
0. 1 it 7
2 . 06
11.0
ti4
1
0 . 000
0.062
2 . 00
32.0
lit,
K
0 . 000
0.062
0 . 56
9.0
U6
F
0. oOO
0.062
0.ฃJ1
13.0
tl 7
f
0 . 000
0.062
1 . 00
16.0
1C f'. i 7 A
Ei- LUIMIH 1, OCL USIl Kf H-HiUM <>
rtass ( p 1 coil i din )
I'lli j ;l.t i 1 c.- r.mr h
0 . 0 1 0
0 . 006
0 .020
0 . 0 1 5
0 . 005
">.01 0
0 . 0S7
0 . 001",
0.003
0 .012
0.00'J
0 . 00 j
0.003
0	.002
1	.1,71
0.016
0 . 001
0.006
0 . 00U
i">u 1 *
(lot tlo
iViilun A-jlie f-'at. i X kr

-------
I IT RESEARCH IMSTIlll'l STRlirTIIKF ANALYSIS DATA
(NtiivinuAL. iiiuccr da'a ivปrn.E  ret


5i;t- ifiicron)


f1;:5i i PIcu.'i1oiป )

(>Lu<
St r
l'L-pth Uidth Lorisith
l\ O t 1 L>
Llii -iisol i 1ซ? Aitif- hi i.'C) 1 o
Aiuh j
ft 8
r
0.000 O.Oc'2
1 .50
24.0
0.012

09
r
0.000 0.062
0.4-1
7.0
0.003
,
90
i
0.000 0.062
1.31
21.0
0 . 0 1 0
,
91
c
0.062 0.:U2
0.69
-1 _ -~
.
X
92
u
0 . 062 0.250
4.37
17.5
0.178
,
93
p
0.000 0.062
1 .56
25.0
0.012
,
94
c
0.062 0.250
0,62
2 • 5
0.025
.
95
h
0.500 0 . 125
0. 50
4.0
0.001
,
96
r
0.000 0.062
0.91
t 5. 0
0,007
,
9/
i<
0.062 0.250
2. ?5
11.0
,
X
9V
i<
0.062 0.93 7
13.13
14.0
2 ,000 .
,
s>9
c
0.O62 0.6 25
3 . 75
6.0
. ,
\
100
p
0.000 <>.062
1 .69
2 7 .0
0.013



f o t i< 1 h = r i
( PI r o
• i r;?ifc> -
7.27 s! 0.000



1 ot r 1 1 Qui it

-
70. o.
?:s.
Mot No
Ashe* pjtl X~R
0.

-------
tu research lMi/iimrr structure analysis hato
S>INC>LE SAMPLE SUnHARY fAl:Ll"G
SAMPLE COHES C06545--022	I'APLE PREPARATION HATE : 31-AUG--R2
Aerosol OhJijrt Count And C
alrul
c t t?.J ObJi C
hCii: r,ic
t f • r i ?• t i e
-








N urn bo i
h - :




1*1 V L1 1 , 'if



"ictui! 1
Coi nVt'i i.
Cor.r en .
A vt1 r j< j o

Ave r i! :.o
1 til i til


Ob jซc I
lib JeL t
\Hun. bo r
O ' j co - is in
IJ i.It!)

1.Hi

To l-li.il
i 1

; • 1rue t u re Tvr e
Count
Per l.'u H ป
I or I'.u H)
< M j c r on >
(fl i e r i > 11 >
Pi-I. v..


l iher Chrwuot l 1 e

52.
77A235 .
"'0<"y , 6
0.0 7 )
0 . 0 1
1.03 1
0 . 9 1
16.13
1
4.45
Ampli l ho 1 e

0.
0 .
0 . 0
0.00 1
0.00
0.00 t
0 . 00
0 . 00
1
0 . 00
Other

16.
') "7 Oi>vJ ')

6.0 7 1
0.07
O. ' •> 1
0 . 4 7
I I . 3 4
!
7.5b
All liber

6B.
1015077.

0.0 7 I
0.01
0.96 :i
0 . 03
15.00
113ฆ *2.
Pundle fhrysot lie

/ .
10-1493 .
350-10.5
0 . 26 J
0 . 30
3 . A5 1-
4 . 35
14.43
..
5.74
Aniphi bo 1 e

0.
0.
0.0
0.00 h
0 . 00
0.00 1
0.00
0 . vO
1
o.OO
Othe r

-ฆ>
29G55.

0.75 >
0 . 00
2 . 00 1
1 . o
S . 00
•
4 . 24
All Pur.dle

9 .
134340.

0.2-ป I'O -1 .

0.4 2 i
0 . 32
1.44 i
J .03
5.11
1
5.-39
M.' t r i:: Chrysotile

<>,
j 3 -i 4 o.
,'j 5 172. 7
0.13 J
0 . 0 7
1.03 ;
0 . 1,6
ซ . 1 1
1
4 .01
Amp!) l on 1 e

0 .
o.
0.0
0.00 i
0.00
0 . 00 1
O . 00
0 . oO
1
0.00
Other

"7
1 1 ''0 3 .

0.27 1
0. 1 U
0 . 7 7- !
0.10
4 . 72
1
4 . 59
A 11 M it t r i ::

12.
] 7" I 31 .

0.1^ J:
0.11
0.9.A 1
0 . 50
0 . 0 1
)
4 . 94
S-.ini-le Co 1 1 ect i oil jnd P
rc;r-
e; rati on 1'ijt:;
0 r l • ( | j 5 t ;*







dir Oo ] i lino 1 i 00
C.j
H

r. r i r) I n: ot
7102/1:- ."3






lie: obit 0 I'Pci I . O0
So
r: i:.

I fill l v i ."i. la 1
Or id Oi'eninf! ~
0.00006 7 Sa
C if.


Ashป;.'J Area ~ I . 00
f. o
Cm

Number of 1
r j •-! f J: e r i i 11S r •-
1




Kfdi'r- nj l t i'iioj =ฆ I. 00
So
I n>

f l 1 rr> fi;;jin-. 1*
i Cc t l or.

2000O





-------
X
X
cc
'i
X,

lJ


w


:n


3


-J


CJ


II


a





aJ


_J

c


~—


-

UJ
•X
Lj
t—

w
b
•I
/r
H-

Zi




>-

01
O
,3
2;
Lj

taH

r—

-X
<1
*
a



—<

•—



z
ฉ
—
1—
1—
c m
r ฉ
XX • X
0 i
JCi I
0
0
cj
o
m
ro
pv
CS
-r
rs.
ฉ
>0
T
ro

•0
ฉ
(J

rj

ฉ
ฉ

ฉ
CJ
ฉ

ฉ
ฉ
c.'
ฉ
IN,

•X
ฆ**
-*
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
in
c
o
ฉ
Cl

•
•
•
*
•
•
•
•
•
•
•
•
~
•
•

c
ฉ
ฉ •
• ฉ
• ฉ
• ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
-H
ฉ
ฉ
ฉ
- rs ^ -o y* t o
~+ -4 ii* o ฉ
ฉ ฉ c o o ฉ o
o
u
s:
0
T
rv
no
>
fs
o



r-3
ri
L")

Ifi

ฉ
X
ฉ

CJ





cj










"N


Cl
ri





r-j
ฉ

ซr
ci
Ci
.





U*
ฉ



ฉ

•ซT

S3
f3
ซr
Cj

ฉ
f*N
*Z
>
c

CD
ij*j
j*i

Sj
C3
ro

ฉ
CJ
lj~
-0
j"j
CJ
m

P0
po
ฉ
o
ฉ

Ci
-
ฉ

ฉ
ฉ
ฉ
-H
•=•
CJ
-
ฉ
-

Cl
Cl

Cl
ฉ
ฉ
-
ฉ
cj
ฉ
in
f J
cj
CJ
r j

Ci
'j^
CJ

CJ
a
ฉ
Cl
,N
rj
CJ
U*)
rj

Li

ฉ
CJ
^,
CJ
j*)
S3
u*
cj
S3

>o
s3
S3
S3

-0
Cl
S3
•c
L*5
*0
"23
..j
-•3
ri
s3
'c
C j
•?i
ฉ

S3*
S3
CI
ฉ
a
<0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
-H
ฉ
-N
r^,
ฉ
Ci
ฉ
•^H

ฉ
•o
ฉ

-m
Cl
'jT
ฉ
o
ฉ





























ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
CJ
ฉ
ฉ
ฉ
Ci
O
i*i
n
o
ฉ
ฉ
ฉ
ฉ


ฉ


•ฉ
o
ฉ
CJ
z,
ฉ
Cl
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
'ฉ
ฉ
ฉ

N
ฉ
c
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ
o
o
ฉ
ฉ





























ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฐ

ฉ
ฉ
ฉ

ฉ
ฉ
ฐ

ฉ
ฉ
ฐ
c
'z
-
U.
-
-

-
-
-
-



*
-
-
C
:-
-

-
w
-

-
-
-
-
-
-




Q

CI
•ฆn
—
L-J
>0
•N.
CD
>
ฉ

CJ


'j~
<1

03
>
























CJ
C i
CJ
C-l

1 02

-------
1 03

-------
I I T RESEARCH ] (1ST 1 I U IT y IKU(. I UKl: AMAl I S I ?, |i,UA
I HlilOIIUIAI- DISJECT liATA lAKLl. O-IIISLR, fc-hllfll'LE I
TAULf i ri i ara r 1 fin hail: 31 -aiio-h.?
(ฆ-- CI 11:; f K K-ป rt -riniRIX >
sawee cum.: co^.-is--022A
o


1
L 1
< M1eron>


Ilj'io (F'lL'oariimi

I i r ci


	



			
	

flui
Ht.j
tit r
Iitptfi
IJ i <11 h 1.
c111. J t i 1
Ri L10
Clirasnt i 11.;
A III 1- ll 1 i 'O 1 t>
Ainl> i
1

I'
0.06?
0. '137
2.1V
t>. 0
.

X
1
60
f
0 . 000
0. 062
0.9-1
I 5.0
0. (>07


1
61
f"
0 .000
0.062
1 . iiO
2 •! . 0
0.012


1
62
I'
0 .061'
1 .07t>
ฆ\.06
2.''
1 . 2Si)


1
6'S
f
0 . 000
0.062
0.01
13.0
0 . 006
,

1
6'\
1
0 . 000
0.062
0 . -r ,6
V . 0
0 . 004
•




lotjl Mass
(F' icns
r a ni) ==
5 . -1-1?
o. ooo




lot
;i 1 Count

-
<14.
0.
It).
No t
No
0 .
1

-------
I IT RLSKARCII I NST I TUT!" STIUC TIIRI A NAL YS1 S HAT A
BINHLK SAMPI fc SUMMARY TAItl.f ;>
SAMFi.r rout: coAMt-.-o?:,^	tahi r r-RTf hrat ron hati : jci-amo- 82
Aerosol Object Count And Calci.ilated Object h;>ss Charactci i?tic
Object
Structure Type
Fr i be r
Chi-M = o 11 1 e
Amr h i bo 1 e
0II ifr
All K ibe r
Number r
Actual Cone en.
Object
Count
34 .
0.
39.
(Nun.bt? r
Per Cu M)
507530.
0 .
74630.
502176.
tt.?ss
Conrc-n.
(F a co^l rani
Per Cu M)
Average
Width
(Micron)
56f!5.6 0..0 7	>	0.02
0.0 0.00	I	0.00
0.00	J	0.03
0.07	i	0.02
Aver.iae
Length
< Mlc ron)
1.14 1	0.56
0.00 k	0.00
0.90 +	0.67
1.12 1	0.57
hvc- r. sf
Lerult h
To U i. i t fi
R >t iu
17.53 t 9.40
0.00 (ฆ 0.00
12. 10 1 5.77
16.hv 1 9.1 J
Huri rile
Chr'jsoti 1 e
Anir-h i bo 1 e
Other
4 .
0.
6.
b*?71C>.
0.
89566.
0234 . 2 0.22 1 0.04 3. 06 I 1.22
0.0 0.00 I 0.00 0.00 1 0.00
0.26 i 0.16 3.31 1 I.US
t">. 72 1 6.18
0.00 * 0.00
16 . 06 iI 2. I 5
O
C luster
All lojndle
C h r y ii o t i 1 e
AniF h l bo 1 e
Othe r
All Cluster
10.
6.
0 .
6 .
12.
149276.
09566.
0 .
095,-.6 .
I/v131.
0.24	1	0.13
3 7466.2 0.89 i	1.03
0.0 O.00	f	0.00
1.46	1	0.05
1.17	1	0.95
3.53 1 1.5P
'I ( Tl
0. 00
3.10
2 . 70
J:	I. Of!
1	0.00
I	0. 70
1	1.00
16.1)0 1 9-78
5.52 1 4.3Z
0.00 k 0.00
2.75 k 1.34
4.r.' 1 3.39
Main;
Clirysot i 1 e
Alii.'-111 bo 1 e
Other
29e.
0 .
1 492 0.
2904 7.9 0.16 1 0. I 3 1.4110.66
0.0 0.00 k 0.00 0.00 1 0.00
0.19 i 0.00 1.25 I 0.00
11.25 1 5.30
0.00 1 0.0 0
6.,->7 i 0.00
All h J t r i ::
4 4 703.
0.17 1 O . 10
1.35 1 0.40
9.72 I 4.59
Sami-le Co 1 1 er t i on and I-' repct ra ti on I'Uit.o
Grid I^ta
Air Volume
I.'ef os i t rtred
Ashed A red
Ked.'nis i I Ar>
1.00	Cu
1 .00	Su
1.00	So
1.00	So
M
Ciii
Cni
Ciii
fir id Hi: 052102/11 3
Individual Grid fli-onm-H
Numhei of Grirl Or-t'ii i ns =
I i 1 m haiini I'lCiili on
0.000067 Sn Cm
1
20000

-------
C m
"Z. 
01
Jj
e
0

in
03
cj
o
in
o
ro
ซr
UJ
II
w
ป-ซ 1
o
O
o
CJ
fs
o
c
ro

c

o
o
o
—<
o
o

II
ฆ*4
-ซ 1
o
o
o
o
c
o
o
o
O-
c
o
o
o
o
o
c


II
Cl
1
•

ซ
•
•
•
-
•
•
•
•
•
•
•
•
•
•
"2
• i

Q l
• c
o
• o
• o
o
• o
G
o -
. . o •
• o
• o
o
• o
o
• o
o
o
C I ooocoooooccco
n o c rv o c :n =
o ^
'd. L a. I w z L L 11
n -n ^ j*5 >o rv cd c* o -ซ ci
3 i
cj ฃ i
'Z

,1


•M
•
. •
>
•
•
•
•
•
•
.
•
•
•
.
.
.
•
ซ
.
•
•
•
.
.
.
•
•
•


MM
II




T O
o
0^

o
>0
CJ
rs
CO
>

cs

CJ



S3
•"0
•sfi
CJ




ts
0s



II
C2



v>4. ^4














''J








rj




IJ
Cl 1!
i

u:





























-J

3 i!
0)






























'1
~~~


V)

J2
C-;
rv cj
a
-0
ul

u"5
o
T
o

*N
o


r-i


Cl
jT

Cl
-M

C-i
ฆJ^
0
s3
ifl
CI
CJ
fx

T
in
—ป
,tG
o
>0
Cx


0
—•
CJ

S3

-0
S3
Ci
c*
-•>

lj

<1 !



-
• •
•

•
•
•
•
•
•
•
•
-
•
•
•
•
•
•
•
•
•
~
•
•
•
•
•
1





C
c
o o
o
o


c
o
o
o

o
ฆS)

c
w

c
n
CJ
o
c
o
0
0

c
0
'1
ฆ'-*
Xd
|


Oj




























II
}—

ro 'i


-J




























II
cr>

i


	




























II


•ซ

0
jC
m
CJ CJ
CJ
CJ
o
•jl
ul
o
CJ
C-J

Cl
J*
C;
n
o
CJ
CJ
fv
C-J
Cl
o
Cl
C-J
rv
CJ
CJ
Cl
il



Cj
u
+i
CJ
ซ3 >0
s3
>0
til
a
Cl
j"5
*0
-0
C-.'
<5
Cl


•C<


CD
S3
S3
Li"
•,3
S3
w
"3
•.-3
-.*3
II
*—
h-
— i
O
0
*0

0
0
o
o
CJ


Ci
o
o

o
•o


j")

o

c
o
CJ
0
0

0
0
0
11

0
o o
o
o
CJ
>0

'0
c
o
o

•0
"0
o
o
•C'
o
0
Ci

•0
0

*0
0
ฆ~J>



L-
W !]
O
N
X
o
o o
o
o

o
r+i
o
C'
o
c
o

c-
o

o

o
o
c

0
0
0
c
-2>
0
'1

-)
— ;l
•'.j

u
•
• •
-
-
•
•
ป
•
•
ซ
•
•
•
•
•
-
•
•
•
•
•
•
•
•
.
•
•
.
i;

—
'X ฆ :

w
—1
o
o o
o
o
P0
o
o
o
o
o
o
o
c
o
o
o
c-
o
o
3
c
o
0
0
ฆZ>
0
c
0
1:

t 'j*i -c rv *3 >• o cj *o -r -o w •>
~ n n c-j cj ~j cj ci c* c; c-
1 06

-------
i n Kts>f Ala:n iNMiitm. uriau;iincr .iNam
iNiu^inuoi. diiji lt iml,1 "iiiin t~ *.F-f-' 1
TmIu.h i kli tiicr.i tod runt: 31-0110-112
ฃ>AMI-'I L l'OliI. : 1,065453
!> 1 ;• i< (r)n?pi>11)
Ifl.l
;; t r
t'lrF- t il
111 till)
Lcm-I th
I'.'c t 1 (J
JO
1
0 . oOO
i'.Oa:?
1 . 25
20 .0
31
l:
0. 062
0.312
1 . 31}
•1. A
/ 'ป
rt
0. 500
0.125
1 .25
10.0
33
11
1 .5 ฃ>2
0. 125
4 .06
32.5
15-1
ll
0.062
0 . 625
5. V-l
9 .5
35
r
0 . 000
0. 062
0.62
10.0
36
1:
0 .06 J
I . ..'50
3.75
3 . 0
37
1-
0 . 000
0.062
1 .9-1
31 . 0
"/ O
i
0 . 000
0 . 062
0 .0 1
1 . 0
3y
1
0 . 000
0 . 062
('. 62
C
O
10
1
0 . 000
0 .062
0 . 7 5
12.0
->1
1
0 .000
0.062
O.o2
10.0
•I.?
i
0 .000
0 . 062
1 .06
17.0
•13
1
0.'
0.062
1.31
21 . 0
•M
1
0.000
0 . On2
I .25
20 . 0
•15
1
0.000
0.062
1 . /5
2(1.0
-I,-,
1
0 . u 0ซ.|
0 . 062
1 . 1
1U . 0
•1 '•
1
0 - OuO
• >. 062
I .07
30.0

1
0.000
ฆ I, ฆ .62
1 . 75
_!tl. 0

1:
0 .0 6
v . 1 f > V
l .C7
10.0
'. (1
1
0 . OO0
" . uc-2
1.1/
1 9 . 0
51
r
0 . 00 0
••. 1 25
0 . 5 0
•1.0
! 11'
1
0 . 000
. 062
1 .06
17.0
*ฆ > '
r
0 .000
O.062
1.31
1.0
5-1
11
1 .tf/S
0 .125
2.56
20. 5
5 5
f
0 . 000
0 . 062
0 . 6 2
I 0 . 0
:,6
1
0 . O00
0.062
0 .111
13.0
5/
1
0 . 000
0.062
1.13
ltl.O
Ml
1
0. 000
0 . 062
0 . 94
15.0
11111 ii
lUJflfilL. f=ci.iii.: ft l:> tl-fwvi KI x )
s > l i coii rani)
•J'ji-l I 1 e? AlIiHl il'U 1.
Mirih
flu t
•J 1 Vj L' (..*
flu
2.06.1
0 . 603
0. 005
0.015
0 . 006
0 . 005
0 .006
0. 005
0 . OOfl
0.010
0.01-1
O . 01 5
O . 01 -1
0.057
0 . 00V
0	. 0013
0.010
1	. 562
1). 005
0 . 006
0 .007

-------
I 1 T KbSEARCH 1 NS1 1 Till E CTfcUCl LIKt ANALYSIS HA1Y,
INEUVIULIAL niurcr DATA FAM.K <ป-'=F I DEK ป H = liUr/IH.L . i:-L"l US I fck ป rl-MATkl X )
l AUm PIVEPhRAT ION liAIt : 31-AUO -B2
fJAMPl.t" fOl'F: C06545 023
:e (flirt-on)
Hjs5 (f'lcosrsnii
o
00
Not
Mo
fiKi Oh j St i fieptfi IJioth Lcfiath R^t in ilir'.i-iot i le Amrhiboli- Ai*b i a Ashe l-jlt X-ฆL'.i.u
59
i
0.000
0 .062
0 . 69
11.0
0 . 005
ซ •
60
F
0.000
0.06?.
1 .25
20.0
0.010
ซ ซ
61
F
0.000
0. 0o2
0 . 56
9.0
0.004

o 2
F
0 . 000
0.062
0. 62
10.0
0.005

63
1
0 .000
0.062
1 . 30
22.0
0.011

6-1
F
0.000
0 . 062
o.;->7
c.. 0
0 . 0 0 3

<.j
f
0.000
0.062
1.13
ia.o
0.009
• •
66
F
0. 000
0.061'
2.56
'11.0
.

6 7
F
0 . 000
0.062
0.69
11.0
0 . 005
• •
60
F
0.000
0.062
0.69
11.0
0 . 005
• ซ
69
f"
0 .000
0 . 062
0 . 56
9.0
.
X
70
r
0 . ("00
0.062
0.1-1
7.0
,
X
71
i
0. 000
0 . 062
0.31
5.0
.
X
72
i"
0. 000
0 . 0 2
0.07
1-4.0
0.007
, ,
7 J,
F
0 . 000
0.062
0.3 7
6 . 0
0 . 003
,
7-1
F
0. 000
0 . 125
1 . 25
10.0
,
X
75
F
0 . 000
0 .062
0.56
9.0
0.004
, ,
76
F
0 . (>00
o. i :.-5
1 .25
10.0
,
X
7/
F
0 . 000
0.062
0 . 69
I 1 . 0
,
X
'•'8
F
0 . 000
0 . 062
0 . 75
12.0
0 . 006
, ,
79
(
0. 000
0 . 062
1 . 00
16.0
0 . 000
, ,
ฃ10
h
0.-137
0 . 062
1.13
10.0
0.000
, ,

1
0 .000
•'.062
0.62
10.0
0.005
,
02
r
0 . 000
O . 06?
1 . 75
20.0
0 .011
, ,
03
r
0 .000
0 . 062
0,01
13.0
0 . 006
, ,
01
i'
0 . 062
0 . 1 25
0.07
7.0
,
X
OS
i=
0 . 06 J
0.250
2 . 50
10.0
.
X
06
i<
0.06 2
o. :-;.o
1 .07
7.5
,
X
o:>
r
0 . 000
0.062
2.1V
35 .0
(.'.017
•
^ „
==;

- = i_ = =
= = ^ = = -
=; = = =:=•:::—

- = = = ^=i;=;r--:. = =

-------
[IT fj'ESFYiRC:! I INSTITUTF. '^1RIJCTUKL .">NAl YSIS UAT.'i
iNiuvinur^L oiuLi.r n.u.i r.-iin.ir  ocuisi lk. h-matkix)
T.tlU.L" t'Rtl- AFv'Al 1 ON uatc: 31 - (illi; -L)_'
KiiMf'i f cunr: co65'ts-o23
biro (Micron)	fl3b'_> ificodraiii)
Crii								 			Not No
Of r'i Ohj Sir [ifrF-th Width Li.-n'ith	fvdlio C,'h r si ,ot i 1.? AKiFhi>>o) e Ambia Asbe I'Jll X- l<
1 ti(i I 0.000 0.061"	1.06 17.0	. .	X
1 UV> C O.Oi.2 0.125	0.62 5.0	. .	X
Total Hsbs.	(li coa isiti ) -	-1.070	0.000
Totol Count	=	S7.	0.	32. 0, 0.
o
KD

-------
1 I T RESEARCH INSTITUTE STRUCT URT ANAl YS IS PATA
Li INGLE SAMPLE SUMMARY T AhLEJ'
sample (~ 111: C06515- 023	taiuf pre par at i on iiate: 51-aijo-o:
Aerosol Object Count And Calculated Object	Charscteristir
Object
St ructu n
I i be r
Tijpc
L'h rvf ot i 1 e
Amr- h i bc> 1 e
Other
Actual
Object
Count
50.
0.
1 6.
Number
Concen.	L'oncen.
(Number	(Pi rc>3 ram
Per Cu M)	Per Cu M)
032610.
0.
266115.
6724.6
0.0
A v e r a e
Ul i dth
((iicrorp)
0.06 1 0,
0.00 1 0,
0.07 I 0.
01
00
03
Averaae
Leri=i t! i
(Mic ri1>n )
0.91 1 O.lt!
0.00 1 0.00
1.01 I 0.51
A v e r s u v
l.enath
To Uidth
R tio
11.VI 1 7.7:
0 . 00 1 0 . 00
11.69 I 8.9 3
All Pi be r
66 .
1099001.
0.07 J ^.O?
0.96 1 0.19
11.D3 1 :.9~-
l t l 1 o
AniF-h l bo 1 e
0 t he r
All Bundle
[t.
33306 .
0.
99917.
1.53221'.
10461.9
0.0
0.37 1 0,
0.00 1. 0,
0.32 1 0.
35
00
16
0.31 1 0.19
3.59 i	3.31
0.00 1	0.00
2.75 1	1.26
2.96 1	1.69
9.75	1 0.35
0.00	1 0.00
9.16	I 1.1:
<>.31	1 3.19
C 1 u s t e r
Ch r . nt lie
Amp h 1 ho 1e
Other
1 .
0.
0.
16653.
0.
133222.
951 . 4
0. 0
0.19 } 0.
0.<"'0 .1. 0,
O.cO 1 <•,
00
00
06
1.0'' I 0.00
0.00 1 0.00
1.97 ;J: :;./2
10.00 i 0.00
0.00 I 0.00
3 . V--7 I 1 .65
All Cluster
9 .
1 4 9 ซ .
0.56 1 0.01
1.96 I 2.51
1.56 >2-5:
M a t r 1
thr'jsnt 1 1 e
Ampin ho 1e
01 he r
1 .
0.
66611.
0.
33306.
62950.6
0.0
0.11 I 0,
0 . 00 1 0.
0.6V 1 0,
03
00
00
2 . 1 J I J .51
0.00 1 0,00
1.25 1 0.00
19.25 I 10.8?
O.oo t O.('0
5.50 ) A.36
All hj.tri::
9991?.
0.30 i 0.4 7
1 .03 1 1
1 4 . 6/ +1 1 .37
ijaniF-le Collection rind P reroi r>0 So Cn.
Ashed Arej	-	1 .00 Sc< I'm	Number of 0 r 1 d llF eninfls	=	1
Reซ1iปป>os 11. A re J	--	1.00 So Cm	I" 1 1 Hi Maun 1 f 1 ci> I 1 on	-	20000
(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
(11 RESEARCH INSTITUTE BTRDCI UKli ANALYSIS HAT..
INHIVIliUAI. OLUfcCT HATA T Atil.E (f"-F I HERt ฃi = f:UNlU.L . (^CLUSTER. M=MATR IX )
TAfcl.E f'Fi'EFARATION HATE: 31-AUlj-Q2
sjAhFLE conn: CO6545-024
Si^e (Micron)
GrJ
Masb ( F'i coa r.Jin )
Not
No
Deri Ob.i Sir Perth Width l.enath Ratio Cliri/sotile Awfhibo 1 e Ariibia Ashe- Fcitt X-Rs-j
1
H
0.062
0.312
4 .06
13.0
0 . 206
'ป
F
0.000
0.062
1 .56
25.0
.
3
F
0 ฆ 000
0 .062
0. 56
9.0
0.004
4
r
0.000
0. OA?
0.25
4.0
0.002
ij
r
0.000
0.062
0.56
9.0
0.004
6
K
0 .000
0. 125
1 .25
10.0
,
7
i:
0.062
0. 125
0.62
5.0
0.013
0
F"
0.000
0.062
1 .25
20.0
0.010
9
F
0.000
0.062
0.56
9.0
0.004
10
1"
0 . 000
0.062
0.56
9.0
,
11
C
0.062
0. 125
1 .56
12.5
0.032
i 2
1
0 .000
0.062
1 .31
21 .0
0.010
u
1
0. 000
0 .062
0.94
15.0
0.00 7
l-i
n
0 . 0 A 2
0. 250
1 .87
7.5
,
iiป
f
0 . 000
0.062
1.31
21 .0
0.010
1 6
K
0. 000
0. 125
2. 3f;
19.0
0.076
17
1
0.000
0 .062
0.62
iO.O
0 . 005
1 it
F
0. 000
0.062
0.44
7.0
0.003
1?
F
0.000
0.062
0 . 6V
11.0
0 . 005

1
0 . 000
0.062
1 .56
25.0
.
21
F
0.00C>
0. 125
1 .25
10.0
.
')'>
r
0 .000
0.062
0.69
11.0
0.005
23
N
0.625
0 .062
1 . 1 3
11!. 0
0.114
:'•)
1
0 . 000
0.062
1 . 00
16.0
0. 00IJ
25
1'
0. 062
0. 107
1 .25
6. /
.
26
1
0.000
0.062
0.6V
I 1 .0
0.005
2'
1
0 . 000
0 . 062
i.
20 .0
.
I'll
1"
O . 000
0 .062
1 . 3D
22.0
0.011
29
I
0.000
0. 125
0. 75
6.0
o.o;m

-------
i 1 T KESEAKL'H KIST I I III E S I ftlllj UJIVL ANALYBI5 00
INIU OUUJAl. OIULT. T HA1A iAฃtr Merth ui'lth l.eii!ith Ratio Chrasoti lo Anipfubnl r? Ambia Acbt* Pat t X l:,'j
30
1
0 . OO0
0. 12b
1.19
9. 5
.
X
31
1
0 . 000
0.062
3.00
40.0
0.024
ซ •
32
K
0.000
0.062
0.69
11.0
0.00b
ซ •
33
(
0.000
0 .062
1 .25
20.0
0.010
ซ ป
3')
F
0.000
0. 12b
0. 75
6.0
0.024

35
r
0.000
0.062
5.13
02.0
0.041

36
1
0 . 000
0.062
1 .00
16.0
0 . 000

37
h
0 .000
0 .062
1 . ปJ
30.0
,
X
311
II
0 . Oil'
0 . bOO
0.94
1 .7
•
X
39
f
0.000
0.062
1 .31
21 . 0
0.010
.
•U>
i
0 . 062
o. 250
0.50
2.0
,
X
•11
h
'. 1 '"'b
0.637
1 .1)/
2 . 7
.
X
•rj
r
0 . GOO
0 . 062
0.62
10.0
0. 00b

ฆ13
i
o . <>00
(i. 062
3 . 3t!
54.0
0.027

•ii
i
0 ฆ *''00
0.062
0.44
7.0
o. 003

45
i
0 . 000
0 . v 16 2
0 . /t.
12.0
O.OOo

•16
\
<). 000
>•.062
0 . 1 1
7 . 0
0. 003

4 7
i
0. OoO
O . 062
0. bO
1). 0
0.004

-U-l
t
0 . 000
0 . 062
0.62
10.0
0. 00b

ฆi
t
0. 000
0 . 0 6 2
0. 75
12.0
0.006

50
i
0. 000
0.062
1 . 00
1 6 . 0
o. oon

51
i
0. <>00
0 . 0i>2
1.13
1 it. 0
.

1> ^
i
0 . OOo
0.062
0.62
10 .0
0 . 005

S3
i
0 . OuO
0 . i.'6'._'
0 . '14
7.0
,
* •
54
t
0 .000
0.062
1 . 3it
22.0
0.011
ป *
J) ซ.>
i
(1. 000
0 . 0 6 2
0 . '1 -1
7.0
0. oos
• •
!io
i
o. o oo
0 . 062
o. /
6 . 0
0.003

5 7
i
0 . 000
0 .062
0 . 6..'
10.0
0. 005

5i)
I:
O . 061'
0 .312
1.11-'
6.0
•
X




-1=1-
- „ = = ;; i; i; = ;
		.
		

-------
in kkjfhRiIi iNsrniMi: siKiiriiiKC ahai.v
uiiiivi nui-iL otjrcr i.imTa TAiu.r < i i m k
TAUl.t I KhFAKAl 1 Of) luVfl : A1 ,'illli i;2
lii'iTn
-lllfllU.L i C-Cl.lll>TI;IVf hrlAIKlX)
liAHi LL cone; 1:065-15-024
0 rri


1o
(Mii: ran )

Mass U'ii'oi;i'oiii >

ih.i
:> I1-
Hl f' th
Width
Lentil)
l<:'it in
t'firyvol 11 l- Ami hit>olc-
Ami. 1
5 V
f
0 , . 000
0.062
0.62
I 0.0
0.005
,
6 1
I
0. 000
0. 061'
0. 75
12.0
0.006
,
62
c
0.062
0. 1G7
5 . 00
26.7
0.152
,
63
M
O..U2
0. 1U7
0.62
3.3
.
X
Si4
rt
1 . H75
l. 250
1 . 25
1 .0
,
X
65
11
1 . 250
0. 107
1 . 25
6.7
.
X
66
1
0 . '"."J
' > . ฆ > 6 2
0 . 6 2
10.0
0.005 .
.
67
n
o.
0. 125
0 . '/•)
7.5
.
X
ci>
1
c .
0 . 062
0 . ') -1
7.0
0 . 0 0 "J
,
ฃฆฆ V
1
0 . i> •_> 0
0 , Oil'
0 . V -1
15 . 0
0 . 00 •' .
.
70
1
0 . '100
0. 062
1 . 3t>
22.0
0 . 0 1 1
,
'1
l:
0 . 00'J
0 , 062
0 . 50
ll. 0
0 . 00 )
.

1
M . 000
0 . 062
0 . 0 1
13.0
0.006
,
-> :
1"
0 . 000
0.^62
o. s i
5.0
0.002

7-1
1
0 , 000
i.i. OA2
0 . 6'"*'
11.0
. .
>.
/'ป
1"
0 . 000
• •. o,-..-
0 . V'l
15 .0
0.00 7

7 6
1
0 .1'Ou
0 . 062
0 . 1 1
'/ . 0
0.003
.
,'7
1
o. *'\n>
U . 061'
. 56
V . o
.
,
7t)
1
0 . ooc
l>. 062
0 . 56
. 0
0 . 00-1 .
,

1
0. 000
0 . OA 2
0.56
•V . 0
0.00 1
,
iiO
1
0 . 000
0 . ',>62
0. 1/
o . 0
0.003

ul
1
o. ouo
0.062
0.62
10.0
.
X
H2
1
v . (>00
ป . 1 25
1 . 56
12.5
0. 050
,
l!.'.
\
0 .000
0. 062
2.63
'12.0
.
X
IM
1
0. 000
0 . 062
2 . 3 1
37.0
0 . 0 1 H
,
1*5
1
0 . 000
0 .062
1 . (-0
16.0
.
V
1"!6
1
. 000
. 062
0. .5 7
6 . 0
. ,
X
t: 7
1.
v . Oil!
0. 107
'1 . 2, /
2 3 . i
0 . 1 33
•






..... 					- -

Hot
Ho

-------
J XT KESEAKUI INSrifUIH STRUCTURE AMAl.Y
J WiIOIliUAL. UlULl l HAT,-* I AW L (I -Fl^LR
T("(i o
o t r
Lite tli
Uicith
l.ฃปriฃith
k jtio
tut
f
0 . 042
0 . 250
1.13
4.5
119
f
0 . "''00
0 . 042
0. 42
10.0
90
1
0. '.'00
0.O42
0.75
12.0
91
1
(i. OoO
0.042
0.49
11.0
92
n
0. 062
0 . 197
3 . 00
14.0
93
1
0 . 000
0 .042
1 . 25
20.0
94
t
0 .000
0.125
I . 75
14.0
95
K
0 . 0ซ.J
1
o. ooo
0 . 062
0 . r> 2
10 . O
102
1
0 . O00
0 .042
0. 42
10 . 0
103
("
0 . O'-'O
0.042
0.31
5.0
U> 4
1
0. 000
<>. 042
0 . 50
tป.0
105
1
0. 000
0 . 042
0. 3 7
6.0
1 06
1
0. C'OO
0 . 042
1 . 50
24 .0
I 0
h
0 . 000
(i .042
0 . i! 1
1 3 . 0
i oif
K
0 . 000
o. 04:.*
1 . 25
20 .0
] 09
I.
0.042
0 . 1 J5
1 . 3ft
11.0
1 10
t
0. 000
0 . 042
0. 50
U . 0
111
u
0 . o o. 2
0 . 1 25
1 . 00
u.o
I 1 2
1
0. 000
1 . .'50
7.19
j t G
11 i

0.042
0.425
5. 75
6,0
11 1
l<
0 . 042
0.312
4 . 04
i. o
115
c
0. 042
1 . 250
6.11/
r C
w.ป • ซ.l
1 14
(
0. UOO
0 . 042
0.44
y .o
it; iiat.i
i:-niiMiu r, rn:i ui;Ti K. h-m/ukix)
Mass (Pico3rem)
				Mot tlo
Chrusoti le Aiiii-hit'ole A nib i a fts lu; pซj 11
0 . 005
0.004
0.005
0.0X0
0 . 0bo
0.00c)
0 . 009
0.007
0 . 004
O.0M
0 . 0 1 9
0 . 0 0 5
0 . 005
0 .004
0 . 003
0.011'
0.004
0.010
0.004
0.003

-------
• 1-'
• 0
000 ' 0
I I <* I r>' j:• H t iqiu'v
OfJ ici|j
< J nf) I 'jri'uy
, oi r
C/IMI.VM--!•) • M 1! t fl 1.1
•eg
-

I'JI VJ J |ซ
ป•-' 1.



OOf." I
:: ( '111?
.1 ron T J )
55SW I t- 4 • |



/'U' '0
O'S
srf
or,/ *o
C?0'Q
II
EC 1
I
•
:i C
Cf 0
OSC'O
1 ft i •c
U
cc r
I
•
0 V
H- • 0
."390 •<)
0^0 • 0
1
IC 1
1
It 0 • 0
O'EC
trb • I
ZVO'O
000 • 0
:l
OCI
I
COO'O
OT,
TT'O
<:?o • 0
'X>0' 0
1
ATI
I
1-00 •; • 0
C 7 0" 0
>1
/'.II
I
sin <-* 5 ซ1 j
oil?
>1 mr;'!,?
1 Ml PHI
M
Jis
•'10
' j
n.->T.)> <=s?w


( 'JO J J t |J )
;rtr,



ico-st"-, ;o;i
ฆrn 'inv - u: mu'm umi h.ojv i.im ) imu
' lHII!ll:| M '.WIJ-:I! IH'.'J Vlt'M I 1 Jl '111 I'.'flilldlHin
vn'ii ni'UivHv i:injnii-iiTiniTi^m ini'.'.3:3jii 11 t

-------
I IT RESEARCH INSTITUTE STRIIC I URL ANAL'ft; I S HATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COL'E 006545-024	T ABLE PRE EAR A 1 I ON HATE! 31-AU0--02
Aerosol Object Count And t s leu Is ted Object -hs-ss Characteristics
ObJoe t
St rue t u rp
F ibe-r
Eund 1 c
C J utr
i l.i t r i
Tvr-e
Ch r asotlie
Amphlho L e
Ot fie r
All Fiber
C h r y s o t l 1 e
Anif-h l bo 1 e
Other
All bundle
I 111 ssot l 1  r
Actus 1
Object
Count
76.
0 .
19.
95.
1 .
O.
Nunihe r
Coneen.
(Nunibc r
I'e r C u H >
1134490
0
28362 A
141011' 2
09 *,66
0
134 340
123914
4	4/03
0
5	9 ,'10
10 1493
1 4920
0
/4(f) 30
Mass
Conepn.
ilieosr.jm
for t'u ill
11073.6
0 . 0
Ave rade
Width
(M i crun)
0.0/ 1 0,
0.00 1 0,
0.13 1 0,
01'
00
I 3043.7
0 .O
2 937.4
0.0
I 705 • t.
0.0
0 . 35 i 0 ,
0.00 I 0.
0 . 20 }• 0 .
^ "•
00
10
0.31 1 0.20
0 . I I 0 .
0-00 i 0.
0 . 4 0 1 0 .
0 4
00
51
0. .54 1 0.40
0.0.A 1 0,
0.oo i o,
o.:ปi y o.
oo
oo
4 6
Ave 1,1'if
Lena tb
( Mi eron>
0.94 1 0..'5
0.00 1 0.00
1.36 i 1."j
O.Of! I 0.12 1.02 1 0.96
2.52	1	t . /'I
0.00	J	0.00
'i. 09	i	i.::''
2.26	1	1.39
2.4 0	f	2.30
0.00	1	0.00
2.4 4	.1	2.'2ft
2.4 2	]	2 .4*
1.13	1	0.00
0.00	I	0.00
1.13	I	0.52
MVO I rTfif
Length
To U l d t h
R s 11 o
14.20 HI. <45
0 . 0 0 J O . 06
14.49 f ฆฆฆ.91
14.32 ill.2S
9.22 1 7.69
0.00 I 0.00
O.f.4 1 4.Z0
0 . H 1 1
i .7
1 4 . 72	+1 1 . 00
0.0 0	i	O.O0
4 . *	J	I . v 9
O.'^O	1	0.4-)
10.00	1	0.0
0.0 0	I	0.00
3.25	I	2.10
Oil M: t r i;;
09566.
0.44 1 0 • 4:
i . 1l 0.4/
'0 t 6-3.
.iiiiFlr? Collection arid p rcp-j rt i oi i 1 'J t
(ill d
Air Volume
I.i i* r- o i. l I A r <-> c.
A',lied rirc.-;
iei-ov> i t A re j
1 . 00 I'u
1 .00 On
1.00 On
I.00 Oo
M
Cm
Cm
I. n.
Or id in: 0521 112/n 5
I inli vi dual Ori._i Or en in i -
Number of Oi id in eiuniL. ;-
I l 1 m M.ifiru r j rot i on
0.000067 :"><( Cni
I
20000

-------
Ill RESEARCH INSTITUTE STRUCTURE ANALYSIS Ti.MA
1NLU VinilAI OBJECT HAT A f AE'LE (F-FINER. l: = F:Urlt'l.E > C=CLUSTERป h=MATRIX)
TAIiLE FREFARATION PATE! 31-AUGU2
EAhF-LE COHEi C06545-027	|SS-B "If?
fird

-
Sl^'D i
(Mic ron)

hibti (F'ic-'O!

tit r
Uu'Ftt)
Width
l.erifltli
Ratio
Ch rusoti1c
1
F
0.000
0.062
0.62
10.0
0.005
9
F
0.000
0.062
0.25
4.0
.
3
F
0.000
0.062
0.87
14.0
.
4
I'
0.062
0.250
2.19
8.7
0.0S9
j
F
0.000
0.062
0.62
10.0
.
6
F
0.000
0.062
1.31
21.0
0.010
7
F
0.000
0.062
3.75
60.0
0.030
8
I
0.000
0.062
0. 75
12.0
0.006
9
l<
0.062
0. 750
3.12
•1 . 2
.
10
F
0.000
0.062
0.62
10.0
0 . 005
11
M
5. 000
2. 500
3.12
1 .2
,
12
F
0.000
0.062
2. 30
38.0
0.019
13
P
0.062
0. 107
0.50
2.7
.
1 4
ฅ
0. 000
0.062
2.19
35.0
0.017
IS
ฅ
0.000
0.062
1 .50
24 . 0
0.012
16
ฅ
0.000
0 . 062
0.69
11.0
0.005
17
It
0.062
0 . 1 25
1 .31
10.5
0.027
1 tJ
C
0.062
0.500
1 . 25
2.5
.
19
t
0. 062
0.312
0.9-1
3.0
0.048
20
F
0.000
0.125
0.62
5.0
0.020
21
ฅ
0. 000
0.062.
0.56
9.0
0.004
'ป')
ฅ
0. 000
0.062
0.31
5.0
0.002
23
F
0.000
0 . 062
0. 25
4.0
0.002
2-1
li
0.062
0.250
2.50
10.0
0. 102
25
l<
0.062
0. 250
3.19
12.0
0. 129
2 6
F
0. 000
0.062
0.4 4
7.0
0.003
'
M
3. 137
0.625
0.91
1.5
.
2fi
F
0.000
0.062
0 . 69
11.0
0.005
29
F
0 . 000
0.O62
0.62
10.0
0.005
Mot
No

-------
81 I

<_r.
r/ =_r.
r.r
'_?•

f/

f r,




_ป




A.

4k'
r>:
U
u
U'
U
u
u
u
1:
I1
w'
•>

-

r.

6
<
c
NJ



u
r j

O
>0

NJ
CN
cr

u
r-j


1,
I;
-

-

-
r.
-
3
2*

-
r-
-
r>
3
-r
-r,
-r
3
-r=
T!

3
"p
-r:
-n
Tt
T,

c-
c. 0
c

c
c
C-
-
-
rj
c
c
c
c
c
C-
r:
O
-
O
0
c
-
O
C
O
O

!!
0/
- ^


c
\


f 0
I-
1^,
V
0
-
M
ฃ;
'0
c
c-
C-
0

rj

O
O
O
O
r.

r.
r;>
C'.
C'
*

*
ซ
•*>
ฃ•>
c-
C.'

cr
<2-
ฃซ
c
\
•z.
0
c

O
O

O
ฃป
>1
r.
C- •*
-•

ฃฆ
r,1
ฃ•'
rj

c-
c
• V
0

O


c
>^p
0
0
c
C'
O

5

O
II
c
: ;

c.
c
C-
0
C
C
c.

c



c.
C
0
O

0
C'
C;
O
C-

C'
c
l;


•
















•








1;

•—

-.
0
~—
ฃ•


r J
0
c-

l>

0

K-



0

O
0
r^,
0
0
;!
%
!N t."1
ฃป.


K

c
1 j

c->
r j


c*.
0-
e.
r J
CD
Cs
tN
0ซ
OD
!>
CN

c-
c^
1!
N
U rr
f ป
'J

tr
.'0
Sj
Cn
O
rj
C
•J
^P,
rj
r 0
t j

NJ
r-.;
lป>
f J
N.I
ro
rj
rj
u
' J
zr

Si

0
c -
-
c

ฃ

O

0
-
0

0
0
0
r-j
C-

0

0

u
O
0
c
•
li
*-

r.
_
L"
K
"0

f>
r j
IV
j ^
Cs
c:

C-J

C!
w


0
'O
f J
c-
CN
Cs
>c
r*
1;
—*



r.
^r.



^_p
n5
cr

*"*

N*





0



ro
rj
**
TT
I-
1

















ป-o





r j
cs



7?
t)
1:


Y> -•




Cป-
Lr
V
—
to
c
u
tr
Li
NJ
c

CO
NJ
Cn
Lr
0
h-
t^,
O
Lr
rป
i!
c
c
c- 0
C'

C:

C;
C
0
C
c
0
0
c
c
0
0
N.'
c
0
0
c
0
O
0
c
0
0
n
i.
3:
r.
C
O
o>
cr
o
i-j
sj
11
• O
0
0
r-
c •
O
r^;
C' •
0 •
0 •
0
c>
O •
. O
0
0 •
c *
0
0
;i



















:i
O
ฆz-
0
r-
r,-

CC

0
0
0
r-i
O
O
0
c.r
0
0
O

O
1,
"O
C
r-
O
^P,
cr

0
0
O
C
O
0
NJ
u
0
0
r
u-
0
cc
•c

rv
NJ
x.
c."
v.
1 j
u:
O
u
CO
~—
0
cr
n;
n
rr
3:
OJ
Lf>
I	"J
1	a'
1	=
!
D*
O
X • X • XX*
• - X • > - •
!
i is.
: x> 2
1 ^ 0
or p-
: T1 Z
I D O
—1


Zj


*77.
w
—<



r;
c
X

MH
rn
-n



c
m


!>
-n
r-

Z*

n
TT
O

2>
p"

-s
c


n


n
ฃ
Zl
—1
-H


NN
TZ-
1—1
—<
I>
S

—<
—<
—H
n
i>



;o
uj
x>
—<


y\
;
r


rn
n
c

•j
n


1
a
7?
CD
-n
ti
rj
11


T*
iป

NM
2

r—


r,



-<.ฆ


w




w
10

M






S


—i




n


-


rj


1!


—





cn


Z





-








->


X'


7T:


*-


X


-------
i n i
TAIU.f" IKEIAKAT IOll HATL: I 31AIK! fJ
SAfii i.(. lulu:: cot-MS 027
Si;o (nicron)	Mdttป 6~
0.625
3.4-1
ปwป
0.3-1
66
1
0.000
0 . 0 6 2
3.63
5 a. 0
0 . 029
67
1
0.000
0 • 062
0 . 6 0
11.0
c
c
60
1
0.000
0 .062
0.-14
7.0
0 . i>03
69
M
i>. 500
0 . 31 2
0. 94
3.0
.
70
1.
0 .06-
0. 25o
2.19
1). 7
,
71
1
0 . 000
<>. 042
0. 50
tt. 0
0 . iili'l
71'
1'
O . 01> -
: . 25>0
1 . Jti
i . 1
0.17'/
•"/
n
0 . ^2j
......62
1 . 50
2-1 . 0
0 . 152
'•I
I
0 . 000
•..125
I . 1 3
*.0
0 .036

1
<ป. 0 • > •'
0 • 062
0 . V4
15.0
0 . 0 0 7
' t-
1
iป . 1' IMl
0. "i> 2
3 . 0 1
61.0
0.030
>7
|;
0 . 0^2
<). 1 25
1 . 31J
11.0
0.020
/t>
1
0. ''00
(j . 0 6 2
1 . 25
20..)
0.010
77
l;
0 . 0&2
0 . 1 tJ 7
0. 8 7
-1. 7
.
liO
11
0 . i>bZ
U. 107
1.13
6 . 0
.
U1
1
(>. (n'li
0 . 062
1.31
21 .0
0.010
02
f
0 . 000
0.062
1 .00
16.0
0 . 000
11 3

(). '.10 0
0.062
1 . 00
16.0
0.000
04

0.O00
0.062
1 . 4 4
23.0
0,0)1
t>5

0. 000
0 .062
2 . '.0
32.0
0.016
1.16
1
O . 000
0.062
1.31
21 .0
0 . 0 1 0
0 7
1
0 . 000
0 .062
0 . (j 1
13.0
0.006
--	Not Mo
hole	Aibc- f ;itt X K

-------
I l l Rfc'EErtftCH U/STIUMi: s IMIi' IIIKI ,iNrtl.V:? IS IiATh
UUiH'lliUAL III: JI'C 1 li.HA I ,'ALL .( llMiK, U-nUMI'I I ,
lAl'LL" T KLI YiRh MfHJ H..TI i ;'.l Alii'.
-•.".m i l: LOi"i.:	-027


S ie
(hicror. >


Mass ( F" i c o
Oii.i
i; t r
th
Width Leiisth
lea 110
rhryjot lie
Ot!
1-
0 . 000
0. Oo J
0.9'I
15.0
0.007
09
L-
0 . 0 ci2
0.250
1 . f 1/
7.5
0,076
90
I
0 .000
0.062
J . 25
20.0
0.010
VI
It
0 . 062
1 .075
20.00
10.7
6.094
92
V
0 . 000
0 . 062
0 . 56
9.0
.
93
I
0. 000
0.062
2.30
30.0
,
94
L<
0.0c,?
0. 125
0.69
5.5
.
95
K
0 . 000
0.062
0 . 50
0.0
0.00-)
96
1
0.000
0.062
0. 62
10.0
0.005
'//
fl
0 * /I/O
0.125
1 .25
10.0
0.305

K
0 . 000
0.062
1 .56
25.0
.
9v
H
0.062
0. 1 25
0.9-1
7.5
0.019
100
F
0 .000
0.062
J. 19
51.0
0.025


Int.
a 1 fl3i5
(ficau roHi > =-
10.039


In t
_ 1 lY>ui 11

-
70.
i:--ฃ:Liit:ri:R. n--hruuix>
•am)
		 -	Hot No
Anil-hii.iole Aiubiq Aft'i; ( o11 X-h'av
0 .000
0.
30. 0.
0

-------
I IT RECEARCII INSTITUTE STRUi: fMKt ANALYSIS IiATA
iป INGLE	I I. bUrlrlARY TALLES
SAMPLE t.UME I 1.0654S-027	TABLE PREPARATION PATE I 31- AUfi fr.'
Aeroiol Ohiort Count And Cslculcteo Object hsss Cliardctcn 3t ic;,
Object
St ructure
I 1 be? r
I vpt'
C h r y r o 1111?
AIII.- h 1 bO 1 f
Other
Actus 1
Ob jl'c t
Count
I",4 .
0.
1 1 .
11U in be r
Concprii
(Hun.bor
Per Cu H)
781137.
0 .
i s v ii .
Moss
Coi ii eo .
< P l ro J r.jni
Per Cu h>
V'j'U!. 1
0 . o
Ave r d rJ f
U l d 1 h
(Micron)
0.07 •> o,
0.00 T 0,
0 . 0(i 1 O
02
00
00
ftvcr;i'3^
Lerr^i Lit
(ti 11: rnf i)
t . 1 i> I 0.9'3
0.00 I 0.00
1.16 i 0.6!:
t ive r i-ae
I er.sth
To Width
R 3 t ) o
17..(15.05
o.oo i o-oo
lt<. Si". HO. 8.
All I" l be i
6V>.
V'ปo:'i.ti.
o.o7 i o.o:.1
1 . 1 (> J o , 9 I
1. 7.:"!0 11 ฆ
K.=• ~ o 11 1 ?
Anif-h l bo 1 e
Oth.:-r
E!.
0 .
1 li.724 .
0 .
0 it 793 .
vticiv:1.3
0 . 0
0.4 5 1 o,
0.00 1 0,
0 . ? ? 1 0,
60
00
:>4
•1.37 T 6.3B
0.00	I 0.00
1.V'.'	i :>.02
9.5s 1 2.23
0.00 1 0.00
8 . i >
110.43
All fiundle
14 .
:'o:'t,i /.
0.37 1 0.4 7
3 . 3S i r, .00
9 . .
i 6.69
Cluster
Ch ry^'j '.lie
An.i h l bo I e
Ut he i
3 .
0 .
6.
•13397,
0.
86793.
;030.7
0.0
0.60 t 0,
0.00 1 0.
0.37 i O.
00
24
1.40 1 0.4V
0.00 i 0.00
i.iii i 0.4:.'
3. i;i
O.oo f
i . 29
0 . 00
(..04 f Z.91
All riM-ier
I30190.
0.4S I o.36
1.4/ f 0.41
1 3.6"
Mri
Lhi".<; otile
Am: h i ho 1 e
0 thr- r
All hat ri :
0 .
7 .
12.
72328.
0 .
101259.
1 /3St:.'-.
30944.0
0 . 0
0.14 J 0.
0.00 I (),
O.s.' I O,
Oi.
00
v. 7
0. 39 ! 0.,'.P.
1.09	I	0.33
0.00	1	0.00
I . ] 1'	I	0 . 9i",
1.10	I	0, /'3
10.00	1	e.O-
0 .' 'ฆ ('	t	o.oo
4.63	I-	4.84
6.87	I	*.65
Sample Collection c>nd P rej-s r.=! 11 on [ijt.3
G r l d I i tt t
Air Volume
Ii>; it Arej
Ar-hi.'-'J Are J
Re.>t 11 Are:
1.00 Cu	H
1.00 So	Cm
1 . 00 So	L m
1.00 i> u	l ii.
ririd in: o-.2i!j:'/i: 3
1 r i 'j i v l d u ti 1 I j r i ฆ i l J; e r 11
Nuiiibei of Hi id llri'iun
111 in h.;?:r> l1 ica 11 on
0.0000(.9 Sn Cm
I
20000
(To provide the reader with the most complete data, the computer printouts are included,
This is the best copy available; we regret the occasional undecipherable number.)

-------
z:
:i
ii
:j is
u ::
'i
LJ ii

G
o
(V
ฆvN

n
•0
ฉ
•H
o

o
ปJ*J
••h ;

ฉ -t
c
o
o

n
O

Cn
.ฆv
o
c
S3
N
ฉ
o
ฉ
o
c
CJ
Cu i
i *-*
• •
•
•
•
•
•
•
•
ซ
•
ซ
•
•
•
•
•
•
•
•
•
^ '
1 0 i
i ฉ o
• o
G •
~ o •
• * O
ฉ
• *Q
ฉ

^4
o
o
• o
ฉ
c
ฉ
o
o
o
o
ft]
X.
Ji
jC
_
-J

:>
ca

^ 1
! O
o
fS iX
o
rj
0
0
a"5
ii")
J")

N
CJ
rv
ฉ
n
ฉ
ฉ
o
—
u"3
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
il
o
T

rx o
CJ
M

Ci
a

CJ

rj
rs

n
CJ
C-J
ฉ
rs.
Cl
S3
ฉ
ฉ

;;

n
-h p-i
a
iii
<7- -D

sD
CO
j*
y*)

ฉ
rs.
cj
fv
>
s:
'jT



•n

C-l
S3
Cl
il
U
U
0 -0
r-j
ll"i
J")
rj
m
Li"5
UT
CJ
rs

•o
C,
if)
'/)

4,
-0
S3

>3
J*)
II
h-

ป—
i:
o
U 1
i V i
i ฉ
^0



C O

C-l
rj


C-J
fS
c

C-<
ฉ

rs.
CJ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
C-J
'1
3
0 ฉ s3 ซ0 rs ฉ ฉ sj CI fs CJ <3 *0 *0 >0 ^0 C ฉ	ฉ	*s *0	O ฉ	O O	O	ฉ *Q
O -"5 ฉ ฉ Cj ฉ ฉ ฉ -* CD s3 O ฉ ฉ ฉ ^ O ฉ	ฉ	3 ฉ	/; ฉ	ฉ ฉ	ฉ	ฉ ฉ
;ฉฉ-*ฉฉฉ-*ป-ฉฉฉฉฉ-* ฉ ฉ	ฉ	ฉ	CI ฉ	ฉ ฉ	C	ฉ O
: u - r l l i ; r c - 'J j j : j i	c u	c - i	. u
H M -o T n >0 N CO > O H ซ T 'gT N 5 > c H f |	-o r-- c: .>
^ ^ h h ** h oj ri m *i *; ri r; M Cj
1 22

-------
ZZ I



















o






J*
•L*


u
u
u
u
M
UJ
u

U

J;


Lp.
-
w
rj
N-

*c
CT'
SJ
CK
cr,
xป
u
rj

ฉ
L.



















u:
V



*

TT
T";
T"
tป.
r*i
*
""I

Tl
T-

TT-


V


















-5
il


ฃ,
C-
~-
ฆz,

ฃ•

o

ฃ;
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
-



















a

—
—
r"-

•~'l

C;

ฃ>
ฉ
ฉ
ฉ

ฉ
ฉ

ฉ

T
::
1
Z1
c
ฉ


ฃป.


c*-
O
ฉ
ฉ
ฉ
0-
ฉ
0*
js
<ฆป



ฉ
ฉ
-
1J
• J
c
fO
r J
ฉ
ฉ
ฉ
ฉ
rj
ฉ
rj
fO

n
1
Z.
c-
r
ฉ
r^,
.-

ฉ
*
c
ฉ
ฉ
ฃ,
ฉ

ฉ






















i"

2

ฉ
o
f...

ฉ

<;

ฉ
ฉ
ฉ
+*ฆ
ฉ


LX
il
c
rJJ
Cs
Cs
c*-
Nป
rv

w
W
r>
CK
CN
c-
fC
Cs

1 J

j;
c
s
?-
fj
rj
'•J
(/.
fO
SJ


rj
r-j
ro
f.
K
rj
cr
y
il


















n
II


















ft
il


N—
•—
•—
~—
W

rj
f J
o
ฉ
ฉ
ฉ
ฉ
U
N*
ป-
?



ป '
•
•
•
•
.
.
-
•
.
•
•
•
•
•
•
ia



c-r
; ^
-•v
X
•—
w
ฉ
—

C5


CS

(.n

pป


r.

r.r
r.r


—
ฉ

CD
l>
f.M
**

ro
SJ
C.J

ฉ
^r,
ฉ
LH
NC
c+





















!i

ฉ

ฉ
ฉ
ฉ
ฉ

u
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
Sj
e
ฉ ฉ ฉ ฉ ฉ
ป- ~
'.J c — w ฉ
ฉ	ฉ ฉ	ฉ •
ฉ	ฉ ฉ	ฉ
ฉ	ฉ ฉ	ฉ
W	0* S.
ฉ
ฉ
I =
I T
I 3"
X X X X
! 0
i n
! ?
5-
ia

fn





r

h-:

S;
Jl !JJ!

—H

•*?
:: f"
ป—i


r~
i; n
C





r~


si Tป
T1



ii t?

n

o
(i n
1-
J.


i;



r
:; 2>



••
T*

•~


.; r>
I*



1' ^

t-*
t;
ฉ
;, nm

2;
rt'

!! w

tr.

Lp-
'! ZZ
H
M

X*
II

NM

W
II *Z
—
—{
*ปฆ

ฆ1 ฉ
•T-.
~
r>
o
:i -<
-H

—
IJ
ii rr
ฉ
m
C
s:
;; ••



3>
II

13
w

II U
ฉ



II •-
r~



11 '




II ฉ

n


II '~~




ii a




ii i

*


il Zj
-n
,t;


!! tj
r



!(

Z>



—:
z



17-
ฉ


II
n
"™"


>1

-<




wr
2

ii

ฆ—
Oj

ii

LH
U1

n


ITi

:i






ฉ
a.


2.

"7



ฉ
M-


I-

n




c


-•

lฃ.




—


n

3-
2
I ฉ Z
! ai o
I ZT r~
X

-------
TIT RESPARC 11 INSTITUTE STRUCTURE ANALYSTS HATA
SINGLE SAMPLE r.UHMARY takers
samtฆ•i.r: row:: coasis -o2?a	taw e preparatiun hate: 31-AIJG-02
Aerosol Object Count And Calculated Object hssti Characteriiitic?,




Numbe1
nsss






Ave r 6 at?



Actua1
C.'onr en.
C 0 ri c 0 n .
Ave re;
3e
Ave ra


l.fnrl t h


Object

ObjecI
(Number
(P1 co.'i ram
W1 d t h

Lenrith

To IJidth

Structure
Typo Courit
Per Cu H)
l\'r I'u M>
(riirron)
(Micron)
R i> t 10


F 1 be r

C h r v r.01 i 1 e
1 7 .
2 4S914 .
2617.8
0.07
1
0 . 02
1 . 02.
i
0.4 9
16.00
1
7 • S "


AuiF-fi 1 bo 1 e
0.
0.
0.0
0.00
1
0 . 00
0 . 00
1
0.00
0 . 0 0
1
O.O:


Ot fit' 1
- •
20931.

0 .06
1
0.00
I . 70
1
1 .'ฆ'0
2ti. SO
uo. 4.


All Fiber
1 9 .
274045.

0.07
1
0.01
1.13
i.
0. ..',9
17.32
)10.85
I'Umd 1 e

Chrvsotlie
3 .
4 3397 .
3 21 3 7 . 7
0.C3
1
0. '18
4.17
i
4.02
4 . 56
1
2.21


A n. ^ h 1 b 01 e
0 .
0 .
0.0
0.00
J:
0. 00
0.00
1
0.00
0 . 00
t
0.00


01 lifป r
6 .
;i6793.

0 . 2 4
1
0. 1 3
1 . IA
1
0. 5 1
7 . 0 1
1
3.H


All Tiunrlle
9 .
130190.

0 . 44
t
0 . 40
ฐ • 1 /
1
2 . 46
6 . 1 9
i
2 . 98
Cluster

L'hrysot 1 1 e
7 .
lei .259 .
1 0981V. 1
1.12
1
I . 25
3 . 39
1
3 . 1 0
tr cr
t:
0 . 46


Anif-h 1 bo 1 c-
0 .
0 .
0 . 0
0 . 00
J
0. no
O.00
1
0 . 00
0 .00
1
O.OO


111 h e r
'!>
2BV31.

1 . 09
1
0 . 22
1 . ft
1
0 . 4 4
l . "V
1
• 77


A 1 1 C lufli'r
9.
1 ;-;o 1 90 .

1 . 1 1
1
t . Of
3 . 06
1
2.77
s. 49
t
7 . 58
ill i i ::

Ci 1 r vio 'lie
7
'1339 '.
•1 j 1 56 • 4
0.19
1
0.1/
1 . 56
)
0.31
IS. 26
I
3.55


Anif*h 1 bo11?
0.
0 .
0. ฆ:>
0.00
1
0 . 00
0. 00
*
0 . Ou
0.00
t
.... 00


(It fit: r
Ll ,
3 t:,

0 . V 1
1
0 . 4 1

i
2 . 6 3
3. SL!
I
2 49


All h ? tr 1 :

11 .

0 • SI*
1
O . 4 2
:ฆ. 1
1
2 . 06
' • 97
ฑ
9.62
: j fc m r- I e
I n 1 lr.T lion "ฆ r.•j Proi
-r,:ป
lC'fl
h r 1 d Iic>l ;;









A11 '.'ol
urn iป
1 . I'u
fl

ijrid in: 0'
•2 I f:2/r
3






lie:- 0 1 t
Ar
• ฆ : 1.00 0
t_ n<

[ 1j v 1 d. 1 a 1
f. r 1 d d
1
r 1111.;
0.000c
6" r.„
1" in



1 j
i .00
: 11.

'Jumbo r n 1' i
• 1 1.1 LI:
pi
1 r 1 •, •
j






1 t
>'1 :ฆ 1.00 Sii
1 m

l :lr.i r1.-~ si. 1
ij; t x 1 > r 1

2 0 0 (• 0




(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
SZ I
r.
2>
;|
• j
j
r j

r j





















r c.

2
v
f—;
T
—i





























T
1.
F


:i


























c

r~
1,
rr
C
T1

i 0

r j
; j
10
r J to
ro
ro

*->
h*
ft

N*

i—ป
Nป









n*

n
I,

h-ป
r-

cc
N.



Ui ro

ฉ
<
c
NJ
o
cf
A.
u
IO ^
ฉ
O
w
n:
Cs
cn

UI
to




i:

r—ฆ
y;
:i




























n
i;
??
c
n



























r/;





2>
;;
3*
*

*
r.

*

-r
t;
r.
^1
*
T
3:
3 T
T\


V
-n
••
r.
3T


e*-


II
-n
f-

;i


























-3

rn

2>


i




























••
;i

c
~
!i
c
o
ฉ
ฉ

^ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ

ฉ
|
CO

II

w

I'


























rc


1'





ฉ
ฉ
ฉ
ฉ
ro C
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฃ
Cs
tr ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
•n
r.1

i!
l—<
r
2:
::
-rl

ฉ
ฉ

cr ฉ
ฉ
ฉ
ฉ
ฉ
C*
ฉ
ฉ
ฉ
r j
ฉ ฉ
ฉ
C>'
ฉ
(>
ฉ
Cs
CS
u

ฉ
rป- ;
T
ฃฆป
• i
w
r
w

r-,
ฉ
ฉ
ฉ
ro
ฉ ฉ
ฉ
ฉ

ฉ
ro
ฉ
ฉ
o
Lr
ฉ ฉ
ฉ
ro
ฉ rj
ฉ
IO
to
N.
u
ฉ
rr i


II
s
•ป>'

;;


























;
y-N.
a*
II



l!
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ


ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
C 1
3:
cr
|i
tr
c"
—ป
;;
•

•
ป
•
• .
•
•
•
•
•
.
•
•
•
• ซ
•
•
•
•
•
•
•
•
•
ซ
h* j
*+
i
il
3>
xป
c
::
o
~—
ฉ
ฉ
•c
u ฉ
ฉ

ฉ
ฉ
ป—
ฉ
ฉ
ฉ

ฉ ฉ
ฉ


ro
ฉ

ฉ
ฉ
ฉ
ฉ
o. :

ฉ
II
—H

—1
li
Cs
rj

CS

ป-> CS
Cs
ฃ
Cs
Cs
ro
Cs
Cs

ro
cs o-
Cs
ro
CS
Lp.
Cs
ro
CS
Cs
cs
c*
!
—
rj
II
rt
3>
H
11
f j
s."
ro
ro
NJ
rj ro
ro
ro
ro
ro
U
ro
ro
ro
Ln
ro ro
ro
V
10
ฉ
ro
u
ro
ro
ro
f J
rr 1
0
CD
i;



II


























:
r*.

1!

-(
cr:
:i


























r :


Ii


—.
ii


























t i


1-



:i
ฉ
ฉ
ฉ
ฉ

0
0
ฉ
i-t
ฉ

h-
h-
ฉ
ฉ
ป-ป
ฉ
ฉ
ฉ

ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
n ;


;;
i
r-
c
i:
•

.
•
•
• •
ซ
•
•
•
•
.

•
.
• ป
•
•
•
.
•
•
•
•
•
•
is. !


l!
3>
rt
n
ii
N.
O


to
sC

rj
CS
c
ro


u
rj
cn u
NJ
Lr
ro
NJ
c
y,
tn
cs
o
u
!*ฆ



C


;i

fw
ฉ

u\
^ 	s
I	ifl	0
I	O"	P*
I	ft
2
o
II
II

-------
5
s
ป 11
• ซ
li 1
C.^
"2>


•o
.V
m
^3

a



m
r:
11
S3

c
CN

Lป !
— |
i r n
*T
>

o
NO
o
O
c

T

>
C i
H
o
o
o


o
o
ฉ
f J
a
_ i!
•-*

ฉ
o
o
o
o
0
o
r-4
U"J
>0

U"5
b"j

T
rs

S3
•>0
S3
C3
>
rv
r*3

o
U"3

M
rv
J")
ปv.



m



•-

r-j













Cl

-H



S3


rs
jT
>3
rv


-'j
Ci
uT

ro

u*)
\i1
ro

•r


L")
s3
0^

T
ri

ij~
ri
•s
C3
rv
*1
n
Cu
>
•n
S3
rj
T
-0
c'.
rv
rv



'-3
^•3
,\

s:


o

r:

ฆ*r
jT

rs
o
0^-
o

rj
K)
*T

s3
fV
03

o


J.-J

-------
LZ I
w u u w u u u u u u u u
i; - o ^ :
, -,j 1> !)
: o o e
> f> Cs 0 0- > CK Lr 
ฉ


r->

ฉ
ฉ

c
ฉ
ฉ
ฃs
ฉ
W4


^.
<•>
c*-
C
L'-

o
o
o

c>
c
c-

W o
ฉ
ฉ

ฉ
c
ฉ
ฉ
to
ฉ
G

c
: J
* ^
!v

rj
o
o
o
o
IJ
fj
o
ro
ฉ
ฉ
ฉ
ฉ
-2>
ฉ
ฉ
ฉ
ฉ
c
ฉ
ฉ
ฉ
C
ฆป•
c-

c
o

o
o
o
o
ฉ
o
o

ฉ
o


C.

o
ฉ
*-ฆ
l^;
ro

"-

H-

L-;
cป;


o
c
r^.
o
to
jk
ฉ
rs.
cป.
o
0-
c-
1r.
c*
ฃr-
L*ป
i>
Cn

•V
'~-
: ฆป
• J
CO

N-
rJ*
LT
Ct


Cr<
Lp
w

f 0

f-
r„-
I-J
r j

1J
'0
. -

ฉ
ro
' '
LI


f J
rj
f-J

•J
rj
rj
r j
o
NJ
IJ
Lp
-
c
ฆz.

o
0,
1^1
ฉ
_
o
c*ซ
ฉ





o
ฃ;
m-
o
c
K
o
o
ro
ฉ
10
r.
%


<

s.
•J
0^
o
ฉ
r..!

N

_


0*

>c
CS
0-
u
NJ
I*.


"C

N.



L'
cr
u
JO


•*


u
X-
,,J
rj
r.r
x.
NC
Ul

L^
o
ro
U
10







ปs>












_






NJ
r

(.J
L^i
•-
[0

ฃ
p
**
\J\
LI

r.r


r j
O
LI
LI

rj
LI
w
Lp-
ฉ

ฉ
ฉ
c
C
O
V
c>
o
ฉ
ฉ
ฉ
ฉ
ฉ
o
o

"o
,0
o
O
o
o

O
o
O

ro
ฉ •
ฉ'
ฉ
ฉ • •
• ฉ
ฉ'
ฉ •
• c
•
ฉฆ
ฉฆ ฉ
ฉ
0
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ

L.
c-
V

ฉ ฉ
ฉ

ฉ

—
r-

ฉ

ฉ
ro
ro
r j
0
ฉ
Lp-
ฉ
ฉ
10
w
N.1
Cs
nJ

Lr
ro
Ln
ฉ
w
*0 L"

\
LH
**
•- ฉ
V- ฉ
o• tn
ฉ
in
; o
ฆ . T
0.
Dr
1 Cu
! rป
! o

L"ป
ii
—j
*-
—<

I>
i.
Zs
2


2!
1,
ป7ป




1'
r*
HH


r
1'
n
c


n:
I

NN
n


j,

c
cn

r.
II
3T-

r;

o

H
>




*
*


n
II
3>

n

••
1!
??

*•"
in

II




n
II
w
'_
~—i
r j
ฉ
i:

rn
2;
0
ฃs

C

tc

Lp


-H
—•
<*.
X.



•-N

yi

~
o
-H

i

2>
2>

r>
ฉ
ii
—H
W
•H

ro

T*.
3>
n
0

n
• •


n



—i

•ป•


U
3>
-i



n-
T7

ซ n i s
i t* i
C I
n- I	T
M- | N-
•- : r,
13 ! 0
> l?.
i —
y i
• X •

-------
m Ki! Fnfa ii iNSi i riiiE srkiic.umr ,\iim vr-is r>ai,i
I Ml' IV 11 ฆ IJ AI. ru.jfll Ii.-.Th Ir: I ( * I ~F I HCI:, t: - {:(.!ฆ JIH t ป C-C.'l.UST ป-Kป (I fiOTk 1 X ฆ
Trtti-t f:'f:L('Ai\ViTiOil hatf:
sample com: s roAf.t") 11- Ar.ihi.l <\ _l.u; f :i t t X (•:
•1
i
r
0 . 000
0 . 062
0. 37
6.0
0.003
f
97
t;
0, 0,11'
0 , 1 U 7
0 , SO
2.7
0 . 01S
S
9 is
t
0 . OoO
0 . 062
0 . 07
14.0
0 . 007
S
vv
i-
0 . 000
(. .062
0 .1
5 . 0
0 .002
5
1 00
n
o. o,
0 .10 7
3.63
19.3
0.11 0

101
c
0 .
•>.425
i. t; >
3 . 0

L'
i 02
I'
0 . 06 J
0 . 7SO
1 . 25
1 . 7

S
1 03
c
0. 06 2
0.937
1 . 56
1 . 7

s
1 0-1
i:
0 . 062
0.312
0 , 6 2
2 . 0


1 OS
I
0 . OOO
0 .062
0. t; 1
13.0


106
i
0 . 000
0 . 062
0.62
10.0
0.005
j
107
i
0 . 000
0.062
1.31
21.0
0.010
s
1 Oil
r
0. 000
0 . 062
2. SO
40.0
0. 020
s
109
i>
o.o a:.'
0.250
2 . 3 1
9 . 3
0.09 4
t_,
1 10
i
0 . O00
O.OA2
0 . 94
15.0
0 . 00 7
S
111
i"
0.0 c'.."!
0 . 1 2S
1 . 2S
10.0
.
S
11 :>
r
0 . 000
0 . 062
0. 3 1
S . 0
0 . (>0 2

1 1.5
i
0 . 00''
0 . 062
2 . t:ti
•16.0 /
0 . 02 3
.i
11 1
i
0.000
0 . 062
0 . So
ฃ!. 0
0 . 004

1 IS
i
0.000
O . 062
0 . So
v. o
.

-------
iff RESEARCH 1MST I TIITK STRUCTURE ANAl iT.IS IU'iIh
I Nil 1U1 I'UAl. lit JEiC T L"AT A TAME i E-l- I lit I* f U-=liUilfU.ฃ > i.-I l.USI ER , M-MATKIX)
TAUi.E I'RL CARAT ION HATE! 31 AUG li'J
SAHF'LC COliE: C0654S-028
Siizc (hici on)	Msbfi ( I'icoaram )
'Crd 	 			 -ฆ 					Not No
tip- r i OhJ St r 1'ieplh Width I erisltii	Ratio I'.iirwsoti le Anif-lnbo) o	Atht-ia At be F'st t XI.'
5 116 M 2.500 0.125	0.94 7.5	.	. X
5 117 i: 0,062 0.250	1.25 5.0	0.051
Total Mass	< F'i eoa ran.) -	3.605	0.026
Total fount	-	04.	2. 20. 0. 3.
to
<ฃ>

-------
I IT Fv'CSF AK'LI I INSTITUTE STRUC TUFf ANAl i'•: I S HAT,',
SINGLE SAMPLE SUHhARV TAEU.P5
SAMPLE COKE .* C06S45--02B	TAW E PREPARATION HATE ! 31-AHG-02
Aerosol OhJect Count Arid Calculated flbjuc t	CharsctiM-i ot ic-b
Ofr.iec t
!>' t rue t.11 re
( it>e r
T ;ipp
Ch i's h o t 1 1 p
AniPi 11 iu> 1 c-
Olll-.M
All
Ac t i.i? 1
ObJert
Count
5 V .
9 .
70.
Number	Mat-:.
( oncer,.	Coneen.
(Number	(Ficoari'ni
per Cu H>	Per i.'u M)
1 ;C('-;7P.
6 0 6 7 .
2 ,/3o:.'.
ii'ฆ).
i ?'/o. 2
/a.-:,
Ave r;- 3e
Width
( M ) c rori)
0.0/ J 0
0.09 1 0
0.Qo ] 0
.01'
,0-1
, oo
Ave r
l.CM'ifit
< M l c v
1 . 00
0 . -1
0 . S6
Eie
h
ฆor i)
i o. f>:?
) 0.22
t i
0.07 1 0.0.?
0 . 9.5 1 0.61
Ave i"o
Len '.tli
To U i ,:i I h
Kvt i .>
i;.. 21 HO. 3?
1. .no t o , 1 0.
0.00 1 0.
0.3 4 1 0.
11
00
0.29 1 0.1.
o. 3 i o
o.oo i o
0. 4 1 I 0
00
31
2 . '<3
0 . 00
1.3-1
1.61
0 . 00
0 . 90
2. Of 1 1.4 7
I . 1 1
0 . 00
0.9''
1 0 . '12
J 0 . 00
I O . 4 9
0.37 l 0.21"!
1.0 4 1 0.1 "J
10.13	t	4.6"
0.00	f	o.oo
3.vy	|	l.(i
7.82	I	4.7"
'1 • 4	t	2 . 88
0.00	1	0.0
4.oo	i	3.:-
4.26	1	2.91
M ฃ' t r l:
C h r motile
Aiiu h l i >o 1 c-
Othe r
6 .
0.
6 .
1C201.
0 .
It; 201 .
3 fv 2 3 , |!
0.0
O. I 1 10,
o.oo j o,
0 . I 2 1 0 ,
10
00
1	0
1 . OS
0 . 00
0 . fJ 9
1 0.31
1 0 . 00
; o. ;>r.
12.92 + 7.31
0.00 1 Q.QO
9.2^ ^ 4.12
All M-Jtn
12.
3 /> 4 0 2 .
0.12 1- 0 . 0C>
0.97 I 0.2'H
11.08 1 5.9
Sr.iiiF-le Collection
Air Volume	-
liepocit A red
A?hed A r fit
Iv'erlof ci'j 1 t A 1 ed
3rirj preF ri ration lif-ta
C<
1 .00
1 . 00
1 .00
1 .00
CI
a
ho
M
In,
In,
C n:
Grid Li 31 a
Gn.l in: PS21 02-'C -4
1 r.ri 1 v) ..(us 1 Gri,j Or en 11,:l -
Number of Grid Of-*.- r,i 1, -;s
r 1 ) n: :ii, 1 r j t 101,	-
O . OOOOc,/. !!>>ฆป Cm
20000
(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
APPENDIX C
TEM DATA - MATERIAL/OPERATION EXPERIMENTS
I!
z
cn
3
0 '/i
2: ซx
• X • - X * X



•1

0
1 U
>0
c

a
r*i


C-j

S3
*7
sD

•
c:

II

UJ



u
1 ป*t
0
0

0
0


O

O
O
O

O
O

0


,V.

r j

CJ

0
0
ซr

il



II

•n
!
0
c

0
O


O

c
O
O

O
O

c
0



O

0

0
0
C

:i



1!

Cm
1
•
•

•
•


ซ

•
•
•

•
•

•
•

•

•

.

•
ซ
•

:i
r—
2

')

>-ป•
! 0
0
0
•
0
O
•
•
O
•
0
C
O
•
O
c
•
0
0
.
O

c
•
0
•
0
c
O
•
11

3

l[


1 tfl





























11
c
ii

1

01
1 ?





























11
:i



II

1/1
M





























c/j
ci

II

Q
i .c





























il



II
CO
Z,
1 f-i





























11
V.'
>-
X

II
H
0
O
>0
rs
CJ
n
>
c ฆ
•0
Cw
0

ii
0

Cl
O
CJ


\
:/)


m

ro

0
ro

C5
j;


UJ
'i


1
rs.
0
C-J
O
rj

ro

X
r\
J"
CO
•0
in
•0
fx
>0
rซi
CJ
CJ
T
IV
ซr

,*v
0
ซ-ป
ro
ro
j!
u
Ui
cn
;;


1 TJ1
~
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
.
•
•

.
ฆ
•
•
•
-
•
•
11

-J

II


I U
O
v-l



O
O
O
0
0
0
0
0
0
0
0
0
<2.


O
Q
O

O




11
*ฃ


Ii


: Cj





























II
h-


Cl
9


r ;

0
ฆz>
0
CJ
i/i
u
O
II
<0
0i
1 V
0
0
SD
O
>0


0
<1
O
0
0
c
0
0
•0
c
O
0
•ซ'j

O

0
c
0
0
O
0
• 1

UJ
CH
il
0
rj
1 0.
0
0
O
c
0
O
C
c
0
O
0
0
0
0
0
O
0
O
ฆ0
O
0
—
ii*

0
0
0
0
c
ii


h-
;i
CJ
ฆM
1 it
•
•
ซ
•
•
•
ซ
•
•
•
•
•
•
•
•
•
•
•
ป
.
ซ
•
.
•
.
•
•
•
.
;

•X
3
\
iX
>
;•
U
N*

11
u

.G













vH


fH



C-i
C j
CJ
C;
Ci
c •
c.
CJ
Ci
•;

O
UJ
11
-)

c





























.1

k-H
-J
;i

































_


11
c































1;
—1


:i


r 'z ฑ





























•:i
•—
—
*—
!|

































1 31

-------
iit reseakcii institute srivur tiikl: hHai.v-is hata
i/jfiiviruiAi. oujircr haia tahie  L'-i i:-ci ujh.ic, tt=tiAif
TABLE fKL:rYi(
UL>j Sir lu;Mh Mirllh Lenath I;btio Chrซ-iotile Ainrfiii->c>lc- Aiiii>i-3 A = l>e Pit! X
30
M
0.312
0.062
0 . 75
12.0
0.030
,
151
M
5 . 625
0. 125
1 . 25
10.0
. ,

32
M
3 • 750
0.312
1 . 56
5.0
. ,

33
i:
0.062
4 . 375
0. 75
2.0
6.221

34
M
0. 625
0.062
2.25
36 . 0
0.229

3b
rt
6. 108
0.625
1 .ฃ17
3.0
10.053

36
i:
0.061'
0.937
2 .50
2.7
, ,

3 7
r
0.000
0.062
1 .31
21 .0
0.010

38
(
0.000
0.062
0.62
10.0
0.005

39
ป
0.000
0 . 062
2.06
33.0
0.01 6

40
f
0. 000
0.062
0.75
12.0
0.006

11
f
0.062
0 . 625
6.07
11.0
0.690

4 2
K
0 .000
0 . 062
0.56
9.0
0.001

4 3
11
i
0.062
0 . >5
1 2 . 0
0 . 229

-1')
1
0. 000
0.062
0.37
6.0
0.003

'1 'i
l<
0.062
u . 1 25
0.62
5 . 0
, ,
X
4 6
r
0 .000
0 .062
0 . SO
0.0
, ,
X
4 7
H
0 . 06 2
0 . 1 25
0.1(1
6 .5
0.017
,
411
i:
0 . 0. 2
0 . 500
0. 75
1 . 5
, ,
X
4 V
t
0.062
0 . 625
4.69
. 5
, ,
X
50
n
0.0.-2
0 . 1117
0.75
4.0
, ,
x
:.)
t
0. 000
0.062
0.3/
6.0
, ,
,
j J
i
0.000
0. 1 25
2 . 30
1V.0
0.0'6
,
S3
i
O . 000
0 .062
0 . 56
9.0
0,00-1
,
:.i
r
0. OOO
0.062
1 , 25
20. <1
, ,

1_# t>
c
o.o, 2
0. 750
1 .56
2. 1
, ,
X
56
i:
0 . 06 2
0.625
1 .56
2 .5
, ,
X
5/
c
0.062
0.625
1 . 07
3.0
0.190
,
58
c
0. 062
0.312
0. 74
3.0
0.
,

-------
I rr f>f. sEt'iKcii iNsmim; 'jikuliuki. anal y,v. i si oai a
1 f/P IV! 1UIAI- CUUICT IViTrt VAI:L( 
SAMH.K coin: S C0654S-031
ij iri
OJ
OJ


ฃ>i ;-e
(Hit rori)

M 3 b 5 (F'lCO

S t r
f'ฃM-th
l/idth
1- tr r 1 ti t ft
Ratio
CI l l'ut 1 1 li
59
rt
0.3/5
0.0.•'.2
o. 75
12.0
.
6 0
I
0.000
0 .062
0. 56
V.O
0.00 4
61
h
0.000
0.062
1 .00
16.0
0 . oou
62
Li
0. OA2
0. 187
1 .6."}
8.7
,
63
tr
0.000
0.062
1 . 00
16.0
0.000
64
1
0 .000
0.062
0 . 75
12.0
,
6b
1
0. 000
0.062
1 . 06
17.0
0. 008
66
h
0.000
0.062
1 .69
27.0
0.013
67
f
0.000
0.062
0 . V ฆ)
15.0
0.007
Ail
1
0. 000
0 .062
1 . 3 1
21.0
0 . 0 I 0

f
0 . 000
0.062
0.62
10.0
0.005
70
t
0 . 000
0 . 125
0.4-1
3.5
0.01 4
71
K
0.000
0.06 2
0. 62
10 .0
0 .005
/:ฆ:
1
0 . 000
,, ct. o
1 .63
2 6,0
0.013
v;i
C
0 . 02
. 625
2. I 9
3.5
.
74
F
0 . 000
0 . 062
2. '>0
10.0
0.020
y.,
1
O . 000
0 . 062
0 . v .1
15.0
.
76
1
0. 000
0 .062
0. 37
6 . 0
,
77
fl
0 . 6-ft>
0.062
j.56
25 .0
.
7tl
1
0.000
0 .062
0. 75
1 2 .0
0.006
79
c
0 . 062
0 . o25
1.13
1 . t)
0.114
00
f
0. 000
0 .062
0 . U 1
13.0
0.006
ill
i
0 .000
0.062
1 . 2i>
20.0
0 .010
n;.'
f
0 .000
0 . 062
0 . 75
12.0
0,006
ฃ>3
c:
o. Of.;.1
o. 12:.
0.62
5.0
,
U
n
0 . 062
0 . 6 2-J
10. 00
16.0
1.01 6
85
(i
1.11/'J
0 . 3 1 2
1 . 25
4 .0
1 . 904
\J6
i
0 . 000
0 .062
1 .87
J 0.0
0.015
11/
i
0.000
0.062
1 . VI
31.0
0.015
rtniF h l L>i • 1 o Aiiib l:
Not rlo
Asbe r 6 It X-Kvu

-------
I l l Kfc'iiCARfH INS l l Tllff ฃ> TfcDC IllK'f AOmL YSIS Mm IY,
I NIU y I IilJAI. (It' ll l I tiซfrt I Hl'l I. W^KiCtKs |;=-lilimil.l F i11- f\ > rl-MA I KI X )
lAl'lL 1 kC( ARA) KIN MATE: 01 SLC H2
JJANH fc LOHf;! C06545031
(i id
Of-


j:: t;
( Ml c rc)fl)


Mats
(ficoaijii)

UIm
ฃ>t r
lief-- til
Width 1.
t:-ri3 th
Ksliu
I in "j
nCjtili? I'liiii hi l_>o 11>
A rub l ;i
m
f
0 . 000
0 .062
1 .63
26 . O

o '
c
u
1

a 9
i'
0 . 062
0.625
1 .11/
3.0

, .
V
70
r
0. 06 2
0. 625
1 .25
2.0

.
X
91
H
0.062
1 .075
'1 .06
--> o

. .
X
92
1<
0.062
0. 125
1 ,B7
15.0

0.03 ฃ5
.
93
li
0.062
0.625
1 .1)7
3.0

0.190
,
'/ 4
M
0 . 750
0. 125
1.13
y .o

0.274
.
95
t
0 .000
•'•.062
0.91
15.0

0.00 7
,
96
("
0 . 000
0 . 062
0.31
5.0

0.002
.
9/
1-
0 . ' 'o2
0.312
0.62
2.0

0.032
,
90
1
0 . 000
0 .062
0 . 62
1 0. 0

0.005
,
99
I
 >0
0 .062
1 .56
25 . 0

0.01 2
.
100
F
0 . 000
O.062
1 . 75
.:tป. o

.
X
I0 1
1
0 .000
0 . 062
3 . -1 1
55. 0

.
.
102
h
0 . 500
0 . 062
0.62
1 0 . 0

0.051
,
10.'.
h
o.
o . 062
3 . fit)
62. 0

0.394
.
101
I'i
0.06?
0 . 1 25
i. i :<
9.0

, ,
*
1 05
r
0 . O0O
0 .062
0.'/•)
15.0

0.007 ,
,
106
I"
0 . ooc.
'..06 2
0 . 50
B . 0

0.00 4 .

10 7
r
0 . 000
(•.062
0 . 75
12. 0

, ,
.
10U
1
(>. oon
'ฆป. o6 2
0. 37
6 . V

0.003 .
.
1 09
f
0 . 000
0 .06 2
0. 75
12.0

0.006 .

1 10
M
0.21
O , 06 2
0.50
8 .0

. .
X
1 1 1
1'
0 . 000
0.062
' > I- t
•I 1 . 0

0.020
.
1 1 2
1'
0.O62
1 . 250
1 0 . 00
a. o

2.031
,
1 J 3
r
0 .000
0. 062
0 . 6 2
10.0

0.005
.
No I
Ho
lot.ol Mst'j (f'lcoarsni)2	33.752	0.000
Inlsl i:iปuiit	-	74.	0.	32. 0.

-------
1JT RESEARCH INSTITUTE STRUG 71 "F\L" ANALYSIS PATA
'3) NGLE SAMPLE SUhMAFv'Y I AKLI- S
SAMPLE tOl'E: C065 1S--031	TriHLF PRLFAPAT 1 ON HATE: 01 -SEP-IC.'
Aerosol Ofrjpct Count
And ('alcul
;tt?d Oi'J(?ct
Hasi Characteristics









Numb"r
Mats





Av.' i




Ac t i.l 3 1
Concen .
Co men.
Avers
se
Ave r.
f.t
>
I. t'li'i t h


Object

Object
(M'Jiiibe r
( P l coil rani
Width

I.enD Hi

To IJ i d t h

Structure
r j f • t?
Count
Per f'u M)
Per in h>
(riic ron>
(Hiri
• i
,)
Rfi t i o


F l lie r
Chrys'j tile
S 1 .
7o?J3v.
/-13 4. 0
0.0/
1 0 . 0 1
1 . 00
J
0 . S 7
1 '3 . 37
i
8 . 70

A ni r- h i hf I e
0 .
0 .
0,0
U.00
1: 0.00
0 . 00
J
0.00
0 . 00
1
0.00

01 h i? i
13 .
19 lOOt!.

0.0/
I 0 . 01'
1 . 0 1
1
('. ฃ.13
l'.f .85
I13.58

All Fiber
„'> -1 .
7 4 01'.'17 .

0.0/'
1 0.0..'
1 . 00
1
0 , i- 3
15.47
r
? • 74
liijii'.i 1 e
C'h r ysot i 1 e

lO.'.'iSf.O .
4163^.9
0 . 46
1 0 . 1 _•

1:
0 . 22
CI. 79
1
5 . 05

AniF-h i ric> 1 e
0 .
0 .
0.0
0 ,00
1 n . 00
0 .00
1
0. 00
0 . 00
i
0 . 01)

111 i i -> i
(!• •
Ii81 r.: ' .

0. 4 7
1 o..^'
i

i .
'..31
1
? . 9

All li'jri'.i 1 c
1 3 .
1  .
t'i. 40

12.60

Am: 111 ) p
0 .

0. 0
0 . 0>'<
i o.
. 00
1
' • . V •
. oO
1
0 .00

Utii,M
1-1 .
::o';./oj .

o. v.o
i , ~ :
1 .1 • 4
J
1 . 0"
3 • 58
'
;. 70

All I'm-le
r 1 .
<0:!'.'. 1 .

0. ซ;'.H
1 < i . i:
' . ' V-
1
> V
. 1 8
1
7 . 60
rl11 l :
"i"i i".' - •" t l 1 "•
>> ,
I.
-! c>.
0 . J ;•
1 o.i •
1 . '1 >
1
1 .
1 7 . 78
1
19 15

Am: 'iit'Ol ฆ'
0 .
(•.
•:>. o
(.>. 00
1 0.00
. ('0
1
0 . Ou
0 . 00
i
0 • 00

Hi ll." |

isSU.C;.

o. j :
i . i 0
1 . 0 1

o. i
10 . 38
ฆ
-> . 72

A1 I h -: 1 r i •
IS.


0. 1 v.
1 lo
1 .
1
11. s;v
1-1.90
115.6^,
•> in
1 tf Co) It'll ion ofid Ftof f-r t. i i
t Arf>s
A^lu.-ri i*irp-:
r'r'i.'f o'.-i t Aro
. < > 0	C ป_i H
. 00	( iii
.'>0	Su	i.'iii
. o o	: > o	(: hi
G r ] rt Mt ?
in 1..I in: o'J2io? Mi-
I rivi l v i ciijcj 1 Grid Ur-i 111 iri
NiiwbtT of Grid l.lpci 11 r.-'c:
I' ' 1 m n = •:; i a l' i cx lion
0 . 0 0 0 0 o t> a f ni
1
20000
(To provide the reader with the most complete data, the computer printouts are included.
This is the best copy available; we regret the occasional undecipherable number.)

-------
u r Ki.iit hKch xMiiTi ru i t smic iurf analysis oa (a
iNiuvmiAi. niutci haia talii (i-kiker, r<=bundle. ocluste:rป M=hATRix)
TABLE FKLFAKATIUN HAIL! 25 MAY -1)3
SAHPLL" COUtS 006515-33 I ' "
Size (Micron)
Ma
4
F
0.000
0. 062
0.37
6.0
0.003
ri
5
1
0.000
0.062
0.62
10.0
,
2
L
c:
0.062
0.312
0.94
3.0
0.040
2
7
C
0.062
0.625
o.y-i
1 .5
0.095
'ป
CI
F
0.000
0.062
0.94
15.0
0 . 007
2
9
c,
0.062
1 . 250
1 .25
1 . 0
,

10
Li.'
0.062
0. 107
0.69
3. /
0.021

11
C
0.062
0.937
1 .56
1 . 7
0.230

12
F
0.000
0.062
0.62
10.0
0 . 005

13
F
0.000
0.062
1 .25
20.0
0.010
2
14
r
0.000
0. 062
0.56
9.0
0.004

IS
F
0.000
0.062
1 .56
25.0
0.012

16
F
0.000
0 .062
2.25
36.0
0.010

17
1
0.000
0.062
1.13
10.0
,

10
F
0.000
0.062
1 .30
22.0
0.011

19
ti
0. 125
1 .250
2.50
2.0
,
A
20
F
0.000
0.062
1 .25
20. 0
0.010
3
21
M
0.062
0.062
1 .69
27.0
0.017
3
22
M
0 .062
0.062
1.19
19.0
0 . 012
3
23
l<
0.062
0.312
2.50
0.0
0.127
4
24
fr
0.000
0, 062
0.62
10.0
0.005
4
2 5
F
0.000
0.062
0.50
U.O
0.004
'1
26
(1
0.062
0. 125
0.94
7.5
,
4
:>/
F
0.000
0.062
1.13
10.0
0.009
'1
2D
1
0 . 000
0. 125
0.44
3.5
,
4
29
H
0,062
0, 107
5,75
30. 7
0.175
No t
Mo
>.02 J
0.016

-------
Ill KHM AfvTH IN'.il 1 III11 I Kill' TDK! ,'iNAI 1 Sl;i HATA
jiNlilVlnUAI. ul'JlCI IIAIA I ALU. IT (IMlULIw H=IUINIU L, U-CLUUfl-k. H-HA1K1X)
TAKLi: PklCAkAl ION L'rVfl7! 25 MAY-03
fJAMr-l.fi CJOMt"! C06545-33
U>
-j
(i !'' I
ฃ)po CJIiJ hJti
tiiire (Micron)
lifHth Ui'Jtli I tvr.ฃlth kiitio
lass (I'icoiJrtiiii)
Not
hruaotiJe rtiiiphihole Anifu f! Ast>u
No
L'3 t I.
x-k^M
4
30
1
0.000
0.062
2.31
37.0
0.010
4
:ji
r
0.000
0.062
0 . 75
1 2.0
0.006
4
32
i
0.000
0.062
1 .75
I'll. 0
0.014
4
33
f
0.000
0.062
1.13
10.0
,
4
34
c
0.061'
0. 187
0. 75
4.0
0.023
'1
35
n
0. Of.'J
0. 107
1 .07
10.0
*
1
36
i-
0.000
0 . 1 25
1 .13
9.0
0.036
5
37
r
0.000
0.062
0.31
5.0
0.002
5
3a
n
0.061'
0.250
3. HI
15.3
0. 155
5
39
F
0.000
0.062
1 .25
20.0
0.010
'>
-10
1<
0. 061'
0.625
1 .56
2.5
,
5
'11
I,
0.061'
1 . 075
3 .75
2 .0
1,143
5
4 2
11
0. 1 25
1 .250
1 .07
1 .5
0. 762
6
43
1
0.000
0.062
0.94
15.0
0.007
6
44
r
0.000
0.062
0.62
10.0
0.005
6

0
0.062
0.250
0.75
3.0
,
6
46
M
0.061'
0.062
0.61'
10.0
0.006
6
47
c
0.062
1 .250
5.00
4.0
1 .016
6
40
M
0.062
0 .062
1 .25
20.0
0.013
6
49
c
0.062
0.500
2.50
5.0
0.203
f,
50
M
0.061'
0. 1 25
1 .25
10.0
0.025
6
SI

0. 062
0.250
1 .00
4.0

6
52
1
0.000
0.062
0.31
5.0
0.002
6
53
M
0.061'
0.062
1 .1'5
20.0
0.013
I,
54
H
0. 062
0.062
0.56
9.0
0.006
6
55
1
0.000
0 .062
0.50
0.0
0.004
6
56
1
0.000
0.062
1 . IV
19.0
0.009
7
57
M
0.061'
0.062
1.13
10.0
0.011
7
50
M
0.062
0.062
0.31
5.0
,

-------
Ill	AKi:H 1 MSI i III 1I SI Kill' fllKL ANAI YS1S MAI A
iNiiiviniirii object jwia taw i: r:i us ruw H-rtATRix>
1ABLE W.003

-------
I l l KLSUAKC.M I NSi I 11II11: BTkllC l llKt ANAL YSIS MAI A
1NMIV1IUIAL iili.lt 1; I MAI A lAHl.t" (I H ll'fclw Li-L
-------
Ill RC-.if ARCH INI! I 111) l L SlKIJI TlIKi: ANALYSIS hATA
OINIU-t SAMPLE ijllrlMAlxY iAULES
sample cohl; ro/>54tป-;ป.j	iauli: pkepakation ham:: 2t> -hay--o;j
Aerosol Object Count And Calculated ObJect Mass Characteris I ics
Object
St I'licturi
I i be r
I io Cu.
10
20000

-------
Ill KL!>LAkt;il J mil 1 11)11. lilKIICfDKL ANAI.VSU; uAiA
imUVU'llAl. (iLULi; I 11A T A lAULt: UM lul.kr L<-L(llNul.l. . OCL IIS I LI*, M-hATK'l X )
IAULt PK'FtAKAf 1 OH fiA I E ! 26 MAY 1)3
SAMPLt COULi C06545-35 (; \ f )
Size (Micron)	Ma^s (F'icosiraiii)
Orel		 			 		Not No
Opn Ut'J Str berth Width Length Kotio Chrusoti 1 e Amphihole An.bitl Ast>e Patt X liaa
1
1
F
0.000
0 .062
0,6V
11.0
0.005
'J
')
K
0.000
0. 125
0.62
5.0
0.020
9
3
M
0.062
0. 125
1 .25
10.0
.
9
4
M
0.062
0.062
0.62
10.0
0. 006
o.
5
K
0.000
0.062
0.62
10.0
•
2
6
F
0.000
0. 062
0.62
10.0
0.005
2
7
F
0.000
0.062
3.19
51 .0
0.025
'>
t)
M
0.062
0.062
0.94
15.0
0.010
2
9
ft
0.062
0.062
1.13
10.0
0.011
2
10
F
0.000
0.062
0.07
14.0
0.007
3
11
M
0.062
0.062
0.50
0.0
,
3
12
ป
0. 125
0. 250
0.Q1
3.3
,
3
13
1
0.000
0.062
0.44
7.0
0.003
3
14
M
0.062
0. 125
1 .25
10.0
,
3
IS
C
0.062
0. 125
0.75
6.0
0.015
3
16
H
0.062
0. 125
0.75
6.0
0.015
A
17
M
0.062
0.062
0.62
10.0
0.006

111
M
0.062
0 . 250
0.62
2.5
0.025
'ji
I'/
(-1
0.062
0 . 250
0.0/
3.5
0.036
5
20
f
0.000
0.062
1 .30
22,0
0.011
ti
21
f
0.000
0. 062
0.62
10.0
0.005
5
2 2
i
0.000
0.062
0.37
6.0
0.003
* j
23
n
0.062
0 . 1 25
O.ill
6.5
0.017
5
21
F
0.000
0.062
0.94
15.0
0.007
5
25
F
0.000
0.062
0.25
4.0
.
6
26
F
0.000
0.062
2.44
39.0
0.019
6
27
M
0.062
0.062
0.62
10.0
,
6
20
F
0.000
0.062
0.69
11.0
0.005
6
29
i:
0.062
0. 125
0.37
3.0
O.OOtl
.002

-------
I 1 V kl.'!'L AkCI I 1NS I i III11: 'J i l- l I"HKir ANALYSIS UATA
INJilOmiAl OH.(I II li,, I A t All It 
,5
54
')
56
57
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
.000
.062
. 000
.000
, 000
,000
.062
. 06
,000
i 125
,062
. 000
.06:
,062
. 000
, 000
.ooo
.06:
.000
.000
. 000
0.000
0.062
.062
. 000
.062
,062
.062
0.
0 .
0.
0.
0.
0. 12b
0.93 V
0.10/
0.062
0.062
0. 125
0 . 1 25
0 . 1 25
0.062
0 . 500
0 . 1 25
0.062
0 . 1 25
0.062
0. 062
0 .062
0.062
0	.312
0.062
0. 125
0. 125
0. 1 25
0.250
0.062
. 062
(>. 1 25
1	.250
0 . 125
2.63
1 . 07
1 .00
0.50
0.69
1 . 75
0.69
0.94
0.37
1 . 25
0.117
0.62
1.13
1	. 25
0.94
0.07
0. 37
2	. 50
1 . 30
0.56
2.50
0.07
0.62
0. SO
0. 44
O.6.?
1 .07
1 .25
21 .0
2 .< >
5.3
0.0
11.0
14.0
5. 5
7.5
6.0
2.5
7.0
10.0
9.0
20.0
15.0
14.0
6.0
0.0
22.0
4.5
20. 0
7.0
2.5
0.0
7.0
5 .0
1 .5
1 0.0
0.004
0.206
0.072
0.004
0.005
0.056
0.014
0.019
0.003
0.010
0. 005
0.023
0.013
0.007
0.007
0.003
0. 127
0.011
0.000
0.025
0.005
0,003
0.013
0.301
0.025
. 021
.032

-------
in klblaki:ii in:;"mini sikiiciiikl analysis uaia
iNiuvnujAi. oiuLc r haia (aiu-I- (F-KUJ iitr Oei-th Width l.LTidth	Ratio ttirjsoti 1 e AmH(>iLซolti Ambid Asbe 1'att X-kaii
Total Mass < licoslrani) -	1 ฆ 554	0.055
Total Count	=	A/,	U.
CO
I

-------
(IT KiSt.AKt'H INSTITUTE PlPOCUIKfc ANAL Y S1 fi HAT A
S IMlilL- SAMPLE SOftilAIVY I AH LH
sampi.e com:; C06t.4S-JS	iiiwc reparation ham: : sปA--ป8AY-jt3
Aerosol Object Count And Calculator] Object Mass Characteristics



Mum be r
rlas?.






Ave r..'U




Actual
Coticen.
Concei i.
Ave r
iฃie
Ave r
(fii?
1 e r i I l l


Object

Ob.iect
< Numbe r
(Pi co.=ir a in
Width

1 en;tt h

it, Ijidlh

St ructure
1 Jf-e
(.'~Ul'l t
Per Cu fl)
Per Cu M)
(liic run)
(Mic
nil )
U'.-i 11 o


F ibnr
Chrusotile
2t,.
10204.
730. 2
0. Oft
1
0.0.5
1 .00
1
'). 00
11.11
110.73

Ami hibole
•7 t
4034 .
09.0
0. 1 0
1
0.0-1
0. 5 A
1
0.31
t,. J 7
J:
1.71

Other
1 .
till.

<>.06
1:
0.00
O.o2
)
O . 00
10.00
1
0.00

A11 Elbe r
29.
ฆ16/J 9.

0.00
1
0.0 J
1 .01
1
0.77
13.30
1 J 0 . 36
bundle
i!hi"J!iul lie?
3.
4034.
90.0
0. 1 2
.1.
0 . 00
o.
1
0 . 30
7 . 33
1
2. 36

Arm-li 1 bo 1 e
0.
0.
0.0
0. 00
J
0 . 00
0 . 00
1
0, 00
0 . ('0
1
0 . 00

U111 a r
1 .
1 .'.11.

0. 21:,
1:
0 . 00
0.01
1
0. 00
.*ป • 2t ,
1
0 . 00

All liuridlc
A .
'M:j .

0. 1 i,
1
0. 0 ti
0 .11V
1
O . 21,
1
1
2 . 01
C) i j =; 1.1 r
Chru'iot. 11 v
9.
1 4502,
IA *2 . 2
0. 3 7
1
0. -12
1 . 1 0
1
0 . 7.}
•1 .09
I
2 . 7 7

Aiiif h i bo I e
0.
0 .
0.0
0 . 00
1
0 . 00
0. 00
i;
0 .00
0.00
:
O . 00

1)Lilt i
0 .
o.

0.00
1
(l. oo
0. 00
1
Ci . 00
0 . 00
I
0 . 00

A11 1.1 u iป Lt' i
9.
i 4502.

0. 3 /
1
0. 4 2
1.10
1
0. 73
•1.1; 9
j
2.-7
Mat r i
Ch rtiuot i 1 o
10.
1 i 1 1 3 .
226. i
0.11
1
0 . 00
0.02
1
0.24
j o. 05
l
5 . 90

Hlnl'li i 1 •<:> 1t:
0 .
0 .
0.0
0. 00
1
0 . 00
0 . 00
1
0 . 00
0. 00
l
0 . 00

Other
N ซ
uot.y.

0.17
1
0 . 10
0. vo
1
... : i I A re
.00
.00
.00
. 00
Cu
Bo
'J ii
So
M
I ill
I. in
(-iii
Or id 1151 cj
lirid llii 05211>2/[ - I
I ti'1i vi dud. 1 I) r i 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEf C=CLUSTERป M=MATRIX >
TABLE PREPARATION DATEi 26-MAY-83
SAMPLE CODES C06545-37
Size (Micijon)	Mass (Picodram)
(3rd		ฆ				Not No
On-ri ObJ Str Depth Width Length Ratio Chrusotile Ani^hibole AniL>ia Ast>e Patt X-Ra-j
1
1
F
0.000
0.062
0.62
10.0
0.005
• . •
1
2
F
0.000
0.062
0.69
11.0
0.005
...
1
3
F
0.000
0.062
1 .25
20.0
0.010
...
1
4
F
0.000
0.062
0.37
6.0
0.003
...
1
5
F
0.000
0.062
0.44
7.0
0.003
ป . .

6
M
0.062
0.250
0.50
2.0
0.020
...
1
7
C
0.062
0.125
1 .25
10.0
0.025
...
1
0
F
0.000
0.062
0.62
10.0
0.005
~ ~ ป
1
9
M
0.062
0.125
1 .56
12.5
* .
X
1
10
C
0.062
0.187
1 .13
6.0
. .
X
2
11
F
0.000
0.062
0.81
13.0
0.006
...

12
F
0.000
0.062
0.44
7.0
0.003
...
o
13
M
0.062
0.062
0.62
10.0
0*006
. 1 .
2
14
B
0.062
0.187
1 .44
7.7
. ,
x . ซ
o
15
C
0.062
0.625
0.94
1.5
0.095
...
n
16
F
0.000
0.125
3.69
29.5
0.118
...
o
17
B
0.062
0.375
1 .50
4.0
, ซ
x . .
n
18
F
0.000
0.062
0.62
10.0
0.005
...
*3
19
F
0.000
0.062
0.44
7.0
0.003
. * ซ
2
20
M
0.062
0.125
1 .38
11.0
0.028
...
2
21
F
0.000
0.062
0.25
4.0
ซ •
X . ~
o
"ii
F
0.000
0.062
0.31
5.0
0.002
ซ • •
2
23
F
0.000
0.062
0.37
6.0
0.003
...
3
24
F
0.000
0.062
0.31
5*0
0.002
...
3
25
C
0.062
2.500
3.75
1.5
1.523
...
3
26
F
0.000
0.062
1 .25
20.0
0.010
• . ป
4
27
F
0.000
0.062
0.81
13.0
0.006
...
4
28
B
0.062
0.187
2.75
14.7
0.004
...
4
29
F
0.000
0.062
0.50
8.0
0*004


-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERt B=BUNDLEป C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE! 26-MAY-83
SAMPLE CODE! C06545-37
00
Size (Micron)	Mass (F'icoarani)
Grd					Not No
Oph OtiJ Str Depth Ulidth LeriSth Ratio Chrysotile Aniphibolc An.bia Asbe F'att X-Ray
9
88
F
0.000
0.062
0.50
8.0
0.004
9
89
F
0.000
0.062
0.25
4.0
0.002
9
90
F
0.000
0.062
0.56
9.0
0.004
9
91
F
0.000
0.062
0.44
7.0
0.003
9
92
C
0.062
2.500
3.44
' 1.4
1 .396
9
93
M
0.062
0.062
0.62
10.0
0.006
9
94
B
0.062
0.375
3. 75
10.0
0.229
9
95
M
0.062
1 .250
1 .25
1.0
,
9
96
C
0.062
0.312
3.12
10.0
0. 159
9
97
C
0.062
0.750
2.50
3.3
•
9
98
F
0.000
0.062
0.87
14.0
0.007
9
99
F
0.000
0.062
0.37
6.0
0.003
9
100
F
0.000
0.062
0.44
7.0
0.003
9
101
F
0.000
0.062
0.62
10.0
0.005
9
102
F
0.000
0.062
0.37
6.0
0.003
9
103
M
0.062
0.125
0.62
5.0
0.013
9
104
B
0.062
0.250
1 .25
5.0
0.051
9
105
F
0.000
0.062
1 .44
23.0
0.011



Total Mass

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-37	TABLE PREPARATION HATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Type
Number
Actual Concert
Object
Count
Mass
Concern	Average
(Number (Picogram	Width
per Cu M) per Cu M)	(Micron)
Averade
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrusot i1e
55.
94775.
900.3
0.07
1
0.01
0.87
i
1 .06
13.01
ฑ16.00

Amphibole
9 (
3446.
13.9
0.06
ฑ
0.00
0.44
i
0.18
7.00
ฑ
2.83

Other
3.
5170.

0.08
ฑ
0.04
0.60
ฑ
0.38
7.00
i
2.65

All Fiber
60.
103391.

0.07
ฑ
0.02
0.84
ฑ
1 .03
12.51
ฑ1.5.41
Bundle
Chrvisoti le
5.
8616.
730.7
0.21
ฑ
0.10
2.15
i
1 .24
10.73
ฑ
6.13

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
3.
5170.

0.27
ฑ
0.10
1 .40
ฑ
0.13
5.56
ฑ
1 .90

All Bundle
8.
13785.

0.23
ฑ
0.10
1 .87
ฑ
1 .01
8.79
ฑ
5.45
Cluster
Chrusotile
12.
20670.
31688.0
1.48
ฑ
1 .64
2.81
ฑ
2.60
3. 66
ฑ
3.27

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
6.
10339.

0.83
ฑ
0.72
2.58
ฑ
1 .96
3.73
ฑ
1 .45

All Cluster
18.
31017.

1 .27
i
1 .41
2.74
ฑ
2.35
3.60
ฑ
2.75
Matrix
Chrysotile
14.
24125.
1722.8
0.25
i
0.32
1 .01
ฑ
0.60
7.38
ฑ
5.22

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
5.
8616.

0.34
ฑ
0.51
1.05
ฑ
0.39
7.70
ฑ
4 .69
All Matri/
19.
32741.
0.28 ฑ 0.37 1.02 i 0.54
7.46 i A.96
Sample Collection and Preparation Data
Grid Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00	Cu M
1.00	So Cm
1.00	So Cm
1.00	Sa Cm
Grid ID! 0521B2/E-3
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000064 So Cm
9
20000

-------
ill i \ I: 5I: AKCH J fit; I i 11 • I r SlIv'DCIIJKL	Y'.US :' A T A
IHlUVlHUnl (in./(If LKVIA I Al-L K (F^l jfcEIVr K-liUNHU. , C^CLUDTEKป fl-HATM X )
TAHEE PKEPARmTIGN HATE! 26 MAY -H3
SAMPLE CUliE! C06545-;i4
U1
o



5 i i: o
(Hieron)


Mass (pic o
d


	
	
	

	 ฆ - ฆ - ฆฆฆ-
n
Ob J
Str
Hep th
Width Lensilh
IV alio
Chrajio tile
1
1
11
0.062
0.062
0.37
6.0
0 .004
1
2

0.062
i . 562
2 . 1 7
1 . 4
0 • 555
1
3
M
0.062
0. 125
0.62
5 . O
.
1
4
f
0, 000
0. 062
I . 25
20. 0
0.010
1
S
V
0 . 000
0.062
1 .06
J 7 . 0
0 . 001"!
1
6
I
0 .000
0.062
0.62
10.0
.
1
7
i<
0 ฆ 062
0. 125
2. 69
21 , 5
0. 055
1
8
1
0 . 000
0. 062
0.7 5
1 2. O
0 . 006
1
9
F
0.000
0.06 2
i . 00
i 6 . 0
0.00;";
1
10
F
0. 000
0.062
0.69
11 . 0
0 . 005
1
1 1
r
0.062
o. my
0.31
1 . 7
0.01 0
1
i
i:
0.062
0 . 1 21/
0 . 6 2
5.0
o. o i :<
1
13
C
0.062
0. 1 i: 7
/.3u
.59.2,
0 .225
1
ii
c
0 . 1 25
5. ooo
5.00
1 . 0
fi. 1 25
1
i'j
h
O.Oo 2
0 . 125
2 . 50
20 . 0
0.051
1
if,
i-
0 . 000
0.062
o. ;s i
5 . 0
,
1
17
r
0. 000
0 . 062
0 .131
13.0
0 . 0"6
1
111
r
0.000
0.062
I .06
17.0
0 . 000
1
1.9
i;<
0 . 062
0 . 125
0. >'5
6.. (>
0 .015
1
2 0
F
0,000
0 . 062
1 .07
.50. 0
0 . 01 5
1
21
F
0 .000
0 . 062
o.l; 7
1 4. 0
0 . 007

22
1-
O.uuu
0 .062
0 . 50
!:> . 0
0 . 004

2
1
('.000
0 . OA2
0 . 75
12.0
0 . 006
2
:•')
f
V . O'.iO
".06 2
. 12
'">. "
0 . '1 " •
ฆ
25
1
0 . 000
0 . ( 1 ! '
2 . 0 0
ฆ 2. o
0 . 0 j ฆ

•' (.ฆ
fi
' , 2
0
').
i • •,
ฆ ฆ ,00 >
2
7
l'
1 *
0, 2
', (}ฆ' t • •
<ป. 12:-.
2 . 00
1 6. 0
0.1' ! 1
;•
.' y
I
0.0 0 0
0 . 06 2
' 1 ซ • ' '
i I . 0
i, . <,05
Hot
Mo
. 003

-------
ill Kf si Aia 11 i mm i 11111 s i I'Mic ( uivi:: ,rif-,| . •• i • n.Vi v.
iwia vj iiu.'ii. i ik.ii r i i'
30
C
0.061'
0 .18/
0.62
3. 3
0 .019
o
31
F
0.000
0 . 062
0.62
1 0 . 0
0 . 00b
o
32
C
0.06:,'
0 . 1 2'J.
0 . 6 2
b . 0
0.013
o
33
F
0.000
0 .062
2 . 31
37.0
0.018
'1
34
f:
0.062
0 . 62b
1 . 2 b
2 . 0
,

3 b
ri
0 .061'
0.062
0 . 94
lb.0
0.010
2
36
I"
0. 000
O . 062
0. 7b
1 2.0
,
2
37
F
0.000
0.062
0.7b
I 2 .0
.
3
•Ml
F
0 . 000
0 . 062
0. 7b
12,0
0. 006
3
39
F
0.00 0
0.062
0 . 4 4
/ . 0
0 . 003
3
40
F
0 .000
0 .062
1 . 2 b
20 . 0
0 .010
3
41
F
0. 000
0 . 1 2b
1.19
9. b
0.03{!
i
42
F
0.000
0.06 2
1 . 2b
20.0
0.010
"7
4 3
C
0 . 062
I . 2b0
2.19
1 .0
0.444
3
44
F
0.000
0.062
0. 6 V
11.0
0.005
3
4 b
l<
0 . 062
0.62b
6.8/
1 1 . 0
0.698
3
46
f"
0 . 000
0.062
1. . 1 3
1B. 0
0.009
3
47
1
0 , 000
0.062
1.19
19.0
0 . 009
3
48
H
0.062
0 . 2b0
5.00
20 . 0
0.203
3
4 9
F
0.000
0.062
0. 37
6 . 0
0 .003
4
bO
F
0 . 000
0.12b
1 . 00
0.0
0.032
4
bl
t:
0 . 062
0. 250
1 . b6
6 . 2
,
4
b2
F
0. 000
O.061!
0.3 7
6.0
0 . 003
4
S3
1
0 . 000
0.062
0.81
1 3 . 0
0.00 6
4
b4
F
0.000
0.062
0.87
1 4 . 0
.
4
bb
h
0. 06.?
0,062
0. b 6
9 .0
0.006
4
b6
c
0.062
0. 12b
0.62
5.0
.
4
b7
f
0.000
0 .062
0.31
5.0
0. 002
4
L.-B
F
0. 000
0 ,12b
0.69
. b
0.022
i : I-1.11': • i I K ป ; I I II I i ii ' I
r cj fit)
Amr-h i
no 1G
M o 1
rnซrt> l:J M ฃ- i" > <--
Ho
I' 1-1.1
x-i;,'
000
X
X

-------
i 11 K'f ^..nuni i iJb i 111111 51 km ruia r-.N.M-(Sis "ftiA
I Mil 1 V 1 III Inl IIH.U 0 I uATrt I hJ:L I: (I I 1IU.K > H = nUi-IDl. 1. > C'CI III.) ILK- ii' f'.iM I'.'1 >: i
"IAHL.L PRLT'ARAI ION HA (II: 26-fV.V-H,i
sArti-u: cont: CO6545-34



Si se
Micron)


tta-.s (ficoSrsti)

'II
Cib.i
ti t r
lipFth
Width L
'_-nSth
R ;? t i 0
rhrysotile Clinchi bolt
Am hi
4
'jV
H
0 .125
0 . 750
7.50
10 . 0
1 , IS28

4
60
c
0. 125
1 . B75
2 .50
1 . 3
1.52 3
,
4
61
1
0 . 000
0 . 062
0. 75
1 2. 0
0.006
.
4
6
1
0 . 000
0.06:,'
0.62
10.0
0.005
,
•1
63
i:<
0. ujy
1 .250
3 . 1 2
2 . 5
,
X
4
6 4
M
0.062
0. m 7
1 . 25
6 . 7
0,030
,
A
61;
K
0 . 000
0 ,062
2 . 50
4 0.0
0.0 2 0
,
4
/
c:
0.062
0 . 'J 00
0 , 75
1 .5
. ,
x
4
67
1
0 .000
0 . 062
0 . 25
4 . 0
0.002
.
4
Ml
1
0.000
0.062
0.56
V . 0
0.004
- ,
4
69
r:
0.06?
1 . 125
l . 1J
I . 0
, ,
X
5
70
(
0 . 000
0.062
0. 4 4
7,0
0.003
,
5
71
1
0.000
0 . 062
0.62
10.0
(>.005 .
.
S."
72
f
0.000
0 .062
1.13
18.0
0. 00V
,
5
73
1-
0 .000
0 .062
1 .69
27.0
0 , 013
.
5
/A
1
0.000
0 . 06?
1 .06
1 7 . 0
0 . 00ฃ!
,
5
75
1"
0.000
0 .062
0.31
5 . 0
. ,
X
5
76
K
0. 000
0. 125
1 .56
1 2 , 5
0 . 050
,

77
r
0.000
0 . 125
0.1(1
V* ป 1 ป
0 . 0 2 6 .
,
5
71)
\
0 . 0(10
0. OA'!
0.37
6 .0
0.003
,
5
79
H
0.06 2
0 . 062
0. 3 1
5 .0
0.003
,

80
('
0 . 062
0 . 437
0.117
2 . 0
, ,
Y
5
HI
C
0.062
0.625
0 . 75
1 .2
, ,
X
5
it:'
F
0. 000
0 - 1 25
0. 62
5.0
0.020
,
5
im
F
0 .000
0 . 125
0.62
5. 0
0.020 .
,
6
HA
F
0 .000
0. 125
0.94
7. 5
. ,
,
6
U5
F
0 . 000
0 . 1 25
1.13
9.0
0.036
,
6
1)6
F
0 . 000
0. 125
t). 6 3
69.0
0.275
,

07
M
0 . 062
0 . 062
0.50
B. 0
0. 005
•


=~ -




= . • ~


-------
Ill I \'i: !>li () I v I II I ,'! I Kill I K'LII' I MK1 ANALYSIS HA I A
rfiDiyiihimI. nii.ii r i hata iam i:	f;=i:unlu.e: ป i:=ti.u;;u;n. ri ii,'. i k i x>
IAM.L l'l\[ IYif::AT X ON UA II! 26 - HA Y i;3
sample: code: eo6545--34
U1
oj
Sine < Micron)	Mas?. (Picofireiti)
GrrJ				 •			-	
Of-ri ObJ Str Depth Mirith Length K'atio f'hry:.oti le i'iiuph
6
Lui
M
0 ฆ 062
0. 125
0.69
5ซ 5
0.014

6
89
('
0.1 H7
1 . 250
2 . ;5ft
1 . 9
1 . 4 '17

6
90
t:
0. 1117
0.937
1.13
1 .2
0 . 51 4


91
f
0.000
0.062
0 .56
9.0
0 .004

6
92
i
0. 000
0 . 062
0.69
11.0
, .

6
93
H
0 . 062
0. 1 25
1 .25
10.0
0.025

6
74
1
0. 000
0.062
0 . 62
10.0
0 . 005

6
95
F
0 .000
0.062
0 . 56
V . 0
0.004

i>
V6
F
0.000
0 . 1 25
2 . 1 3
17.0
0.060

6
97
C
0. 125
2. 10/
2, 8 J
1 . 3
2.000

6
9)1
c
0.125
1 . 125
1 . 25
1 . 1
0 . 4 5 7

6
99
G
0. 125
1 . 562
2. 50
1 .6
1.2 70

6
1 00
F
0 .000
0.062
0 . 3 J
5 . 0
0.002

6
1 01
u
0.062
0. 187
0.75
-1 . 0
, ,


1 02
F
0 . 000
0 .062
0 . 3 i
5. 0
0.002
,
6
1 03
f
0. 000
0.062
0 . 56
9.0
, ,
X
A
1 01
F
0.000
0.062
1.13
1 f). 0
0.009
,
/
105
F
0 . 000
0 . 062
1 . 25
20.0
0.010

		Not th>
i>cilf; Anibiii i'i 1 ฆ c ฆ I'.it.l.
Totdl flcjss (Picccl ram ) =	20.54/	0.011
Total roun t	=	06.	2.	] 6. I. 0.

-------
I 1 T k'l- f>f AKC'H f MSI 17 III I H I KUC1 URL" ANALYSIS UAIA
!.ป1 NOLI OAWLL. SIIMHAK'V T A HI. Lb"
SAHPl L COME : 006545 34	TA1UJ f K'Lf T.kAT f ON NATII; 26-mihY"!;3
Aerosol Object Count And Calculated Object Mass Characteristic*
Ln
Object
S t ructure
F: i be r
Kundle
C lust e r
M a t r i ::
T'jr-i.'
Chrysotile
Ampliibole
Other
All fiber
Ch ra sot 11 e
Amphibole
Othe r
All bundle
C'hrysot i le
Aniphibole
Other
All Cluster
Chnifot) 1 e
Aiiu hi bol e
Other
All Matri;:
Aetu.31
llb.isc t
Coun t
56
o
7
1 4
0
6
20
10
0
1
.11 .
i)umL>e r
Doncen.
(Number
Mass
Codcen.
(I ' i coil ram
Cer Cu M) I'er l)u M)
Aver, si e
Width
(Micron >
140056 .
5002.
J 750?.
162SAS.
15006.
0 .
'503.
22509.
35014 .
0.
15006.
50020.
::so j o
0
,.'501.
2329.1 0.07 .: 0.02
27.3 0.06 .1 0.00
0.07 .1 0.02
0.07 I. 0.02
7032.0 0.33 1 0.20
o.o o.oo : o.oo
0.56 1 0.60
0. 41
0 . 39
41622.-1
0.0
404 . 0
0.0
1.25 1
0.00 J 0
0.5 7 .: 0
. 29
. 00
. 33
1.05 1 J . I:
0.09 J: 0,
O.00 I 0.
0.12 1 O,
O'l
00
00
2/5J 1.
0 . 10
o.O 4
Ave iv; .4 e
L eri-i til
< Hie ron)
1	.i 0 1	1.10
0.5V ;	0.40
0.66 .1:	0.19
1.04 J:	I. 11
3 .I 1	.5. 00
O.00 I	0.00
1.01 I	L.21
3.21 1	2.67
2	. 35 .1	1 . 07
0.00 1	0.00
0.90 i	0 .2 4
1 . 9 1 I	1. 70
0.70 1	0.65
O . 00 I:	1,1.00
0.62 J	0.00
0.07 :	0.62
Average
Leri v! t.h
To ihdth
KiJ t i o
14.98 111.86
9.50 1 6.36
9.50 I: 2.57
I 4.22 I I1.21
I 2
1: 6.90
0.00	.1 0.00
4.25	1 1.09
9,50	.1: 6.08
5.57	110.40
0.00	1 0.00
2.12	.1: 1.47
4.5<	I 0.05
9,52	I i./l
0.00	J 0.00
5.00	.! 0.00
9 . 11.	1. 4 . 60
0 Hi y- 1 fฆ Collection is 11 d I ' r e f .i r ri t i n n 11 a 1 ii
Air Volume
Uer-osit Area
Ashr-d Art")
Rederosi t. Area
00	Cu M
00	! ฆ ci Cm
00	Su Cm
00	i'-ct Cm
Grid Ha I a
I ^ r i d III! 0 5 211; 2 / 11 -5
Individual Orid |l:-ernii:l
Nuiiibiw f Orid I n-^n l niis
I ilm .'Ifs.lm f i cat ion
0.00006/ So Cm
6
2000'J

-------
TIT M: !•!. I'.K'i.'l I .INฃH I TDTl" iH K'HCTUftL ANAL 1'LiIS HAT A
Villi IAI ilUJIiCT 11AI A I AM.l. <1=1- IfcLRr	Xซl f i
TAiil.L I RL" CARAT I ON MAfl ! 2 6-HAY- t;3
c:=r:i.ustck', h^maikix)
SAMPLL COIifc": C06545--36
Si no (Micron)
Mass (F'i coslrarn)
01- ij
m
1/1
)bJ
Str
Perth
IJi'Jth
Length
Katiu
Chrusotile
1
M
0.062
0. 125
i .31
10.5

'J
n
0.062
0.625
1 .87
3.0
.
3
M
0. 062
0 .125
0.62
5 . 0
.
4
f
0,000
0.062
1.31
21 .0
0.010
5
F
0. 000
0.062
1 .25
20.0
,
6
F
0. 000
0 .062
0.50
8.0
0.004
7
F
0. 000
0. 062
0. 44
7.0
0. 003
it
M
0 . 1 25
1 .875
2. 1 9
1 . 2
1 .333
9
M
0.062
0 . 187
I *
6. 7
,
10
C
0.062
0. 187
2.50
13 . 3
0.076
11
F
0 . 000
0 . 062
0.44
7.0
0.003
12
f"
0 . 000
0. 125
0 . 75
6 . 0
0.024
13
M
0 . 062
0 .107
0.62
3 . 3
0.019
It
K
0. 000
0. 062
0. 62
1 0. 0
,
IS
H
0.062
0.062
0.69
11.0
0.007
16
M
0.062
0.250
0 . V 4
3 . 7
0.03U
17
n
0.062
0 . 062
1 . 25
20. 0
0.013
10
i:
0. 187
1 . 125
4 .06
3.6
2.220
If
F
0.000
0 . 062
0 . 62
10.0
0.005
20
M
0.062
0.062
0.62
10.0
0.006
21
rl
0.062
0 . 062
1 . 25
20 . 0
0.013
22
F
0.000
0 . 062
1 .63
26.0
0.013
23
U
0 . 1 25
0.312
3.44
11.0
0.349
24
h
0.062
0.062
0.62
10.0
0.006
25
M
0.062
0 .125
o. :u
2 . 5
,
:ฆ•/>
M
0.062
0.062
0 . 50
a. o
0. 005
2/
1"
0 . 000
0.062
o.
1 2 , 0
0.006
20
r
0.000
0. 125
0.8/
7 . 0
0.020
29
F
0.000
0 . 062
1 .81
29,0
0.014
Nc> I
No
X-K'aw
.012
,006

-------
in K'(:i f aklii in;;i i unr iitkuctuke amai_1hata
CNIil VlfiUAI. I hum; I IU'iTi'i InULl (r~rnCL Uฃ>TL: K > Ci -HAV r-.'I X )
TAl:Lt l- Fv'L F'ARAT I DM HAIL. I 26- MAY- 83
sample couL": r:o6545-36
Ln


c
0.062
0 . 1 25
0.37
3.0
0.000
rj
40
ri
0. 062
0. 187
0 . 6 2
3.3
0.019
2
41
H
0.062
0 . 062
0 . 94
15.0
0.010
')
42
F
0.000
0 . 062
1.13
10.0
0.009
2
43
H
o. 125
0.312
2 . <>V
8 . 6
0. 273
r>
4 4
II
0. 125
0.312
1 . 25
4.0
0 . 12 7

4 5
0
0 . 062
0 . 312
0.62
2. 0
0.032

46
r
0. 000
0 . 062
0 . 69
11.0
0 . 005
n
47
H
0.062
0 . 062
0.31
5.0
0. 003
2
48
K
0 .000
0.062
0 . V 4
15.0
0. 007
o
49
M
0.062
0.10/
1 . 25
6 . 7
0.038
o
SO
ซ
0.062
0 . 062
0.62
1 0. 0
,
2
SI
M
0.062
0.62'..
1 .07
3 . 0
0. 190
2
52

0 . 1 25
o. /ฆ/ฆ.,
2.50
6.7
0. 305
r>
53

0.062
0 . 125
1 .31
J 0.5
0. 027
2
54
F"
0.000
0 . 1 23
0.6'/
i s
0.02?
2
55
fi
0.062
0 . 187
1 . 75
V . 3
0 . 053
;>
56
h
0 . 000
0.062
0.4 4
/.o
,
2
57
I
0 . 000
0.062
0.81
13 . 0
,
')
50
1
0 . 000
0 .062
0. 50
8. 0
0 . 004
zzz
= :;r-



= — 12 = ;::-::-
...
r. .

-------
LIT REiEit: AKCII INST i IIJIIV !>T klJCI IJRF ANAl.YiilS HAT,-,
1 NHIM1 MUf-.l rilMlX'f Li A1 A 1 A L: IK (I MlU-hr L^HIJMDL.L > OLLUSTLK r M-rlrtTIi: l'X)
TABLE ('(WAR AT ION DATE: 26-MAY-U3
SAMPL.ii cone; co&545-:
68
H
0 .062
0.062
0 .50
f>. 0
, ,
X
9
69
F
0.000
0 .062
6 .56
105 . 0
0.052
,

70
r
0.000
0.062
0 ป.} 1
5.0
0.002
.
o
71
f
0 . 000
0. 062
2 . 56
41.0
0.020

2
72
ft
0.062
0.062
0.37
6.0
, ,
X
3
73
u
0.062
0.375
I . 00
2.7
, .
X
3
74
\
0.000
0.062
3. 25
52.0
0.026
,
"7
75
l:
0. 062
0.500
1 .56
3.1
0.127
,
3
76
F
0.000
0.062
1 .25
20.0
0.010
~
3
77
F
0 , 000
0.062
3,44
55.0
0.027
,
3
y a
it
0.062
0.062
0.62
10.0
, ,
X
3
79
1"
0.000
0 .062
1 .94
31.0
0.015

3
00
rt
0.062
0.621.
1 .25
2.0
0.127

3
01
C
0. 062
0.187
0.75
4.0
. ,
X
3
E12
c
0. 062
0.625
2.63
4.2
, .
X
3
03
n
0.062
0.125
2.50
20. 0
0.051

3
B4
Li
0.062
0 . 250
2. 1 9
8.7
0.009
,
-/
85
C
0.062
1 .075
3.12
1 . 7
0.952


06
M
0.062
0.625
1 .25
2.0
, ,
X
3
1)7
F
0.000
0.062
2 .50
10.0
0.020
,

-------
LIT K'LS L AK'LI I INSTITUTE STRUCTURE ANALYSIS i.iAl A
lNI.il VIDUAL UFMF.C 1 DATA TAfiL E (K--I1Es
2 .0

, ,
X
3
92
r
0.000
0.062 0.31
S . 0

0.002
,
J
92.
H
0.062
0.062 0.62
10.0

0. 006
,
3
7-1
f
0.000
0.062 0.69
11.0

0 . 006
,
3
9i>
M
0 .062
0.062 0.3?
6 . 0

, .
X
3
96
M
0.062
0.21,0 0.62
-> (^

O
ฉ
.
3
97
M
0. 062
0.062 0.31
L>. 0

, ~
X
Not
No
fotiil Mass (Picogrsm)-
Total Luunt	=
9 .726
VI .
0 . 030
'1.

-------
:m RESEARCH INSTIIOU: STRUCTURE ANALYGI
SINGLE SJAilF'LE SUMMARY TABLES
S AM f ฆ LE COKE : C06fป41;-.',6
ฃ> 11 AT A
TABU:
PREPARATION 11ATF,
: 26-
MAY~i;3




Aerosol
Object Count Arid Calculated Object Mas
s Characteristic









N'JITi 1'?' r
Mas;





Aversae




Actual
Concert.
Concen•
AversSe
Averse
Len;.!th


GbJect

Object
(Numbe r
(Picoaram
Width

LenSth

To Width

Structure Type
Count
Per Cu M)
F'er
Cu M)
(Micron)
( Mi c rori)
Rat j i>


Fiber
C h r y r> o t. i 1 p
31 .
1 A 3 91 7 .

232 7.7
0.07 1
0.02
1 . 50 :1
1.55
23.29
l
.'5.24

Amphibole
4 .
:'l 1 s I .

161.2
0.06 i:
0.00
0.83 1
0 .29
13.25
1
4 .57

Oth€?r
3.
1 5863.


0.06 J:
0.00
0.58 1:
0 . 20
9 .33

3.21

All Fiber
.<8.
200931.


0.0/ 1
0.02
1 . 36 1
1 .43
21.13
i
ฆ'3.26
Efundle
Chrysotile
10.
52876.

300)3 . 1
0.38 1
0 . 31
3.07 J:
1 . 94
1 .1 . I J
I:
/'. 09

Amphi bole
0.
<).

0.0
0.00 1
0.00
0.00 i
0.00
0.00

0.00

01 h e r
7
1. 5863.


0. 54 i
0.14
2.00
1. .07
3 . 56
i:
J. .26

All fcuridle
13.
6873V.


0.42 1:
0.28
2.82 X
J. . 80
9.3/
i
6 . 99
C1 u st.er
Ch ry r-ot i 1 e
n.
•12301 .

8303.8
0.4 7 1:
o.y
i.r.fs i
1 . 03
5 .58
J;
1 . 31

A m r- h i bole
o.
0 .

0.0
0.00 I
0 . 00
0.00
0 . 00
0.00
1
0.00

01 h r-1'
4.
211 -V, 1 .


0.44 -J
0 . 22
I. . 4 7 i
0.8 1
3,: • 5
1
1 ฆ i.'4

All Cluster
i :>.
4


0.46 I
o. y>
i. .51

4 . 9 J
!
3-62
Mat r l::
L hrssotl1p
r ! '>
J. .1. 632; >.

1. 0 7 8 4 . 2
r
r i,11
t ฆ 07 ;
0. 56
8 97

<4 .39

Ampi 11 bo 1 e
0 .


V' . 0
O.00 .i
a , i' i •
0.00 t
ฆ >, 11 <
0 .00
t
0 00

Othfjr
12.



. ) , '
, . , I A
0.6 8 i.
o. .- i:
<4 81

Z . 94

nil I IK
'• f.



y .J ;
.34
0 93 !
6 .55
8 21
:
S - 47
! :• n i r 1. c>
Col l.'.-ct ier, :i ฆ < i
• - r n 1
i "i ฆ 'i.r<
1 ฆ r i
t ฆ







HI !ฆ 0 O 1
== i , 00
Cu i

ฆ n
ฆ!<; 0521 i) 2






Oi'r r.c i t
Arm 1 . 00
So Ci'i

Individuflj
Grid Openlnif
'.000061 Sq
Cm


A?>iVv.) i'<
!'• 1 - 1.00
So Cm

• ; i ; 1



3




iv , ,•
1 1 r'i r ri ' , 00
S . 11

ill
: m , i
i (.: : ! i - i r i

*•0000





-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS
INDIVIDUAL (JPJECT DATA TAfcLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  ป
9
57
M
0.062
0.250
1 .56
6.2
0.063
• • •
o
58
C
0.062
1.875
5.00
2.7
1.523
• • 1

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
94
M
0.062
0.062
0.50
8.0
0.005
~ ~ ~
o
95
F
0.000
0.125
0.94
7.5
0.030

2
96
F
0.000
0.062
0.56
9.0
0.004
• • •
2
97
F
0.000
0.062
0.87
14.0
0.007
• • •
*7
98
F
0.000
0.062
0.31
5.0
0.002
• ซ •
2
99
C
0.062
2.500
3.12
1.2
• 4
X
2
100
F
0.000
0.062
0.56
9.0
0.004
• . ซ
o
101
C
0.062
1 .250
1.56
1.2
• •
X
9
102
F
0.000
0.062
1 . B7
30.0
0.015
• ซ •
Total Mass (F'icoarani) =
Total Count	=
7.134
86.
0.000
0.
15.

-------
I XT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COHE: C06545-38	TABLE PREPARATION HATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Type
Nunther
Actual Concen.
Object (Number
Count Per Cu M)
Mass
Concen•
(Picodrara
Per Cu M)
Average
Width
(Micron)
Fiber
Chrysotile
AniPhibole
Other
66 •
0.
6.
469952.
0.
42723.
3336.8
0.0
0.07 i 0.02
0.00 i 0.00
0.06 1 0.00
Average
Length
(Micron)
Averaae
Lenath
To Width
Ratio
0.70 ฑ 0.42
0.00 ฑ 0.00
0.45 i 0.20
10.79 i 6.73
0.00 ฑ 0.00
7.17 i 3.19
All Fiber
72.
512675.
0.07 i 0.02 0.68 ฑ 0.41
10.49 ฑ 6.58
Bundle
Chrusotile
4.
28482.
1256.5
0.25
i
0.11
1.08
ฑ
0.33
5.19
i
3.32

Amphibole
0.
0.
0.0
0.00

0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
1.
7120.

0.37
i
0.00
1 .56
i
0.00
4.17
i
0.00

All Bundle
5.
35602.

0.28
i
0.11
1.17

0.36
4 .99
ฑ
2.91
Cluster
Chrysotile
4.
28482.
42830.0
1.11
1
1 .07
3.28
ฑ
2.78
4.63
i
4.26

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
6.
42723.

1 .33
ฑ
1 .50
2.11
i
2.26
2.69
i
1.81

All Cluster
10.
71205.

1 .24
ฑ
1 .29
2.58
ฑ
2.40
3.47
i
2.98
Matrix
Chrysotile
12.
85446.
3371.8
0.15
ฑ
0.10
1 .14
i
0.95
8.47
i
4 .31

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
3.
21361.

0.31
i
0.27
0.71
i
0.07
3.40
i
1 .97

All Matrix
15.
106807.

0.18
i
0.15
1 .05
i
0.87
7.45
i
4.42
Sample Collection and Preparation [lata	Grid Data
Air Volume =
1 .00
Cu
M
Grid ID! 0521B2/E-S
Deposit Area =
1 .00
So
Cm
Individual Grid Opening = 0.000070 So Cm
Ashed Area =
1 .00
So
Cm
Number of Grid Openings - 2
Redeposit Area =
1 .00
So
Cm
Film Magnification = 20000

-------
- Cฃ
-I ui
C A
2	ซ-ซ

>-	0
CN *0
a

i m
•
• ซ
•

1 u
o
o o


1 01




1 -J



C
1



0
l jC
CN
CM W
n
u
1
ปo
-0 M
^0
0
1 -0
o
O
o
•ซ4
I •*
•
• •
•
ฃ
1 3
o
o o
o

1




1 ฃ
o
o o
o
Hi
1
o
o o
o
N
1 0>
o
o o
o

i ai
•
ป *
•
CO
i a
o
0
0
o

c.





u.
u. u_
u.

cn




•n

M M
ซr

ซQ




O




*0 c


*4
oo^ooooooooocioo
000000000000*400
O *0
o
o n
0 ^,
PN
^ n oo



n










•



0
0
o
o
o
o
C4
o o
o o

n -h ^
n

o

cn n
CN
CN
n
ci
O
cn r i
M r i
ซ
aoo
o
CI
C>l
ci
^0 *0
"0
S3
S3
-0
o
-0 >0
>0 *0
S3
^ UT UI
U"5
S3
*c
>0
o o
O
O
o
o
o
o o
o o
o
m n n
CI
O
o
o














0
0
O
o
o
o

o o
o o
o
o o o

O
o
o
o o
O
o
ci
CN
fS
o o
o o
o
m m ui
rs
O
o
o
o o
O
o
S3

a
o o
o o
o
M >0 C i
CO
o
o
o
o o
o
o
o
o

o o
o o
o
H O H

o
o
o














0
0
0
o
o o
o
o o
o o
o
o o o
o
o
o
o
. u. u. u.
u.
ฃ
ฃ
A
u_ u.
Li. u.
u.
AAA
CJ
Ik
u. u.
-i cn
PO
T
in
^0
fS
CD Oo
o ^
CI
n m

rv
03








n ci
CN
ci Ci cj
ci
CN
CI
CI
1
1

**



CN cn
M CN
CN
CN CN C J
CI
M
CN
ri
165

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL ODJECT DATA TADLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE I 26-HAY-B3
SAMPLE CODE} C06545-39
Size (Micron)	Mass (Picoaram)
(3rd					Not No
Oph ObJ Sir Depth Width Lenath Ratio Chru&otile AnPhibole Aoit'ia Asbe Patt X-Rau
7
59
B
0.062
0.250
1.13
4.5
0.046 :
•
ซ •
7
60
F
0.000
0.062
0.56
9.0
0.004
•
• •
7
61
F
0.000
0.062
0.62
10.0
0.005
9
• •
7
62
M
0.062
0.625
2.50
4.0
0.254 :
•
• ซ
7
63
F
0.000
0.062
0.44
7.0
0.003
•
~ •
7
6A
F
0.000
0.062
1.50
24.0
0.012
•
• ~
7
65
F
0.000
0.062
1.06
17.0
0.000
•
• •
7
66
F
0.000
0.062
0.31
5.0
0.002
•
~ ~
7
67
C
0.062
0.312
0,62
2.0
• ~
X
• t
7
6B
B
0.062
0.125
1.44
11.5
0.029

• •
7
69
F
0.000
0.062
0.62
10.0
0.005
•
• •
7
70
F
0.000
0.125
0.31
2.5
• ซ
X
• •
7
71
F
0.000
0.062
0.44
7,0
0.003
,
• •
7
72
F
0.000
0.062
1 .87
30.0
0.015
•
• •
7
73
B
0.125
0.625
5.00
8.0
• ป
X
• •
7
74
F
0.000
0.062
0.56
9.0
0.004
*
ซ •
7
75
D
0.125
0.312
0.94
3.0
• •
X
• •
7
76
B
0.125
0.312
0.94
3.0
• *
X
• ป
7
77
F
0.000
0.062
0.62
10.0
0.005
~
• •
7
78
B
0.125
0.312
1.13
3.6
• ซ
X
• •
7
79
B
0.125
0.312
1 .38
4.4
• •
X
• t
7
80
F
0.000
0.062
0.87
14.0
0.007
•
• •
7
81
F
0.000
0.062
0.62
10.0
0.005
•
• f
7
82
F
0.000
0.062
0.25
4.0
• •
X
• •
7
83
F
0.000
0.062
0.37
6.0
0.003 .
•
• •
8
84
M
0.062
0.125
1 .25
10.0
• *
X
1 •
8
85
F
0.000
0.062
0.94
15.0
0.007
•
• •
8
86
F
0.000
0.062
0.94
15.0
ป t
•
X
8
07
F
0.000
0.062
1.06
17.0
0.008
•
• •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE  C=CLUSTER, M=MATRIX)
TABLE PREPARATION DATE! 26-MAY-03
SAMPLE CODE! C06545-39



Size
! Micron)


Mass (Picoaraoi)


(3rd






	

Not No
Opn
ObJ
Str
Depth
Uidth Length
Ratio
Chru&otile AniF-hibole
Anib i a
Asbe : F'att X-Rau
8
88
F
0.000
0.062
1 .87
30.0
0,015
•
• •
8
89
C
0.062
0.312
0.37
1.2
1 •
X
• •
8
90
F
0.000
0.062
1.25
20.0
0.010
•
• •
9
91
C
0.062
0.250
0.62
2.5
0.025
•

9
92
h
0.062
0.187
0.50
2.7
0.015
•
• •
9
93
F
0.000
0.062
0.31
5.0
0.002
•
• •
9
94
H
0.062
0.062
0.62
10.0
0,006 : .
•
• •
9
95
F
0.000
0.062
1.25
20.0
0.010
•
• •
9
96
F
0.000
0.062
0.94
15.0
• 1
•
X •
9
97
F
0.000
0.062
0.50
8.0
0.004
~
ซ 1
9
98
F
0.000
0.062
0.44
7.0
0.003
•
• •
10
99
F
0.000
0.062
0.62
10.0
0.005
~
• ~
10
100
F
0.000
0.062
0.44
7.0
0,003
•




Total Mass

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE I C06545-39	TABLE PREPARATION DATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mas6
Actual Concern	Coricen.	Average	Average
Object	Object (Number	(Picodram	Width	Length
Structure Tape	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)
Fiber
Chrusotile
59.
04022.
678.7
0.06
J:
0.01
0.77
ฑ
0.54

AniPhibole
0.
0.
0.0
0.00

0.00
0.00
ฑ
0.00

Other
7.
9969.

0.08
ฑ
0.03
0.59
ฑ
.0.28

All Fiber
66.
93990.

0.07
ฑ
0.02
0.75
ฑ
0.52
Bundle
Chrusotile
6.
0545.
2306.9
0.35
i
0.32
1 .71
i
0.51

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00

Other
7.
9969.

0.34
i
0.13
1 .80
i
1 .45

All Bundle
13.
18513.

0.35
ฑ
0.23
1.76
i.
1 .08
Cluster
Chrusotile
5.
7120.
3019.3
0.52
ฑ
0.42
1 .35
ฑ
1.03

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
2.
2848.

0.31
i
0.00
0.50
ฑ
0.18

All Cluster
7,
9969.

0.46
i
0.36
1.11

0.94
Matrix
Chrusotile
13.
18513.
732,2
0.17
ฑ
0.17
0.93
A
0.68

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
1.
1424.

0.12
i
0.00
1 .25
ฑ
0.00

All Matrix
14.
19937.

0.17
i
0.17
0.96
i
0.66
AveraSe
Lenath
To Uidth
Ratio
11.75 ฑ 6.70
0.00 ฑ 0.00
8.36 i 5.12
11.39 i 6.60
6.56 I 3.03
0.00 ฑ 0.00
5.00
i
2.07
5.72
ฑ
2.57
2.62
ฑ
0.59
0.00
i
0.00
1.60
i
0.57
2.33
ฑ
0.73
7.47

3 ฆ 65
0.00 i 0.00
10.00 ฑ 0.00
7.65 ฑ 3.57
Sample Collection and Preparation Data	Grid Data
Air Volume =
1.00
Cu
M
Grid ID1 052182/6A

Deposit Area =
1.00
So
Cm
Individual Grid Opening =
0.000070 So Cm
Ashed Area =
1.00
So
Cm
Number of Grid Openings =
10
Redeposit Area =
1.00
Sq
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE! 26-MAY-83
SAMPLE CODEJ C06545-41 j , , \ jlyLo
Size (Micron)	Mass (PicoSram)
Grd					Not No :
Opri ObJ Str Depth Width Ler.ath Ratio Chrusotile AniPhibole Ambig Asbe . patt X-Rau
1
1
F
0.000
0.062
1 .87
30.0
0.015
•
• • •
1
•>
B
0.187
0.375
3.50
9.3
0.640
4
• • •
1
3
F
0.000
0.062
1 .87
30.0
0.015
•
• • •
1
4
C
0.062
0.312
0.62
2.0
0.032
•
• ป ซ
1
5
F
0.000
0.062
0.94
15.0
0.007
•
• ซ •
1
6
B
0.062
0.250
3.12
12.5
,
•
X ซ •
1
7
B
0.187
0.875
2.69
3.1
1.146
•
• • •
1
8
F
0.000
0.062
0.62
10.0
0.005
•
• • •
1
9
B
0.062
0.500
2.50
5.0
0.203
•
• • •
1
10
M
0.062
0.250
1 .25
5.0
•
•
X ~ •
n
11
F
0.000
0.062
2.94
47.0
0.023
•
• • •
2
12
F
0.000
0.062
1.13
18.0
0.009
•
• • •
2
13
h
0.062
0.062
2.63
42.0
0.027
•
* • •
2
14
F
0.000
0.062
1.13
18.0
•
•
• x *
2
15
F
0.000
0.062
1 .81
29.0
0.014
•
ซ • •
2
16
C
0.062
0.625
2.50
4.0
0.254
•
• • •
2
17
F
0.000
0.187
2.50
13.3
•
0.207
~ ซ ซ
9
18
F
0.000
0.062
0.69
11.0
0.005
•

2
19
M
0.062
0.062
0.37
6.0
0.004
•
• • •
2
20
B
0.125
0.625
1 .87
3.0
•
ซ
X
o
21
M
0.062
0.062
0.62
10.0
,
•
X
2

F
0.000
0.062
1.44
23.0
0.011
*
ซ ~ ~
2
23
F
0.000
0.062
2.44
39.0
0.019
•
• • •
*>
24
F
0.000
0.062
1 .87
30.0
0.015
t
• • •
2
25
B
0.062
0.250
3.50
14.0
0. 142
•
• • •
2
26
F
0.000
0.062
1 .B7
30.0
0.015
•
• ซ •
2
27
F
0.000
0.125
0.94
7.5
0.030
•
• • ป
n
28
F
0.000
0.062
1 .50
24.0
0.012
•
• • •
9
29
F
0.000
0.062
0.56
9.0
0.004
ป


-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
XIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 26-MAY-83
SAMPLE CODE! C06545-41
Size (Micron)	Mass (Picoaram)
Grd					Not No
Drn ObJ Str Depth Width Length Ratio Chrusotile Amphibole Arabia Asbe Patt X-Ray
4
59
f
0.000
0.062
0.56
9.0
0,004
...
5
60
F
0.000
0.062
0.69
11.0
0.005
...
5
61
F
0.000
0.062
0.62
10.0
0.005 .
...
5
62
F
0.000
0.062
0.69
11.0
0.005
...
5
63
F
0.000
0.062
0.50
8.0
0.004
...
5
64
F
0.000
0.062
0.50
8.0
0.004

5
65
F
0.000
0.062
0.37
6.0
• •
X . •
5
66
B
0.125
0.125
1.25
10.0
0i051 •
...
5
67
M
0.062
0.062
1.50
24.0
0.015
. ~ .
5
68
F
0.000
0.062
1.25
20.0
0,010
...
5
69
M
0.062
0.062
0.56
9.0
4 *
X . .
5
70
F
0.000
0.062
1.31
21.0
0.010
• . *
5
71
F
0.000
0.062
0.50
8.0
0.004
• ซ .
5
72
M
0.062
0.125
1.25
10.0
0.025
...
5
73
M
0.062
0,062
0.50
8.0
0.005
ป . •
j
74
F
0.000
0.062
0.75
12.0
0.006
...
5
75
F
0.000
0.062
0.44
7.0
0.003
...
5
76
F
0.000
0.062
0.31
5.0
0.002
. ซ t
5
77
F
0.000
0.062
0.37
6.0
, .
X ~ #
5
78
C
0.062
0.250
0.62
2.5
0.025
...
5
7?
F
0.000
0.062
0.75
12.0
0.006
...
5
80
F
0.000
0.062
0.37
6.0
. •
X • .
5
81
F
0.000
0.062
0.87
14.0
0.007
...
5
82
F
0.000
0.062
0.69
11.0
0 * 005 .
ซ • .
5
83
F
0.000
0.062
0.44
7.0
0.003
...
5
84
C
0.062
0.625
1 .25
2.0
, #
X . .
6
85
F
0.000
0.062
0.69
11.0
0.005
...
6
86
F
0.000
0.062
0.56
9.0
0.004
. . •
6
87
B
0.125
0.312
1 .87
6.0

X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INI'I VIDUAL OBJECT DATA TABLE (F=FIBER, B=BUNDLE r C=CLUSTERr M=MATRIX)
TABLE PREPARATION HATE! 26-MAY-83
SAMPLE CODE J C06545-41
Size (Micron)	Mass (Picodrain)
(3rd 				Not No
Qpn ObJ Str Depth Width Length	Ratio Chrysotile AmPhibole Ambid Asbe Patt X-Raa
6
86
F
0.000
0.062
0.62
10.0
0.005
•
6
89
M
0.062
0.062
0.75
12.0
0.008
ป
6
90
F
0.000
0.062
0.56
9.0
0.004
•
6
91
M
0.062
0.187
1 .56
8.3
0.048
•
6
92
F
0.000
0.062
0.25
4.0
0.002 :
•
6
93
F
0.000
0.125
0.69
5.5
0.022
•
6
94
F
0.000
0.062
0.37
6.0
0.003
ซ
6
95
F
0.000
0.062
0.44
7.0
0.003
•
6
96
F
0.000
0.062
0.25
4.0
0.002

6
97
M
0.062
0.062
0.31
5.0
0.003
•
6
98
M
0.062
0.062
1 .31
21 .0
0.013
•
6
99
M
0.062
0.062
1 .56
25.0
0.016
•
6
100
B
0.062
0.125
1 .25
10.0
0.025
•
6
101
F
0.000
0.062
3.75
60.0
0.030
•
6
102
F
0.000
0.062
0.69
11.0


6
103
F
0.000
0.062
0.50
8.0
0.004
•
&
104
F
0.000
0.062
0.69
11.0
0.005
1
6
105
M
0.062
0.062
0.94
15.0
• •
X
6
106
ฃ<
0.062
0.125
1 .31
10.5

X
6
107
F
0.000
0.062
0.62
10.0
• •
,
6
108
F
0.000
0.062
0.25
4.0
0.002
•
6
109
F
0.000
0.062
0.56
9.0
0.004
•
Total Mass (Picodram)=
Total Count	=
3.
90.
534
0.207
1.
16.
0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TA&LES
SAMPLE CODES C06545-41	TABLE PREPARATION DATE! 26-MAY-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
Number	Mass
Actual Concern	Concern	Average	Average
Object	Object (Number	(F'icogram	Uidth	Length
Structure Tupe	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)
Fiber
Chrasotile
1 64.
151172.
1344 .8
0.07
i
0.02
0.90
i
0.71

Amphibole
1.
2362.
489.1
0.19
i
0.00
2.50
i
0.00

Other
6.
14172.

0.06
i
0.00
0.59
i
0.30

All Fiber
71 .
167706.

0.07
i
0.02
0.90
i
0.71
Buridl e
Chrasotile
9.
21259.
5505.6
0.33
ฑ
0.24
2.03
i
1.06

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
4.
9448.

0.33
i
0.21
2.05
i
0.77

All Bundle
13.
30707.

0.33
i
0 .22
2.04
i
0.95
Cluster
Chrusotile
5.
11810.
1005.5
0.30
i
0.19
1 .98
i
1 .34

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
3.
7086.

0.35
i
0.24
0.87
i
0.33

All Cluster
8.
18896.

0.32
i
0.20
1 .56
i
1 .18
Matrix
Chrusotile
12.
28345.
410.8
0.08
I
0.04
1 .06
i
0.69

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
5.
11810.

0.10
i
0.08
0.74
i
0.36

All Matrix
17.
40155.

0.08
i
0.05
0.97
i
0.62
Ave rage
Length
To Uidth
Ratio
13.85 ill .02
13.33 i 0.00
9.50 i 4.72
13.48 110.60
7.71 i 3.91
0.00 ฑ 0.00
8.00 i 4.30
7.80 i 3.85
10.23 ill.86
0.00 ฑ 0.00
2.78 i 0.69
7.44 i 9.77
14.78 ill.09
0.00 i 0.00
8.80 i 4.15
13.02 ฑ 9.83
Sample Collection and Preparation Data
Grid Data
Air Volume =
1.0 0
Cu
M
Deposit Area =
1 .00
So
Cm
Ashed Area =
1 .00
So
Cm
Redeposit Area =
1 .00
So
Cm
Grid IDS 052182/8A
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000071 Sa Cm
6
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 

SAMPLE COPE.* C06545-43

(i-s")
Grd


Size (Micron)


Mass (Picodram)

Ob J
Str
Depth Width Length
Ratio
Chrusotile
Amphibole
Ambia
I
F
0.000 0.062
0.44
7.0
#

X
n
F
0.000 0.250
1.56
6.2
•
0.230
•
3
F
0.000 0.062
0.69
11.0
0.005 :

•
4
F
0.000 0.062
0.50
8.0
0.004

•
5
F
0.000 0.062
0.62
10.0
0.005

•
6
F
0,000 0.125
0.44
3.5
•

•
7
F
0.000 0.062
0.62
10.0
0.005

ป
8
F
0.000 0.062
0.87
14.0
0.007

•
9
F
0.000 0.062
2.38
38.0
0.019

ซ
10
F
0.000 0.062
0.31
5.0
•

X
11
F
0.000 0.062
0.37
6.0
•

X
12
F
0.000 0.125
0.50
4.0
0.016

•
13
F
0.000 0.062
0.62
10.0
0.005

9
14
F
0.000 0.125
1.06
8.5
•

X
IS
F
0.000 0.06?
0.44
7.0
•

•
16
F
0.000 0.062
0.62
10.0
•

X
17
F
0.000 0.062
0.31
5.0
0.002

•
18
F
0.000 0.062
0.75
12.0
0.006

•
19
B
0.125 0.750
1.87
2.5
•

X
20
F
0.000 0.062
0.56
9.0
•

X
21
F
0.000 0.062
0.62
10.0
•

X
22
M
0.062 0.062
0.62
10.0
0.006

•


Total Mass

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODEt C06545-43	TABLE PREPARATION DATES 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics



Number
Mass






Average



Actual
Concert.
Concert.
Average
Average
Length


Object

Object
(Number
(Picogram
Width

Length

To Uidth

Structure
Tape
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron >
Ratio


Fiber
Chrusotile
10,
13639.
102.0
0.07
i
0.02
0.79
i
0.58
12.20
ฑ
9.55

Amphibole
1.
1364.
313.8
0.25
i
0.00
1.56
ฑ
0.00
6.25
ฑ
0.00

Other
9.
12275.

0.00
i
0.03
0.54
ฑ
0.22
7.33
i
2.25

All Fiber
20.
27278.

0.08
i
0.05
0.72
i
0.48
9.71

7.21
bundle
Chrusotile
0.
0.
0.0
0.00
t
0.00
0.00
i
0.00
0.00

0.00

Amphibole
0,
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
1.
1364.

0.75
ฑ
0.00
1.87
i
0.00
2.50

0.00

All Bundle
1.
1364.

0.75
i
0.00
1.87
ฑ
0.00
2.50
ฑ
0.00
Matrix
Chrusotile
1 .
1364.
8.7
0.06
i
0.00
0.62
i
0.00
10.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00
All Matri>:
1.
1364.
0.06 i 0.00 0.62 ฑ 0.00
10.00 i 0.00
Sample Collection and Preparation Data	Grid Data
Air Volume	= 1.00 Cu M	Grid ID! 052182/10A
Deposit Area	=	l.ob	So Cm	Individual Grid Opening =	0.000073 So Cm
Ashed Area	-	1.00	So Cm	Number of Grid Openings =	10
Redeposit Area	=	1.00	So Coi	Film Magnification =	20000

-------
LLl
ro to ro ro ro ro ro to ro ro <
ho ro to ro to ro to ro to to **	*• ** ** ** **

o
NJ
CK
m
A
UJ
to
**
ฉ
*0
CD
NJ
ck tn
•t*.
UJ
to •-
8
9
0
nj ck en
.ฃ~
Ui
ro
to*


ฆn
2

ฆn
2 2
-n
2
F
F
t "r "n *ti
2 W
-n "ti

ฆn -n -n
F
F
"*i
2
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ ฉ
0
0
0
ฉ ฉ
ฉ
0
0
ฉ
ฉ

























ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ ฉ
ฉ ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
cs
ฉ
ฉ
ฉ
CK

ฉ

ฉ
ฉ
ฉ ฉ
ฉ
ฉ
CK CK
ฉ ฉ
(S
ฉ ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
to
ฉ
ฉ
ฉ
ro
to
ฉ
ro
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ro ro
ฉ ฉ
to
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ ฉ
ฉ
ฉ
0
0
ฉ ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ


























ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
N*
ta*
**
ฉ ฉ
ฉ
ฉ
UJ
ฉ ฉ
M
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
to
CK
ck
CK

CK
>
CK
CK
CK
tO
ro
ro
CK CK
0+
CK
ro SJ
Ck CK
CD
CK CK
CK

CK
CK
o-
m
10
to
10
to
to
tO
to
ro
to
UI
in
m
to to
to
ro
m in
to to
NJ
to ro
to
to
to
K>
ro
ฉ
-
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
*+ ฉ
to
ฉ
ฉ Ui
ฉ ฉ
ฉ
0,
0.
ฉ
ฉ
ฉ
ฉ
ฉ
ck

u
CK
UJ
NJ
0*
CK
co m

NJ
w
r o CD
u
Nj
* Nl
CD ^
NJ
U ^
o*
to
in
cs

ro
<0
M*
to
M-
W
ro
ป0
** CK
ro
m
NJ
m n-
o
in
ro in
i—
in
K-
ro
in
ฉ
ro
ro







K*
Nป




ro n-.
UJ
te*




h*


**
ป-ป
in
<0
m
ฉ
in
to
ฉ

UJ *ฉ
in
CK
U)
ฉ w
CD
ro
in ฉ
U NJ

7
5
ฉ

09
ฉ
ฉ

























ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0
0
0
0
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
o
o
to
o
ฉ •
~ ฉ *
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ •
ฉ •
• ฉ ~
ฉ
ฉ
ฉ
ฉ ~
ฉ
0
ซ-ป
















T
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
M-

ฉ
ฉ
ro


ฉ
**
ฉ
ro
ro
ฉ
ฉ
ฉ
ฉ
ฉ
**
n
in


ro
ฉ

^0
CK
•ซ
UJ
UJ
m
to



0
ฉ •
ฉ
ฉ
ฉ
NJ
X X -
X • XX* X •
d a
* "5
? a
o
B*
L.
tn
c i	to
fC |	M-
*P I	N
r* i	m
zr i
i	~
C I	2
M- I	M-
a i	o
I	-5
2 I	0
I 5
7:
OJ
c+
rr I
1>
a
5-
M-
It
2
ou
in
I UL
I P
2>	Z
m	o
D*	<*
m
** 2
fc O
CO
2>
2
R
n
o
n
ฉ
CK
m
in
i
*
m
-H
M

3>
r

T
iji
H
r
M

m
c
5?


n


w
jri
c
m
rr\

2>
TI
r



n
?:•
o
*

w

-H
c.
M

m
2
o
n
cn
2
—H
w
ri
m
H
3>
s
C
•H

H
rr

m




H
tn
ro
2>
—H
CK
a?

i
r-
c
2
m
n
2>

-H
•<

c
1
a
3?
CD
*TI
m
U
II


*T1
3>


Z

V
xป

nl
r

50
K

*
cn
HH

W
cn

II


w
e

c
2>

z
ฆH

I—!

n
I!
n
r
c
ID
m
35
2
II
2
3>
vj

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIDEK, b=BUNl'LE, C^CLUSTER* M=MATRIX>
TABLE PREPARATION DATE i 26-MAY-B3
SAMPLE CODE J C06545-45
-J
iXI
Size (Micron)	Maes 
Oi-d					Not No
Opn Ot'.i Str Depth Width Length Ratio Chrasotile Amphibole A ft bid Asbe Patt X-Rau
5
59
F
0.000
0.125
1.31
10.5
0.042
•
• • •
5
60
F
0.000
0.062
0.62
10.0
•
0.006
• • •
5
61
F
0.000
0.125
0.94
7.5
0.030
•
~ ซ ~
5
62
F
0.000
0.062
0.87
14.0
0.007
•
• • •
5
63
F
0.000
0.125
0.44
3.5
0.014
•
• ~ •
5
64
F
0.000
0.125
1 .31
10.5
0.042
t
• • ป
5
65
F
0.000
0.062
0.69
11.0
0.005
•
~ ป •
5
66
H
0.062
0.187
1.87
10.0
0.057
ซ
• • #
6
67
F
0.000
0.062
1.06
17.0
0.008
I
• • •
6
68
F
0.000
0.062
0.31
5.0
0,002
ป
~ ~ ~
6
69
F
0.000
0.062
1 .13
18.0
•
•
X . .
6
70
F
0.000
0.062
0.31
5.0
0,002
•
~ ป ซ
7
71
M
0.062
0.312
1.13
3.6
•
•
X
7
72
F
0.000
0.062
0.31
5.0
0.002
•
• • •
7
73
F
0.000
0.062
0.31
5.0
0.002
•
• ~ ~
7
74
F
0.000
0.062
0.62
10.0
ป
•
• X •
7
75
F
0.000
0.062
0.44
7.0
0.003
•
ซ • ~
7
76
M
0.062
0.062
0.56
9.0
0,006
•
~ ป ~
7
77
M
0.062
0.125
0.50
4.0
•
•
X
8
78
F
0.000
0.062
0.50
8.0
0.004
•
. , •
8
79
ป
0.062
0.312
1 .25
4.0
•
•
X
8
80
B
0.062
0.250
i .94
7.8
,
•
X
8
81
F
0.000
0.062
0.56
9.0
•
•
• X •
8
82
C
0.062
0.250
0.56
2.3
•
•
X
B
03
F
0.000
0.062
0.94
15.0
0.007
•
~ ~ ซ
8
84
F
0.000
0.062
0.37
6.0
•
0.003
~ • ป
8
05
F
0.000
0. 125
0.69
5.5
0.022
•
• • •
8
86
Li
0.062
0.375
6.38
17.0
0.388
•
< t t
9
87
F
0.000
0.062
1.25
20.0
0.010
•
~ ซ ~

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COliEt C06545-45	TAI
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA 1
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 26-MAY-83
SAMPLE CODES C06545-40 ; . > t
Size (Micron)	Mass (Pico3ram)
Grd					Not No
Ofti ObJ Sir Depth Uidth Length Ratio Chrusotile Amfhihole Arobid Asbe F'att X-Ray
1
1
M
0.062
0.187
0.75
4.0
0.023
•
•
• •
1
2
F
0.000
0.062
2.19
35.0
0.017
•
•
• •
1
3
F
0.000
0.062
0.31
5.0
0.002
•
ป
• ~
1
4
B
0.062
0.125
0.50
4.0
0.010
ซ
•
• ป

5
F
0.000
0.062
0.62
10.0
0.005
•
ป
• •
1
6
F
0.000
0.062
1.87
30.0
0.015

#
ซ ~
1
7
F
0.000
0.062
0.75
12.0
0.006
•
ป
• •
">
8
b
0.062
0.312
1.56
5.0
0.079
•
•
• •
2
9
F
0.000
0.062
0.50
8.0
0.004
•
•
• •
2
10
F
0.000
0.062
0.31
5.0
0.002
•

• •
n
11
F
0.000
0.062
0.56
9.0
0.004

ป
• •
2
12
F
0.000
0.062
0.50
8.0
0.004
ซ
ป
ซ ~
2
13
F
0.000
0.062
0.37
6.0
0.003 ;
•
•
• ซ
2
14
F
0.000
0.062
0.50
8.0
0.004
•
ป

o
15
F
0.000
0.062
0.44
7.0
0.003 •:
•
ป
• •

16
F
0.000
0.062
0.62
10.0
0.005
•
•

2
17
F
0.000
0.062
0.62
10.0
0.005
•
•
• 1
2
18
F
0.000
0.062
0.37
6.0
0.003
•
•
• •
2
19
F
0.000
0.062
0.31
5.0
,
•
•
/\ •
3
20
M
0.062
0.125
0.62
5.0
0.013
ป
•
• •
3
21
F
0.000
0.062
0.87
14.0
•
0.008
~
• ~
3
22
M
0.062
0.625
2.50
4.0
0.254
•
•
• •
3
23
C
0.062
0.250
1.25
5.0
.
•

• •
3
24
M
0.062
0.062
0.50
8.0
0.005
•
•
• •
3
25
F
0.000
0.062
1 .19
19.0
0.009
t
•
• •
3
26
M
0. 187
1 .875
2.50
1.3
2.285
•
•
• •
3
27
M
0.062
0.062
0.62
10.0
•
•
X
• ซ
3
28
F
0.000
0.125
0.62
5.0
0.020
•
.
• •
4
29
C
0.062
0.625
0.75
1.2
,
•
X
• •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 26-rtAY-83
SAMPLE CODES C06545-40
Size 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE I C06545-40	TABLE PREPARATION DATE: 26-MAY-B3
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass	Averade
Actual Concern	Concern	Average	Average	Length
(JbJect	Object (Number	(PicoSram	Width	Lendth	To Uidth
Structure Type	Count Per Cu M) Per Cu M)	(Micron)	(Micron)	Ratio
Fiber
Chrysotile
46.
64570.
501.1 0.07
ฑ
0.01
0.83

0.6A
12.90
ฑ10.09

Amphibole
1 .
1404.
11.3 0.06
ฑ
0.00
0.87
ฑ
0.00
14.00
ฑ0.00

Other
4.
5615.
0.06
ฑ
0.00
0.52
ฑ
0.21
8.25
ฑ 3.30

All Fiber
51.
71589.
0.06
ฑ
0.01
o
CO
k-k
ฑ
0.61
12.56
ฑ 9.69
00
CTl
Bundle
Chrysotile
10.
14037.
3038.4
0.27
i
0.11
4.30
ฑ
4.00
15.60
ฑ13.38

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ 0.00

Other
4.
5615.

0.25
ฑ
0.17
2.39

1.78
10.31
ฑ 8.74
All Bundle	14.	19652.	0.26 ฑ 0.13 3.75 ฑ 3.55 14.09 ฑ12.15
Cluster
Chrusotile
1.
1404.
17.8
0.12
ฑ
0.00
0.62
ฑ
0.00
5.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
7.
9826.

0.39
ฑ
0.22
0.94
ฑ
0.55
2.71
ฑ
1.41

All Cluster
8.
11230.

0.36
ฑ
0.23
0.90
ฑ
0.52
2.99
ฑ
1 .54
Matrix
Chrysotile
12.
16844.
3782.4
0.31
ฑ
0.52
1.08
ฑ
0.74
7.51
ฑ
6.48

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
3.
4211.

0.0 6
ฑ
0.00
0.44
ฑ
0.17
7.00
ฑ
2.65

All Matrix
15.
21056.

0.26
ฑ
0.47
0.95
ฑ
0.71
7.41
ฑ
5.84
Sample Collection and Preparation Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cu	M
1.00	So	Cm
1.00	So	Cm
1.00	Sq	Cm
Grid Data
Grid IDS 052182/7A
Individual Grid Operand =
Number of Grid Openings =
Film Madnification	=
0.000071 So Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIPER, ฃ(=ฃ
TABLE PREPARATION DATES 26-MAY-03
SAMPLE CODEt C06545-42
)
Size (Micron)	Mass (Picoaram)
Grd					Not No
Ofti ObJ Str Depth Uidth Lenath Ratio Chrysotile Amphibole Arabia Asbe Patt X-Rau

1
F
0.000
0.062
0.56
9.0
0.004
•

2
C
0.062
0. 125
0.62
5.0
ป •
X

3
B
0.062
0.125
0.44
3.5
0.009
•

4
B
0.062
0.250
0.75
3.0
• ป
X

5
M
0.062
0.062
0.62
10.0
0.006 :
•

6
B
0.062
0.250
1.56
6.2
0.063
•

7
F
0.000
0.062
0.44
7.0
0.003
,

8
F
0.000
0.062
0.31
5.0
0.002 :
•

9
F
0.000
0.062
0.56
9.0
0.004
•

10
C
0.062
0.125
0.37
3.0
, ,
X

11
F
0.000
0.062
0.94
15.0
0.007
•

12
F
0.000
0.062
1 .87
30.0
0.015
•

13
F
0.000
0.062
0.31
5.0
0.002
•

14
H
0.062
0.062
0.44
7.0
• *
X

15
F
0.000
0.062
1.63
26.0
0.013
•

16
B
0.062
0.125
1 .31
10.5
ป ป
X

17
B
0.062
0.187
1.75
9.3
- ~ ~
X

IB
F
0.000
0.125
0.37
3.0
0.012
•
o
19
B
0.062
0.187
0.75
4.0
0.023
•
o
20
F
0.000
0.062
2.25
36.0
0.018
•
2
21
F
0.000
0.062
0.25
4.0
0.002
•
2
22
F
0.000
0.062
0.25
4.0
0.002
•
2
23
M
0.062
0.625
0.62
1.0
0.063
•
n
24
B
0.062
0.312
1.87
6.0
0.095
•
?
25
F
0.000
0.062
0.25
4.0
0.002
•
2
26
F
0.000
0.062
0.62
10.0
0.005
•
?
27
F
0.000
0.062
1 .06
17.0
0.008 :
•
?
28
M
0.062
0. 187
2.50
13.3
0.076
ซ
2
29
B
0.062
0.625
1.31
2.1
0.133
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE J
Str
Depth
Uidth
Length
Ratio
Chrysotile Araphibole
Ambid
Asbe
Patt X-Rau

30
F
0.000
0.062
0.62
10.0

•
X
•
2
31
F
0.000
0.062
0.56
9.0
0.004
•
•
•
3
32
C
0.062
0.375
0.62
1.7
• ซ

•

3
33
F
0.000
0.062
0.37
6.0
- • •
•


3
34
F
0.000
0.062
0.50
8.0
0.004
•
•
•
3
35
B
0.062
0.187
1.13
6.0
0.034
•
t
•
3
36
M
0.062
0.062
5.13
82.0
0.052
•
1
•
3
37
h
0.062
0.250
0.62
2.5
0.025
•
•
•
3
38
F
0.000
0.062
1.13
18.0
0.009
1
•
•
3
39
F
0.000
0.062
0.37
6.0
0.003
ซ
•

3
40
F
0.000
0.062
0.50
8.0
0.004

•
ซ
3
41
F
0.000
0.062
1.19
19.0
0.009


1
3
42
C
0.062
0.500
1 .87
3.7
0.152


•
3
43
h
0.062
0.312
0.94
3.0
0.048

•
•
3
44
B
0.062
0.312
1 .38
4.4
0.070
•
ป
•
3
45
M
0.062
0.125
0.62
5.0
0.013
•
•
•
3
46
F
0.000
0.062
0.56
9.0
0.004
•
•
ซ
3
47
M
0.062
0.250
0.75
3.0
0.030

•
ป
3
48
F
0.000
0.125
0.81
6.5
0.030

ซ

3
49
F
0.000
0.062
1.94
31 .0
0.015
*
ป

3
50
M
0.062
0. 125
1 .38
11.0
0.028
•
t
ซ
3
51
M
0.062
0. 125
0.62
5.0
• •
X
•
•
4
52
C
0.062
0.312
0.62
2.0
• •
X
•
•
4
53
F
0.000
0.062
0.25
4.0
0.002
,'
•
•
4
54
F
0.000
0.062
0.44
7.0
• •
X
ซ
ซ
4
55
F
0.000
0.062
0.19
3.0
• ซ
ซ
•

4
56
F
0.000
0.062
0.31
5.0
0.002
~
•
•
4
57
M
0.062
0.187
0.62
3.3
• •
X
•

4
50
M
0.062
0.125
0.31
2.5
• •
X
•
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  K=BUNDLEป C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE: 26-MAY-83
SAMPLE CODES C06545-42
lO
O
Size (Micron)	Mass (Picodram)
Grd					Not No
Opr. Obj Str Depth Width Length Ratio Chrusotile AmPhibolc An.bia Asbe Patt X-Rau
5
88
F
0.000
0.062
0.25
4.0
0.002
5
8?
M
0.062
0.250
0.75
3.0
•
5
90
M
0.062
0.125
1.63
13.0
0.033
5
91
F
0.000
0.062
0.50
8.0
0.004
5
92
F
0.000
0.062
1.13
18.0
0.009
5
93
C
0.062
0.187
0.62
3.3
0.019
5
94
F
0.000
0.062
0.31
5.0
0.002
5
95
C
0.062
0.250
0.94
3.7
0.038
5
96
C
0.062
0.625
1 .25
2.0
0.127
5
97
B
0.125
0.500
7.00
14.0
1 .137
5
98
B
0.062
0.125
2.50
20.0
0.051
5
99
F
0.000
0.125
0.56
4.5
0.018
5
100
C
0.062
0.125
0.37
3.0
t
5
101
M
0.062
0.187
0.81
4.3
0.025
5
102
F
0.000
0.062
0.56
9.0
0.004
5
103
F
0.000
0.125
1.25
10.0
0.040
5
104
F
0.000
0.062
1 .56
25.0
0.012
5
105
F
0.000
0.062
0.62
10.0
0.005
5
106
C
0.062
0.312
2.81
9.0
0.143
5
107
M
0.062
0. 125
0.62
5.0
0.013
5
108
F
0.000
0.062
0.50
8.0
0.004
5
109
F
0.000
0.062
0.62
10.0
0.005
c
vJ
110
M
0.062
0. 125
0.50
4.0
0.010
5
111
F
0.000
0.062
1 .25
20.0
0.010
5
112
F
0.000
0.062
0.75
12.0
0.006
j
113
M
0.062
0.125
0.62
5.0
t
5
114
F
0.000
0.062
0.94
15.0
0.007
Total Mass (Pico3rani) =
Total Count	=
3.040
90.
0.030
1 .
20.
1 .

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-42	TABLE PREPARATION DATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics



Number
Mass






Average


Actual
Concen.
Concen•
Average
Aversfle
Lenath
Object

Object
< Numbe r
(Picoaram
Width

Lenath

To Uidth
Structure
Tupe
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron)
Ratio
Fiber
Chrusotile
59.
172012.
1344.4
0.07
i
0.01
0.87
i
0.75
13.60 ฑ

Amphibole
1.
2915.
87.2
0.12

0.00
0.81
1
0.00
6.50 i

Other
5.
14577.

0.06
ฑ
0.00
0.40
i
0.16
6.40 i

All Fiber
65.
109504.

0.07
i
0.02
0.83
i
0.72
12.94 ฑ
Bundle
Chrusotile
11.
32070.
4841.2
0.27
t
0.16
1 .80
i
1 .82
7.23 i

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00 ฑ

Other
3.
0746.

0.19
ฑ
0.06
1 .27
i
0.50
7.61 i

All Bundle
14.
40816.

0.25
i
0.15
1 .69
ฑ
1 .62
7.32 i
Cluster
Chrusotile
6.
17493.
1434.2
0.33
ฑ
0.19
1 .35
i
0.85
4.47 i

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00 ฑ

Other
6.
17493.

0.22
ฑ
0.11
0.59
ฑ
0.21
3.07 i

All Cluster
12.
34985.

0.28

0.16
0.97
ฑ
0.71
3.77 ฑ
Matrix
Chrusotile
14.
40816.
1241.8
0.19

0. 15
1 .22
i
1 .26
11.58 ฑ:

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00 ฑ

Other
9.
26239.

0.12
ฑ
0.07
0.52
i
0.18
5.20 ฑ

All Matrix
23.
67055.

0.16
i
0.12
0.95
i
1 .04
9.09 i
Sample Collection and Preparation Data
Grid Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00	Cu M
1 * 00	So Cm
1ฆ00	Sa Cm
1.00	Sa Cm
Grid IDS 052182/9A
Individual Grid Openins
Number of Grid Operands
Film Maariif i cat ion
0.000069 So Cm
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE! 26-MAY-03
SAMPLE CODE! C06545-44;
Size (Micron)	Mass (F'leoSram)
Grd					Not No
Opn ObJ Str Depth Width Length Ratio Chrysotile Amphibole Ambi4 Asbe , Patt X-Ray
1
1
F
0.000
0.062
0.37
6.0

•
X
2
2
C
0.062
0.375
1.38
3.7
0.084
•
• ป
3
3
F
0.000
0.125
1 .13
9.0
.
0.041
• •
4
4
F
0.000
0.062
2.63
42.0
0.021
•

4
5
M
0.062
0.187
0.75
4.0
.
•
• •
5
6
F
0.000
0.062
1 .00
16.0
0.008
•
• <
5
7
F
0.000
0.062
0.75
12.0
ป
ซ
X
6
8
F
0.000
0.062
0.81
13.0
•
ซ
X
6
9
B
0.062
0.312
0. 75
2.4
•
0.044
• •
7
10
F
0.000
0.125
2.94
23.5
•
0.108
• •
8
11
F
0.000
0.062
0.44
7.0
•
,
X
0
12
F
0.000
0.062
12.94
207.0
0.103
•
• •
0
13
F
0.000
0.062
0.37
6.0
0.003

• •
8
14
F
0.000
0.062
1.25
20.0
0.010
•

Total Mass (Pico3ram)=
Total Count	=
0.22?
6.
0.193
3.
1.
4.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
GAMPLE CODE! C06545-44	TABLE PREPARATION DATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Type
Nun.be r
Actual Concern
ObJect (Number
Count Per Cu M)
Mass
Concen.
(Picoaram
Per Cu M)
Average
Width
(Micron)
Average
Lenath
(Micron)
Ave rafic?
Lenath
To Uidth
Ratio
Fiber
Chrysotile
5.
6624.
192.2
0.06
ฑ
0.00
3.64
i
5.26
58.20
ฑ84.22

Amphibole
2.
2650.
198.1
0.12
ฑ
0.00
2.03
i
1.28
16.25
ฑ10.25

Other
4.
5299.

0.06
ฑ
0.00
0.5V
i
0.22
9.50
ฑ
3.51

All Fiber
11.
14573.

0.07
ฑ
0.03
2.24
ฑ
3.65
32.86
ฑ58.70
Bundle
Chrusotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Amphibole
1 .
1325.
58.2
0.31
ฑ
0.00
0.75
i
0.00
2.40
i
0.00

Other
0.
0.

0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

All Bundle
1.
1325.

0.31
ฑ
0.00
0.75
i
0.00
2.40
ฑ
0.00
Cluster
Chrasotile
1.
1325.
111.0
0.37
i
0.00
1.38
i
0.00
3.67
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

All Cluster
1.
1325.

0.37
ฑ
0.00
1.38
i
0.00
3.67
ฑ
0.00
Matrix
Chrysotile
0.
0.
0.0
0.00

0.00
0.00
A
0.00
0.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00

0.00

Other
1.
1325.

0.19
ฑ
0.00
0.75
i
0.00
4 .00
ฑ
0.00

All Matrix
1.
1325.

0.19
ฑ
0.00
0.75
ฑ
0.00
4.00
ฑ
0.00
Sample Collection and Preparation Data
Air Volume	=
Deposit Area	=
Ashed Area	=
.Redeposit Area	=
*ฆ *
*-ป
1.00	Cu M
1.00	Sa Cm
1 ป00	So Cm
1ซ 00	Sa Cm
Grid Data
Grid IDS 052182/D-6
Individual Grid Operiina =
Number of Grid Openinas =
Film Magnification	=
0.000075 So Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 26-MAY-83 :
SAMPLE CODES C06545-46

>ฃ>
Size (Hicron)	Mass (Picodram)
6rd					Not No
Opri ObJ Str Depth Uidth Lcndtfi Ratio Chrusotile Amphibole Ambid Asbe . F'att X-Rau
1
1
B
0.062
0.312
1 .56
5.0
0.079
•
• •
1
2
F
0.000
0.187
2.56
13.7
•
0.212
• •
1
3
F
0.000
0.125
1 .38
11.0
ซ
0.051
• t
1
4
F
0.000
0.062
0. 75
12.0
0.006
•
• •
1
5
F
0.000
0.062
0.56
9.0
•
•
• X
3
6
M
0.062
0.125
0.69
5.5
0.014 .
•
• •
3
7
F
0.000
0.125
1.13
9.0
0.036
•
• ซ
4
8
F
0.000
0.062
0.31
5.0
0.002
•
• •
5
9
F
0.000
0.062
4.00
64.0
0.032
ซ
• ซ
6
10
M
0.062
0.062
0.50
8.0
0.005
•
• •
6
11
F
0.000
0.187
0.62
3.3
,
0.052
• •
6
12
F
0.000
0.125
0.81
6.5
0.026
•

7
13
H
0.062
0.062
0. 37
6.0
0.004
•
• •
7
14
F
0.000
0.062
0.62
10.0
0.005
1

B
15
F
0.000
0.062
0.69
11.0
0.005 :
•
t •
9
16
F
0.000
0.062
0.56
9.0
ป
•
X
9
17
F
0.000
0.062
0.56
9.0
•
•
X
10
18
B
0.125
0.375
3.12
8.3
0.381
•
• •
10
19
F
0.000
0.062
1 .06
17.0
•
•
X
10
20
M
0.062
0.187
0.94
5.0
0.029
•
• 1
10
21
F
0.000
0.062
0.50
8.0
0.004

• ,
Total Mass  =
Total Count	=
0.628
14.
0.315
0.
3.
1.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE: C06545-46	TABLE PREPARATION HATE: 26-MAY-B3
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Type
Actual
Object
Count
Number
Conceri •
(Number
Per Cu M)
Mass
Concenฆ
(Picoaram
Per Cu M>
Averaae
Width
(Micron)
Average
Lenath
(Micron)
Averaae
Lenath
To Uidth
Ratio
F iber
Chrysotile
8.
11315.
165.0
0.08
ฑ
0.03
1.10
ฑ
1 .19
15.69
ฑ19.66

Amphibole
3.
4243.
445.0
0.17
ฑ
0.04
1 .52
ฑ
0.98
9.33
ฑ 5.36

Other
4.
5658.

0.06
ฑ
0.00
0.69
ฑ
0.25
11 .00
ฑ 4.00
All Fiber
15.
21216.
0.09 ฑ 0.05
1.08 ฑ 0.97
13.17 ฑ14.45
\a
cn
Bundle
Chrysoti1e
2,
2829.
650.9
0.34
ฑ
0.04
2.34
ฑ
1.10
6.67
ฑ
2.36

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00
All Eiundle
2829.
0.34 ฑ 0.04
2.34 ฑ 1.10
6.67 ฑ 2.36
Matrix
Chrysotile
4.
5658 •
72.7
0.11
ฑ
0.06
0.62
ฑ
0.24
6.13
ฑ
1 .31

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

All Matrix
4 .
5658.

0.11
ฑ
0.06
0.62
ฑ
0.24
6.13
ฑ
1 .31
Sample Collection and Preparation Bata
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 Sci Cm
1.00 So Cm
1.00 Sfl Cm
Grid Data
Grid IDS 052182/D-8
Individual Grid Operiina =
Number of Grid Openings =
Film Magnification	=
0.000071 So Cm
10
20000

-------
Ill Kfc-SfcYlRril 1 Mt/T I TUTL 5 TKllCTllfvt" ANALYSIS 11A r A
INUlVIUUAL 01'.ILL' I HAIA TAliLL  H~f1ATKIX )
TAW L F'RfFAftrtT I ON HA1 L I 3 1 — ALIIj—tJ 1-i
eiAiin.t row:: coo54S-o2i IS3 -a-



S i i e
•. Micron)


Huiii 
Cl"ir\j'jot l 1 e Anih hilmlc An.t'15J
A^be
Fdl

1
1
0. 000
0. 1 2'J
0.6 V
j .
0.022



r)
1
0 . 000
0 . 062
0.
9.0
0.004

,

3
c
0.06 2
0.375
0.37
1 .0
• ฆ X


3
4
M
0.311'
0.062
0.62
10.0
0.032

,
')
tf
F
0 . 000
0. 107
1 . 06
J • /'
. •

X
7
6
r
0, 000
0.062
0 . 69
11.0
0 . 005

,
7
7
i
0 . 000
0. 125
0.62
ii. 0
. 0 . 03


t)
0
F
0.000
0.062
0 . 7',
12.0
0.006 . .

,
9
9
i"
0. OvO
ฉ
rN
1 J
0 .. 7
6.0
. . .

X
S>
10
i
0 . 000
0.062
2 . 3 ft
3t). 0
0 . 0 1V

•



Tot.
•1 I M35D
( F' i caa ram ) -
0.0B9 0.023





1 ot
a 1 L'Ol.irit

-
6. 1 . 1 .
0.
"1

-------
I I T fttiSFAKCH INS!I TOIL STRUG PUK'K rtNAI.VSIS I'm J/,
SINGLE SAMPLE SUMMARY TAPLE5
SAMPLE Culiiz: C06'j;4t-021	T Ai'L I PK'LPARAT 1 f IN HATE ! 31-AUG-H2
Aerosol Object Count
And Calcul
cited Object
M^?;s ( ha rac t
Pl'litl
C u








Nunii>f> r
Hsbi:






Aversae



A c t, u e 1
Concern.
i Y.ncpn.
i'lVH 1 -ฆ
sle
Ave r
rifle
1 t h


l ib jc>c t
Object
< Nuiiihi-ป r
tf-'icoirgm
Width


l.or'i'i1 h

1 P U 1 r j t h

Structure Th:-e r Chi-soli 1ซj
s.
L> 0 7 ,
V7.ti
0.08
1
0 . 03
1 . 01
1
0 . 76
IS . 1 0
t
1 3 . 04
A Hi y 11 i tin 1 e
1 .
I 7:>1 .
3 ฐ. />
0. 1 2
1
0 . 00
0. 62
1
0 . 00
.lj * < * 0
t
o. oo
1) t he r
2.
3-1-13 .

0.12
1
0 .09
0 . 7 2
I
0. 47
S.83
1
0.24
All fit.or
8.
137 "72.

0 . Gv
)
0 .0 S
0 . 09
i
0.63
1 1 . S 2
'11
I 1 . 03
Cluster Chrssotile
0 .
0 .
0 . 0
0.00
I
0.0 0
0 . 00

0 . 00
0. 00
1
0 . 00
Ani^hi holt1
0.
0.
0.0
0.00
1
0.00
0 . <>0
+
0 .00
0 . 00
1
0 . 00
Olltl-M
1 .
1 72 1 .

o. 3 7
1
0 . 00
0 . 37
1
0 . 00
1 . 00
f
(1. oc
All 1 In ;tf
r 1 .
1721 .

0.37
1
0 .00
0 . 37
1
0.00
1 . 00
+
0 . oo
Ms t r i •: Ch r'•< o t1 1 e
1 .
1 7 21 .
S'l ,
0. 06
1
0.00
0.1-2
1
0 . 00
10. 00
1
0 . 00
Anif i i i 1 u) 1 e
0 .
0 .
0.0
0 .00
1
0 . 00
0.00
1
0 . 00
0 . 00
1
o . 00
Other
0.
0 .

0. 00
1
0. 00
0. 00
1
0. 00
0. 00
)
<ซ. vO
All hat r i •:
1 .
1 721 .

0 . 06
1
0 . 00
o.
f
0 . 00
1 0 . 00
I
(i. 00
.ihii-I c Collection arid FTof-s r;t t i un luta
f. nrf lldtfl
0 . OOOOfif! Sit i n,
10
.>0000

-------
Ill RESEARCH INSTITUTE' STRUCTURE ANAl YSIti HA Til
iHiuyinuAL object uata tahle a-ruiciw i<=c;uniile, c=clusilkป m-hatrix>
TAUU. PRERARAIIDH HATE! 31-AUG C2
SAIU I> ( Oltf:: COdt,41.-025	IS 8 - B - IfW
S i ;• l> (Microii)	Mass < Ci coilrani)
Orel						Not No
iImi tlbj litr liefth Width Lunuth Ratio Chr-Ji>iปt i le AmPhibole Amtu <1 Ashe Patt Xfia
/ 1 I 0,000 0,125 0.75 O.0	.	0.020
Total hass < F'lcosirsni) -	0.000	0.0r?tt
Tot si Count	=	0.	1.	0. O. 0.
IX)
00

-------
. I I r RE St: ARCH INSTITUTE STRUffURt- ANALYSIS OAT A
SINGLE SAMF-LE SUMHARY TABLFS
SAMPI.E COUE J r0if<45 -0.?.S	TAIXE F'RFF'ARA TI ON IjATF ! 31-AUG-R2
Aerosol Object Count And Calculated Object Hsss Characteristics
Object
St nicture
Fihur
T H.'-e
ChrvEotlie
Arorhi bol e
Uthr r
All Tibor
Act "./a 1
Object
Count
0,
1 .
0.
1.
Nunihe r
for men.
(Number r
Per CJ Mi
0 ฆ
156:>.
0.
1562.
Uses
Cc>rซcei i.
( F" l con rani
I't1 r Co M)
Avp fade
U i dth
(Hieron)
0.0
43.1
0.00 1	0.00
0.12 t	o.oo
0.00 J	0.00
0.12 I	0.00
Averr-.n >
0.00 i 0.00
0 . i 0 . 00
0.00 I 0.00
0.75 b 0.00
Avfr?30
Leiistb
lo Width
i n
O.oo	t	.'..00
6.00	t	O.OO
0.00	i	O.OO
. o o	i	o ฆ oo
VC
:ฆ n>i-1 o Col left i on r?nd Prepsrst iofi I'ate
Ci >• id Dr t u
Air i.'oluiiio
lier-os it Aro-
A^hed A r t' ,i
ftfie: <)ฆ-.: i t i'i r e;
00
00
(.'0
00
Dj
:.o
S G
So
h
Cm
Cm
f m
Grid ID! OS21 ซ?•'(: - I
Individual l.rid Ofenin i	- 0.00000000

-------
I IT RESEARCH INST ITIITF STRUCTURE ANALYSIS HATA
I Nil IVI I'UAI l"Jf: JEC T HATA T Aid E O =rU l^CLUSTER. M=t1AlRIX)
TAIH E FREIARAIION HATE: 31 AUG -HI!
sami-ee cont; CO6S45-026
lฃ9- K - iซS"
)izc- (Micron)
Mass (F'lcoyram)
t\J
O
O
Grd


	
	


	
Not
Ol'fi
lib J
Sir
lieF t h
Width
L er.ath
R d t i o
Chrusotile Aniphibolt Arnfrid
Asbe
1
1
F
0 .000
0. 12b
0.69
i> • L-
• ป •
X
1

F
0. (>t>0
0.062
0.37
6.0
• ซ •
X
4
3
I
0.000
0.062
0.87
14.0
0.007
,
5
4
K
0.000
0.18/
1 .07
10.0
ป • •
X
6
J
f
0.000
0.062
0.01
13.0
• •
X
6
6
(
0.000
0.062
0.56
9.0
0.005
•
&
/
r
0.000
0.062
0. 44
7.0
• • •
X
a
0
i
0 .000
0.062
0.44
7.0
0.004
•
ซ
9
i
0.000
0. 125
1 . 25
o
o
H
• • •
X
No
NA (fj > MImO/
01(50) rE ( j"1
NA ( 1 5 ) hC ( il
SI (AO) nil
lotal 113^^ ( Fi cos ram ) =	0.007	0.009
Tutol Count	-	1,	2.	0. 6.	0.

-------
I IT FvTSLAkt'll INST 111) TL" S TKIIC lllll. ANAl. Y IS I'Al Vi
t) INGLL iirVll'LE tillMhrtKY TAI<1 EG
sahili: i-;oriE: coAf-4ti--o:> Jt?c t
:> 1 ri ic l.i i rtf
I ltu"; r
i'-F-tf
Clii sict i lo
Ann ri ] bo 1 o
0 tiler
All Iiber
Ac t.' it I
Ut'.jcct
Count
1 .
,S.
9.
tl "in.be r
Coneen.
(Numbe r
Per Cu M)
I 46?.
L>93 4 .
Gt)03.
1320-1 .
ttciib
Coricpii.
ll'iroUram
Per C m M)
10.
13.
Average-
Width
(Kic roii >
0.06 1 0.00
0.06 I 0.00
0.10 i 0.05
0.0 V t 0.0iป
fivti'=j^e
Length
(Mil i on)
0.0"'' 1 0.00
o.:.o 1. 0.0?
0.91 1
0 . L! 1 I 0 . -1 [i
iV.'i.' r.; t •
l.tfii-.t th
To Width
kjti.ป
I I . 00 1 t>. 69
;:.00 i
li.Sii 1 2.9/
'•.06 I 3.00
1 o Co 1 1 i.'c 11 on i anU r re? a ret ion Dot.-:	Grid [1313
A11 '.'o 11.1 ni 1 .*	-	1.00	L'i h	Lirid .lli{ 0j.'.'1 lil"C
Ii.'fosi I. r'irt-3	-	1 .00	So	Cm	11 id i v 1 'Jua I Grid 0: eiiin^	-	O.OOOOiu
Ashed in	-	1.00	Cm	(kniibor of lirid Of-en 111 i;.	-	10
[u'l.lf.fooit Are:;	-	1.00	i il	(il.	l'i lm h5-1iii1 'ica t, 1 on	-	'.>0000

-------
.c ฆ
II



ii



il

















—1







ro

m



ฆi



0







T

T

—

i!











•

•

r/;

i!




•
•
•
•

•
.
o

c



!i



.c





























T

II

e
ฆt>

€

*0




o
o
C

c
o

o
—



i!



•**
•
•
•
•

•
•


•
r—


ii



r,
o
o
o
o

o
o
•
c
o

n

:!



Ul













!!

n

y\










w


: 1
o
~

JZ










H-1



KT
•z.

w











ป.

;;














>ป


1
1













_
uJ

.;
<0


3
o
o
o
o
o
c
o
o
r
II

ii

n


-ซ4
•
•
•
•
.
•
•
•





n
1


•w

o
Q
CO
u*)
n
ji
>0
n
c

.V
ฆ3
cc
o
--n
U
'mJ

ii



in
•
•
•
-

•
•
•
•
a.
D
_1

n



ฃ
o
o


o
c
CI
•H
o



—ซ
il















c
r-:
ct
c
>3
•^3
w
cc
O)
—
!ฆ—
s-
it
9
tj

•a

o


o
C



r
~*
•t

;;



*
•
•
•

•
•
•
.
.

i—


!l
ฆj ~i
ฆz

3
o
o
o
o
o
o

O
c

—*


.1

•ซ'











ro
~-
>—
2;
n
'j*5



o
o
n
o
o
o

o
rj
•w

'j
•3
'1
ซC
&


o
o
-0
o
o
o
O
•^,


•z
u

li
o
M

X
z>
o
o
o
o
o
o
o

—



ji
C_J


u
•
-
•
•
.
.
•
•
.


.Zi



o

i!
• •













w

~•x
i:
oJ


u











;
X
n



w


r_J
'
1
'
?
u.


•2

-------
to
O
CJ
in kebeakch insiitime siFvUCTi)rซr analysis wis
!>INOLI: SAMPLE SUMMAFcV 1 AMIES
.\7AflFL E com* J <:o<.54f>-029	TrtKI C F'KTPrtf*A 1 1 UN tuUEJ 01-SEP-B2
Aerosol OhJoet Count Arid Ci\ 1 cu 1 ittod Object
Mass Charscl
c r i t i c.
3







Humbe r
Msss






AVi? 1 !ฆ :2


Actual
ConccMi.
Coric en .
Ave- i cT?le
Aver

1 em th

0b Joe t
Object
< tlumhe r
(PicoKram
Width


t. eri'l t i>

1 o U i ci
th
Structure Typo
Count
f'er Cu 11 >
Fer Cm M)
(Hie I'ori)
< M i c
•Ol I )
l<=-ti...

1 i be r Chrwso tile
5 •
".0-1.
130.4
0 .09
1
0 . 03
1 . K'.
I
0 .95
15. .',0
11 ฃ . " 9
Am^hibo 1e
1 .
151
/>54. 3
0.31
1
0.00
1 .f!7
1
0.00
6 .' 0
F O.': 0
Othe r
1 .
151/ .

0 .06
1
0 .00
0.94
I
0.00
15.00
1 o . 00
All 1 ibe r
7.
10/-17.

0.12
i
o.ov
1 . 23
F
0.03
14.14
i14.02
Cluster Chrvisot i le
1
3034 .
67.4
0 . l
1
0 . 04
0 . 94
1
0.44
f, . A 7
i 4 .71
Amr-hi hoi e
0.
0.
0.0
0.00
1
0.00
0 .00
>
0 . 00
0.00
! o.OO
(J the r
0.
0.

0 .00
1
0 . 00
0 . 00
1
0.00
0 . 00
1 ".'.•0
All C 1'it tor
2.
303-1.

0. 1 A
F
0.04
0 . 9 4
1
0.41
'• , *. /
t 4 .72
ฆ I i< lol I.tU ori ;>nd F' repti r.~> t i on lists	Or id Pat a
Air Vii 11 niio	- I .'.'0	Cu	H	Grid rii! 052102/C-5
IkfH".-1 I >'irp-	I .(0	So	Cm	) 11< i Iv l • III ,< i Orid I).' 1111111 ;	-	0 . OOOOfVi Pu In.
Allied r'i ion	- 1 ,00	So	Cm	rJunihiT of lirid Ur-eri l n.js	-	] 0
i t Art.? a	J.00	Bo	Cm	Film Maanifirition	-	20000

-------
j I I KLStAhCH INSTITUTE STK'UC I UFv'E ANALYSIS HATA
I Nil 1V1DUAL OBJECT UA FA TABLE (F^Iltt, ฃ:-EiUMULLป OCLUSTLR, M=MATRIX)
TABLE FftEFARATION HATE! 31-AUG 02
SAMFLL" COHEi C06545-030
Uo - K -|A|
Sii-e (Micron)
Mass (Firoaraiii)
N)
o
brd


_




(Jpri
Olxi
Str
Hep I h
Width
Lenafh
Rati o
Chrysoti1e
1
1
F
0.000
0.062
0.50
B.O
0.00-1
1
2
B
0.062
0.312
5 > 75
18.-1
0.292
2
3
t<
0.062
0.375
1 . 25
3.3
0.0/6
'ป
4
F
0.000
0.062
0.14
7.0
0.003
2
5
H
0.062
0. 250
3. 25
13.0
0. 132

6
1
0.000
0.062
0.56
9.0
0.004
">
7
c
0.062
0.375
0.50
1 . 3
0.030
2
0
u
0.062
0. 107
1.9-1
10.3
0.059
2
9
f
0.000
0.062
0.62
10.0
0 . 005
3
10
i<
0.062
0.625
4 .69
7.5
0. 4 76
3
1 1
F
0.000
0 .062
0.3/
6.0
0.003
3
12
F
0. 000
0 . 062
0.62
10.0
.
"i
13
1
0.000
0.062
1.13
1 fl. 0
0.009
J.
11
I
0 . 000
0.062
0.3 7
6.0
0.003
-1
i
r
0.000
0 . 1 25
1 . 7,1
10.5
,
-)
16
1
0 . O00
0 . 625
2. ft 1
'1.5
,
•!
1/
f
0 . 000
0.062
1 .4-1
23.0
0.011
•1
1 It
1"
0 . 000
0. 137
'1 .06
21.7
0.292
5
IV
F
0 . 000
0.062
A . 25
68.0
0.03 4
'j
20
1
0 , 000
0.062
1 . 25
20.0
0.01 0
7
21
F
0 . 000
0.062
0. 62
10.0
0.005
7
'ป '>
c
0.062
0.625
3.12
5.0
0.317
/
23
r
0 . 000
0.062
0.69
11.0
•
10
2-1
F
0 . 000
0.062
1 .3 ft
22.0
0.011
10
25
F
0 . 000
0.062
0.94
15.0
0.007
10
26
r
0.000
0 . 062
0. 9'1
15.0
0 . 007
1 0
27
i
0 . 000
0 .062
1 . 25
20.0
0.010
10
2fl
c;
0.06 2
0.062
1.56
25.0
0.016
Hot
No
0 . 006
Mii(v;5> ;;i(ii!
10 SI
I.US I
NA(6> Ml'i < -1 ;
SICvl> F'L<2ฃ

-------
Ill KCUlI.-iKCH I fj:> I I I UTt: GTKIirniKl ANAL. Y!> IUr'ilr,
VfiniVIIillHl. Ol'JtCV H.H.*, TAHLt (I -I ll:FK • li-lKJIII.U.E . O Cl.lJSTFK ป tvH.VIRIX)
TA1U.F. I KLfARYil ION UAH:; 31-,'illf!-l-i.2
'jnnfLiz rinit: c06t.^t<-030
NJ
o
Cn
Su-e (Micron)
Mas?. (P 1 c o ;i tc-n,)
ฃi rri
M.i I
fh
Orrt ObJ Sir IWPth Midth Length Re. t 10 Cli i ^i:,o t11 l- Hiiii'h > to 1 e mii.IwJ	I - t 1 A
Tot::) h3ss (P l co.1 r3in ) -
iotol Count	-
I .
.50 .
xo
29
C
0.062
0. 125
0.50
1.0
0.010
(
10
30
F
0.000
0.062
o. :j i
5.0
0.002
,
10
31
r
0 . 000
0 .062
0. 94
15.0
0.00 7
.
10
32
F
0 .000
0.062
0. so
tt.O
0.004
,
10
33
F
0.000
0.062
0. 37
6.0
0.003
,
10
34
f
0.000
0.062
1.19
19.0
0. 009
,
10
35
F
0. 000
0 . 062
0.62
10.0
,
0 . 00
o. o i:
NO ( I > 111"' * V >
SI (l: V ) IF(.|/.

-------


II
:i
ii
ii





m

ro
hn
CD
o
o
CD
0-
o
o
a*


n





T
! -
r*

o
o
o


o
ฉ
CD


II






o
f!
^ ,

o
o
l-".
'3"


o


II





—


—




—


-H


l?



r





_
—

--

—.




i:

Oi



















T.



C'-
O
r-j
ro

o








i;

ฆ u

-4
c
.'x
;j"

L*J
J*1
~
c

r^.

Z'
Ci


ii

ฆm.
r


•
-
-
.
•
•
-
•
•

•
-


ii

sj



j'J
o
cc
ซr
o
o
o
o
cc
C-

w


V



3
•u







.. ป—






n
n

<1
—
















i:





N
--
r;
ro
rv
c
OJ
rN


r-,
rr


ii








O
w
c
C
X1
T)
-
ฉ
r t









o




c

J,

C1
Z


ii


a

i3














ii


?n
JZ
C




•i

*
**

—ซ
—
*





ft

u














C-j i:


u
tr
L


X
-*1
CD
o
o
cc,
a

ฉ
r.;


w !1


&
il


-C'
y*3


o
c
r-j
T
c
ฉ
•c





>
a
r
•
•
•
•
•
•
-
•
•
•
•
•


w 11


ป-
T*
o

—t
f"*j
c-
ฉ







Z> ;i



















4

M
****.


c i;
-J

ft
















ฆZi M
Ifl


<*>
u
rv
^0

0^
ii".
o
o
u">
C-
ฉ
ฉ
ฉ


i:
<ซ.

&
*0

c.
c

c
r^3
o
o


ฉ
ฉ
r:


32 II
fc.

>
-M

•
•
ซ
•
•
~
•
•
.
•
•
•


C
Gj



•w
o
o
c
o
o
o
c
o

ฉ
ฉ
ฉ






















h-ป ||
(J


















^ il
CO




r-j
CN


rs
c


C;
ฉ




Ci ||
u




•
•


ซ
•


•
•





ซu


B
/-s
rs



rs
c


ซT
o




j|



ft
r
ซ>



w



Cj





LlI 11


-
U.

'O



c



j".





>JL !l


c
W





--









•L. Ii
IT.

01
C













0
3D


CO
r;


r;






0

u

Hj

--
—
0)


w
 ii
c







Ii

t—t

*v
• —
—

•ii
—i
TZ
T h
n





0

. j

0

c

•t


h-

m ii
0




c
.Zi

-H

-O


0



I/)
Z)
•c 1,
(J




l/>
*4
u






*^l







—
c~
ฆx ii
C


D
Cj")








CJ





ฉ




ฉ




ฉ

C'


ฉ

ฉ


ฆ
ฉ
ฉ


ฉ

r-j


Ii
tn
;i


ฃ









~
ฆ**


1 ซ-H
&



; i
u.
Gj
C




c

' \

ฉ
•f-


•J



1 CJ
•r*
*c
Q

w
U
•—


i r.
CI
-
•ซ

i ii".

w


i ฉ
mm

ซ•
ft

r.



! --
'7
c,
cr.

i i


IT*

1 >—<


r

1
>
w

W
. *0


e
•M


ฃ
•M

t-

z-
• —
^:-

•-<

L-
ฃ '




c









W




rz

c
ฃ
ฃ


U
w



c
C
•

u
cn

'J*

ฉ
ฉ
ฉ
o

ฉ
o
ฉ
ฉ

•
•
ป
-

—
—ซ
—
—
Tv





11



wi








(I
u



cj
Oj

(0

u.


i

<;

0;
i.
'0

0
ฃ
C
"j




u





j;
1
c


c,
—.
ฉ
c

•w


0
Ci
c.
c


.c



c
ii;
o


—
c
'^L
206

-------
LOZ

O
0
<0:i A
u
u
tj
ro

T a
3
II
137
—













1!
r











c

~~
II
rr
c
*











rr\
11


rr

O
"ฆ0
CD SJ C-
Lri

u
fv

!_


ii
*r

r.r;












1!












tO

0
1:
m

3^

7"
3-.
^ R R
R
"T
2
"T,
T,
r*


11
'Tl
r*
*









—

R
11
2>

r?











ป•
11
71

*T"

c
O
0
0
0
O
c

O
O

LH

11
2>
•x



•
• • •
•
•
•
•
•
Q

n
11
—j



0
<•
O C O

0
C?
O
O
T
f.
0
5!
1—1
rr

0
0-
u
O C' 0
O
0
SJ

O
r-
*
Cs
Ii
O
n
'Si
r*
10
SJ
0 0 0
O
0
L?i
O
O
D"

Lr
;i

—;
—i
(b










i.
Ii


w

0
O
0
0
0
O
0
O
O
O
ซT
3
Lr
1!

r-



•
• •
•
•
•
•
•
N--
w
1
1,
1/
1>
c
2
ป—
O
0 0 ป-
O
0
C-
O

a
n
O
1
-H


a
r j
CS
Cs cs r J
Cs
Cs
O-
Cs
rj

n
u
I.

2>
m
ir
cr
rj
r j t j lh
t-J
rj
tJ
tj
LH
zr
0
rj
:i
••












n

1,

—1
f,n









r
-V

Ii
O











<1


I'

:
*


O
1
0
0
O
0
O
O
<—
T


1





•
• •
•
•
•

•
Id


i;
(.0


M-
r j
U!
U O f j

Ul
CS
c
O
rซ-


j
r-,


n
c.f.
SJ
sj aป Ln

~-*
O
SJ
Cs



1
•n


0











i>

ซ•-

IA











11
1;
T
rr.









T.



U
II

CJ








u<




T.
z>
s
0
c*
CS LI O
SJ
Ln


CO
r+


II




•
•
.
•
-
•
•
-
**

CP
il

w
T>
II

0
0
0
0
0
0
O
0
r.r
C


t:

n
r-












;;

x



























2;

II












7T
Q.'

1'

T
!_r;









-1
tr.

II

II










iC
IT

;•

ฆr










ifi


1'

c

0
Q
0
• • •
•
0
O
0
0
n


Ii

2:

*
•
•


•
.
•
•
1*
"ry

i:



u

0


0
rj
0

M-
M-

I!

r1

u
• J
LI


0
O
0
'^,1

n

I-

rr-

LI
v.
NJ


rj
0
Sj


0



••











IU

i













-9

1:












2>
Cj

ii

1'










a
a

11

n










T

-------
in research iNsnrurt: structiirc analysis data
SINGLE SAMPLE SUMMARY TAKLES
SAMFLE cniiL: C0654S--032	TABLE I K'EF'ARAT ION jiATE! 01--SEP-02
Aerosol Object Count Arid Ca 1 cul at.fd Object Mass Characteristics



fkinibe r
Msse-






A v i? r a Li
e



Aetna 1
Poricen.
Coneen.
Avers
30
Ave r;
no
1 enfl th


Object

Object
(Ni.imbe r
(F'icoS ram
U i d t h

L tf i9 til

1 o Ui.j
th

f>t. r>ic t 'i re
lure
Coun t
F'er Cm M)
Pe r Co M)
< Mi c rori)
( M i c i
<)ii)
R ? t i . 93

All E i be r
7.
10449.

0.08
t
c
c
u
0.75
J
0.3 7
9.36
1
3. c;
IiiKidl e
C h r y s c> t i 1 e
1 .
1493.
37.9
0.12
i
0.00
1 . 25
I
0 . 00
10.00
>
0 . vO

Amph i bole
0.
0 .
0.0
0.00
:t
0.00
0.00
1
0.00
0 . 00
I
0 . \ '0

01 he r
0.
0.

0.00
1
0 .00
0.00
+
0 . 00
0 . 00
i:
u.vfl

All P'jridle
1 .
1493.

0.12
1
0.00
i. 25
1
0. 00
10.00
ฆ)
0 . vO
Matri::
I'h rsso tile
2.
2986 .
398.0
0.06
I
0.00
0.53
i
0.22
8.50
t
5.54

Amph l bo ] e
0.
0.
0.0
0.00
1
O.00
0 .00
1
0 . 00
0.0'.'
1
0 . • >0

Ht h r r
0.
0 .

0.00
i
0.00
0 .00
1
0 . 00
0 . 00
1
0 . • 0

All Matri':
-> (
2986 .

0.06
1
0 .00
0 .S3
1
0 . 22
n. v.o
1
3 . 5 A
amp 1 i
Collection
Air Vt> 1 • ปfii r>
11 c I - ns 11 A r f; a
Allied Ai f'ii
Reder-of i I Art'?
['ref n r ? t i on data
.00	Cu	H
.00	Sn	Cm
.00	'jn	Cm
.00	So	Cm
Or id l"ata
ori.-.( in: 0521112/11-3
Indi vidi.ial Grid Dr-f'ni r.'l
Muii.be r of Grid l.)i-eniri;j =
Filni Magnification
0.0000/,.' So
10
20000
Cm

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE ro
Ipn
ObJ
str
Pepth
Width
Length
Ratio
Chrasotile
AmF-hibole
1
1
F
0,000
0.062
0.62
10.0
0.005
•
1
2
F
0.000
0.062
0.50
8.0
0.004
•
3
3
F
0,000
0.062
0.62
10.0
0.005
•
4
4
F
0.000
0.062
0.31
5.0
*
•
5
5
F
0.000
0.062
0.31
5.0
•
~
6
6
F
0.000
0.062
0.56
9.0
0.004
•
7
7
F
0.000
0.062
4.37
70.0
•
0.040
9
8
F
0 .000
0.062
0.56
9.0
0.004

9
9
F
0.000
0.062
0.25
4.0
•
•
9
10
F
0.000
0.125
0.50
4.0
ซ
0.018
9
11
F
0.000
0.062
0.75
12.0
0.006
ป
10
12
F
0.000
0.062
0.44
7.0
0.003
•



Total Mass
X>
Total Count
1.
2.
0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COHEJ C06545-61	TABLE PREPARATION DATE I 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tupe
Number
Actual Concern
ObJect (Number
Count Per Cu M)
Mass
Concert •
(Ficogram
Per Cu M)
Average
Width
(Micron)
Fiber
Chrueotile
Anphibole
Other
7,
2.
3.
9689,
2768,
4152,
44,9
81.2
0.06 i
0.09 1
0.06 ฑ
0.00
0.04
0.00
Average
Length
(Micron)
0.58
2.44
0.29
0.10
2.74
0.04
Average
Length
To Uidth
Ratio
9.29 i 1.60
37.00 ฑ46.67
4.67 ฑ 0.50
All Fiber
12,
16609,
0.07 A 0.02 0.82 ฑ 1.13 12.75 ฑ18.22
Sample Collection and preparation Data
Grid Data
Air Volume	Q
Deposit Area =ฆ
Ashed Area	=
Redeposit Area =
1,00 Cu M
1.00 So Cซi
1.00 So Co.
1.00 So Cm
Grid IDt 052182/E-10 .
Individual Grid Opening = 0.000072 Sa Cm
Number of Grid Openings	= 10
Film Magnification	= 20000

-------
Ill RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
INDIVIDUAL UUJECT IiATA TABLE J
Str
Depth
Ulidth Length
Ratio
Chrusotile
An.Phibole
Anibid
Asbe patt X-Raa
1
1
F
0.000
0.062
0.50
8.0
~
0.005
•
• %
1
2
F
0.000
0.062
0.62
10.0
•

•
X
'ป
3
F
0.000
0.062
0.50
8.0
t

X
• ~
rt
A
F
0.000
0.062
0.37
6.0
0.003

•
• •
A
tj
C
0 • 062
0.625
1 .25
2.0
•

X
• •
A
6
F
0.000
0.062
0,94
15.0
•
0.009
•
t ซ
4
7
F
0.000
0.062
0.62
10.0
0.005

•
ป 1
A
0
F
0.000
0.062
0.69
11.0
0.005

•
• •
A
9
F
0.000
0.062
0.94
15.0
0.007

•
• •
5
10
C
0.062
0.500
0.62
1.2
•

X
• ซ
5
11
F
0.000
0.062
0.62
10.0
•

ป
X •
7
12
F
0.000
0.125
1.19
9.5
•

X
• •
a
13
F
0.000
0.062
0.50
8,0
ป

X
• ~
8
14
F
0.000
0.062
0.62
10.0
•

X
• ~
9
15
F
0.000
0.062
0.69
11.0
•
0.006
ซ
• •
10
16
F
0.000
0.062
0.62
10.0
0.005

•
• •



Total Mass

-------
iit research institute structure analysis HATA
SINGLE SAMPLE SUMMARY TAHLES
SAMPLE CODES C06545-6Q	TABLE PREPARATION PATE I 21-JUL-Q3
Aerosol Object Count Arid Calculated Object Mass Characteristics
Number	Mass
Actual Concert.	Concert.	Average	.Average
Object	Object (Number	(Picoaram	Uidth	Length
Structure Tupe	Count Per Cu M)	Per Cu M)	(Microri)	(Micron)
Fiber
Chrusotile
5 •
7232.
37.5
0.06
i
0.00
0.65

0.20

Amphibole
3.
4339.
28.3
0.06
i
0.00
0.71
i
0.22

Other
6.
B678.

0.07
ฑ
0.03
0.68
I
0.26

All Fiber
14.
20249.

0.07

0.02
0.67
i.
0.21
Cluster
Chrusotile
0.
0.
0.0
0.00
i.
0.00
0.00
i
0.00

AniPhibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
2.
2093.

0.56
i
0.09
0.94

0.44

All Cluster
2.
2093.

0.56

0.09
0.94
i
0.44
Average
Lenath
To Uidth
Ratio
10.40 ฑ 3.21
11.33 i 3.51
9.25 i 0.99
10.11 ฑ 2.40
0.00 * 0.00
0.00 ฑ 0.00
1.63 ฑ 0.53
1.63 i 0.53
Sample Collection arid Preparation Data
Grid l'ata
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00	Cu M
1•00	So Cm
1ซ00 So Cm
1 .00 Sa Cm
Grid IDS 060803/6-3
Individual Grid Opening	=
Number of Grid Openings	=
Film Magnification	=
0.000069 Sa Cm
10
20000

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F-FIBERr B=BUNDLEr C=CLUSTERr M-MATRIX)
TABLE P REPARATION DATE I 21-JUL-G3
SAMPLE CODE ฆ C06545-076 j, f <ฆ
tiizo (Micron)	Mass (F'icoslrani)
Grtl 				Not No .
Opn ObJ Str Depth Width Length	Ratio Chrusotile AniPhibole Ambid Asbe . patt X-Rau
2
1
F
0.000 0.062
0,50
8.0
•
,
•
X
3
o
F
0,000 0.062
0.44
7.0
•
0.004
•
•
3
3
F
0.000 0.062
0.94
15.0
•
o.oov
•
•
3
4
F
0.000 0.062
0.44
7.0
•
•
•
X
6
5
F
0.000 0.062*
0.62
10,0
~
0.006
•
t
a
6
F
0.000 0.062
0.62
10.0
•
0.006
•
•
10
7
F
0.000 0.062
0.37
6.0
•
•
•
X



Total Mass
(Fico3ram)=
0.000
0,024





Total Count

=
0.
4.
0.
3.

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-076	TABLE PREPARATION IiATE i 21-JUL-83
Aerosol Object Count Arid Calculated Object Mass Character!stics



Number
Mass


Average



Actual
Concen•
Concen.
Average
Average :
Length

Object

Object
(Number

-------
11"T RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INIUVIMJAL OBJECT liATA TAKLE 
TABLE PREPARATION HATE! 21-JUL-B3.
SAMPLE COHE: C0654S-85 y/?
Size (Micron)	Mass (Plcodran.)
Grd					Not . No ;
Of-ri ObJ Str Depth Width Lenath Ratio Chrusotile Amphibole An
-------
X XT RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COHEi C06545-85	TAKLE PREPARATION HATE: 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Ob.iect
Structure
Tape
Number
Actual Concern
Object (Number
Count per Cu M)
Mass
Concert.
(Picogram
per Cu M)
Average
Width
(Mic ron)
Average
Length
(Micron)
Average
Length
To Width
Rati o
F iber
(Jhrusot i le
0.
0.
0.0
0,00
i
0.00
0.00
i
0.00
0.00
X
0.00

Anphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00

0.00

Other
1.
1493.

0.06
i
0.00
0.44
1
0.00
7.00
X
0.00
All F i be r
1.
1493.
0.06 ฑ 0.00
0.44 i 0.00
7.00 ฑ 0.00
Sample Collection and Preparation Data	Grid Data
Air Volume =
1 .00
Cu
M
Grid IDS 060883

Iieposit Area =
1.00
So
Co.
Individual Grid Opening =
0.000067 So Cm
Ashed Area =
1.00
So
Cm
NuD.ber of Grid Openings f
10
Redeposit Area ฆฆ =
1.00
So
Cm
Film Magnification =
20000

-------
o
rs
i
m

ฉ
o
ro
(N
S3
m
o
CD
CD
in
ro
in
oป
<
M
cv
0

in
ro
0
Ol
cj
CJ
00
ss
03
W
CJ
S3
>0
-0
S3
CJ
S3
>0
S3
S3
S3
rs
-O S3
S3
S3
S3
ฉ

**

H
ฉ
T"ป
CJ
•H
ฉ
ฉ
o
ฉ

ฉ
ฉ
ฉ
ฉ ฉ
ฉ
m
ฉ ฉ
ฉ
ฉ
ฉ



•




















ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
m
CJ
ฉ
M
ฉ
Cl
CJ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
CJ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
CJ
S3
ฉ
^0
ฉ
>0
-0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
S3
ฉ ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
























ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
u.
;c
U
Li.
a
Li.
ฃ
u
u.
Li.
u.
li.
u_
u.
u.
u.
U.
li. U.
U.
u
U. U.
li.
U.
U.
t
U*)
-0
rs
CO
0*
ฉ

CJ


in
S3
IS
CO
0*
ฉ
C J
m
 S3
rs
CO
0*







H
•H






H
Cj
CJ CJ
CJ
CJ
CJ CJ
CJ
CJ
CJ
i n n rn ro ro w n n w n fo w m w n t ^ t nw
217

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
.INDIVIDUAL OBJECT DATA TADLE 
TAHLE PREPARATION DATE! 21-JUL-83
SAMPLE CODE! C06545-73



Size
(Micron)


Mass (F'icodram)


Grd









Not . No
Opn
ObJ
Str
Depth
Width Length
Ratio
Chrysotile
Aniphibole
Anibid
Asbe Patt X-Rau
5
30
F
0.000
0.062
0.62
10.0
0.005

•
• ป
5
31
B
0.125
0.250
5.62
22.5
0.457

ซ
• ป
5
32
F
0.000
0.062
0.50
8.0
0.004

•
• •
5
33
F
0.000
0.125
1.06
8.5
•
0.039
ซ
• 1
6
34
F
0.000
0.062
0.69
11.0
0.005

•
• •
6
35
F
0.000
0.062
0.31
5.0
0.002

•
• •
6
36
F
0.000
0.062
1.06
17.0
.

•
A *
7
37
F
0.000
0.062
0.37
6.0
0.003

•
• •
8
38
F
0.000
0.062
1.19
19.0
0.009


• •
8
39
C
0.062
0.250
0.56
2.3
0.023


• •
8
40
F
0.000
0.062
0.25
4.0
0.002

•
• •
8
41
D
0.062
0.187
3.44
18.3
0.105

•
• •
8
42
C
0.062
0.312
0.75
2.4
•


• •
9
43
F
0.000
0.062
0.44
7.0
~
0.004
•
• ~
10
44
F
0.000
0.062
2.56
41 .0
0.020

•
• •
10
45
F
0.000
0.062
2.81
45.0
0. 022

•
• •
10
46
F
0.000
0.062
0.50
8.0
0.004

•
• •
10
47
6
0.062
0.187
0.81
4.3


X
• *
10
48
B
0.062
0.12b
0.87
7.0
•

X
• i



Total Mass

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-73	TABLE PREPARATION DATE! 21-JUL-83.
Aerosol Object Count Arid Calculated Object Mass Characteristics
Number	Mass	Average
Actual Concern	Concert.	Average _	^ Average .	Length
Object Object (Number	(Picogram	Uidth	Length	To (Jidth
Structure Tape Count F'er Cu M)	Per Cu M)	(Micron)	(Micron)	Ratio
Fiber Chrusotile	25.	35765.	344.5
Amphibole	4.	5722.	133.3 0.09 ฑ 0.04	0.89 ฑ 0.31	9.88 ฑ 3.52
Other	7.	10014.	0.06 ฑ	0.00	0.67 ฑ 0.25 10.71 i 3.99
All Fiber	36.	51502.	0.07 ฑ	0.02	0.82 ฑ 0.60	12.03 ฑ 9.51
0.07
i
0.02
0.86

0.70
12.74
0.09
i
0.04
0.89
ฑ
0.31
9.88
0.06
i
0.00
0.67
1
0.25
10.71
Bundle
Chrasotile
3.
4292.
858.2
0.21

0.04
3.44
i:
2.19
15.83
ฑ
8.21

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
2.
2861.

0.16
i
0.04
0.84
ฑ
0.04
5.67
i
1 .89

All Bundle
5.
7153.

0.19
ฑ
0.04
2.40
i
2.10
11.77
i
0.10
Cluster
Chrasoti1e
2.
2861.
69.0
0.19

0.09
0.91
ฑ
0.49
6.13
i
5.48

Amphibole
0.
0.
0.0
0.00

0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
3.
4292.

0.31
ฑ
0.06
1.02
i
0.32
3.4 7
i
1 .76

All Cluster
5.
7153.

0.26
i
0.09
0.98
ฑ
0.34
4.53
i
3.34
Matrix Chrusotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00
Amphibole
0.
0.
0.0
: 0 . 00
ฑ
0.00
0.00

0.00
0.00
ฑ
0.00
Other
2.
2861 .

0.41
i
0.31
0.94
ฑ
0.44
2.67
ฑ
0.94
All Matrix
2.
2861.

0.41
ฑ
0.31
0.94
i
0.44
2.67
ฑ
0.94
Sample Collection arid Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00	Cu M
1.00	So Cm
1 .00	So Cm
1 .00	So Cm
Grid Data
Grid IDS 060883/C-4
Individual Grid Opening =
Number of Grid Openings =
Film Magriification	=
0.000070 So Cm
10
20000

-------
IIT RLStARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT MATA TABLE (F=F I HERi B=BUNDLEป C=CLUSTERr M=MATRIX)
TABLE PREPARATION HATE! 21-JUL-83
SAMPLE COKE: C06545-074
Size (Micron)	Mass (Picoaram)
Grd					Not • No
Opn ObJ Str I'epth Width Lenath Ratio Chrasotile Aitiphibole ; An.bia As be _ Patt X-Raa
2
30
F
0.000
0.125
1.69
13.5
•
•
X
i
31
F
0.000
0.062
1.13
18.0
0.009
•
ป ~ ~
o
32
F
0.000
0.062
0.87
14.0
0.007
•
ป ~ •
9
33
F
0.000
0.062
0.37
6.0
•
•
A ~ ~
•>
34
F
0.000
0.062
1 .06
17.0
0.008
•
• • •
3
35
C
0. 125
0.250
1 .69
6.8
0.137
•
ซ • •
3
36
M
0.062
0.062
0.75
12.0
0.008
•
• ป ป
4
37
C
0.062
0.312
1 .25
4.0
•
•
X • •
4
38
F
0.000
0.062
0.50
8.0
0.004 ;
f
• • •
4
39
F
0.000
0.062
0.62
10.0
.
ซ
X • •
4
40
F
0.000
0.062
1 .44
23.0
0.011

~ ~ ซ
4
41
F
0.000
0.125
0.69
5.5
0.022
•
• • •
4
42
F
0.000
0.062
0.75
12.0
0.006
•
ซ • •
5
43
C
0.062
0.187
0.62
3.3
,
•
X • ป
5
44
F
0.000
0.062
0.62
10.0
0.005
•

5
45
C
0.062
0.187
0.62
3.3
0.019 ;

ป • •
5
46
F
0.000
0.062
0.44
7.0
0.003
•
• ป •
5
47
F
0.000
0.062
0.56
9.0
0.004
•
~ ~ •
5
48
F
0.000
0.062
1.13
18.0
0.009 :
•
ซ ~ ป
j
49
M
0.062
0.062
1 .25
20.0
0.013
•
ซ ซ ซ
5
50
M
0.062
0.062
0.94
15.0
0.010
ซ
~ • ~
b
51
C
0.062
0.625
1 .25
2.0
•
•
X ป •
5
52
F
0.000
0.062
0.87
14.0
0.007
ซ

5
53
M
0.062
0.062
0.62
10.0
0.006

~ ~ ~
5
54
F
0.000
0.062
0.37
6.0
•
0.003
• • •
5
55
M
0.062
0.062
0.81
13.0
0.008
•
~ ~ ~
5
56
F
0.000
0.062
0.69
11.0
0.005
•
• • •

57
F
0.000
0.062
0.44
7.0
0.003
*
• • •
5
58
F
0.000
0.062
0.56
9.0
0.004

• • 1

-------
Ill RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERr B=BUNDLEป C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE! 21-JUL-83
SAMPLE CODE! C06545-074
Size (Micron)	Mass (Picodrani)
Gpd		•				Not No
Opn ObJ Str Depth Width Length Ratio Chrusotile Amphibole Arobid Asbe F'att X-Ray
5
59
F
0.000
0.062
0.31
5.0
0.002
• • • •
5
60
C
0.062
0.625
1.25
2.0
0.127
• ~ • ป
5
61
F
0.000
0.062
0.56
9.0
0.004
• • • •
5
62
F
0.000
0.062
1.13
18.0
ป
• X • •
5
63
C
0.062
0.625
0.62
1.0
0.063
• • • •
5
64
F
0.000
0.062
0.81
13.0
0.006
• ~ ~ ~
5
65
F
0.000
0.062
0.94
15.0
0.007
• ~ ป •
5
66
F
0.000
0.062
1 .81
29.0
0.014 :
• • • •
5
67
F
0.000
0.062
0.56
9.0
0.004
1 • • ซ
5
68
F
0.000
0.062
0.56
9.0
0.004
ซ ~ • •
6
69
F
0.000
0.062
0.81
13.0
0.006
• ซ • •
6
70
F
0.000
0.062
0.56
9.0
.
0 * 005 • • •
6
71
F
0.000
0.062
0.94
15.0
0.007
• • • •
6
72
F
0.000
0.062
0.87
14.0
0.007
• ~ ~ ~
6
73
M
0.125
0.250
2.00
8.0
0.162
1 • • •
7
74
F
0.000
0.062
0.37
6.0
0.003 :
• ~ ป ~
7
75
F
0.000
0.062
0.25
4.0
0.002
• .~ ~ ~
7
76
B
0.062
0.187
1.25
6.7
0.038
1 ~ ~ ป
7
77
B
0.062
0.250
1 .87
7.5
0.076
• • • •
7
78
B
0.062
0.187
1 .38
7.3
•
• X • •
7
79
C
0.062
0.187
0.62
3.3
0.019
• ~ ~ ~
7
BO
rt
0.062
0.062
0.62
10.0
•

7
81
M
0.062
0.062
1 .31
21.0
0.013
• • • •
7
82
F
0.000
0.062
0.50
8.0
0.004
• • • •
7
83
F
0.000
0.062
0.75
12.0
0.006
• • • •
7
84
F
0.000
0.062
0.44
7.0
0.003
• • • •
7
85
M
0.062
0.062
0.50
8.0
ซ
• X • •
7
86
F
0.000
0.062
0.62
10.0
0.005
• ~ ~ ซ
7
87
F
0.000
0.062
0.75
12.0
0.006
• * • •

-------
11T RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-074	TABLE PREPARATION PATE! 21-JUL-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concern
Object (Number
Count Per Cu M)
Mass
Concen.
(Pi cod rani
Per Cu M)
Average
Uidth
(Mic ron)
Average
Length
(Mic ron)
Average
Leniith
To Width
Ratio
Fiber
Chrusotile
60.
114504.
766.8
0.06
ฑ
0.01
0.74
ฑ
0.49
11 .57

7.81

Amphibole
3.
5725.
27.4
0.06
1
0.00
0.52
ฑ
0.13
8.33
i
2.08

Other
9.
17176.

0.07
ฑ
0.02
0.78
ฑ
0.44
11.06
ฑ
4.59
All Fiber
137405.
0.07 ฑ 0.01
0.74 ฑ 0.47
11.37 i 7.3:

Bundle
Chrusotile
3.
5725.
872.2
0.27
ฑ
0.10
2.92
i
2.37
9.72
ฑ
4 .59
to

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00
to

Other
1 .
1908.

0.19
i
0.00
1 .38
ฑ
0.00
7.33
i
0.00
All Bundle	4.	7634.	0.25 1 0.09 2.53 ฑ 2.08 9.13 ฑ 3.93
Cluster
Chrusoti1e
5.
9542.
697.8
0.37

0.23
0.96
ฑ
0.49
3.28
i
2.17

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00

Other
8.
15267.

0.30
A
0.15
0.77

0.31
2.80
ฑ
1 .21

All Cluster
13.
24809.

0.33
i
0.18
0.84
i
0.38
2.98
ฑ
1 .58
Matrix
Chrusotile
12.
22901.
491.8
0.08
i
0.05
0.95
i
0.42
13.17
ฑ
4.47

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
2.
3817.

0.06
i
0.00
0.56
ฑ
0.09
9.00
ฑ
1.41

All Matrix
14.
26718.

0.08
ฑ
0.05
0.89
i
0.41
12.57
ฑ
4.40
Sample Collection and Preparation Data
Grid Pata
Air Volume	=
Deposit Area	=
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 So Cm
1 • 00 Set Cm
1•00 So Cm
Grid IDS 0&0883/C-5
Individual Grid Openind =
Number of Grid Openings =
Film MaSnification	=
0.000065 Sa Cm
8
20000

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIDER'ป B=BUNDLE. C=CLUSTERr M=MATRIX>
TABLE PREPARATION DATE! 21-JUL-83
SAMPLE CODE! C06545-081
Size (Micron)	Mass (PicoSrani)
Grd					Not No
Opn ObJ Str Depth Width Length Ratio Chrasotile AmPhibole Ambia Asbe F'att X-Ray
3
1
F
0.000 0.062
2.50
40.0
0.020
•

• •
3
9
F
0.000 0.062
0.31
5.0
0.002
•

ซ ป
3
3
F
0.000 0.125
0.56
4,5
0.018
•

• ซ
4
4
F
0.000 0.062
0.44
7.0
•
•

• X
4
t>
F
0.000 0.062
0.31
5.0
0.002
•
•
• ซ
5
6
F
0.000 0.062
0.25
4.0
0.002
ป
•
• *
5
7
F
0.000 0.062
1.94
31 .0
0.015
•
•
• ~
5
8
F
0.000 0.062
0.62
10.0
0.005 :
•
•
• •
5
9
C
0.062 0.187
0.56
3.0



• •
5
10
F
0.000 0.062
0.56
9.0
0.004

•
• •
5
11
F
0.000 0.062
0.62
10.0
0.005
•
•
• •
5
12
F
0.000 0.062
0.37
6.0
0.003
•
ซ
~ •
6
13
F
0.000 0.062
0.75
12.0
0.006
•
•
• •
6
14
F
0.000 0.062
0.62
10.0
•
0.006
•
• ~
6
15
M
0.062 0.062
0.50
8.0
0.005
•
•
t •
8
16
F
0.000 0.062
1.06
17.0
0.008
•
•
• •
8
17
F
0.000 0.125
0.44
3.5
•
0.016
•
• •
8
18
C
0.062 0.375
0.62
1.7
./ ~
•
X
• •
8
19
C
0.062 0.437
0.62
1 .4
•
•
X
ซ •
10
20
F
0.000 0.062
0.75
12.0
0.006
•
•
• *



Total Mass
(F-ico3ram) =
0.103
0.022





Total Count

=
14.
2,
3.
0. 1 .

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
sample: code: CO6545-081	table preparation hate::2i-jul-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
to
Object
Structure Tape
Actual
Object
Count
Number
Concert.
(Number
Per Cu K)
Mass
Concert •
(F'icodram
Per Cu M)
AveraSe
Width
(Micron)
Average
Lensith
(Micron)
Average
Lendth
To Uidth
Ratio
Fiber
Chrysoti le
13.
20312.
153.5
0.07
i
0.02
0.82
ฑ
0.67
12.73
ฑ10.93

Apiphibole
2,
3125.
34.2
0.09
i
0.04
0.53
ฑ
0.13
6.75
i
4.60

Other
1 .
1562.

0.06
i
0.00
0.44
ฑ
0.00
7.00
I
0.00

All Fiber
16.
25000.

0.07
i
0.02
0.76
i
0.61
11 .63
ฑ10.13
Cluster
Chrusotile
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00

0.00
0.00
ฑ
0.00

Other
3.
4687.

0.33
t
0.13
0.60
i
0.04
2.03
ฑ
0.85

All Cluster
3.
4687.

0.33
ฑ
0.13
0.60
ฑ
0.04
2.03
ฑ
0.85
Matrix
Chrysotile
1 .
1562.
7.9
0.06
i
0.00
0.50
ฑ
0.00
8.00
ฑ
0.00

Amphi bole
0.
0.
0.0
0.00

0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

All Matrix
1 .
1562.

0.06
ฑ
0.00
0.50
ฑ
0.00
8.00
ฑ
0.00
Sample Collection and Preparation Data
Air Volume	=
Iieposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1•00 So Cm
1•00 So Cm
1ซ00	So Cm
Grid Data :
Grid in: 060883/E-2
Individual Grid Opening =
Number of Grid Openings =
Film MaSnification	=
0.000064 Sci Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FII B=BUNDLEป C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE S 21-JUL-83
SAMPLE CODE! C06545-075 }V ^
Size (Micron)	Mass (Picodrsni)
G rd						Not . No
Ofti ObJ Str Depth Width Lendth Ratio Chrysotile Amphibole An.bia Asbe F'att X-Raa
1
1
B
0.062
0.250
4.37
17.5
0.178
• • •
1
9
F
0.000
0.062
0.37
6.0
0.003
~ ซ ~
1
3
C
0.062
0.562
0.62
1.1
0.057

1
4
F
0.000
0.062
0.50
8.0
0.004
. ~ ~
1
5
C
0.062
0.625
1.25
2.0
0.127
• • ซ
1
6
F
0.000
0.062
0.75
12.0
0.006
ป . •
1
7
F
0.000
0.062
0.69
11 .0
0.005
• • •
1
8
F
0.000
0.062
0.62
10.0
0.005
~ ~ •
1
9
F
0.000
0.062
0.37
6.0
0.003
• . •

10
B
0.125
0.250
0.94
3.7
0.076
• ป •
2
11
F
0.000
0.062
0.75
12.0
0.006

9
12
F
0.000
0.062
0.44
7.0
0.003
< ป i
O
13
M
0.062
0.062
1 .25
20.0
0.013
. . ซ

14
F
0.000
0.062
1 .19
19.0
0.009
* • •
n
15
F
0.000
0.062
0.31
5.0
0.002
• • •
2
16
M
0.125
0.312
1 .31
4.2
0.133
~ ~ ~
2
17
M
0.062
0.062
0.50
8.0
0.005
• • •

18
F
0.000
0.062
0.25
4.0
• ซ
X t ซ
n
19
F
0.000
0.062
0.62
10.0
0.005
ซ • ป
9
20
F
0.000
0.062
1.13
18.0
0.009

*:ป
21
F
0.000
0.062
0.69
11.0
0.005
• • •
2
*?o
M
0. 187
1.250
3.75
3.0
2.285
ซ . •
2
23
M
0.062
0.062
1.44
23.0
0*015 •
• • •
o
24
F
0.000
0.062
0.44
7.0
0ป003
• .
2
25
C
0.125
1 .250
3.12
2.5
1 .270
. • •
3
26
F
0.000
0.062
0.69
11.0
0.005 ;
ป • •
3
27
h
0.062
0.125
0.62
5.0
0.013 .
• ป ซ
3
28
C
0.125
0.250
1.13
4.5
0.091

3
29
H
0.062
0.312
0.62
2.0
ป •
x . ฆ ' .

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 21-JUL-03
SAMPLE CODE! C06545-075
Size (Micron)	Mass (Picograni)
G rd					Not No
Opn ObJ Str Depth Width Length Ratio Chrwsotile Amphibole Ambi3 Asbe ' Patt X-Rau
3
30
M
0.062
0.062
0.69
11.0
0.007
•
• •
3
31
F
0.000
0.062
0.81
13.0
•
•
X
3
32
M
0.062
0.062
0.37
6.0
0.004
•
• • •
3
33
F
0.000
0.062
0.56
9.0
0.004
•
* • ป
4
34
C
0.062
0.125
0.62
5.0
•
•
X • •
4
35
B
0.062
0.187
4.06
21 .7
0.124
•

4
36
F
0.000
0.062
1 .06
17.0
0.008
•
• • •
4
37
F
0.000
0.187
1 .19
6.3
•
0.098
• ซ ซ
4
38
C
0.062
0.375
0.75
2.0

•
X • •
4
3?
F
0.000
0.062
0.62
10.0
0.005
•
• • •
4
40
F
0.000
0.062
0.69
11.0
0.005
ป
ป • •
4
41
F
0.000
0.062
0.56
9.0
0.004
•
• • t
4
42
F
0.000
0.062
1.87
30.0
0.015
ป
1 * ซ
5
43
C
0.125
1 .875
2.50
1.3
,
•
X • •
5
44
F
0.000
0.062
0.56
9.0
0.004
ซ
~ • •
5
45
F
0.000
0.062
0.44
7.0
0.003
ซ
• * •
b
46
F
0.000
0.062
0.62
10.0
0.005
ซ
• • •
5
47
F
0.000
0.062
1 .25
20.0
0.010
•
• • •
5
48
M
0.062
0.375
0.94
2.5
0.057
*
ซ ป ป
j
49
B
0.125
0.625
4.13
6.6
0.838

• • •
5
50
F
0.000
0.062
1.75
28.0
0.014
•
• • •
5
51
F
0.000
0.062
0.07
14.0
0.007
ป
~ ป •
5
52
F
0.000
0.062
0.75
12.0
,
•
X ~ •
5
53
F
0.000
0.062
0.50
8.0
,

x • •
5
54
M
0.062
0.062
0.62
10.0
0.006

# ป ป
Li
55
F
0.000
0.125
1.06
8.5
0.034

• • •
5
56
B
0.062
0.187
1 .75
9.3
0.053
•
• • •
5
57
F
0.000
0.062
0.62
10.0
0.005
•
• • ~
5
50
F
0.000
0.062
0.94
15.0
•
•
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT HAT A TABLE 
6
69
B
0. 125
0.312
1 .25
4.0
• •
A ป
•
6
70
F
0.000
0.062
0.94
15.0
0.007
• •
•
6
71
F
0.000
0.125
1.25
10.0
0.040
• •
•
6
72
F
0.000
0.062
0.56
9.0
0.004
• •
•
6
73
h
0.062
0.062
0.69
11.0
0.007
• t
ซ
6
74
F
0.000
0.062
2.50
40.0
0.020
• •
•
6
75
F
0.000
0.062
0.87
14.0
0.007
• •

6
76
F
0.000
0.062
0.94
15.0
• ~
A •
•
6
77
F
0.000
0.125
0.69
5.5
0.022
• •
•
6
70
F
0.000
0.062
0.50
8.0
0.004
• ซ
•
6
79
F
0.000
0.062
0.69
11.0
0.005
• •
•
6
80
F
0.000
0.062
0.50
8.0
, ,
A •
•
6
Ell
F
0.000
0.062
0.94
15.0
0.007
• ~
•
6
82
F
0.000
0.062
0.62
10.0
0.005
• •
•
6
83
F
0.000
0.125
1.69
13.5
0.054
• •
•
6
84
F
0.000
0.062
0.25
4.0
0.002
• ซ
t
6
85
F
0.000
0.062
1.25
20.0
0.010
• •
•
6
86
F
0.000
0.062
0.37
6.0
0.003
ซ ซ
ป
6
87
M
0.062
0.062
0.56
9.0
0.006
• •
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION HATE! 21-JUL-03
SAMPLE CODE! C06545-075
Size (Micron)	Mass (Pieodram)
Grd					Not . No
Opn ObJ Str Depth Uidth Length Ratio Chrysotile Aniphibole Ambid Asbe Patt X-Ray
6
88
F
0.000
0.062
1.44
23.0
0.011
• • •
6
89
C
0.062
0.625
3.12
5.0
• •
X
6
90
F
0.000
0.062
0.37
6.0
0.003
• • •
7
91
F
0.000
0.062
3.75
60.0
0.030
• • •
7
92
F
0.000
0.062
0.56
9.0
0.004
• • •
7
93
F
0.000
0.062
1 .00
16.0
0.008
• • •
7
94
F
0.000
0.062
0.25
4.0
0.002
• • •
7
95
F
0.000
0.062
2.13
34.0
0.017
• ซ •
7
96
F
0.000
0.062
0.62
10.0
0.005 .
• • •
7
97
F
0.000
0.062
0.62
10.0
0.005
• • •
7
98
F
0.000
0.062
0.94
15.0
0.007
• ซ •
8
99
F
0.000
0.062
0.62
10.0
, ,

8
100
F
0.000
0.062
0.62
10.0
0.005
• • •
8
101
F
0.000
0.250
0.87
3.5
0.112
• ซ ซ
8
102
F
0.000
0.062
0.50
8.0
0.004
• • ซ
8
103
C
0.062
0.312
0.62
2.0
, .
X • •
8
104
M
0.062
0.312
0.62
2.0
0.032
1 ~ •
8
105
C
0.062
0. 125
0.69
5 • 5
, .
X • •
8
106
F
0.000
0.062
0.31
5.0
0.002
• • 1
8
107
F
0.000
0.062
0.56
9.0
0.004

8
108
M
0.062
0.062
0.62
10.0
0.006

8
109
C
0.062
0.187
1.19
6.3
• •
X • t
8
110
M
0.062
0.062
0.62
10.0
0.006
• • •
Total Mass
Total Count
(Picodram)=
6.064	0.101
89.	2.	19. 0. 0.

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE I C06545-075	TABLE PREPARATION DATE! 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass
Actual Concen.	Concern	AveraSe	Average
Object	Object (Number	(F'icodram	Width	Lenath
Structure Type	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)
Fiber
Chrasotile
64.
120373.
1207.7
0.07
i
0.03
0.83
i
0.58

Amphibole
2.
3762.
190.4
0.12
i
0.09
0.75
i
0.62

Other
9.
16927.

0.06
ฑ
0.00
0.62
ฑ
0.26

All Fiber
75.
141062.

0.07

0.03
0.81
ฑ
0.55
Bundle
Chrasotile
5.
9404.
2386.6
0.30
i
0.10
3.05
i
1 .59

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00

0.00

Other
1 .
1881.

0.31
i
0.00
1 .25
ฑ
0.00

All Bundle
6.
11285.

0.30
ฑ
0.16
2.75

1 .60
Cluster
Chrasotile
4.
7523.
2905.9
0.67
ฑ
0.42
1 .53

1 . 10

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
8.
15047.

0.49
i
0.58
1 .29
ฑ
0.97

A11 Cluster
12.
22570.

0 • 55
i
0.52
1 .37

0.97
Mat ri x
Chrasotile
16.
30093.
4904.5
0.20
i
0.30
0.95
ฑ
0.81

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00

Other
1 .
1801 .

0.31
i
0.00
0.62
ฑ
0.00

All Matrix
17.
31974.

0.20
ฑ
0.29
0.93
i
0. 78
Average
Lenath
To Width
Rati o
12.58 1 9.20
5.67 i 0.94
9.89 i 4.23
12.07 i 8.71
11.77 ฑ 7.55
0.00 ฑ 0.00
4.00 ฑ 0.00
10.47 ฑ 7.46
2.53 I 1.43
0.00 ฑ 0.00
3.72	ฑ 1.93
3.32 i 1.81
8.73	ฑ 5.88
0.00 ฑ 0.00
2.00 ฑ 0.00
8.34 i 5.93
Sample Collection and Preparation Data
Grid Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00	Cu	M
1.00	So	Cm
1.00	Sa	Cm
1.00	So	Cm
Grid ID! 060883/D-l
Individual Grid Opening =
Number of Grid Openings	=
Film Magnification	=
0.000066 So Cm
8
20000

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE! 21-JUL-83
SAKPLE CODE! C06545-077 V;ฐ



Size
(Micron)


Mass (Pieoaram)



tird


	
	
	




Not
No
Opr.
ObJ
Str
Depth
Width Length
Ratio
Chrysotile
Aniphibole
Aflibi3
Asbe
F'att X-Rau
1
1
F
0.000
0.062
0.37
6.0
0.003

~
•
•
1
2
F
0.000
0.062
0.25
4.0
•

•
•
X
2
3
F
0.000
0.062
0.50
8.0
•

X
•
>
3
4
M
0.062
0. 125
1 .56
12.5


X
•
•
3
5
F
0.000
0.062
0.69
11.0
0.005

•
•
•
3
6
F
0.000
0.062
0.94
15.0
0.007

,
•
•
3
7
F
0.000
0.062
0.50
8.0
0.004

•
•
•
3
8
M
0.062
0.062
1.06
17.0
0.011

•
•
•
3
9
C
0.062
0.250
1.38
5.5
•

X
•

4
10
F
0.000
0.062
0.62
10.0
0.005

•
•
*
4
11
F
0.000
0.062
0.62
10.0
0.005

•
•
•
4
12
C
0.187
4.375
8.12
1 .9
17.329

•
•
•
4
13
F
0.000
0.062
0.50
8.0
.

•
•

4
14
C
0.062
0.375
0.75
2.0
,

X
•
•
4
15
M
0.062
0.062
0.56
9.0
,

X

•
5
16
F
0.000
0.062
0.44
7.0
0.003

•

•
5
17
F
0.000
0.125
1.06
8.5
t

•

•
5
18
F
0.000
0.062
0.37
6.0
0.003



•
5
IV
B
0.062
0.250
1.56
6.2
0.063

.
•
ซ
5
20
M
0.062
0.437
0.75
1.7
•

X
•
•
5
21
M
0.062
0.125
0.62
5.0


X
•

5
*>*?
F
0.000
0.062
0.94
15.0
0.007

.
•
•
5
23
F
0.000
0.062
1 .13
18.0
0.009

.
•
•
5
24
C
0.062
0.437
0.56
1.3
,

X
•
•
5
25
F
0.000
0.062
0.31
5.0
0.002

ป
•
•
6
26
F
0.000
0.062
0.62
10.0

0.006

•
t
7
27
F
0.000
0.062
0.56
9.0
0.004

,

•
7
28
F
0.000
0.062
3.69
59.0
0.029

•
•

7
2?
F
0.000
0.125
0.81
6.5
t
0.030
•
•


-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TA6LES
SAMPLE CODE: C06545-077	TAHLE PREPARATION HATE! 21-JUL-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
K)
U)



Number
Mass






Average



Actual
Conceri.
Concert.
Average
Average
Lenath


Object

Object
(Number
(Picoaram
Width

Lenath

To Width

Structure
Type
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron)
Ratio


Fiber
Chrysotile
19.
29687.
182.3
0.06

0.00
0.77
ฑ
0.74
12.32
ill.89

Amphibole
& •
9375.
105.2
0.08
ฑ
0.03
0.59
i
0.24
7.83
ฑ
4.13

Other
J ซ
7812.

0.08
i
0.03
0.55
i
0.30
7.10
ฑ
1 .82

All Fiber
30.
46875.

0.07
i
0.02
0.70
i
0.61
10.55
ฑ
9.84
Bundle
Chrysotile
1 .
1562.
99.2
0.25
i
0.00
1 .56
ฑ
0.00
6.25
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i
0.00

All Pundle
1 .
1562.

0.25
Jr
0.00
1 .56
ฑ
0.00
6.25
I
0.00
Cluster
Chrysotile
3.
4687.
27275.1
1 .71
i
2.31
3.54
ฑ
4.02
3.54
i
3.45

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
1
0.00
0.00
i
0.00

Other
4 .
6250.

0.58
ฑ
0.45
0.98
i
0.39
2.45
ฑ
2.08

All Cluster
7.
10937.

1.06
i
1 .50
2.08
1
2.71
2.91
t
2.54
Matrix
Chrysot ile
o,
3125.
34.7
0.06
i
0.00
1 .09
i
0.04
17.50
i
0.71

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
51
7812.

0.16
i
0.16
0.82
i
0.42
7.64
i
4 .28

All Matrix
7.
10937.

0.13
i
0.14
0.90
t
0.37
10. 46
ฑ
5.95
Sample Collection and Preparation Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cปj	M
1 i 00 So	Cm
1 . 00 So	Cdi
1.00 Sq	Cm
Grid Data
Grid ID: 060883/D-3
Individual Grid Openina =
Number of Grid Openings	=
Film Maanification	=
0.000064 So Cm
10
20000

-------
11T RESEARCH INSTITUTE STRUCTURE ANALYSIS FATA
INDIVIDUAL OBJECT DATA TADLE (F=FIBERr B=I
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COPE! C06545-078	TABLE PREPARATION HATE: :21-JUL-83 .
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Type
Number
Actual Concert.
Object (Number
Count Per Cu M)
Mass
Concert •
< Pi coarani
Per Cu M)
Average
Width
(Micron)
Average
I.ensth
(Micron)
Average
Length
To Width
Ratio
Fiber
Chrysotile
4 .
5877.
39.6
0.06
ฑ
0.00
0.84
ฑ
0.38
13.50
i
6.14

Amphi bole
8.
11754.
218.0
0.09
i
0.05
0.68
ฑ
0.21
8.31
i
3.99

Other
3.
4408.

0.06
ฑ
0.00
0. 42
i
0.29
6.67
i
4.62

All Fiber
15.
22039.

0.08
i
0.04
0.67
i
0.30
9.37
ฑ
5.11
Bundle
Chrysoti1e
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
4
0.00
0.00
1
0.00
0.00
ฑ
0.00

Other
1 .
1469.

0.25
ฑ
0.00
2.30
ฑ
0.00
9.50
i
0.00

All Bundle
1 .
1469.

0.25
ฑ
0.00
2.38
ฑ
0.00
9.50
i
0.00
Cluster
Chrysotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
1
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
1.
1469.

0.25
i
0.00
2.50
ฑ
0.00
10.00
i
0.00

All Cluster
1 .
1469.

0.25
ฑ
0.00
2.50
ฑ
0.00
10.00
i
0.00
Matri::
Chrysotile
1 .
1469.
335.8
0.37

0.00
1.87
i
0.00
5.00
i
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00

Other
0.
0.

0.00
i
0.00
0.00
ฑ
0.00
0.00
i
0.00
All Matrix:	1.	1469.	0.37 i 0.00 1.87 i 0.00 5.00 ฑ 0.00
Sample Collection and Preparation Data	Grid Data
Air Volume	=	1.00 Cu M	Grid ID! 060883/D-4
Deposit Area =	1.00 So Cm	Individual Grid Openina =	0.000068 Sci Cm
Ashed Area	=	1.00.Sci Cm	Number of Grid OpeninSs =	10
R'edeposit Area =	1.00 So Cm	Film MaSrtification	=	20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TAULE J Str Depth Width Length Ratio Chrysotile Amphibole Ambia Asbe Patt X-Ra-J
1
1
C
0.062
0.562
1.25
9 . 9
•
•
X
1
9
C
0.062
0.312
0.69
2.2
0.035
•

1
3
F
0.000
0.062
0.94
15.0
•
0.009

1
4
C
0.062
0.625
0.62
1 .0
•
•
X ป ป
2
5
F
0.000
0.062
0.62
10.0
•
0.006
• • •
2
6
F
0.000
0.062
0.56
9.0
ซ
•
• • X
3
7
F
0.000
0.062
0.62
10.0
ป
•
A t ~
3
8
F
0.000
0.062
1.38
22.0
ป
0.013
ป • •
3
9
F
0.000
0.062
1 .87
30.0
0.015
•
• • •
3
10
C
0.062
0.500
1 .13
2.3
0.091
•
• • •
4
11
F
0.000
0.125
1.00
8.0
0.032
,
~ ~ ~
6
12
F
0.000
0.062
0.81
13.0
0.006

• • •
7
13
F
0.000
0.062
0.81
13.0
.
0.007
• • •
8
14
C
0.062
0. 187
0.69
3.7
0.021
•
~ ~ ป
9
15
B
0.062
0.250
1.87
7.5
0.076
,
• ~ •
9
16
F
0.000
0.062
0.62
10.0
.
0.006
• • ซ
9
17
F
0.000
0.062
0.56
9.0
0.004
•
~ ~ ~
10
18
F
0.000
0.062
0,31
5.0
.
0.003

10
19
F
0.000
0.062
0.62
10.0
0.005
•
• • •
Total Mass 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
SINGLE SAMPLE SUMMARY TAPLES
SAMPLE CUHEi C06545-079	TABLE PREPARATION DATE! 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass
Actual Concen.	Concert*	Average	Average
Object	Object (Number	(Picoaram	Uidth	LenSth
Structure Type	Count Per Cu M) Per Cu M)	(Micron)	(Micron)
Fiber
Chrusotile
5.
7179.
90.2
0.08
i
0.03
0.98
i
0.53

Amphibole
6.
8615.
61 .9
0.06
ฑ
0.00
0. 78
i
0.36

Other
O
*_ ซ
2072.

0.06
i
0 .00
0.59
i
0 .04

All Fiber
13.
18665.

0.07
i
0.02
0.83
ฑ
0.41
Bundle
Chrusotile
1.
1436.
109.4
0.25
1
0.00
1 .87
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00

All Rundle
1 .
1436.

0.25
i
0.00
1 .87
t
0.00
Cluster
Chrysotile
3.
4307.
211.4
0.33
ฑ
0.16
0.83
i
0.25

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00

Other
2.
2872.

0.59
i
0.04
0.94
I
0.44

All Cluster
5.
7179.

0.44
ฑ
0.18
0.87
ฑ
0.29
Averade
Lenath
To Uidth
Ratio
.4.00

9.14
2.50
ฑ
5.75
9.50
i
0.71
.2.62
i
6.64
7.50
i
0.00
0.00
ฑ
0.00
0.00
i
0.00
7.50
i
0.00
2.71
i
0.83
0.00
i
0.00
1 .61
ฑ
0.86
o, 27
i
0 .94
Sample Collection and Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1*00 Set Cm
1*00 So Cm
1•00 So Cm
Grid Data
Grid ID! 060883/H-5
Individual Grid Opertina	=
Number of Grid Openings	=
Film Madriification	=
0.000070 So Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TAl'LE 
TAPLE PREPARATION DATE! 21-JUL-83
SAMPLE CODE! C06545-080



Size
(Micron)

Mass (F'lcoarani)

ro
pn
ObJ
Str
Depth
Width
Length
Ratio
Chrusotile Amphibole
Anibig
4
30
C
0.062
0.625
0.75
1.2
• ซ
X
4
31
F
0.000
0.062
1 . 13
18.0
0.009
.
A
32
F
0.000
0.062
0.87
14.0
0.007
.
A
33
C
0.062
0.937)
2.19
2.3
0.333
.
A
34
C
0.062
0.437
0.62
1.4
• •
X
A
35
F
0.000
0.062
0.25
4.0
0.002
,
4
36
F
0.000
0.062
0.37
6.0
0.003
,
A
37
D
0.125
0.312
10.63
34.0
1.079
•
A
38
C
0.062
0.125
2.19
17.5
0.044
•
A
39
F
0.000
0.062
1 .69
27.0
0.013
ซ
A
40
C
0.062
0.625
1.56
2.5
• •
X
A
41
F
0.000
0.062
0.75
12.0
• ซ
X
A
42
M
0.062
0.062
0.62
10.0
• •
X
A
43
F
0.000
0.062
1 .63
26.0
0.013
•
A
44
F
0.000
0.062
0.87
14.0
• •
X
A
45
C
0.062
0.250
0.62
2.5
• •
•
A
46
F
0.000
0.062
1 .31
21 .0
0.010
ป
A
47
C
0.062
0.625
0.75
1.2


A
48
F
0.000
0.125
1 .25
10.0
0.040
•
A
49
F
0.000
0.062
0.50
8.0
0.004
ซ
A
50
F
0.000
0.062
0.69
11.0
0.005
•
A
51
F
0.000
0.062
1 .81
29.0
0.014
•
A
52
F
0.000
0.062
0.44
7.0
0.003
•
5
53
F
0.000
0.062
0.94
15.0
0.007
•
5
54
M
0.062
0.062
0.50
8.0
, ,

5
55
F
0.000
0.062
3.56
57.0
0.028
•
5
56
M
0.125
0.625
1 .87
3.0
0.381
•
5
57
M
0.062
0.125
1.94
15.5
0.039
•
5
58
F
0.000
0.125
0.69
5.5
0.022
•
Not
No
N)
O

-------
1IT RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA :
1 NI'I VI DUAL OBJECT DATA TABLE (F=FIDER t B=BUNDLE r C=CLUSTERr M=MATRIX )
TABLE PREPARATION TATE! 21-JUL-B3
SAMPLE CODE! C06545-080
Size (Mierori)	Mass (F'icoSram)
Grd					Not No
Opri OhJ Str Depth Uidth Length Ratio Chrusotile Aniphibole Amt>i3 Asbe F'att X-Rau
5
59
F
0.000
0.062
0.56
9.0
0.004
• ซ ป ป
5
60
F
0.000
0.062
1.19
19.0
0.009
• • • •
5
61
F
0.000
0.062
0.44
7.0
0.003
• ~ ~ •
6
62
F
0.000
0.062
0.94
15.0
0.007
• • ~ ~
6
63
F
0.000
0.062
0.50
8.0

0 • 005 • • •
6
64
h
0.062
0.125
0.50
4.0
0.010
• • • •
6
65
F
0.000
0.062
0.62
10.0
0.005
• • ~ •
7
66
F
0.000
0.062
0.69
11.0
0.005
• ~ ป •
7
67
F
0.000
0.062
1 .50
24.0
0.012
• • ซ •
7
68
F
0.000
0.062
1 .87
30.0
0.015
• • ป •
7
69
F
0.000
0.062
1 .00
16.0
•
ซ X i t
7
70
F
0.000
0.062
1 .06
17.0
0.008
• • • •
8
71
F
0.000
0.062
1.31
21.0
0.010
• • • •
9
72
F
0.000
0.062
0.81
13.0
•
0.007
9
73
C
0.125
0.187
1.19
6.3
•
ป x • ~
9
74
F
0.000
0.062
0.75
12.0
0.006
ซ • • •
9
75
F
0.000
0.062
0.69
11.0
0.005
• ป • •
9
76
C
0. 125
0.625
1 .56
2.5
•
• X ซ ~
9
77
F
0.000
0.062
0.62
10.0
0.005
• • • •
10
78
h
0.062
0.062
0.62
10.0
0.006
• • • •
10
79
F
0.000
0.062
0.37
6.0
0.003
• • 1 •
10
80
F
0.000
0.062
0.37
6.0
0.003
• ~ ซ ~
Total Mass 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
SINGLE SAMPLE SUMMARY TABLES ;
SAMPLE CODE! C06545-080	TABLE PREPARATION DATE.' 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
N)
(O
Object
Structure
Type
Actual
Object
Count
Number
Concern
(Number
Per Cu M)
Mass
Concert.
(Pico^ram
F'er Cu.M)
Average
Uidth
(Micron)
Average
Lendth
(Micron)
Fiber
Chrasoti1e
Amphibole
Other
51.
5.
4.
79687.
7812.
6250.
791 .4
62.9
0.07 ฑ
0.06 ฑ
0.06 ฑ
0.02
0.00
0.00
0.92 ฑ 0.64
0.87 ฑ 0.52
0.81 ฑ 0.16

All Fiber
60.
93750.

0.07 i
0.02
0.91 ฑ 0.60
Bundle
Chrusotile
Amphibole
n (
0.
3125.
0.
2606.5
0.0
0.41 ฑ
0.00 ฑ
0.13
0.00
7.13 ฑ* 4 .95
0.00 ฑ 0.00
Other
All Bundle
0.
0.
3125.
0.00 i 0.00
0.41 ฑ 0.13
0.00 ฑ 0.00
7.13 ฑ 4.95
Average
LenSth
To Width
Ratio
13.88 ฑ 9.28
14.00 ฑ 8.40
13.00 ฑ 2.58
13.83 ฑ 8.84
20.63 ฑ18.92
0.00 ฑ 0.00
0.00 ฑ 0.00
20.63 ฑ18.92
Cluster
Chrusotile
2.
3125.
590.1
0.53
ฑ
0.57
2.19
ฑ
0.00
9.92

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00

Other
8.
12500.

0.47

0. IB
1 .00
ฑ
0.39
2.52
All Cluster
10.
15625.
0.48 ฑ 0.25 1.24 ฑ 0.61
4.00 ฑ 4.96
Matrix Chrysotile
5.
7812.
688.3
0.20
ฑ
0.24
1 .06
ฑ
0.78
7.70
ฑ
5.12
Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00
Other
3.
4687.

0.12
ฑ
0.11
1 .21
ฑ
1 .12
9.33
ฑ
1 . 15
All Matri::
8.
12500.

0.17
ฑ
0.19
1.12
ฑ
ฉ
CD
8.31
ฑ
4 .01
Sample Collection and Preparation Data
Grid Data
Air Volume
L'cposit Area
Ashed Area
Redeposit Area
1.00 Co M
1.00 So	Cm
1.00 So	Cm
1.00 So	Cm
Grid ID: 060883/E-l
Individual Grid Opening =
Number of Grid Openings =
Film Maarii fication	=
0.000064 So Cm
10
20000

-------
ztz



























C Q

(/)
1 -H
M
M






























2>
1 2>
z
HH



























D
a

Z
1 CP
15
H































i r
I-*




























O


r
i m
c
P[i
ro
ro
ro to
IO
ro
ro
ro
ro ro
**

te*


M













C


m


m
*0
00
sj CK
tn

W
ro
h- ฉ

00
SJ
0-
tn
A.
w
ro

ฉ
o
00
SJ
CN
tn
J> u
ro

L.



i ^
ป—1
C/5






























n
i 7>
c
m



























U)


o
\ R
>

T1
ฆn
ฆ*i "n
2
T1
n
n
*n 3
-n



m
1 2>

n






























••
1 5?
0
1
o
o
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
gi

cn

1 X>
w

ป
•
• •
•
•
ป
•
• •
•
•
•
•
~
•
•
•
•
•
•
•
•
•
•
•
•
•
•
ro

M-
n
1 —<
t-

o
o
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ

ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
T

N
ฉ
1 ^
m
z
o
ฉ
ฉ ฉ
CN
o
0*
0*
ฉ l>ป
ฉ
cn
ro

o
ฉ
00
0*
ฉ

ฉ
ฉ
CN
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
r*


CN
1 O
n
to
o
ฉ
ฉ ฉ
ro
ฉ
ro
ro
ฉ ro
o
ro
tn
ro
ฉ
ฉ
SJ
ro
ฉ
ro
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
3*


tn
1 z
-H
-H


































o
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ฉ
O
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
e

3:
tn
1 M

H
•
•
• •
•
•
•
~
• •
ป
•
•
•
•
•
•
*
ซ
•
•
•
•
•
•
•
•
•
•
H-

M
i
1 1>
5
c

ฉ
ฉ ฉ
w
ฉ
w

ฉ ฉ
ฉ
ro

u
ฉ
ฉ
ro
**
ฉ
Nป
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
a

o
tn
I M
H
—<
N)
CN
Cs CN
b*
CN

ro
CN CN
cn
tn
00
SJ
cn
CN
tn
00
CN
fO
CN
CN
ro
CN
CN
&

D*

r*


tn
i m
3>
m
tn
to
ro ro
ro
ro
ro
tn
ro ro
ro
ฉ
SJ
tn
ro
ro
ฉ
SJ
ro
tn
ro
ro
tn
ro
ro
ro
ro
ro
ro
3r

0

i ••































n


M
w



























r

w

i ro
3>
—4



























nป



i tn
W
3P
ro
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ro
GJ
W
u

ฉ
U
ฉ
ฉ
tn
ฉ
ฉ
u
ฉ

ฉ

ฉ

D



i i
r*
C
•
•
• •
•
•
•
•
• •
ซ
•
*
•
•
•
•
ป
•
•
ป
•
•
•
•
•
•
ป
•
ia



1 c_
n
n
10
tn
0" CN
CK
tn
u
w
ro o*
tn
SJ
SJ

w
CN
00
SJ
cn
CN

ro
tn
0*
ro

u
ro
ro
r+



1 c

H
tn
CN
ro to
ro
ฉ
**
SJ
tn ro

tn
tn

**
ro
CO
tn
ro
ro
.ฃ>
tn
ฉ
SD
tn
*ฆ
CD
tn
tn
zr



1 2

C
*































1 00
ฆn
rn



























7)



1 U
11













ro
**



*


ro
H-
ro

ro

ro
Oi




ฆn
3>
00
<
ฉ ฉ
ro
00

w
* ฉ

tn

^0
H*
ฉ
tn
*>
ฉ
tn
tn

CO

ฉ
SJ
ro

ฉ
r*




IM
Z
ป
•
• •
•
•
•
•
• •
•
ป
•
•
•
•
•
•
•
•
•
•
•
•
•
ซ
•
•
•
M-




w
J>
o
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
SJ
ro
ฉ
ฉ
tn
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0




n
r
































?p
-<

































tn



























n

2



t-4



























3*

cu


KB
tn



























1

in


11




























ฃ

in


W
w



























in




C
S
o
ฉ
0
0
•
ฉ
•
ฉ
0
0
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ฉ
•
ฉ
ฉ
ฉ
•
ฉ
ฉ
ฉ
ซ
ฉ
ป
•
0




z
-i
ป
•
• •

•

•
• •
•
•
•
•
•
•
ซ

•
•
ซ

•
ซ
•

•




ij


ri
i>
ฉ
ฉ
ฉ ฉ

ฉ

ฉ
ฉ ฉ
ฉ

0*
ro
ฉ
ฉ
*ฆ

ฉ

ฉ

ฉ
ฉ
ฉ

ฉ


M-

M-


r

SJ
ฉ
ฉ ฉ

ฉ

ฉ
ฉ ฉ
ro
tn
CK
ฉ

ฉ
SJ

ฉ

ฉ

SJ
ฉ
i-ป




h*

n


m

ro
J*
tn tn



CO
r o cn
ฉ
ro
*
-0
ฉ
tn
ro

tn
.U
SI

M
tn
ฉ

**


15

0


*

2>	Z
in	o
C	r+

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F-FIBERt B=BUNDLE. C=CLUSTERf M=MATRIX)
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODES C06545-55



Size
(Micron)


Mass (Picoaram)



(3rd


	
	
	



Not
No
Of-n
ObJ
Str
Depth
Width Length
Ratio
Chrusotile An.phibole
Anibig
Asbe
F'att X-Raa
1
30
F
0.000
0.062
0.37
6.0
• •
ป
•
X
1
31
F
0.000
0.062
0.31
5.0
0.002
ป
•
•
1
32
F
0.000
0.062
0.56
9.0
0.004
•
•
•
1
33
F
0.000
0.062
0.62
10.0
0.005
•
ป
•
1
34
F
0.000
0.062
0.87
14.0
0.007
•
•
•
1
35
F
0.000
0.187
1 .06
5.7
, ,

ซ
•
1
36
C
0.062
0.437
0.62
1.4
0.044
•
•
•
1
37
F
0.000
0.062
1 .00
16.0
0.008
•
•
ซ
2
38
F
0.000
0.125
1.19
9.5
0.038
•
•
•
2
39
F
0.000
0.125 •
1.13
9.0
0.036
•
ซ
•

40
B
0.062
0.187
4.06
21.7
0.124
•
ซ
•
-i
41
F
0.000
0.062
2.19
35.0
0.017
ป
•
ซ

42
C
0.062
1 .250
1.87
1 .5
0.381
•
ป
ป
2
43
B
0.062
0.125
3.00
24.0
0.061
•
•
•
2
44
F
0.000
0.062
1 .87
30.0
0.015
•
ซ

2
45
h
0.062
0.062
0.75
12.0
0.008
•
•
•
2
46
M
0.062
0.187
0.62
3.3
0.019
•
•
•
2
47
F
0.000
0.062
0.56
9.0
, ,


•
2
48
B
0.062
0.125
1 .56
12.5
0.032
•
•
•
3
49
F
0.000
0.062
0.87
14.0
0.007
•
•
•
3
50
F
0.000
0.062
0.37
6.0
ซ •
•
•

3
51
F
0.000
0.062
0.25
4.0
0.002
•

•
3
52
B
0.062
0.312
1.25
4.0
• •
X

•
3
53
F
0.000
0.062
0.31
5.0
0.002
,
•
•
3
54
B
0.125
0.625
1 .25
2.0
• ป
X
ป
•
3
55
C
0.062
0.625
0.62
1.0

X
•

3
56
F
0.000
0.062
1 .56
25.0
, ,
X
•

3
57
C
0.062
0.125
0.62
5.0
• •
X
•
•
4
58
C
0.062
0.625
0.94
1.5
• •
X
•
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
Total Mass (F'ico3ram) =
Total Count	=
6.380
88.
0.000
0.
19.
t

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-55	TABLE PREPARATION DATE i 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass	Average
Actual Concen.	Coneen.	Average	Average •	Length
Object	Object (Number	(Ficogram	Width	Length	To Uidth
Structure Tape	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)	Ratio
Fiber
Chrwsotile
i 62.
127112.
1525.0
0.07
ฑ
0.02
1.12
ฑ
0.96
16.84
ฑ14.46

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ 0.00

Other
11.
22552.

0.07
i
0.04
0.61
ฑ
0.46
0.70
ฑ 7.07

All Fiber
73.
149664.

0.07
i
0.02
1 .04
ฑ
0.92
15.61
ฑ13.88
Bundle
Chrusoti1e
11.
22552.
2773.3
0.18
ฑ
0.06
3.32
ฑ
.1 .45
20.94
ฑ13.13

Amphibole
0.
0.
0.0
0.00
t
0.00
0.00
i
0.00
0.00
ฑ 0.00

Other
3.
6151 .

0.37
ฑ
0.23
1 .25
ฑ
0.00
4 • 22
ฑ 2.34

All Bundle
14.
28703.

0.22
ฑ
0.13
2.88
ฑ
1 .55
17.36
ฑ13.57
Cluster
Chrusotile
11.
22552.
3248.3
0.52
Jt
0.41
1 .64
ฑ
0.85
5.24
ฑ 4.63

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ0.00

Other
9.
18452.

0.43
ฑ
0.36
0.80

0.44
2.59
ฑ 1 .57

All Cluster
20.
41004.

0.48
ฑ
0.38
1 .26
ฑ
0.80
4.05
ฑ3.76
Matrix
Chrusotile
4.
8201 .
5533.5
0.62
ฑ
1 .04
1 .44
ฑ
1 .54
6.76
ฑ
5.01

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
1.
2050.

0.31
ฑ
0.00
0.62
ฑ
0.00
2.00
ฑ
0.00

All Matrix
5.
10251.

0.56
ฑ
0.91
1 .27
ฑ
1 .30
5.81
ฑ
4.83
Sample Collection and Preparation Data
Grid Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 So Cm
1 .00 Sci Cm
1.00 So Cm
Grid IDS 052182/D-9
Individual Grid Opening	=
Number of Grid Openings	=
Film Mranification	=
0.000070 So Cm
7
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OKJECT DATA TABLE 2
F
0.000
0.125
1 .56
12.5
0.050
ซ • • •
2
23
F
0.000
0.062
0.94
15.0
0.007


24
F
0.000
0.062
0.50
8.0
0.004
• # ~ ~
i
25
F
0.000
0.062
1.44
23.0
0.011
• • • ซ
r>
26
F
0.000
0.062
0.31
5.0
0.002
• ป ~ ป
o
27
F
0.000
0.062
0.62
10.0
0.005
• • ป •
2
28
B
0.062
0.125
1.25
10.0
0.025
• • • ซ
2
29
F
0.000
0.062
0.69
11.0
0.005
~ ~ ~ ~

-------
o n
Z 0.
Oj
•P jCi
o in
2 0
ฉ o
o o

11
II

m

<1


























cj
II
11

u
w




























•k
II

0

Ql
o

-0

CN
a* cn
ฉ
o
IS


•ซr


ro c j
^0
-0
rn
^0

rs


11





























_i
UJ
II



0
o
ฉ
ฉ
ฉ
m
0
0
ฉ
cs m
m
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
m
ฉ
0
0
ฉ
w
ฉ
ฉ
ฉ
0
0
ฉ
H
II



V
o
o
CM

ฉ
in 0
00
CN
ro ^
->0
CN
<0
m

>0 C I
T
0
in
C J
fs
m
m
0 CN
U1
>0
ro
m
1
m
C4
cn in
CJ
rs
m
CM
in
CJ ฉ
CN
u
0
^0
>0
*0
CN
CO o
~0
n cj
cj
fN
SD
"0
-0
o
S3
C-4
^0
•O C J
ซo
00
CJ
-0
rj
-0 m
^0
h-
H-
h- II
in
u

•o
O
O
ฉ
ฉ
1-4
ฉ
ฉ
T
>0

ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ o
ฉ
H

ฉ

ฉ CJ
ฉ
3
c
II

•H

•H
•
•
•
•
•
• •
•
• •
•

•
•
~
~
~
ซ
•
• •
ซ

•
•
•
• •
m
W
Ci
ฃi II
in
ฃ

3
o
o
ฉ
ฉ
ฉ
0
0
ฉ
0
0
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
o
ฉ
ฉ
ฉ
0
0
ฉ
~M

II
n
\n
tf)
'-*) U"i
m
ฃ

UJ If
O II
-I
LL


o






















*-
A
A n
ฃ

13
c
CM
CN
CJ
CJ
C>1
C J Cvl
M
N C-J
C-J
M
ro


-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE (F-FIBER. B=BUNI'LEป C=CLUSTER, M=MATRIX>
TABLE PREPARATION DATE! 25-JUN-B3
SAMPLE CODE? C06545-56
Size (Micron)	Mass (PicoSram)
G rd					Not No
Opn ObJ Str Depth Width Length Ratio Chrusotile Aniphibole An.bid Asbe . F'att X-Rsa
5
59
M
0.062
0.125
0.62
5.0
* •
X
6
60
F
0.000
0.062
0.44
7.0
0.003
~ ~ ~
6
61
F
0.000
0.062
0.62
10.0
0.005
• • •
6
62
F
0.000
0.062
1.81
29.0
0.014
1 1 1
6
63
F
0.000
0.062
0.31
5.0
0.002
ป • •
6
64
M
0.062
0.187
0.87
4.7
0.027
ป ~ ป
6
65
C
0.062
0.625
1.25
2.0
• 1
A ป ซ
6
66
C
0.062
0.125
0.62
5.0
• •
X • •
6
67
M
0.062
0.187
0.62
3.3
0.019
• ~ ซ
6
68
M
0.062
0.125
0.62
5.0
0.013
• • •
6
69
F
0.000
0.062
0.25
4.0
• •

6
70
F
0.000
0.062
0.37
6.0
0.003
• • •
6
71
C
0.062
0.125
0.94
7.5
0.019
ป ป •
6
72
F
0.000
0.062
0.62
10.0
0.005
• • •
6
73
C
0.062
0.312
1 .25
4.0
• •
A • ป
6
74
F
0.000
0.062
0.50
8.0
0.004
• • •
6
75
F
0.000
0.125
0.62
5.0
0.020
~ • ~
6
76
F
0.000
0.062
0.50
8.0
0.004
• • •
6
77
C
0.062
0.250
1 .56
6.2
0.063
• • 1
6
78
F
0.000
0.062
0.94
15.0
0.007
• • •
6
79
C
0.125
1 .250
1.56
1.2
• •
X • •
7
80
B
0.062
0.250
2.38
9.5
0.096
• • •
7
81
C
0.125
1 .875
1.87
1.0
1.143
• • •
7
82
C
0.125
1 .875
2.50
1.3
1.523
• • •
7
83
M
0.062
0.250
0.62
2.5
0.025
• 1 •
7
84
C
0.062
0.375
0.94
2.5
• •
X • •
7
85
F
0.000
0.062
0.37
6.0
0.003
• • •
7
86
F
0.000
0.062
0.62
10.0
0.005
• • •
7
07
F
0.000
0.062
0.94
15.0
0.007
• • •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEป C=CLUSTERf M=MATRIX>
TABLE (''REPARATION DATE! 25-JUN-83
SAMPLE CODES C06545-56



Size
(Micron)


Mass (Picograni)



Grd


	
	
	



Not
No
Opn
ObJ
Str
Depth
Width Length
Ratio
Chrysotile Amphibole
Ambiฃ
Asbe
Patt X-Rau
7
88
F
0.000
0.062
0.50
8.0
• 1
X
•
ซ
7
89
F
0.000
0.062
0.62
10.0
0.005
•
~
•
7
90
M
0.062
0.062
0.75
12.0
0.008
•
•
•
7
91
M
0.062
0.625
0.62
1.0
0.063
•
•
•
7
92
F
0.000
0.062
0.62
10.0
0.005
•
>
•
7
93
F
0.000
0.062
0.94
15.0
0.007
•
•

7
94
F
0.000
0.062
0.62
10.0
0.005
•
•
•
7
95
F
0.000
0.062
2.31
37.0
0.018
•
•
ซ
7
96
F
0.000
0.062
1.75
28.0
0.014
•
•
•
7
97
F
0.000
0.062
1.06
17.0
0.008
•
>
ป
7
98
F
0.000
0.062
0.94
15.0
0.007
•
1
•
7
99
M
0.062
0.062
0.75
12.0
• 1

•
•
7
100
F
0.000
0.062
0.75
12.0
0.006
•
1
•
7
101
F
0.000
0.062
0.44
7.0
0.003
•
•
•
7
102
F
0.000
0.062
1.06
17.0
0.008
•

•



Total Mass
(Pico3ram)=
5.007 0.012






Total Count

=
83. 3.
14.
1.
1.

-------
1 IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-56	TABLE PREPARATION DATE: 25-JUN-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
to
ui
KJ
Object
Structure Tape
Actual
Object
Count
Number
Concen.
< Nunber
Mass
Concen.
(F'icodram
Per Cu M) Per Cu M)
Average
Width
(Micron)
Average .
Lenath
(Micron)
Average
Length
To Width
Ratio
F iber
Chrusotile
63.
127551 .
1363.6
0.07

0.02
0.92
i
0.70
13.81
ill .00

AiiiPhibole
3.
6074 .
24.5
0.06

0.00
0.44
ฑ
0.19
7.00
ฑ
3.00

Other
5.
10123.

0.08
ฑ
0.03
0.55
ฑ
0.32
7.80
ฑ
5. 36

All Fiber
71.
143748.

0.07
i
0.02
0.87
ฑ
0.67
13.10
ฑ10.63
Bundle
Chrusotile
o (
4049.
246.8
0.19
ฑ
0.09
1.81
i
0.80
9.75
i
0.35

AmPhibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
2.
4049.

0.28
ฑ
0.22
1 .22
ฑ
0.66
4 .93
ฑ
1 .52

All Bundle
4.
8098.

0.23
ฑ
0.15
1.52
ฑ
0.69
7.34
ฑ
2.93
Cluster
Chrusotile
10.
20246.
8158.2
0.77

0.72
1.56
ฑ
0.63
3.99
i
2.73

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
1
0.00

Other
7.
14172.

0.51
i
0.38
0.96
i
0.40
2.54
i
1 . 46

All Cluster
17.
34419.

0.67
i
0.60
1 .32
i
0.61
3.39
i
2.36
Matrix
Chrusotile
8.
16197.
368.8
0.20
i
0.18
0.73
ฑ
0.13
6.13
i
4 .38

AniPhi bole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
2.
4049.

0.09
i
0.04
0.69
ฑ
0.09
8.50
i
4.95

All Matrix
10.
20246.

0.18
ฑ
0.17
0.73
i
0.12
6.60
ฑ
4.32
Sample Collection arid Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
Grid Data
1.00
Cu
M
Grid ID*. 052182/D-10

1 .00
Sn
Cm
Individual Grid Opening =
0.000071 So Cm
1 .00
Sn
Cm
Number of Grid Openings =
7
1 .00
So
Cm
Film MaSnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBER, B=BUNHLEป C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE. 25-JUN-83
SAMPLE CODE: C06545-57 ^Lr('
Size (Hicrori)	Mass 
-------
1IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE J Str Depth Width Lenath Ratio Chrusotile AniPhibole Anibig Asbe Patt X-Raa
1
30
C
0.062
0.375
0.62
1.7
0.038

1
31
F
0.000
0.062
1.19
19.0
0.009
• • •
1
32
C
0.062
0.312
0.87
2.8
0.044
• • •
I
33
F
0.000
0.062
1.94
31.0
0.015
• • •
1
34
F
0.000
0.062
0.31
5.0
0.002
• ป ~
1
35
F
0.000
0.062
1.56
25.0
0.012
~ * ~
1
36
D
0.125
0.750
2.81
3.7
• •
X
1
37
F
0.000
0.062
2.81
45.0
0.022
~ ~ ป
1
38
C
0.062
0.250
0.56
2.3
• ป
X
1
39
F
0.000
0.062
1.63
26.0
0.013
. . .
1
40
B
0.125
0.187
2.19
11.7
• ซ
X
1
41
B
0.125
0.312
2.38
7.6
• •
X
2
42
F
0.000
0.062
0.31
5.0
0.002
1 • •
9
43
F
0.000
0.06?
0.37
6.0
0.003
~ ~ ~
o
44
F
0.000
0.062
0.44
7.0
0.003
~ ซ ~
n
45
F
0.000
0.062
0.62
10.0
0.005
• • •
2
46
F
0.000
0.062
0.94
15.0
0.007
~ • •
o
47
F
0.000
0.062
0.37
6.0
0.003
• • •
2
48
F
0.000
0.062
1.25
20.0
0.010
• • ป
2
4?
F
0.000
0.062
0.69
11.0
0.005 :
• ซ •
?
50
F
0.000
0.062
0.62
10.0
0.005
• • •
2
51
M
0.062
0.125
0.62
5.0
0.013
~ • ~
2
52
F
0.000
0.062
0.94
15.0
0.007 .
• • •
2
53
F
0.000
0.062
0.94
15.0
0.007
~ • ป
2
54
F
0.000
0.062
0.62
10.0
0.005
• • •
2
55
F
0.000
0.062
0.31
5.0
0.002
ซ ซ ป
•>
56
F
0.000
0.062
1 .13
18.0
0.009
~ ~ ~
2
57
F
0.000
0.062
0.50
8.0
0.004
• • •
2
58
if
0.062
0.125
1 .56
12.5
0.032
• ซ •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEป C=CLUSTER, h=MATRIX)
TABLE PREPARATION DATE.* 25-JUN-83
SAMPLE CODE? C06545-57
Size (Micron)	Mass (Pieodrarti)
Grd					Not No
Ofti ObJ Str Depth Width Length Ratio Chrysotile AniPhibole Arabia Asbe Patt X-Rau
')
59
F
0.000
0.062
2.75
44.0
0.022
9
60
F
0.000
0.062
1.56
25.0
0.012
1
f-
61
F
0.000
0.062
0.44
7.0
0.003
2
62
F
0.000
0.062
0.56
9.0
*
2
63
F
0.000
0.062
0.50
8.0
0.004
o
6A
F
0.000
0.125
0.75
6.0
0.024
2
65
F
0.000
0.062
1.19
19.0
0.009
2
66
C
0.062
0.250
1.13
4.5
•
3
67
F
0.000
0.062
0.62
10.0
0.005
3
6B
F
0.000
0.062
0.69
11.0
0.005
3
69
F
0.000
0.062
3.25
52.0
0.026
3
70
C
0.062
0.312
1 .87
6.0
0.095
3
71
F
0.000
0.062
0.37
6.0
0.003
3
72
F
0.000
0.062
0.75
12.0
0.006
3
73
F
0.000
0.062
0.62
10.0
0.005
3
74
F
0.000
0.062
1 .25
20.0
0.010
3
75
F
0.000
0.062
1.25
20.0
0.010
3
76
F
0.000
0.062
0.25
4.0
0.002
3
77
F
0.000
0.062
0.25
4.0
•
3
78
F
0.000
0.062
0.56
9.0
0.004
3
79
F
0.000
0.125
1 .13
9.0
0.036
3
80
F
0.000
0.062
0.87
14.0
0.007
3
01
F
0.000
0.062
0.62
10.0
0.005
3
02
F
0.000
0.062
0.94
15.0
0.007
3
83
F
0.000
0.062
0.31
5.0
0.002
3
84
F
0.000
0.062
2.75
44.0
0.022
3
85
F
0.000
0.125
2.00
16.0
0.064
3
86
C
0.062
0.312
1 .75
5.6
0.089
3
87
C
0.062
0.12b
1 .38
11.0
0.028

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODES C06545-57
Size (Micron)
Mass (F'icodram)
1 1 u







)pfl
ObJ
Str
Depth
Ulidth
Lendth
Ratio
Chrysotile i
3
88
F
0.000
0.062
3.81
61 .0
0.030
3
09
F
0.000
0.062
1.31
21 .0
0.010
3
90
M
0.062
0.125
0.50
4.0
•
3
91
F
0.000
0.062
0.94
15.0
0.007
3
92
M
0.062
0.062
0.62
10.0
.
3
93
F
0.000
0.062
1.19
19.0
0.009
3
94
F
0.000
0.062
2.81
ฆ45.0
0.022
3
95
M
0.062
0.062
1 .06
17.0
0.011
3
96
F
0.000
0.062
0.37
6.0
*
3
97
F
0.000
0.062
0.94
15.0
0.007
3
98
F
0.000
0.125
0.75
6.0
0.024
3
99
C
0.062
0.187
1.56
8.3
0.048
3
100
C
0.125
0.625
1.87
3.0
•
3
101
F
0.000
0.062
0.75
12.0
0.006
3
102
F
0.000
0.125
0.81
6.5
0.026
3
103
F
0.000
0.125
0.50
4.0
0.016
3
104
D
0.062
0.125
0.44
3.5
,
3
105
F
0.000
0.062
1 .25
20.0
0.010
3
106
C
0.062
0.312
0.75
2.4
•
3
107
C
0.062
0.187
1 .87
10.0
0.057 .
3
108
F
0.000
0.062
0.69
11.0
0.005
3
109
F
0.000
0.062
0.62
10.0
0.005
3
110
F
0.000
0.062
0.31
5.0
0.002
3
111
F
0.000
0.062
0.37
6.0
0.003
3
112
F
0.000
0.062
2.31
37.0
0.018
3
113
F
0.000
0.062
3.56
57.0
0.028
3
114
F
0.000
0.062
0.62
10.0
0.005
3
115
F
0.000
0.062
1.06
17.0
0.008
Not
No
ro
1/1
a\

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA ;
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COPE! C06545-57	TABLE PREPARATION DATES 25-JUN-83 ;
Aerosol Object Count Arid Calculated Object Mass Characteristics
Object
Structure
Type
Number
Actual Concent
Object (Number
Count Per Cu M)
Mass
Concent
(Picogram
Per Cu M)
Average
Width
< Mic rori)
F iber
Chrysotile
Amphihole
Other
83.
0.
6.
380246.
0.
27488.
4186.4
0.0
0.07 ฑ 0.02
0.00 i 0.00
0.06 ฑ 0.00
Average
Length
(Mi cron)
1.12
0.00
0.43
0.B2
0.00
0.14
Average
Length
To Uidth
Ratio
17.19 ฑ13.33
0.00 ฑ 0.00
6.83 i 2.32
All Fiber
89.
407733.
0.07 ฑ 0.02
1.07 ฑ o.e:
16.49 113.14
Bundle
Chrasotile
2.
9163.
959.7
0.19
i
0.09
1 .87
i
0.44
10.63
ฑ

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ

Other
4.
18325.

0.34
i
0.28
1.95
ฑ
1 .04
6.63
ฑ

All Bundle
6.
27488.

0.29
i
0.24
1 .93
ฑ
0.83
7.96
ฑ
Cluster
Chrusotile
U.
50394.
2692.8
0.26
i
0.08
1 .32
i
0.53
5.84
ฑ
3. 28

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
5.
22906.

0.32
i
0.17
1 .05
i
0.51
3.43
ฑ
1 .25

All Cluster
16.
73300.

o
rj
CD
ฑ
0.12
1 .23
ฑ
0.52
5.09
i
2.99
Matrix
Chrusotile
2.
9163.
107.6
0.09
ฑ
0.04
0.84
ฑ
0.31
11 .00
i
8.49

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00

Other
2.
9163.

0.09
ฑ
0.04
0.56
i
0.09
7.00
i
4.24

All Matrix
4 .
18325.

0.09
ฑ
o
o
0.70
i
0.25
o
o
i
5.94
Sample Collection and Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 So Cm
1 .00 So Cm
1.00 Sc? Cm
Grid Data
Grid ID! 052182/E-6
Individual Grid Opening =
Number of Grid Openings	=
Film Magnification	=
0.000073 So Cm
3
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODE! C06545-58
Size (Micron)
Mass (Picoarani)
ird
3pn
ObJ
Str
Depth
Uidth
Length
Ratio
Chrusotile
1
30
C
0.062
0.625
2.50
4.0
0.254
1
31
F
0.000
0.062
0.62
10.0
0.005
1
32
F
0.000
0.062
0.81
13.0
0.006
1
33
F
0.000
0.062
1.13
18.0
0.009
2
34
F
0.000
0.062
0.56
9.0
0.004
2
35
F
0.000
0.062
0.62
10.0
0.005
2
36
F
0.000
0. 125
1 .87
15.0
0.060
2
37
F
0.000
0.062
1.00
16.0
0.008
9
38
F
0.000
0.062
0.62
10.0
0.005
o
39
F
0.000
0.062
0.87
14.0
0.007
2
40
F
0.000
0.062
2.19
35.0
0.017
o
41
M
0.062
0.125
0.62
5.0
0.013
2
42
C
0.062
0.250
1.25
5.0
0.051
2
43
C
0.062
0.312
1 .25
4.0
0.063
9
44
F
0.000
0.062
2.06
33.0
0.016
2
45
F
0.000
0.062
0.44
7.0
0.003
2
46
B
0.187
0.625
7.50
12.0
2.285
2
47
F
0.000
0.062
0.62
10.0
0.005
2
48
F
0.000
0.062
1.19
19.0
0.009
2
49
F
0.000
0.062
0.56
9.0
•
9
50
F
0.000
0.062
0.56
9.0
0.004
2
51
C
0.062
0.500
0.75
1.5
•

52
F
0.000
0.062
0.69
11.0
0.005
2
53
C
0.062
0.625
0.94
1.5
.

54
F
0.000
0.062
0.69
11.0
0.005
9
55
C
0.062
0.375
0.62
1.7
.
2
56
F
0.000
0.062
0.31
5.0
0.002
2
57
C
0.062
0.187
0.62
3.3
0.019
2
58
F
0.000
0.062
0.62
10.0
0.005
Not
No
a\
o

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-58	TABLE PREPARATION DATES 25-JUN-83
Aerosol Object Count And Calculated ObJect Mass Characteristics
Object
Structure
T ape
Actual
ObJect
Count
Number
Concen.
< Number
Per Cu M)
Mass
Concen.
(Picograro
Per Cu M)
Average
Width
(Micron)
Average
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrusotile
69.
313651.
2721.7
0.06
i
0.01
0.96
ฑ
0.51
15.07
ฑ

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i

Other
6.
27274.

0.11
i
0.13
0.81
I
0.69
8.14
ฑ

All Fiber
75.
340925.

0.07
ฑ
0.04
0.95
ฑ
0.53
14.52
i
Bundle
Chrysotile
6.
27274.
11535.9
0.23
ฑ
0.20
2.65
ฑ
2.53
12 .06
i

AniPhibole
0.
0.
0.0
0.00
i
0.00
0.00
t
0.00
0.00
i

Other

9091 .

0.31
i
0.09
1.91
ฑ
1 .55
5.62
ฑ

All Bundle
8.
36365.

0.25
i
0.17
2.46
ฑ
2.24
10.45
i
Cluster
Chrysot ile
9.
40911 .
13734.6
0.61
ฑ
0.54
1.72
ฑ
0.88
3.47
ฑ

AniPhibole
0.
0.
0.0
0.00
i
0.00
0.00

0.00
0.00
i

Other
6.
27274.

0.56
i
0.36
1 .04
ฑ
0.46
2.13
i

All Cluster
15.
68185.

0.59
i
0.46
1.45
i
0.80
2.93
i
Matrix
Chrasotile
2.
9091.
127.0
0.12
i
0.00
0.69
ฑ
0.09
5.50
ฑ

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ

Other
2.
9091 .

0.06
i
0.00
0.62
ฑ
0.00
10.00
i

All Matrix
4.
18183.

0.09
ฑ
0.04
0.66

0.06
7.75
ฑ
ro
CTi
CO
8 • 06
0.00
2.67
7.9?
7.32
0.00
3.36
A. ?B
1.13
0.00
1 .01
1 .25
0.71
0.00
0.00
2.63
San.ple Collection and Preparation Data
Air Volume	=
Deposit Area	=
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 Set Cm
1 .00 So Cm
1.00 So Cm
Grid Data
Grid ID! 052182/E-7
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000073 Sa Cm
3
20000

-------
1IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE CODE: C06545-59 I? 1



Size
Micron)


Mass 
-------
TIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT DATA TAKLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA ;
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-59	TABLE PREPARATION DATE: 25-JUN-03
Aerosol Object Count And Calculated Object Mass Characteristics
NJ

Object
Structure Tape
Number	Mass
Actual Concen.	Concern	Average .
Object (Number	(Pi cod ram	Ulidth
Count Per Cu M) Per Cu M)	(Micron)
Fiber
Bundle
Cluster
Matrix
Chrasoti 1 e
Amphibole
Other
All Fiber
Chrasotile
Amphibole
Other
All Bundle
Chrasotile
Amphibole
Othe r
All Cluster
Chrasotile
Amphibole
Other
14.
3.
4.
21.
0.
0.
1.
3.
0.
0.
3.
2.
0.
1.
19937.
4272.
5696.
29906.
0.
0.
1424.
1424.
4272.
0.
0.
4272.
2848.
0.
1424.
201 .6
188.4
0.0
0.0
Average
Length
< Mi cron)
Averaae
Lenath
To Uidth
Ratio
0.06
i
0.00
1 .27
ฑ
0.84
20.29
ฑ13.40
0.12
i
0.06
1 .04
ฑ
0.18
10.00
ฑ
5.00
0.06
i
0.00
0.55
i
0.19
8.75

3.10
0.07
i
0.03
1 . 10
ฑ
0.74
16.62
ฑ1
2.21
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00
C.00

0.00
0.00
ฑ
0.00
0.00
ฑ
0.00
0.25

0.00
0.62
ฑ
0.00
2.50
ฑ
0.00
0.25

0.00
0.62
i
0.00
2.50
ฑ
0.00
0.54
ฑ
0.61
1 .19
i
0.41
3.97
i
2.71
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00
0.54
i
0.61
1.19
ฑ
0.41
3.97
1
2.71
0.19
i
0.18
1.56
i
0.44
17.00
118.38
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.06
ฑ
0.00
0.62

0.00
10.00
ฑr
0.00
All Matrix
4272.
0.15 i 0.14 1.25 ฑ 0.62 14.67 413.61
Sample Collection and Preparation Data
Grid Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1.00 So	Cm
1.00 So	Cm
1.00 So	Cm
Grid IDS 052182/E-8 :
Individual Grid Openind ป
Number of Grid Openings =
Film Maariificatiori	=
0.000070 Set Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE (F=KIBERป B=BUNDLEf C=CLUSTER. M=MATRIX>
TABLE PREPARATION DATE t 25-JUN-83
SAMPLE CODES C06545-60 7
Size (Micron)	Mass (Picodrain)
Grd					Not - No _•
Oprป ObJ Str Depth Width Lenath Ratio Chrysotile Amphibole Ambid Asbe : Patt X-Raa .
1
1
B
0.062
0.12S
1.75
14.0
0.036
•
• • •
1
r>
F
0.000
0.062
4.13
66.0
0.033
•
• • •
1
3
F
0.000
0.062
1 .69
27.0
0.013
*
• • •
1
4
F
0.000
0.062
0.37
6.0
.
0.003
• • •
1
5
F
0.000
0.062
0.81
13.0
0.006
~
ป ป ~
1
6
F
0.000
0.062
0.50
8.0
0.004
•
• • •
1
7
F
0.000
0.062
0.62
10.0
0.005

• • •
1
8
F
0.000
0.062
1.31
21.0
0.010
•
• • •
1
9
F
0.000
0.125
1.25
10.0
0.040
•
• ~ •
1
10
F
0.000
0.062
2.31
37.0
0.018
~
~ ~ ป
I
11
F
0.000
0.125
0.62
5.0
0.020

• ป •
1
12
B
0.062
0.250
1 .87
7.5
0.076
•
1 ป •
1
13
F
0.000
0.062
1.87
30.0
0.015
•
~ ~ ~
1
14
F
0.000
0.062
1 .38
22.0
•
•
X • •
1
15
F
0.000
0.062
0.62
10.0
0.005
•
* • •
2
16
M
0.062
0.062
0.50
8.0
0.005
•
• ป •
T
17
C
0.062
0.625
0.62
1.0
0.063
•
~ ~ #
rt
18
F
0.000
0.062
0.62
10.0
•
•
X ~ ~
2
1?
F
0.000
0.062
0.62
10.0
0.005
ป
• • #
2
20
F
0.000
0.062
0.37
6.0
0.003
•
• • •
3
21
F
0.000
0.062
1 .00
16.0
0.008
•
* ~ ~
3
22
F
0.000
0.062
0.44
7.0
0.003
•
• ~ •
4
23
C
0.062
0.437
0.44
1.0
0.031

~ ~ •
4
24
B
0.062
0.187
2.38
12.7
0.072
•
~ ป ~
4
25
F
0.000
0.062
0.69
11.0
0.005
ซ
• • •
4
26
F
0.000
0.062
1 .00
16.0
0.008
ป
• • •
4
27
M
0.062
0.062
0.44
7.0
•
•
X
4
28
F
0.000
0.062
0.62
10.0
•
•
X # •
4
29
F
0.000
0.062
0.50
8.0
0.004
•
• • •

-------
TXT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F-FIBER. B=BUNIiLEr C=CLUSTER, M=MATRIX>
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE CODES C06545-60
Size (Micron)	Mass 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
XIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE} C06545-60	TAI-LE PREPARATION DATE: 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass	Average
Actual Concent	Concert.	Average	Average	Len3th
Object	Object (Number	(Picodram	Width	Lenath	To Uidth
Structure Tape	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)	Ratio
Fiber
Chrasoti1e
64.
92246.
919.8
0.07
i
0.01
1 .09
ฑ
0.95
17.10
115.29

Amphibole
5.
7207.
103.6
0.09
i
0.03
0.74

0.27
9.60
ฑ 5.68

Other
6.
8648.

0.07
i
0.03
0.77
ฑ
0.40
10.83
1 5.78

All Fiber
75.
108100.

0.07
ฑ
0.02
1 .04
i
0.89
16.10
ฑ14.45
Bundle
Chrasotile
5.
7207.
397.1
0.20
ฑ
0.05
1 .74
ฑ
0.52
9.45
i 4.10

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i 0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
i 0.00

All Bundle
S.
7207.

0.20
•ฑ
0.05
1 .74
i
0.52
9.45
ฑ 4.10
Cluster
Chrasotile
8.
11531.
717.3
0.30
t
0.22
1 .23
i
0.98
5.69
ฑ
5.04

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
1 .
1441.

0.94
i
0.00
2.38
i
0.00
2.53
i
0.00

All Cluster
9.
12972.

0.37
ฑ
0.30
1 .35
i
0.99
5.34
i
4 .83
Matrix
Chrasotile
1.
1441 .
7.3
0.06
i
0.00
0.50
i
0.00
8.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
2,
2883.

0.06
i
0.00
0.53
i
0.13
8.50
i
2.12

All Matrix
3.
4324.

0.06
ฑ
0.00
0.52
i
0.10
8.33
i
1 .53
Sample Collection and Preparation Data	Grid Data
Air Volume
Deposit Area
Ashed Area
RedePosit Area
1.00 Cu	M
1.00 So	Cm
1.00 So	Cit>
1 • 00 So	Cni
Grid ID: 052182/E-9
Individual Grid OperiinS =	0.000069 Sa
Number of Grid Openings =	10
Film Maanification	=	20000
Cm

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
27
F
0.000
0.062
0.50
8.0
0.004
•
ซ • ~
3
28
F
0.000
0.125
1 .19
9.5
•
0.044
• ซ •
3
29
B
0.062
0.125
1 .87
15.0
0.038
•
• • •

-------
ZLZ





















w
uj
3
3
U
3
a
2
11 w
o
H



























T?
n r
u m
n

m
LI
ui
LI Ul
ui ui ui
ui
LI ^


•b.
Jk
•fck



.u
u
W UJ
U
w
w
uj
U W
U
O
cr

P
n
c
CO
Nl
tb Ul

w ro

ฉ >0
00
NJ

Ul

UJ
ro
H-
ฉ
"O
00 NJ
cs
Ul
ฃ>
w
ro
ฉ
L.

II *v

w

























W
r+

n
11 3?
ii m
ii T
c
m
ฆn

ฆn -n
ฆn n *n
ฆn
c
c
"n
"n
*n
ฆn
ฆn **i
*n
T1
-n
*n
-r\ w
ฆn
-n
"n
T1
"n *ti
-n

o
I>
f-


























"J

.*n
II 2>
11 3P
o
n
I
ฉ
o
0
0
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
O
i en

II 2>
T

•
•
• •
•
• •
•
•
•
•
•
ซ
•
•
•
•
•
•
•
• •
ซ
•

•
• •

ID
1 M
n
It —<
(_

o
ฉ
ฉ ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
T
1 M
ฉ
11 •—ซ
n
z
o
o
ฉ ฉ
ฉ
0* ฉ
ฉ
CS
*
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ CS
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
c+
i rs
CS
il o
n
CO
o
o
ฉ ฉ
ฉ
ro ฉ
ฉ
ro
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ro
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
3*
i
i —
Ul
II z
II
H
w
M
o
o
0
0
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
C
1 2
Ul
U T?

-~
•
•
• •
•
• •
•
•
•
•
•
•
•
•
•
•
ป
•
•
• ป
•
•
ป
•
• •ป
•
M-
1 M-

1! I>
s
c
o
ฉ
ฉ ฉ
ฉ
CJ ฉ
ฉ
Nป
w

ฉ
ฉ
ฉ
ฉ
ฉ
ป>*
ฉ
ฉ
ฉ
ฉ M
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
ฉ
a
1 0
Ch
II -H
H
—t
*

O- O
CS
sj CS
0*
CD

ro


o
cs
CS
ro
CS
CN
0-
CS 03
>
CS
cs
*
CS CS
CS

I -i
ro
ii m
3>
n
N)
ro
ro ro
ro
ui ro
to
NJ
ro
Ul
ro
ro
ro
ro
ro
ui
ro
ro
ro
hJ NJ
ro
ro
ro
ro
ro ro
ro
3T
1-
rt>
1 0
I 3
1 ^
1

ii
n ro
II Ul
H
1>
W
tn
-H
t—
ฉ
^ ฉ
ฉ
0
0

Ul
ฉ
ro

ฉ
0
0
ฉ
ro
ฉ
ฉ
ฉ
-fc>
I-*
ฉ

M
0
0
ฉ
3
1

t: i
r*
c
•
•
• •
•
• •
•
•
•
•
•
•
•
•
•
•
•
ป
•
ป •
•
•
•
ซ
ป •
•
la
1

II u
m
n
ro
Ul
00 ฉo
CI
VJ ซ0

ฉ

CO

cs
Ul
Ul
w
uป
Ul
o>
Ul
UJ CD


Ul
ro
* <0
ro

1

II c
H
ui
NJ
ro
CS
Ul -U
*0
ฉ
ro
CO
uj ro
0*
CS
NJ
0*
ฉ
ro
ฉ
00 00
-0
ro
CS
Ul
ro ฃ>•
Ul
rr
1

II z

C
m




























It 03
ฆn




























II UJ
ii

to

to ~-

>ฆ*
Ck
ro

ro





ro



ro ro


ro
to
M- M

QJ


11
*n
3>
O

o ฉ
>0
5
2
NJ

ro
Ul
00
ฉ
<0
*

0
8
ฉ
00
r o o-

ฉ
Ul
ฉ
ฉ ui

c*


11
M
z

























M-


II
T1
3>
O
ฉ
0
0
0
0
0
ฉ
NJ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
Ul
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
0


11
m
r
ฉ
ฉ
ฉ
ฉ
ฉ •
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
•
0
0
ฉ
ฉ
ฉ
•
0
0
1 0

II z
























1 c*

ii e
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
k-*
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ
1
N-
ii r~

ฉ
**
ฉ
ฉ
ฉ
u
Ul
w
<
ฉ
ฉ
ฉ
ฉ
ฉ
CD
ฉ
ฉ
ฉ

ฉ
**

ฉ ฉ
I
0
n n
ฉ
w
A
Ul

NJ
Ul
ro
ro
ro
ปc
Ul


w
ro

Ul

^ >0
en
ro
ฉ
Ul NJ
1
0

o a
"0
V)
2>
3>	Z
in	o
or	(+
it
*n Z
On 0
X
I
Cj

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA •
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAhFLE CODE! C06545-62	TABLE PREPARATION DATE: 25-JUN-83
Aerosol Object Count Arid Calculated ObJect Mass Characteristics
to
-J
Object
Structure Tape
Actual
Object
Count
Number
Concen.
(Nun.be r
Per Cu M)
Mass
Concen•
(Picogram
Per Cu M)
Average
Width
(Micron)
Average .
Length
(Micron)
Average
Lenath
To Width
Ratio
Fiber
Chrasotile
63.
110557.
2642.1
0.07

0.03
1.41
i
1 .08
20.35
il
5.36

Amphibole
3.
5265.
246.3
0.12
i
0.00
1.27
ฑ
0.32
10.17
i
2.57

Other
10.
17549.

0.08
J
0.03
0.66
i
0.27
9.20
ฑ
4 .26

All Fiber
76.
133371.

0.07
ฑ
0.03
1 .30
ฑ
1 .02
18.48
ill .65
Bundle
Chrusotile
4.
7020.
717.4
0.19

0.09
2.55
ฑ
1.56
14.88

8.33

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
1 .
1755.

0.31
i
0.00
2.00
i
0.00
6.40
ฑ
0.00

All Bundle
5.
8774.

0.21
i
0.09
2.44
ฑ
1 .37
13.18
ฑ
8.15
Cluster
Chrusotile
10.
17549.
5311.3
0.61

0.74
2.04

1 .47
6.09
i
7.63

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
6 •
10529.

0.55
i
0.42
1.14
ฑ
0.72
3.76
ฑ
4 .77

All Cluster
16.
28078.

0.59
i
0.62
1 .70
ฑ
1.29
5.22

6.62
Matrix
Chrusotile
5.
8774.
531 .3
0.30
i
0.30
1 .15
ฑ
0.42
8.70
i
7.66

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
2.
3510.

0.06
ฑ
0.00
0.37
ฑ
0.09
6.00
i
1.41

All Matrix
7.
12284.

0.23
ฑ
0.27
0.93
i
0.51
7.93
ฑ
6.42
Sample
Collection and
Preparation
Data
Grid Data









Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1•00 So Cm
1 • 00 So Cm
1 • 00 So Cni
Grid ID! 060883/A-l
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000071 So Cm
8
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERr B=BUNDLE? C=CLUSTERf M=MATRIX>
TABLE PREPARATION DATE: 25-JUN-83
.038
5
B
0.062
0.187
0.75
4.0
•
6
F
0.000
0.062
0.69
11.0
0.005
7
F
0.000
0.062
0.94
15.0
0.007
8
F
0.000
0.062
0.62
10.0
0.005
9
F
0.000
0.062
0.50
8.0
0.004
10
F
0.000
0.062
0.31
5.0
t
11
C
0.062
0.312
0.62
2.0
•
12
M
0.062
0.125
0.62
5.0
0.013
13
F
0.000
0.062
0.62
10.0
ซ
14
F
0.000
0.062
0.44
7.0
0.003
15
F
0.000
0.062
0.44
7.0
0.003
16
F
0.000
0.062
0.50
8.0
0.004
17
F
0.000
0. 125
3. 12
25.0
0.100
18
F
0.000
0.062
0.87
14.0
0.007
19
F
0.000
0.125
0.75
6.0
0.024
20
F
0.000
0.062
0.62
10.0
0.005
21
C
0.062
0.625
1 .19
1.9
•
22
C
0.062
0.312
0.62
2.0
•
23
F
0.000
0.062
2.13
34.0
0.017
24
C
0.062
0.312
1.87
6.0
0.095
25
F
0.000
0.062
1.25
20.0
0.010
26
F
0.000
0.062
0.75
12.0
0.006
27
C
0.062
0.500
0.62
1.2

28
h
0.062
0.125
0.94
7.5
0.019
29
F
0.000
0.062
0.81
13.0
0.006

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODE! C06545-63
Size (Micron)	Mass 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLE> C=CLUSTER. M=MATRIX )
TABLE PREPARATION DATE: 25-JUN-B3
SAMPLE CODE: C06545-63
Q p ^


Size
(Micron)

Mass (Picogram)

k|_ i
XI _
Of-h
ObJ
Str
Depth
Width
Length
Ratio
Chrysotile AmPtibole
Anibia
Not
Asbe
NO .
. F'att X-Rau
3
88
F
0.000
0.062
1.13
18.0
0.009
•
•
•
3
89
B
0.062
0.125
0.94
7.5
0.019
•
•

3
90
B
0.062
0.187
11.88
63.3
0.362
•
•
•
3
91
F
0.000
0.062
2.38
38.0
0.019
•
•
•
3
92
F
0.000
0.062
0.56
9.0
0.004
•
•
•
4
93
F
0.000
0.125
1 .13
9.0
0.036
•
•
•
4
94
F
0.000
0.062
1.25
20.0
0.010
ซ
•
•
A
95
F
0.000
0.062
0.31
5.0
0.002
•
ป
•
A
96
F
0.000
0.062
0.44
7.0
0.003
•
•
•
A
97
F
0.000
0.062
1 .87
30.0
0.015
•
•
•
A
98
F
0.000
0.062
0.31
5.0
0.002
•
•
•
A
99
F
0.000
0.062
0.37
6.0
0.003 :
•
•
ซ
5
100
C
0.062
0.250
0.87
3.5
0.036
ซ
•
•
J
101
C
0.062
0.375
0.94
2.5
0.057
ป
•
ซ
5
102
F
0.000
0.062
1.25
20.0
0.010
•
•
•
5
103
C
0.062
0.625
1.25
2.0
0.127 :
•
•
•
5
104
C
0.062
0.312
0.62
2.0
• ป

•
ซ
5
105
F
0.000
0.062
0.44
7.0
0.003
•
•
•
5
106
B
0.062
0.125
1.63
13.0
• •

•
•
5
107
F
0.000
0.062
2.50
40.0
0.020
•
•
ป
5
108
B
0.062
0.125
0.50
4.0
• •

•
•
5
109
F
0.000
0.062
0.50
8.0
0.004

•
*
5
110
F
0.000
0.062
0.56
9.0
0.004
•
•
•
5
111
B
0.062
0.250
1.25
5.0
0.051
•
•
•
5
112
F
0.000
0.062
1.19
19.0
0.009
•
•
•
5
113
F
0.000
0.062
0.75
12.0
0.006 :
•
4
ซ
5
114
F
0.000
0.062
0.94
15.0
• ป
•
X
•
5
115
C
0.062
1.250
1 .25
1.0
• •
X
•
•
5
116
F
0.000
0.250
2.38
9.5
ซ •

X
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNHLEr C=CLUSTER. M=MATRIX)
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE CODES C06545-63
Size (Micron)	Mass (F'icoaram)
Grd 				Not . No
Opn ObJ Str Depth Width Lendth	Ratio Chrusotile AmF-hibole Ambid Asbe - Patt X-Rau
5
117
F
0.000 0.062
0.94
15.0
0.007 :
•
5
118
F
0.000 0.062
1 .75
28.0
0.014
ป
5
119
F
0.000 0.062
0.56
9.0
0.004
•
5
120
C
0.062 0.125
0.37
3.0
0.008
ซ
5
121
C
0.062 0.125
0.50
4.0
0.010
•



Total Mass
) =
22.702 i
0.000



Total Count

=
95.
0.
16.
4 .
6.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMFLE CODE: C06545-63	TABLE PREPARATION DATES 25-JUN-83
Aerosol Object Count Arid Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concert. .
Object (Number
Count Per Cu M)
Mass
Concen•
(Picogram
Per Cu M)
Average
Width
(Micron)
Average
Len3th
(Micron)
Average
Length
To Width
Ratio
Fiber
Chrusotile
63.
173172.
1737.6
0.07
ฑ
0.02
0.95
i
0.66
14.40
ฑ
9.63

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
12.
32985.

0.08
ฑ
0.05
0.86
ฑ
0.54
11 .46
i
3.99

All Fiber
75.
206157.

0.07
ฑ
0.03
0.94
ฑ
0.64
13.93
ฑ
9.02
Bundle
Chrysotile
7.
19241.
17319.1
0.25
ฑ
0.17
6.76
ฑ10.22
21 .17
ฑ23.48

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
4.
10995.

0.14
ฑ
0.03
0.95
ฑ
0.48
7.13
ฑ
4.25

All Bundle
11.
30236.

0.21
ฑ
0.14
4.65
ฑ
8.44
16.06
ฑ19.66
Cluster
Chrusotile
17.
46729.
42915.6
0.77
ฑ
1 .24
2.18
ฑ
3.50
3.43
ฑ
1.79

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
9.
24739.

0.56
ฑ
0.29
0.83
i
0.26
1 .64
ฑ
0.46

All Cluster
26.
71468.

0.70
ฑ
1 .01
1.71
i
2.88
2.81
ฑ
1 .70
Matrix
Chrysotile
8.
21990.
431 .0
0.13
ฑ
0.07
0.87
ฑ
0.29
8.17
ฑ
4.34

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
1.
2749.

0.06
ฑ
0.00
0.75
ฑ
0.00
12.00
ฑ
0.00

All Matrix
9.
24739.

0.12
ฑ
0.07
*0
CO
o
ฑ
0.27
8.59
ฑ
4.26
Sample Collection and Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00	Cu	M
1.00	Sa	Cm
1.00	Sa	Cm
1•00	So	Cm
Grid Data
Grid IDS 060B83/A-2
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000073 Sa Cm
5
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE =
Total Count	=
0.066	0.000
7.	0.	0. 0. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-63A	TADLE PREPARATION DATE! 25-JUN-83
NJ
00
Aerosol Object Count Arid Calculated Object Mass Characteristics



Number
Mass






Average .



Actual
Concert.
Conceri.
Average
Average
Lenath


Object

Object
(Number
(Picogram
Width

Length

To Width

St ructure
Tape
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron)
Ratio


Fiber
Chrysotile
6.
16493.
75.4
0.06
ฑ
0.00
0.57
i
0.14
9.17

2.23

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i-
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
ฑ
0.00

All Fiber
6.
1ฃ493•

0.06
ฑ
0.00
0.57
ฑ
0.14
9.17
ฑ
2.23
Cluster
Chrusotile
1.
2749.
104.7
0.12
i
0.00
1 .B7

0.00
15.00
ฑ
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00
All Cluster
2749.
0.12 i 0.00
1.87 i 0.00
15.00 ฑ 0.00
Sample Collection and Preparation Data	Grid Data
Air Volume =
1 .00
Cu
M
Grid in: 060083/A-2

Deposit Area =
1 .00
So
Cm
Individual Grid Opening =
0.000073 So Cm
Ashed Area =
1 .00
So
Cm
Number of Grid Openings =
5
Redeposit Area =
1.00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TAM.E 
TAKLE I REPARATION DATE I 21-JUL-G3
SAMPLE CODEJ C06545-082
Size (Hicron)	Mass (PicoSram)
Grd					Not r No :
fjpri ObJ Str Depth Width Length Ratio Chrusotile Aftphibole An. bid Asbe . Patt X-Rau
1
1
F
0.000
0.125
0.44
3.5
• •
X . .
2
2
F
0.000
0.062
0.44
7.0
0.003 .
• t •
rt
3
F
0.000
0.062
0.62
10.0
0.005

3
4
F
0.000
0.062
0.31
5.0
• •
X
5
5
F
0.000
0.500
1.63
3.3
• •
X
S
6
F
0.000
0.062
0.44
7.0
• •
• X •
5
7
F
0.000
0.062
0.50
8.0
0.004
• • •
5
B
F
0.000
0.062
0.37
6.0
0.003
~ ~ ป
5
y
F
0.000
0.062
1.25
20.0
0.010
• • •
5
10
F
0.000
0.062
0.94
15.0
0.007
~ • •
6
11
F
0.000
0.250
1.31
5.3
• •
X
6
12
F
0.000
0.062
0.75
12.0
0.006
• ~ ~
7
13
F
0.000
0.062
0.50
8.0
• ~
t < X
8
14
F
0.000
0.062
0.62
10.0
0.005 :

10
15
F
0.000
0.062
0.56
9.0
0.004
• • ~
10
16
H
0.062
0.187
0.50
2.7
0.015
~ • ป
Total Mass (PicoSran)1
Total Count	ซ
0.064
10.
0.000
0.
4.
1.
1.

-------
11T RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA i
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODEI C06545-082	TABLE PREPARATION DATES 21-JUL-83 :
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Hass	Average

Object
St ructure
Type
Actual
Object
Count
Coneen•
(Number
Per Cu M)
Concen.
(Picodram
Per Cu M)
Average
Ui
Matrix
Chrusoti1e
Amphibole
Other
1.
0.
0.
1446.
0.
0.
22.0
0.0
0.19
0.00
0.00
i
ฑ
ฑ
0.00
0.00
0.00
0.50 ฑ 0.00
0.00 i 0.00
0.00 ฑ 0.00
2.67 i
0.00 i
0.00 i
0.00
0.00
0.00
I
i

All Matrix
1.
1446.

0. 19
t
0.00
0.50 ฑ 0.00
2.67 ฑ
0.00
Sample Collection and Preparation Data	Grid Data
Air Volume •*
1.00
Cu
M
Grid IDI 060883/E-4

Deposit Area ซ
1.00
So
Co
Individual Grid Opening =
0.000069 So Cm
Ashed Area =
1.00
So
Ca
Number of Grid Openings D
10
Redeposit Area =
1.00
6q
Cm
Flint Magnification =
20000

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT PATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE J C06545-083	TABLE PREPARATION HATE J 2J-JUL-03
Aerosol Object Count And Calculated Object Hass Characteristics
Nuiiber
Actual Concen.
Object
Structure Tape
Object
Count
(Nuuber
Mass
Concern
(Picoarani
Per Cu M) Per Cu M)
Average
Width
(Micron)
Average :
Lenath
(Micrdn)
Average
Lenath
To Midth
Ratio
Fiber
Chrusotile
7.
10568.
68.5
0.06
1
0.00
0.81
4
0,51
13.00
ฑ
8.08

Auphibole
3.
4529.
95.5
0.08
ฑ
0.04
1.04
ฑ
0.18
13.33
i
2.89

Other
4.
6039.

0.06
i.
0.00
0.66
ฑ
0.21
10.50
t
3.42

All Fiber
14.
21135.

0.07
i
0.02
0.62
i
0.39
12.36
ฑ
5.97
Cluster
Chrusotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i.
0.00

AikPhibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
1
0.00

Other
1.
1510.

0.25
i
0.00
1.25
i
0.00
5.00
1
0.00

All Cluster
1.
1510.

0.25
1
0.00
1.25

0.00
5.00
i.
0.00
Matrix
Chrusotile
1.
1510.
19.2
0.12

0.00
0.62
ฑ
0.00
5.00
i.
0.00

Aoiphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00
A
0.00
0.00
1
0.00

All Matrix
1 .
1510.

0,12
ฑ
0.00
0.62
i
0.00
5.00
ฑ
0.00
Sanple Collection and Preparation Data
Air Volute
I'eposit Area
Ashed Area
Redeposit Area
1.00 Cu M
1,00	6a Cป
1.00 Sa Cn
1.00	So Cm
Grid PBta.
Orid IDI 060883/E-5
Individual Grid Opening
Number of Grid Openings
Film Magnification
0,000066 Sa Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE 
TABLE PREPARATION DATEt 21-JUL-83
SAMPLE CODE! C06545-084
yll
Size (Hicron)	Hbes t>ld Asbe Patt X-Raw
2
1
F
0.000 O.062
0.37
6.0
0.003
•
2
2
F
0.000 0.125
1.81
14.5
•
0.067
3
3
F
0.000 0.062
0.50
8.0
0.004
t
3
4
F
0.000 0.062
0.31
5.0
•
•
5
5
F
0.000 0.062
0.44
7.0
0.003 :
•
6
6
F
0.000 0.062
0.31
5.0
0.002
ป
9
7
F
0.000 0.12S
0.75
6.0
0.024
ซ
9
8
F
0.000 0.062
0.44
7.0
•
0.004
10
9
F
0.000 0.062
0.31
5.0
0,002
•



Total Maes

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODEt C06545-084	TABLE PREPARATION DATE'I 21-JUL-03
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure
Tupe
Actual
Object
Count
Number
Concen•
(Nuikber
Per Cu H)
haEs
Concen.
(Picodraa
Per Cu H)
Average
Width
(Micron)
Average .
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrusotile
6.
8749.
57.4
0.07 ฑ 0.03
0.45 4 0.16
6.17 1

Asiphibole
2.
2916.
103.2
0.09 i 0.04
1.13 i 0.97
10.75 ฑ

Other
1.
14S8.

0.06 i 0.00
0.31 ฑ 0.00
5.00 1

All Fiber
9.
13123.

0.08 ฑ 0.03
0.58 i 0.48
7.06 i
1 .17
5.30
0.00
2.9B
ro
to
o
Sample Collection and Preparation Data
Grid Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cu M
1•00 So	Cn
1.00 So	Cm
1.00 Sa	Cn
Grid IDS 060883
Individual Grid Openind
Number of Grid Openings
Film Maanlflcation
0.000069 So Cn
10
20000

-------


II








11


n








11


u
ii








n
:i


Q








ii


ii








ii


ii








n


n








n


ii








ii


ii








ii


ii








n


!l








ii


II


31





n


II


m





ii


II


iฃ





ii


II


1





ii


II


X





ii


II








ii


II








ii


II


ซJ





ii


II


'




•
ii


II


Q fQ




ฉ
H


II


Z Cu





11


It








II


II








II


U


Ql





II


II


<*ป Xt




•
II


II


0 0




ฉ
II


II


z 
u

UJ
n

a
1 **
ฉ < ฉ
ฉ ฉ

CO
ii

-J
ii

•*4
1 -V*
o o
ฉ
o ฉ

ฉ
ii

Cฃ
n








a
-1
Ui
u


0
0
0
0
o
ฉ ฉ ฉ
0
0
0
a i
a
 ^ ^
ซซc
u
n
h-
3
ii
\

1 w
~ ^ ฉ
<

rt ฉ rt
•ซ4
n
U
uj n
ii
/j

1 tl
• ซ •
•
• • •
• • •
CU
ii
3
-j i
n
to

1 C
z
0
0
Q
0
0
0
0
1
0

ii
Cฃ
A
n


1 01





u
>—
ซ rj
u


1 -J





ii
cn
h-
u

c
1




0 C
n

ซ•
it
ซ
ซ0 ^0 M
<
"0 *0
< < *Q
m o
ii
~—
h-
ii
O
0
1 *0
O O ^
c
ฉ ฉ ฉ
ฉ ฉ ฉ
X CJ
ii
3
<1 
O O O
ฉ
ฉ ฉ ฉ
ฉ ฉ ฉ
0 0
ii
z
UJ ซ
ii
ฉ
N
i a.
O ฉ O
ฉ
ฉ ฉ ฉ
ฉ ฉ ฉ
K K
it
**
n h-
u
u
•ซ*
1 01
• • •
•
• • •
• • •

n

ซ UJ
** -J
u
n
.J
a.

o





ii
ii
~-
s a
ii
r

-o c
^ rt ^
b*)
0
0
0
6
L
9

ii
M
z 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE ( C06545-0B6	TABLE PREPARATION DATE I 21-JUL-B3
Aerosol Object Count Arid Calculated Object Mass Character!sties
Object
Structure
Type
Actual
Object
Count
Nuniber
Coricen.
(Number
Per Cu M)
Maes
Concen.
(Picodram
Per Cu H>
Average
Width
(Micron)
Average
Length
(Micron)
Averaae
:Length
To IJidth
Ratio
Fiber
Chrueotile
5.
7572.
129.1
0.08 J 0.03
0.94 ฑ 0.62
11.BO ฑ

Amphibole
2.
3029,
20.9
0.06 ฑ 0.00
0.75 i 0.44
12.00 4

Other
3.
4543.

0.06 i 0.00
0.35 1 0.07
5.67 ฑ

All Fiber
10.
15145.

0.07 ฑ 0.02
0.73 ฑ 0.51
10.00 ฑ
3.70
7.07
1.15
4.57
rv>
<0
ro
Saiiple Collection and Preparation Data
Air Volume	ฐ
Deposit Area	"
Ashed Area	=
RedepOBit Area =
1.00 Cu M
1.00 So C*>
1.00 So Cm
1.00 So Cm
Grid Data
Grid IDI O60B83/A-B
Individual Grid Opening
Number of Grid 0pernr>46
Film Magnification
0. 0<))0066'/ฃa Cm
10 '
20000

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAhPLE CODE t C06545-0Q7	TABLE PREPARATION BATE I 21-JUL-B3
Aerosol Object Count Arid Calculated Object Mass Characteristics
1 ro
AO
-Pป
Object
Nuoiber
Actual Concern
Object (Number
Mass
Concert.
(Plcodram
Average
Uidth
Average
Length
Average
Lenath
To Uidth
Structure
Tape
Count
Per Cu H>
Per Cu M)

(Micron)
Ratio
F iber
Chrusotile
y.
12876.
141.9
0.08
ฑ
0.03
0.94
ฑ
0.35
13.94

Amphibole
4.
5722.
434.5
0.12
i
0.09
1 .22
i
0.5B
11.25

Other
3.
4292.

0.08
i
0.04
0.65
ฑ
0.20
9.00

All Fiber
16.
22090,

0.09
1
0.05
0.96
i
0.42
12.34
Cluster
Chrusotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00

Other
1.
1431.

0.31
ฑ
0.00
0.62
i
0.00
2.00

All Cluster
1.
1431.

0.31
ฆi
0.00
0.62
i
0.00
2.00
Matrix
Chrusotile
2.
2861.
123.5
0.12
ฑ
0.00
2.13
ฑ
1 .94
17.00

Amphibole
0.
0.
0.0
.0.00
ฑ
0.00
0.00
i
0.00
0.00

Other
0.
0.

0.00
ฑ
0.00
0.00

0.00
0.00

All Matrix
o
dm f
2061.

0.12
ฑ
0.00
2.13
ฑ
1 .94
17.00
ฑ 6.13
ฑ 0.00
i 0.00
J: 0.00
i. 0.00
115.56
ฑ 0.00
ฑ 0.00
ฑ15.56
Sample Collection arid Preparation Data
Air Volume
Peposit Area
Ashed Area
Redeposit Area
1.00 Cu M
1 .00 So Cm
1.00 So Cm
1.00 So Cm
Grid Data
Grid ID! 060883/A-9
Individual Grid Opening
Number of Grid Openings
Film Magnification
0.000070 Sa Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TAbLE  C=CLUSTERป M=MATRIX)
TABLE F'REPARATION DATE! 21-JUL-83

SAMPLE CODE J C06545-088
19ฐ
Size (Micron)	Mass (Ficodra*)
Grd					Not No
Qpn ObJ Sir Depth Width Length Ratio Chrusotile AaPhibole Anibid Asbe F'att X-Ray
4
1
F
0.000 0.125
5.00
40.0
•
0.184
4
2
F
0.000 0.062
0.44
7.0
0.003
•
4
3
F
0.000 0.125
0.81
6.5
•
0.030
6
4
F
0.000 0.062
0.25
4.0
0.002
•
6
5
F
0.000 0.062
0.62
10.0
0.005 :
•
7
6
F
0.000 0.062
0.31
5.0
0.002
ซ
7
7
F
0.000 0.062
0.37
6.0
0.003
•
9
8
F
0.000 0.062
0.44
7.0
0.003
ซ
10
9
F
0.000 0.062
0.69
11.0
•
0.006



Total Maes
(Picodram>= .
0.019
0.220



Total Count

=
6.
3.
0.
0.
0.

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-088	TABLE PREPARATION DATE:-21-JUL-83

Aerosol Object Count And Calculated Object hass Characteristics
Object
Structure Tupe
Fiber
Number
Actual Concert,
Object (Number
Count per Cu M)
Chrusotile
Amphlbole
Other
All Fiber
6.
3.
0.
Hass
Concen<
(Picodram
Per Cu H).
Average
Width
(Micron)
9446,
4723.
0.
30.6 0.06 i 0.00
346.B 0.10 ฑ 0.04
0.00 i 0.00
Average
Length
(Micron) :
0.41 1 0.13
2.17 i 2.45
0.00 1 0.00
14169.
0.08 ฑ 0.03 0.99 t 1.51
Average
Length
To Uidth
Ratio
6.50 i 2.07
19.17 ฑ18.18
0.00 ฑ 0.00
10.72 ill.20
Sample Collection and Preparation Data	Grid Data
Air Volume ป 1.00 Cu M	Grid IDI 060B83/A-10
Deposit Area ฐ 1.00	So	Cm	Individual Grid Opening =	0.000064 So Cm
Ashed Area •> 1.00	So	Cm	Number of Grid Openings f	10
Redeposit Area = 1.00	Sa	Cm	Film hadniflcation	=	20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT DATA TABLE (F=FIDERป UNBUNDLE* C=CLUSTERป M=HATRIX)
TADLE PREPARATION DATE I 21-JUL-83 :
cx b = s = s a s = = s a a a a a s = = = = a e c a a a = a a s s a s s a s s sa a a a a a a s a s s a = s a a a a = = a a a a a a a a a a a a s
SAMPLE CODE I C06545-08?
Vf "f
Size (Micron)	Ma66 (Picogram)
Orel					Not No
Ocn ObJ Str Depth Width Length Ratio Chrusotile AbPhibole Ambid Asbe patt X-Rau
1
1
F
0.000
0 • 062
0.44
7.0
ป
0.004
2
2
F
0.000
0.062
0.56
9.0
•
0.005
4
3
F
0.000
0.062
0.75
12.0
0.006 !
ซ
8
4
F
0.000
0.062
0.62
10.0
0.005
•
10
5
F
0.000
0.062
1.13
18.0
•
0.010
Total Mass (Picoflraซi) =	0.011	0.020
Total Count	ฐ	2.	3.	0. 0. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CQL'E i C06545-089	TABLE PREPARATION BATE I 21-JUL-83
Aerosol Object Count And Calculated Object Hass Characteristics



Number
Mass


Average


Actual
Concen.
Concen.
Average
Average :
Length
Object

Object
(Number
(Picodran
Uidth
Length
To Uidth
Structure
Type
Count
Per Cu H)
Per Cu M)
(Micron)
(Micron)
Ratio
Fiber
Chrusotile
2.
3078.
16.9
0.06 i 0.00
0.69 ฑ 0.09
11.00 1

Aaphibole
3.
4618.
30.1
0.06 i 0.00
0.71 ฑ 0.37
11.33 ฑ

Other
0.
0.

0.00 i 0.00
0.00 i 0.00
0.00 4

All Fiber
5.
7696.

0.06 4 0.00
0.70 ฑ 0.26
11.20 ฑ
Sample Collection and Preparation Data Grid Data
Air Volume =
1.00
Cu
M
Grid IDI 060883/B-6

Deposit Area ฆ
1.00
So
Cm
Individual Grid Opening ฆ>
0.000065 So Cm
Ashed Area =
1 .00
So
Cm
Number of Grid Openings ซ
10
Redeposit Area =
1.00
So
Cm
Film MaSriif i cat ion =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE J 21-JUL-B3:
saasBsaaaaaBSBSBaBaaBasasaaassBsasassBasBasaaessBaaeaaBSSssassssassBsas
SAMPLE CODEJ C06545-090 y(i



Size (Micron)


Mass 
U rQ
Opri
ObJ
Str
Depth Uidth Lensth
Ratio
Chrusotile Anphlbole Aubid
1
1
F
0.000 0.062 _
0.37
6.0
0.003 .
6
2
F
0.000 0.062
3.75
60.0
0.030 . .
B
3
F
0.000 0.062
1.00
16.0
0.000 . .
9
4
F
0.000 0.062
0.23
4.0
0.002 :
9

C
0.062 0.125
0.75
6.0
0.015



Total Mass

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-090	TABLE PREPARATION DATEt 21-JUL-83
Aerosol Object Count And Calculated Object ttas6 Characteristics
Object
Structure Tape
Nuiiber
Actual Concert •
Object .(Number .
Count Per Cu M>
Maes
Concen.
(Picoaraa
Per Cu H)
Average
Width
:(Micron)
Average
Lenath
(Micron)
Average
Length !
To Uidth
Ratio
Fiber
Chrysotile
4.
6203.
66.5
0.06
ฃ
0.00
1.34
ฃ
1.64
21 .50
ฑ26.20

Aaphibole
0.
0.
0.0
.0.00
ฃ
0.00
0.00
ฃ
0.00
0.00
ฃ 0.00

Other
0.
0.

0.00
ฃ
0.00
0.00
ฃ
0.00
0.00
ฃ 0.00

All Fiber
4.
6203.

0.06
ฃ
0.00
1.34
ฃ
1.64
21 .50
426.20
Cluster
Chrusotile
1.
1551.
23.6
0.12

0.00
0.75
ฃ
0.00
6.00
ฃ 0.00

Atphibole
0.
0.
0.0
0.00
ฃ
0.00
0.00
ฃ
0.00
0.00
ฃ 0.00

Other
0.
0.

0.00
ฃ
0.00
0.00
ฃ
0.00
0.00
ฃ 0.00
All Cluster
1.
1551.
0.12 4 0.00 0.75 ฃ 0.00
6.00 ฃ 0.00
Sanple Collection and Preparation Data
Grid Data
Air Voluiie
Deposit Area
Ashed Area
Redeposit Ares
1.00 Cu M
1.00 Sa Cซi
1.00 Sa Cm
1.00 Sa Ca
Grid ID! 060883/B-7
Individual Grid Openind =
Nuniber of Grid Openings f
Film Maanification	=
0.000064 So Cm
10
20000

-------
c
ซ-> Jj
0
O I
0
j:
a.

*
II

0
: 0)
CO
•0




>0
r:

ฉ

ro

rs.
Ul
<1
S3
ro

'J)

r-4
y_
o

CN



id
II

c


o


r:

f"0
ฉ
5j"J



<
ฉ
ฉ
ฉ


ฉ
n

ฉ

ฉ
ฉ
ฉ




II

•.*
1 n
O
o
ฉ

ฉ

ฉ
ฉ

ฉ


rs
ฉ
ฉ
ฉ
ฉ
ฉ
rซ
ฉ

ฉ

ฉ
ฉ
ฉ
ฉ


1j"5
in
ฉ
n
r-i

U*5
ฉ ro
ฉ
^r
ฉ

ฉ
•c
5j"5
ฉ
o
CD
o
CD
in
c
L.
ii


(Z
"0
*-
r ^






r-4







ra




C-i





...
II
u.
n ii
CJ II































ฃ

i ii
> ii


i ฃ
H
L*i
in

Ifi
fs



in

fS
T
Ci j 1
Cl
ฉ
in
ฉ
\n

ri

SD
ฉ
Cs
ro

H

<ฃ ll


i +>
ro
rs
rs

rs
w


c
Cl
U*i
fS
O
O
O IN
SD
ฉ
r-i
ui
r-j
ฉ
ro
r-j
L*)

1-*

*o
CJ
LJ
r ll


1 w
•
•
•
•
ซ
•
•
•
•
•
•
•
•
•
• •
•
•
•
ซ
-
*
•
•
•
•
ซ
•
•
s
_t



1 c
n
ฉ


ฉ


ฉ
rn


^3

ฉ
0
0
ฉ
lj*i

C4


ฉ

ฉ
ฉ
**

ฉ

ซX
?] ii


t -J





























H
ii

C
1
































c
1 .c
M
c:
Ci
rj

rv
b*)
ri
ฉ
rj
\n
lil
ฉ
CJ
n ฉ
r-j
ฉ
r-4
ฉ
irt
ฉ
r-j
C-i
r:
Cl
a
r-4
r-j
LJ
•c
U ll

c-
: -p
>0

n5
'C
co
3

NO

>0
C-:
rs
j*)
-o
~C uT

Ll
>0
ฉ
c:
Ul
si
S3
s5
*0
S3
S3
S3
j—
ป—
ป— ii
m
~
. *c
ฉ
ฉ
ฉ
ฉ


H
ฉ
ra
ฉ
>0
CO
irJ
ฉ
ฉ Ti
ฉ
Ci
ฉ
u>

rj
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
~*:

1 iป

. M
i -H
ซ
•
•
ซ
•
~

•
•
•
•
•
•
•
• - •
•
•
ซ
•
•
ซ
•
•
•
ฆ
•
•
•
(—
ฆZL
mU .1
Irt
ฃ

ฉ
ฉ
o
ฉ
ฉ
o
o
ฉ
ฉ
ฉ
ฉ


ฉ
0
0
ฉ

ฉ
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ


11
0
Hi
! V
o
ฉ
ฉ
ฉ
<0
-c
ฉ
ฉ
'O
ฉ
so -o
r-j
ฉ
ฉ m:
S3
s:
<
*0
"0
•>0
ฉ
S3
S3
ฉ
ฉ
•c
*0
z
LJ
II
ฉ
N
i a.
c
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ ฉ

ฉ
ฉ ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ


H- II
CJ
•H
i ii
•
•
•
•
•
•
•
•
•
•
•
•
*
•
• *
•
•
•
•
•
•
•
•
ซ
m
•
•
•

E!
<1 11

cn
: c.
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฃ
—

z:
U
r

u.
sz
j:

ฆ
c
•Z.

ป II
u






























m"

Ck II


•ฆ)
o

r-4
n

ซr
T

0
s:
S3
-0
^0
>0

rs
rs

-------
IIr RESEARCH INSTITUTE S1KUCIURE ANALYSIS DATA
INDIVIDUAL UHJECT DATA TAtLE 
(3rd					Not No
Upn UbJ Str Depth Width Length Ratio Chrysotile Amphibolc Airibisl Ashe Patt X-Ray
1
1
F
0.000
0.062
1.19
19.0
0.009
. ...
2
')
M
0.062
0.125
0.50
4.0
0.010
. ...
*:>
3
F
0.000
0.125
0.62
5.0
.
0.023
2
4
F
0.000
0.062
0.37
6.0
0.003
. ...
2
5
F
0.000
0.062
0.62
10.0
,
. A * .
n
6
C
0.062
0.312
0.94
3.0
0.048
ซ • • •

7
C
0.062
0.625
0.94
1 .5
0.095

*}
8
F
0.000
0.062
0.94
15.0
0.007
ซ ซ • •
2
9
C
0.062
1 .250
1 .25
1 .0
,
• X • *
n
10
B
0.062
0.187
0.69
3.7
0.021
• • • •
2
11
C
0.062
0.937
1 .56
1.7
0.230
ป • • •
o
12
F
0.000
0.062
0.62
10.0
0.005
• ซ • •
• >
13
F
0.000
0.062
1 .25
20.0
0.010
• ป • ~
ฆ>
14
F
0.000
0.062
0.56
9.0
0.004

9
15
F
0.000
0.062
1 .56
25.0
0.012
ซ • ป •
2
16
F
0.000
0.062
2.25
36.0
0.010
1 • • •
3
17
F
0.000
0.062
1.13
18.0
,
• A • *
3
10
F
0.000
0.062
1 .38
22.0
0.011
• ซ • •
3
19
M
0.125
1 .250
2.50
2.0
,
• A • ป
3
20
F
0.000
0.062
1.25
20.0
0.010
• ซ • ซ
3
21
M
0.062
0.062
1 .69
27.0
0.017
• • • ซ
3

M
0.062
0.062
1 .19
19.0
0.012
• • ซ ซ
3
23
1<
0.062
0.312
2.50
8.0
0. 127
• • ป •
4
24
F
0.000
0.062
0.62
10.0
0.005
ซ ซ ป •
4
25
F
0.000
0 .062
0.50
8.0
0.004
• • ป ~
4
26
M
0.062
0. 125
0.94
7.5
,
• pN ~ ป
4
27
F
0.000
0.062
1.13
18.0
0.009
• • • ป
4
28
F
0.000
0. 125
0.44
3.5
,
0.016
4
29
D
0.062
0. 107
5.75
30.7
0.175
• ซ * •

-------
eoe
o c
T
w
xป

>0
<
'C
o
co
CC
cc
CO
GO
CD
cd
ฉ
CO
CO
CO
CO
c
CD
X
CD
CD
C5
NJ
S/
NJ
NJ
3
a
2
II T
*7































ii r*
•—ซ




























O

r
ii rr
C

m
cc
CD
CO
CD
CO
Si
NJ
Nl
Nj
NJ
NJ
NJ
NJ
N.J
NJ
>
Cs
c-
D-
CS
i>
CS
CS
Cs
0^
ep
cr

n
c
t—<
m
en

w
ro
v-
ฉ
<
CD
NJ
CS
en
.fit
u
*0
H-
ฉ
*o
CT
VJ
CS
en
•U
UI
ro

ฉ
S5
L.


II 'V

Cj^





























n
II 5?

n



























W

o
n rr
I-
T>
T*
ฆn
T1
*r,
cp
-n
3:
**1
TJ
T,

-n
~r,
~n
ฆn
-n
-r,
3:
r.
"X-
r

n
n
-n

3
p*

r-r
n "?
!"




























—

R
II 2>

n





























••
ii t:
q
*T"
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
c
i cn

ii
V

•
•
•
•
•
•
•
•
•
*
•
•
•
•
~
•
•
•
•
•
•
•
•
•
•
•
•

1 M-
n
II -H

N-1
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
o
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
•p
i r 4
ฉ

p",
2
ฉ
ฉ
ฉ
ฉ
IV.
ฉ
Cs
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
Cr*
>

0s
ฉ
r>
cs
ฉ
CS
0-

i
>
II c
n

ฉ
ฉ
ฉ
ฉ
ro
ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ro
rj
ro
ro
ฉ
ro
ro
ฉ
ro
ro
ar
i
cn
II z
-<
—s




























i ^

II


ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
r—
c
CI
ฉ
ฉ

ฉ
ฉ
ฉ
c
! 2
en
II c
—
—i
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
ป
•
•
ซ
•
•
•

1 *-•

II J>
S

ฉ
ฉ
I—
ฉ
ro
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ




t-L
ro
ฉ
ฉ
ฉ
a
1 i"J
w
II H
-h
_
CS
o
?0

en
o
cs
cs

fO
CS
0*
*

0-
o
Cs
0-
JV
'CD
ฉ
CS
CO
en

cs
cs
<+

u
ii rr
i>
IT
ro
ro
en

ฉ
ro
r o
ro
ro
en
ro
ro
to
ro
ro
ro
ro



ฉ

Nj
ฉ
ro
ro
ro
Dr
i c






























r
i w

ii
i: ro





























D
i

n e^.
i*

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
—
c
ck

Cm

ฉ
ฉ
ฉ
T



r*

~
•
•
•
•
•
•
•
~
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
~
la
i

ii 2:
H



0-
5s

Ui
CO
cs
CS
en
N,'
' n
o

NJ
LP
sO



rฉ
>

o

NJ
UJ
<~
i

II x>


ฉ
?0

nC


*•*
-0
ro
ฉ
(.1
ฉ
>0

CTi
ฉ
a
ฉ
v.

ฉ
<>

Nj
ฉ
en

3*
i

II -<

13






























II 1
II CD

n



























??


II U
n









**

w
















Oj


II
"n
x>
oc
ฉ
r.n

u
LI
w

ฉ
a
ro
CO
—•
NJ
NJ
CD
C."
c?

C."

NJ
CO

CO
ro
ys
f*


II

2
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
M-


II

i>
ฉ
ฉ
W
ฉ
NJ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
o
ฉ
ฉ


ฉ

c*>
u\
ฉ
ฉ
ฉ
c


II
n































II

—<






























II
ซ•
a*



























n
: 3:

II

k-H



























zr
: Oj

II
w
cn



























n
i ip

II
n




























!ฃ
: in

II
i?




























IP


II

3>
ฉ
ฉ
ฉ
ฉ
ฉ
•
ฉ
ฉ
ฉ
•
•
ฉ
•
ฉ

ฉ
ฉ
ป
c
ฉ
.ฃป
ฉ
ฉ
•
ฉ
•
•
2
! •"*•

II
2
—H
•
~
•
•
•

•
*
•


•

•
•
•
•

<•
•
•
•
•

ซป


C+
|

II

xป
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ


ฉ

ฉ
ฉ
ฉ
ฉ

J5.
ฉ
ฉ



ฉ


M-
1 M-

II
r

ฉ
ฉ
ro
ฉ
U

ฉ
ฉ
ฉ


ฉ

ฉ
ฉ

ฉ

N,

CS

ฉ

ฉ



i n

11
r.

.0
V:
ro
en
CO

CO
CI
LI




On
r>.
ฃ
NJ

C--

ro
C*J
en





1 o

Ii
-





























i in
i i

II
n





























! Oj

11





























a
! 2

II





























T1


II





























r
i

II
c










ฉ
ฉ
















M-
I

II
tn






•



•
•
















V*
•

II
—(






ฉ



ฉ
ฉ
















0


Ii
n






ฉ



**
ฉ
















**
i

:i
7?






0*



00
NJ
















0
!

i:
-































I?
ii





























3>


p
II




























a


ii
2




























b


Ii



























X
X



II


Xป s
iP O
X
I
X
01
IC

-------
TIT h'ESE AFi'CM INSTITUTE 8 IKIJC IURE AN.M YSIS DATA
INMVllUJAL OrUtC.'T HAT A TAULL LE
TAULE F'REF'ARAF ION HATE5 2S-MAY-83
1>CI USTER. M=MATRIX)
SAMPLE CODE.* C06545-33
Size (Micron)
Grd
Mass (F'icosir.jni)
Not
C)pn Ut>J Str Iiepth Width Lonath Ratio (Jhrซnotile AmPhibulc? Amhia rtsbo
10
88
C
0. 062
0. 187
0.62
3.3
0.019
. ,
10
89
C
0.062
0.12b
0.50
4.0
• •
X
10
90
c
0.062
1 .250
1 .56
1 .2
0.317
ซ ,
10
91
M
0.062
0.062
1 .25
20.0
0.013
, .
10
92
F
0.000
0.062
0.94
15.0
• ซ
X
No
F O t t X K rVJ
Total Mass (F'icograni)=	9.?,24	0.07(1
Total Count	=	68.	6.	17. 1.
0.

-------
Ill RESEARCH JNG I I Til I L" STRUCTURE ANALYSIS OAT A
SINCiLL SAMPLE SUMMARY I'AI'l.Lb
•sample coLit: CO6545-33	iaull preparation hail: 25-may-03
Aerosol Object Count And Calculated Object Mass Cha r;ic te r is t
Object
St ructure
Type
Act.ua 1
Object
Count
Number
Conrpn.
(Numbe r
Pe r Cu H)
floss
Concpn•
(Picoarani
fer Cu M)
Aver.ifle
IJ i d t h
(Micron >
Ave i ;sse
Length
(Mi c ron)
Avc*r,iSฃ?
Lens tli
To II) dth
liiitlD
Fiber
Chrysotlie
37.
56035.
474 . 1
0.07
J
0.01
0.91
0.51
14.23 k
j . 26

Amphibole
6.
9087 .
117.6
0.09
J
0 .03
0.A2
O.J 9
7.92 i
..03

Other
4 .
6050.

0.06
i
0.00
0.04
0.23
13.50 1
i. 70
All Fiber
47.
71100.
0.07 i 0.02
0.07 1 0.4 7
13.36 i 7.90
'OJ
o
cn
Bundle
Chrysoti1e
6.
9087.
824.0
0.23
1
0.05
2.44
i
2 .02
11 . 06
110.55

Amphibole
0.
0.
0.0
0.00
1
0 . 00
0.00
J
0.00
0. 00
1 0.00

Other
3.
4543.

0.35
]
0 .24
1 .48
I:
0.44
5.50
1 3.97

All ftundle
9.
13630.

0.27
1
0.14
2.12
ฑ
1 .60
V . 20
1 9.01
Cluster
Chrusotile
12.
10174.
11729.2
1 . 16
:!
I .34
2.33
:1
1 .60
3.06
i 4 . 75

Amphibole
0.
0.
0.0
0.00
1
0 . 00
0.00
I
0.00
0.00
1 0.00

Other
5 •
7572.

0.00
1
0 .56
1.13
J:
0.53
2.12
1 1.32

All Cluster
17.
257-16.

t .05
1
1 . 16
1 .97
i
1 .4 7
3 . 35
4.07
Matrix
Chrysoti1e
13.
19600.
1395.0
0.17
1
0.33
1.13
J
0.41
13.96
i 7.55

Amphibole
0.
0.
0.0
0.00
1
0. 00
0 . 00
1
y .oo
0.00
i 0.00

Other
6.
9007 .

0.27
.1
0. 40
0.09
}
0 .83
6.50
1 .< i 4 1
All Matrix
19.
20775.
0.20 1 0.37
1.05 i 0.56
11.A3 J 7.19
Sample Collection and Preparation I'at.a	Grid Data
Air Volume =
1 .00
Cu
M
l j rid III! 052102/11 4

lipposit Area =
1 .00
So
Cm
Individual (3rid OFeriinsl =
0.000066 <:ซ Cm
Ashed Area =
1 .00
So
Cm
Number of lipid Dpcrnnas -
10
Redeposit Area =
1 .00
So
Cm
Fil.m Magnification =-
20000

-------
i 90S
CN

0>
o.
M
cn
V:
V

c.r
w
u

u
u
u
w
w
w
ro
ro
ro
ro
ro
ro
ro
ro
ro

r a

3:
II w
—
































•n
ji r-































o

r
u n
c
77
ro
ro
to
ro
ro
ro
ro
*0
ro
ro

**
++ฆ




M.











rr

m
ii
NM
n
>0
cc
NJ
cn
cn

u
ro

ฉ
o
X
NJ



u
ro

ฉ
o
CO
NJ
Os
LI

OJ
ro

u.


1!

cn































r
Ii 7?
c
m





























tn

o
ii n i>
i>
n
"T1
3:
"T*
-n
T|
TO
"T!
ฆn

3:
3:

3:
n
3
-n
ซ 3
T*
3:

*n
-n
ฆn
3:

t;
-n
rป


II "v
n
7~































n
ii ^

n































••
II 3- C

o
ฉ
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
0
0
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
1
CO

II 2>


*
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
ฆ
•
•
•
•
ป
•
•
•
•
•
•
D !
M-
o
IJ -H
(_

ฉ
o
o
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
T 1
N
ฉ
II >—<
n
2
CN
o
>
ฉ
ฉ
ฉ
>
ฉ
ฉ

cn
c>*
CN

cs
Cs
ฉ
'0
CN
ฉ
CN
0*
ฉ
ฉ
ฉ
CN CN
ฉ
ฉ
c* I

CN
II c r;
cn
ro
o
10
ฉ
ฉ ฉ
ro
ฉ
ฉ
ฉ
ro
ro
ro
ro
ro
ro
ฉ
ui
ro
ฉ
ro
ro
ฉ
ฉ
ฉ
ro
ro
ฉ
ฉ
3* !

c.n
II 2
—i
-4





























1
<-v

II

ป—4
o
ฉ
c
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฃ I
3:
w
u cr

—{
•
•
•
•
•
•
•

•
•
•
•
•
~
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
M- |
H-
1
II 2>
S
'

o
o
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
rj
ro
ฉ

ป-*

ฉ
ro
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

NA
ฉ
& !
n
u
II —(
—H
H
ro

0ป
cn
o
Cb
ro
o
CN
cn
cn
y>

ro
rj
ro
CN
LH
CN

>
!>
c*

cs
Cs
ro
ro

C+ 1
-j
tn
II PI
I>
rr,

IO

ro
ro
ro
cr
ro
>0
ro
ฉ
ฉ


ta
ui
ro
ฉ
rj
ro
ro
ro
ro
ro
ro
ro
c.n
LI
ro
rr i
0

ii































r i


ii
ii ro
>
1;





























0) i

-
II CN
f

ฉ
ฉ
o
ro
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
•-ป
ฉ
ฉ
ฉ
ฉ

ฉ
u
ฉ
ฉ
ฉ

ฉ
ฉ
n •


II l
r






























[a ;


ii 3:
m

U'

>

ro
>c
CD
w
CN
u
oc
Cs
cn
NJ
NJ
ro
a
CO

oc
M

<—•

CN
CN
ro
CN
CN
?


1! 2>

—<
SJ
>c
ro

Lp.
xป
n-
NJ
ro
ฎ
NJ
ro
ฆo
LI
'jr,
tr,


ฉ
NJ
w


ro
ro
ro
cn
t J
>c
3" 1


II •<

*



































































M 6
T*,
n
































II U



l-k

u





ro





*•ป






y.

i—^
i-t



Hi


11
T

u
H-
ฉ
>c
&

O
CN
ฉ
ro

ro
ฉ
cn
CN
ฉ
n;
w
w

CO
cp.

ฉ
ฉ
ฉ
ฉ
cp.

c*


I!
i—f
2:





















•





•
•
H-


II
IJ1
2^
o

ฉ
ฉ
ฉ
ฉ
C/l
ฉ
ฉ
ฉ
C.1
C.p
ฉ
ฐ
ฉ
ฐ
ฐ
u
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
0


II
II
n
r





























n i
3

II
II
"•
CT;





























3* 1
u

II
c
cn





























i i
u-

II
ii






























ic 1
Ui

II































in i


i:
c
2>
ฉ
o
•
ฉ
•
ฉ
ฉ
ฉ
ฉ
ฉ


ฉ
ฉ
ฉ
•
ฉ
•
•
ฉ
1^
ฉ
ฉ
ฉ
~
ฉ
•
ฉ
ฉ
0 :


n
2
—i
•
•

%

•
•
•
•
•
•
•
•
•
•

•


•
•
•
•
•

•

•
•
r*- !
•n

1'
r-
**-
o
o

ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ


ฉ
c
ฉ
ฉ
ฉ

ฉ

ฉ
ฉ
M- |
M-

ii
r

o
o



ฉ

ฉ
ฉ
*•+
u
ro
ฉ
w*


ฉ


ฉ

1-^
ro
ฉ

ฉ

ro
ฉ
ฆ— 1
o

n
rr

c
(.n

>0

SJ
SJ
U
V.
**
0*
w

Cp<
C.p.

u


NJ
N-
ฉ
c.n
U1

CN

ฉ
cn
D 1
0

ii
"•






























1
-J

ii
n






























2> i
0)

ii































3 '
a

ii
c:

O C5
T -J
cn
2>
O
o
ro
0
T>
2>
cr
:	La
i	i> 2
I	in o
!	0* <*
I	T>
•	"? 2
i	Oj 0
1	r*
I	c*

-------
L0ฃ

**


t-*

H-
N*




















o
o
o
o
ฉ
o
o
o
nC
>0
>0
C
GC
CO
c
CO
c
GO
Nj
SJ
NJ
Ni
NJ
SJ
SJ
Sj
0*
0*

ff
C":
cr
cr
r„p
C*
cr

A


.U
A
ฃป
A
ซ.r


u
W
'>i
w
r^j
W
Ui
u
VN
NJ

cr

w
to

ฉ
o
CD
\
>
cr

w
ro
h-
ฉ
>0
C
Nl
CK
en

Ul
r-0

ฉ
*3?
n
-
T|
3
n
t.
-r
T]

o
Tt
~r
T,
3:
n
ฆn
rปi
3:
T|
3
T-
-n
-n
-r,
-•

-,
O
ฉ
o
o
O
o
c
O
o
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
c
ฉ
c
o
o
ฉ
o
X
X
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ
X
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ
X


Cs
o
o
o
o
ฉ
ฉ
ฉ
!>
ฉ
ฉ
ฉ
o
CN
ฉ
t>
rv
ฉ
rv
O
ฉ
ฉ
ฉ
o
r>
ฉ
ro
ro
N)
o
ro
ro
o
o
ฉ
ฉ
ro
ฉ
ฉ
ฉ
ro
ro
ฉ
rj
cr
ฉ
rg
rj
ฉ
ฉ
ฉ
ฉ
r-o
ฉ
c
>-

ฉ
c
c
c
o
Q.
c
o

ฉ
c
c
c
o
ฉ
ฉ
ฉ
c
ฉ
c
ฉ
ฉ
o
ฉ
c





•























ro

o
o
'0


*ป
ฉ
W
ฉ
ฉ
ฉ
ฉ
k-t
ฉ


ฉ



ฉ
ฉ

>C

ro
Cr
r0
O
c*
cr
ro
ro
ro
l>
K-
>
5s
>

w
CN
ro
ฉ
oป

'J
to
>
Cs
cc
Cm'
ro
cr
O
Cp<
to
ro
ฉ
cr
c
cr
ro
t0
ro

r-
ro
c

C".

rj

cr
cr

ro
SJ
N.
cr
>-
Nซ
o

o
ฉ

r.
ฉ

ro
ฉ
ฉ
ฉ


ฉ
ฉ

ฉ
ฉ

w
ฉ
ฉ







•





•
•


*













ro
c


v*

cn
cr
cr

^r,

C
>c
ro


w
rj

NO
Cs
SJ
|N.
cn
ฉ


C<
SJ
f-o

ฉ
ro
\
o
e-
CO
ฉ
Ni
SJ
.fcป
cr
u
rg
NJ
cr
NJ
**
<
-r'
>c
ฉ

x,>'
u
N-








ro




K>













l	O CD
I	T r
I	? a
I	Q
t	cr
:	l.
*
<*
DP
ฃ
a
3P
r
0
n
1
3:
M-
n
-n
o
tsi
xป
3:
n
o
n
o
0ซ
cr
u
CI
O •* L* \ CC f-J S O f-J C > A LI O "O O ' J nJ CI
ฉ Cr. C C C C, ฉ ฉ CH ฉ C ฉ ฉ C ฉ ฉ ฉ ฉ Cn O CH .V
o* c c
3:
QJ
i/l
in
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ •
ฉ •
ฉ
ฉ

ฉ
ฉ
ฉ
ฉ
ฉ
ฉ •
ฉ
ฉ
ฉ
ฉ
ฉ
ฉ

ฉ
ฉ 1
1 0 ,
, ~





•



•





•

•




-

• 1
1 !

ฉ
C*J
o
ฉ
ฉ

ฉ
ฉ

ฉ

ฉ
ฃ•

ฉ
ฉ
ฉ

ฉ
ฉ
o
ฉ
ฉ
ro
ฉ
; m-
! •-ป*
ro
CO

ฉ
ฉ
ro
CO

'J
ฉ
ฉ
ฉ

10
ฉ
ป-ป
ฉ


cr
ฉ
ฉ
SJ
w
w
• ^
! rป
cr
*-
u

cn
V
ฉ
>—
SJ

SJ
SJ
U
Ul
c*
cr
0J
>0

cs
cr

to
Cs
^ '
i t :
! C
#

i D*
ฉ
ฉ
1 0
u
ro
1 '
ro

1 JD
I>
a
b
in
in
O*
t
H
ซ—ซ


2;
t—(
hj
—i

n
t—i


C
2"!

l~4
n
*

c*.
5?

m
rr

2>
T?
f
J?
3>

n

w

—

ป-H
i—^

2
o
f;
f n
2:

~{



c
—
—i
I>



—
—
r*

T5


r-
r j
7>
—'
!>.

T~
1

—
A
h
~



-<




J?



Ui
1!


*r;
Tป


2

T?
2>


n

T
-<

<•
iT3


M


CTJ

11





C
S


-4


3>

n


r*:


"




V

i
T>
>:

-------
11T FvtSLAKCII INSTnurt: L.Tk'llCTURb" ANAL Y 1>IS HATA
INUIVIMIAL till JL'CT IiATA T Al'LI" < F =f- I L
TAl'LE PK'EF'AKAf ION HAIL! L'6-MAY-H3
SAMPLE COliE! C06545-J5
Size (Micron)	Mas ;s ( F"i cod ram )
Grti					Not No
Opn l)bJ Str Perth Width Lpridth K'stio	Chrw^otile AmPiiibol o Anibiil Asbo F'att X-K'ay
Total fl3S9> 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06&45-35	TABLE PREPARATION DATE! :>6-ปiAr-ป3
Aerosol Object Count Arid Calculated Object hats Characteristics
Object
Structure
Fiber
Tape
Chrusotlie
Aniphibole
Other
Actual
(Jb.ioct
Co' int
1'5.
3.
1 .
Nuiiihc r
Conceri.
(Nuiiibe r
Per C'i M)
40204.
•ig:m .
1611.
Concert.
(ficoarani
Per i:u M)
730.:!
09 . O
Ave rasle
Width
(Hieicn)
0.00 1 0.03
0.10 1. 0.04
0.04 1: 0.00
Aver a.'le
1 enjth
( Hll'I'lTl )
1 .08
0.b6
0.62
Ave r ... fie
I eruit.h
To IJldti)
Rati a
'•. 00
•;>. .51
0 . 00
14.11
b . 1 7
10. 00
10.73
1.61
0.00
}./,j ) :'.i?i
.'.33
0.00 I 0.00
• l.'b
C1 u - t. e r
rhr> t.cr
I 4 502.
0 .
0.
i tb02.
14 4:
o.o
0.37 I: 0. )2
0.00 I 0.00
0.v 0 J O.00
0.37 J i >.12
1.10	J: 0.73
o.oo	; o.oo
0.00	1 0.00
1.1 CI	1: 0.73
4.1!? J
0.00 1
2 . / 7
O . 00
0.00 I O.00
4.1;9 : :<.:v
Matri;
Chrycotile
Anif ti i t.ol e
Other
10.
0.
16113.
0.
00b 7.
236 . 3
0.0
0.11 I 0.00
0.00 1 0.00
0.17 I 0.10
0.02 1: 0.24
0.00 1 0.00
0.90 1 0.3D
10. Ob J b . 90
0.00 J 0.00
0 . I 0 .1 3 . 2b
All Matri::
lb
24170.
0.13 J 0.12
57 I 0.
9.40 I
13
Sample Collection and Preparation l'3ta
Grid Oat a
Air Volume
I'CFOjit A tea
Ashed Ares
Rederosit Area
1 .00 C'.i M
1.00 So Cm
1.00 So Cm
1.00 So Cm
Orid ID! 0S210 :;/e I
Individual Orid O.^enirrM
Number of Orid ' ir-onj
Kiim Maiini l'i ciit i on
0.000062 So
10
20000'

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .	'
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEป C=CLUSTERf M=MATRIX>
TABLE PREPARATION DATE J 02-JUN-83
n33BS8BBSsaaasBBsssssaaBBeB&=3es3=33SoasaeBssse33BasBBB3secB3aaBaca33&ssassaBaBssBsssssssssassaBS=.
SAMPLE CODEI C06545-47
n tปrl


Size
Micron)

Mass (Picoarae)

kl_i
ll_
ura
Opri
ObJ
Str
Depth
Width
Length
Ratio
Chrusotile
Anphibole
Aabis
Not
Asbe
NO
Patt X-Rau
1
1
F
0.000
0.062
0.44
7.0
•

X
•
•
1
2
C
0.062
0.500
0.62
1.2
ซ

X
•
ซ
1
3
F
0.000
0.062
0.56
9.0
•

X
•
•
1
4
F
0.000
0.062
0.44
7.0
0.003

•
•
•
1
5
F
0.000
0.125
0.56
4.5
•
0.021
*
•
•
2
6
F
0.000
0.375
2.06
5.5
•
0.683
•
•
*
2
7
B
0.062
0.187
1.19
6.3
0.036

•
•
•
2
B
F
0.000
0.125
0.75
6.0
0.024

ft
•
•
3
9
C
0.062
0.125
0.50
4.0
0.010

•
•
•
3
10
F
0.000
0.062
0.75
12.0
•

•

*
4
11
F
0.000
0.125
1.25
10.0
0.040

•
•
•
4
12
B
0.062
0.187
10.31
55.0
0.314

•
•
•
4
13
F
0.000
0.062
0.25
4.0
•

X
•
•
4
14
F
0.000
0.062
0.44
7.0
•

X
•
•
4
15
B
0.062
0.125
4.31
34.5
0.088

•
•
•
4
16
F
0.000
0.062
1 .25
20.0
0.010

•
•
•
4
17
F
0.000
0.062
1.25
20.0
0.010


•
•
5
18
M
0.062
0.062
0.62
10.0
0.006

•
*
•
5
1?
M
0.062
0.062
0.75
12.0
0.008

•
•
•
S
20
C
0.125
0.625
3.12
5.0
t

X
•
ซ
S
21
F
0.000
0.062
0.50
8.0
*
0.005
•
•
•
5
22
B
0.187
0.625
1.87
3.0
ft

X
•
•
5
23
F
0.000
0.062
0.87
14.0
•

ซ

•
6
24
F
0.000
0.062
0.69
11.0
0.005

ซ
•
•
6
25
B
0.187
0.500
2.38
4.8
•

X
•
•
6
26
H
0.062
0.062
0.62
10.0
ft

X
*
•
6
27
F
0.000
0.125
0.94
7.5
•

X
•
•
6
28
F
0.000
0.062
0.50
8.0
t

ป
X

7
29
F
0.000
0.062
2.06
33.0
0.016

•
•
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COtiEJ C06545-47	TABLE PREPARATION DATE! 02-JUN-B3

Aerosol Object Count And Calculated Object Mass Characteristics



Number
Mass






Average



Actual
Concen.
Concen•
Average
Average i
Length


Object

Object
(Number
(Picogram
Width

Length

To Uidth

Structure
Tape
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron)
Ratio


Fiber
Chrysotile
21.
27429.
382.2
0.07
ฑ
0.03
1.19
i
0.72
17.62
11
2.39

Amphibole
4.
5225.
935.4
0.16
ฑ
0.15
0.98
i
0.73
7.75
i
3.80

Other
13.
16980.

0.07
ฑ
0.02
0.63
i
0.28
9.58
ฑ
4.21

All Fiber
38.
49634.

0.08
i
0.05
0.98
i
0.65
13.83
110.41
Bundle
Chrysotile
6 •
7837.
1071.2
0.21
ฑ
0.06
3.54
i
3.50
19.61
420.53

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
2.
2612.

0.56
I
0.09
2.13
i
0.3S
3.88

1.24

All Bundle
8.
10449.

0.30
i
0.18
3.19
i
3.03
15.68
118.82
Cluster
Chrusotile
1.
1306.
13.3
0.12
ฑ
0.00
0.50
ฑ
0.00
4.00
1
0.00

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
1
0.00

Other
2.
2612.

0.56
i
0.09
1.87

1.77
3.12

2.65

All Cluster
3.
3918.

0.42
i
0.26
1.42
ฑ
1.48
3.42
i
1 .94
Matrix
Chrusotile
3.
3918.
24.9
0.06
i
0.00
0.62

0.12
10.00
i
2.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
*
0.00

Other
3.
3918.

0.08
i
0.04
0.50
i
0.17
6.50
i
3.04

All Matrix
6.
7837.

0.07
i
0.03
0.56
i
0.15
8.25
i
3.00
Sample Collection and Preparation Data
Grid Data









Air Volume
=ฆ 1.00
Cu M

Grid in: OS
2182/B-
10






Deposit Area = 1.00
So Cm

Individual
Grid Opening
= 0.000077 So
Cm


Ashed Area
1.00
So Cm

Number of Grid Openings
= 10





Redeposit
Area = 1.00
So Cm

Film Magnification

= 20000





-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  B=BUNDLEป C=CLUSTERป M=MATRIX)
TABLE P REPARATION DATE J 26-MAY-83
SAMPLE CODES C06545-39



Size i
(Micron)


Mass (Picodr
JrO
)prป
ObJ
Str
Depth
Uidih Leridth
Ratio
Chrysotlle i
2
30
F
0.000
0.062
0.37
6.0
0.003
2
31
F
0.000
0.062
0.62
10.0
0.005
2
32
F
0.000
0.062
0.44
7.0
0.003
2
33
F
0.000
0.062
0.25
4.0
0.002
2
34
F
0.000
0.062
0.25
4.0
0.002
2
35
n
0.062
0.312
0.75
2.4
0.038
3
36
F
0.000
0.062
0.69
11.0
0.005
3
37
F
0.000
0.062
0.50
8.0
0.004
4
38
F
0.000
0.062
0.31
5.0
0.002
4
3?
M
0.062
0.062
0.62
10.0
0.006
4
40
H
0.062
0.062
0.37
6.0
0.004
4
41
C
0.062
0.312
0.62
2.0
0.032
4
42
F
0.000
0.062
0.87
14.0
0.007
4
43
F
0.000
0.062
0.62
10.0
0.005
4
44
F
0.000
0.062
0.25
4.0
0.002
4
45
B
0.062
0.250
1 .69
6.8
0.069
S
46
F
0.000
0.125
3.50
28.0
0.112
5
47
F
0.000
0.062
0.62
10.0
0.005
5
48
F
0.000
0.062
0.62
10.0
0.005
5
49
M
0.062
0.125
0.75
6.0
0.015
5
50
M
0.062
0.062
0.69
11.0
0.007
5
51
F
0.000
0.062
0.75
12.0
0.006
5
52
F
0.000
0.062
0.37
6.0
0.003
6
53
F
0.000
0.062
0.44
7.0
0.003
6
54
C
0.062
0.312
1.13
3.6
0.057
6
55
F
0.000
0.062
0.75
12.0
0.006
6
56
C
0.062
0.500
1.25
2.5
0.102
6
57
F
0.000
0.125
1.19
9.5
0.038
6
58
M
0.062
0.125
1.87
15.0
0.038
Not
No

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNHLEr C=CLUSTER, M=MATRIX)
TABLE PREPARATION DATEt 26-MAY-83
SAMPLE CODES C06545-39
Size 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  Cซ=CLUSTERr M=MATRIX)
TABLE PREPARATION DATE! 26-MAY-B3
SAMPLE CODES C06545-39
Size (Micron)	Mass )
Grd					Not No
Opd ObJ Str Depth Uidth Lenath Ratio Chrusotile An.phibole Aflibid Asbe Patt X-Ray
8
88
F
0.000
0.062
1 .87
30.0
0.015
• It
8
89
C
0.062
0.312
0.37
1.2
• ซ
X
B
90
F
0.000
0.062
1.25
20.0
0.010
• • •
y
91
C
0.062
0.250
0.62
2.5
0.025
• ซ •
9
92
M
0.062
0.187
0.50
2.7
0.015
ซ • ซ
9
93
F
0.000
0.062
0.31
5.0
0.002
• • •
9
94
M
0.062
0.062
0.62
10.0
0.006
• • •
9
95
F
0.000
0.062
1.25
20.0
0.010
ซ ป •
9
96
F
0.000
0.062
0.94
15.0
• •
• X •
9
97
F
0.000
0.062
0.50
8.0
0.004
• • •
9
98
F
0.000
0.062
0.44
7.0
0.003
• • ซ
10
99
F
0.000
0.062
0.62
10.0
0.005
~ ~ •
10
100
F
0.000
0.062
0.44
7.0
0.003 .
• • •
Total Mass 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE I C06545-39	TABLE PREPARATION DATE! 26-MAY-83
Aerosol Object Count And Calculated Object Mass Characteristics



Numbe r
Mass






Average


Actual
Concert.
Concen.
Average
Average
Lenath
Object

Object
(Number
(Picodram
Width

Len3th

To Width
Structure
Tape
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron) .
Ratio
Fiber
Chrusoti le
59.
84022.
678.7
0.06
ฃ
0.01
0.77
ฃ
0.54
11.75 i

Amphibole
0.
0.
0.0
0.00
ฃ
0.00
0.00
ฃ
0.00
0.00 ฑ

Other
7.
9969.

0.08
ฃ
0.03
0.59
ฃ
0.20
8.36 i

All Fiber
66ป
93990.

0.07
ฃ
0.02
0.75
ฃ
0.52
11.39 ฑ
Bundle
Chrusotile
6.
8545.
2306.9
0.35
ฃ
0.32
1 .71
ฃ
0.51
6.56 ฃ

Amphibole
0.
0.
0.0
0.00
ฃ
0.00
0.00
ฃ
0.00
0.00 ฃ

Other
7.
9969.

0.34
ฃ
0.13
1.80
ฃ
1.45
5.00 i

All Bundle
13.
18513.

0.35
ฃ
0.23
1 .76
ฃ
1.08
5.72 ฃ
Cluster
Chrusotile
5.
7120.
3019.3
0.52
ฃ
0.42
1 .35
ฃ
1 .03
2.62 ฑ

Amphibole
0.
0.
0.0
0.00
ฃ
0.00
0.00
ฑ
0.00
0.00 ฃ

Other
2.
2848.

0.31
ฃ
0.00
0.50
ฃ
0.18
1 .60 ฃ

All Cluster
7.
9969.

0.46
ฃ
0.36
1.11
ฃ
0.94
2.33 i
Matrix
Chrusotile
13.
18513.
732.2
0.17
ฃ
0.17
0.93
ฃ
0.68
7.47 ฃ

Amphibole
0.
0.
0.0
0.00
ฃ
0.00
0.00
ฃ
0.00
0.00 ฃ

Other
1.
1424.

0.12
i:
0.00
1 .25
i
0.00
10.00 ฃ

All Matrix
14.
19937.

0.17
ฃ
0.17
0.96
i
0.66
7.65 ฃ
6.70
0.00
5.12
6.60
3.03
0.00
2.07
2.57
0.5?
0.00
0.57
0.73
3.65
0.00
0.00
3.57
Sample Collection and Preparation Data	Grid Data
Air Volume =
1.00
Cu
M
Grid IDS 052182/6A

Deposit Area =
1.00
S a
Cm
Individual Grid Opening =
0.000070 So Cm
Ashed Area =
1.00
So
Cm
Number of Grid Openings =
10
Redeposit Area =
1.00
So
Cm
Filpi Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNPLEป C=CLUSTERป M=hATRIX)
TABLE PREPARATION DATE: 26-MAY-83
SAMPLE CODE: C06545-43



Size (Micron)	Mass (Picodrant)
Drd					Not No
Opn ObJ Sir Depth Uidth Length Ratio Chrusotile AnFhibole Ambid Asbe Patt X-Rbm
1
1
F
0.000
0.062
0.44
7.0
•
•
X
1
2
F
0.000
0.250
1 .56
6.2
•
0.230
•
1
3
F
0.000
0.062
0.69
11.0
0.005 :
•
•
1
4
F
0.000
0.062
0.50
8.0
0.004
ป
•
1
5
F
0.000
0.062
0.62
10.0
0.005
•
*
2
6
F
0.000
0.125
0.44
3.5
•
•
•
2
7
F
0.000
0.062
0.62
10.0
0.005
•
•
3
8
F
0.000
0.062
0.87
14.0
0.007
•
•
3
9
F
0.000
0.062
2.38
38.0
0.019
•
•
3
10
F
0.000
0.062
0.31
5.0
•
•
X
3
11
F
0.000
0.062
0.37
6.0
•
•
X
4
12
F
0.000
0.125
0.50
4.0
0.016 :
ป
•
6
13
F
0.000
0.062
0.62
10.0
0.005
*
•
8
14
F
0.000
0.125
1.06
8.5
•

X
8
IS
F
0.000
0.062
0.44
7.0
•
•
t
9
16
F
0.000
0.062
0.62
10.0
•
•
X
9
17
F
0.000
0.062
0.31
5.0
0.002
*
•
9
18
F
0.000
0.062
0.75
12.0
0.006
•
•
9
19
b
0.125
0.750
1 .87
2.5
•
ป
X
9
20
F
0.000
0.062
0.56
9.0
•
ซ
X
9
21
F
0.000
0.062
0.62
10.0
•
•
X
10
22
M
0.062
0.062
0.62
10.0
0.006
•
•



Total Mass
(Picodram)=
0.081
0.230

Total Count
11.
1.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODEJ C06545-43	TABLE PREPARATION HATE! 26-MAY-83
Aerosol Object Count And Calculated Object Hass Characteristics
Object
Structure Type
Number
Actual Coricen>
I Object (Number
Count Per Cu H)
hass
Concen.
(Picoaram
Per Cu M)
Average
Width
(Micron >
Average
Length
(Micron)
Average
Lenath
To Width
Ratio

Fiber
Chrusotile
10.
13639.
102.0
0.07
ฑ
0.02
0.79
ฑ
O.SB
12.20

9.55


Amphibole
1.
1364.
313.8
0.25
i
0.00
1.56
i
0.00
6.25
t
0.00


Other
9.
12275.

0.08

0.03
0.54
ฑ
0.22
7.33
i
2.25


All Fiber
20.
27278.

0.08

0.05
0.72
ฑ
0.48
9.71
1
7.21
1 " " 1
Bundle
Chrysotile
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00
f—ป
o

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00

0.00
0.00
i
0.00

Other
1.
1364.

0.75
ฑ
0.00
1.87
i
0.00
2.50
ฑ
0.00


All Bundle
1.
1364.

0.75
ฑ
0.00
1.87
i
0.00
2.50
ฑ
0.00

Matrix
Chrusotile
1.
1364.
8.7
0.06
i
0.00
0.62
i
0.00
10.00
i
0.00


Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00


Other
0.
0.

0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00


All Matrix
1.
1364.

0.06
ฑ
0.00
0.62
i
0.00
10.00
i
0.00
Sample Collection and Preparation Data	Grid Data
Air Volume =
1.00
Cu
M
Grid ID! 052182/10A

Deposit Area =
1.00
S a
Cm
Individual Grid Opening =
0.000073 So Cm
Ashed Area =
1 .00
So
Cm
Number of Grid Openings =
10
Redeposit Area =
1.00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE )
230 Saw A/C Sheet
Size 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE )

HasB (Picodran)



Grd






	
	

Not No
Opn
ObJ
Str
Depth
Width
Length
Ratio
Chrysotile Amphibole
Aiubid
Asbe Patt X-Ray
1
30
H
0.062
0.062
1.25
20.0
0.013
•
•
• •
1
31
F
0.000
0.062
0.56
9.0
•
0.005
ป
• ซ
1
32
F
0.000
0.125
1.13
9.0
0.036
•
•
• •
1
33
F
0.000
0.125
1.94
15.5
0.062
ป
•
• •
2
34
F
0.000
0.062
0.75
12.0
0.006
•
•
• •
2
35
B
0.125
0.312
1.87
6.0
.
t

• •
2
36
h
0.062
0.187
1.25
6.7
0.038
•
•
• •
2
37
F
0.000
0.062
0.31
5.0
•
•
•
X
2
38
F
0.000
0.062
0.50
8.0
ป
•
•
X
2
39
F
0.000
0.062
0.31
5.0
ซ
•
X
• •
2
40
M
0.062
0.187
0.50
2.7
ซ
•
X
• •
2
41
F
0.000
0.062
0.87
14.0
0.007
•
•
• •
. 2
42
B
0.062
0.312
3.88
12.4
0.197
•
•
• •
2
43
F
0.000
0.062
0.44
7.0
•
•

• •
2
44
B
0.062
0.500
3.00
6.0
0.244
•
•
• •
2
45
F
0.000
0.062
0.56
9.0
0.004
•
•
• *
2
46
F
0.000
0.062
0.56
9.0
•
•
•
X •
2
47
F
0.000
0.125
0.37
3.0
0.012
•
•
• •
3
48
F
0.000
0.062
0.94
15.0
0.007
•
•
• i
3
49
F
0.000
0.062
0.50
8.0
ซ
•

• •
3
50
F
0.000
0.125
0.37
3.0
0.012
•
•
• •
3
51
F
0.000
0.062
0.62
10.0
0.005
•
•
• •
3
52
F
0.000
0.062
0.37
6.0
0.003

•
* •
3
53
F
0.000
0.062
1.19
19.0
0.009
*
•
• •
3
54
F
0.000
0.062
0.56
9.0
•
0.005
•
ป •
3
55
M
0.062
0.687
5.00
7.3
0.559
•
•
• •
3
56
F
0.000
0.062
0.56
9.0
0.004
•
•
• •
3
57
F
0.000
0.062
0.62
10.0
0.005
•
•
• •
3
58
F
0.000
0.062
0.50
8.0
0.004
•
ซ


-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 02-JUN-83
aaassssaaaasscaaasaBasaaassssasaaaaBaasaassssaaaaassaasasaaassaasaaasaeBasaasaaaac
SAMPLE CODE I C06545-48
CO
ro
ro
Size (Micron)	Mass (Picoaram) .
Grd					Not No
Opn ObJ Str Depth Uidth Lenath Ratio Chrwsotile Anphibole Ambid Asbe : Patt X-Ray
3
59
F
0.000
0.062
1.06
17.0
0.008

3
60
F
0.000
0.062
1.63
26.0
0.013
• • •
3
61
F
0.000
0.062
1.13
18.0
0.009
• • •
3
62
F
0.000
0.062
O.SO
8.0
0.004
• * *
3
63
F
0.000
0.062
0.31
5.0
0.002
4 0 9
3
64
F
0.000
0.125
0.50
4.0
0.016
ซ ~ •
3
65
F
0.000
0.062
0.56
9.0
0.004 .

3
66
M
0.062
0.062
1.19
19.0
0.012
* ~ •
3
67
F
0.000
0.062
0.31
5.0
0.002
• • •
3
6B
M
0.062
0.062
0.50
8.0
0.005
• • ป
3
69
F
0.000
0.062
0.44
7.0
0.003
• • ซ
3
70
F
0.000
0.062
0.44
7.0
0.003
~ • •
3
71
F
0.000
0.062
0.62
10.0
0.005
~ • ~
3
72
F
0.000
0.062
0.31
5.0
0.002
• ป •
3
73
F
0.000
0.062
0.69
11.0
0.005
• ซ •
3
74
F
0.000
0.062
0.62
10.0
0.005

3
75
C
0.062
0.312
0.62
2.0
0.032
• • •
3
76
F
0.000
0.062
1 .25
20.0
0.010
• • •
3
77
F
0.000
0.062
1 .19
19.0
0.009
• ซ •
3
78
F
0.000
0.062
0.44
7.0
0.003
* * •
3
79
F
0.000
0.062
0.56
9.0
• •
X • •
3
80
F
0.000
0.062
0.94
1S.0
0.007

3
81
F
0.000
0.062
0.31
5.0
0.002
~ • *
3
82
F
0.000
0.062
0.56
9.0
0.004
• • •
3
83
F
0.000
0.062
0.62
10.0
0.005
• • •
3
84
F
0.000
0.062
0.37
6.0
0.003
• • ซ
3
85
C
0.125
1.250
2.50
2.0
• •
X
3
86
F
0.000
0.062
1.25
20.0
0.010
• ป •
3
87
B
0.062
0.437
2.50
5.7
• •
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  B=BUNDLE > C=CLUSTERr M=MATRIX >
TABLE PREPARATION DATES 02-JUN-B3
SAMPLE CODEi C06545-48
Size (Micron)	Mass (Plcoaram)
Grd					Not No
Opn ObJ Sir Depth Width Length Ratio Chrt/sotlle Amphibole Aivbia Asbe Patt X-Ras
4
BB
F
0.000
0.062
0.62
10.0
0.005
4
89
F
0.000
0.062
0.31
5.0
0.002
4
90
F
0.000
0.062
0.62
10.0
0.005
4
91
F
0.000
0.062
0.69
11.0
0.005
4
92
M
0.062
0.187
0.62
3.3
0.019
4
93
F
0.000
0.062
0.31
5.0
0.002
4
94
F
0.000
0.062
0.62
10.0
ป
4
95
F
0.000
0.062
2.19
35.0
0.017
4
96
M
0.062
0.062
0.75
12.0
0.008
4
97
F
0.000
0.062
0.31
5.0
0.002
4
9B
M
0.062
0.062
0.62
10.0
•
S
99
F
0.000
0.062
1.19
19.0
0.009
5
100
F
0.000
0.062
0.44
7.0
•
5
101
F
0.000
0.062
0.62
10.0
0.005
5
102
F
0.000
0.062
1.31
21.0
0.010
5
103
F
0.000
0.062
0.56
9.0
0.004
5
104
F
0.000
0.062
0.62
10.0
0.005
5
105
F
0.000
0.062
0.56
9.0
0.004
5
106
F
0.000
0.062
0.31
5.0
0.002
5
107
M
0.062
0.625
1.25
2.0
•
Total Mass (Picoฃran>) =
Total Count	=
3.121
81.
0.010
19.
5.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COHEJ C06545-48	TABLE PREPARATION HATE! 02-JUN-B3
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concen.
Object (Number
Count
Mass
Concen>	Average
(Picogram Width
Per Cu M) Per Cu M)	(Micron)
Average
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrusotile
65.
177402.
1283.1
0.07
ฑ
0.02
0.71
i
0.39
10.79
i

Amphibole
2.
5459.
28.3
0.06

0.00
0.56
ฑ
0.00
9.00
ฑ

Other
14.
38210.

0.07
i
0.02
0.52
ฑ
0.13
7.64
ฑ

All Fiber
81.
221070.

0.07
ฑ
0.02
0.67
i
0.36
10.20
i
Bundle
Chrusotile
4.
10917.
5271.8
0.37
1
0.15
3.56
1
1.88
9.49
ฑ

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00

0.00
0.00
ฑ

Other
4.
10917.

0.27

0.14
1.56
ฑ
0.79
6.22
ฑ

All Bundle
8.
21834.

0.32
ฑ
0.15
2.56
i
1.71
7.85
i
Cluster
Chrusotile
1.
2729.
86.6
0.31
i
0.00
0.62
ฑ
0.00
2.00
1

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ

Other
3.
8188.

0.69
t
0.53
1.46
t
0.95
3.22
ฑ

All Cluster
4.
10917.

0.59
ฑ
0.47
1.25
ฑ
0.88
2.92
i
Hatrix
Chrusotile
11.
30022.
1876.2
0.15
i
0.19
1.21
ฑ
1.29
10.48
i

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i

Other
3.
8188.

0.29
i
0.30
0.79
i
0.40
4.89
ฑ

All Matrix
14.
38210.

0.18
ฑ
0.21
1.12
ฑ
1.15
9.28

5.88
0.00
2.21
5.47
3.14
0.00
2.42
3.13
0.00
0.00
3.02
2.54
5.33
0.00
4.44
5.53
Sample Collection and Preparation Data Grid Data
Air Volume
a
1.00
Cu
M
Grid IDS 052182/C-6

Deposit Area
3
1.00
So
Cm
Individual Grid Opening =
0.000073 So Cm
Ashed Area
=
1.00
So
Cm
Number of Grid Openings =
5
Redeposit Area
s
1.00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  C=CLUSTER. M=MATRIX)
TABLE PREPARATION DATES 25-JUN-B3

SAMPLE CODE: C06545-54 i V>1
Size (Micron)	Mass (PieoSram)
Grd					Not No
Opn ObJ Sir Depth Width Lenath Ratio Chrusotile Anphibole Amhia Asbe Patt X-Ray
1
1
F
0.000
0.062
0.75
12.0
0.006
1
2
F
0.000
0.062
0.56
9.0
0.004
1
3
M
0.125
0.187
4.63
24.7
0.282

4
F
0.000
0.062
0.62
10.0
0.005
2
5
C
0.062
0.312
0.62
2.0
•
2
6
F
0.000
0.062
0.94
15.0
0.007
r>
7
F
0.000
0.062
0.75
12.0
0.006
2
8
B
0.125
0.250
3.75
15.0
•
2
9
F
0.000
0.062
1.31
21.0
0.010
2
10
F
0.000
0.062
1.19
19.0
•
2
11
F
0.000
0.062
0.94
15.0
0.007
2
12
F
0.000
0.062
0.87
14.0
0.007
2
13
F
0.000
0.062
1.25
20.0
0.010
2
14
F
0.000
0.062
1.13
18.0
•
2
15
F
0.000
0.125
2.13
17.0
•
2
16
F
0.000
0.062
0.62
10.0
0.005
2
17
C
0.062
0.375
1 .87
5.0
0.114
2
18
F
0.000
0.062
1 .06
17.0
0.008
2
19
F
0.000
0.062
0.44
7.0
0.003

20
F
0.000
0.062
2.19
35.0
0.017
2
21
C
0.062
0.187
0.62
3.3
•
r>
22
F
0.000
0.062
0.81
13.0
0.006
2
23
F
0.000
0.062
2.38
38.0
0.019
2
24
M
0.062
0.375
0.62
1.7
0.038
2
25
B
0.125
0.187
1 .87
10.0
ป
o
A.
26
B
0.125
0.187
2.19
11.7
•
2
27
F
0.000
0.062
0.56
9.0
0.004
3
28
F
0.000
0.062
1.13
18.0
0.009
3
29
F
0.000
0.062
0.50
8.0
0.004

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS HATA
INDIVIDUAL OBJECT DATA TABLE  C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE CODE J C06545-54
Size (Micron)	Mass (PicoSram)
Qrd					Not No
Opn ObJ Str Depth Width Lenflth Ratio Chmsotile Amphibole Anibia Asbe Patt X-Rau
5
8B
M
0.062
0.187
1.87
10.0
0.057
• • • •
5
89
F
0.000
0.062
0.25
4.0
0.002

5
90
M
0.062
0.062
1.31
21.0
0.013
ซ ป ซ •
5
91
B
0.062
0.125
1.25
10.0
•
• X ~ •
5
92
F
0.000
0.062
1 .63
26.0
0.013
• • • •
6
93
F
0.000
0.062
0.69
11.0
0.005
• • • •
6
94
F
0.000
0.062
1 .63
26.0
0.013
ป • ~ •
6
95
F
0.000
0.062
1.13
18.0
0.009
• ป ~ ~
6
96
M
0.062
0.187
1.25
6.7
0.038
ป • • •
6
97
F
0.000
0.062
0.81
13.0
0.006
ซ • • •
6
98
F
0.000
0.062
0.56
9.0
•
0•005 • ซ ซ
7
99
F
0.000
0.062
1.87
30.0
0.015
• ป • ~
7
100
F
0.000
0.062
0.62
10.0
0.005
• • • •
7
101
M
0.062
0.062
0.56
9.0
0.006
• • • *
Total Mass
Total Count
(Picodraiป) =
3.853	0.010
69.	2.	30. 0. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TAE'LES
SAMPLE COIiE! C06545-54	TABLE PREPARATION DATE.* 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
CO
PO
kO
Object
Structure Tupe
Number	Mass
Actual Concen.	Concen.	Average
Object (Number	(Picoaram	Width
Count Per Cu M>	Per Cu M)	(Micron)
Average
Lenath
(Micron)
Average
Lenath
To Midth
Ratio








	— -
	
	• —	
— —	
	
	
Fiber .
Chrysotile
47.
91625.
672.5
0.06
i
0.01
0.85
i
0.49
13.38
i
7.86

Amphibole
2.
3899.
19.1
0.06
i-
0.00
0.53
i
0.04
8.50
i
0.71

Other
7.
13646.

0.08
ฑ
0.03
0.97
ฑ
0.59
12.29
i
5.82

All Fiber
56.
109170.

0.07
i
0.01
0.85
ฑ
0.50
13.07
i
7.50
Bundle
Chrysotile
8.
15596.
5345.8
0.30
i
0. 19
2.76
i
1 .38
10.30
i
5.32

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
12.
23394.

0.32
i
0.31
3.28

2.77
11.65

8.18

All Bundle
20.
38989.

0.32
i
0.26
3.07
i
2.28
11.11
i
7.05
Cluster
Chrysotile
2.
3899.
272.2
0.25
i
0.18
1.56
i
0.44
7.50
i
3.54

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
i
0.00
0.00

0.00

Other
8.
15596.

0.37
i
0.23
0.78
ฑ
0.52
2.44
i
0.94

All Cluster
10.
19495.

0.34
i
0.21
0.94
i
0.58
3.45
ฑ
2.57
Matrix
Chrysotile
12.
23394.
1221.4
0.16
ฑ
0.09
1.46

1.13
11.15
i
7.31

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00

0.00

Other
3.
5848.

0.25
ฑ
0.32
1 .04
ฑ
0.57
9.17
A
7.97

All Matrix
IS.
29242.

0.18
i
0.15
1 .38
ฑ
1.04
10.75
i
7.19
Sample
Collection and 1
Preparation
Data
Grid Data









Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu M
1 • 00	So Cm
1•00	So Cm
1•00 So Cm
Grid IPi 052182/D-7
Individual Grid Opening =
Number of Grid Openings =
Film Ma3nification	=
Oi000073 So Cm
7
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  C=CLUSTERป M^MATRIX)
TABLE PREPARATION DATE! 02-JUN-83
aSBSSBSSSBBaBX
3SBCSSB33S2S

SAMPLE CODES C06545-49
Size (Micron)	Mass (Picodram)
Grd 				Not No
Opn ObJ Sir Depth Uidth Length	Ratio Chrueotile AmPhibole Ambid Asbe Patt X-Rau

1
M
0.062
0.062
0.94
15.0
0.010 :
•
~

2
M
0.062
0.125
0.75
6.0

•
X

3
M
0.062
0.062
0.56
9.0
•
•
X

4
B
0.187
1.B75
11.25
6.0
~
~
X

5
C
0.062
0.312
0.50
1.6
•
ซ
X

6
c
0.062
0.312
0.50
1 .6
•
•
X

7
B
0.062
0.125
1.25
10.0
0.025 :
•
•

0
F
0.000
0.062
0.25
4.0
0.002
t
•

9
M
0.062
0.062
0.62
10.0
0.006

t

10
F
0.000
0.062
3.63
58.0
0.029 :
•
ซ

11
F
0.000
0.062
1.25
20.0
•
0.012
•

12
F
0.000
0.062
0.81
13.0
0.006
•
•

13
M
0.062
0.062
0.75
12.0
o.ooe :
•
ซ

14
F
0.000
0.687
5.13
7.5
•
5.707
•
2
15
M
0.062
0.062
0.94
15.0
0.010
•
•
2
16
F
0.000
0.062
0.87
14.0
0.007
ป
•
2
17
M
0.125
0.187
1.31
7.0
•
*

2
18
F
0.000
0.062
1.87
30.0
0.015
•
•
2
19
F
0.000
0.062
1.25
20.0
0.010
•
•
2
20
B
0.062
0.812
2.00
2.5
0.264 :
•
•
3
21
c
0.062
0.625
0.81
1.3
•
•

3
22
F
0.000
0.062
0.56
9.0
•
•
•
3
23
M
0.062
0.062
0.62
10.0
0.006 ;
•
4
3
24
M
0.062
0.062
0.94
15.0
0.010
•
*
3
25
F
0.000
0.062
0.75
12.0
0.006
ป
•
3
26
F
0.000
0.062
1.25
20.0
0.010

•
3
27
F
0.000
0.125
1.94
15.5
0.062
•
•
3
28
F
0.000
0.062
1.19
19.0
•
0.011
•
4
29
C
0.062
0.500
1.25
, 2.5
•
•
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEr C=CLUSTERป M=HATRIX)
TABLE PREPARATION DATE J 02-JUN-83
2s3 = sas = sssssasacss
aaasaaaaaSBsa

SAMPLE CODE: C06545-49
Size (Micron)	Mass (Picodrau.)
Grd					Not No
Opn ObJ Str Depth Width Length Ratio Chrusotile AnPhibole Ambig Asbe Patt X-Rau
4
30
C
0.062
0.187
0.62
3.3
0.019
•
• ~ *
A
31
C
0.062
1.250
1.87
1.5
ป
•
X • •
A
32
F
0.000
0.062
0.69
11.0
•
0.006
~ ~ ป
5
33
B
0.062
0.250
1.13
4.5
•
•
X
5
34
F
0.000
0.125
1.69
13.5
•
0.062
• ~ •
5
35
F
0.000
0.062
0.50
8.0
0.004
*
• • •
5
36
M
0.062
0.062
0.94
15.0
0.010
ป
• ~ ~
5
37
M
0.062
0.187
0.75
4.0
0.023
•
• ~ ~
5
38
H
0.062
0.625
1.25
2.0
•
•
X
5
39
M
0.062
0.312
0.62
2.0
•
•
X
5
40
h
0.062
0.062
0.87
14.0
0.009
•
• • •
5
41
F
0.000
0.062
0.69
11.0
•
•
X
5
42
F
0.000
0.125
0.75
6.0
0.024
•
• • *
5
43
F
0.000
0.125
0.69
5.5
•
0.025
~ ~ ~
6
44
F
0.000
0.062
3.00
48.0
0.024
*
• • •
6
45
F
0.000
0.062
1.06
17.0
0.008
•
ป ป ~
6
46
F
0.000
0.125
2.75
22.0
0.088
ซ
• • ~
6
47
F
0.000
0.062
1.25
20.0
0.010
•
# • •
6
48
F
0.000
0.187
0.B1
4.3
•
0.067
• • •
6
49
F
0.000
0.062
0.56
9.0
0.004
•
• • •
6
50
M
0.062
0.125
5.00
40.0
0.102
•
~ ~ •
6
51
F
0.000
0.062
1 .69
27.0
0.013
t
I ป t
6
52
H
0.062
0.062
0.62
10.0
0.006
•
ซ • ป
6
53
F
o.ooo
0.062
3.44
55.0
0.027
•
4 • •
6
54
C
0.062
0.625
1.87
3.0
ป
ซ
X
7
55
M
0.062
0.062
1.00
16.0
,
•
X
7
56
F
0.000
0.062
0.94
15.0
0.007
ป
• ~ ป
7
57
F
0.000
0.062
1.25
20.0
0.010
•
*14
7
58
C
0.062
0.750
0.75
1.0
•
•
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-49	TABLE PREPARATION DATE! 02-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tupe
Number
Actual Concen.
Object (Number
Count Per Cu M)
hass
Concen.
(Picodram
Per Cu h>
Average
Width
(Micron)
Average
Length
(Micron)
Average
Lenath
To Width
Rat'io
Fiber
Chrusotile
32.
43040.
997.7
0.08
4
0.03
1.82
4
1.76
26.16
428.49

Auphibole
8.
10760.
7956.8
0.18
4
0.21
1.52
4
1.50
10.79
4 6.19

Other
6.
8070.

0.07
4
0.03
0.48
4
0.15
7.08
4 2.91

All Fiber
46.
61870.

0.09
4
0.09
1.59
4
1.64
21 .00
125.09
Bundle
Chrtjsotile
5.
6725.
794.0
0.28
4
0.30
2.35
4
1.73
15.09
415.94

Amphibole
0.
0.
0.0
0.00
4
0.00
0.00
4
0.00
0.00
4 0.00

Other
3.
4035.

0.77
4
0.96
4.37
4
5.96
4.83
4 1.04

All Bundle
8.
10760.

0.46
4
0.62
3.11
4
3.60
11.25
413.18
Cluster
Chrusotile
3.
4035.
708.6
0.58
4
0.58
1.35
4
0.79
3.03
4 1.16

Amphibole
0.
0.
0.0
0.00
4
0.00
0.00

0.00
0.00
4 0.00

Other
9.
12105.

0.69
4
0.45
1.40
4
0.87
2.44
4 1 .99

All Cluster
12.
16140.

0.66
4
0.46
1.39
4
0.81
2.59
4 1.79
Matrix
Chrusotile
17.
22865.
732.5
0.12
4
0.11
1.26
4
1.19
13.56
410.75

Anphibole
0.
0.
0.0
0.00

0.00
0.00
4
0.00
0.00
4 0.00

Other
7.
9415.

0.21
i
0.20
0.96
4
0.32
7.43
4 4.89

All Matrix
24.
32280.

0.15
•
4
0.14
1.18
4
1.01
11.77
4 9.74
Sample Collection and Preparation Data	Grid Data
Air Volume
a
1.00
Cu
M
Grid ID! 052182/C-7

Deposit Area
a
1.00
So
Cm
Individual Grid Opening =
0.000074 So Cm
Ashed Area
n
1.00
S a
Cn
Number of Grid Openings =
10
Redeposit Area
c
1.00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  M=MATRIX)
TABLE PREPARATION DATE. O2-JUN-03
caaac333=c=aB=o=c=rc=ccsa=a2C3==c:3arnQcaca3iiEX2C=cBOc=c===22==:=3=3==r=Qa2==3c=ac===s:

SAhPLE CODEt C06545-50 [ ) . )
Size (Micron)	Mass (Picoflraซ)
Grd					Not No .
Opn ObJ Str Depth Width Length Ratio Chrusotile Aaphibole Ambis Asbe Patt X-Rau
1
F
0.000
0.062
2.50
40.0
0.020
2
B
0.187
0.312
0.94
3.0
0.143
3
F
0.000
0.062
0.44
7.0
•
4
F
0.000
0.062
0.62
10.0
•
5
F
0.000
0.062
1.13
18.0
0.009
6
F
0.000
0.125
1.25
10.0
0.040
7
B
0.062
0.125
1.13
9.0
•
8
F
0.000
0.062
1.87
30.0
0.015
9
B
0.125
0.437
14.25
32.6
2.026
10
H
0.062
0.062
0.62
10.0
0.006
11
h
0.062
0.062
1.13
18.0
0.011
12
h
0.062
0.062
0.94
15.0
ซ
13
h
0.062
0.187
0.62
3.3
0.019
14
C
0.062
0.625
1.25
2.0
0.127
15
B
0.062
0.375
1.50
4.0
0.091
16
M
0.062
0.062
0.75
12.0
0.008
17
F
0.000
0.125
1.25
10.0
0.040
18
B
0.125
0.875
2.19
2.5
0.622
1?
H
0.062
0.062
0.62
10.0
0.006
20
B
0.062
0.312
2.50
8.0
0.127
21
h
0.062
0.062
0.94
15.0
0.010
22
F
0.000
0.062
0.31
5.0
0.002
23
F
0.000
0.062
0.50
8.0
0.004
24
F
0.000
0.125
0.87
7.0
0.028
25
F
0.000
0.062
0.69
11.0
0.005
26
F
0.000
0.312
1.63
5.2
•
27
B
0.062
0.250
1 .38
5.5
•
28
F
0.000
0.062
0.81
13.0
•
29
F
0.000
0.062
0.50
8.0
0.004
.374
X
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 

uro
Opn
ObJ
Str
Depth
Uidth Length
Ratio
Chrusotlle AmPhibole
Not .No
Ant)id Asbe - patt X-Ras
7
30
F
0.000
0.062
0.75
12.0
0.006
• • •
7
31
F
0.000
0.062
0.62
10.0
• ~
X
7
32
F
0.000
0.062
0.37
6.0
• ป
X
7
33
F
0.000
0.062
0.31
5.0
• ซ
X • ~
7
34
F
0.000
0.062
0.81
13.0
0.006
• ~ •
7
35
F
0.000
0.062
0.69
11.0
0.005
ป • •
7
36
F
0.000
0.062
0.75
12.0
0.006
~ • •
7
37
F
0.000
0.062
2.44
39.0
0.019
• ~ •
7
38
F
0.000
0.062
0.44
7.0
0.003
• • ~
7
39
F
0.000
0.125
0.87
7.0
0.028 .
* • •
8
40
M
0.062
0.062
0.44
7.0
• •
X • ~
8
41
F
0.000
0.125
0.37
3.0
0.014
ป • •
8
42
F
0.000
0.062
0.50
8.0
0.004
~ • *
8
43
F
0.000
0.062
0.69
11.0
0.005
~ ป •
9
44
F
0.000
0.062
2.19
35.0
0.017
• • •
10
45
F
0.000
0.062
1.00
16.0
0.008
• • •
10
46
H
0.062
0.062
0.62
10.0
0.006
• ~ •
Total hass =
Total Count	=
3.480
34.
0.388
2.	7. 3. 0*

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-50	TABLE PREPARATION DATES 02-JUN-83
asBasssaaaaasaassaaazaaaaeacsacassssaeassasssssr::

Aerosol Object Count And Calculated Object Haas Characteristics
Object
Structure Twpe
Actual
Object
Count
Number
Concen•
(Nuoiber
Per Cu M>
Mass
Concen*
(F'icodram
Per Cu M)
Average
Width
(Micron)
Average
Length
(Micron)
Average
Len3th
To Uidth
Ratio

Fiber
Chrusotile
21.
30034.
396.4
0.07
1
0.03
1.05
1
0.66
15.14
110.94


Amphibole
2.
2860.
554.5
0.22
ฑ
0.13
1.00
1
0.88
4.10
1 1.56


Other
6.
8581.

0.06
1
0.00
0.53
1
0.19
8.50
1 3.02


All Fiber
29.
41476.

0.08
1
0.05
0.94
1
.0.62
13.01
ฑ10.03

Bundle
Chrusotile
5 ฆ
7151.
4304.1
0.46
1
0.24
4.28
1
5.61
10.01
112.79
OJ

Amphibole
0.
0.
0.0
0.00
1
0.00
0.00
1
0.00
0.00
1 0.00
00

Other
2.
2860.

0.19
1
0.09
1.25
1
0.18
7.25
1 2.47


All Bundle
7.
10011.

0.38
1
0.24
3.41
1
4.81
9.22
110.58

Cluster
Chrwsotile
1.
1430.
181.6
0.62
1
0.00
1.25
1
0.00
2.00
1 0.00


Amphibole
0.
0.
0.0
0.00
1
0.00
0.00
i
0.00
0.00
1 0.00


Other
0.
0.

0.00
1
0.00
0.00
1
0.00
0.00
1 0.00


All Cluster
1.
1430.

0.62
1
0.00
1.25
1
0.00
2.00
1 0.00

Matrix
Chrusotile
7.
10011.
95.3
0.08
i
0.05
0.76
1
0.20
11.19
1 4.61


Amphibole
0.
0.
0.0
0.00
1
0.00
0.00
1
0.00
0.00
1 0.00


Other
2.
2860.

0.06
1
0.00
0.69
1
0.35
11 .00
1 5.66


All Matrix
9.
12872.

0.08
1
0.04
0.74
1
0.22
11.15
1 4.47
Sample Collection and Preparation Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cu M
1.00	So Cm
1.00 So Cm
1.00	So Cm
Grid Data
Grid ID! 052182/C-8
Individual Grid Opening
Number of Grid Openings
Film Magnification
0.000070 So Cm
10
20000

-------
XIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  ro
(pn
ObJ
Str
Depth
Width Length
Ratio
Chrusotile
AniPhibole
Anbid
I
1
M
0.062
0.125
0.37
3.0
•

X
1
2
M
0.062
0.062
0.44
7.0
0.004

*
1
3
F
0.000
0.125
0.62
5.0
0.020

•
2
4
F
0.000
0.062
0.69
11.0
•
0.006
•
9
5
h
0.062
0.062
0.62
10.0
0.006

•
4
6
F
0.000
0.125
1.00
8.0
•
0.037
•
4
7
ft
0.062
0.062
0.75
12.0
0.008

*
4
8
ft
0.062
0.500
0.75
1.5
0.061

•
4
9
F
0.000
0.062
0.44
7.0
•

•
5
10
F
0.000
0.062
0.62
10.0
0.005

*
S
11
B
0.062
0.187
1.31
7.0
0.040

•
5
12
B
0.062
0.375
3.00
8.0
0.183

*
6
13
F
0.000
0.062
1.63
26.0
0.013

•
6
14
F
0.000
0.062
0.62
10.0
0.005

•

15
F
0.000
0.062
2.44
39.0
0.019

•
6
16
B
0.125
0.625
1.87
3.0
•

X
7
17
ft
0.062
0.062
1.13
18.0
•

X
7
18
F
0.000
0.062
0.44
7.0
0.003
•
•
7
19
M
0.062
0.062
0.62
10.0
•

X
7
20
ft
0.062
0.062
0.62
10.0
. 0.006

•
7
21
ft
0.062
0.062
0.50
8.0
•

X
7
22
B
0.062
0.187
1.25
6.7
0.038

•
9
23
F
0.000
0.062
3.00
48.0
$

•
9
24
F
0.000
0.062
0.69
11.0
0.005

•
9
25
F
0.000
0.062
0.56
9.0
0.004

•
10
26
F
0.000
0.062
0.50
8.0
•

•
10
27
B
0.062
0.625
3.75
6.0
0.381

•
10
28
F
0.000
0.062
1.00
16.0
0.008

•
10
29
B
0.062
0.125
0.94
7.5
0.019

•
Not
No

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  C=CLUSTERป M=hATRIX)
TABLE PREPARATION DATE! 02-JUN-83
SAMPLE CODE: C0&545-51
Size 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-51	•	TABLE PREPARATION DATE! 02-JUN-83
BaSBsassaas3sssssBsaaaaB3asas3S = BSBaaeB&s3 = s = aaaaac&accsass33aaassssas;=BBs2
saaasBSBBsassaaas
Aerosol Object Count And Calculated Object Mass Characteristics
. CO
-J=ป
O
Object
Structure Type
Actual
Object
Count
Number
Concert • .
(Number
Per Cu M)
Mass
Concen.
(Picoarati
Per Cu M)
Average .
Width
(Micron)
Average
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrusotile
9.
11844.
110.2
0.07
i
0.02
0.96
i
0.66
14.78
ฑ10.97

Amphibole
2.
2632.
56.8
0.09
i
0.04
0.84
i
0.22
9.50
i
2.12

Other
3.
3948.

0.06
i
0.00
1.31
i
1.46
21.00
123.39

All Fiber
14.
18423.

0.07
i
0.02
1.02
i
0.79
15.36
ฑ13•09
Bundle
Chrusotile
6ป
7896.
994.9
0.30
i
0.18
2.02
i
1.12
6.86
ฑ
0.81

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00

0.00

Other
1.
1316.

0.62
i
0.00
1.87
i
0.00
3.00
ฑ
0.00

All Bundle
7.
9212.

0.35
i
0.21
2.00
i
1.02
6.31
ฑ
1 .63
Matrix
Chrusotile
5.
6580.
112.8
0.15
i
0.20
0.64
i
0.13
8.10
i
4.10

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
4.
5264.

0.08

0.03
0.66

0.33
9.75
ฑ
6.24

All Matrix
9.
11844.

0.12
ฑ
0.14
0.65
ฑ
0.22
8.83
ฑ
4.87
Sample Collection and Preparation Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00	Cu M
1.00	So Cm
1.00 So Cm
1•00	So Cm
Grid Data
Grid ID I 052182/C-9
Individual Grid Opening
Number of Grid Openings
Film Magnification
0.000076 So Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE S C06545-52	TABLE PREPARATION DATE I.25-
JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concen.
Object (Number
Count
Mass
Concen.	Average
(Picodram	Width
Per Cu M) Per Cu M)	(Micron)
Fiber
Bundle
Cluster
Matrix
Chrasotile
Aaphibole
Other
All Fiber
Chrusotile
Amphibole
Other
All Bundle
Chrasotile
Amphibole
Other
All Cluster
Chrusotile
Amphibole
Other
4.
3.
5.
12.
6 •
0.
0.
1.
0.
0.
1.
2.
0.
0.
5741.
4305.
7176.
17222.
8611.
0.
0.
8611.
1435.
0.
0.
1435.
2870.
O.
0.
96.6
783.4
1316.4
0.0
51.9
0.0
15.5
0.0
Average
LenSth
(Micron)
Average
Lensth
To Uidth
Ratio
0.08
i
0.03
1 .22
ฑ
0.39
17.13
ฑ
B.00
0.15
t
0.14
1 .27
ฑ
1.00
10.47
ฑ
7.49
0.11
1
0.08
0.74
i
0.15
8.55
ฑ
4.11
0.11
i
0.08
1 .03
i
0.55
11.89
i
7.03
0.27
i
0.18
2.46
i
1.74
11.01
i
7.72
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00
0.27
ฆฑ
0.18
2.46
i
1 .74
11.01
ฑ
7.72
0.19
i
0.00
1.19
i
0.00
6.33
i
0.00
0.00
i
0.00
0.00
ฑ
.0.00
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00
0.19
i
0.00
1.19
i
0.00
6.33
i
0.00
0.06
i
0.00
0.53
i
0.04
8.50
1
0.71
0.00
i
0.00
0.00
i
0.00
0.00
1
0.00
0.00
ฑ
0.00
0.00
i
0.00
0.00
i
0.00
All Matrix
2.
2870.
0.06 ฑ 0.00 0.53 4 0.04
8.50 i 0.71
Sample Collection and Preparation Data	Grid Data
Air Volume =
1.00
Cu
M
Grid IDJ 052182/C-10

Deposit Area =
1.00
So
Cm
Individual Grid Opening =
0.000070 So Cm
Ashed Area =
1.00
So
Cm
Number of Grid Openings =
10
Redeposit Area =
1.00
S a
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IIATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE• 25-JUN-83
SAMPLE CODE: C06545-53 '-
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=ฃ)UNDLEt C=CLUSTER. h=MATRIX)
TABLE PREPARATION DATES 25-JUN-B3.
SAMPLE CODES C06545-53
Size (Micron)	Mass (Picodram) .
Grd					Not No ฆ
Opd ObJ Str Depth Uidth Lendth Ratio Chrasotile Aoiphibole Ambig Asbe : Patt X-Rsa
Total Mass (Plcoaran)13	0.&22	0.016
Total Count	=	15.	2.	8. 4. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA i
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-53	TABLE PREPARATION DATEt=25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Actual
Object
Count
Number
Concen>
(Number
Mass
Concen.
(Picodram
Per Cu M> Per Cu M)
Average
Width
(Micron)
Fiber
Chrusotile
Amphibole
Other
5.
2.
6.
6994.
2798.
8393.
237.8 0.08
22.5 0.06
0.07
ฑ.0.03
ฑ 0.00
i 0.03
Average •
Length
(Micron)
Average
Length :
To Width
Ratio
2.24 i 1.27 30.40 117.76
0.87 i 0.09 14.00 i 1.41
0.74 i 0.34 11.08 1 6.15

All Fiber
13.
18184.

0.07

0.02
1.34
i
1 .07
18.96
114.52
Bundle
Chrusotile
1.
1399.
71.9
0.19
ฑ
0.00
1 .69
i
0.00
9.00
1
0.00

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
1
0.00

Other
2.
2798.

O. 22
1
0.04
1.13
i
0.00
5.25
1
1 .06

All Bundle
3.
4196.

0.21
i
0.04
1 .31
ฑ
0.32
6.50
i
2.29
Cluster
Chrwsotile
1.
1399.
24.9
0.12
i
0.00
0.87
1
0.00
7.00
1
0.00

Amphibole
0.
0.
0.0
0.00
t
0.00
0.00
i
0.00
0.00
1
0.00

Other
2.
2798.

0.94
i.
0.44
1.56
ฃ
0.44
1.75
1
0.35

All Cluster
3.
4196.

0.67
i
0.56
1 .33
i
0.51
3.50
1
3.04
Matrix
Chrwsotile
8.
11190.
535.4
0.14

0.09
1 .23
1
0.67
10.38
i
5.09

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00

0.00
0.00
i
0.00

Other
2.
2798.

0.25

0.09
0.47
ฃ
0.22
2.17
i
1.65

All Matrix
10.
13988.

0.16
ฑ
0.10
1 .08
i
0.68
8.73
1
5.70
Sample Collection and Preparation Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cu h
1.00 So Cm
1.00 So Cm
1.00	So Cm
Grid Data
Grid IIK 052182
Individual Grid Opening =	0.000071
Number of Grid Openings ซ=	jo
Film Magnification	=	20000
So Cm

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  B=BUNDLE > C=CLUSTER. M=MATRIX>
TABLE PREPARATION HATE: 25-JUN-03
SAMPLE CODES C06545-64



Size
Micron)

Mass (Picodram)

IJ.i
|J-
u ro
Opn
ObJ
Str
Depth
Width
Length
Ratio
Chrasotile AnPhibole
An>bid
NOl
Asbe
r*f O
:Patt X-Rau
2
30
F
0.000
0.062
2.81
45.0
0.022
•
•
•
3
31
F
0.000
0.062
0.62
10.0
0.006
•
•
•
3
32
F
0.000
0.062
1 .00
16.0
0.008
•
•
*
3
33
C
0.062
0.125
0.69
5.5
• •

•
ป
3
34
C
0.062
0.625
8.44
13.5
0.857
•
ป
ป
3
35
c
0.062
0.500
2.50
5.0
0.203
•
•
•
3
36
B
0.062
0.125
0.94
7.5
0.019
•
•
•
3
37
F
0.000
0.062
0.50
8.0
0.004

•
•
3
38
F
0.000
0.062
0.31
5.0
0.002
•
•
•
3
39
F
0.000
0.062
3.25
52.0
0.026
•
•
•
3
40
B
0.125
0.312
13.75
44.0
1.396
•
•

3
41
C
0.062
0.375
0.62
1.7
0.038
ป

•
3
42
F
0.000
0.062
2.25
36.0
0.018
•
ซ
ซ
3
43
M
0.062
0.062
2.69
43.0
0.027
•
•
•
3
44
F
0.000
0.062
1.87
30.0
0.015
•
•
•
3
45
F
0.000
0.062
1.13
18.0
* •
X
•

3
46
F
0.000
0.062
0.62
10.0
• •
X
•
ป
3
47
F
0.000
0.062
1.38
22.0
* •
X
•
ซ
3
48
F
0.000
0.062
0.62
10.0
ซ •
ป
X
•
3
49
F
0.000
0.062
0.56
9.0
• •
•
X
•
3
50
C
0.062
0.187
0.62
3.3
0.019
•
•
•
3
51
C
0.062
0.625
1.25
2.0
0.127
•
ซ
•
3
52
c
0.062
1 .875
2.50
1.3
0.762
•
•
•
3
53
F
0.000
0.062
8.00
h*
ISJ
CO
o
0.064
ซ
•
•
3
54
c
0.062
2.500
2.81
1.1
• •

•
•
3
55
F
0.000
0.062
1 .25
20.0
0.010
•
*
•
3
56
F
0.000
0.062
1.00
16.0
0.008
•
•
•
3
57
C
0.062
0.625
2.50
4.0
0.254
•
•
•
3
58
B
0.062
0.187
2.19
11.7
0.067
•
•
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE J 25-JUN-B3


SAMPLE CODEi C06545-64
Size (Kicron)	Mass (Picoaraa)
Crd 				Not No.
Opn ObJ Sir Depth Width Length	Ratio Chrusotile An.phibole Ambid Asbe Patt X-Raa
4
88
C
0.062
0.625
0.87
1.4
•
ซ
X
4
89
C
0.062
0.625
1.25
2.0
0.127
ป
•
4
90
C
0.062
0.625
1.87
3.0
0.190
•
•
4
91
F
0.000
0.062
3.25
52.0
0.026
•
•
4
92
F
0.000
0.062
1.00
16.0
0.008
•
•
4
93
F
0.000
0.062
2.00
32.0
0.016
•
•
4
94
F
0.000
0.062
1.63
26.0
0.013
ซ
•
4
95
h
0.062
0.062
1.00
16.0
0.010
•
•
4
96
M
0.062
0.06.2
0.62
10.0
•
•
X
4
97
B
0.062
0.625
3.25
5.2
•
•
X
4
98
F
0.000
0.062
0.69
11.0
0.005
•
,
4
99
h
0.062
0.125
0.62
5.0
•
ป
X
4
100
F
0.000
0.062
1 .75
28.0
0.014
•
•
4
101
B
0.125
0.625
15.00
24.0
3.047
•
•
4
102
B
0.062
0.125
2.38
19.0
0.048
•
•
4
103
M
0.062
0.187
0.62
3.3
0.019
•
•
4
104
F
0.000
0.125
2.50
20.0
0.080
•
•
4
105
F
0.000
0.062
1.25
20.0
0.010
•
•
4
106
F
0.000
0.062
0.94
15.0
0.007
•
•
4
107
B
0.187
1.562
10.63
6.8
8.093
•
•
A
108
C
0.062
0.625
2.50
4.0
0.254
•
•
4
109
h
0.062
0.062
1 .25
20.0
0.013
ซ
•



Total Hass
(Pico3ram)=
26.047
0.006

Total Count
83.
1.
3.
0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COPE: C06545-64	TABLE PREPARATION BATE..25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Nuniber
Actual Concen>
Object (Number
Mass
Concenซ
(PieoSram
Average
Width
Average
Length
Average
Length
To Width
Structure
Type
Count
Per Cu M)
Per Cu M)
(Micron)
(Micron)
Ratio
Fiber
Chrusotile
46.
159170.
1632.0
0.06
ฑ
0.01
1.28
ฑ
1.26
20.04

Amphibole
1.
3460.
19.9
0.06
i.
0.00
0.62
ฑ
0.00
10.00

Other
9.
31142.

0.06
i
0.00
0.89
ฑ
0.32
14.22

All Fiber
56.
193772.

0.06

0.01
1 .21
i
1.15
18.93
Bundle
Chrusotile
11.
38062.
66553.8
0.57
i
0.47
6.16
i
4.92
13.77

Amphibole
0.
0.
0.0
<).00
i
0.00
0.00
i
0.00
0.00

Other
3.
10381.

0.54
i
0.14
3.46
i
2.07
6.07

All Bundle
14.
48443.

0.57
i
0.41
5.58
ฑ
4.54
12.12
Cluster
Chrasotile
19.
65744.
21320.7
0.64
t
0.59
2.07
ฑ
1.74
4.75

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00

Other
8.
27682.

0.95
t
0.73
1 .62
i
1.12
2.15

All Cluster
27.
93426.

0.73
i
0.64
1.93
ฑ
1.57
3.98
Matrix
Chrusotile
7.
24221.
421.7
0.09
i
0.05
1.31
i
0.69
18.26

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00

Other
5 *
17301.

0.09
i
0.03
0.79
i
0.30
10.80
All Matrix
12.
41522.
0.09 ฑ 0.04
1.09 * 0.60
15.15 ฑ10.74
Sample Collection and Preparation Data
Air Voluiie	=
Deposit Area	=
Ashed Area	ฆ=
Redeposit Area	=
1.00 Cu M
1.00 So Co
1.00 So Co>
1.00 So Cm
Grid Data
Grid ID: 060883/A-4
Individual Grid Opening =
Number of Grid OperiinSs =
Film Magnification	=
0.000072 So Cm
4
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  M=MATRIX>
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODEJ C06545-65 V'"*
Size (hicron)	Mass (Picodraoi)
Grd					Not : No
Opn ObJ Str Depth Uidth Length Ratio Chrusotile Aniphibole Anbid Asbe I Patt X-Raa
1
F
0.000
0.062
0.37
6.0
•
0.003
•
2
F
0.000
0.062
0.94
15.0
0.007
•
•
3
F
0.000
0.062
0.6^
11.0
0.005
•
•
4
C
0.062
0.625
1 .87
3.0
0.190
t
•
5
C
0.062
0.187
0.62
3.3
•
•
X
6
F
0.000
0.062
0.31
5.0
0.002
•
•
7
F
0.000
0.062
0.87
14.0
0.007
•
•
8
F
0.000
0.062
1.13
18.0
0.009 :
•
,
9
C
0.062
0.187
0.62
3.3
•
•
X
10
B
0.125
0.500
4.88
9.8
t
•
X
11
C
0.062
0.125
1.25
10.0
•
•
X
12
B
0.062
0.250
2.25
9.0
*
•
X
13
F
0.000
0.125
1.87
15.0
0.060
ซ
•
14
F
0.000
0.062
5.31
85.0
0.042
•
ซ
IS
F
0.000
0.062
0.56
9.0
0.004
•
•
16
B
0.062
0.625
5.00
8.0
0.508
•
•
17
F
0.000
0.062
0.62
10.0
0.005
•
•
10
F
0.000
0.062
0.50
8.0
0.004
t
•
19
C
0.062
0.250
0.62
2.5
•
•

20
B
0.125
0.250
1 .75
7.0
0.142
•
•
21
B
0.062
0.250
2.50
10.0
•
•

22
C
0.062
0.250
1 .00
4.0
0.041
•
•
23
F
0.000
0.062
0.50
8.0
0.004
*
•
24
F
0.000
0.062
0.62
10.0
0.005
•
•
25
F
0.000
0.062
0.62
10.0
0.005 :
•
•
26
C
0.062
0.187
0.62
3.3
•
•

27
F
0.000
0.125
1.56
12.5
0.050
*
•
28
C
0.125
1 .875
3.12
1.7
1.904
•
•
29
C
0.062
0.125
0.62
5.0
•
*
X

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  ObJ ฃ>tr Depth Width Length Ratio Chrusotile AmPhibole Anbiฃ Asbe Patt X-Rau
9
30
F
0.000
0.125
0.87
7.0
0.028
• • ซ
2
31
F
0.000
0.062
0.44
7.0
0.003
~ • ป
2
32
B
0.062
0.125
4.50
36.0
0.091
• • •
3
33
C
0.062
0.250
1.06
4.3
* •
X
3
34
C
0.125
2.500
4.37
1.8
• •
X
3
35
F
0.000
0.062
0.81
13.0
0.006
4 4 4
3
36
F
0.000
0.062
1.38
22.0
• •
• • A
3
37
C
0.062
1 .075
2.50
1 .3
ป ป
X
3
38
C
0.125
5.000
5.00
1.0
ป •
X
3
39
c
0.187
3.437
4.69
1.4
• •
X
3
40
c
0.062
1 .250
2.50
2.0
0.508
~ • •
3
41
c
0.125
0.562
0.81
1.4
ซ •
X . .
3
42
B
0.062
1 .250
8.12
6.5
1.650
• ~ •
3
43
F
0.000
0.062
0.87
14.0
0.007

3
44
C
0.125
1 .562
2.50
1 .6
1.270
ซ ~ ~
3
45
F
0.000
0.062
1.25
20.0
0.010
• • •
3
46
F
0.000
0.125
1.87
15.0
0.060
• • •
3
47
F
0.000
0.062
2.56
41 .0
0.020
• • •
3
48
F
0.000
0.062
0.94
15.0
0.007
• • •
3
49
F
0.000
0.062
0.75
12.0
0.006
• ป •
3
50
F
0.000
0.062
0.31
5.0
0.002
~ ~ ~
3
51
F
0.000
0.062
0.62
10.0
0.005
ป ซ •
3
52
F
0.000
0.062
1 .25
20.0
• ~

3
53
B
0.062
0.250
2.50
10.0
0.102
• • •
3
54
C
0.125
1.875
6.56
3.5
3.999
• • •
3
55
M
0.062
0.125
2.38
19.0
0.048
• • •
3
56
B
0.062
0.125
0.94
7.5
0.019

3
57
B
0.125
0.500
3.44
6.9
0.559
ซ ~ ~
3
58
F
0.000
0.062
0.62
10.0
0.005
• • •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TADLE (F=FIBERป B=BUNDLEt C=CLUSTERป M=HATRIX)
TABLE PREPARATION DATES 25-JUN-B3
SAMPLE CODES C06545-65
Size 	Mass (Picosram)
Grd					Not No
Ofti ObJ Str Depth Width Length Ratio Chrusotile Aiuphibole Ambig Ashe F'att X-Rsa
3
5?
B
0.062
0.187
1.31
7.0
0.040
# * •
3
60
C
0.062
0.250
0.56
2.3
• •
X
3
61
C
0.125
0.750
1 .87
2.5
0.457
~ • •
3
62
F
0.000
0.062
1 .19
19.0
0.009
~ ~ ~
3
63
C
0.062
0.625
1.75
2.8
0.178
• • ~
3
64
M
0.125
0.187
1 .38
7.3
• *
X • •
3
65
C
0.062
0.250
0.62
2.5
• •
X • •
3
66
F
0.000
0.062
0.31
5.0
0.002
• • •
3
67
B
0.062
0.187
1.87
10.0
. .
X • •
3
68
C
0.062
0.312
2.19
7.0
0.111
• • •
3
69
B
0.062
0.187
1.25
6.7
0.038
~ • ~
3
70
F
0.000
0.062
0.75
12.0
0.006
* • ป
3
71
B
0.125
1 .250
10.63
8.5
4.316
• t ~
3
72
F
0.000
0.062
1 .25
20.0
0.010
• • •
3
73
F
0.000
0.062
1.25
20.0
0.010

3
74
C
0.062
0.125
0.50
4.0
0.010
• • •
3
75
C
0.062
0.250
0.94
3.7
0.038
• • •
3
76
c
0. 125
2.500
3.75
1.5
ป *
X • •
3
77
M
0.125
0.312
3.75
12.0
0.381
• • •
3
78
B
0.062
0.625
4.37
7.0
0.444

3
79
F
0.000
0.062
1.00
16.0
0.008
• • ~
3
60
C
0.125
3.125
6.25
2.0
• •
X ~ ป
3
81
F
0.000
0.125
1.13
9.0
0.036
~ ~ #
3
82
F
0.000
0.062
1.25
20.0
0.010
• • #
3
83
B
0.125
1.250
4.69
3.7
1.904
~ ~ •
3
84
C
0.062
0.500
0.50
1.0
• ft
X • •
3
85
B
0.125
0.937
4.06
4.3
1.238 :
1 ป t
3
86
B
0.125
0.937
3.75
4.0
1.143
• • •
3
87
B
0.062
0.250
0.75
3.0
0.030
ป • •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 25-JUN-83
SAMPLE CODE J C06545-65
Size (Micron)	Mass (F'icodram)
Grd					Not _ No
Ofti ObJ Sir Depth Width Length Ratio Chrwsotile Anphibole Anbig Asbe : F'att X-Raซ
3
08
B
0.062
0.250
9.37
37.5
0.381 :
• • ซ
3
89
F
0.000
0.062
0.50
8.0
0.004
~ • •
3
90
F
0.000
0.062
2.00
32.0
0.016
~ • •
3
91
M
0.062
0.125
0.62
5.0
• •
X ซ •
3
92
B
0.125
0.875
7.50
8.6
2.133
• ~ *
3
93
F
0.000
0.062
1.50
24.0
0.012
• • •
3
94
C
0.062
0.937
2.50
2.7
0.381
~ ~ ~
3
95
F
0.000
0.062
0.44
7.0
0.003
~ ~ ~
3
96
F
0.000
0.062
1.19
19.0
0.009
• • ซ
3
97
F
0.000
0.062
0.50
8.0
0.004
• * •
3
98
B
0.062
0.187
0.75
4.0
0.023
• • ซ
3
99
C
0.062
0.312
0.94
3.0
0.048
• • •
3
100
C
0.125
0.625
2.19
3.5
• •
X ~ ~
3
101
F
0.000
0.062
0.31
5.0
0.002
• • ซ
3
102
F
0.000
0.062
0.56
9.0
0.004
• • •
3
103
F
0.000
0.062
2.50
40.0
0.020
~ ~ ~
3
104
C
0.062
0.500
1.25
2.5
• •
X
Total Mass (Picodram)=	24.864	0.003
Total Count	=	76.	1.	25. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAHPLE COIiE! C06545-65	TABLE PREPARATION DATE! 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concerts
Object (Number
Count Per Cu M)
Mass
Conceri.
(F'icoSram
Per Cu M)
Average
Width
(Micron)
Average
Length
(Micron)
Average
Length
To IJidth
Ratio

Fiber
Chrasotile
Amphibole
Other
43.
1.
2.
207309.
4821 .
9642.
2600.6
16.6
0.07
0.06
0.06
i
i
i
0.02
0.00
0.00
1 .06
0.37
1.31
i
ฑ
i
0.87
0.00
0.09
15.64
6.00
21 .00
113•60
ฑ 0.00
ฑ 1.41


All Fiber
46.
221772.

0.07
ฑ
0.02
1.06
i
0.84
15.66
113.26
GJ
C7I
cn i
Bundle
Chrasotile
Amphibole
Other
18.
0.
4.
86780.
0.
19285.
71167.1
0.0
0.56
0.00
0.30
ฑ
ฑ
i
0.42
0.00
0.14
4. 15
0.00
2.88
i
ฑ
ฑ
3.03
0.00
1 .36
9.79
0.00
9.69
ฑ 9.99
i 0.00
ฑ 0.47


All Bundle
22.
106065.

0.51

0.40
3.92
i
2.82
9.77
i 8.99

Cluster
Chrasotile
Amphibole
Other
13.
0.
19.
62675.
0.
91602.
44037.6
0.0
0.83
0.00
1 .18
i
i
ฑ
0.63
0.00
1 .45
2.17
0.00
2.00
i
ฑ
ฑ
1.53
0.00
1.86
3.19
0.00
2.84
ฑ 1 .40
i 0.00
i 2.06


All Cluster
32.
154276.

1 .04
i
1.18
2.07
i
1.71
2.98
1 1 .81

Matrix
Chrasotile
Amphibole
Other
2.
0.
2.
9642.
0.
9642.
2068.8
0.0
0.22
0.00
0.16
i
i
i
0.13
0.00
0.04
3.06
0.00
1 .00
i
i
ฑ
0.97
0.00
0.53
15.50
0.00
6.17
ฑ4.95
i 0.00
i 1.65


All Matrix
4.
19285.

0.19
1
0.09
2.03
i
1.35
10.83
i 6.17
Sample Collection and Preparation Data
Grid Data
Air Volume
Deposit Area
Ashed Area
Redeposit Area
1.00 Cu M
1.00 So	Cm
1•00 So	Cm
1.00 So	Cm
Grid ID! 060883
Individual Grid Opening =
Number of Grid Openings =
Film Magnification	=
0.000069 So Cm
3
20000

-------
X IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATES 25-JUN-83


SAMPLE CODE I C06545-66
>o"
J


Size
(Micron)


Mass (Picodram)
unt
iJn
bra
Opn
ObJ
Str
Depth
Width Length
Ratio
Chrusotile Amphiboie
no v
Aabid Asbe
no
Patt X-Raa
1
1
F
0.000
0.062
0.44
7.0
0.003 .
ป •
•
1
2
F
0.000
0.062
0.87
14.0
0.007
• ~
ซ
1
3
F
0.000
0.062
2.25
36.0
0.018
• ป
•
1
4
F
0.000
0.250
1.50
6.0
• •
X
•
1
5
F
0.000
0.062
0.94
15.0
• •
X
•
1
6
F
0.000
0.062
0.81
13.0
• •
. X
•
1
7
F
0.000
0.125
0.81
6.5
• *
X
•
1
8
F
0.000
0.062
0.94
15.0

X
•
1
9
F
0.000
0.062
0.69
11.0
o.oos
• t
•
1
10
F
0.000
0.062
0.56
9.0
0.004
• •
•
1
11
B
0.062
0.312
3.25
10.4
0.165
• •
•
1
12
F
0.000
0.062
0.37
6.0
0.003
ป ~
•
1
13
F
0.000
0.125
0.56
4.5
• •
X •
*
1
14
F
0.000
0.062
0.62
10.0
0.005
• ซ
•
2
15
C
0.062
0.312
0.75
2.4
• •
A •
*
2
16
C
0.187
1.230
2.50
2.0
1.523
• •
•
2
17
F
0.000
0.062
0.31
5.0
0.002
• •
ป
2
18
F
0.000
0.062
0.62
10.0
0.005 :
• *
ซ
2
19
C
0.062
0.875
2.63
3.0
0.373
ป ~
•
2
20
F
0.000
0.062
0.50
8.0
0.004
• ~
•
2
21
C
0.062
0.312
0.62
2.0
0.032
• •
•
2
22
F
0.000
0.062
0.87
14.0
0.007
• •
•
2
23
F
0.000
0.062
1.00
16.0
0.008
• •
•
2
24
F
0.000
0.062
0.50
8.0
0.004
• *
•
2
25
F
0.000
0.062
0.75
12.0
0.006
• •
•
2
26
F
0.000
0.062
0.62
10.0
O.OOS
ซ *
•
2
27
F
0.000
0.062
0.37
6.0
0.003
• ~
•
2
28
F
0.000
0.062
0.31
5.0
0.002
ป •
ป
3
29
F
0.000
0.062
0.50
B.O
0.004
ป •
ป

-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 25-JUN-B3
SAMPLE CODE: C06545-66
Size (Micron)	Mass (Picodram)
(3rd					Not No
Opn Ot>J Str Depth Width Lenath Ratio Chrusotile Amphibole Ambia Asbe Patt X-Rsy
3
30
F
0.000
0.062
0.37
6.0
0.003
• ซ ป ป
3
31
F
0.000
0.062
0.94
15.0
0.007
• • • ~
3
32
F
0.000
0.062
0.62
10.0
0.005
• • ซ •
3
33
C
0.062
0.375
0.50
1.3
0.030
* # ~ •
3
34
F
0.000
0.062
1.00
16.0
•
0.009
3
35
F
0.000
0.062
0.69
11.0
0.005
• • • •
3
36
F
0.000
0.062
0.25
4.0
0.002
* • • •
3
37
F
0.000
0.125
1.25
10.0
0.040
• ~ • •
3
38
F
0.000
0.062
0.75
12.0
0.006
• ซ • 1
4
3?
F
0.000
0.062
0.25
4.0
ป
~ X ~ •
4
40
F
0.000
0.062
0.25
4.0
0.002

4
41
B
0.062
0.312
19.69
63.0
1.000
~ • • •
4
42
C
0.125
0.750
1.38
1.8
0.335
ป • • •
4
43
P
0. 125
0.312
2.50
8.0
0.254 :
~ • • •
4
44
F
0.000
0.062
0.94
15.0
0.007
• ~ ~ ~
4
45
F
0.000
0.062
0.62
10.0
0.005
• • ~ •
4
46
C
0.062
0.625
0.87
1.4
0.089
• 1 • 1
4
47
C
0.062
1.250
2.81
2.3
0.571
• • * •
4
48
B
0.062
0.125
1.25
10.0
0.025
• • • •
4
49
B
0.062
0.125
1 .56
12.5
0.032
ป t t •
4
50
D
0.125
0.625
4.37
7.0
0.889
• • • •
4
51
B
0.062
0.125
2.19
17.5
0.044
• • ~ •
4
52
C
0.125
1.875
3.75
2.0
2.285

4
53
C
0.187
4.375
8.75
2.0
ซ
• X • ป
4
54
C
0.125
2.500
6.25
2.5
5.078 ;
• • ~ •
4
55
F
0.000
0.062
1.13
18.0
0.009
• • • ซ
4
56
B
0.125
0.250
10.00
40.0
0.812

4
57
B
0.062
0.187
1.56
8.3
0.048
• • • •
4
58
F
0.000
0.062
0.69
11.0
0.005
• • • •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE COBEt C06545-66
Size (Hicron)	Mass 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
SINGLE SAMPLE SUMMARY TABLES
SAMPLE COIiES C06545-66	TABLE PREPARATION DATE! 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concen.
Object (Number
Count
Mass
Concen.	Average
(Picogran	Width
Per Cu M) Per Cu M)	(Micron)
Average
Length
(Micron)
Average
Length
To Width
Ratio
Fiber
Chrusotile
48.
82463.
668.0
0.07
4
0.01
0.88
4
0.66
13.77

Amphibole
1.
1718.
15.8
0.06
4
0.00
1.00
4
0.00
16.00

Other
12.
20616.

0.09
4
0.06
0.70
4
0.33
8.83

All Fiber
61.
104797.

0.07
4
0.03
0.85
4
0.60
12.84
Bundle
Chrusotile
10.
17180.
5681.6
0.26
4
0.15
4.76
4
5.86
18.34

Anphibole
0.
0.
0.0
0.00
4
0.00
0.00
4
0.00
0.00
<$>
Other
1.
1718.

0.31
4
0.00
3.75
4
0.00
12.00
>o /
/
All Bundle
11.
18898.

0.26
4
0.14
4.67
4
5.57
17.76
Cluster
Chrusotile
18.
30924.
20364.2
0.80
4
0.59
1.99
4
1.53
2.63

Anphibole
0.
0.
0.0
0.00
4
0.00
0.00
4
0.00
0.00

Other
13.
22334.

1.21
4
1.23
2.62
4
2.24
2.64

All Cluster
31.
53257.

0.97
4
0.92
2.25
4
i .85
2.63
Matrix
Chrusotile
2.
3436.
18.5
0.06
4
0.00
0.53
4
0.04
8.50

Amphibole
0.
0.
0.0
0.00
4
0.00
0.00
4
0.00
0.00

Other
0.
0.

0.00
4
0.00
0.0 0
4
0.00
0.00
All Matrix
3436.
0.06 4 0.00
0.53 4 0.04
8.50 4 0.71
Sample Collection and Preparation Data . Grid Data
Air Volume =
1.00
Cu
M
Grid ID: 060883/B-l

Deposit Area =
1.00
So
Cm
Individual Grid Opening =
0.000073 So Cm
Ashed Area =
1.00
So
Cm
Number of Grid Openings =
8
Redeposit Area =
1.00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE 0
Size (Micron)	Mass (Picodram)
Grd					Not No
Opn ObJ Str Depth Width Length Ratio Chrusotile AroPhibole Ambia Asbe Patt X-Raa
1 1
F
0.000
0.125
0.62
5.0
0.020
ป ซ .
1 2
C
0.062
0.625
0.94
1.5
0.095 ;
~ ~ .
1 3
F
0.000
0.062
1.25
20.0
0.010
4*0
1 4
B
0.062
0.187
5.00
26.7
0.152
. ~ •
1 5
C
0.062
0.625
1.87
3.0
• ซ
X
1 6
B
0.125
0.312
2.50
8.0
• •
X
1 7
F
0.000
0.062
1.87
30.0
0.015
• • 4
1 8
F
0.000
0.062
1.25
20.0
0.010
...
1 9
C
0.062
1 .250
1.25
1 .0
• .
X
1 10
C
0.062
0.187
0.37
2.0
0.011
...
1 11
F
0.000
0.062
0.69
11.0
0•005 •
* * t
1 12
F
0.000
0.062
0.81
13.0
0.006
...
1 13
F
0.000
0.062
2.19
35.0
0.0X7
...
1 14
B
0.125
1.250
4.37
3.5
1.777
...
1 IS
F
0.000
0.062
0.81
13.0
0.006
...
1 16
F
0.000
0.062
0.37
6.0
0.003
...
1 17
F
0.000
0.062
0.31
5.0
. .
• . X
1 18
C
0.062
0.125
1.25
10.0
0.025
...
1 19
F
0.000
0.062
2.00
32.0
0.016
...
1 20
B
0.062
0.250
3.44
13.8
. .
X
1 21
11
0.062
0.062
2.50
40.0
0.025
...
1 22
C
0.062
0.625
2.81
4.5
• •
X
1 23
C
0.125
3.125
5.62
1 .8
. .
X
1 24
C
0.062
0.500
1 .25
2.5
0.102
. . • *
1 25
B
0.062
0.187
1 .63
8.7
0.050
• ป .
1 26
F
0.000
0.062
0.56
9.0
0.004
...
1 27
F
0.000
0.062
0.75
12.0

• X .
1 28
F
0.000
0.062
0.56
9.0
0.004
. 4 .
1 29
F
0.000
0.062
1.25
20.0
0.010
...

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  C=CLUSTERป M=MATRIX)
TABLE PREPARATION DATE! 25-JUN-83
SAMPLE CODE: C06545-67
Size (Micron)	Mass (Picoaram)
Grd					Not No
Opn ObJ Sir Depth Width Length Ratio Chrusotile AmF-hibole Aabid Asbe . Patt X-Raซ
2
59
B
0.062
0.125
0.94
7.5
• •
X
2
60
F
0.000
0.062
0.50
8.0
ซ ป
X • •
2
61
F
0.000
0.062
0.31
5.0
* ซ
X
2
62
F
0.000
0.062
0.94
15.0
• •
X
2
63
F
0.000
0.125
1 .25
10.0
0.040
~ • ~
2
6A
F
0.000
0.062
0.62
10.0
0.005
• • •
2
65
C
0.187
1.250
4.37
3.5
• t
X ~ ~
2
66
F
0.000
0.125
1.19
9.5
• ซ
~ X •
2
67
F
0.000
0.062
0.62
10.0
0.005
ป ซ •
2
68
B
0.062
0.250
1.38
5.5
• ป
X ~ •
2
69
F
0.000
0.062
1.75
, 28.0
0.014

2
70
F
0.000
0.062
1.87
30.0
0.015 .
• * •
2
71
F
0.000
0.062
0.37
6.0
0.003
• • ~
2
72
C
0.062
1.250
3.12
2.5
t •
X * •
2
73
C
0.062
0.125
1.13
9.0
• •
X • •
3
74
F
0.000
0.187
0.87
4.7
• •
• X •
3
75
C
0.062
0.125
1 .25
10.0
0.025
• • •
3
76
c
0.187
1.562
1.87
1.2
1.428
~ ~ •
3
77
c
0.062
0.375
0.69
1.8
• •
X • •
3
78
c
0.125
1.250
1 .87
1.5
0.762
• • •
3
79
F
0.000
0.062
0.62
10.0
0.005
• • •
3
80
c
0.062
0.125
0.50
4.0
• ป
X ~ •
3
81
F
0.000
0.062
0.25
4.0
0.002
t • •
3
82
F
0.000
0.062
0.94
15.0
0.007
• ~ •
3
83
F
0.000
0.062
1 .63
26.0
0.013
• • •
3
84
C
0.062
0.375
1.25
3.3
• t
X • •
3
85
F
0.000
0.062
0.75
12.0
0.006
• • •
3
86
B
0.062
0.312
2.00
6.4
0.102
• ซ •
4
87
F
0.000
0.062
0.62
10.0
0.005
• • •

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE  no
Asbe . Patt X-Rau
4
88
C
0.062
0.125
0.44
3.5
• •
X
• •
4
89
F
0.000
0.062
0.31
5.0
0.002
•
• ~
4
90
F
0.000
0.062
1.06
17.0
0.008
•
ป •
4
91
B
0.062
0.625
3.75
6.0
0.381
•
ซ •
4
92
C
0.062
0.625
1.25
2.0
• •
X
• •
4
93
C
0.062
0.125
0.50
4.0
• •
X
• •
4
94
F
0.000
0.062
0.37
6.0
0.003
•
• •
4
95
F
0.000
0.062
0.25
4.0
0.002
•
• •
4
96
B
0.062
0.125
0.62
5.0
0.013
•
• ~
4
97
F
0.000
0.062
0.44
7.0
0.003
•
ซ ป
4
98
C
0.062
0.125
0.62
5.0
ป •
X
• ซ
4
99
F
0.000
0.062
0.31
5.0
0.002
•
• •
4
100
F
0.000
0.062
0.37
6.0
0.003
ป
ซ •
4
101
F
0.000
0.062
0.50
8.0
0.004
•
• •
4
102
F
0.000
0.062
0.25
4.0
• ซ
X
• •
4
103
F
0.000
0.062
0.81
13.0
0.006
*
• ป
4
104
C
0.062
0.125
0.81
6.5
ซ ป
X
• ซ
4
105
C
0.062
0.625
0.94
1.5
* ป
X
• •
4
106
B
0.062
0.250
1.63
6.5
• ป
X
• •
4
107
F
0.000
0.062
1.50
24.0
0.012
•
• •
4
108
B
0.125
0.187
2.94
15.7
• ~
X
• •
4
109
B
0.187
0.625
5.00
8.0
1.523
•

4
110
F
0.000
0.062
0.69
11.0
0.005
•
• t
4
111
C
0.062
0.187
0.75
4.0
0.023
•
ป •
4
112
C
0.125
1 .250
2.19
1 .8
. .
X
• •
4
113
F
0.000
0.062
0.56
9.0
0.004
•
• •
4
114
F
0.000
0.062
0.56
9.0
0.004
•
• •



Total Mass
(Picodran)=
7.246 0.000





Total Count

=
74. 0.
35ป
4.1.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
SINGLE SAMPLE SUMMARY TABLES
SAhPLE CODE! C06545-67	TABLE PREPARATION DATE I 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
-1
Tป \
1 GO I
IT. ,
,W. ]
Number
Actual Concen.
Object
Structure Tape
Object
Count
(Number
Mass
Concent
(PicoSram
Per Cu M) Per Cu h)
Average
Width
(Micron)
Average :
Lenath
(Micron)
Average
Length
To Width
Ratio
Fiber
Chrasotile
52.
175510.
1837.5
0.07
ฑ
0.02
0.97
ฑ
0.67
14.61
110.14

Amphibole
0.
0.
0.0
0.00

0.00
0.00
ฑ
0.00
0.00
i
0.00

Other
9.
30377.

0.08
i
0.04
0.63
i
0.33
8.02
i
3.76

All Fiber
<41.
205886.

0.07
i
0.02
0.92
i
0.64
13.63
i
9.74
Bundle
Chrusotile
9.
30377.
13694.6
0.40
i
0.38
2.81
i
1.72
9.75

7.13

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
i
0.00

Other
6.
20251.

0.23
i
0.06
2.14
i
0.97
9.49
i.
4.18

All Bundle
15.
50628.

0.33
i
0.30
2.54

1.47
9.64
i
5.94
Cluster
Chrysotile
11.
37127.
8816.2
0.48
i
0.49
1 .25
i
0.54
4.88
i
3.94

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
25.
B4380.

0.74
i
0.71
1.61
i
1 .27
3. 12
t
1 .85

All Cluster
36.
121507.

0.66
i
0.65
1.50
i
1.11
3.66
ฑ
2.73
Matrix
Chrusotile
2.
6750.
109.3
0.06
i
0.00
1.59
i
1.28
25.50
ฑ:
20.51

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

All Matrix
2.
6750.

0.06

0.00
1 .59
i
1 .28
25.50
120.51
Sample Collection and Preparation Data	Grid Data
Air Volume	=	1.00 Cu M	Grid ID! 0608B3/B-2
Deposit Area	=	1.00 So Cm	Individual Grid Opening =	0.000074 So Cm
Ashed Area	=	1.00 So Cm	Number of Grid Openings =>	4
Redeposit Area	=	1.00 So Cm	Film Magnification =	20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 21-JUL-B3
SAMPLE CODES C06545-69
y/'
314 Grind Brakes
Size (Micron)
Grd		
Opri ObJ Str Depth Uidth Length
Ratio
Mass (Picogram)
		Not ... No
Chrusotile Aniphibole Aubid Asbe . Patt X-Ray
1
1
C
0.062
0.250
1.13
4.5
0.046
•
1
2
M
0.062
0.937
0.94
1.0
• •
X
1
3
F
0.000
0.062
0.75
12.0
0.006

1
4
C
0.062
0.500
0.62
1 .2
ป •
X
1
5
C
0.062
0.250
0.62
2.5
• ~
X
2
6
F
0.000
0.062
0.56
9.0
0.004
•
2
7
C
0.062
0.500
1.56
3.1
0.127
•
2
8
C
0.125
1.250
3.12
2.5
1.270
•
2
9
F
0.000
0.062
0.81
13.0
0.006
•
T
10
h
0.062
0.062
0.62
10.0
0.006
•
2
11
C
0.062
0.187
1 .38
7.3
0.042

2
12
C
0.125
3.750
5.00
1.3
• ~
X
2
13
C
0.062
0.187
1.25
6.7
ซ •
X
2
14
F
0.000
0.062
0.69
11.0
0.005
ซ
2
15
F
0.000
0.062
1 .31
21.0
0.010
•
T
16
F
0.000
0.062
1.81
29.0
0.014
•
2
17
C
0.062
0.375
0.62
1.7
0.038
•
2
18
c
0.062
0.125
1.50
12.0
0.030 :
•
2
19
F
0.000
0.125
2.63
21.0
0.084
•
2
20
B
0.187
1.562
6.87
4.4
5.237
•
4.
21
F
0.000
0.062
0.44
7.0
0.003
•
2
22
F
0.000
0.062
1.19
19.0
0.009
•
2
23
F
0.000
0.062
0.56
9.0
• 0 ~
005
2
24
c
0.062
0.187
0.75
4.0
0.023
•
2
23
B
0.062
0.125
1.00
8.0
0.020
•
2
26
F
0.000
0.125
1.31
10.5
• Ui
048
2
27
M
0.062
0.062
0.62
10.0
0.006 :
•
2
28
B
0.062
0.125
1.75
14.0
0.036
•
2
29
F
0.000
0.062
0.62
10.0
0.005
•

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TAHLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS IiATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE: 2I-JUL-B3
SAMPLE CODE? C06545-69
Size (Micron)	Mass (Picodram)
Grd					Not No
Opn ObJ Str Depth Uidth Lendth Ratio Chrysotile Amphibole Ambia Asbe Patt X-Raa
7
88
F
0.000
0.062
1.25
20.0
0.010
• • • •
7
89
C
0.125
0.625
1 .87
3.0
0.381
f • • •
7
90
F
0.000
0.062
1.63
26.0
0.013
• ~ * •
7
91
C
0.062
0.750
2.50
3.3
•
ป X • •
7
92
c
0.187
2.500
6.25
2.5
•
• X • •
7
93
F
0.000
0.125
2.06
16.5
0.066
• • • ซ
7
94
B
0.062
0.125
3.88
31.0
0.079
• • • ซ
7
95
B
0.062
0.187
1.19
6.3
0.036
• • ~ ~
7
96
F
0.000
0.062
1.56
25.0
0.012
• • ป •
8
97
F
0.000
0.062
2.19
35.0
0.017
• ~ ~ ~
8
98
F
0.000
0.062
1.00
16.0
0.008
• ซ ป ~
8
99
F
0.000
0.062
0.50
8.0
0.004
• • ~ •
8
100
F
0.000
0.062
0.81
13.0
0.006
• • • •
8
101
F
0.000
0.062
0.62
10.0
0.005
• ~ 4 ~
8
102
F
0.000
0.062
0.69
11.0
ป
0.006 ...
8
103
F
0.000
0.062
0.69
11.0
0.005
• • • ซ
8
104
F
0.000
0.062
1.44
23.0
0.011
• • • *
8
105
F
0.000
0.062
2.25
36.0
0.018
• ~ • •
8
106
F
0.000
0.062
0.37
6.0
•
• • X •
8
107
F
0.000
0.062
1.63
26.0
0.013
ป ~ • •
8
108
C
0.062
0.125
0.62
5.0
•
• X • •
8
109
F
0.000
0.062
1 .50
24.0
0.012
• • • •
8
110
C
0.125
1.250
2.19
1.8
•
# X • •
8
111
C
0.062
0.125
0.62
5.0
0.013
• ~ • •
8
112
F
0.000
0.125
0.94
7.5
0.030
• • • •
8
113
F
0.000
0.062
2.25
36.0
0.018
• • • •
Total Mass (Picodrani) =
Total Count	=
22.510
81 .
0.060
3.	28. 1. 0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA ;
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-6$	TABLE PREPARATION PATES 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tupe
Actual
Object
Count
Number
Concen.
(Number
Per Cu M)
Mass
Concen.
(Picodram
Per Cu H)
Average
Width
(Micron)
Average 1
Lenath
(Micron)
Average
Length
To Ulidth
Ratio
Fiber
Chrysotile
47.
81893.
1302.1
0.07
A
0.02
1 .39
A
0.94
20.65
A14.64

Amphibole
3.
5227.
104 .2
0.08
A
0.04
0.85
A
0.40
10.17
A
1 .04

Other
3.
5227.

0.06
A
0.00
0.46
A
0.26
7.33
A
4 .16

All Fiber
53.
92347.

0.07
A
fi
o
o
1 .31
A
0.93
19.30
A1 4 . 32
Bundle
Chrusotile
13.
22651.
17365.6
0.30
A
0.40
3.17
A
.3.46
12.57
A
7.53

Amphibole
0.
0.
0.0
0.00
A
0.00
0.00
A
0.00
0.00
A
0.00

Other
2.
34B5.

0.78
A
0.49
2.31
A
1 .15
3. 10
A
0.46

All Bundle
15.
26136.

0.36
A
0.43
3.06
A
3.23
11.31
A
7.73
Cluster
Chrysotile
18.
31363.
20513.3
0.66
A
0.66
2.16
A
1.63
4.57
A
2.89

Amphibole
0.
0.
0.0
0.00
A
0.00
0.00
A
0.00
0.00
A
0.00

Other
23.
40075.

0.77
A
0.81
2.00
A
1 .36
3.45
A
2.07

All Cluster
41.
71439.

0.72
A
0.74
2.07
A
1.47
3.94
A
2.50
Matrix
Chrysotile
3.
5227.
40.9
0.06
A
0.00
0.77
A
0.25
12.33
A
4.04

Amphibole
0.
0.
0.0
.0.00
A
0.00
0.00
A
0.00
0.00
A
0.00

Other
1.
1742.

0.94
A
0.00
0.94
A
0.00
1.00
A
0.00

All Matrix
4.
6970.

0.28
A
0.44
0.81
A
0.22
9.50
A
6.56
Sample Collection and Preparation Data	Grid Data
Air Volume =
1.00
Cu
M
Grid ID: 060883/B-4

Deposit Area =
1 .00
So
Cm
Individual Grid OpeninS =
0.000072 So Cm
Ashed Area =
1 .00
Sa
Cm
Number of Grid Openings •
8
fvedeposit Area =
1 .00
So
Cm
Film Magnification =
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA .
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป D=BUNDLE t C=CLUSTER. M=HATRIX>
TABLE PREPARATION DATES 25-JUN-83
SAMPLE CODES C06545-70
Size (hicron)	Mass (F'icoSram) .
(3rd					Not No
Opn ObJ Sir Depth Uidth Length Ratio Chrysotile Anphibole Ambid Asbe -F'att X-Rau
3
30
F
0.000
0.062
0.75
12.0
0.006
III
3
31
C
0.125
2.187
3.12
1.4
2.222 :
III
3
32
F
0.000
0.062
2.38
38.0
0.019
• I •
3
33
F
0.000
0.062
0.94
15.0
0.007 :
III
3
34
C
0.062
0.250
0.94
3.7
• 1
X
3
35
C
0.062
0.375
1.25
3.3
0.076
III
3
34
F
0.000
0.062
1 .00
16.0
0.008 i
III
4
37
F
0.000
0.062
1.56
25.0
0.012 :
1*1
4
3B
C
0.062
0.500
1.69
3.4
• 1
X
4
39
F
0.000
0.062
2.13
34.0
0.017
III
4
40
C
0.062
0.625
2.19
3.5
• I
X
4
41
C
0.125
2.500
3.12
1.2
1 1
X
4
42
B
0.125
0.250
10.94
43.7
I •
X
4
43
C
0.125
0.937
2.19
2.3
• •
X
4
44
C
0.187
3.125
4.37
1.4
I 1
X
4
45
B
0.125
0.500
8.12
16.3
• I
X
4
46
B
0.125
0.187
3.75
20.0
• I
X
4
47
C
0.125
0.625
3.12
5.0
0.6 35
III
4
48
F
0.000
0.062
1.50
24.0
0.012
• > I
4
49
F
0.000
0.062
0.56
9.0
0.004 :
I • •
4
50
F
0.000
0.062
0.25
4.0
0.002
III
4
51
F
0.000
0.062
0.50
8.0
0.004 :
III
4
52
C
0.062
0.625
4.37
7.0
0.444 :

5
53
F
0.000
0.062
0.62
10.0
0.005
III
5
54
B
0.125
0.625
6.87
11.0
1.396
• I I
5
55
F
0.000
0.062
4.69
75.0
0.037 :
III
5
56
C
0.062
0.750
3.12
4.2
* •
X i i
5
57
C
0.125
1.250
2.50
2.0
1.016
III
5
58
F
0.000
0.062
2.38
38.0
0.019
III

-------
I XT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA :
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODEt C06545-70	TABLE PREPARATION DATE! 25-JUN-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure
Ttปfปe
Number
Actual Concerts
Object .(Number .
Count Per Cu M)
Mass
Concen.
(Picogram
Per Cu M)
Average
Width

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE < F=FIBERป B=BUNDLEป C=CLUSTERf M=MATRIX)
TABLE PREPARATION DATE? 21-JUL-03
SAMPLE CODE! C06545-71
Size (Micron)	Mass (Ficodrani)
0 rd					Not No
Oph ObJ Sir Depth Width Length Ratio Chrusotile Aniphibole Arabia Ast>e F'att X-Raa
1
1
B
0.062
1 .562
11 .25
7.2
2.856
• • ซ
1
2
F
0.000
0.062
0.56
9.0
0.004 :
• • •
1
3
F
0.000
0.062
0.31
5.0
• •
• X ~
1
A
F
0.000
0.062
0.94
15.0
0.007
• ป #
1
5
M
0.062
0.625
1.87
3.0
• ~
X • ซ
1
6
F
0.000
0.062
0.94
15.0
0.007
~ t •
1
7
F
0.000
0.062
1.87
30.0
0.015
• ~ •
1
B
F
0.000
0.062
1.69
27.0
0.013
• • •
1
9
C
0.062
0.375
0.50
1.3
0.030
t < ป
1
10
C
0.12S
0.312
1.56
5.0
• •
X • •
1
11
B
0.125
0.375
3.75
10.0
0.457
• • •
I
12
F
0.000
0.125
5.13
41.0
0.164
* • #
1
13
F
0.000
0.062
14.38
230.0
0.115
ป • ป
1
14
C
0.187
0.812
1 .87
2.3
• •
X ~ ~
1
IS
F
0.000
0.062
0.75
12.0
0.006
ป ซ •
1
16
F
0.000
0.062
0.62
10.0
0.005
~ • •
1
17
F
0.000
0.062
0.75
12.0
0.006
• • •
1
18
B
0.062
0.125
3.00
24.0
0.061

1
19
F
0.000
0.062
0.50
8.0
0.004
~ • ~
2
20
F
0.000
0.062
0.62
10.0
• ~
X
2
21
F
0.000
0.062
0.56
9.0
• ~
X
*>
22
F
0.000
0.062
0.37
6.0
0.003
• ซ •
2
23
F
0.000
0.062
0.31
5.0
0.002

3
24
M
0.062
0.062
0.50
8.0
• •
X • •
4
25
F
0.000
0.062
1.00
16.0
0.008 " .
• ~ *
A
26
F
0.000
0.062
1.25
20.0
0.010
• • >
A
27
F
0.000
0.062
0.31
5.0

X • •
A
20
F
0.000
0.062
0.94
15.0
0.007
• • •
A
29
F
0.000
0.062
1.19
19.0
0.009
• • ป

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERป B=BUNDLEป C=CLUSTER, M=MATRIX)
TABLE PREPARATION DATE} 21-JUL-B3
SAMPLE CODE J C06545-71
Size (Micron)
Mass (Picodram)
rd
ปn
ObJ
Str
Depth
Uidth
Length
Ratio
Chrysotile
AniF-hibole
Anibi
4
30
F
0.000
0.187
1.94
10.3
0.139


4
31
F
0.000
0.062
0.62
10.0
0.005

•
4
32
F
0.000
0.062
0.94
15.0
0.007

•
4
33
F
0.000
0.062
0.62
10.0
0.005

•
4
34
F
0.000
0.062
0.44
7.0
0.003

•
4
35
F
0.000
0.062
0.50
8.0
0.004

•
4
36
F
0.000
0.062
0.62
10.0
0.005

•
4
37
F
0.000
0.062
2.50
40.0
0.020

•
4
38
C
0.125
1 .250
1.56
1.2
ป

X
4
39
C
0.062
0.187
1.13
6.0
•

X
4
40
F
0.000
0.062
1.25
20.0
0.010

•
4
41
F
0.000
0.062
0.31
5.0
0.002

•
4
42
C
0.062
0.625
0.87
1.4
0.089

•
4
43
C
0.187
3.750
3.75
1 .0
•

X
4
44
C
0.18710.000
15.00
1 .5
,

X
4
45
F
0.000
0.062
0.75
12.0
0.006

•
4
46
C
0.062
0.125
0.62
5.0
ป

X
4
47
C
0.062
0.312
0.62
2.0
•

X
4
48
F
0.000
0.062
0.37
6.0
0.003

•
5
49
F
0.000
0.062
1.94
31.0
0.015

•
5
50
B
0.125
0.187
0.62
3.3
•

X
5
51
F
0.000
0.062
0.31
5.0
•

•
6
52
F
0.000
0.062
0.56
9.0
0.004

•
B
53
F
0.000
0.062
0.94
15.0
0.007

,
9
54
C
0.062
0.250
1 .06
4.3
•

X
9
55
F
0.000
0.062
1 .25
20.0
0.010

•
9
56
F
0.000
0.062
1.75
28.0
0.014

•
9
57
C
0.062
0.625
0.94
1.5
•

X
9
58
F
0.000
0.062
0.69
11.0
•
0.006
•
Not
No

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE (F=FIBERr B=BUNDLE r C=CLUSTERf M=hATRIX>
TABLE PREPARATION DATE I 21-JUL-83
SAMPLE CODES C06545-71



Size (Micron)


Mass (Picodrare) :



Grd





	

Not
No
Opn
ObJ
Str
Depth Width Lenath
Rati o
Chrysotile AmF-hibole
Amhia
Asbe
Patt X-Raa
9
59
F
0.000 0.062
0.37
6.0
• ~
•
X
•
9
60
B
0.062 0.187
1 .00
5.3
0.030
•
•
•
9
61
F
0.000 0.062
2.44
39.0
0.019
t
•
•
9
62
C
0.125 0.625
5.31
8.5
1.079
•
ป
•
9
63
M
0.062 0.062
0.62
10.0
0.006
ป
•
•
9
64
F
0.000 0.062
0.62
10.0
0.005 .
*
•
4
10
65
F
0.000 0.062
0.50
8.0
0.004
•
•
*
10
66
F
0.000 0.062
0.56
9.0
0.004
•
•
•



Total Mass
(Plcodram)=
5.292 . 0.006






Total Count

=
46. 1.
14.
5.
0.

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODE! C06545-71	TABLE PREPARATION HATES 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Object
Structure Tape
Number
Actual Concent .
Object (Number
Count Per Cu M)
Mass
Concen.
(Ficodram
Per Cu H)
Average
Width
(Micron)
Average
Length
(Micron)
Average
Length
To Uidth
Ratio
Fiber
Chrasotile
38.
52595.
943.9
0.07
i
0.02
1.44
i-
2.33
21 .38
136.13

Amphibole
1.
1384.
8.8
0.06
i
0.00
0.69
ฑ
0.00
11.00
i 0.00

Other
& •
8304.

0.06
i
0.00
0.42
i
0.14
6.67
i 2.25

All Fiber
45.
62284.

0.07
i
0.02
1 .28
i
2.17
19.19
133.55
Bundle
Chrasotile
4.
5536.
4712.6
0.56
i
0.68
4.75
ฑ
4.49
11 .63
ฑ
8.46

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
i
0.00
0.00
ฑ
0.00

Other
1 .
1384.

0.19
i
0.00
0.62
1
0.00
3.33
1
0.00

All Bundle
5.
6920.

0.49
ฑ
0.61
3.92
ฑ
4.30
9.97
ฑ
8.22
Cluster
Chrasotile
3.
4152.
1658.7
0.54

0.14
2.23
ฑ
2.68
3.74
i.
4.12

Amphibole
0.
0.
0.0
0.00
1
0.00
0.00
1
0.00
0.00
ฑ
0.00

Other
10.
13841.

1 .76
i
3.09
2.81
1
4.38
2.98
ฑ
1 .87

All Cluster
13.
17993.

1 .48
i
2.73
2.68
ฑ
3.95
3.16
ฑ
2.36
Matrix Chrasotile
1.
1384.
B. 8
0.06
i
0.00
0.62
i
0.00
10.00

0.00
Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
1
0.00
0.00
1
0.00
Other
2.
2768.

0.34
i
0.40
1.19
i
0.97
5.50

3.54
All Matrix
3.
4152.

0.25
i
0.32
1.00
1
0.76
7.00
i
3.61
Sample Collection and Preparation Data
Air Volume	=
Deposit Area =
Ashed Area	-
Redeposit Area =
1.00 Cu M
1.00 So Cm
1.00 So Cm
1 .00 Sci Cm
Grid Data
Grid ID! 060883/C-l
Individual Grid Opening
Number of Grid Openings
Film Magnification
0.000072 So Cm
10
20000

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
TABLE PREPARATION DATE 1 21-JUL-83 :
SAMPLE CODES C06545-72
Size (Micron)	Mass (Picosram)
fi rd					Not - No
Opn ObJ Sir Depth Width Length Ratio Chrusotile Amphibole Arabia Asbe Patt X-Raซ
1
1
F
0.000
0.062
1.25
20.0
•

X
1

F
0.000
0.062
1.13
18.0
0.009
•
• •
1
3
F
0.000
0.062
1 .25
20.0
0.010
*
• ซ
1
4
F
0.000
0.062
0.56
9.0
0.004
•
• ป
1
5
F
0.000
0.062
0.62
10.0
0.005
•
ซ ซ

6
F
0.000
0.062
0.31
5.0
0.002
•
ซ •
4
7
F
0.000
0.062
0.81
13.0
~
ซ
• ซ
4
8
F
0.000
0.062
1.63
26.0
0.013
•
• •
4
9
F
0.000
0.062
0.62
10.0
•
•
X •
4
10
B
0.062
0.125
1 .63
13.0
0.033
•
• •
4
11
B
0.125
0.250
2.06
8.3
0.168
•
• •
4
12
F
0.000
0.062
0.75
12.0
0.006
•
• •
4
13
C
0.062
0.625
3.44
5.5
0.349
•
• •

14
F
0.000
0.062
0.44
7.0
0.003
•
• •

15
F
0.000
0.062
1 .00
16.0
0.008
•
• •
7
16
F
0.000
0.062
0.62
10.0
*
0.006
• •
7
17
M
0.062
0.062
0.94
15.0
0.010
•
• •
7
18
F
0.000
0.062
0.56
9.0
•
•
• •
8
19
b
0. 187
0.312
8.75
28.0
1.333
•
ซ ซ
8
20
F
0.000
0.062
0.50
8.0
0.004
•
ซ •
8
21
C
0.062
0.625
1.87
3.0
0.190
•

8
->2
c
0.062
0.187
0.62
3.3
0.019
•
• •
10
23
F
0.000
0.062
0.56
9.0
ซ
•
X •
10
24
C
0.062
0.125
1.25
10.0
0.025
•

10
25
C
0.062
0.250
1.87
7.5
0.076
•
• •
10
26
F
0.000
0.062
0.62
10.0
0.005
•
ซ 0
10
27
F
0.000
0.062
0.81
13.0
0.006
•
• •
10
28
F
0.000
0.125
1.63
13.0
•
•
X
10
29
F
0.000
0.062
0.50
8.0
0.004
•
, ,

-------
IIT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
INDIVIDUAL OBJECT DATA TABLE 
-------
I IT RESEARCH INSTITUTE STRUCTURE ANALYSIS DATA
SINGLE SAMPLE SUMMARY TABLES
SAMPLE CODES C06545-72	TABLE PREPARATION HATES 21-JUL-83
Aerosol Object Count And Calculated Object Mass Characteristics
Number	Mass
Actual Concert.	Concen.	Average	Average
Object	Object (Nuitiber	(picoSram Width	Length
Structure Tape	Count Per Cu M)	Per Cu M)	(Micron)	(Micron)
Fiber
Chrasotile
13.
17105.
106.3
0.06
i
0.00
0.78
i
0.38

Amphibole
1.
1316.
7.6
0.06
i
0.00
0.62
i
0.00

Other
6.
7895.

0.07
i
0.03
0.91
i
0.44
All Fiber	20.	26316.	0.07 i 0.01 0.B1 i 0.38
Bundle
Chrasotile
3.
3947.
2017.9
0.23
i
0.10
4.15
i
3.99

Amphibole
0.
0.
0.0
0.00
i
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
i
0.00
0.00

0.00

All Bundle
3.
3947.

0.23
ฑ
0.10
4.15
i
3.99
Cluster
Chrasotile
5.
6579.
868.6
0.36

0.24
1.81
1
1 .05

Amphibole
0.
0.
0.0
0.00
ฑ
0.00
0.00
ฑ
0.00

Other
0.
0.

0.00
i
0.00
0.00
i
0.00

All Cluster
5.
6579.

0.36
ฑ
0.24
1.81

1 .05
Matrix
Chrasotile
1 .
1316.
12.5 0.06

0.00
0.94
i
0.00

Amphibole
0.
0.
0.0 0.00
ฑ
0.00
0.00
i
0.00

Other
0.
0.
0.00

0.00
0.00
i
0.00
All Matrix	1.	1316.	0.06 ฑ 0.00 0.94 i 0.00
Average
Length
To Width
Ratio
12.46 ฑ 6.01
10.00 ฑ 0.00
12.33 i 4.18
12.30 i 5.26
16.42 110.31
0.00 i 0.00
0.00 ฑ 0.00
16.42 110.31
5.87 ฑ 2.94
0.00 ฑ 0.00
0.00 i 0.00
5.87 i 2.94
15.00 ฑ 0.00
0.00 1 0.00
0.00 ฑ 0.00
15.00 ฑ 0.00
Saiuple Collection and Preparation Data
Grid Data
Air Volume	=
Deposit Area =
Ashed Area	=
Redeposit Area =
1.00 Cu	M
1.00	So	Cm
1•00 So	Cm
1ซ 00 So	Cm
Grid IDS 060083/C-2
Individual Grid Opening =
Number of Grid Openings	=
Film Magnification	=
0.000076 So Cm
10
20000

-------
INDEX

IITRI
FILTER

PAGE
SAMPLE CODE
NUMBER
OPERATION
70-75
C06545-017
145-B-151
COAC
76-83
C06545-018
147-B—156
COAC
84-88
C06545-019
149-B-161
COAC
89-96
C06545-020
151-B-166
COAC
97-105
C06545-022
153-B-l71
COAC
106-110
C06545-023
155-B-l75
COAC
111-116
C06545-024
157-B-181
COAC
117-124
C06545-027
159-B-187
COAC
125-130
C06545-028
159-D-189
COAC
131-135
C06545-031
161-B-193
COAC
136-140
C06545-33
210
COAC
141-144
C06545-35

COAC
145-149
C06545-37
168-A-222
COAC
150-154
C06545-34
211
COAC
155-159
C06545-36
219
COAC
160-164
C06545-38
223
COAC
165-169
C06545-39
230
I COAC
170-174
C06545-41

I COAC
175-176
C06545-43
234
I COAC
177-181
C06545-45
236
I COAC
182-186
C06545-40
231
I COAC
187-191
C06545-42
233
I COAC
192-193
C06545-44
235
I COAC
194-195
C06545-46
237
I COAC
196-197
C06545-021
152-B-169
BL
198-199
C06545-025
150-B-184
BL
TEM DATA
IITRI
PAGE	SAMPLE CODE
200-201	C06545-026
208-203	C06545-029
204-206	C06545-030
207-208	C06545-032
209-210	C06545-61
211-212	C06545-68
213-214	C06545-076
215-216	C06545-85
217-219	C06545-73
220-224	C06545-074
225-226	C06545-081
227-231	C06545-075
232-234	C06545-077
235-236	C06545-078
237-238	C06545-079
239-242	C06545-080
243-247	C06545-55
248-252	C06545-56
253-256	C06545-57
257-263	C06545-58
264-266	C06545-59
267-271	C06545-60
272-276	C06545-62
277-284	C06545-63
285-286	C06545-082
287-288	C06545-083
FILTER


NUMBER
OPERATION
150—K-165
BL

160-B-190
BL

160—K-191
BL

162-B-96
BL

290
Mill
BL
310
BL

346
AC BL

378
Mill
BL
195-A-330
ACSD

196-A-334
ACSD

197-A-338
ACSD

198-A-342
ACSD

200-A-350
ACSD

201-A-354
ACSD

203-A-358
ACSD

203-A-362
ACSD

177-A-258
MS

179-A-262
MS

790-A-266
MS

100-A-270
MS

101—274
MS

102-A-278
MS

103-A282
MS

104-A-286
MS

204-A-366
MD

205-A-370
fฎ


-------
INDEX TO TEM DATA
PAGE
289-290
291-292
293-294
295-296
297-298
299-300
301-305
306-309
310-312
313-317
318-319
320-324
325-329
330-334
335-338
339-341
342-343
344-346
IITRI
SAMPLE CODE
C06545-084
C06545-086
C06545-087
C60545-088
C60545-089
C60545-090
C06545-33
C06545-35
C06545-47
C06545-39
C06545-43
C06545-48
C06545-54
C06545-49
C06545-50
C06545-51
C06545-52
C06545-53
FILTER
NUMBER
207-A-374
208-A-382
209-A-386
210-A-390
211-A-394
212-A-398
210
815
226
230 H/L
234 H/L
230
234 A/L
240
242
246
250
254
OPERATION
MD
MD
MD
MD
MD
MD
MD
MD
MD
ACSS
ACSS
ACSS
ACSS
ACSS
ACSS
ACSS
ACSS
ACSS
PAGE
IITRI
SAMPLE CODE
FILTER
NUMBER
OPERATION
347-351
C06545-64
186-A-294
BSG
352-354
C06545-65
187-A-298
BSG
355-359
C06545-66
188-A-302
BSG
360-364
C06545-67
189-A-306
BSG
365-369
C06545-69
191-A-314
BSG
370-374
C06545-70
192-A-318
BSG
375-378
C06545-71
193-A-322
BSG
379-381
C06545-72
194-A-326
BSG
CODE:



COAC 	Asbestos Cement Sheet/Cut-off Wheel
ICOAC ...Inverted Filter Experiments COAC.
BL 	Blank and Clean-up Runs.
ACSD ....Asbestos Cement Sheet/Drill.
MS 	Millboard/Saw Experiments.
MD 	Millboard/Drill Experiments.
ACSS 	Asbestos Cement Sheet/Saw.
BSG 	Brake Shoes/Grind.

-------
APPENDIX D
PCM DATA
TABLE D-1
FIBER COUNTS OF 42 MEMBRANE FILTER SAMPLES
Operation
Filter
Number
Number Fibers
100 Fields
Operation
Filter
Number
Number Fields
100 Fields
Saw
AC Sheet
Saw
Millboard
228
2 29
232
233
236
237
240
241
244
245
248
249
252
253
256
257
261
265
269
27 3
277
281
285
289
8
2
2
1
6
1 1
I	3
4
1
3
4
6
9
4
2
9
8
II
17
1 1
7
8
6
1 3
Drill
AC Sheet
Drill
Millboard
293
333
337
341
345
351
'353
357
361
365
369
373
377
381
389
393
397
401
0
2
0
1
5
0
0
1
1
(repeat)
0
0
1
0
(repeat)
0
0
0

-------
0 ^

of the city university
Of NEW YORK
THE MOUNT SINAI MEDICAL CENTER
ONE GUSTAVE L LEVY PLACE • NEW YORK, N Y. 10029
Mount Sinai School of Medicine #The Mount Sinai Hospital
'(Bjpiii
September 14, 1983
Mr. Dennis Falgout
Engineering-Science, Inc.
10521 Rosehaven Street
Fairfax, VA 22030
Em ironmental Sciences Laboratory
Cummings Basic Sciences Building
10 East 102 Street
Sew York, Sew York 10029
(212) 650-6173
Re: Your PO No. 286-8401. May 12, 1983
Dear Mr. Falgout:
This will report the results of phase j" contrast microscopic analyses
of 42 membrane filter samples for .asbestos concentrations, using
the NIOSH method. The results in fibers per milliliter are as follows:
Number

Number

Number

228
6. 6
256
1.7
345
4.1
229
1.7
257
7.4
351
0.0
232
1. 7
261
6.6
353
0.0
233
0.9
265
9.1
357
0.0
236
5.0
269
14.1
361
0.9
237
9.1
273
9.1
365
0.0
240
10.8
277
5.8
369
0.0
241
3.3
281
6. 6
373
0.0
244
0.9
285
5.0
377
0. 9
245
2.5
289
10.8
381
0.0
248
3.3
293
0.0
389
0.0
249
5.0
333
0.0
393
0.0
252
7.4 :
337
0.0
397
0.0
253
3. 3
341
0.0
401
0.0
In addition, three bulk samples were analyzed for their asbestos
content by polarized light microscopy and X-ray diffraction, with
the following results:
millboard - 75-80% (ฑ 5%) chrysotile asbestos
asbestos cement board - 30-40% (ฑ5%) chrysotile
brake lining - 35-40% (ฑ10%) chrysotile
386 t
RECEIVED
SEP 201983
ENGINEERING SCIENCE

-------
Mr. Dennis Falgout
2.
September 14, 1983
Please call me at (212) 650-6184 if there are any questions.
ectf
Arthur N. Rohl, Ph.D.
Assistant Professor, Mineralogy
AHR:jm

-------