EPA-600/R-95-105
July IS95
Characterization of
Nitrous Oxide
Emission Sources
Final Report
By:
Rebecca L. Peer, Eric P. Epner', and Richard S. Billings
Radian Corporation
'155 Corporate Woods, Suite 100
Rochester, New York 14623
and
1600 Perimeter Park Drive
Morrisville, North Carolina 27560
EPA Contract 68-D1-0031, Work Assignment 46
EPA Project Officer: Lee L. Beck
Air and Energy Engineering Research Laboratory
Research Triangle Park, North Carolina 27711
Prepared for:
U.S. Environmental Protection Agency
Office of Research and Development
Washington, D.C. 20460

-------
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.

-------
ABSTRACT
Nitrous oxide (N20) is both a greenhouse gas and a precursor of nitric oxide
(NO), which destroys stratospheric ozone. This study presents a global N20 inventory
based on re-evaluation of previous estimates and additions of previously uninventoried
source categories. The best estimate of anthropogenic N20 is 5.7 Tg/yr, which is still
much lower thin natural source emissions. Much uncertainty remains about estimates
for many source categories. Inadequate data are available for some categories; others
are limited by a lack of reliable functional models of factors affecting emissions rates.
dkd.291\239-022-75-05\Oxide.Rpt

-------
TABLE OF CONTENTS
SECTION
PAGE
ABSTRACT 		ii
1.0 INTRODUCTION	 1-1
1.1	Background and Objectives 	 1-1
1.2	Summary of Data Gathering	 1-1
2.0 ANTHROPOGENIC SOURCES	 2-1
2.1	Biomass Burning 	 2-1
2.1.1 Global Emissions Estimates	 2-1
2.2	Waste Disposal and Waste Management	 2-2
2.2.1	Aquifer Contamination		2-2
2.2.2	Municipal Wastewater 		2-4
2.2.3	Sewage Sludge Incineration 		2-6
2.2.4	Municipal Waste Combustion		2-7
2.3	Agriculture 		2-9
2.3.1	Fertilizer Use	 2-9
2.3.2	Livestock Waste	 2-12
2.4	Industrial Processes 	 2-14
2.4.1	Adipic Acid (Nylon) Production	 2-14
2.4.2	Nitric Acid Production	 2-15
2.5	Fossil Fuel Combustion 	 2-19
2.5.1	Mobile Combustion Sources		2-19
2.5.2	Stationary Combustion Sources		2-26
2.6	Climatic Feedbacks 		2-31
2.6.1 Global Emission Estimates		2-31
3.0 NATURAL SOURCES	 3-1
3.1	Biological/Geological	 3-1
3.1.1	Soils 		3-1
3.1.2	Oceans 		3-4
3.2	Atmospheric Formation		3-5
3.2.1 Lightning		3-5
dkd.291\239-022-75-05\Oxide.Rpt
iv

-------
TABLE OF CONTENTS (Continued)
4.0 CONCLUSIONS AND RECOMMENDATIONS	 4-1
4.1	Biomass Burning 	 4-1
4.2	Waste Disposal and Management	 4-1
4.2.1	Aquifer Contamination			4-1
4.2.2	Municipal Wastewater 		4-2
4.2.3	Municipal Waste Combustion/Sewage Sludge
Incineration		4-3
4.3	Agriculture 		4-3
4.3.1	Fertilizer Use		4-3
4.3.2	Livestock Waste		4-3
4.4	Chemical Production (Adipic Acid and Nitric Acid) 		4-4
4.5	Fossil Fuel Combustion 		4-4
4.5.1	Mobile Combustion Sources		4-4
4.5.2	Stationary Combustion Sources		4-5
4.6	Climatic Feedbacks 		4-5
4.7	Natural Sources		4-6
5.0 REFERENCES	 5-1
APPENDIX A: GLOBAL NzO EMISSIONS INVENTORY BY
SOURCE CATEGORY	A-l
APPENDIX B: STATISTICAL ANALYSIS OF FUEL COMBUSTION
EMISSIONS DATA	B-l
APPENDIX C: GLOBAL MOTOR VEHICLE ACTIVITY DATA . C-l
APPENDIX D: DEVELOPMENT OF SOIL N20
EMISSION FACTORS 	D-l
dkd 291\239-022-75-05\Oxide.Rpt
V

-------
UST OF TABLES
PAGE
1-1	Summary of Global N20 Emissions by Source Category	 1-3
2-1	Global Activity Factors for Municipal Waste Combustion	 2-9
2-2 Emission Factors for Fertilizer Use 	 2-11
2-3 Worldwide Adipic Acid Capacities	 2-16
2-4 Worldwide Nitric Acid Production Capacity	 2-18
2-5 Mobile Emissions Studies	 2-20
2-6 OECD Vehicle Categories	 2-22
2-7 Emission Factor Categories 	 2-23
2-8 Mobile Source N20 Emission Factors	 2-24
2-9 Global N20 Emissions from Mobile Sources 	 2-25
2-10 Emission Factors for Stationary Combustion Sources 	 2-28
2-11	Estimated Global N20 Emissions from Fuel Combustion
by Sector, Fuel Type 	 2-31
3-1	Soil Emission Factors Classified by Ecosystem 	 3-2
3-2 Soil NzO Emissions by Ecosystem 	 3-4
A-l Global Emissions Inventory for Municipal Wastewater	A-2
A-2 Global Emissions Inventory for Municipal Waste Combustion 	A-9
A-3 Global Emissions Inventory for Ammonium Type Fertilizers	A-10
A-4 Global Emissions Inventory for Ammonium Nitrate Fertilizer	A-13
A-5 Global Emissions Inventory for Nitrate Fertilizers 	A-16
A-6 Global Emissions Inventory for Urea Fertilizer 	A-17
A-7 Global Emissions Inventory for Other Complex Fertilizer	A-21
dkd.291 \239-022-75-05\Oxide. Rpt
vi

-------
LIST OF TABLES (Continued)
PAGE
A-8	Global Emissions Inventory for Other Nitrogen Fertilizer	A-25
A-9	Global Emissions Inventory for Total (Unspecified)
Fertilizer Usage	 A-26
A-10	Global Emissions Inventory for Adipic Acid Production	A-30
A-11	Global Emissions Inventory for Nitric Acid Production	A-31
A-12	Global Emissions Inventory for Motor Vehicles 	A-32
A-13	Global Emissions Inventory for Public Service Electricity (Oil)	A-37
A-14	Global Emissions Inventory for Public Service Electricity (Gas) 	A-39
A-15	Global Emissions Inventory for Public Service Electricity (Coal)	A-41
A-16	Global Emissions Inventory for Autoproducers of Electricity (Oil) 	A-43
A-17	Global Emissions Inventory for Autoproducers of Electricity (Gas)	A-45
A-18	Global Emissions Inventory for Autoproducers of Electricity (Coal) 	A-46
A-19	Global Emissions Inventory for Industrial Boilers (Oil)	A-48
A-20	Global Emissions Inventory for Industrial Boilers (Gas)	A-52
A-21	Global Emissions Inventory for Industrial Boilers (Coal) 	A-55
A-22	Global Emissions Inventory for Oil Refineries (Oil)	A-58
A-23	Global Emissions Inventory for Oil Refineries (Gas) 	A-62
A-24	Global Emissions Inventory for Oil Refineries (Coal/Solid Fuel) 	A-63
A-25	Global Emissions Inventory for Residential (Gas) 	A-64
A-26	Global Emissions Inventory for Residential (Oil) 	A-66
D-l	Soil N20 Emission Factor Data	D-3
dkd.291\23!WJ22-75-05\Oxiiie,Rpt

-------
1.0	INTRODUCTION
1.1	Background and Objectives
Nitrous oxide (N20) levels in the atmosphere are increasing by about 0.2%
per year, (Dahlberg et a1., 1988) and are suspected of having two effects on the
atmosphere. First, as a radiatively-active (i.e., "greenhouse") gas, NzO contributes to
global warming of the atmosphere. Because N20 is a relatively strong absorber of
infrared radiation and is stable in the troposphere for approximately 150 years, a single
molecule of N20 has more greenhouse warming potential than 200 molecules of carbon
dioxide (C02) (Levine, 1992). Second, because of its stability in the troposphere, N20 is
transported to the stratosphere and is converted to nitric oxide (NO), which subsequently
results in destruction of ozone. N20 is the largest source of stratospheric NO (Ryan and
Srivastava, 1989) and it is the fourth most significant greenhouse gas.
Previous studies have attempted to quantify the global N20 budget for the
larger sources. Many of these estimates were based on limited data and fairly broad
assumptions. The objectives of this study were to re-evaluate previous estimates using
new data and more refined approaches, and to quantify emissions from some of the
smaller source categories. In addition, country-specific estimates were developed for the
anthropogenic sources. For a few categories, new data were gathered from industry and
government contacts.
12	Summary of Data Gathering
The information contained in this document is based on original
calculations and analyses of existing data. In addition, individuals recognized as experts
in various fields were contacted, and the information they provided was used either
directly or to identify literature references not already reviewed.
dkd.291\239-022-7S-05\Ojode.Rpt
1-1

-------
Fourteen source categories were identified as potentially substantial
contributors of global N20. These source categories are presented in Table 1-1, along
with the estimated N20 emissions for each source category. Where possible, a range of
emissions is shown in order to provide upper and lower estimates. The tables showing
country-specific emissions for some source categories are presented in Appendix A.
These sources are classified as anthropogenic and natural. As Table 1-1 shows, natural
sources, at 20.6 teragrams N20 per year (Tg N20/yr), are by far the largest emitters of
N20; however, anthropogenic sources are to some extent controllable. For the most
part, the revised emissions estimates presented in this report are based on a re-
evaluation of previously published data, but new data were included in a few cases. The
overall result of this re-evaluation has been to reduce the best estimate of the
anthropogenic total from the 8 (5-10) Tg N20/yr of earlier estimates (Khalil and
Rasmussen, 1992a) to 5.7 Tg N20/yr. However, this estimate is still within the range set
by Khalil and Rasmussen (1992a).
A careful assessment of controlled and uncontrolled sources resulted in
large reductions in the emissions associated with adipic acid production and mobile
sources. Previous adipic acid estimates had not included the effects of controls on some
large U.S. facilities. New data provided by these facilities show that emissions are now
about 40% lower. Mobile emissions may have been previously overestimated by using
measurements from California automobiles. As discussed in Section 2.5.1, motor
vehicles in California (and in the United States in general) have a greater proportion of
controlled vehicles, which in some cases emit more NaO than uncontrolled engines.
Thus, the new estimates for this category are also much lower.
Air emissions from many sources are highly skewed, approximating a
lognormal distribution. For two source categories—stationary coal combustion and
fertilizer use-sufficient data were available to allow an evaluation of data after
correction for non-normality. New emission factors and 95% confidence intervals were
developed for these categories, and average emissions estimates were also reduced.
Despite this reduction in fuel combustion emission factors, global emissions reported
dkd^91\239-022-75-05\Oxide.Rpt
1-2

-------
Table 1-1
Summary of Global N2O Emissions by Source Category3
Source Category
N20 Emissions (Tg N20/yr)b
Anthropogenic Sources

Biomass Burning0
1.5 (1.3-1.6)
Aquifer Contamination"1
1.1 (0.7-1.5)
Municipal Wastewater
0.7 (0.2-1.2)
Stationary Combustion Sources
0.5 (0.3-0.9)
Livestock (agricultural)®
0.5 (0.3-1)
Adipic Acid (Nylon) Production
0.4 (NA)
Fertilizer Use
0.3 (0.1-1.9)
Climatic Feedbacks'
0.3 (0.0-1.0)
Mobile Combustion Sources
0.2 (NA)
Nitric Acid Production
0.2 (0.07-0.30)
Municipal Waste Combustion
0.012 (0.012-0.013)
Sewage Sludge Incineration
0.005 (NA)
Total
5.7
Natural Sources

Soils
17.3 (11.2-21.9)
Oceansf
3.3 (2.2-4.4)
Total
20.6
8 Estimates shown were calculated by the preparers of this report unless
otherwise noted.
b Variability or range of estimated emissions is shown in parentheses; in some
cases (shown as NA), available data were not sufficient to estimate a range.
Lack of a range does not imply greater certainty in the estimate.
c Andreae, 1991; Cofer et al., 1991.
4 Ronen et al., 1988.
e Khali! and Rasmussen, 1992a.
f Houghton et al., 1992; Law and Owens, 1990.
dkd.291\239-022-75-05\O*ide.Rpt
1-3

-------
here are somewhat higher than other published estimates. The reason for this is not
entirely clear, although as discussed in Section 2.5.2, it may be due to the assumed global
distribution of coal-fired boiler types.
N20 emissions from nitric acid production, municipal solid waste (MSW)
combustion, and sewage sludge incinerators are quantified here for the first time. MSW
combustors and sludge incinerators are both relatively small sources. However, they may
become more important in the future as waste management practices change.
Previous municipal wastewater emissions estimates assumed that municipal
wastewater systems are universal. In fact, a large population uses other methods of
waste disposal, most of which do not result in conditions conducive to N20 formation.
Thus, the emissions estimates in this report for this source category are lower than
previous estimates.
For most source categories, two types of information were needed to
estimate global emissions: emission factors and activity. Emission factors characterize
the amount of N20 that is emitted per unit of activity for a source category. Activity
represents a surrogate for emissions. An emissions estimate is obtained by multiplying
the emission factor by the appropriate activity data. For example, fuel combustion
emission factors are available based on fuel type and boiler type (e.g., coal in wall-fired
boilers). The activity for this source category is tons of fuel combusted by boiler type.
One objective of this report was to provide country-specific estimates.
However, some source categories have only a gross (global) emissions estimate. In
general, this was because either activity data were not available on a country-specific
basis, or the source category (e.g., N20 from oceans) does not lend itself to country-
specific estimates.
The following subsections detail the information gathered for each source
category. Each subsection describes the source category, the emission factors and activity
dkd.291\239-022-75-05\Oxide.Rpt
1-4

-------
data identified or calculated (if applicable), and the global emissions estimates developed
using these factors.
Sections 2.0 and 3.0 of this report summarize the information-gathering
approach and describe each source category, available emission factors and emission
factor calculations, activity factors, and the global N20 emissions estimate.
Anthropogenic sources are discussed in Section 2.0, natural sources in Section 3.0. It
should be noted that for some source categories only a gross global emissions estimate is
provided. In these cases, there is no discussion of emission factors or activity data.
Section 4.0 provides recommendations on how the data presented in this report could be
improved. Section 5.0 is a comprehensive list of references used for this project.
dkd.291\239-022-75-05\Ojride.Rpt
1-5

-------
2.0
ANTHROPOGENIC SOURCES
2.1	Biomass Burning
The combustion of biomass materials occurs during a variety of activities,
including burning of savanna fields to promote the growth of fresh grass, clearing of
open forest for agricultural use, and agricultural field burning (Hao et al., 1991;
Andreae, 1991). Each of these combustion practices has been recognized as a significant
contributor of global NzO.
An estimated 23 million square kilometers of savanna areas exist
worldwide, and large-scale burning occurs in about 60% of the humid savannas (Atjay
et al., 1979). Burning occurs during the dry season, but the biomass in these areas grows
back during the wet season, thus presenting little apparent change from year to year
(OECD, 1991a).
Nitrogen is present in plant biomass mostly as amino groups in the amino
acids of proteins. During combustion, it is released by pyrolytic decomposition of the
organic matter and then partially or completely oxidized to various volatile nitrogen
compounds (Andreae, 1991). Although the exact amount of N20 emitted is difficult to
accurately quantify because 60 to 70% of the nitrogen emissions are in unknown forms
(Andreae, 1991), several estimates have been published. New emission estimates were
not calculated for this category.
2.1.1	Global Emissions Estimates
Recent evidence indicates that the actual burning of biomass materials may
not be the only driving force behind the production of N20 during combustion processes:
N20 may be produced and emitted by physical, chemical, or biochemical reactions that
dkd.291\239-022-75-05\Oxide.Rpt
2-1

-------
are occurring in the soil. These processes seem to be the direct result of the rapid
heating of the soil that is often associated with the combustion of biomass (Cofer et al.,
1991).
Current research indicates that the quantity of N20 emitted from a specific
fire is directly related to the nitrogen content of the material being burned (Hao et al.,
1991). Global estimates of the amount of N20 emitted from biomass burning by several
different methods, taking into account the effects of the sampling artifact, are quite
similar (Radke et al., 1991). Cofer et al. (1991) estimated global NzO emissions of about
1 Tg N/yr (1.6 Tg N20/yr). Andreae (1991) compiled emission factors from the
literature as well as the most current data on fuel wood, agricultural burning, and forest
burning. His estimate of 0.8 Tg N as N20/yr (1.3 Tg N20/yr) is probably the lowest
estimate published to date.
For this inventory, the global total was assumed to fall within the
1.3-1.6 Tg N20/yr range. This is within the range cited by Khalil and Rasmussen
(1992a). As the me. surement methods for this category have been increasingly
improved, the need for more accurate activity data becomes more urgent.
Country-specific estimates were not prepared for this category.
22	Waste Disposal and Waste Management
22.1	Aquifer Contamination
A current problem facing many countries around the world is the
contamination of groundwater. Aquifers are being contaminated by many diverse
sources, including human and animal waste, cultivation practices, and fertilizer
application. Polluting the aquifers increases concentrations of nitrogen in various forms
in the groundwater. Elevated rates of nitrification produce nitrites (N02) and nitrates
(N03); denitrification, in turn, produces additional quantities of N20. Recent studies
dkd.291\239-022-75-05\Oxide.Rpt
2-2

-------
indicate that NzO is produced in large quantities in contaminated groundwater (Ueda
et al., 1991; Ronen et al., 1988).
Global Emissions Estimates
The most common contaminant in groundwater is dissolved nitrogen in the
form of N03. In soil, N03 can be reduced by microbial activity and chemical reaction
through denitrification. Under field soil conditions, NzO and elemental nitrogen are lost
in the largest quantities, with N20 predominating if the soil is not too low in oxygen.
The exact magnitude of losses depend on the cultural and soil conditions. Where
drainage is restricted and where large applications of fertilizer are made, losses of 20 to
40% of nitrogen applied are possible. In flooded soils such as those used in rice culture,
60 to 70% of applied nitrogen can be volatilized as oxides of nitrogen (NOx) or
elemental nitrogen.
A lack of data is the major obstacle facing realistic estimates of N20 from
contaminated aquifers. Annual mission factors ranging from 0.028 kg N20/ha for
controlled experiments in which groundwater has been contaminated by nitrate only
(Ueda et al., 1991) to 12.2 kg N20/ha for aquifers that have been exposed to multiple
forms of waste (Ronen et al., 1988) have been identified. Ronen et al. (1988) estimated
0.7 to 1.5 Tg N20/yr from contaminated aquifers, assuming that 1% of the world's
groundwater is contaminated.
More research is needed for this source category to determine
contamination rates, emission rates from contaminated groundwater, and activity factors.
At present, insufficient data are available to develop a country-specific emissions
estimate.
dkd.291\239-022-75-05\Oxide.Rpt
2-3

-------
222	Municipal Wastewater
The emission of NzO from waste-related sources has become an
increasingly larger concern in recent global analyses. Little is known about N20
emissions from municipal wastewater, although some studies have estimated the
contribution of this source category to be on the order of 0.3 to 3 Tg/yr. These
estimates have historically been based on a 1978 study of U.S. rivers (Kaplan et al.,
1978). No other emission factor data have been identified, so the Kaplan study was also
used for this inventory.
Emission Factors
For municipal wastewater, emission factors were developed in the Kaplan
et al. (1978) study for two distinct cases: (1) a fast-moving river with a population of
500,000, and (2) a slow-moving river with a population of 2,000,000. Emission factors
ranged from 70 to 590 g/person/yr. For estimating purposes, the mid point was used as
a representative emission factor, although n. tny factors could influence emissions,
including the type of treatment system, outfall conditions, climate, and season.
Activity Data
The emission factors developed from the Kaplan et al. (1978) study were
based on a per capita value. Therefore, 1990 global population data (Population
Reference Bureau, 1991) were used as the basis for the activity factor. Two adjustments
were made to the population data. Municipal wastewater treatment facilities are found
only in urban areas, so the total country population was multiplied by the proportion of
population living in urban areas (Table 17.2, World Resources Institute, 1992) to
estimate the country-specific urban population. However, not all urban populations are
connected to sewage systems, particularly in developing countries. The urban population
was multiplied by the proportion of urban population receiving sanitation services
(Table 16.4, World Resources Institute, 1992). Unfortunately, "sanitation services"
dkd.291\239-022-75-05\Oxide.Rpt
2-4

-------
includes pit toilets and other waste treatment processes unrelated to municipal
wastewater treatment plants.
Rural populations are assumed to have septic systems (in developed
countries or regions), pit toilets, or no sanitation services per se. Because the Kaplan
et al. (1978) study and emission factors apply to U.S. municipal wastewater effluent, they
cannot be assumed appropriate for other means of waste management or disposal.
Although some NzO is likely to be emitted by other treatment processes, the conditions
for biodegradation are very different. In particular, the waste is deposited in a drier
environment, and oxygen is more likely to be present—neither of which condition is
conducive to N20 formation.
Therefore, the activity values used (urban populations receiving sanitary
services) are still likely to be an overestimate of the population served by municipal
wastewater treatment plants, particularly for countries in Asia, Africa, and South
America. The World Resources Institute (1992) source did not include data for all
countries. In the United States, 75% of the population ; assumed to be served by
municipal wastewater treatment systems (i.e., the entire urban population). The urban
populations of Canada and Australia also were assumed to have wastewater treatment
facilities. Cuba's and Haiti's percent urban populations served were assumed to be equal
to Nicaragua's. For all other developing countries, a default of 38% of urban
populations with sanitation services was assumed (World Resources Institute, 1992).
Global Emission Estimates
Table A-l (Appendix A) presents N20 emission estimates on a country
basis for this source category. Estimated emissions are 0.7 (0.2-1.2) Tg N20/yr.
dkd.291\239-022-75-05\Oxide.Rpt
2-5

-------
223	Sewage Sludge Incineration
This source category includes facilities that combust sewage sludge in
various types of incinerators. This source category is not included in any presently
published N20 inventories. However, some recent studies have started to develop
emissions data (Yasuda and Takahashi, 1992; Iwasaki et al., 1992).
Emission Factors
NaO is formed in sewage sludge incinerators (SSIs) in a process similar to
that in municipal waste combustors (MWCs). Again, emissions tend to be greater in
fluidized-bed combustors. Emissions from SSIs are apparently higher than from MWCs,
probably because of the higher nitrogen content in the fuel and lower combustion
temperatures. Reported emission factors for fluidized-bed SSIs range from 300 to 1530 g
NzO/ton sludge, while emissions from other types are on the order of 400 g/ton (Yasuda
and Takahashi, 1992). Approximately 16% of SSIs in the United States are fluidized-bed
(U.S. Environmental Protection Agency, 1984). This information w. s used to develop
the representative emission factor for SSIs of 480 g N20/ton sludge incinerated.
Activity Data
Approximately 16% of the 24 million tons (wet weight) of sewage sludge
generated in the United States each year is incinerated. Activity factors for other
countries could not be located, although it is known that Japan has approximately 1,900
SSIs in use (Yasuda and Takahashi, 1992). Japan generated approximately one-fourth as
much sewage sludge as the U.S. in the mid-eighties (United Nations Environmental
Programme, 1991).
dkd.291\239-022-75-05\Oxide.Rpt
2-6

-------
Global Emission Estimates
Based on the data from the United States and Japan, which are the most
active countries in incineration of sewage sludge, this category is not a large contributor
to the global N20 budget. The U.S. estimated emissions are about 0.0018 Tg N20/yr.
Assuming that the Japan/U.S. ratio of sewage sludge generated has remained constant,
even if all the sludge were incinerated, Japan's emissions would be about 0.0029 Tg
N20/yr. The United States and Japan combined emit approximately 0.005 Tg N20/yr.
22.4	Municipal Waste Combustion
Municipal waste combustion generally refers to the burning of common
household refuse in various types of furnaces [municipal waste combustors (MWCs)].
The primary purpose is waste volume reduction, although many facilities also practice
heat recovery. Although no mention of municipal waste combustion is made in any
currently published N20 budgets, some recent studies (Yasuda and Takahashi, 1992;
Watanabe et al., 1992) have investigated whether these facilities are significant. Durces of
N20.
Emission Factors
NOx can be formed two ways in MWCs: from fuel-bound nitrogen, and
from high-temperature conversion of atmospheric nitrogen ("thermal NOx"). Only two
studies on N20 emissions from MWCs were located. (Yasuda and Takahashi, 1992;
Watanabe et al., 1992) As with utility boilers, fluidized-bed units tend to have the
highest emission factors. Emission factors range from 40 to 300 g NzO/ton municipal
solid waste (MSW). More research in this area is needed to be able to quantify
emissions from this source category more accurately, although the source appears to be a
minor N20 contributor.
Because of a lack of data on types of incinerators used in each country, the
percentages of fluidized-bed incinerators and other types of MWCs used in the
dkd.291\239-022-75-05\Oxide.Rpt
2-7

-------
United States were used to develop a weighted average for use as a representative
emission factor (118 g N20/ton MSW). It is estimated that no more than 8% of U.S.
MWCs are fluidized-bed incinerators (U.S. Environmental Protection Agency, 1989).
Activity Data
For this inventory, the amount of MSW incinerated per country was
calculated from the percentage of MSW incinerated and the total MSW generated
annually (Carra and Cossu, 1990; El Rayes and Edwards, 1991; Kaldjian, 1990; Richards,
1989; Scheepera, 1990; and Swartz, 1989). Activity factors for the 17 countries known to
use municipal waste combustion are presented in Table 2-1.
Global Emission Estimates
Using the weighted emission factor developed for the United States and the
activity factors for the 17 countries that use MWCs, it is estimated that 0.012 to 0.013 Tg
N20/yr are emitted from the incineration of municipal waste. This is very close to the
0.011 Tg N20 estimated for Organization of Economic Co-Operation and Development
(OECD) countries by Watanabe et al. (1992). Totals for each country can be found in
Table A-2 (Appendix A).
dkd.291\239-022-75-05\Oxidc.Rpt
2-8

-------
Table 2-1
Global Activity Factors for Municipal Waste Combustion

MSW Incinerated
Country
(Mg/yr)
Austria
5.2e + 05
Canada
13e+06
Denmark
1.2c+ 06
Finland
5.0e + 04
France
1.4e + 07
Germany
6.6e + 06
Hungary
4.0e + 04
Italy
2.4e + 06
Japan
2.8e + 07
Netherlands
2.9e + 06
Romania
1.0e + 04
Spain
5.0e+05
Sweden
1.4e + 06
Liechtenstein
4.6e + 06
Former USSR
1.9e + 06
United Kingdom
3.5e + 06
United States
2.3e+07
23	Agriculture
23.1	Fertilizer Use
With the recent discovery that stationary sources may contribute only a
small fraction of N20 to the atmospheric budget, recent theories imply that fertilizer use
is a substantially larger contributor to global NzO emissions than was originally believed.
N20 is produced naturally in soil by both nitrification (the oxidation of ammonia to
nitrate) and denitrification (the reduction of nitrate/nitrite to gaseous nitrogen or an
oxide of nitrogen); denitrification is by far the major pathway. Nitrogen-based fertilizers
provide an additional nitrogen source for soil microbes and can therefore influence the
amount and rate of N20 production.
dkd.291\239-022-75-05\Oxide.Rpt
2-9

-------
Emission Factors
Emission factors for fertilizer application were developed from data
compiled by Eichner (1990) from multiple studies. Only data from controlled studies
were used, and represent the excess N20 produced from fertilized soils over the
background NzO from natural (or unfertilized) conditions. These data have been used as
emission factors for global inventory development (OECD, 1991a).
The percent of fertilizer evolved (as N2ON) from Table 2, p. 274, of
Eichner (1990) was used as the emission factor with units (g N emitted as N20)/
(g N applied as fertilizer). This is consistent with the OECD (1991a) approach.
However, to develop average and range values for each fertilizer type, the data were first
transformed logarithmically. The mean and 95% confidence interval were calculated for
anhydrous ammonia, ammonium nitrate, calcium nitrate, and urea fertilizers. Data for
ammonium chloride and ammonium sulfate fertilizers were combined. The back-
transformed values were converted to g N20/g N by multiplying by the ratio of the
molecular weight of N20 to N2 (44/28 = 1.57). Results are shown in Table 2-2.
Activity Data
The activity factors for fertilizer use were taken from a United Nations
global inventory of annual fertilizer consumption per country (FAO, 1988). Some
countries reported consumption totals for specific types of fertilizers, such as ammonium
nitrate, while others gave a total amount of nitrogen fertilizers (unspecified) consumed.
Where the type of fertilizer was not specified, a composite emission factor based on
global consumption was used. Eichner (1990) reported that globally, the fertilizer used
was 9% the combined ammonium/calcium nitrate type, 23% ammonium nitrate,
35% urea, 12% anhydrous ammonia, and 21% nitrogen. Using the emission factors in
Table 2-2 and these global percentages, a weighted emission factor of 0.0057 (0.0033 -
0.0113) g N20/g N applied was used to estimate emissions for unspecified nitrogen
fertilizer use.
dkd.291\239-022-75-05\Oxidc.Rpt
2-10

-------
Table 2-2
Emission Factors for Fertilizer Use
Fertilizer Type
Sample
Size
Emission factors (g NzO/g N applied)
Mean
TjCL
UCL
Anhydrous ammonia
12
.0271
.0179
.0409
Ammonium nitrate
8
.0031
.0011
.0083
Calcium nitrate
7
.0035
.0007
.0176
Urea
7
.0022
.0010
.0050
Ammonium chloride,
ammonium sulfate
17
.0023
.0014
.0038
LCL = lower 95% confidence limit
UCL = upper 95% confidence limit
The United Nations fertilizer inventory includes data for "other nitrogen
types" and "other complex types." The OECD (1991a) emission factors were used for
these two fertilizer groups; however, the data used as the basis for these factors are
likely to be non-normal. If these data were subjected to the same statistical analysis as
the other fertilizer data, the mean emission factor value would probably be somewhat
lower and the range narrowed. The original data used for the OECD factors were not
available.
Global Emissions Estimate
The global inventory of N20 for each type of fertilizer can be found in
Tables A-3 through A-9 (Appendix A). The mean upper and lower 95% confidence
limits values presented in Table 2-2 were used to calculate probable emissions and a
range for each country. A global estimate of 0.1 to 1.9 Tg/yr of N20 (average is
0.3 Tg/yr) is emitted due to fertilizer usage. This wide range reflects the variability of
emissions for this category.
dkd.291\239-022-7S-05\Oxi
-------
N20 emissions from nitrogen fertilizers are affected by two types of factors:
natural processes and management practices. Natural processes include temperature,
soil porosity, microorganisms present, weather effects (including rainfall), pH, and soil
characteristics. Management practices include fertilizer and crop types, fertilizer
application methods, residual chemical concentrations, and irrigation and tillage practices
(OECD, 1991a). The effect of natural processes on NzO fertilizer emissions is not well
understood; laboratory studies have attempted to determine the effects of individual
natural processes. The added complexity of differing management practices is even less
well-known.
Fertilizer consumption is increasing annually at a rate of 1.3% for
industrialized countries and 4.1% for developing countries; therefore, this source
category will increase in importance in the future (OECD, 1991a). More information on
the effects of natural processes and management practices on the emission of NzO from
soils is needed before a more precise estimate can be developed.
232	livestock Waste
Agricultural livestock waste methane (CH4) emissions have been
investigated to a greater extent than some other waste disposal source categories, but
N20 studies are still scant. Global estimates for emissions from poultry, cattle, and
swine wastes were estimated based on a presumed ratio of N20/CH4 and using a global
CH4 estimate (Safley et al., 1992).
Global Emission Estimates
Khalil and Rasmussen (1992a) estimate global N20 emissions from cattle
alone as 0.3-0.8 Tg/yr. Their estimate is based on a global estimate of 70 Tg CH4/yr
produced by cattle and a ratio of excess N20/excess CH4 of 0.0028 ± 0.0012. Their ratio
comes from field studies conducted in milking sheds and barns after cattle were brought
dkd.291\239-022-75-05\Oidde.Rpt
2-12

-------
in. The production of CH4 is an anaerobic process, so the potential for NzO production
exists.
An EPA report on global CH4 emissions estimates 28 Tg CH4/yr emissions
from all animal waste (Safley et al., 1992). This amount, significantly less than that used
by Khalil and Rasmussen (1992a) was based on per country counts of livestock and CH4
emission factors. CH4 emission factors were developed by determining the amount of
waste produced daily per head of cattle, the pounds of volatile solids in the waste, and
the amount of CH4 generated per amount of volatile solids. Using the CH4 emissions
total from cattle with Khalil and Rasmussen's ratio, an estimate of 0.043 (0.025-0.061) Tg
N20/yr is produced by cattle. If the same N20/CH4 ratio is assumed for poultry and
swine, the total NzO from livestock waste is 0.078 (0.045-0.112) Tg N20/yr.
This estimate is based on the assumption that a measurement made in a
very special type of microenvironment (an enclosed dairy barn) applies to animal waste
degradation in a wide variety of microclimates. This is not likely to be true, even in
sou 5 anaerobic situations. For example, measurements of emissions from composted
animal wastes produced much lower N20 concentrations (Yasuda and Takahashi, 1992).
Furthermore, these authors reported that anaerobic digestion gas produced no NzO,
while N20 was found in aerobic digestion gas.
These results may be consistent, given the ecology of the nitrogen cycle.
Under certain pH and temperature conditions, denitrification (anaerobic) proceeds
completely to the formation of NO with little or no N20 released (Sprent, 1987).
Furthermore, nitrification (aerobic) may result in emissions of N20, although in much
lower concentrations than by anaerobic pathways.
As this discussion demonstrates, a wide range of uncertainty exists for this
source category. Further research in the areas of animal waste handling, possible enteric
emissions from cattle, and the relationship between NaO production and CH4 production
could shed more light on the subject.
dkd.291\239-022-75-05\O»de.Rpt
2-13

-------
2.4
Industrial Processes
2.4.1	Adipic Acid (Nylon) Production
Recent investigations into possible chemical production sources of NzO
have led to the conclusion that N20 may be produced during any chemical reaction
where nitrogen is present in a reducing atmosphere (Huckins, 1991). Three primary
chemical processes that have already been identified as sources of NzO include
production of adipic acid, nitric acid (HN03), and dodecanoic acid. HN03 production is
discussed in Section 2.4.2. Dodecanoic acid is a low-volume chemical for which activity
data are not available. Because emissions from this process are expected to be
negligible, it is not included in this inventory.
Adipic acid is a precursor chemical that is used to produce nylon-6,6, which
in turn is used to produce various items, including carpet, yarn, home furnishings, and
tire cord. Ninety percent of the adipic acid produced worldwide is used in the
production of r Ion.
Emission Factors
Nylon-6,6 is formed by the reaction of adipic acid with
1,6-hexamethylenediamine. N20 emissions occur during the production of adipic acid.
Adipic acid is produced using two different processes, both of which use the process step
that produces N20. One process produces adipic acid by the oxidation of cyclohexane in
a two-step process: cyclohexane is oxidized with air to form a
cyclohexanone/cyclohexanol mixture (referred to as KA, ketone-alcohol, or ol-one), and
then the KA mixture is oxidized with HN03 in an exothermic reaction to produce adipic
acid. The second production process produces adipic acid by the hydrogenation of
phenol to produce cyclohexanol followed by HN03 oxidation. It is the HNOa oxidation
step in both of these production procedures that generates NzO.
dkd.291\239-022-75-0S\Oxide.Rpt
2-14

-------
The overall reaction stoichiometry for N20 production is 1 mol NzO/mol
adipic acid generated or 0.3 lb N20/lb adipic acid. Within the United States, two major
producers of adipic acid (DuPont and Monsanto) currently use N20 abatement
technology in their adipic acid facilities, in which N20 is removed with an efficiency of
98 percent (Huckins, 1991). No other adipic acid facilities currently employ NzO
abatement. For the purposes of this inventory, two emission factors were used. The
uncontrolled factor (0.3 lb N20/lb adipic acid) was used for all countries except the
United States. A controlled factor based on the weighted production capacities of the
four U.S. plants (0.077 lb N20/lb adipic acid) was used for the United States only. Only
one representative emission factor was developed for each country. A range of emission
factors is not applicable for this source category.
Activity Data
Table 2-3 presents the list of adipic acid production facilities and
production capacities used to prepare the global emissions estimates. Total annual world
production capacity is estin ited to be 1,752,660 Mg.
Global Emissions Estimates
Table A-10 (Appendix A) presents the estimated global inventory for NzO
emissions from the production of adipic acid, based on the emission and activity factors
presented above. The full production capacity for plants in each country was used to
estimate emissions. The estimated total N20 emissions from this source category is
360,000 Mg/yr.
2.4.2	Nitric Acid Production
Another process that is known to produce NzO as a by-product is the
production of HN03. HN03 is a high-volume chemical used in the manufacture of
dkd.291\239-022-75-05\Oxide.Rp!
2-15

-------
Table 2-3
Worldwide Adipic Acid Capacities3
Company
Location
Capacity (Mg/yr)
North America
Allied-Signal
E.I. duPont de Nemours & Co.
E.I. duPont de Nemours & Co.
Monsanto
DuPont of Canada
Hopewell, VA
Orange, TX
Victoria, TX
Pensacola, FL
Maitland, Ontario
12,740
163,800
291,200
263,900
99.190
Subtotal 830,830
Western Europe
UCB-Ptal SA (Belgium)
Rhone-Poulenc (France)
BASF (Germany)
Bayer (Germany)
ICI (United Kingdom)
Oostende, W. Vlaanerden
Chalampe, Haut-Rhin
Ludwigshafen
Leverkusen
Wilton, Cleveland
24,570
209,300
182,000
36,400
273.000
Subtotal 725,270
Asia
Asahi Chemical (Japan)
Kanto Denka Kogya (Japan)
Liaoyang Pet. Fiber (China)
Others
Nobeaka
rhibukara
I iaoyang
Japan
63,700
9,100
50,050
8.190
Subtotal 131,040
Other Areas
Rhodia SA (Brazil)
Poland State Complexes
Paulinia, Sao Paulo
three sites
50,050
15.470
Subtotal 65,520
Total 1,752,660
aKirk-Othmer, 1991.
dkd.29 l\239-022-75-05\Oxi d e. Rpt
2-16

-------
inorganic and organic nitrates and nitro compounds for fertilizers, dye intermediates,
explosives, and many different organic chemicals.
Emission Factors
The common production process for HN03 is via oxidation of ammonia by
air or oxygen with a platinum catalyst. N20 is formed during oxidation of ammonia by
the following reaction:
4NH3 + 402 - 2NaO + 6HzO @900°C
The N20 formed in this reaction is released from a reactor vent. One producer
estimates that emission factors for two of its facilities range from 4.66 to 18.74 lb
NzO/ton HN03 produced, based on limited testing of the off-gas streams (Epner, 1991).
No other NzO emissions data were found during the information gathering for this
project. The mean value (11.7 lb N20/ton HN03) was used as a representative emission
factor for the purposes of this inventory, and the range reported above was used to
bracket the global emissions estimate.
Activity Data
Table 2-4 presents the country-specific list of HN03 production capacities
used to prepare the global emissions estimates. Total annual production capacity is
estimated to be 28,079,000 Mg. In the absence of more precise information, capacity is
assumed to equal production. In fact, production is typically less than capacity, so the
emissions estimated by this method are likely to be high.
Global Emissions Estimates
Table A-11 (Appendix A) presents the estimated global inventory for NzO
emissions from the production of HN03, based on the emission and activity factors
presented above. The full production capacity for each country was used to estimate
dkd.291\239-022-75-Q5\Oxide.Rpt
2-17

-------
Table 2-4
Worldwide Nitric Acid Production Capacitya

Production
Country
Capacity (Mg/yr)
Algeria
98,000
Australia
204,000
Belgium
1,345,000
Brazil
387,000
Bulgaria
977,000
Canada
1,027,000
China
274,000
Colombia
35,000
Cuba
245,000
Denmark
43,000
Egypt
1,000
Finland
518,000
Germany
3,688,000
Greece
490,000
Hungary
884,000
India
529,000
Italy
1,108,000
Japan
658,000
North Korea
33,00i
Mexico
2,000
Poland
2,175,000
Portugal
292,000
Romania
34,000
Spain
1,229,000
Sweden
346,000
Turkey
5,000
United Kingdom
3,145,000
United States
7,574,000
Venezuela
3,000
Yugoslavia
730,000
Total
28,079,000
'United Nations, 1989.
dkd.291\239-022-75-05\Oxide.Rp«
2-18

-------
emissions. The estimated total N20 emissions from this source category are 65,000 to
260.000	Mg/yr.
25	Fossil Fuel Combustion
2.5.1	Mobile Combustion Sources
H20 emissions from mobile combustion sources have been found to be a
significant contributor to the global N20 atmospheric budget. Nearly all forms of mobile
vehicles have been found to emit at least small amounts of N20. These sources include
gasoline and diesel powered passenger cars, light-duty trucks, heavy-duty trucks,
motorcycles, ships, locomotives, farm equipment, construction equipment, and gasoline
powered aircraft.
Two processes have been determined to be responsible for N20 formation
in automobiles: combustion in the cylinder and catalytic treatment of exhaust gases
(OECD, 1991a). In the first process, NzO is formed by the interaction of v. >mbustion
intermediates, NO and NH or NCO in the cylinder to produce N20, but is counteracted
by the breakdown of N20 by hydrogen in the engine exhaust (OECD, 1991a). The main
source of N20 within mobile combustors results from the reactions between NO and
NH3 in the presence of platinum (OECD, 1991a) in the catalytic treatment of the
exhaust gas (maximum 5-10% conversion of NO). This source of N20 is highly
dependent on temperature. When the temperature of the catalyst in light-duty
automobiles is below 360°C, N20 emissions from the catalyst are up to 4.5 times greater
than the level that exits the engine. When the catalyst temperature reaches 460°C, the
N20 concentrations entering and leaving the catalyst are about equal. Above this
temperature, the amount of N20 released is reduced (OECD, 1991a).
Recent studies indicate that vehicles containing three-way catalysts emit
relatively large quantities of N20, whereas uncontrolled sources produce N20 in lesser
concentrations (Linak, 1990). This is due to that period of operation below 460°C, the
dkd.291\239-022-75-G5\Oxide.Rpt
2-19

-------
cold start-up and warm-up time. The U.S. Federal test program has shown that
advanced three-way catalytic controls have improved N20 control by means of preheating
the catalyst.
Emission Factors
Vehicle emission factors are often regional or country dependent. For
instance, the existence of U.S. emission standards and inspection and maintenance
programs would suggest that vehicle emissions here are different from many African
countries, which do not have such programs, or from those in Eastern European
countries, which have a sizeable fleet of private vehicles equipped with two-stroke
petroleum engines. In Western Europe, catalytic converters have been introduced only
recently. Oxidant control systems have been used for several years. These differences
necessitate the use of different emission factors for different countries.
Emission factors used in several regional studies were considered.
Table 2-5 shows the available studies for each geographical region. Emission factors
used in these studies were compared to emission factors reported in Estimation of
Greenhouse Gas Emissions and Sinks (OECD, 1991a).
Table 2-5
Mobile Emissions Studies
Region
Study
Europe
ERR, Ltd. (1990); ETSU (1991).
Eastern Europe
Pacyna et al. (1991); Veldt (1991).
North America
MOBILE4.1 emission factors used for U.S. State Implementation
Plan inventories."
Data provided by the Mexico Petroleum Institute (IMP) and the
Mexican Ministry of Commerce and Development (SECOFI).
South America
Data provided by the government of Chile and others.
a Personal communication from J. Mangino, Radian Corporation, to R. Billings,
Radian Corporation, December 1992.
dkd.291\239-022-75-Q5\Oxide.Rpt
2-20

-------
The emission factors used in the compiled regional studies were evaluated,
and a set of emission factors was selected from the OECD list that would be a
reasonable representation of the national motor vehicles fleets. Emission factors were
disaggregated into the vehicle/fuel/control technology categories shown in Table 2-6.
Emissions factors were then grouped into four categories, labeled as A, B,
C, and D as shown in Table 2-7. Class A represents a fleet of old or uncontrolled
vehicles, which may be found in several African countries. Class B vehicles are non-
catalytic controls for gasoline engines; diesel engines are uncontrolled, reflecting vehicle
fleets in Asia, Central and South America, and Eastern Europe. Vehicles in Western
Europe are in Class C; these gasoline vehicles are primarily controlled using oxidant
systems, and diesel vehicles are moderately controlled. Class D includes U.S. passenger
vehicle fleet, and assumes that all vehicles produced since 1986 are equipped with
catalytic converters.
Emission factor categories were assigned to geographic regions, as shown in
Table 2-7. No studies of Africa and Asia were found. Emission factor categories were
assigned to these regions based on limited, anecdotal information.
The N20 emission factors for each vehicle type and factor class are shown
in Table 2-8. As noted earlier, advanced three-way catalyst controls do not produce as
much N20 as earlier catalyst technologies; however, this technology is still relatively new
and was not factored into the calculations.
In the United States, only about 50% of automobiles were estimated to use
early three-way catalysts. As noted above, these control technologies produce
significantly higher emissions of N20. A weighted emission factor for U.S. gasoline
automobiles was used; assuming 50% of the U.S. automobile fleet uses some type of
three-way catalyst and the remainder are Class C, the weighted emission factor is:
U.S. automobile (gas) emission factor = (0.031)(0.5) + (0.046)(0.5) = 0.039
dkd.291\239-022-75-05\OxKle.Rpt
2-21

-------
Table 2-6
OECD Vehicle Categories
Vehicle
Fuel
Control Technology
Automobile
Gas
Advanced three-way catalyst
Automobile
Gas
Three-way catalyst
Automobile
Gas
Early three-way catalyst
Automobile
Gas
Oxidant
Automobile
Gas
Non-catalyst
Automobile
Gas
Uncontrolled
Automobile
Diesel
Advanced
Automobile
Diesel
Moderate
Automobile
Diesel
Uncontrolled
Light-duty truck
Gas
Advanced three-way catalyst
Light-duty truck
Gas
Three-way catalyst
Light-duty truck
Gas
Early three-way catalyst
Light-duty truck
Gas
Oxidant
Light-duty truck
Gas
Non-catalyst
Light-duty truck
Gas
Uncontrolled
Light-duty truck
Diesel
Advanced
Light-duty truck
Diesel
Moderate
Light-duty truck
Diesel
Uncontrolled
Heavy-duty truck
Gas
Three-way catalyst
Heavy-duty truck
Gas
Non-catalyst
Heavy-duty truck
Gas
Uncontrolled
Heavy-duty truck
Diesel
Advanced
Heavy-duty truck
Diesel
Moderate
Heavy-duty truck
Diesel
Uncontrolled
Motorcycle
Gas
Non-Catalyst
Motorcycle
Gas
Uncontrolled
dkd.291\239-022-75-05\Oxide.Rpt	2-22

-------
Table 2-7
Emission Factor Categories
.
Region
Category
Control Technology
Gas
Diesel
North America
D
Oxidant/three-way catalyst
Moderate
Central & South America
B
Non-catalyst
Uncontrolled
Western Europe
C
Oxidant
Moderate
Eastern Europe
B
Non-catalyst
Uncontrolled
Asia
B
Non-catalyst
Uncontrolled
Africa
A
Uncontrolled
Uncontrolled
Activity Data
For most countries, motor vehicle activity data are based on traffic volume
data obtained from the International Road Federation (IRF) (1991), the International
Road Transport Union (IRU) (1990), and the OECD (1991b). The traffic volume data
from these sources were reviewed and adjustments were performed to treat
inconsistencies found in the traffic volume raw data. In addition, data fittings were
performed to fill in traffic volume data gaps for countries that did not report any of the
required traffic volume data.
The traffic volume data from the IRF, IRU and OECD reports were
divided into four vehicle classes: cars, buses, goods vehicles (trucks), and motorcycles.
No breakdown was provided of the goods vehicles category, which includes light-duty
gasoline trucks, light-duty diesel trucks, and heavy-duty gasoline and diesel vehicles.
Data from the IRU were compiled for those countries that reported goods vehicles by
weight class. Review of these data showed that the mix of goods vehicles varied
significantly from country to country. For this rough estimation of emissions, values were
averaged and used to disaggregate goods vehicles into light-duty and heavy-duty trucks.
dkd.291\239-022-7S-05\Oxide. Rpt
2-23

-------
Table 2-8
Mobile Source N2O Emission Factors
Vehicle Type
Factor Class
Factor (g/VkmT)*
Heavy-duty diesel trucks
C, D
0.025
Heavy-duty diesel trucks
B
0.031
Heavy-duty diesel trucks
A
0.031
Light-duty diesel trucks
C, D
0.014
Light-duty diesel trucks
B
0.017
Light-duty diesel trucks
A
0.017
Automobiles
D
0.046
Automobiles
C
0.027
Automobiles
B
0.005
Automobiles
A
0.005
Light-duty gasoline trucks
C, D
0.031
Light-duty gasoline trucks
B
0.006
Light-duty gasoline trucks
A
0.006 1
Motorcycles
C, D
0.002
Motorcycles
B
0.002
Motorcycles
A
0.002
"Grams per vehicle kilometer travelled.
In order to correctly match activity factors with emission factors, the traffic
volume data were further disaggregated into appropriate vehicle classes as well as into
fuel types (i.e., gas, diesel). For the purposes of this study, all passenger cars and light-
duty trucks were assumed to be gasoline powered and all buses and heavy-duty trucks
were assumed to be diesel powered.
Traffic volume data were not available for some countries. Radian used
regressions of traffic volume data based on other available data, (e.g., gross domestic
product, kilometers of road) to derive traffic volume estimates. Through these curve-
dkd.291\239-022-75-05\Oxide.Rpt
2-24

-------
fitting techniques, Radian was able to fill some of the data gaps. However, the accuracy
of these data fittings needs further evaluation. Appendix C shows both original and
fitted data.
Global Emission Estimates
The N20 emissions inventories generated for motor vehicles are presented
at a country level by vehicle types in Table A-12 (Appendix A). The aggregated
inventory by country (summed over vehicle types) is shown in Table 2-9. This estimate
of 0.2 Tg N20/yr is lower than the 0.8 Tg N20/yr given by Khalil and Rasmussen
(1992a). Their estimate was based on samples of automobile exhaust in Los Angeles in
1988. They assumed a similar mix of vehicles globally in extrapolating from this study to
the world. However, given that California introduced early three-way catalysts in 1983,
several years before other states, emissions measured in Los Angeles in 1988 were likely
to be better controlled (e.g., higher proportion of three-way catalysts) than any others.
Therefore, the Khalil and Rasmussen estimate is probably an overestimate of global N20
emissions.
Table 2-9
Global N2O Emissions from Mobile Sources
Vehicle Type
Fuel Type
TgN20/yr
Automobiles
Gasoline
0.165
Light-duty trucks
Diesel
0.002
Light-duty trucks
Gasoline
0.028
Heavy-duty trucks
Diesel
0.021
Motorcycles
Gasoline
0.001
Total
0.217
Although data are missing for some countries, the available data have not
been fully exploited. Further development of algorithms for fitting activity data and a
dkd_291\239-022-75-05\0>ride.Rpt
2-25

-------
more thorough statistical evaluation of emissions data could decrease some of the
uncertainty associated with these estimates.
For diesel locomotives, non-road mobile sources such as aircraft, and farm,
construction, and industrial equipment, less information is available. A recent analysis of
ozone precursor emissions from non-road vehicles in the U.S. found that this source
category is much more significant than previously thought (U.S. Environmental
Protection Agency, 1991). Non-road NO, emissions were typically 20-25% of total
mobile NOx emissions in non-attainment areas. However, N20 emission factors are not
available for these engines; furthermore, extrapolation from U.S. equipment populations
to global populations poses considerable problems. Therefore, emissions for non-road
sources were not calculated.
252.	Stationary Combustion Sources
Stationary fuel combustion sources include (1) utility boilers for the
productior of electricity (both public and autoproducers), (2) industrial boilers and
process heaters, and (3) residential heating sources. Emissions from stationary
combustors depend mainly on the type of fuel being burned, the combustion practice
being used, and the presence of NOx control devices.
The exact mechanisms by which N20 is formed and destroyed are not
entirely known. Several possible mechanisms have been proposed. Measurements
confirm that N20 is present in flue gas, although not in the magnitude previously
estimated (Linak, 1990). Some N20 may form in the plume, although very little has
been found in samples near the stack (Khalil and Rasmussen, 1992b).
Emission Factors
Prior to 1988, fossil fuel combustion from stationary boilers was thought to
be a major contributor to anthropogenic NzO emissions. However, Muzio and Kramlich
dkd.291\239-022-75-Q5\Oxide.Rpt
2-26

-------
(1988) reported that significant amounts of N20 were actually being produced as a
sampling artifact during sample storage. In the presence of sulfite, NO,, and moisture,
N20 was being formed in high levels and over relatively brief periods of time. The
discovery of this artifact resulted in the re-evaluation of previously recorded data.
Recent studies have suggested that traditional stationary combustion
sources may play a relatively minor role in N20 emissions. However, fluidized-bed
combustors (FBCs) (Nelson et al, 1991) and selective non-catalytic reduction processes
(Muzio et al., 1991) are still found to be significant contributors of N20. During
combustion, specific temperatures and pressures determine the amount of N20 that is
created and destroyed throughout the combustion process. At high temperatures, as is
the case with conventional combustors, or in fuel-rich, two-stage combustors, virtually all
of the N20 is destroyed. At higher temperatures, NO formation is favored because NaO
destruction is efficient and the precursors to N20 formation are oxidized (Lyon et al.,
1989). However, at low temperatures similar to those used with FBCs, significant levels
of NzO remain after combustion.
Representative emission factors for various fuels and various combustion
practices are presented in Table 2-10. These factors were derived from data compiled
from various source tests (Nelson et al., 1991). Additional sources of emissions data for
stationary combustion sources of different types have been published since then.
However, the data compiled by Nelson et al. (1991) are based on a fairly large number
of test reports, and probably represent the most complete compilation of emission factors
prepared to date. All of the references used to determine emission factors have been
published since 1988 and incorporate sampling procedures that ensure that the sampling
artifact does not occur.
The coal-fired boilers source measurement data were first transformed
using natural logarithms. An analysis of variance (ANOVA) of the data showed that
fluidized-bed and wall-fired boiler emissions were statistically different from each other
(at a 95% confidence level), and from all other boiler types (tangentially-fired and
dkd.291\239-022-7S-05\Oxi
-------
Table 2-10
Emission Factors for Stationary Combustion Sources
Fuel
Combustor Type
NzO Emissions (g/GJ)*
Mean
LCLb
UCLC
Indus trial/Utility
i
Coal
Wall-fired
4.891
2.959
8.078

Tangentially-fired, other
1.357
0.965
1.909

Fluidized-bed
57.395
44.699
73.674
Heavy oil

1.527
0.314
7.183
Light oil

0.792
0.274
2.307
Natural gas

0.452
0.269
0.843
Peat

13.854
7.988
24.081
Residential
Oil

1.629
NA
NA
Gas

11.075
NA
NA
"Gram per gigajoule (109 Joules)
bLower 95% confidence limit
Upper 95% confidence limit
"other"). Therefore, separate emission factors for these two boiler types were calculated;
all other coal-fired boiler types were treated as one type. The data and statistical
analysis are provided in Appendix B. The mean emissions and 95% intervals were
calculated using the logarithmic data and then back-transformed to give the factors
shown in Table 2-10.
Insufficient data existed to conduct similar ANOVAs for other fuel types.
However, log-transformed data for heavy oil, light oil, natural gas, and peat fuels were
used to calculate emission factors.

-------
The residential oil and gas emissions data were limited to one Swedish
testing study (Dahlberg et al., 1988). Because the samples were very small (n=4 for oil,
n=3 for gas), the sample mean was used as an emission factor and confidence intervals
were not calculated.
Although emissions from stationary combustion sources may be less than
originally estimated, another theory postulates that NzO may form in the plume of large
stationary combustion sources by chemical reactions similar to those that caused the
sampling artifact difficulties (Khalil and Rasmussen, 1992b). Current work in this area
indicates, however, that NzO formation along this pathway is only a minor source of
global NzO (Khalil and Rasmussen, 1992b). Further work is needed to quantify the N20
produced by this mechanism.
Activity Data
Although much work has been done to develop emission factors for
stationary combustion sources, accurate and c. mplete activity data proved difficult to
compile. The most complete reference for country-specific fuel use data (International
Energy Agency, 1989) provides the data in terms of thousand tons of oil equivalent
(TTOE). These values were converted to joules using a conversion factor of 1 TTOE =
4.184x10° J. Activity data are available for several combustion source categories,
although the accuracy and comprehensiveness of the data on a country-specific basis may
be lacking. Better activity data for this source category would greatly improve any
emissions estimates, especially given the volume of data compiled concerning emission
factors.
Global Emissions Estimates
Tables A-13 through A-26 (Appendix A) present the countiy-specific data
for several subcategories of stationary combustion sources. Estimates are presented for
(1) public service electricity production, (2) autoproducers of electricity, (3) industrial
dkd.291\239-022-75-05\Oxjde.Rpt
2-29

-------
boilers, (4) process heaters in oil refineries, and (5) residential heating. The source
categories presented are entirely a function of the availability of activity data. Estimates
are broken down by fuel type for each category. Most available emissions data are for
large utility boilers; few emissions data are available for smaller combustion sources.
Therefore, the emission factors shown in Table 2-10 were used to estimate emissions for
all utility and industrial fuel combustion. For coal-fired boilers, a global distribution of
75% wall-fired, 5% FBC, and 20% "other" was assumed. This assumption was based on
the fact that wall-fired technology is one of the oldest, while FBC is relatively new.
Thus, the composite coal-fired emission factor is:
Average
fromTawL " (-75)(498,) * ('2)(U57) * <°5><57M5>
boilers
= 6.81 g N20/GJ
The lower and upper limit emission factors were calculated similarly to give
a range of 4.7 - 10.1 g N20/GJ. The results presented in Appendix A show that
stationary combustion sources may contribute 0.5 (0.3 - 0.°) Tg N20/yr to global
emissions. As Table 2-11 demonstrates, coal-fired utility boilers are theiargest sources
of N20 emissions, with industrial coal-fired boilers the second largest source. These
estimates are higher than recent publications have stated. Khalil and Rasmussen (1992b)
surmised that direct power plant emissions were "probably less than 0.05 Tg/yr." The
Houghton et al. (1992) estimates of 0.1-0.3 Tg N/yr (0.16 - 0.47 Tg N20/yr), however,
are in closer agreement with the estimates in this report. Differences in these three
estimates may be due to the assumed 5% FBCs. If, for example, all boilers were
assumed to be wall-fired, the global estimate would drop to less than 0.4 Tg N20/yr.
Also, the emission factors used by Houghton et al. (1992) were based on a very limited
data set. The factors in this report represent a much larger and more recent sample.
Khalil and Rasmussen's (1992b) estimate is considerably lower than other
estimates. Since the methodology they use is very different from the Houghton et al.
(1992) approach (and the one used for this report), it is difficult to evaluate the reasons
for the difference. However, their factor is based on limited samples of emissions; and
dkd.291\239-022-75-05\Oxide.Rpt	2-30

-------
Table 2-11
Estimated Global N2O Emissions from Fuel Combustion
by Sector, Fuel Type

TgNp/yr
End-Use Sector
Coal
oa
Gas
Utility
0.29
0.02
0.01
Industrial
0.11
0.03
0.01
Refineries and Autoproducers of
Electricity
0.01
0.01
<0.01
Residential
—
0.01
0.01
as shown here, considerable variability exists in emissions from coal-fired boilers.
2.6	Climatic Feedbacks
Some researchers (Khalil and Rasmussen, 1989) suggest hat as
temperatures rise because of global warming conditions, microbial activity increases,
which may lead to elevated emissions of N20. Certain areas, including wetland and
permafrost regions, appear to be more susceptible to temperature-induced feedback.
The extent to which they are susceptible is unknown. Permafrost areas are known,
however, to be rich in concentrations of NzO.
2.6.1	Global Emission Estimates
Gross emissions estimates for climatic feedbacks have been determined by
identifying the relationship between global warming and natural NzO and CH4 emissions
from ice core data obtained from the "Little Ice Age" (A.D. 1450-1850) by Khalil and
Rasmussen (1989). Analysis of the data showed decreases in atmospheric concentrations
of these two gases during that time, which supports the idea that N20 emissions from
dkd.291\239-022-75-05\Oride.Rpt
2-31

-------
natural sources are temperature-dependent. Conclusions from this study indicate that
over the past century, global warming may have contributed approximately
0.3 Tg N20/yr to the global N20 budget.
dkd.291\239-022-75-05\Oxide.Rpt
2-32

-------
3.0	NATURAL SOURCES
3.1	Biological/Geolopical
3.1.1	Soils
NzO production in soils has been identified as possibly the largest source in
the global budget, contributing as much as 80% of total atmospheric emissions by some
estimates (Khalil and Rasmussen, 1992a). The formation of NzO within soils is primarily
the result of denitrification, the reduction of nitrate by soil microorganisms (Mosier
et al., 1982), but nitrification is also a small source of N,0. Recent studies indicate that
the amount of NzO that is generated is largely dependent on the soil's nutrient level and
moisture content (Sanhueza et al., 1990). The prevalence of these conditions in tropical
forests has led to the conclusion that N20 fluxes from tropical regions are far greater
than for other terrestrial ecosystems (Sanhueza et al., 1990; Matson et al., 1990). This
conclusion is supported by comparison of measured N20 flux rates from different
ecosystems, as is demonstrated in the next section.
Emission Factors
The 11 soil orders are easily delineated on a global basis. However,
climate, biotic activity, parent material, and topography influence soil development to
such a significant degree that thousands of soil series exist in the United States alone to
further classify soils. Global soil physical, chemical, and biological properties do exist,
but very little information was found relating soil emissions in terms of soil
classifications. Instead, N20 emissions were related to vegetative cover or ecosystems
and not directly to soil type.
Global soil N20 flux measurements were compiled from various sources
(Bowden et al., 1990; Campbell et al., 1990; Matson et al., 1990; Sanhueza et al., 1990).
The data were grouped into one of six ecosystem classifications: tropical forest, savanna,
dkd 291\239-022- /5-05\Oxide. Rpt
3-1

-------
temperate coniferous forest, temperate deciduous forest, grassland, and sclerophyllous
woodland. It was not always possible to obtain the complete data set or accurately
determine the sample size from the reference. Therefore, the values were treated as
individual data points and used to calculate the mean and 95% confidence intervals
shown in Table 3-1. The complete data set used is provided in Appendix D.
Table 3-1
Soil Emission Factors Classified by Ecosystem
Ecosystem
Emission Factors (g N20/m2)
Mean
Lower
Confidence Level
Upper
Confidence Level
Tropical forest
0.4135
0.1862
0.6409
Savanna
0.2823
0.2584
0.3062
Temperate forest (coniferous)
0.1572
0.1539
0.1598
Temperate forest (deciduous)
0.0630
0.0273
0.0986
Grassland
0.1683
0.0939
0.2427
Sclerophyllous woodland
0.2751
NAa
i\A
aNot applicable
These emission factors are not as good as those calculated for fuel
combustion for several reasons. The soil emissions are probably skewed (as were
combustion emissions) and therefore need to be transformed. However, this was not
feasible without the original complete data set. Also, treating all values as a data point
gives the same weight to single measurements as it does to averages of several
measurements. At this time, however, these are the best factors that could be developed
based on the available data.
Activity Data
Activity for this source category is square kilometers of land by ecosystem
type for each country. A gridded 1° x 1° global land classification data base (Matthews,
dkd.291\239-022-75-05\Oxide.Rpt
3-2

-------
1983) was used. Grid cells and their vegetation types were assigned to countries. Some
error occurs at the country-level because grids that overlapped country boundaries were
not divided between countries, but were assigned to one country. However, on a
regional scale, the ecosystem allocation should be fairly accurate. Although Matthews'
database does provide information on the percent of each ecosystem under cultivation,
no attempt was made to account for this activity.
Because the emission factors for this category are based on undisturbed
soils, the use of these data may overestimate emissions for this source category.
However, the fertilizer emissions (described in Section 2.3.1) represent NzO emissions
from fertilizer use only; the background contribution from soils has been subtracted from
the emission factors. Therefore, neglecting the cultivation component in this soils source
category does not result in duplication of emissions. However, soil disturbance for
agriculture, forestry, or urbanization does alter the soil ecosystem, thereby changing the
emission of gases. Khalil and Rasmussen (1992a) have estimated emissions of 0.7 Tg
NzO/yr from land use change.
Global Emission Estimates
Estimates of N20 emissions are presented for this source category in
Table 3-2. Estimated emissions are 17.3 (11.2-21.9) Tg N20/yr. These emissions are
somewhat higher than previously published estimates, although comparisons are difficult
because of differences in category definitions. Houghton et al. (1992), for example, give
an estimate of 2.2-3.7 Tg N/yr (3.5-5.8 Tg N20/yr) from "wet forests," which is probably
a subset of the "tropical forest" group defined here. The estimate given in Table 3-2 of
3.3 to 11.2 Tg NzO/yr is higher, but because it includes a larger area of ecosystem, is not
necessarily inconsistent with the Houghton et al. estimates. Khalil and Rasmussen
(1992a) estimated N20 emissions of 12 Tg N20/yr for this category, which is near the
lowest value estimated in this study.
dkd.291\239-022-75-05\Oxide.Rj)t
3-3

-------
Table 3-2
Soil Emissions by Ecosystem
N20 Emissions from Soils
Ecosystem
Global Area
(106 sq km)
Most likely
n2o
(Tg/yr)
Lower
Limit NzO
(Tg/yr)
Upper
Limit N20
(Tg/yr)
Tropical forest
17.5
7.25
3.26
11.20
Savanna
23.3
6.58
6.02
7.13
Temperate forest (coniferous)
14.8
1.16
1.14
1.18
Temperate forest (deciduous)
21.7
0.68
0.30
1.07
Grassland
10.2
0.86
0.50
1.24
Sclerophyllous woodland
2.9
0.79
—
—
3.12	Oceans
Oceans release very large quantities of N20 through the processes of
nitrification and denitrification (Yoshida et al., 1989). Studies have found that N20
concentrations are not only elevated in surface waters, but also in oxygen-depleted
subsurface waters (Law and Owens, 1990).
Global Emissions Estimates
The primary difficulty in determining a gross emissions estimate from this
source category is the fact that N20 fluxes from oceans display strong spatial
heterogeneity (Law and Owens, 1990). Despite this hindrance, reported approximations
for total marine flux tend to be in the range between 2.2 and 4.4 Tg N20/yr (Houghton
et al., 1992; Khalil and Rasmussen, 1992a; Law and Owens, 1990). If, in fact, there are
large differences in N20 emissions between various oceanic locations, then further
research must be conducted in order to determine region-specific emission factors.
dkd.291\239-022-75-05\0)ride.Rpt
3-4

-------
32	Atmospheric Formation
32.1	lightning
N20 may be created in the atmosphere through a variety of mechanisms,
including lightning, heterogeneous reaction, and homogeneous chemistry reactions
(Adema et al., 1990). Despite the fact that the atmospheric formation of N20 is a
potentially large source of atmospheric NzO, there is not enough current information
available to quantify the majority of the processes that are occurring. However, at the
present time, sufficient work has been performed in the field of N20 formation from
lightning so that relatively accurate estimates can be made. In atmospheric regions
where sulfur dioxide, NO,, and water vapor exist, there is the possibility that N20 may be
formed through the same pathway that was observed for the sampling artifact that was
encountered in both the stationary combustion tests and the biomass burning tests.
Global Emission Estimates
Atmospheric measurements, laboratory experiments, and theoretical
calculations were employed in order to develop emissions estimates for the production of
N20 from lightning. The gross emissions estimate for lightning is based on certain key
assumptions concerning energy per discharge, number of flashes per second, and specific
seasonal variations. Typical estimates range from 36 to 720 Mg N20/year (as cited in
Campbell et al., 1990). Because most lightning occurs in jumps from cloud to cloud, the
N20 formed is dispersed in the middle and upper levels of the troposphere.
dkd.29l\239-022-75-Q5\Oxidc.Rpt
3-5

-------
4.0
CONCLUSIONS AND RECOMMENDATIONS
As shown in Table 1-1, the largest anthropogenic source of N20 appears to
be biomass burning which accounts for about 27% of global N20 emissions. No one
source category dominates the inventory. However, given the uncertainty of the
estimates for all categories except nylon and nitric acid production, the relative
importance of these source categories is difficult to specify. The estimates for aquifer
contamination and municipal wastewater in particular are based on very limited data.
Recommendations for improving the inventory are presented below on a
source category basis.
4.1	Biomass Burning
This source category has been the focus of much research effort in recent
years, as summarized in the volume by Levine (1992). A country-specific inventory could
be developed by . 'locating emissions proportionally to the land area covered by forests
and savannas. If data on percent of land area burned annually are available, country-
level emissions could be refined even more.
42	Waste Disposal and Management
4.2.1	Aquifer Contamination
This source category has been identified by recent studies as a possibly
enormous contributor to atmospheric N20, although little information is available to
date. More field measurements are needed to obtain better emission factors and activity
data. Current estimates are based on the assumption that only 1% of the world's
aquifers are contaminated. A change in this assumption will directly affect the emissions
estimates; 2% doubles the estimate, 0.5% halves it. Furthermore, the emission factors
span several orders of magnitude and depend on the number of pollution sources.
dkd.291\239-022-75-05\Oxide.Rpt
4-1

-------
It is unlikely that emission factors for this category can be improved without
further field measurements. However, further research into aquifer contamination,
including source of pollutants, geographic location of polluted aquifers, and extent of the
problem could lead to improvements in country-specific activity data.
42.2.	Municipal Wastewater
Much work is needed to improve estimates in this category. Current
emission factors are based on one study; furthermore, the study did not include any
direct measurements of N20 from wastewater treatment. Several areas of research were
identified.
A better activity data set could improve the quality of the emissions
estimate. As was shown in this report, quantifying the types of wastewater treatment in
use globally, and evaluating the potential for N20 emissions from each, would improve
the inventory. Several water quality and wastewater treatment models are available that
might be adapted for this pur x>se. In the United States, sufficient data are available to
conduct sensitivity analyses for emissions from different types of treatment facilities.
Extensive field measurements are also needed. Emissions from wastewater treatment
facilities should be measured, as well as emissions from surface waters receiving
wastewater discharges. Measurements of other waste treatment systems (e.g., septic
systems) should also be obtained.
This is potentially a very important category for both N20 and CH4
emissions; in addition to greenhouse gases, wastewater treatment is also a source of
VOCs and toxic air pollutants. It should be a priority research area. Industrial
wastewater also needs to be considered. Although few industrial wastewater streams
contain as much nitrogen and organic matter as municipal wastewater, other forms of
nitrogen may be present. These nitrogen compounds are subject to nitrification/
denitrification, and may therefore result in N20 emissions.
dW.291\239-022-75-05\Oxide.Rpt
4-2

-------
423	Municipal Waste Combustion/Sewage Sludge Incineration
Although little information is available to characterize emissions from these
source categories, activity is low enough to make them of little concern. As incineration
of waste/sludge increases, this category could become more important, particularly if
FBC technology becomes more prevalent. A sensitivity analysis would be a useful (and
fairly simple) means of exploring the potential magnitude of this source.
43	Apiculture
4.3.1	Fertilizer Use
The estimates produced for this project are fairly close to those presented
in other recent inventories. However, the estimates range over two orders of magnitude
because of the wide range of emission factors reported for some fertilizer types.
Improvements in emissions estimates for this source category could be accomplished if
this variance can be reduced. Further te: s of emissions from specific fertilizers may
help reduce the variability. The greatest range, for example, is in the emission factors
(OECD, 1991a) for the "other complex" and "other nitrogen" fertilizer categories.
Because the original data were not published, Radian could not recalculate the emission
factors; also, the number of data points is unknown.
However, it is unlikely that obtaining more data will of itself significantly
reduce the range of possible emissions. This will be accomplished only by identifying the
main factors affecting emission rates and developing functional relationships. This, in
turn, will require development of better activity data sets that quantify the key variables.
432	livestock Waste
Research has been and is currently being performed to characterize
emissions from animal wastes. Research in this area should be tracked to identify
dkd.291\239-022-75-05\Ojridc,Rpt
4-3

-------
further emission factor development. The area of greatest need is better data on waste
treatment systems. Most emission factor research has focused on lagoons because the
potential for anaerobic activity is greatest with these systems. However, the amount of
animal waste treated in this manner is not well known.
4.4	Chemical Production CAdipic Acid and Nitric Acid^
Adipic acid and nitric acid sources are fairly well-characterized. As
European air regulations are developed and implemented, controls of these sources may
increase.
Besides these chemical processes, other chemical production pathways may
contribute to the atmospheric NzO concentration. Potential sources that have already
been identified include urea, ammonia, and N20 production, but further work must be
performed in these areas to determine whether substantial quantities of NzO are being
emitted during these processes. Further study, including chemical process research and
contacting experts, could be useful in identifying oth< ¦ potential sources of NzO.
4.5	Fossil Fuel Combustion
4.5.1 Mobile Combustion Sources
Mobile combustion sources are in need of further evaluation. Although
some emission factors are available, additional factors would increase confidence in
emissions estimates. Furthermore, emissions are dependent of a variety of factors such
as vehicle speed, mode of operation, and ambient temperatures. Empirical equations are
available (Eggleston et al., 1991) that could be used to further evaluate and refine
emission estimates.
To fully utilize these emission factor models, an activity data set that
incorporates information on vehicle speed, operating mode, and VMT mix is needed.
dkd.291\239-022-7S-05\O)ridc.Rpt
4-4

-------
Much of the data needed are available, but further work is required to fill data gaps.
The initial steps for this work have already been completed for AEERL, under a
separate work assignment. Given the increased use globally of controls for NO^
including catalytic converters, this is an important category for further study.
4.5.2	Stationary Combustion Sources
Emissions data are probably more abundant for this source category than
for any other. The primary weakness for this source category is the activity data. The
distribution of boiler technology types by country (with particular emphasis on FBCs)
could improve these estimates. For example, a 5% increase in the FBC throughput
would increase the coal emissions by a factor of 1.4.
The phenomenon of NzO formation in the plume of large utility boilers
may also be an issue, although recent studies indicate that this is a relatively minor
source. More measurements at greater distances from the stack are needed to resolve
this issue.
4.6	Qimatic Feedbacks
This is clearly an area that warrants further research, but is also one that
will be difficult to verify in the field (except as a long-term ecosystem study). Field
experimentation might be accomplished via chamber studies, but their utility is
questionable. Global modeling is the most likely approach. Ecosystem responses to
temperature are known to some extent and could be used to predict future climate
change effects. Anthropogenic responses may not have been explored as fully, however.
Some effort should be made to identify ongoing modeling or other research in this area.
died.291 \239-022-75-Q5\Oxide. Rpt
4-5

-------
4.7	Natural Sources
The soils emissions estimates developed for this inventory could be easily
allocated to countries. The activity data (ecosystem type) used for soil emission
estimates were allocated to countries. However, given the disparity between estimates
reported here and other published estimates, more work is needed to quality assure the
data. Country- or region-specific emissions from the inventory derived in this report
could be compared and, if warranted, adjusted based on more specific inventories.
Similarly, because oceans and lightning are natural (i.e., not anthropogenic)
N20 sources, little emphasis should be placed on them, except to update the inventory
whenever new information becomes available.
dkd.291\239-022-75-0S\Oxide.Rpt
4-6

-------
5.0	REFERENCES
Adema, E.H., J.R. Ybema, P. Heeres, and J.C.P. Wegh. 1990. "The Heterogeneous
Formation of N20 in Air Containing N02, Oa and NH3." J. Atmos. Chem., 11:255-269.
Andreae, M.O. 1991. "Biomass Burning: Its History, Use, and Distribution and Its
Impact on Environmental Quality and Global Climate." In: Global Biomass Burning:
Atmospheric. Climatic, and Biospheric Implications. Levine, J.S., ed. The MIT Press,
Cambridge, MA. pp. 9-13.
Atjay, G.L., P. Ketner, and P. Duvigneaud. 1979. 'Terrestrial Primary Production and
Phytomass." In: The Global Carbon Cvcle. Bolin, B. et al., eds. pp. 129-182.
Bowden, R.D., P.A Steudler, J.M. Melillo, and J.D. Aber. 1990. "Annual Nitrous Oxide
Fluxes from Temperate Forest Soils in the Northeastern United States." J. Geophys.
Res. -Atmospheres, 95:3997-4005.
Campbell, D., M. Stockton, S. Buchanan, J. McLean, R. Pandullo, R. Peer, and J.A.
Probert. 1990. Literature Review of Greenhouse Gas Emissions from Biogenic Sources.
EPA-600/8-90-071 (NTIS PB89-274085), Research Triangle Park, NC.
Carra, J.S., and R. Cossu. 1990. International Perspectives on Municipal Solid Wastes
and Sanitary Landfilling. J.S. Carra and R. Cossu, eds. Academic Press, New York, NY.
pp. 1-14.
Cofer, W.R. Ill, J.S. Levine, E.L. Winstead, and B.J. Stocks. 1991. "New Estimates of
Nitrous Oxide Emissions from Biomass Burning." Nature, 349:689-691.
Dahlberg, K., A. Lindskog, and B. Steen. 1988. Emissions of N-,Q. CO. CHV COS. and
CSo from Stationary Combustion Sources. Institute Vatten-Luftvaardsforsk, Sweden,
[Publ.] B, IVL B 891. 23 pp.
ERR, Ltd. 1990. Atmospheric Emissions from the Use of Transport in the United
Kingdom. London. Volume 1, p. 25.
ETSU. 1991. Research and Technology to Help Overcome Environmental Problems in
Relation to Transport - Global Impacts. Commission of the European Communities:
Science, Research, and Development. Publication pending.
Eggleston, H.S., D. Gaudioso, N. Gorissen, R. Joumard, R.C. Rijkeboer, Z. Sammaras,
and K.H. Zierock. 1991. Corinair Working Group on Emission Factors for Calculating
1990 Emissions from Road Traffic. Volume 1: Methodology and Emission Factors.
Commission of the European Communities, Brussels, Belgium.
dkd.29I\239-022-75-05\Oxide.Rpt
5-1

-------
Eichner, M J. 1990. "Nitrous Oxide Emissions from Fertilized Soils: Summary of
Available Data." J. Env. Qual., 19:272-280.
El Rayes, H., and W.C. Edwards (B.H. Levelton & Associates, Ltd.) 1991. Inventory of
Methane Emissions from Landfills in Canada. Prepared for Environment Canada, Hull,
Quebec, pp. 25-69.
Epner, E.P. 1991. "Visit to DuPont Adipic Acid Production Facility in Victoria, TX,
October 1991." Trip Report. Radian Corporation, Research Triangle Park, NC.
FAO. 1988. FAQ Yearbook - Fertilizer. Vol. 38. Food and Agriculture Organization
of the United Nations, Rome. 121 pp.
Hao, W.M., D. Scharffe, J.M. Lobert, and P.J. Crutzen. 1991. "Emissions of NaO from .
the Burning of Biomass in an Experimental System." Geophys. Res. Letters, 18:999-1002.
Houghton, J.T., B.A Callander, and S.K. Varney (eds). 1992. Climate Change 1992:
The Supplementary Report to the IPCC Scientific Assessment. Published for the
Intergovernmental Panel on Climate Change. Cambridge University Press, pp. 37-38.
Huckins, H. 1991. Adipic Acid: Its Plants. Process Technology. Contact Points and
Projection of Future Growth. Princeton Advanced Technology, Inc., Princeton, NJ.
International Energy Agency. 1989. World Energy Statistics and Balances. 1971-1987.
Organisation of Economic Co-operation and Development/International Energy Agency,
Paris.
International Road Federation. 1991. World Road Statistics. 1986-1990. Geneva,
Switzerland.
International Road Transportation Union. 1990. World Transport Data. Department of
Economic Affairs, Geneva, Switzerland.
Iwasaki, Y., S. Tatsuichi, and H. Ueno. 1992. "N20 Emissions from Stationary Sources."
In: 5th International Workshop on Nitrous Oxide Emissions. Tsukuba. Japan. July 1-3.
1992. Co-organized by the National Institute for Resources and Environment (Japan),
Institut Francais du Petrole (France), U.S. Environmental Protection Agency (Research
Triangle Park, NC), and The Society of Chemical Engineers, Japan, pp. 3-1-1 - 3-1-6.
Kaplan, W.A., J.W. Elkins, C.D. Kolb, M.B. McElroy, S.C. Wofsy, and AO. Duran.
1978. "Nitrous Oxide in Fresh Water Systems: An Estimate for the Yield of
Atmospheric N20 Associated with Disposal of Human Waste." Pageoph, 116. 423-437.
Kaldjian, P. 1990. Characterization of Municipal Solid Waste in the United States:
1990 Update. EPA-530/SW-90-042 (NTIS PB90-215112). U.S. Environmental
Protection Agency, Office of Solid Waste and Emergency Response, Washington, DC.
dktJ.291\239-022-75-05\O)ade.Rpt
5-2

-------
Khalil, M.A., and R.A. Rasmussen. 1989. "Climate-Induced Feedbacks for the Global
Cycles of Methane and Nitrous Oxide." Tellus, 41B:554-559.
Khalil, M.A., and R.A. Rasmussen. 1992a. "The Global Sources of Nitrous Oxide."
Geophys. Res., 97:14651-14660.
Khalil, M.A., and R.A. Rasmussen. 1992b. "Nitrous Oxide from Coal-Fired Power
Plants: Experiments in the Plumes." J. Geophys. Res., 97:14645-14649.
Kirk-Othmer. 1991. Encyclopedia of Chemical Technology. Third Edition. John Wiley
& Sons, New York. Vol. 23. p. 483.
Law, C.S., and N.J.P. Owens. 1990. "Significant Flux of Atmospheric Nitrous Oxide
from the Northwest Indian Ocean." Nature, 346:826-828.
Levine, J.S. 1992. "The Global Atmospheric Budget of Nitrous Oxide." In: 5th
International Workshop on Nitrous Oxide Emissions. Tsukuba. Japan. July 1-3. 1992.
Co-organized by the National Institute for Resources and Environment (Japan), Institut
Francais du Petrole (France), U.S. Environmental Protection Agency (Research Triangle
Park, NC), and The Society of Chemical Engineers, Japan, pp. KL-1-1 - KL-1-8.
Linak, W.P., J.A. McSorley, R.E. Hall, J.V. Ryan, R.K. Srivastava, J.O.L. Wendt, and
J.B. Mereb. 1990. "Nitrous Oxide Emissions from Fossil Fuel Combustion." J. Geophys.
Res., 95:7533-7541.
Lyon, R.K., J.C. Kramlich, and J.A. Cole. 1989. "Nitrous Oxide: Sources, Sampling, and
Science Policy." Env. Sci. & Technol., 23:4-5.
Matson, P.A., P.M. Vitousek, G.P. Livingston, and N.A. Swanberg. 1990. "Sources of
Variation in Nitrous Oxide Flux from Amazonian Ecosystems." J. Geophys. Res. -
Atmospheres, 95:6789-6798.
Matthews, E. 1983. "Global Vegetation and Land Use: New High-Resolution
Databases for Climate Studies." J. Climate and Appl. Met., 22:474-487.
Mosier, A.R., G.L. Hutchinson, B.R. Sabey, and J. Baxter. 1982. "Nitrous Oxide
Emissions from Barley Plots Treated with Ammonium Nitrate or Sewage Sludge." J.
Env. Qua!., 11:78-81.
Muzio, LJ., and J.C. Kramlich. 1988. "An Artifact in the Measurement of N20 from
Combustion Sources." Geophys. Res. Letters, 15:1369-1372.
Muzio, L.J., T.A. Montgomery, G.C. Quartucy, J.A. Cole, and J.C. Kramlich. 1991. N3Q
Formation in Selective Non-Catalvtic NOx Reduction Processes. In Proceedings: 1991
Joint Symposium on Stationary Combustion NOx Control, Washington, DC, March 25-28,
1991, Volume 2, EPA-600/R-92-093b (NTIS PB93-212850), pp. 5A-71 - 5A-96.
dkd.291\239-022-75-05\Oxide.Rpt
5-3

-------
Nelson, L.P., L.M. Russell, and J.J. Watson. 1991. Global Combustion Sources of
Nitrous Oxide Emissions. Interim report prepared for the Electric Power Research
Institute, Palo Alto, CA.
OECD. 1991a. Estimation of Greenhouse Gas Emissions and Sinks. Final Report from
the OECD Experts Meeting. 18-21 February 1991. Organization for Economic Co-
operation and Development, Paris.
OECD. 1991b. OECD Environmental Data. Compendium 1991. Organization for
Economic Co-operation and Development, Paris.
Pacyna, J.M., S. Larssen, and A. Semb. 1991. "European Survey for NOx Emissions with
Emphasis on Eastern Europe." Atmos. Env., 25a(2):425-439.
Population Reference Bureau, Inc. 1991. 1991 World Population Sheet Data Sheet.
Washington, DC.
Radke, L.F., D.A. Hegg, P.V. Hobbs, J.D. Nance, J.H. Lyons, K.K. Laursen, R.E. Weiss,
P.J. Riggan, and D.E. Ward. 1991. "Particulate and Trace Gas Emissions from Large
Biomass fires in North America." In: Global Biomass Burning: Atmospheric. Climatic.
and Biospheric Implications. Levine, J.S., ed. The MIT Press, Cambridge, MA. pp.
218-223.
Richards, K.M. 1989. "Landfill Gas: Working with Gaia." Biodeterioration Abstracts.
3(4):317-331.
Ronen, D., M. Magaritz, and E. Almon. 1988. "Contaminated Aquifers Are a Forgotten
Component of the Global N20 Budget." Nature, 335:57-59.
Ryan, J.V., and R.K. Srivastava. 1989. EPA/IFP European Workshop on the Emission
of Nitrous Oxide from Fossil Fuel Combustion. EPA-600/9-89-089 (NTIS PB90-126038),
Research Triangle Park, NC.
Safley, Jr., L.M., M.E. Casada, J.W. Woodbury, and K.F. Roos. 1992. Global Methane
Emissions from Livestock and Poultry Manure. EPA/400/1-91/048. U.S. Environmental
Protection Agency, Air and Radiation (ANR-445), Washington, DC.
Sanhueza, E., W.M. Hao, D. Scharffe, L. Donoso, and P.J. Crutzen. 1990. "N20 and NO
Emissions from Soils of the Northern Part of the Guayana Shield, Venezuela."
J. Geophys. Res. - Atmospheres, 95:22481-22488.
Scheepera, M.JJ. 1990. Landfill Gas in the Dutch Perspective. International
Conference on Landfill Gas: Energy and Environment '90, Session 3.2.
Sprent, J. 1987. The Ecology of the Nitrogen Cycle. Cambridge University Press,
Cambridge. 151 pp.
dkd.291\239-022-75-Q5\Oxide.Rpt
5-4

-------
Swartz, A. 1989. Overview of International Solid Waste Management Methods. State
Government Technical Brief 98-89-MI-2. The American Society of Mechanical
Engineers, Washington, DC.
U.S. Environmental Protection Agency. 1991. Non-road Engine and Vehicle Emission
Study. EPA 460/3-91-02 (NTIS PB92-126960), Office of Air and Radiation, Washington,
DC.
U.S. Environmental Protection Agency. 1989. Locating and Estimating Air Toxics
Emissions from Municipal Waste Combustors. EPA-450/2-89-006. Office of Air Quality
Planning and Standards, Research Triangle Park, NC.
U.S. Environmental Protection Agency. 1984. Second Review of Standards of
Performance for Sewage Sludge Incinerators. EPA-450/3-84-010 (NTIS PB85-205144),
Office of Air Quality Planning and Standards, Research Triangle Park, NC.
Ueda, S., N. Ogura, and E. Wada. 1991. "Nitrogen Stable Isotope Ratio of
Groundwater N20." Geophys. Res. Letters, 18:1449-1452.
United Nations. 1989. Industrial Statistics Yearbook 1989. Volume ILCommoditv
Production Statistics. Department of International Economic and Social Affairs,
Statistical Office of the United Nations, p. 399.
United Nations Environmental Programme. 1991, Environmental Data Report. Basil
Blackwell, Inc., Cambridge Center, MA.
Veldt, C. 1991. "Emissions of SO„, NO^, VOC and CO from East European Countries."
Atmos. Env., 25a(12):2683-2700.
Watanabe, I., M. Sato, M. Miyazaki, and M. Tanaka. 1992. "Emission Rate of N02
from Municipal Solid Waste Incinerators." In: 5th International Workshop on Nitrous
Oxide Emissions. Tsukuba. Japan. July 1-3. 1992. Co-organized by the National Institute
for Resources and Environment (Japan), Institut Francais du Petrole (France), U.S.
Environmental Protection Agency (Research Triangle Park, NC), and The Society of
Chemical Engineers, Japan, pp. 3-4-1 - 3-4-9.
World Resources Institute. 1992. World Resources 1992-1993. Oxford University Press,
New York.
Yasuda, K., and M. Takahashi. 1992. "Emissions of Nitrous Oxide from Waste
Management System." In: 5th International Workshop on Nitrous Oxide Emissions.
Tsukuba. Japan. July 1-3. 1992. Co-organized by the National Institute for Resources
and Environment (Japan), Institut Francais du Petrole (France), U.S. Environmental
Protection Agency (Research Triangle Park, NC), and The Society of Chemical
Engineers (Japan), pp. 3-2-1 - 3-2-7.
dM.291\239-022-75-05\Ojricie.Rpl
5-5

-------
Yoshida, N., H. Morimoto, M. Hirano, I. Koike, S. Matsuo, E. Wada, T. Saino, and A.
Hattori. 1989. "Nitrification Rates and UN Abundances of N20 and N03" in the
Western North Pacific." Nature, 342:895-897.

-------
APPENDIX A
Global N2O Emissions Inventory
by Source Category
A-l

-------
Table A-1. Global Emissions Inventory for Municipal Wastewater
Country
Emission Factor
(g/person/yr)
Activity
Factor
(people)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Afghanistan
3.3E+02
7.0E+01
-
5.9E+02
5.77E+05
1.9E+02
4.1E+01
—
3.4E+02
Albania
3.3E+02
7.0E+01
-
5.9E+02
1.15E+06
3.8E+02
8.1E+01
-
6.8E+02
Algeria
3.3E+02
7.0E+01
-
5.9E+02
5.02E+06
1.7E+03
3.5E+02
-
3.0E+03
Angola
3.3E+02
7 OE+Oi
-
5.9E+02
6.04E+05
2.0E+02
4.2E+01
—
3.6E+02
Argentina
3.3E+02
7.0E+01
-
5.9E+02
2.79E+07
9.3E+03
2.0E+03
-
1.7E+04
Australia
3.3E+02
7.0E+01
-
5.9E+02
1.46E+07
4.8E+03
1.0E+03
-
8.7E+03
Austria
3.3E+02
7.0E+01
-
5.9E+02
4.45E+06
1.5E+03
3.1E+02
—
2.6E+03
Bahrain
3.3E+02
7.0E+01
-
5.9E+02
4.31 E+05
1.4E+02
3.0E+01
—
2.6E+02
Bangladesh
3.3E+02
7.0E+01
-
5.9E+02
6.97E+06
2.3E+03
4.9E+02
-
4.1E+03
Barbados
3.3E+02
7.0E+01
-
5.9E+02
1.15E+05
3.8E+01
8.1E+00
_
6.8E+01
Belgium
3.3E+02
7.0E+01
—
5.9E+02
9.59E+06
3.2E+03
6.7E-I-02
—
5.7E+03
Benin
3.3E+02
7.0E+01
-
5.9E+02
7.51 E+05
2.5E+02
5.3E+01
-
4.5E+02
Bhutan
3.3E+02
7.0E+01
-
5.9E+02
8.29E+04
2.8E+01
5.8E+00
-
4.9E+01
Bolivia
3.3E+02
7.0E+01
—
5.9E+02
2.05E+06
6.8E+02
1.4E+02
—
1.2E+03
Botswana
3.3E+02
7.0E+01
-
5.9E+02
3.30E+05
1.1E+02
2.3E+01
-
2.0E+02
Brazil
3.3E+02
7.0E+01
_
5.9E+02
1.00E+08
3.3E+04
7.0E+03
-
6.0E+04
Bulgaria
3.3E+02
7.0E+01
-
5.9E+02
6.05E+06
2.0E+03
4.2E+02
—
3.6E+03
Burkina Faso
3.3E+02
7.0E+01
-
5.9E+02
2.86E+05
9.5E+01
2.0E+01
-
1.7E+02
Burundi
3.3E+02
7.0E+01
-
5.9E+02
2.48E+05
8.2E+01
1.7E+01
—
1.5E+02
Cambodia
3.3E+02
7.0E+01
-
5.9E+02
3.08E+05
1.0E+02
2.2E+01
-
1.8E+02
Cameroon
3.3E+02
7.0E+01
—
5.9E+02
1.74E+06
5.8E+02
1.2E+02
-
1.0E+03
Canada
3.3E+02
7.0E+01
—
5.9E+02
2.05E-I-07
6.8E+03
1.4E+03
-
1.2E+04

-------
Table A-1. (Continued)
Country
Emission Factor
(g/person/yr)
Activity
Factor
(people)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Cape Verde
3.3E+02
7.0E+01
—
5.9E+02
3.79E+04
1.3E+01
2.7E+00
—
2.3E+01
Central African Republic
3.3E+02
7.0E+01
—
5.9E+02
5.11E+05
1.7E+02
3.6E+01
—
3.0E+02
Chad
3.3E+02
7.0E+01
—
5.9E+02
5.62E+05
1.9E+02
3.9E+01
—
3.3E+02
Chile
3.3E+02
7.0E+01
-
5.9E+02
1.13E+07
3.8E+03
7.9E+02
-
6.7E+03
China
3.3E+02
7.0E+01
-
5.9E+02
3.74E+08
1.2E+05
2.6E+04
—
2.2E+05
Colombia
3.3E+02
7.0E+01
—
5.9E+02
1.89E+07
6.3E+03
1.3E+03
—
1.1E+04
Congo
3.3E+02
7.0E+01
—
5.9E+02
3.45E+05
1.1E+02
2.4E+01
—
2.0E+02
Costa Rica
3.3E+02
7.0E+0.
—
5.9E+02
1.43E+06
4.7E+02
1.0E+02
—
8.5E+02
Cote d'lvoire
3.3E+02
7.0E+01
—
5.9E+02
3.51 E+06
1.2E+03
2.5E+02
-
2.1E+03
Cuba
3.3E+02
7.0E+01
—
5.9E+02
2.55E+06
8.5E+02
1.8E+02
—
1.5E+03
Cyprus
3.3E+02
7.0E+01
—
5.9E+02
3.71 E+05
1.2E+02
2.6E+01
—
2.2E+02
Czechoslovakia
3.3E+02
7.0E+01
—
5.9E+02
1.22E+07
4.0E+03
8.5E+02
-
7.2E+03
Denmark
3.3E+02
7.0E+01
—
5.9E+02
4.47E+06
1.5E+03
3.1E+02
-
2.7E+03
Djibouti
3.3E+02
7.0E+01
—
5.9E+02
3.08E+05
1.0E+02
2.2E+01
—
1.8E+02
Dominican Republic
3.3E+02
7.0E+01
—
5.9E+02
3.33E+06
1.1E+03
2.3E+02
-
2.0E+03
Ecuador
3.3E+02
7.0E+01
—
5.9E+02
4.51 E+06
1.5E+03
3.2E+02
-
2.7E+03
Egypt
3.3E+02
7.0E+01
-
5.9E+02
2.55E+07
8.5E+03
1.8E+03
—
1.5E+04
El Salvador
3.3E+02
7.0E+01
—
5.9E+02
2.03E+06
6.7E+02
1.4E+02
—
1.2E+03
Ethiopia
3.3E+02
7.0E+01
—
5.9E+02
6.47E+06
2.1E+03
4.5E+02
—
3.8E-I-03
Rji
3.3E+02
7.0E+01
—
5.9E+02
2.70E+05
9.0E+01
1.9E+01
—
1.6E+02
Finland
3.3E+02
7.0E+01
—
5.9E+02
2.98E+06
9.9E+02
2.1E+02
—
1.8E+03
France
3.3E+02
7.0E+01
—
5.9E+02
4.19E+07
1.4E+04
2.9E+03
—
2.5E+04

-------
Table A-1. (Continued)
>
it

Emission Factor
Activity

Emissions



(g/person/yr)

Factor

(Mg/yr)


Country
Middle*
Range
(people)
Middle*
Range
Gabon
3.3E+02
7.0E+01
-
5.9E+02
2.03E+05
6.7E+01
1.4E+01
-
1.2E+02
Gambia
3.3E+02
7.0E+01
—
5.9E+02
7.56E+04
2.5E+01
5.3E+00
-
4.5E+01
Germany
3.3E+02
7.0E+01
—
5.9E+02
6.39E+07
2.1E+04
4.5E+03
-
3.8E+04
Ghana
3.3E+02
7.0E+01
-
5.9E+02
3.17E+06
1.1E+03
2.2E+02
-
1.9E+03
Greece
3.3E+02
7.0E+01
—
5.9E+02
6.28E+06
2.1E+03
4.4E+02
-
3.7E+03
Guatemala
3.3E+02
7.0E+01
—
5.9E+02
2.61 E+06
8.7E+02
1.8E+02
-
1.5E+03
Guinea
3.3E+02
7.0E+01
—
5.9E+02
1.21 E+06
4.0E+02
8.5E+01
-
7.2E+02
Guinea-Bissau
3.3E+02
7.0E+01
-
5.9E+02
5.86E+04
1.9E+01
4.1E+00
-
3.5E+01
Guyana
3.3E+02
7.0E+01
—
5.9E+02
2.24E+05
7.4E+01
1.6E+01
—
1.3E+02
Haiti
3.3E+02
7.0E+01
—
5.9E+02
5.89E+05
2.0E+02
4.1E+01
-
3.5E+02
Honduras
3.3E+02
7.0E+01
-
5.9E+02
1.98E+06
6.6E+02
1.4E+02
-
1.2E+03
Hong Kong
3.3E+02
7.0E+0,
-
5.9E+02
5.66E+06
1.9E+03
4.0E+02
—
3.4E+03
Hungary
3.3E+02
7.0E+01
—
5.9E+02
6.48E+06
2.2E+03
4.5E+02
—
3.8E+03
Iceland
3.3E+02
7.0E+01
-
5.9E+02
2.35E+05
7.8E+01
1.7E+01
-
1.4E+02
India
3.3E+02
7.0E+01
—
5.9E+02
8.76E+07
2.9E+04
6.1E+03
-
5.2E+04
Indonesia
3.3E+02
7.0E+01
—
5.9E+02
2.31 E+07
7.7E+03
1.6E+03
—
1.4E+04
Iran
3.3E+02
7.0E+01
—
5.9E+02
3.16E+07
1.0E+04
2.2E+03
-
1.9E+04
Iraq
3.3E+02
7.0E+01
-
5.9E+02
1.23E+07
4.1E+03
8.6E+02
-
7.3E+03
Ireland
3.3E+02
7.0E+01
—
5.9E+02
2.02E+06
6.7E+02
1.4E+02
—
1.2E+03
Israel
3.3E+02
7.0E+01
—
5.9E+02
4.16E+06
1.4E+03
2.9E+02
-
2.5E+03
Italy
3.3E+02
7.0E+01
-
5.9E+02
3.97E+07
1.3E+04
2.8E+Q3
-
2.4E+04
Jamaica
3.3E+02
7.0E+01
_
5.9E+02
1.79E+05
5.9E+01
1.3E+01
—
1.1E+02

-------
Table A-1. (Continued)
Country
Emission Factor
(g/person/yr)
Activity
Factor
(people)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Japan
3.3E+02
7.0E+01
—
5.9E+02
9.52E+07
3.2E+04
6.7E+03
—
5.7E+04
Jordan
3.3E+02
7.0E+01
-
5.9E+02
2.80E+06
9.3E+02
2.0E+02
—
1.7E+03
Kenya
3.3E+02
7.0E+01
—
5.9E+02
2.21 E+06
7.3E+02
1.6E+02
—
1.3E+03
Korea, North
3.3E+02
7.0E+01
—
5.9E+02
1.27E+07
4.2E+03
8.9E+02
—
7.6E+03
Korea, South
3.3E+02
7.0E+01
—
5.9E+02
3.05E+07
1.0E+04
2.1E+03
—
1.8E+04
Kuwait
3.3E+02
7.0E+01
-
5.9E+02
2.05 E+06
6.8E+02
1.4E+02
—
1.2E+03
Laos
3.3E+02
7.0E+01
—
5.9E+02
2.84E+05
9.4E+01
2.0E+01
—
1.7E+02
Lebanon
3.3E+02
7.0E+01
-
5.9E+02
2.79E+06
9.3E+02
2.0E+02
—
1.7E+03
Liberia
3.3E+02
7.0E+01
—
5.9E+02
4.85E+04
1.6E+01
3.4E+00
-
2.9E+01
Libya
3.3E+02
7.0E+01
—
5.9E+02
2.96E+06
9.8E+02
2.1E+02
—
1.8E+03
Liechtenstein
3.3E+02
7.0E+01
—
5.9E+02
2.80E+04
9.3E+00
2.0E+00
—
1.7E+01
Luxembourg
3.3E+02
7.0E+01
—
5.9E+02
3.12E+05
1.0E+02
2.2E+01
—
1.9E+02
Madagascar
3.3E+02
7.0E+01
-
5.9E+02
1.08E+06
3.6E+02
7.6E+01
—
6.4E+02
Malawi
3.3E+02
7.0E+01
-
5.9E+02
4.11E+05
1.4E+02
2.9E+01
—
2.4E+02
Malaysia
3.3E+02
7.0E+01
-
5.9E+02
7.68 E+06
2.5E+03
5.4E+02
—
4.6E+03
Maldives
3.3E+02
7.0E+C:

5.9E+02
0.00E+00
0.0E+00
0.0E+00
-
0.0E+00
Mali
3.3E+02
7.0E+01
—
5.9E+02
1.47E+06
4.9E+02
1.0E+02
—
8.7E+02
Malta
3.3E+02
7.0E+01
-
5.9E+02
3.07E+05
1.0E+02
2.2E+01
-
1.8E+02
Mauritania
3.3E+02
7.0E+01
—
5.9E+02
3.22E+05
1.1E+02
2.3E+01
—
1.9E+02
Mauritius
3.3E+02
7.0E+01
—
5.9E+02
3.99E+05
1.3E+02
2.8E+01
—
2.4E+02
Mayotte
3.3E+02
7.0E+01
—
5.9E+02
0.00E+00
0.0E+00
0.0E+00
-
0.0E+00
Mexico
3.3E+02
7.0E+01
—
5.9E+02
6.43E+07
2.1E+04
4.5E+03
—
3.8E+04

-------
Table A-1. (Continued)
Country
Emission Factor
(g/person/yr)
Activity
Factor
(people)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Monaco
3.3E+02
7.0E+01
—
5.9E+02
2.44E+04
8.1E+00
1.7E+00
-
1.4E+01
Mongolia
3.3E+02
7.0E+01
-
5.9E+02
1.13E+06
3.8E+02
7.9E+01
-
6.7E+02
Morocco
3.3E+02
7.0E+01
—
5.9E+02
1.23E+07
4.1E+03
8.6E+02
-
7.3E+03
Mozambique
3.3E+02
7.0E+01
—
5.9E+02
2.56E+06
8.5E+02
1.8E+02
-
1.5E+03
Myanmar (Burma)
3.3E+02
7.0E+01
-
5.9E+02
3.58E+06
1.2E+03
2.5E+02
-
2.1E+03
Nepal
3.3E+02
7.0E+01
-
5.9E+02
6.98E+05
2.3E+02
4.9E+01
-
4.1 E+02
Netherlands
3.3E+02
7.0E+01
—
5.9E+02
1.32E+07
4.4E+03
9.2E+02
-
7.8E+03
New Zealand
3.3E+02
7.0E+01
-
5.9E+02
2.77E+06
9.2E+02
1.9E+02
-
1.6E+03
Nicaragua
3.3E+02
7.0E+01
—
5.9E+02
7.38E+05
2.4E+02
5.2E+01
-
4.4E+02
Niger
3.3E+02
7.0E+01
—
5.9E+02
5.99E+05
2.0E+02
4.2E+01
-
3.6E+02
Nigeria
3.3E+02
7.0E+01
—
5.9E+02
1.59E+07
5.3E+03
1.1E+03
-
9.4E+03
Norway
3.3E+02
7.0E+01
-
5.9E+02
3.19E+06
1.1E+03
2.2E+02
-
1.9E+03
Oman
3.3E+02
7.0E+01
-
5.9E+02
1.56E+05
5.2E+01
1.1E+01
-
9.2E+01
Pakistan
3.3E+02
7.0E+01
—
5.9E+02
1.47E+07
4.9E+03
1.0E+03
-
8.7E+03
Panama
3.3E+02
7.0E+01
—
5.9E+02
1.29E+06
4.3E+02
9.1E+01
-
7.7E+02
Papua-New Guinea
3.3E+02
7.0E+01
-
5.9E+02
3.42E+05
1.1E+02
2.4E+01
—
2.0E+02
Paraguay
3.3E+02
7.0E+01
—
5.9E+02
1.12E+06
3.7E+02
7.8E+01
-
6.6E+02
Peru
3.3E+02
7.0E+01
—
5.9E+02
1.09E+07
3.6E+03
7.7E+02
-
6.5E+03
Philippines
3.3E+02
7.0E+01
—
5.9E+02
2.76E+07
9.2E+03
1.9E+03
-
1.6E+04
Poland
3.3E+Q2
7.0E+0'

5.9E+02
2.33E+07
7.8E+03
1.6E+03
-
1.4E+04
Portugal
3.3E+02
7.0E+01
—
5.9E+02
3.48E+06
1.2E+03
2.4E+02
-
2.1E+03
Qatar
3.3E+02
7.0E+01
—
5.9E+02
4.39E+05
1.5E+02
3.1E+01
-
2.6E+02

-------
Table A-1. (Continued)

Emission Factor
Activity

Emissions



(g/person/yr)

Factor

(Mg/yr)


Country
Middle*
Range
(people)
Middle*
Range
Reunion
3.3E+02
7.0E+01
—
5.9E+02
0.00E+00
0.0E+00
0.0E+00
—
0.0E+00
Romania
3.3E+02
7.0E+01
—
5.9E+02
1.23E+07
4.1E+03
8.6E+02
-
7.3E+03
Rwanda
3.3E+02
7.0E+01
—
5.9E+02
2.52E+05
8.4E+01
1.8E+01
—
1.5E+02
Sao Tome and Principe
3.3E+02
7.0E+01
—
5.9E+02
0.00E+00
0.0E+00
0.0E+00
—
0.0E+00
Saudi Arabia
3.3E+02
7.0E+01
—
5.9E+02
1.16E+07
3.9E+03
8.1 E+02
-
6.9E+03
Senegal
3.3E+02
7.0E+01
—
5.9E+02
2.46E+06
8.2E+02
1.7E+02
—
1.5E+03
Seychelles
3.3E+02
7.0E+01
—
5.9E+02
0.00E+00
0.0E+00
0.0E+00
—
0.0E+00
Sierra Leone
3.3E+02
7.0E+01
—
5.9E+02
7.91 E+05
2.6E+02
5.6E+01
—
4.7E+02
Singapore
3.3E+02
7.0E+01
—
5.9E+02
2.65E+06
8.8E+02
1.9E+02
—
1.6E+03
South Africa
3.3E+02
7.0E+01
—
5.9E+02
8.94E+06
3.0E+03
6.3E+02
—
5.3E+03
Spain
3.3E+02
7.0E+01
—
5.9E+02
3.09E+07
1.0E+04
2.2E+03
—
1.8E404
Sri Lanka
3.3E+02
7.0E+01
—
5.9E+02
2.72E+06
9.0E+02
1.9E+02
-
1.6E+03
Sudan
3.3E+02
7.0E+01
—
5.9E+02
2.22E+06
7.4E+02
1.6E+02
—
1.3E+03
Suriname
3.3E+02
7.0E+01
—
5.9E+02
1.20E+05
4.0E+01
8.5E+00
-
7.2E+01
Sweden
3.3E+02
7.0E+01
—
5.9E+02
7.16E+06
2.4E+03
5.0E+02
-
4.3E+03
Switzerland
3.3E+02
7.0E+01
—
5.9E+02
4.01 E+06
1.3E+03
2.8E+02
-
2.4E+03
Syria
3.3E+02
7.0E+01
—
5.9E+02
4.56E+06
1.5E+03
3.2E+02
-
2.7E+03
Taiwan
3.3E+02
7.0E+01
—
5.9E+02
1.44E+07
4.8E+03
1.0E+03
—
8.6E+03
Tanzania
3.3E+02
7.0E+01
—
5.9E+02
6.47E+06
2.1E+03
4.5E+02
—
3.8E+03
Thailand
3.3E+02
7.0E+01
—
5.9E+02
1.06E+07
3.5E+03
7.4E+02
-
6.3E+03
Togo
3.3E+02
7.0E+01
—
5.9E+02
3.97E+05
1.3E+02
2.8E+01
—
2.4E+02
Trinidad and Tobaao
3.3E+02
7.0E+01
—
5.9E+02
9.29 E+05
3.1E+02
6.5E+01
-
5.5E+02

-------
Table A-1. (Continued)
Country
Emission Factor
(g/person/yr)
Activity
Factor
(people)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Tunisia
3.3E+02
7.0E+01
—
5.9E+02
3.13E+06
1.0E+03
2.2E+02
-
1.9E+03
Turkey
3.3E+02
7.0E+01
—
5.9E+02
3.30E+07
1.1E+04
2.3E+03
-
2.0E+04
Uganda
3.3E+02
7.0E+01
—
5.9E+02
7.47E+05
2.5E+02
5.2E+01
_
4.4E+02
USSR (Former)
3.3E+02
7.0E+01
-
5.9E+02
1.91E+08
6.4E+04
1.3E+04
-
1.1E+05
United Arab Emirates
3.3E+02
7.0E+01
—
5.9E+02
1.24E+06
4.1E+02
8.7E+01
-
7.3E+02
United Kingdom
3.3E+02
7.0E+01
—
5.9E+02
5.12E+07
1.7E+04
3.6E+03
-
3.0E+04
United States
3.3E+02
7.0E+01
-
5.9E+02
1.89E+08
6.3E+04
1.3E+04
-
1.1E+05
Uruguay
3.3E+02
7.0E+01
—
5.9E+02
1.56E+06
5.2E+02
1.1E+02
-
9.3E+02
Venezuela
3.3E+02
7.0E+01
-
5.9E+02
1.72E+07
5.7E+03
1.2E+03
_
1.0E+04
Viet Nam
3.3E+02
7.0E+01
—
5.9E+02
7.38E+06
2.5E+03
5.2E+02
-
4.4E+03
Yemen, North
3.3E+02
7.0E+01
-
5.9E+02
5.67E+05
1.9E+02
4.0E+01
—
3.4E+Q2
Yemen, South
3.3E+02
7.0E+01
-
5.9E+02
4.25E+05
1.4E+02
3.0E+01
-
2.5E+02
Yugoslavia
3.3E+02
7.0E+01
—
5.9E+02
1.04E+07
3.5E+03
7.3E+02
-
6.2E+03
Zaire
3.3E+02
7.0E+01
—
5.9E+02
2.02E+06
6.7E+02
1.4E+02
-
1.2E+03
Zambia
3.3E+02
7.0E+01
-
5.9E+02
3.12E+06
1.0E+03
2.2E+02
_
1.9E+03
Zimbabwe
3.3E+02
7.0E+01
—
5.9E+02
2.55E+06
8.5E+02
1.8E+02
—
1.5E+03





Total
6.7E+05
1.4E+05
—
1.2E+06
**Middle" is meant to convey a representative emission factor for the purposes of this
inventory. It is not necessarily the arithmetic average of emission data

-------
Table A-2. Global Emissions Inventory for Municipal Waste Combustion

Emission Factor
Activity

Emissions


(g/Mg waste)
Factor

(Mg/yr)
Country
Middle*
Range
(Mg/yr)
Middle*
Range
Austria
1.3E+02
1.3E+02- 1.4E+02
5.2E+05
6.8E+01
6.7E+Q1 - 7.3E+01
Canada
1.3E+02
1.3E+02- 1.4E+02
1.3E+06
1.7E+02
1.7E+02- 1.8E+02
Denmark
1.3E+02
1.3E+02- 1.4E+02
1.2E+06
1.6E+02
1.5E+02- 1.7E+02
Finland
1.3E+02
1.3E+02- 1.4E+02
5.0E+04
6.5E+00
6.4E+00 - 7.1E+00
France
1.3E+02
1.3E+02 - 1.4E+02
1.4E+07
1.8E+03
1.8E+03- 2.0E+03
Germany
1.3E+02
1.3E+02 - 1.4E+02
6.6E+06
8.6E+02
8.5E+02 - 9.3E+02
Hungary
1.3E+02
1.3E+02- 1.4E+02
4.0E+04
5.2E+00
5.2E+00 - 5.6E+00
Italy
1.3E+02
1.3E+02- 1.4E+02
2.4E+06
3.1 E+02
3.1 E+02 - 3.4E+02
Japan
1.3E+02
1.3E+02- 1.4E+02
2.8E+07
3.7E+03
3.6E+03 - 4.0E+03
Netherlands
1.3E+02
1.3E+02- 1.4E+02
2.9E+06
3.8E+02
3.7E+02- 4.1 E+02
Romania
1.3E+02
1.3E+02- 1.4E+02
1.0E+04
1.3E+00
1.3E+00- 1.4E+00
Spain
1.3E+02
1.3E+02- 1.4E+02
5.0E+05
6.5E+01
6.4E+01 - 7.1E+01
Sweden
1.3E+02
1.3E+02 - 1.4E+02
1.4E+06
1.8E+02
1.8E+02- 2.0E+02
Liechtenstein
1.3E+02
1.3E+02- 1.4E+02
4.6E+06
6.0E+02
5.9E+02 - 6.5E+02
USSR (Former)
1.3E+02
1.3E+02- 1.4E+02
1.9E+06
2.5E+02
2.5E+02 - 2.7E+02
United Kingdom
1.3E+02
1.3E+02 - 1.4E+02
3.5E+06
4.6E+02
4.5E+02 - 4.9E+02
United States
1.3E+02
1.3E+02- 1.4E+02
2.3E+07
3.0E+03
3.0E+03 - 3.2E+03



Total
1.2E+04
1.2E+04 - 1.3E+04
"Middle' is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data

-------
Table A-3. Global Emissions Inventory for Ammonium
Type Ferti
lizers
Country
Emission Factor
(g/g Nitrogen Applied)
Activity
Factor
(Mg N/yr)
Emissions
(Mg/yr)
Middle*
95% C.I.
Middle*
Range
Afghanistan
2.3E-03
1.4E-03 - 3.9E-03
6.20E+03
1.4E+01
8.7E+00
-
2.4E+01
Angola
2.3E-03
1.4E-03 - 3.9E-03
8.55E+02
2.0E+00
1.2E+00
-
3.3E+00
Argentina
2.3E-03
1.4E-03- 3.9E-03
2.15E+04
4.9E+01
3.0E+01
-
8.4E+01
Austria
2.3E-03
1.4E-03- 3.9E-03
3.08E+02
7.1E-01
4.3E-01
-
1.2E+00
Bangladesh
2.3E-03
1.4E-03- 3.9E-03
1.24E+03
2.8E+00
1.7E+00
-
4.8E+00
Belize
2.3E-03
1.4E-03- 3.9E-03
1.50E+02
3.4E-01
2.1E-01
-
5.8E-01
Benin
2.3E-03
1.4E-03- 3.9E-03
1.72E+03
4.0E+00
2.4E+00
-
6.7E+00
Brazil
2.3E-03
1.4E-03 - 3.9E-03
3.07E+05
7.1E+02
4.3E+02
-
1.2E+03
Burkina Faso
2.3E-03
1.4E-03- 3.9E-03
1.20E+02
2.8E-01
1.7E-01
-
4.7E-01
Burundi
2.3E-03
14E_03- 3.9E-03
6.25E+02
1.4E+00
8.8E-01
-
2.4E+00
Canada
2.3E-03
1.4E-03- 3.9E-03
1.80E+05
4.1E+02
2.5E+02
-
7.0E+02
Chile
2.3E-03
1.4E-03 - 3.9E-03
1.22E+04
2.8E+01
1.7E+01
-
4.8E+01
Colombia
2.3E-03
1.4E-03 - 3.9E-03
1.28E+04
3.0E+01
1.8E+01
-
5.0E+01
Cyprus
2.3E-03
1.4E-03 - 3.9E-03
1.33E+03
3.0E+00
1.9E+00
-
5.2E+00
Denmark
2.3E-03
1.4E-03- 3.9E-03
3.80E+02
8.7E-01
5.3E-01
-
1.5E+00
Ecuador
2.3E-03
1.4E-03- 3.9E-03
8.50E+03
2.0E+01
1.2E+01
-
3.3E+01
El Salvador
2.3E-03
1.4E-03 - 3.9E-03
3.63E+04
8.3E+01
5.1E+01
-
1.4E+02
Ethiopia
2.3E-03
1.4E-03- 3.9E-03
1.25E+04
2.9E+01
1.7E+01
-
4.9E+01
Fiji
2.3E-03
1.4E-03 - 3.9E-03
1.06E+04
2.4E+01
1.5E+01
-
4.1E+01
Finland
2.3E-03
1.4E-03- 3.9E-03
5.00E+00
1.1E-02
7.0E-03
-
1.9E-02
France
2.3E-03
1.4E-03- 3.9E-03
4.09E+04
9.4E+01
5.7E+01
-
1.6E+02
Germany
2.3E-03
1.4E-03- 3.9E-03
2.01 E+05
4.6E+02
2.8E+02
-
7.8E+02
Guadeloupe
2.3E-03
1.4E-03- 3.9E-03
9.40E+01
2.2E-01
1.3E-01
-
3.7E-01

-------
Table A-3. (Continued)
Country
Emission Factor
(g/g Nitrogen Applied)
Activity
Factor
(Ma N/vri

Emissions
(Mg/yr)


Middle*
95% C.I.
Middle*
Ranqe
Guinea
1 CO
i o
1
! Ill
i «
1 CM
1.4E—03 -
3.9E-03
3.80E+01
8.7E-02
5.3E-02
-
1.5E-01
Guyana
2.3E-03
1.4E-03-
3.9E-03
4.25E+03
9.8E+00
5.9E+00
-
1.7E+01
Honduras
2.3E-03
1.4E-03 -
3.9E-03
4.88E+02
1.1E+00
6.8E-01
-
1.9E+00
Hungary
2.3E-03
1.4E-03-
3.9E-03
2.96E+02
6.8E-01
4.1E-01
-
1.2E+00
Indonesia
2.3E-03
1.4E-03 -
3.9E-03
1.09E+05
2.5E+02
1.5E+02
-
4.2E+02
Iran
2.3E-03
1.4E-03 -
3.9E-03
1.68E+05
3.9E+02
2.3E+02
-
6.5E+02
Ireland
2.3E-03
1.4E-03 -
3.9E-03
3.96E+03
9.1E+00
5.5E+00
-
1.5E+01
Israel
2.3E-03
1.4E-03-
3.9E-03
1.10E+04
2.5E+01
1.5E+01
-
4.3E+01
Italy
2.3E-03
1.4E-03-
3.9E-03
6.77E+04
1.6E+02
9.5E+01
-
2.6E+02
Japan
2.3E-03
1.4E-03-
3.9E-03
1.83E+05
4.2E+02
2.6E+02
-
7.1 E+02
Kenya
2.3E-03
1.4E-03 -
3.9E-03
1.09E+04
2.5E+01
1.5E+01
-
4.3E+01
Liechtenstein
2.3E-03
1.4E-03 -
3.9E-03
3.40E+03
7.8E+00
4.8E+00
-
1.3E+01
Malawi
2.3E-03
1.4E-03 -
3.9E-03
3.27E+03
7.5E+00
4.6E+00
-
1.3E+01
Malta
2.3E-03
1.4E-03 -
3.9E-03
4.40E+02
1.0E+00
6.2E-01
-
1.7E+00
Mauritius
2.3E-03
1.4E-03-
3.9E-03
2.48E+03
5.7E+00
3.5E+00
-
9.7E+00
Mexico
2.3E-03
1.4E-03-
3.9E-03
3.75E+05
8.6E+02
5.3E+02
-
1.5E+03
Morocco
2.3E-03
1.4E-03-
3.9E-03
3.33E+04
7.7E+01
4.7E+01
-
1.3E+02
Mozambique
2.3E-03
1.4E-03-
3.9E-03
3.62E+02
8.3E-01
5.1E-01
-
1.4E+00
Nepal
2.3E-03
1.4E-03-
3.9E-03
7.59E+02
1.7E+00
1.1E+00
-
3.0E+00
Netherlands
2.3E-03
1.4E-03-
3.9E-03
2.43E+03
5.6E+00
3.4E+00
-
9.5E+00
Nicaragua
2.3E-03
1.4E-03 -
3.9E-03
7.65E+03
1.8E+01
1.1E+01
-
3.0E+01
Oman
2.3E-03
1.4E-03-
3.9E-03
1.70E+02
3.9E-01
2.4E-01
-
6.6E-01

-------
Table A-3. (Continued)

Emission Factor
Activity

Emissions

(g/g
Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
95% C.I.
(Mg N/vr)
Middle*
Range
Pakistan
2.3E-03
1.4E-03 - 3.9E-03
1.19E+05
2.7E+02
1.7E+02 - 4.6E+02
Paraguay
2.3E-03
1.4E-03 - 3.9E-03
2.84E+02
6.5E-01
4.0E-01 - 1.1E+00
Peru
2.3E-03
1.4E-03 - 3.9E-03
1.29E+04
3.0E+01
1.8E+01 - 5.0E+01
Philippines
2.3E-03
1.4E-03 - 3.9E-03
4.27E+04
9.8E+01
6.0E+01 - 1.7E+02
Poland
2.3E-03
1.4E-03- 3.9E-03
1.61E+05
3.7E+02
2.2E+02 - 6.3E+02
South Africa
2.3E-03
1.4E-03- 3.9E-03
1.45E+04
3.3E+01
2.0E+01 - 5.7E+01
Spain
2.3E-03
1.4E-03- 3.9E-03
1.05E+05
2.4E+02
1.5E+02- 4.1E+02
Sri Lanka
2.3E-03
1.4E-03- 3.9E-03
2.00E+04
4.6E+01
2.8E+01 - 7.8E+01
Swaziland
2.3E-03
1.4E-03 - 3.9E-03
2.13E+02
4.9E-01
3.0E-01 - 8.3E-01
Sweden
2.3E-03
1.4E-03 - 3.9E-03
4.60E+01
1.1E-01
6.4E-02- 1.8E-01
Switzerland
2.3E-03
1.4E-03- 3.9E-03
3.40E+03
7.8E+00
4.8E+00- 1.3E+01
Tanzania
2.3E-03
1.4E-03 - 3.9E-03
5.64E+03
1.3E+01
7.9E+00 - 2.2E+01
Turkey
2.3E-03
1.4E-03 - 3.9E-03
1.82E+05
4.2E+02
2.5E+02- 7.1E+02
United States
2.3E-03
1.4E-03 - 3.9E-03
1.41E+05
3.3E+02
2.0E+02 - 5.5E+02
Venezuela
2.3E-03
1.4E-03 - 3.9E-03
3.76E+04
8.7E+01
5.3E+01 - 1.5E+02
Vietnam
2.3E-03
1.4E-03- 3.9E-03
4.23E+04
9.7E+01
5.9E+01 - 1.6E+02
Zimbabwe
2.3E-03
1.4E-03- 3.9E-03
1.55E+02
3.6E-01
2.2E-01 - 6.0E-01



Total
6.3E+03
3.8E+03- 1.1E+04
*'Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-4. Global Emissions Inventory for Ammonium Nitrate Fertilizer
Country
Emission Factor
{g/g Nitrogen Applied)
Activity
Factor
(Mg N/yr)
Emissions
(Mg/yr)
Middle*
95% C.I.
Middle*
Range
Albania
3.1 E-03
1.1E-03
-
8.3E-03
6.61 E+04
2.0E+02
7.3E+01
-
5.5E+02
Algeria
3.1E-03
1.1E-03

8.3E-03
7.60E+04
2.4E+02
8.4E+01
-
6.3E+02
Angola
3.1E-03
1.1E-03
-
8.3E-03
4.76E+03
1.5E+01
5.2E+00
-
4.0E+01
Argentina
3.1E-03
1.1E-03
-
8.3E-03
6.26E+03
1.9E+01
6.9E+00
-
5.2E+01
Austria
3.1E-03
1.1E-03
-
8.3E-03
9.39E+04
2.9E+02
1.0E+02
-
7.8E+02
Belize
3.1E-03
1.1E-03
-
8.3E-03
5.90E+01
1.8E-01
6.5E-02
-
4.9E-01
Brazil
3.1E-03
1.1E-03
-
8.3E-03
1.07E+05
3.3E+02
1.2E+02
-
8.9E+02
Burundi
3.1 E-03
1.1E-03
-
8.3E-03
6.70E+01
2.1E-01
7.4E-02
-
5.6E-01
Canada
CO
o
I
LU
CO
1.1E-03
-
8.3E-03
1.18E+05
3.7E+02
1.3E+02
-
9.8E+02
Colombia
3.1E-03
1.1E-03
-
8.3E-03
5.41 E+03
1.7E+01
5.9E+00
-
4.5E+01
Cyprus
3.1E-03
1.1E-03
-
8.3E-03
2.24E+03
7.0E+00
2.5E+00
-
1.9E+01
Denmark
3.1E-03
1.1E-03
-
8.3E-03
9.94E+04
3.1E+02
1.1E+02
-
8.2E+02
Ecuador
3.1E-03
1.1E-03
-
8.3E-03
2.19E+02
6.8E-01
2.4E-01
-
1.8E+00
Finland
3.1E-03
1.1E-03
-
8.3E-03
2.12E-1-04
6.6E+01
2.3E+01
-
1.8E+02
France
3.1E-03
1.1E-03
-
8.3E-03
1.11E+06
3.4E+03
1.2E+03
-
9.2E+03
Germany
3.1E-03
1.1E-03
_
8.3E-03
1.09E+06
3.4E+03
1.2E+03
-
9.1 E+03
Guadeloupe
3.1E-03
1.1E-03
-
8.3E-03
1.50E+01
4.6E-02
1.7E-02
-
1.2E-01
Honduras
3.1E-03
1.1E-03
-
8.3E-03
3.34E+02
1.0E+00
3.7E-01
-
2.8E+00
Hungary
3.1E-03
1.1E-03
-
8.3E-03
3.45E+05
1.1 E+03
3.8E+02
-
2.9E+03
Iceland
3.1E-03
1.1E-03
-
8.3E-03
2.41 E+03
7.5E+00
2.7E+00
-
2.0E+01
Iran
3.1E-03
1.1E—03
-
8.3E-03
1.42E+04
4.4E+01
1.6E+01
-
1.2E+02
Ireland
3.1E-03
1.1E-03
-
8.3E-03
1.33E+05
4.1E+02
1.5E+02
-
1.1 E+03

-------
Table A-4
(Continued)

Emission Factor
Activity

Emissions

(g/g Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Italy
3.1E-03
1.1E—03 - 8.3E-03
2.06E+05
6.4E+02
2.3E+02 - 1.7E+03
Japan
3.1E-03
1.1E-03- 8.3E-03
8.00E+03
2.5E+01
8.8E+00 - 6.6E+01
Kenya
3.1E-03
1.1E-03 - 8 or" -03
3.37E+03
1.0E+01
3.7E+00 - 2.8E+01
Liberia
3.1E-03
1.1E—03 - 8.3E-03
3.36E+02
1.0E+00
3.7E-01 - 2.8E+00
Liechtenstein
3.1 E-03
1.1E-03 - 8.3E-03
3.99E+04
1.2E+02
4.4E+01 - 3.3E+02
Malawi
3.1 E—03
1.1E-03 - 8.3E-03
9.29E+03
2.9E+01
1.0E+01 - 7.7E+01
Mauritius
3.1E-03
CO
o
I
UJ
CO
CD
I
CO
0
1
HI
1.16E+03
3.6E+00
1.3E+00 - 9.6E+00
Mexico
3.1E-03
1.1E-03 - 8.3E-03
3.19E+04
9.9E+01
3.5E+01 - 2.6E+02
Morocco
3.1E-03
1.1 E—03 - 8.3E-03
3.02E+04
9.3E+01
3.3E+01 - 2.5E+02
Mozambique
3.1E-03
1.1E-03 - 8.3E-03
3.88E+02
1.2E+00
4.3E-01 - 3.2E+00
Netherlands
3.1 E—03
1.1E-03 - 8.3E-03
3.65E+05
1.1E+03
4.0E+02 - 3.0E+03
Nicaragua
3.1E-03
1.1E-03 - 8.3E-03
2.38E+03
7.4E+00
2.6E+00 - 2.0E+01
Pakistan
3.1E-03
1.1E-03 - 8.3E-03
8.74E+04
2.7E+02
9.6E+01 - 7.3E+02
Peru
3.1E-03
1.1E-03 - 8.3E-03
2.62E+04
8.1E+01
2.9E+01 - 2.2E+02
Poland
3.1E-03
1.1E-03 - 8.3E-03
7.87E+05
2.4E+03
8.7E+02 - 6.5E+03
South Africa
3.1E-03
1.1E-03 - 8.3E-03
1.45E+05
4.5E+02
1.6E+02 - 1.2E+03
Spain
3.1E-03
1.1E-03 - 8.3E-03
3.81 E+05
1.2E+03
4.2E+02 - 3.2E+03
Swaziland
3.1 E—03
1.1E-03- 8.3E-03
4.14E+02
1.3E+00
4.6E-01 - 3.4E+00
Sweden
3.1E-03
1.1E-03- 8.3E-03
7.32E+04
2.3E+02
8.0E+01 - 6.1E+02
Switzerland
3.1E-03
1.1E-03- 8.3E-03
3.99E+04
1.2E+02
4.4E+01 - 3.3E+02
Syria
3.1E-03
1.1E-03 - 8.3E-03
4.30E+04
1.3E+02
4.7E+01 - 3.6E+02
Tanzania
3.1E-03
1.1E-03 - 8.3E-03
7.39E+03
2.3E+01
8.1E+00 - 6.1E+01

-------
Table A-4. (Continued)

Emission Factor
Activity

Emissions

(g/g
Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Tunisia
3.1E-03
1.1E-03 - 8.3E-03
4.36E+04
1.4E+02
4.8E+01 - 3.6E+02
Turkey
CO
o
1
UJ
00
1.1E-03 - 8.3E-03
4.34E+05
1.3E+03
4.8E+02 - 3.6E+03
United States
3.1E-03
CO
o
l
LU
CO
CO
I
CO
o
I
LU
5.36E+05
1.7E+03
5.9E+02 - 4.5E+03
Zambia
3.1E-03
CO
o
I
LU
CO
CD
I
CO
o
I
LU
8.07E+03
2.5E+01
8.9E+00 - 6.7E+01
Zimbabwe
3.1 E—03
1.1 E—03 - 8.3E-03
4.90E+04
1.5E+02
5.4E+01 - 4.1E+02



Total
2.1E+04
7.3E+03 - 5.5E+04
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-5. Global Emissions Inventory for Nitrate Fertilizers

Emission Factor
Activity

Emissions

(g/g
Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Argentina
3.5E-03
7.0E-04- 1.8E-02
4.34E+02
1.5E+00
3.0E-01 - 7.8E+00
Brazil
3.5E-03
7.0E-04 - 1.8E-02
8.35E+03
2.9E+01
5.8E+00 - 1.5E+02
Chile
3.5E-03
7.0E-04 - 1.8E-02
4.11E+04
1.4E+02
2.9E+01 - 7.4E+02
Denmark
3.5E-03
7.0E-04 - 1.8E-02
1.71E+03
6.0E+00
1.2E+00 - 3.1E+01
Ecuador
3.5E-03
7.0E-04- 1.8E-02
6.30E+01
2.2E-01
4.4E-02 - 1.1E+00
Finland
3.5E-03
7.0E-04- 1.8E-02
3.77E+02
1.3E+00
2.6E-01 - 6.8E+00
Germany
3.5E-03
7.0E-04 - 1.8E-02
1.23E+03
4.3E+00
8.6E-01 - 2.2E+01
Italy
3.5E-03
7.0E—04 - 1.8E-02
1.13E+04
4.0E+01
7.9E+00 - 2.0E+02
Liechtenstein
3.5E-03
7.0E-04 - 1.8E-02
1.00E+02
3.5E-01
7.0E-02 - 1.8E+00
Netherlands
3.5E-03
7.0E-04- 1.8F-02
8.05E+03
2.8E+01
5.6E+00- 1.4E+02
Norway
3.5E-03
7.0E-04- 1.8E-02
7.90E+03
2.8E+01
5.5E+00 - 1.4E+02
Poland
3.5E-03
7.0E-04 - 1.8E-02
3.47E+02
1.2E+00
2.4E-01 - 6.2E+00
Spain
3.5E-03
7.0E—04 - 1.8E-02
4.82E+03
1.7E+01
3.4E+00 - 8.7E+01
Sweden
3.5E-03
7.0E-04 - 1.8E-02
6.62E+04
2.3E+02
4.6E+01 - 1.2E+03
Switzerland
3.5E-03
OJ
o
l
111
CO
1
0
1
LLI
o
1.00E+02
3.5E-01
7.0E-02 - 1.8E+00
Zimbabwe
3.5E-03
7.0E-04 - 1.8E-02
3.50E+02
1.2E+00
2.4E-01 - 6.3E+00



Totals
5.3E+02
1.1E+02 - 2.7E+03
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-6. Global Emissions Inventory for Urea Fertilizer
Country
E
(fl/fl
Emission Factor
Nitrogen Applied)
Activity
Factor
(Ma N/vr)
Emissions
(Mg/yr)
Middle*
95% C.I.
Middle*
Range
Afghanistan
2.2E-03
9.7E-04 -
5.0E-03
4.60E+04
1.0E+02
4.5E+01
-
2.3E+02
Argentina
2.2E-03
9.7E-04 -
5.0E-03
6.07E+04
1.3E+02
5.9E+01
-
3.0E+02
Austria
2.2E-03
9.7E-04 -
5.0E-03
1.28E+03
2.8E+00
1.2E+00
-
6.4E+00
Bangladesh
2.2E-03
9.7E-04 -
5.0E-03
4.73E+05
1.0E+03
4.6E+02
-
2.4E+03
Belize
2.2E-03
9.7E-04 -
5.0E-03
3.27E+02
7.2E-01
3.2E-01
-
1.6E+00
Brazil
2.2E-03
9.7E-04 -
5.0E-03
4.66E+05
1.0E+03
4.5E+02
-
2.3E+03
Burkina Faso
2.2E-03
9.7E-04 -
5.0E-03
3.87E+03
8.5E+00
3.8E+00
-
1.9E+01
Burma
2.2E-03
9.7E-04 -
5.0E-03
9.75E+04
2.1E+02
9.5E+01
-
4.9E+02
Burundi
2.2E-03
9.7E-Q4 -
5.0E-03
6.27E+02
1.4E+00
6.1 E—01
-
3.1E+00
Canada
2.2E-03
9.7E-04 -
5.0E-03
4.57E+05
1.0E+03
4.4E+02
-
2.3E+03
Chile
2.2E-03
9.7E-04 -
5.0E-03
7.62E+04
1.7E+02
7.4E+01
-
3.8E+02
Colombia
2.2E-03
9.7E-04 -
5.0E-03
1.17E+05
2.6E+02
1.1E+02
-
5.9E+02
Cyprus
2.2E-03
9.7E-04 -
5.0E-03
1.52E+03
3.3E+00
1.5E+00
-
7.6E+00
Denmark
2.2E-03
9.7E-04 -
CO
o
u
o
in
4.43E+03
9.8E+00
4.3E+00
-
2.2E+01
Ecuador
2.2E-03
9.7E-04 -
5.0E-03
3.45E+04
7.6E+01
3.3E+01
-
1.7E+02
El Salvador
2.2E-03
9.7E-04 -
5.0E-03
5.48E+03
1.2E+01
5.3E+00
-
2.7E+01
Ethiopia
2.2E-03
9.7E-04 -
5.0E-03
9.91 E+03
2.2E+01
9.6E+00
-
5.0E+01
Finland
2.2E-03
9.7E-04 -
5.0E-03
4.44E+03
9.8E+00
4.3E+00
-
2.2E+01
France
2.2E-03
9.7E-04 -
5.0E-03
2.88E+05
6.3E+02
2.8E+02
-
1.4E+03
Guadeloupe
2.2E-03
9.7E-04 -
5.0E-03
4.88E+02
1.1E+00
4.7E-01
-
2.4E+00
Guinea
2.2E-03
9.7E-04 -
5.0E-03
1.16E+02
2.6E-01
1.1E-01
-
5.8E-01

-------
Table A-6. Global Emissions Inventory for Urea Fertilizer
Country
E
(g/g
Emission Factor
Nitrogen Applied)
Activity
Factor
(Mg N/yr)
Emissions
_ _ (Mg/yr)
Middle*
95% C.I.
Middle*
Ranae
Guyana
2.2E-03
9.7E-04 -
5.0E-03
8.17E+03
1.8E+01
7.9E+00
-
4.1E+01
Honduras
2.2E-03
9.7E-04 -
5.0E-03
1.56E+04
3.4E+01
1.5E+01
-
7.8E+01
Hungary
2.2E-03
9.7E-04 -
5.0E-03
1.71E+05
3.8E+02
1.7E+02
-
8.6E+02
Indonesia
2.2E—03
9.7E-04 -
5.0E-03
1.35E+06
3.0E+03
1.3E+03
-
6.8E+03
Iran
2.2E-03
9.7E-04 -
5.0E-03
3.42E+05
7.5E+02
3.3E+02
-
1.7E+03
Ireland
2.2E-03
9.7E-04 -
5.0E-03
8.47E+04
1.9E+02
8.2E+01
-
4.2E+02
Israel
2.2E-03
9.7E-04 -
5.0E-03
1.00E+04
2.2E+01
9.7E+00
-
5.0E+01
Italy
2.2E-03
9.7E-04 -
5.0E-03
4.31E+05
9.5E+02
4.2E+02
-
2.2E+03
Japan
2.2E-03
9.7E-04 -
5.0E-03
1.13E+05
2.5E+02
1.1E+02
-
5.7E+02
Kenya
2.2E-03
9.7E-04 -
5.0E-03
8.05E+02
1.8E+00
7.8E-01
-
4.0E+00
Kuwait
2.2E-03
9.7E-04 -
5.0E-03
3.28E+02
7.2E-01
3.2E-01
-
1.6E+00
Liechtenstein
2.2E-03
9.7E-04 -
5.0E-03
1.74E+04
3.8E+01
1.7E+01
-
8.7E+01
Malawi
2.2E-03
9.7E-04 -
5.0E-03
1.24E+04
2.7E+01
1.2E+01
-
6.2E+01
Mauritius
2.2E-03
9.7E-04 -
5.0E-03
1.16E+03
2.5E+00
1.1E+00
-
5.8E+00
Mexico
2.2E-03
9.7E-04 -
5.0E-03
6.10E+05
1.3E+03
5.9E+02
-
3.1E+03
Morocco
2.2E-03
9.7E-04 -
5.0E-03
5.20E+04
1.1E+02
5.0E+01
-
2.6E+02
Mozambique
2.2E—03
9.7E-04 -
5.0E-03
5.27E+02
1.2E+00
5.1 E—01
-
2.6E+00
Nepal
2.2E-03
9.7E-04 -
5.0c—03
2.30E+04
5.1E+01
2.2E+01
-
1.2E+02
Netherlands
2.2E-03
9.7E-04 -
5.0E-03
2.47E+03
5.4E+00
2.4E+00
-
1.2E+01
Nicaragua
2.2E-03
9.7E-04 -
5.0E-03
4.51E+04
9.9E+01
4.4E+01
-
2.3E+02
Niaer
2.2E-03
9.7E-04 -
5.0E-03
1.51E+03
3.3E+00
1.5E+00
-
7.5E+00

-------
Table A-
6. (Continued)

Emission Factor
Activity

Emissions

(g/g
Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
95% C.I.
(Ma N/vr)
Middle*
Range
Norway
2.2E-03
9.7E-04 - 5.0E-03
1.30E+03
2.9E+00
1.3E+00 - 6.5E+00
Pakistan
2.2E-03
9.7E-04 - 5.0E-03
9.68E+05
2.1 E+03
9.4E+02 - 4.8E+03
Paraguay
2.2E-03
9.7E-04 - 5.0E-03
1.66E+03
3.6E+00
1.6E+00 - 8.3E+00
Peru
2.2E-03
9.7E-04- 5.0E-03
1.17E+05
2.6E+02
1.1E+02- 5.9E+02
Philippines
2.2E-03
9.7E-04 - 5.0E-03
1.44E+05
3.2E+02
1.4E+02- 7.2E+02
Poland
2.2E-03
9.7E-04 - 5.0E-03
3.49E+05
7.7E+02
3.4E+02 - 1.7E+03
Saudi Arabia
2.2E-03
9.7E-04 - 5.0E-03
1.11E+05
2.4E+02
1.1E+02- 5.5E+02
South Africa
2.2E-03
9.7E-04 - 5.0E-03
4.44E+04
9.8E+01
4.3E+01 - 2.2E+02
Spain
2.2E-03
9.7E-04 - 5.0E-03
1.85E+05
4.1E+02
1.8E+02- 9.3E+02
Sri Lanka
2.2E-03
9.7E-04 - 5.0E-03
8.27E+04
1.8E+02
8.0E+01 - 4.1E+02
Sudan
2.2E-03
9.7E-04 - 5.0E-03
3.00E+04
6.6E+01
2.9E+01 - 1.5E+02
Suriname
2.2E-03
9.7E-04 - 5.0E-03
5.70E+03
1.3E+01
5.5E+00 - 2.8E+01
Swaziland
2.2E-03
9.7E-04 - 5.0E-03
3.40E+03
7.5E+00
3.3E+00 - 1.7E+01
Sweden
2.2E-03
9.7E-04 - 5.0E-03
5.13E+03
1.1E+01
5.0E+00 - 2.6E+01
Switzerland
2.2E-03
9.7E-04 - 5.0E-03
1.74E+04
3.8E+01
1.7E+01 - 8.7E+01
Syria
2.2E-03
9.7E-04 - 5.0E-03
9.97E+04
2.2E+02
9.7E+01 - 5.0E+02
Tanzania
2.2E-03
9.7E-04 - 5.0E-03
1.11E+04
2.4E+01
1.1E+01 - 5.5E+01
Turkey
2.2E-03
9.7E-04 - 5.0E-03
2.46E+05
5.4E+02
2.4E+02- 1.2E+03
United States
2.2E-03
9.7E-04 - 5.0E-03
1.37E+06
3.0E+03
1.3E+03 - 6.9E+03
Venezuela
2.2E-03
9.7E-04 - 5.0E-03
1.13E+05
2.5E+02
1.1E+02 - 5.7E+02
Vietnam
2.2E-03
9.7E-04 - 5.0F- 03
2.78E+05
6.1E+02
2.7E+02 - 1.4E+03

-------
Table A-6. Global Emissions Inventory for Urea Fertilizer
Country
E
(9/fl
Emission Factor
Nitrogen Applied)
Activity
Factor
(Ma N/vr)
Emissions
(Mg/yr)
Middle*
95% C.I.
Middle*
Ranae
Zaire
Zambia
Zimbabwe
2.2E-03
2.2E-03
2.2E-03
9.7E-04 - 5.0E-03
9.7E-04 - 5.0E-03
9.7E-04 - 5.0E-03
1.26E+03
3.32E+04
1.25E+04
Total
2.8E+00
7.3E+01
2.7E+01
2.1E+04
1.2E+00 - 6.3E+00
3.2E+01 - 1.7E+02
1.2E+01 - 6.2E+01
9.4E+03 - 4.8E+04
•"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-7. Global Emissions Inventory for Other Complex Fertilizer

Emission Factor

Activity

Emissions



(g/s
Nitrogen Applied)
Factor

(Mg/yr)


Country
Middle*
Range
(Mg N/yr)
Middle*
Range
Algeria
1.7E-03
1.6E-05
-
1.1E-01
2.21E+04
3.8E+01
3.5E-01
_
2.4E+03
Angola
1.7E-03
1.6E-05
-
1.1E-01
7.18E+03
1.2E+01
1.1E-01
-
7.7E+02
Argentina
1.7E-03
1.6E-05
-
1.1E-01
8.34E+02
1.4E+00
1.3E-02
-
9.0E+01
Austria
1.7E-03
1.6E-05
-
1.1E-01
6.36E+04
1.1E+02
1.0E+00
-
6.8E+03
Belize
1.7E-03
1.6E-05
-
1.1E-01
5.90E+02
1.0E+00
9.4E-03
-
6.3E+01
Benin
1.7E-03
1.6E-05
-
1.1E-01
1.71E+03
2.9E+00
2.7E-02
-
1.8E+02
Brazil
1.7E-03
1.6E-05
-
1.1E-01
6.59E+04
1.1E+02
1.1E+00
-
7.1E+03
Burkina Faso
1.7E-03
1.6E-05
-
1.1E-01
3.42E+03
5.8E+00
5.5E-02
-
3.7E+02
Burundi
1.7E-03
1.6E-05
_
1.1E-01
2.98E+02
5.1E-01
4.8E-03
-
3.2E+01
Canada
1.7E-03
1.6E-05
-
1.1E-01
3.35E+04
5.7E+01
5.4E-01
-
3.6E+03
Chile
1.7E-03
1.6E-05
-
1.1E-01
6.50E+03
1.1E+01
1.0E-01
-
7.0E+02
Colombia
1.7E-03
1.6E-05
-
1.1E-01
7.62E+04
1.3E+02
1.2E+00
-
8.2E+03
Congo
1.7E-03
1.6E-05
-
1.1E-01
1.00E+02
1.7E-01
1.6E-03
-
1.1E+01
Cyprus
1.7E-03
1.6E-05
-
1.1E-01'
6.20E+03
1.1E+01
9.9E-02
-
6.7E+02
Denmark
1.7E-03
1.6E-05
-
1.1E-01
1.87E+05
3.2E+02
3.0E-I-00
-
2.0E+04
El Salvador
1.7E-03
1.6E-05
-
1.1E-01
2.27E+04
3.9E+01
3.6E-01
-
2.4E+03
Finland
1.7E-03
1.6E-05
-
1.1E-01
1.82E+05
3.1 E+02
2.9E+00
-
2.0E+04
France
1.7E-03
1.6E-05
-
1.1E-01
5.84E+05
9.9E+02
9.3E+00
-
6.3E+04
Gambia
1.7E-03
1.6E-05
-
1.1E-01
8.00E+02
1.4E+00
1.3E-02
-
8.6E+01
Germany
1.7E-03
1.6E-05
-
1.1E-01
1.08E+06
1.8E+03
1.7E+01
-
1.2E+05
Guadeloupe
1.7E-03
1.6E-05
-
1.1E-01
3.03E+03
5.2E+00
4.9E-02
-
3.3E+02

-------
Table A-
7. (Continued)
>
Country
E
(g/c
Emission Factor
Nitrogen Applied)
Activity
Factor
(Mg N/yr)
Emissions
(Mg/yr)
Middle*
Range
Middle*
Range
Guinea
1.7E-03
0
1
LU
, i
I in
0
1
ill
CD
1.26E+02
2.1E-01
2.0E-03 - 1.4E+01
Guyana
1.7E-03
O
I
LU
I
in
o
I
HI
CO
2.00E+01
3.4E-02
3.2E-04- 2.1 E+00
Haiti
1.7E-03
1.6E-05 - 1.1E-01
1.30E+03
2.2E+00
2.1E-02 - 1.4E+02
Honduras
1.7E-03
0
1
UJ
i
in
o
I
LU
CO
3.90E+03
6.6E+00
6.2E-02 - 4.2E+02
Hungary
1.7E-03
1.6E-05 - 1.1E-01
8.29E+04
1.4E+02
1.3E+00 - 8.9E+03
Iceland
1.7E-03
1.6E-05 - 1.1E-01
8.97E+03
1.5E+01
1.4E-01 - 9.6E+02
Ireland
1.7E-03
1.6E-05- 1.1E-01
1.21E+05
2.1E+02
1.9E+00 - 1.3E+04
Israel
1.7E-03
1.6E-05- 1.1E-01
1.50E+03
2.5E+00
2.4E-02- 1.6E+02
Italy
1.7E-03
1.6E-05- 1.1E-01
3.37E+05
5.7E+02
5.4E+00 - 3.6E+04
Japan
1.7E-03
1.6E-05- 1.1E-01
3.23E+05
5.5E+02
5.2E+00 - 3.5E+04
Kenya
1.7E-03
1.6E-05 - 1.1E-01
2.11E+04
3.6E+01
3.4E-01 - 2.3E+03
Liberia
1.7E-03
1.6E-05- 1.1E-01
4.29E+02
7.3E-01
6.9E-03 - 4.6E+01
Liechtenstein
1.7E-03
1.6E-05- 1.1E-01
1.18E+04
2.0E+01
1.9E-01 - 1.3E+03
Malawi
1.7E-03
1.6E-05 - 1.1E-01
4.93E+03
8.4E+00
7.9E-02 - 5.3E+02
Malta
1.7E-03
1.6E-05 - 1.1E-01
5.00E+01
8.5E-02
8.0E-04 - 5.4E+00
Mauritius
1.7E-03
1.6E-05 - 1.1E-01
9.00E+03
1.5E+01
1.4E-01 - 9.7E+02
Mexico
1.7E-03
1.6E-05- 1.1E—01
7.09E+04
1.2E+02
1.1E+00 - 7.6E+03
Morocco
1.7E-03
16E-05- 1.1E—01
2.10E+04
3.6E+01
3.4E-01 - 2.3E+03
Mozambique
1.7E-03
16E_05_ 1.1 E—01
4.09E+02
7.0E-01
6.5E-03 - 4.4E+01
Nepal
1.7E-03
1.6E-05 - 1.1E-01
9.11E+03
1.5E+01
1.5E-01 - 9.8E+02
Netherlands
1.7E-03
1.6E-05 - 1.1E-01
7.51E+04
1.3E+02
1.2E+00 - 8.1E+03

-------
Table A-7. (Continued)

Emission Factor
Activity

Emissions

(g/s
Nitrogen Applied)
Factor

(Mg/yr)
Country
Middle*
Range
(Ma N/vr)
Middle*
Range
Nicaragua
1.7E-03
1.6E-05 - 1 IE—01
2.60E+01
4.4E-02
4.2E-04 - 2.8E+00
Norway
1.7E-03
1.6E-05 - 1.1E—01
9.71E+04
1.7E+02
1.6E+00 - 1.0E+04
Oman
1.7E-03
1.6E-05- 1.1E-01
2.50E+02
4.2E—01
4.0E-03 - 2.7E+01
Pakistan
1.7E-03
1.6E-05 - 1.1E-01
1.07E+05
1.8E+02
1.7E+00 - 1.2E+04
Paraguay
1.7E-03
1.6E-05- 1.1E-01
1.52E+03
2.6E+00
2.4E-02- 1.6E+02
Peru
1.7E-03
1.6E-05 - 1.1E-01
3.21 E+03
5.4E+00
5.1E-02- 3.4E+02
Philippines
1.7E-03
1.6E-05- 1.1E-01
1.83E+04
3.1E+01
2.9E-01 - 2.0E+03
Poland
1.7E-03
1.6E-05- 1.1E-01
3.78E+04
6.4E+01
6.0E-01 - 4.1 E+03
Saudi Arabia
1.7E-03
1.6E-05 - 1.1E-01
7.13E+04
1.2E+02
1.1E+00 - 7.7E+03
Sierra Leone
1.7E-03
1.6E-05 - 1.1E-01
2.00E+02
3.4E-01
3.2E-03 - 2.2E+01
South Africa
1.7E-03
1.6E-05 - 1.1E-01
1.58E+05
2.7E+02
2.5E+00 - 1.7E+04
Spain
1.7E-03
1.6E-05 - 1.1E-01
4.04E+05
6.9E+02
6.5E+00 - 4.3E+04
Sri Lanka
1.7E-03
1.6E-05 - 1.1E-01
1.23E+03
2.1E+00
2.0E-02 - 1.3E+02
Suriname
1.7E-03
1.6E-05 - 1.1E-01
1 74E+03
3.0E+00
2.8E-02 - 1.9E+02
Swaziland
1.7E-03
1.6E-05 - 1.1E—01
1.36E+03
2.3E+00
2.2E-02 - 1.5E+02
Sweden
1.7E-03
1.6E-05 - 1.1E-01
9.59E+04
1.6E+02
1.5E+00 - 1.0E+04
Switzerland
1.7E-03
1.6E-05- 1.1E-01
1.18E+04
2.0E+01
1.9E-01 - 1.3E+03
Syria
1.7E-03
1.6E-05 - 1.1E-01
8.11E+02
1.4E+00
1.3E-02 - 8.7E+01
Tanzania
1.7E-03
1.6E-05 - 1.1E-01
5.41 E+03
9.2E+00
8.7E-02 - 5.8E+02
Tunisia
1.7E-03
1.6E-05 - 1.1E-01
1.35E+03
2.3E+00
2.2E-02 - 1.5E+02
Turkey
1.7E-03
1.6E-05 - 1.1E-01
2.48E+05
4.2E+02
4.0E+00 - 2.7E+04

-------
Table A-7. (Continued)
Country
E
(g/s
Emission Factor
Nitrogen Applied)
Activity
Factor
(Mq N/vr)
Emissions
(Mg/yr)
Middle*
Ranqe
Middle*
Range
United States
Venezuela
Zaire
Zambia
Zimbabwe
1.7E-03
1.7E-03
1.7E-03
1.7E-03
1.7E-03
1.6E-05- 1.1E-01
1.6E-05- 1.1E-01
1.6E—05- 1.1E-01
1.6E-05 - 1.1E-01
1.6E-05 - 1.1E-01
7.45E+06
1.29E+05
5.36E+02
2.09E+04
1.99E+04
Total
1.3E+04
2.2E+02
9.1E-01
3.6E+01
3.4E+01
2.1E+04
1.2E+02 - 8.0E+05
2.1E+00 - 1.4E+04
8.6E-03 - 5.8E+01
3.3E-01 - 2.2E+03
3.2E-01 - 2.1E+03
2.0E+02- 1.3E+06
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-8. Global Emissions Inventory for Other Nitrogen Fertilizer

Emission Factor
Activity

Emissions



(g/g
Nitrogen Applied)
Factor

(Mg/yr)


Country
Middle*
Range
(Mg N/yr)
Middle*
Range
Argentina
1.1E-03
1.0E-05 -
6.8E-02
3.36E+03
3.7E+00
3.4E-02
-
23E+02
Austria
1.1E-03
1.0E-05 -
6.8E-02
5.93E+03
6.5E+00
5.9E-02
-
4.1 E+02
Brazil
1.1E-03
1.0E-05 -
6.8E-02
4.16E+03
4.6E+00
4.2E-02
-
2.8E+02
Canada
1.1E-03
1.0E-05 -
6.8E-02
3.97E+05
4.4E+02
4.0E+00
-
2.7E+04
Denmark
1.1E-03
1.0E-05 -
6.8E-02
8.87E+04
9.8E+01
8.9E-01
-
6.1 E+03
Finland
1.1E-03
1.0E-05-
6.8E-02
6.24E+03
6.9E+00
6.2E-02
-
4.3E+02
France
1.1E-03
1.0E-05 -
6.8E-02
5.44E+05
6.0E+02
5.4E+00
-
3.7E+04
Hungary
1.1 E—03
1.0E-05-
6.8E-02
1.47E+04
1.6E+01
1.5E-01
-
1.0E+03
Israel
1.1E-03
1.0E-05 -
6.8E-02
3.03E+04
3.3E+01
3.0E-01
-
21 E+03
Italy
1.1E-03
1.0E-05-
6.8E-02
6.71 E+03
7.4E+00
6.7E-02
-
4.6E+02
Japan
1.1E-03
1.0E-05 -
6.8E-02
4.20E+04
4.6E+01
4.2E-01
-
2.9E+03
Kenya
1.1E-03
1.0E-05 -
6.8E-02
7.22E+03
7.9E+00
7.2E-02
-
4.9E+02
Mexico
1.1E-03
1.0E-05 -
6.8E-02
2.56E+05
2.8E+02
2.6E+00
-
1.8E+04
Netherlands
1.1E-03
1.0E-05 -
6.8E-02
5.51 E+03
6.1E+00
5.5E-02
-
3.8E+02
Norway
1.1E-03
1.0E-05 -
6.8E-02
7.30E+03
8.0E+00
7.3E-02
-
5.0E+02
Poland
1.1E-03
1.0E-05 -
6.8E-02
1.47E+02
1.6E-01
1.5E-03
-
1.0E+01
Spain
1.1E—03
1.0E-05 -
6.8E-02
6.75E+04
7.4E+01
6.8E-01
-
4.6E+03
Sweden
1.1E-03
1.0E-05 -
6.8E-02
4.11E+02
4.5E-01
4.1E-03
-
2.8E+01
United States
1.1E-03
1.0E-05 -
6.8E-02
7.45E+06
8.2E+03
7.5E+01
-
5.1E+05
Swaziland
1.1E-03
1.0E-05 -
6.8E-02
6.21 E+02
6.8E-01
6.2E-03
-
4.2E+01





9.8E+03
8.9E+01

6.1E+05
*"MiddIe" is meant to convey a representative emission factor for the purposes of
this inventory, ft is not necessarily the arithmetic average of emissions data.

-------
Table A-9. Global Emissions Inventory for Total (Unspecified) Fertilizer Usage**

Emission Factor

Activity

Emissions



(g/g
Nitrogen Applied)
Factor

(Mg/yr)


Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Australia
5.7E-03
3.0E-03
-
1.3E-02
3.7E+05
2.1 E+03
1.1E+03
-
4.8E+03
Bahamas
5.7E-03
3.0E-03
-
1.3E-02
2.0E+02
1.1E+00
6.0E-01
-
2.6E+00
Bahrain
5.7E-03
3.0E-03
-
1.3E-02
1.2E+03
6.8E+00
3.6E+00
-
1.6E+01
Barbados
5.7E-03
3.0E-03
-
1.3E-02
1.5E+03
8.6E+00
4.5E+00
-
2.0E+01
Belgium
5.7E-03
3.0E-03
-
1.3E-02
2.0E+05
1.1E+03
6.0E+02
-
2.6E+03
Bermuda
5.7E-03
3.0E-03
-
1.3E-02
1.0E+02
5.7E-01
3.0E-01
-
1.3E+00
Bhutan
5.7E-03
3.0E-03
-
1.3E-02
1.0E+02
5.7E-01
3.0E-01
-
1.3E+00
Bolivia
5.7E-03
3.0E-03
-
1.3E-02
4.4E+03
2.5E+01
1.3E+01
-
5.7E+01
Botswana
5.7E-03
3.0E-03
-
1.3E-02
3.0E+02
1.7E+00
9.0E-01
-
3.9E+00
Brunei
5.7E-03
3.0E-03
-
1.3E-02
3.0E+02
1.7E+00
9.0E-01
-
3.9E+00
Bulgaria
5.7E-03
3.0E-03
-
1.3E-02
4.2E+05
2.4E+03
1.3E+03
-
5.4E+03
Cameroon
5.7E-03
3.0E-03
-
1.3E-02
2.5E+04
1.4E+02
7.4E+01
-
3.2E+02
Cape Verde
5.7E-03
3.0E-03
_
1.3E-02
9.9E+01
5.6E-01
3.0E-01
-
1.3E+00
Central African Rep.
5.7E-03
3.0E-03
-
1.3E-02
7.7E+02
4.4E+00
2.3E+00
-
1.0E+01
Chad
5.7E-03
3.0E-03
-
1.3E-02
2.0E+03
1.1E+01
6.0E+00
-
2.6E+01
China
5.7E-03
3.0E-03
-
1.3E-02
1.7E+07
9.7E+04
5.1E+04
-
2.2E+05
Costa Rica
5.7E-03
3.0E-03
-
1.3E-02
5.5E+04
3.1E+02
1.6E+02
-
7.2E+02
Cote d'lvoire
5.7E-03
3.0E-03
-
1.3E-02
4.5E+03
2.6E+01
1.4E+01
-
5.8E+01
Cuba
5.7E-03
3.0E-03
-
1.3E-02
3.1E+05
1.7E+03
9.2E+02
-
4.0E+03
Czechoslovakia
5.7E-03
3.0E-03
-
1.3E-02
5.9E+05
3.4E+03
1.8E+03
-
7.7E+03
Djibouti
5.7E-03
3.0E-03
-
1.3E-02
1.0E+02
5.7E-01
3.0E-01
-
1.3E+00
Dominica
5.7E-03
3.0E-03
-
1.3E-02
1.0E+03
5.7E+00
3.0E+00
-
1.3E+01

-------
TableA-9. (Continued)

Emission Factor

Activity

Emissions


(g/g
Nitrogen Applied)
Factor

(Mg/yr)

Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Dominican Republic
5.7E-03
3.0E-03
-
1.3E-02
4.4E+04
2.5E+02
1.3E+02 -
5.7E+02
Egypt
5.7E-03
3.0E-03
-
1.3E-02
6.8E+05
3.9E+03
2.0E+03 -
8.8E+03
French Guiana
5.7E-03
3.0E-03
-
1.3E-02
5.0E+02
2.9E+00
1.5E+00-
6.5E+00
French Polynesia
5.7E-03
3.0E-03
-
1.3E-02
3.0E+02
1.7E+00
9.0E-01 -
3.9E+00
Gabon
5.7E-03
3.0E-03
_
1 "E-02
1.0E+03
5.7E+00
3.0E+00 -
1.3E+01
Ghana
5.7E-03
3.0E-03
-
1.3E-02
5.1E+03
2.9E+01
1.5E+01 -
6.7E+01
Greece
5.7E-03
3.0E-03
-
1.3E-02
4.3E+05
2.5E+03
1.3E+03-
5.6E+03
Guatemala
5.7E-03
3.0E-03
-
1.3E-02
8.5E+04
4.8E+02
2.6E+02 -
1.1E+03
Guinea-Bissau
5.7E-03
3.0E-03
-
1.3E-02
3.0E+02
1.7E+00
9.0E-01 -
3.9E+00
India
5.7E-03
3.0E-03
-
1.3E-02
5.8E+06
3.3E+04
1.8E+04 -
7.6E+04
Iraq
5.7E-03
3.0E-03
-
1.3E-02
1.5E+05
8.5E+02
4.5E+02 -
1.9E+03
Jamaica
5.7E-03
3.0E-03
-
1.3E-02
1.2E+04
6.8E+01
3.6E+01 -
1.6E+02
Jordan
5.7E-03
3.0E-03
-
1.3E-02
9.8E+03
5.6E+01
2.9E+01 -
1.3E+02
Laos
5.7E-03
3.0E-03
-
1.3E-02
3.0E+02
1.7E+00
9.0E-01 -
3.9E+00
Lebanon
5.7E-03
3.0E-03
-
1.3E-02
1.0E+03
5.7E+00
3.0E+00 -
1.3E+01
Lesotho
5.7E-03
3.0E-03
-
1.3E-02
4.0E+02
2.3E+00
1.2E+00 -
5.2E+00
Libya
5.7E-03
3.0E-03
-
1.3E-02
2.5E+04
1.4E+02
7.5E+01 -
3.3E+02
Madagascar
5.7E-03
3.0E-03
-
1.3E-02
8.4E+03
4.8E+01
2.5E+01 -
1.1E+02
Malaysia
5.7E-03
3.0E-03
-
1.3E-02
2.6E+05
1.5E+03
7.9E+02 -
3.4E+03
Mali
5.7E-03
3.0E-03
-
1.3E-02
2.3E+04
1.3E+02
6.9E+01 -
3.0E+02
Martinique
5.7E-03
3.0E-03
-
1.3E-02
7.0E+03
4.0E+01
2.1E+01 -
9.1E+01
Mauritania
5.7E-03
3.0E-03
-
1.3E-02
9.0E+02
5.1E+00
2.7E+00 -
1.2E+01

-------
Table A-9. (Continued)
Country
Ei
(g/g
nission Factor
Nitrogen Applied)
Activity
Factor
(Mg N/yr)
Emissions
(Mg/yr)
Middle*
95% C.I.
Middle*
Range
Mongoia
5.7E-03
3.0E-03 -
1.3E-02
1.4E+04
8.2E+01
4.3E+01
-
1.9E+02
New Caledonia
5.7E-03
3.0E-03 -
1.3E-02
5.0E+02
2.9E+00
1.5E+00
-
6.5E+00
New Zealand
5.7E-03
3.0E-03 -
1.3E-02
3.7E+04
2.1E+02
1.1E+02
-
4.8E+02
Nigeria
5.7E-03
3.0E-03 -
1.3E-02
1.5E+05
8.4E+02
4.4E+02
-
1.9E+03
North Korea
5.7E-03
3.0E-03 -
1.3E-02
6.0E+05
3.4E+03
1.8E+03
-
7.8E+03
Panama
5.7E-03
3.0E-03 -
1.3E-02
2.0E+04
1.2E+02
6.1E+01
-
2.6E+02
Papua New Guinea
5.7E-03
3.0E-03 -
1.3E-02
7.3E+03
4.2E+01
2.2E+01
-
9.5E+01
Portugal
5.7E-03
3.0E-03 -
1.3E-02
1.5E+05
8.7E+02
4.6E+02
-
2.0E+03
Qatar
5.7E-03
3.0E-03 -
i.3E—02
6.9E+02
3.9E+00
2.1E+00
-
9.0E+00
Reunion
5.7E-03
3.0E-03 -
1.3E-02
4.2E+03
2.4E+01
1.3E+01
-
5.5E+01
Romania
5.7E-03
3.0E-03 -
1.3E-02
7.2E+05
4.1E+03
2.2E+03
-
9.4E+03
Rwanda
5.7E-03
3.0E-03 -
1.3E-02
1.3E+03
7.7E+00
4.0E+00
-
1.8E+01
Senegal
5.7E-03
3.0E-03 -
1.3E-02
7.0E+03
4.0E+01
2.1E+01
-
9.1E+01
Singapore
5.7E-03
3.0E-03 -
1.3E-02
2.5E+03
1.4E+01
7.5E+00
-
3.2E+01
Somalia
5.7E-03
3.0E-03 -
1.3E-02
3.0E+03
1.7E+01
9.0E+00
-
3.9E+01
South Korea
5.7E-03
3.0E-03 -
1.3E-02
4.5E+05
2.6E+03
1.4E+03
-
5.9E+03
St. Kitts-Nevis
5.7E-03
3.0E-03 -
1.3E-02
5.0E+02
2.9E+00
1.5E+00
-
6.5E+00
St. Lucia
5.7E-03
3.0E-03 -
1.3E-02
1.5E+03
8.6E+00
4.5E+00
-
2.0E+01
St. Vincent
5.7E-03
3.0E-03 -
1.3E-02
2.6E+03
1.5E+01
7.8E+00
-
3.4E+01
Thailand
5.7E-03
3.0E-03 -
1.3E-02
3.4E+05
2.0E+03
1.0E+03
-
4.5E+03
Togo
5.7E-03
3.0E-03 -
1.3E-02
4.9E+03
2.8E+01
1.5E+01
-
6.4E+01
Tonaa
5.7E-03
3.0E-03 -
1.3E-02
1.0E+02
5.7E-01
3.0E-01
-
1.3E+00

-------
Table A-9. (Continued)

Emission Factor
Activity

Emissions


(g/g
Mitrogen Applied)
Factor

(Mg/yr)

Country
Middle*
95% C.I.
(Mg N/yr)
Middle*
Range
Trinidad & Tobago
5.7E-03
3.0E-03- 1.3E-02
3.1E+03
1.8E+01
9.3E+00 -
4.0E+01
Uganda
5.7E-03
3.0E-03- 1.3E-02
5.0E+02
2.9E+00
1.5E+00-
6.5E+00
United Arab Emirates
5.7E-03
3.0E-03- 1.3E-02
2.0E+03
1.1E+01
6.0E+00 -
2.6E+01
United Kingdom
5.7E-03
3.0E-03 - 1.3E-02
1.5E+06
8.7E+03
4.6E+03 -
2.0E+04
Uruguay
5.7E-03
3.0E-03 - 1.3E-02
1.6E+04
8.8E+01
4.7E+01 -
2.0E+02
USSR (Former)
5.7E-03
3.0E-03 - 1.3E-02
1.2E+07
6.7E+04
3.5E+04 -
1.5E+05
Virgin Islands US
5.7E-03
3.0E-03 - 1.3E-02
1.0E+03
5.7E+00
3.0E+00 -
1.3E+01
Yemen
5.7E-03
3.0E-03- 1.3E-02
8.2E+03
4.7E+01
2.5E+01 -
1.1E+02
Yugoslavia
5.7E-03
3.0E-03- 1.3E-02
5.2E+05
3.0E+03
1.6E+03 -
6.8E+03



Total
2.4E+05
1.3E+05 -
5.6E+05
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.
**This source category represents emissions from total fertilizer use in countries
where a breakdown of fertilizer types was not available.

-------
Table A-10. Global Emissions Inventory for Adipic Acid Production

Emission Factor
Activity
Emissions


(g/g
adipic acid)
Factor

(Mg/yr)

Country
Middle*
Range**
(Mg/yr)
Middle*
Range**
Belgium
3.0E-01
NA- NA
2.4E+04
7.3E+03
NA-
NA
Brazil
3.0E-01
NA- NA
5.0E+04
1.5E+04
NA-
NA
Canada
3.0E-01
NA- NA
9.9E+04
3.0E+04
NA-
NA
China
3.0E-01
z
>
1
z
>
5.0E+04
1.5E+04
NA -
NA
France
3.0E-01
NA - NA
2.1 E+05
6.3E+04
NA -
NA
Germany
3.0E-01
NA - NA
2.2E+05
6.5E+04
NA-
NA
Japan
3.0E-01
NA- NA
8.1E+04
2.4E+04
NA -
NA
Poland
3.0E-01
NA- NA
1.5E+04
4.6E+03
NA-
NA
United Kingdom
3.0E-01
NA- NA
2.7E+05
8.2E+04
NA -
NA
United States
7.7E-02
NA- NA
7.3E+05
5.6E+04
NA -
NA



Total
3.6E+05
NA-
NA
*"MiddIe* is meant to convey a representative em'"'- jn factor for the
purposes of this inventory. It is not necessarily the arithmetic
average of emissions data.
**NA - Not applicable. A range of emission factors was not
established for this source category.

-------
Table A-11. Global Emissions Inventory for Nitric Acid Production

Emission Factor
Activity

Emissions

(g/g nitric acid)

Factor

(Mg/yr)
Country
Middle*
Range
(Mq/yr)
Middle*
Range
Algeria
5.8E-03
2.3E-03 -
9.4E-03
9.80E+04
5.7E+02
2.3E+02 - 9.2E+02
Australia
5.8E-03
2.3E-03 -
9.4E-03
2.04E+05
1.2E+03
4.8E+02 - 1.9E+03
Belgium
5.8E-03
2.3E-03 -
9.4E-03
1.35E+06
7.9E+03
3.1E+03 - 1.3E+04
Brazil
5.8E-03
2.3E-03 -
9.4E-03
3.87E+05
2.3E+03
9.0E+02 - 3.6E+03
Bulgaria
5.8E-03
2.3E-03 -
9.4E-03
9.77E+05
5.7E+03
2.3E+03 - 9.2E+03
Canada
5.8E-03
2.3E-03 -
9.4E-03
1.03E+06
6.0E+03
2.4E+03- 9.6E+03
China
5.8E-03
2.3E-03 -
9.4E-03
2.74E+05
1.6E+03
6.4E+02 - 2.6E+03
Colombia
5.8E-03
2.3E-03 -
9.4E-03
3.50E+04
2.0E+02
8.2E+01 - 3.3E+02
Cuba
5.8E-03
2.3E-03 -
9.4E-03
2.45E+05
1.4E+03
5.7E+02- 2.3E+03
Denmark
5.8E-03
2.3E-03 -
9.4E-03
4.30E+04
2.5E+02
1.0E+02- 4.0E+02
Egypt
5.8E-03
2.3E-03 -
9.4E-03
1.00E+03
5.8E+00
2.3E+00 - 9.4E+00
Finland
5.8E-03
2.3E-03 -
9.4E-03
5.18E+05
3.0E+03
1.2E+03 - 4.9E+03
Germany
5.8E-03
2.3E-03 -
9.4E-03
3.69E+06
2.2E+04
8.6E+03 - 3.5E+04
Greece
5.8E-03
2.3E-03 -
9.4E-03
4.90E+05
2.9E+03
1.1E+03 - 4.6E+03
Hungary
5.8E-03
2.3E-03 -
9.4E-03
8.84E+05
5.2E+03
2.1E+03 - 8.3E+03
India
5.8E-03
2.3E-03 -
9.4E-03
5.29E+05
3.1E+03
1.2E+03 - 5.0E+03
Italy
5.8E-03
2.3E-03 -
9.4E-03
1.11E+06
6.5E+03
2.6E+03 - 1.0E+04
Japan
5.8E-03
2.3E-03 -
9.4E-03
6.58E+05
3.8E+03
1.5E+03- 6.2E+03
North Korea
5.8E-03
2.3E-03 -
9.4E-03
3.30E+04
1.9E+02
7.7E+01 - 3.1E+02
Mexico
5.8E-03
2.3E-03 -
9.4E-03
2.00E+03
1.2E+01
4.7E+00 - 1.9E+01
Poland
5.8E-03
2.3E-03 -
9.4E-03
2.18E+06
1.3E+04
5.1E+03 - 2.0E+04
Portugal
5.8E-03
2.3E-03 -
9.4E-03
2.92E+05
1.7E+03
6.8E+02 - 2.7E+03
Romania
5.8E-03
2.3E-03 -
9.4E-03
3.40E+04
2.0E+02
7.9E+01 - 3.2E+02
Spain
5.8E-03
2.3E-03 -
9.4E-03
1.23E+06
7.2E+03
2.9E+03 - 1.2E+04
Sweden
5.8E-03
2.3E-03 -
9.4E-03
3.46E+05
2.0E+03
8.1E+02 - 3.2E+03
Turkey
5.8E-03
2.3E-03 -
9.4E-03
5.00E+03
2.9E+01
1.2E+01 - 4.7E+01
United Kingdom
5.8E-03
2.3E-03 -
9.4E-03
3.15E+06
1.8E+04
7.3E+03 - 2.9E+04
United States
5.8E-03
2.3E-03 -
9.4E-03
7.57E+06
4.4E+04
1.8E+04- 7.1E+04
Venezuela
5.8E-03
2.3E-03 -
9.4E-03
3.00E+03
1.8E+01
7.0E+00- 2.8E+01
Yugoslavia
5.8E-03
2.3E-03 -
9.4E-03
7.30E+05
4.3E+03
1.7E+03 - 6.8E+03




Total
1.6E+05
6.5E+04 - 2.6E+05
"Middle' is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data

-------
Table A-12. Global Emissions Inventory for Motor Vehicles

Emissioins
Country
(Mg N,0/yr)
Afghanistan
6.57
Albania
5.13
Algeria
99.30
Angola
10.71
Anguilla
0.07
Antigua & Barbuda
0.49
Argentina
150.86
Australia
1314.19
Austria
337.14
Bahamas
4.14i
Bahrain
7.14;
Bangladesh
35.23
Barbados
2.67
Belgium
1455.77
Belize
0.41
Benin
2.95
Bermuda
2.32
Bhutan
0.51
Bolivia
7.25
Botswana
3.52
Brazil
595.58!
Brunei
4.35
Bulgaria
132.43
Burkina Faso
3.06
Burma
16.59
Burundi
2.08
Cambodia
1.151
Cameroon
28.52
Canada
2656.94
Cape Verde
0.33
Central African Republic
2.38
Chad
2.08
Chile
99.70
China
460.09
Colombia
203.98
Comoros
0.38
Congo
3.95
A-32

-------
Table A-12. (Continued)

Emissioins
Country
(Mg N,0/yr)
Costa Rica
18.74
Cuba
27.95
Cyprus
6.52
Czechoslovakia
159.48
Denmark
944.60
Djibouti
0.80
Dominica
0.21
Dominican Republic
10.47
Ecuador
27.90
Egypt
170.43
El Salvador
8.54!
Equatorial Guinea
0.25'
Ethiopia
3.11
Falkland Islands
0.10
Fiji
2.17
Finland
984.32
France
10880.80
French Guiana
0.44
French Polynesia
4.74
Gabon
7.92
Gambia
0.38
Germany
11608.48
Ghana
5.31
Greece
356.69
Greenland
2.30
Grenada
0.25
Guadeloupe
3.42
Guam
2.20
Guatemala
12.90
Guinea
3.92
Guinea-Bissau
0.30
Guyana
0.63
Haiti
3.65
Honduras
27.51
Hong Kong
70.49
Hungary
213.18
Iceland
32.96
A-33

-------
Table A-12. (Continued)

Emissioins
Country
(Mg N00/yr)
India
464.26
Indonesia
127.52
Iran
361.25
Iraq
238.57
Ireland
573.42
Israel
219.11
Italy
8022.75
j Ivory Coast
18.63
Jamaica
5.24
Japan
15804.45
Jordan
66.68
Kenya
15.15
Kiribati
0.04
Kuwait
128.22
(Laos
1.21
Lebanon
3.42
Lesotho
0.67
Liberia
0.85
Libya
41.75
Luxembourg
79.66
I Macau
3.96
Madagascar
337.46
Malawi
2.27
Malaysia
59.06
Maldives
0.15
; Mali
3.47
Malta
11.25
Martinique
4.76
Mauritania
1.55
Mauritius
3.27
Mexico
255.97
Monaco
0.72
Mongolia
2.99
Morocco
34.68
• Mozambique
2.02
Namibia
3.13
Nauru
0.34
A-34

-------
Table A-12. (Continued)

Emissioins
Country
(Mg N,0/yr)
Nepal
4.92
i
Netherlands
2373.21
New Caledonia
2.53
New Zealand
214.70
Nicaragua
5.56
Niger
3.96
Nigeria
30.34
North Korea
31.33
| Norway
513.66
Oman
13.79
! Pakistan
72.19
Panama
9.74
Papau New Guinea
5.63
Paraguay
8.31
Peru
82.86
Philippines
62.98
Poland
611.72
Portugal
252.51
Puerto Rico
44.65
Qatar
9.46
Reunion
6.22
Romania
214.28
Rwanda
3.83
Sao Tome & Principe
0.07
Saudi Arabia
446.66
Senegal
8.46
Seychelles
0.48
Sierra Leone
3.26
Singapore
122.77
Solomon Islands
0.27
Somalia
2.95
South Africa
792.52
Spain
2521.90
Sri Lanka
68.93
St. Kitts- Nevis
0.16
St Lucia
0.36
St. Vincent
0.24
A-35

-------
Table A-12. (Continued)

Emissioins
Country
(Mg N,0/yr)
Sudan
16.85
Suriname
1.96
i Swaziland
1.03
Sweden
313.62
Switzerland and Lichtenstein
1057.52
: Syria
59.33
Tanzania
6.49
Thailand
456.12
Togo
6.99
jTonga
0.17
Trinidad & Tobago
8.44
Tunisia
195.38
T urkey
253.90
Uganda
4.51
United Arab Emirates
42.35
United Kingdom
8881.44
Uruguay
13.75
USA
130630.66
USSR (Former)
4506.06
Vanuatu
0.22
Venezuela
90.85
! Vietnam
12.98
! Virgin Islands UK
1.27
Western Sahara
0.22
Yemen
84.81
Yugoslavia
287.68
Zaire
3.65
Zambia
3.49
Zimbabwe
11.00
TOTAL
215672.03
A-36

-------
Table A-13. Global Emissions Inventory for Public Service Electricity (Oil)
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Argentina
1.5E+00
3.1E-01
-
7.2E+00
1.08E+08
1.7E+08
3.4E+07
-
7.8E+08
Australia
1.5E+00
3.1E-01
-
7.2E+00
1.46E+07
2.2E+07
4.6E+06
-
1.0E+08
Austria
1.5E+00
3.1E-01
_
7.2E+00
1.54E+07
2.3E+07
4.8E+06
-
1.1E+08
Belgium
1.5E+00
3.1E-01
-
7.2E+00
1.52E+07
2.3E+07
4.8E+06
-
1.1E+08
Brazil
1.5E+00
3.1E-01
-
7.2E+00
7.32E+07
1.1E+08
2.3E+07
-
5.3E+08
Bulgaria
1.5E+00
3.1E-01
-
7.2E+00
1.63E+08
2.5E+08
5.1E+07
_
1.2E+09
Canada
1.5E+00
3.1E-01
-
7.2E+00
8.33E+07
1.3E+08
Z6E+07
-
6.0E+08
Chile
1.5E+00
3.1E-01
-
7.2E+00
3.27E+06
5.0E+06
1.0E+06
-
2.4E+07
China
1.5E+00
3.1E-01
-
7.2E+00
5.94E+08
9.1 E+08
1.9E+08
-
4.3E+09
Colombia
1.5E+00
3.1E-01
-
7.2E+00
1.75E+06
2.7E+06
5.5E+05
-
1.3E+07
Czechoslovakia
1.5E+00
3.1E-01
_
7.2E+00
8.03E+07
1.2E+08
2.5E+07
-
5.8E+08
Denmark
1.5E+00
3.1E-01
-
7.2E+00
1.09E+07
1.7E+07
3.4E+06
-
7.8E+07
Rnland
1.5E+00
3.1E-01
-
7.2E+00
1.30E+07
2.0E+07
4.1E+06
-
9.3E+07
France
1.5E+00
3.1E-01
-
7.2E+00
3.82E+07
5.8E+07
1.2E+07
-
2.7E+08
Germany
1.5E+00
3.1E-01
-
7.2E+00
6.64E+07
1.0E+08
Z1E+07
-
4.8E+08
Greece
1.5E+00
3.1E-01
-
7.2E+00
6.02E+07
9.2E+07
1.9E+07
-
4.3E+08
Hungary
1.5E+00
3.1E-01
-
7.2E+00
8.03E+07
1.2E+08
2.5E+07
-
5.8E+08
Iceland
1.5E+00
3.1E-01
-
7.2E+00
4.18E+04
6.4E+04
1.3E+04
-
3.0E+05
India
1.5E+00
3.1E-01
-
7.2E+00
1.08E+08
1.6E+08
3.4E+07
-
7.8E+08
Ireland
1.5E+00
3.1E-01
-
7.2E+00
2.62E+07
4.0E+07
8.2E+06
-
1.9E+08
Italy
1.5E+00
3.1E-01
-
7.2E+00
7.57E+08
1.2E+09
2.4E+08
-
5.4E+09
Japan
1.5E+00
3.1E-01
-
7.2E+00
1.20E+09
1.8E+09
3.8E+08
-
8.6E+09
Liechtenstein
1.5E+00
3.1E-01
-
7.2E+00
4.73E+06
7.2E+06
1.5E+06
-
3.4E+07
Mexico
1.5E+00
3.1E-01
-
7.2E+00
5.61 E+08
8.6E+08
1.8E+08
-
4.0E+09
Morocco
1.5E+00
3.1E-01
-
7.2E+00
4.60E+07
7.0E+07
1.4E+07
-
3.3E+08

-------
Table A-13. (Continued)
Country
Emission Factor
(9 / GJ)
Activity
Factor
fGJ/vr)

Emissions
(g/yr)


Middle*
Range
Middle*
Ranqe
Netherlands
1.5E+00
3.1 E—01
-
7.2E+00
9.41 E+06
1.4E+07
3.0E+06
-
6.8E+07
New Zealand
1.5E+00
3.1E-01
-
7.2E+00
3.35E+05
5.1E+05
1.1E+05
-
2.4E+06
Norway
1.5E+00
3.1E-01
-
7.2E+00
6.69E+05
1.0E+06
2.1 E+05
-
4.8E+06
Pakistan
1.5E+00
3.1E-01
-
7.2E+00
5.82E+07
8.9E+07
1.8E+07
-
4.2E+08
Poland
1.5E+00
3.1E-01
-
7.2E+00
9.29E+07
1.4E+08
2.9E+07
-
6.7E+08
Portugal
1.5E+00
3.1E-01
-
7.2E+00
4.56E+07
7.0E+07
1.4E+07
-
3.3E+08
Romania
1.5E+00
3.1E-01
-
7.2E+00
1.75E+08
2.7E+08
5.5E+07
-
1.3E+09
South Africa
1.5E+00
3.1E-01
-
7.2E+00
4.31 E+05
6.6E+05
1.4E+05
-
3.1 E+06
South Korea
1.5E+00
3.1E-01
-
7.2E+00
4.60E+07
7.0E+07
1.4E+07
-
3.3E+08
Spain
1.5E+00
3.1E-01
-
7.2E+00
5.40E+07
8.2E+07
1.7E+07
-
3.9E+08
Sweden
1.5E+00
3.1E-01
-
7.2E+00
2.72E+07
4.1 E+07
8.5E+06
-
2.0E+08
Switzerland
1.5E+00
3.1E-01
-
7.2E+00
4.73E+06
7.2E+06
1.5E+06
-
3.4E+07
Taiwan
1.5E+00
3.1E-01
-
7.2E+00
5.82E+07
8.9E-I-07
1.8E+07
-
4.2E+08
Thailand
1.5E+00
3.1E-01
-
7.2E+00
2.21 E+07
3.4E+07
6.9E+06
-
1.6E+08
Tunisia
1.5E+00
3.1E-01
-
7.2E+00
6.15E+06
9.4E+06
1.9E+06
-
4.4E+07
Turkey
1.5E+00
3.1E-01
-
7.2E+00
2.50E+04
3.8E+04
7.9E+03
-
1.8E+05
United Kingdom
1.5E+00
3.1E-01
-
7.2E+00
1.92E+08
2.9E+08
6.0E+07
-
1.4E+09
USA
1.5E+00
3.1E-01
-
7.2E+00
1.21E+09
1.9E+09
3.8E+08
-
8.7E+09
USSR (Former)
1.5E+00
3.1E-01
-
7.2E+00
3.78E+09
5.8E+09
1.2E+09
-
2.7E+10





Total
1.5E+10
3.1E+09
-
7.1E+10
•"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-14. Global Emissions Inventory for Public Service Electricity (Gas)
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Argentina
4.5E-01
2.7E-01
-
8.4E-01
1.87E+08
8.4E+07
5.0E+07
-
1.6E+08
Australia
4.5E-01
2.7E-01
-
8.4E-01
9.92E+07
4.5E+07
2.7E+07
-
8.4E+07
Austria
4.5E-01
2.7E-01
-
8.4E-01
3.86E+07
1.7E+07
1.0E+07
-
3.3E+07
Belgium
4.5E-01
2.7E-01
-
8.4E-01
1.70E+07
7.7E+06
4.6E+06
-
1.4E+07
Canada
4.5E-01
2.7E-01
-
8.4E-01
2.17E+07
9.8E+06
5.8E+06
-
1.8E+07
Chile
4.5E-01
2.7E-01
-
8.4E-01
2.58E+06
1.2E+06
6.9E+05
-
2.2E+06
China
4.5E-01
2.7E-01
-
8.4E-01
1.87E+07
8.4E+06
5.0E+06
-
1.6E+07
Colombia
4.5E-01
2.7E-01
-
8.4E-01
5.98E+07
2.7E+07
1.6E+07
-
5.0E+07
Czechoslovakia
4.5E-01
2.7E-01
-
8.4E-01
1.20E+08
5.4E+07
3.2E+07
-
1.0E+08
Denmark
4.5E-01
2.7E-01
-
8.4E-01
3.94E+06
1.8E+06
1.1E+06
-
3.3E+06
Finland
4.5E-01
2.7E-01
-
8.4E-01
1.69E+07
7.6E+06
4.5E+06
-
1.4E+07
France
4.5E-01
2.7E—01
-
8.4E-01
8.13E+04
3.7E+04
2.2E+04
-
6.9E+04
Germany
4.5E-01
2.7E-01
-
8.4E-01
3.66E+08
1.7E+08
9.8E+07
-
3.1E+08
Hungary
4.5E-01
2.7E-01
-
8.4E-01
6.91 E+07
3.1 E+07
1.9E+07
-
5.8E+07
India
4.5E-01
2.7E-01
-
8.4E-01
5.20E+07
2.4E+07
1.4E+07
-
4.4E+07
Ireland
4.5E-01
2.7E-01
-
8.4E-01
1.95E+07
8.8E+06
5.2E+06
-
1.6E+07
Italy
4.5E-01
2.7E-01
-
8.4E-01
2.38E+08
1.1E+08
6.4E+07
-
2.0E+08
Japan
4.5E-01
2.7E-01
-
8.4E-01
1.10E+09
5.0E+08
3.0E+08
-
9.3E+08
Liechtenstein
4.5E-01
2.7E-01
-
8.4E-01
1.14E+06
5.1 E+05
3.1 E+05
-
9.6E+05
Mexico
4.5E-01
2.7E-01
-
8.4E-01
1.12E+08
5.1 E+07
3.0E+07
-
9.4E+07
Netherlands
4.5E-01
2.7E-01
-
8.4E-01
3.00E+08
1.4E+08
8.1 E+07
-
2.5E+08
New Zealand
4.5E-01
2.7E-01
-
8.4E-01
4.47E+07
2.0E+07
1.2E+07
-
3.8E+07

-------
Table A-14. (Continued)

Emission Factor
Activity

Emissions


(g/GJ)
Factor

(g/yr)
Country
Middle*
Range
(GJ/yr)
Middle*
Range
Pakistan
4.5E-01
2.7E-01 - 8.4E-01
8.58E+07
3.9E+07
2.3E+07 - 7.2E+07
Poland
4.5E-01
2.7E-01 - 8.4E-01
6.06E+07
2.7E+07
1.6E+07 - 5.1E+07
Romania
4.5E-01
2.7E-01 - 8.4E-01
2.61 E+08
1.2E+08
7.0E+07 - 2.2E+08
South Korea
4.5E-01
2.7E-01 - 8.4E-01
8.13E+07
3.7E+07
2.2E+07 - 6.9E+07
Spain
4.5E-01
2.7E-01 - 8.4E-01
1.14E+07
5.2E+06
3.1E+06 - 9.6E+06
Switzerland
4.5E-01
2.7E-01 - 8.4E-01
1.14E+06
5.1E+05
3.1E+05 - 9.6E+05
Thailand
4.5E-01
2.7E-01 - 8.4E-n"
1.42E+08
6.4E+07
3.8E+07 - 1.2E+08
Tunisia
4.5E-01
2.7E-01 - 8.4E-01
3.37E+07
1.5E+07
9.1E+06- 2.8E+07
Turkey
4.5E-01
2.7E-01 - 8.4E-01
2.30E+04
1.0E+04
6.2E+03 - 1.9E+04
United Kingdom
4.5E-01
2.7E-01 - 8.4E-01
7.40E+06
3.3E+06
2.0E+06 - 6.2E+06
United States
4.5E-01
2.7E-01 - 8.4E-01
2.75E+09
1.2E+09
7.4E+08 - 2.3E+09
USSR (Former)
4.5E-01
2.7E-01 - 8.4E-01
7.56E+09
3.4E+09
2.0E+09 - 6.4E+09



Total
6.3E+09
3.7E+09- 1.2E+10
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-15. Global Emissions Inventory for Public Service Electricity (Coal)
i
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Argentina
6.8E+00
4.6E+00
-
1.0E+01
1.48E+07
1.0E+08
6.9E+07
-
1.5E+08
Australia
6.8E+00
4.6E+00
-
1.0E+01
1.03E+09
7.0E+09
4.8E+09
-
1.0E+10
Austria
6.8E+00
4.6E+00
-
1.0E+01
4.06E+07
2.8E+08
1.9E+08
-
4.1E+08
Belgium
6.8E+00
4.6E+00
-
1.0E+01
1.24E+08
8.5E+08
5.8E+08
-
1.3E+09
Brazil
6.8E+00
4.6E+00
-
1.0E+01
4.44E+07
3.0E+08
2.1E+08
-
4.5E+08
Bulgaria
6.8E+00
4.6E+00
-
1.0E+01
4.56E+08
3.1E+09
2.1E+09
-
4.6E+09
Canada
6.8E+00
4.6E+00
-
1.0E+01
8.28E+08
5.6E+09
3.8E+09
-
8.4E+09
Chile
6.8E+00
4.6E+00
-
1.0E+01
6.90E+06
4.7E+07
3.2E+07
-
7.0E+07
China
6.8E+00
4.6E+00
-
1.0E+01
3.74E+09
2.5E+10
1.7E+10
-
3.8E+10
Colombia
6.8E+00
4.6E+00
-
1.0E+01
2.79E+07
1.9E+08
1.3E+08
-
2.8E+08
Czechoslovakia
6.8E+00
4.6E+00
-
I.OF-^I
1.15E+09
7.9E+09
5.4E+09
-
1.2E+10
Denmark
6.8E+00
4.6E+00
-
1.0E+01
2.73E+08
1.9E+09
1.3E+09
_
2.8E+09
Finland
6.8E+00
4.6E+00
-
1.0E+01
9.67E+07
6.6E+08
4.5E+08
-
9.8E+08
France
6.8E+00
4.6E+00
-
1.0E+01
1.05E+08
7.2E+08
4.9E+08
-
1.1E+09
Germany
6.8E+00
4.6E+00
-
1.0E+01
3.68E+09
2.5E+10
1.7E+10
-
3.7E+10
Greece
6.8E+00
4.6E+00
-
1.0E+01
2.36E+08
1.6E+09
1.1E+09
-
2.4E+09
Hungary
6.8E+00
4.6E+00
-
1.0E+01
1.44E+08
9.8E+08
6.7E+08
-
1.5E+09
India
6.8E+00
4.6E+00
-
1.0E+01
1.59E+09
1.1E+10
7.4E+09
-
1.6E+10
Ireland
6.8E+00
4.6E+00
-
1.0E+01
4.60E+07
3.1E+08
2.1E+08
-
4.7E+08
Italy
6.8E+00
4.6E+00
-
1.0E+01
2.74E+08
1.9E+09
1.3E+09
-
2.8E+09
Japan
6.8E+00
4.6E+00
-
1.0E+01
7.53E+08
5.1E+09
3.5E+09
-
7.6E+09
Liechtenstein
6.8E+00
4.6E+00
-
1.0E+01
2.93E+05
2.0E+06
1.4E+06
-
3.0E+06
Mexico
6.8E+00
4.6E+00
-
1.0E+01
7.03E+07
4.8E+08
3.3E+08
-
7.1E+08
Morocco
6.8E+00
4.6E+00
-
1.0E+01
3.07E+07
2.1E+08
1.4E+08
-
3.1E+08

-------
Table A-15. (Continued)
>
to
Country
Emission Factor
(g / GJ)
Activity
Factor
(GJ/vrt
Emissions
(g/yr)
Middle*
Range
Middle*
Ranae
Netherlands
6.8E+00
4.6E+00
-
1.0E+01
1.79E+08
1.2E+09
8.3E+08
-
1.8E+09
New Zealand
6.8E+00
4.6E+00
-
1.0E+01
8.16E+06
5.6E+07
3.8E+07
-
8.3E+07
Norway
6.8E+00
4.6E+00
-
1.0E+01
6.28E+05
4.3E+06
2.9E+06
-
6.4E+06
Pakistan
6.8E+00
4.6E+00
-
1.0E+01
5.10E+05
3.5E+06
2.4E+06
_
5.2E+06
Poland
6.8E+00
4.6E+00
-
1.0E+01
2.58E+09
1.8E+10
1.2E+10
-
2.6E+10
Portugal
6.8E+00
4.6E+00
-
1.0E+01
4.73E+07
3.2E+08
2.2E+08
-
4.8E+08
Romania
6.8E+00
4.6E+00
-
1.0E+01
3.90E+08
2.7E+09
1.8E+09
-
3.9E+09
South Africa
6.8E+00
4.6E+00
-
1.0E+01
1.65E+09
1.1E+10
7.7E+09
-
1.7E+10
South Korea
6.8E+00
4.6E+00
-
1.0E+01
1.70E+08
1.2E+09
7.9E+08
-
1.7E+09
Spain
6.8E+00
4.6E+00
-
1.0E+01
5.31E+08
3.6E+09
2.5E+09
-
5.4E+09
Sweden
6.8E+00
4.6E+00
-
1.0E+01
4.17E+07
2.8E+08
1.9E+08
-
4.2E+08
Switzerland
6.8E+00
4.6E+00
-
1.0E+01
2.93E+05
2.0E+06
1.4E+06
-
3.0E+06
Taiwan
6.8E+00
4.6E+00
-
1.0E+01
2.20E+08
1.5E+09
1.0E+09
-
2.2E+09
Thailand
6.8E+00
4.6E+00
-
1.0E+01
6.49E+07
4.4E+08
3.0E+08
-
6.6E+08
Turkey
6.8E+00
4.6E+00
-
1.0E+01
1.85E+05
1.3E+06
8.6E+05
-
1.9E+06
United Kingdom
6.8E+00
4.6E+00
-
1.0E+01
2.00E+09
1.4E+10
9.3E+09
-
2.0E+10
United States
6.8E+00
4.6E+00
-
1.0E+01
1.55E+10
1.1E+11
7.2E+10
-
1.6E+11
USSR (Former)
6.8E+00
4.6E+00
-
1.0E+01
5.19E+09
3.5E+10
2.4E+10
-
5.3E+10





4.3E+1o|
3.0E+11
2.0E+11
-
4.4E+11
•"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-16. Global Emissions Inventory for Autoproducers of Electricity (Oil)
I
u>
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Argentina
1.5E+00
3.1 E-01
-
7.2E+00
4.04E+07
6.2E+07
1.3E+07- 2.9E+08
Australia
1.5E+00
3.1E-01
-
7.2E+00
1.02E+07
1.6E+07
3.2E+06 - 7.3E+07
Austria
1.5E+00
3.1 E-01
-
7.2E+00
5.16E+06
7.9E+06
1.6E+06- 3.7E+07
Belgium
1.5E+00
3.1 E-01
-
7.2E+00
2.97E+06
4.5E+06
9.3E+05 - 2.1E+07
Brazil
1.5E+00
3.1 E-01
-
7.2E+00
2.17E+07
3.3E+07
6.8E+06 - 1.6E+08
Canada
1.5E+00
3.1 E-01
-
7.2E+00
5.16E+06
7.9E+06
1.6E+06 - 3.7E+07
Chile
1.5E+00
3.1 E-01
-
7.2E+00
7.40E+06
1.1E+07
2.3E+06 - 5.3E+07
Colombia
1.5E+00
3.1 E-01
-
7.2E+00
1.15E+06
1.8E+06
3.6E+05 - 8.3E+06
Denmark
1.5E+00
3.1 E-01
-
7.2E+00
1.46E+06
2.2E+06
4.6E+05 - 1.1E+07
Finland
1.5E+00
3.1 E-01
-
7.2E+00
9.72E+06
1.5E+07
3.1E+06- 7.0E+07
France
1.5E+00
3.1 E-01
-
7.2E+00
2.50E+07
3.8E+07
7.9E+06 - 1.8E+08
Germany
1.5E+00
3.1 E-01
-
7.2E+00
3.85E+07
5.9E+07
1.2E+07 - 2.8E+08
Greece
1.5E+00
3.1 E-01
-
7.2E+00
3.82E+06
5.8E+06
1.2E+06 - 2.7E+07
Ireland
1.5E+00
3.1 E-01
-
7.2E+00
2.44E+05
3.7E+05
7.7E+04 - 1.8E+06
Italy
1.5E+00
3.1 E-01
-
7.2E+00
4.76E+07
7.3E+07
1.5E+07 - 3.4E+08
Japan
1.5E+00
3.1 E-01
-
7.2E+00
3.92E+08
6.0E+08
1.2E+08- 2.8E+09
Luxembourg
1.5E+00
3.1 E-01
-
7.2E+00
2.03E+02
3.1E+02
6.4E+01 - 1.5E+03
Morocco
1.5E+00
3.1 E-01
-
7.2E+00
8.54E+06
1.3E+07
2.7E+06 - 6.1E+07
Netherlands
1.5E+00
3.1 E-01
-
f.2 E+00
2.22E+07
3.4E+07
7.0E+06- 1.6E+08
New Zealand
1.5E+00
3.1 E-01
-
7.2E+00
8.13E+04
1.2E+05
2.6E+04 - 5.8E+05
Norway
1.5E+00
3.1 E-01
-
7.2E+00
3.37E+06
5.2E+06
1.1E+06 - 2.4E+07
Portugal
1.5E+00
3.1 E-01
-
7.2E+00
4.19E+06
6.4E+06
1.3E+06- 3.0E+07

-------
Table A-16. (Continued)

Emission Factor
Activity

Emissions


(g/GJ)
Factor

(g/yr)
Country
Middle*
Range
(GJ/yr)
Middle*
Range
Spain
1.5E+00
3.1E-01 - 7.2E+00
1.59E+07
2.4E+07
5.0E+06 - 1.1E+08
Sweden
1.5E+00
3.1 E-01 - 7.2E+00
3.33E+06
5.1E+06
1.0E+06- 2.4E+07
Liechtenstein
1.5E+00
3.1E-01 - 7.2E+00
7.72E+05
1.2E+06
2.4E+05 - 5.5E+06
Tunisia
1.5E+00
3.1 E-01- 7.2E+00
4.43E+06
6.8E+06
1.4E+06 - 3.2E+07
Turkey
1.5E+00
3.1 E-01 - 7.2E+00
3.77E+04
5.8E+04
1.2E+04 - 2.7E+05
USSR (Former)
1.5E+00
3.1 E-01 - 7.2E+00
3.51 E+07
5.4E+07
1.1 E+07- 2.5E+08
United Kingdom
1.5E+00
3.1 E-01 - 7.2E+00
6.30E+07
9.6E+07
2.0E+07- 4.5E+08



Total
1.2E+09
2.4E+08 - 5.6E+09
*'Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data

-------
Table A-17. Global Emissions Inventory for Autoproducers of Electricity (Gas)
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/yr)

Emissions
(g/yr)
Middle*
Range
Middle*
Range
Australia
4.5E-01
2.7E-01
-
8.4E-01
1.57E+07
7.1 E+06
4.2E+06 - 1.3E+07
Austria
4.5E-01
2.7E-01
-
8.4E-01
7.89E+06
3.6E+06
2.1 E+06 - 6.6E+06
Belgium
4.5E-01
2.7E-01
-
8.4E-01
8.01 E+06
3.6E+06
2.2E+06- 6.8E+06
Canada
4.5E-01
2.7E-01
-
8.4E-01
2.73E+07
1.2E+07
7.3E+06 - 2.3E+07
Colombia
4.5E-01
2.7E-01
-
8.4E-01
1.25E+07
5.6E+06
3.4E+06 - 1.1E+07
Finland
4.5E-01
2.7E-01
-
8.4E-01
3.62E+06
1.6E+06
9.7E+05 - 3.1 E+06
France
4.5E-01
2.7E-01
-
8.4E-01
1.24E+07
5.6E+06
3.3E+06 - 1.0E+07
Germany
4.5E-01
2.7E-01
-
8.4E-01
9.27E+07
4.2E+07
2.5E+07 - 7.8E+07
Greece
4.5E-01
2.7E-01
-
8.4E-01
4.88E+05
2.2E+05
1.3E+05 - 4.1 E+05
Hungary
4.5E-01
2.7E-01
-
8.4E-01
3.35E+07
1.5E+07
9.0E+06 - 2.8E+07
Ireland
4.5E-01
2.7E-01
-
8.4E-01
6.10E+05
2.8E+05
1.6E+05- 5.1 E+05
Italy
4.5E-01
2.7E-01
-
8.4E-01
2.89E+07
1.3E+07
7.8E+06 - 2.4E+07
Luxembourg
4.5E-01
2.7E-01
-
8.4E-01
6.91 E+02
3.1 E+02
1.9E+02 - 5.8E+02
Netherlands
4.5E-01
2.7E-01
-
8.4E-01
5.00E+07
2.3E+07
1.3E+07 - 4.2E+07
Spain
4.5E-01
2.7E-01
-
8.4E-01
1.79E+06
8.1E+05
4.8E+05 - 1.5E+06
USSR (Former)
4.5E-01
2.7E-01
-
8.4E-01
3.25E+08
1.5E+08
8.7E+07 - 2.7E+08
United Kingdom
4.5E-01
2.7E-01
-
8.4E-01
1.44E+07
6.5E+06
3.9E+06 - 1.2E+07





Total
2.9E+08
1.7E+08 - 5.4E+08
•"Middle" Is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data

-------
Table A-18. Global Emissions Inventory for Autoproducers of Electricity (Coal)
Country
Emission Factor
(g/GJ)
Middle* Range
Activity
Factor
(GJ/yr)

Emissions
(g/yr)


Middle*
Range
Argentina
6.8E+00
4.6E+00
-
1.0E+01
1.16E+07
7.9E+07
5.4E+07
-
1.2E+08
Australia
6.8E+00
4.6E+00
-
1.0E+01
2.11E+07
1.4E+08
9.8E+07
-
2.1E+08
Austria
6.8E+00
4.6E+00
-
1.0E+01
7.07E+06
4.8E+07
3.3E+07
-
7.2E+07
Belgium
6.8E+00
4.6E+00
-
1.0E+01
1.65E+07
1.1E+08
7.7E+07
-
1.7E+08
Brazil
6.8E+00
4.6E+00
-
1.0E+01
1.11E+06
7.5E+06
5.1E+06
-
1.1E+07
Canada
6.8E+00
4.6E+00
-
1.0E+01
1.50E+06
1.0E+07
7.0E+06
-
1.5E+07
Chile
6.8E+00
4.6E+00
-
1.0E+01
1.22E+07
8.3E+07
5.6E+07
-
1.2E+08
Colombia
6.8E+00
4.6E+00
-
1.0E+01
6.67E+06
4.5E+07
3.1E+07
-
6.7E+07
Denmark
6.8E+00
4.6E+00
-
1.0E+01
1.50E+06
1.0E+07
7.0E+06
-
1.5E+07
Finland
6.8E+00
4.6E+00
-
1.0E+01
7.24E+06
4.9E+07
3.4E+07
-
7.3E+07
France
6.8E+00
4.6E+00
-
1.0E+01
1.78E+08
1.2E+09
8.3E+08
-
1.8E+09
Germany
6.8E+00
4.6E+00
-
1.0E+01
4.27E+08
2.9E+09
2.0E+09
-
4.3E+09
India
6.8E+00
4.6E+00
-
1.0E+01
1.75E+08
1.2E+09
8.1E+08
-
1.8E+09
Ireland
6.8E+00
4.6E+00
-
1.0E+01
6.10E+05
4.2E+06
2.8E+06
-
6.2E+06
Italy
6.8E+00
4.6E+00
-
1.0E+01
2.57E+07
1.7E+08
1.2E+08
-
2.6E+08
Japan
6.8E+00
4.6E+00
-
1.0E+01
1.37E+08
9.3E+08
6.3E+08
-
1.4E+09
Luxembourg
6.8E+00
4.6E+00
-
1.0E+01
4.35E+03
3.0E+04
2.0E+04
-
4.4E+04
Netherlands
6.8E+00
4.6E+00
-
1.0E+01
4.15E+06
2.8E+07
1.9E+07
-
4.2E+07
Portugal
6.8E+00
4.6E+00
-
1.0E+01
6.50E+05
4.4E+06
3.0E+06
-
6.6E+06
South Africa
6.8E+00
4.6E+00
-
1.0E+01
1.92E+08
1.3E+09
8.9E+08
-
1.9E+09
Spain
6.8E+00
4.6E+00
-
1.0E+01
4.63E+06
3.2E+07
2.2E+07
-
4.7E+07
Sweden
6.8E+00
4.6E+00
-
1.0E+01
5.69E+05
3.9E+06
2.6E+06
-
5.8E+06

-------
Table A-18. (Continued)

Emission Factor
Activity

Emissions

(g/QJ)
Factor

(g/yr)
Country
Middle* Range
(GJ / yr)
Middle*
Range
Liechtenstein
6.8E+00 4.6E+00 - 1.0E+01
1.22E+05
8.3E+05
5.7E+05 - 1.2E+06
Turkey
6.8E+00 4.6E+00 - 1.0E+01
1.72E+04
1.2E+05
8.0E+04 - 1.7E+05
USSR (Former)
6.8E+00 4.6E+00 - 1.0E+01
4.35E+08
3.0E+09
2.0E+09 - 4.4E+09
United Kingdom
6.8E+CX) 4.6E+00- 1.0E+01
6.50E+07
4.4E+08
3.0E+08 - 6.6E+08


Total
1.2E+10
8.0E+09 - 1.8E+10
*
•"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. H is not necessarily the arithmetic average of emissions data.

-------
Table A-19. Global Emissions Inventory for Industrial Boilers (Oil)
00
Country
Emission Factor
_ (g/GJ)
Activity
Factor
(GJ/yr)
Emisaons
(g/yr)
Middle*
Range
Middle*
Range
Albania
1.5E+00
3.1E-01
-
7.2E+00
1.20E+07
1.8E+07
3.8E+06
-
8.7E+07
Algeria
1.5E+00
3.1E-01
-
7.2E+00
1.93E+07
2.9E+07
6.1E+06
-
1.4E+08
Angola
1.5E+00
3.1E-01
-
7.2E+00
2.72E+05
4.2E+05
8.5E+04
-
2.0E+06
Aruba
1.5E+00
3.1E-01
-
7.2E+00
3.09E+06
4.7E+06
9.7E+05
-
2.2E+07
Australia
1.5E+00
3.1E-01
-
7.2E+00
1.28E+08
2.0E+08
4.0E+07
-
9.2E+08
Austria
1.5E+00
3.1E-01
-
7.2E+00
4.39E+07
6.7E+07
1.4E+07
-
3.2E+08
Belgium
1.5E+00
3.1E-01
-
7.2E+00
1.54E+08
2.4E+08
4.8E+07
-
1.1E+09
Benin
1.5E+00
3.1E-01
-
7.2E+00
2.80E+05
4.3E+05
8.8E+04
-
2.0E+06
Bolivia
1.5E+00
3.1 E—01
-
7.2E+00
1.61E+06
2.5E+06
5.0E+05
-
1.2E+07
Brazil
1.5E+00
3.1E-01
-
7.2E+00
5.15E+08
7.9E+08
1.6E+08
-
3.7E+09
Brunei
1.5E+00
3.1E-01
-
7.2E+00
1.48E+06
2.3E+06
4.7E+05
-
1.1E+07
Bulgaria
1.5E+00
3.1E-01
-
7.2E+00
8.03E+06
1.2E+07
2.5E+06
-
5.8E+07
Burma
1.5E+00
3.1E-01
-
7.2E+00
8.58E+06
1.3E+07
2.7E+06
-
6.2E+07
Canada
1.5E+00
3.1E-01
-
7.2E+00
5.23E+08
8.0E+08
1.6E+08
-
3.8E-I-09
Chile
1.5E+00
3.1E-01
-
7.2E+00
4.77E-H07
7.3E+07
1.5E+07
-
3.4E+08
Colombia
1.5E+00
3.1E-01
-
7.2E+00
3.70E+0 7
5.6E+07
1.2E+07
-
2.7E+08
Cuba
1.5E+00
3.1E-01
-
7.2E+00
1.20E+08
1.8E+08
3.8E+07
-
8.7E+08
Cyprus
1.5E+00
3.1E-01
-
7.2E+00
1.01E+07
1.5E+07
3.2E+06
-
7.3E+07
Czechoslovakia
1.5E+00
3.1E-01
-
7.2E+00
8.83E+07
1.3E+08
2.8E+07
-
6.3E+08
Denmark
1.5E+00
3.1E-01
-
7.2E+00
4.90E+07
7.5E+07
1.5E+07
-
3.5E+08
Ecuador
1.5E+00
3.1E-01
-
7.2E+00
2.59E+07
4.0E+07
8.1E+06
-
1.9E+08
Ethiopia
1.5E+00
3.1E-01
-
7.2E+00
3.33E+06
5.1E+06
1.0E+06
-
2.4E+07
Finland
1.5E+00
3.1 E—01
-
7.2E+00
8.49E+07
1.3E+08
2.7E+07
-
6.1E+08

-------
Table A-19. (Continued)
t
vO
Country
Emission Factor
Cn/GJ)
Activity
Factor
(GJ/vr)
Emissions
(g/yr)
Middle*
Ranqe
Middle*
Ranae
France
1.5E+00
3.1E—01
-
7.2E+00
6.61 E+08
1.0E+09
2.1 E+08
-
4.7E+09
Germany
1.5E+00
3.1E-01
-
7.2E+00
8.03E+08
1.2E+09
2.5E+08
-
5.8E+09
Greece
1.5E+00
3.1E-01
-
7.2E+00
7.87E+07
1.2E+08
2.5E+07
-
5.7E+08
Guatemala
1.5E+00
3.1 E—01
-
7.2E+00
4.35E+06
6.6E+06
1.4E+06
-
3.1E+07
Hong Kong
1.5E+00
3.1E-01
-
7.2E+00
8.16E+07
1.2E+08
2.6E+07
-
5.9E+08
Iceland
1.5E+00
3.1E-01
-
7.2E+00
3.22E+06
4.9E+06
1.0E+06
-
2.3E+07
India
1.5E+00
3.1 E—01
-
7.2E+00
3.88E+08
5.9E+08
1.2E+08
-
2.8E+09
Indonesia
1.5E+00
3.1E-01
-
7.2E+00
2.73E+08
4.2E+08
8.6E+07
-
2.0E+09
Iraq
1.5E+00
3.1E-01
-
7.2E+00
2.70E+07
4.1E+07
8.5E+06
-
1.9E+08
Ireland
1.5E+00
3.1E-01
-
7.2E+00
4.18E-I-07
6.4E+07
1.3E+07
-
3.0E+08
Israel
1.5E+00
3.1E-01
-
7.2E+00
6.28E+07
9.6E+07
2.0E+07
-
4.5E+08
Italy
1.5E+00
3.1E-01
-
7.2E+00
5.52E+08
8.4E+08
1.7E+08
-
4.0E+09
Ivory Coast
1.5E+00
3.1 E—01
-
7.2E+00
5.19E+06
7.9E+06
1.6E+06
-
3.7E+07
Jamaica
1.5E+00
3.1E-01
-
7.2E+00
3.14E+07
4.8E+07
9.9E+06
-
2.3E+08
Japan
1.5E+00
3.1E-01
-
7.2E+00
2.15E+09
3.3E+09
6.8E+08
-
1.5E+10
Jordan
1.5E+00
3.1E-01
-
7.2E+00
1.62E+07
2.5E+07
5.1E+06
-
1.2E+08
Kenya
1.5E+00
3.1 E—01
-
7.2E+00
1.60E+07
2.4E+07
5.0E+06
-
1.1 E+08
Kuwait
1.5E+00
3.1E-01
-
7.2E+00
1.38E+07
2.1E+07
4.3E+06
-
9.9E+07
Lebanon
1.5E+00
3.1E-01
-
7.2E+00
4.02E+06
6.1E+06
1.3E+06
-
2.9E+07
Libya
1.5E+00
3.1E—01
-
7.2E+00
602E+06
9.2E+06
1.9E+06
-
4.3E+07
Luxembourg
1.5E+00
3.1 E—01
-
7.2E+00
1.10E-I-04
1.7E+04
3.4E+03
-
7.9E+04
Malaysia
1.5E+00
3.1E-01
-
7.2E+00
1.03E+08
1.6E+08
3.2E+07
-
7.4E+08
Mexico
1.5E+00
3.1E-01
-
7.2E+00
5.56E+08
8.5E+08
1.7E+08
-
4.0E+09
Morocco
1.5E+00
3.1E-01
-
7.2E+00
3.84E+07
5.9E+07
1.2E+07
-
2.8E+08

-------
Table A-19. (Continued)
Country
Emission Factor
(B/GJ)
Activity
Factor
(GJ/vrt
Emissions
(g/yr)
Middle*
Ranqe
Middle*
Ranqe
Nepal
1.5E+00
3.1E-01
-
7.2E+00
3.22E+05
4.9E+05
1.0E+05
-
2.3E+06
Netherlands
1.5E+00
3.1E-01
-
7.2E+00
3.27E+08
5.0E+08
1.0E+08
-
2.4E+09
New Zealand
1.5E+00
3.1E-01
-
7.2E+00
1.22E+07
1.9E+07
3.8E+06
-
8.8E+07
Nigeria
1.5E+00
3.1E-01
-
7.2E+00
6.19E+07
9.5E+07
1.9E+07
-
4.4E+08
North Korea
1.5E+00
3.1E-01
-
7.2E+00
2.49E+07
3.8E+07
7.8E+06
-
1.8E+08
Norway
1.5E+00
3.1E-01
-
7.2E+00
1.12E+08
1.7E+08
3.5E+07
-
8.0E+08
Oman
1.5E+00
3.1E-01
-
7.2E+00
4.39E+05
6.7E+05
1.4E+05
-
3.2E+06
Pakistan
1.5E+00
3.1E-01
-
7.2E+00
3.12E+07
4.8E+07
9.8E+06
-
2.2E+08
Panama
1.5E+00
3.1E-01
-
7.2E+00
4.77E+06
7.3E+06
1.5E+06
-
3.4E+07
Paraguay
1.5E+00
3.1E-01
-
7.2E+00
1.00E+06
1.5E+06
3.2E+05
-
7.2E+06
Peru
1.5E+00
3.1E-01
-
7.2E+00
5.48E+07
8.4E+07
1.7E+07
-
3.9E+08
Poland
1.5E+00
3.1 E—01
-
7.2E+00
1.08E+08
1.6E+08
3.4E+07
-
7.7E+08
Portugal
1.5E+00
3.1E-01
-
7.2E+00
1.12E+08
1.7E+08
3.5E+07
-
8.1E+08
Qatar
1.5E+00
3.1E-01
-
7.2E+00
2.46E+07
3.8E+07
7.7E+06
-
1.8E+08
Romania
1.5E+00
3.1E-01
-
7.2E+00
8.54E+07
1.3E+08
2.7E+07
-
6.1E+08
Singapore
1.5E+00
3.1E-01
-
7.2E+00
7.70E+07
1.2E-I-08
2.4E+07
-
5.5E+08
South Africa
1.5E+00
3.1E-01
-
7.2E+00
1.71E+08
2.6E+08
5.4E+07
-
1.2E+09
South Korea
1.5E+00
3.1E-01
-
7.2E+00
4.98E+08
7.6E+08
1.6E+08
-
3.6E-I-09
Spain
1.5E+00
3.1E-01
-
7.2E+00
3.86E+Q8
5.9E+08
1.2E+08
-
2.8E+09
Sri Lanka
1.5E+00
3.1E-01
-
7.2E+CX)
4.98E+06
7.6E+06
1.6E+06
-
3.6E+07
Sweden
1.5E+00
3.1E-01
-
7.2E+00
1.39E+08
2.1E+08
4.4E+07
_
1.0E+09
Switzerland
1.5E+00
3.1E-01
-
7.2E+CX)
5.23E+07
8.0E+07
1.6E-I-07
-
3.8E+08
Svria
1.5E+00
3.1E-01
-
7.2E+00
1.24E+08
1.9E+08
3.9E+07
-
8.9E+08

-------
Table A-19. (Continued)

Emission Factor
Activity

Emissions


(g/GJ)
Factor

(g/yr)
Country
Middle*
Range
(GJ/yr)
Middle*
Range
Taiwan
1.5E+00
3.1E-01 - 7.2E+00
2.95E+08
4.5E+08
9.3E+07 - 2.1E+09
Thailand
1.5E+00
3.1 E—01 - 7.2E-"-^
7.15E+07
1.1E+08
2.2E+07 - 5.1E+08
Trinidad & Tobago
1.5E+00
3.1E-01 - 7.2E+00
4.69E+05
7.2E+05
1.5E+05- 3.4E+06
Tunisia
1.5E+00
3.1E-01 - 7.2E+00
2.44E+07
3.7E+07
7.6E+06- 1.7E+08
Turkey
1.5E+00
3.1E-01 - 7.2E+00
2.05E+05
3.1E+05
6.4E+04 - 1.5E+06
United Arab Emirates
1.5E+00
3.1E-01 - 7.2E+00
1.41E+07
2.1E+07
4.4E+06- 1.0E+08
United Kingdom
1.5E+00
3.1E-01 - 7.2E+00
5.27E+08
8.1E+08
1.7E+08 - 3.8E+09
United States
1.5E+00
3.1E-01 - 7.2E+00
4.18E+09
6.4E+09
1.3E+09 - 3.0E+10
Uruguay
1.5E+00
3.1E-01 - 7.2E+00
8.45E+06
1.3E+07
2.7E+06- 6.1E+07
USSR (Former)
1.5E+00
3.1 E—01 - 7.2E+00
3.76E+09
5.7E+09
1.2E+09 - 2.7E+10
Vietnam
1.5E+00
3.1E-01 - 7.2E+00
1.97E+07
3.0E+07
6.2E+06 - 1.4E+08
Yemen
1.5E+00
3.1E-01 - 7.2E+00
4.35E+06
6.6E+06
1.4E+06 - 3.1E+07
Zimbabwe
1.5E+00
3.1 E—01 - 7.2E+00
3.05E+06
4.7E+06
9.6E+05 - 2.2E+07



Total
2.9E+10
6.0E+09 - 1.4E+11
*"MiddIe" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-20. Global Emissions Inventory for Industrial Boilers (Gas)
a
Country
Emission Factor
(9/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Algeria
4.5E-01
2.7E-01
-
8.4E-01
4.52E+07
2.0E+07
1.2E+07
-
3.8E+07
Angola
4.5E-01
2.7E-01
-
8.4E-01
5.48E+06
2.5E+06
1.5E+06
-
4.6E+06
Australia
4.5E-01
2.7E-01
-
8.4E-01
2.51 E+08
1.1 E+08
6.8E+07
-
2.1 E+08
Austria
4.5E-01
2.7E-01
-
8.4E-01
6.95E+07
3.1E+07
1.9E+07
-
5.9E+07
Belgium
4.5E-01
2.7E-01
-
8.4E-01
1.22E+08
5.5E+07
3.3E+07
-
1.0E+08
Bolivia
4.5E-01
2.7E-01
-
w.tE-01
7.95E+06
3.6E+06
2.1E+06
-
6.7E+06
Brazil
4.5E-01
2.7E-01
-
8.4E-01
9.Q0E+07
4.1E+07
2.4E+07
-
7.6E+07
Burma
4.5E-01
2.7E-01
-
8.4E-01
3.14E+07
1.4E+07
8.5E+06
-
2.6E+07
Canada
4.5E-01
2.7E—01
-
8.4E-01
7.82E+08
3.5E+08
2.1 E+08
-
6.6E+08
Chile
4.5E-01
2.7E-01
-
8.4E-01
3.10E+06
1.4E+06
8.3E+05
-
2.6E+06
Colombia
4.5E-01
2.7E-01
-
8.4E-01
3.55E+07
1.6E+07
9.6E+06
-
3.0E+07
Cuba
4.5E-01
2.7E-01
-
8.4E-01
3.68E+05
1.7E+05
9.9E+04
-
3.1E+05
Czechoslovakia
4.5E-01
2.7E-01
-
8.4E-01
1.21 E+08
5.5E+07
3.3E+07
-
1.0E+08
Denmark
4.5E-01
2.7E-01
-
8.4E-01
1.43E+07
6.4E+06
3.8E+06
-
1.2E+07
Finland
4.5E-01
2.7E-01
-
8.4E-01
3.19E+07
1.4E+07
8.6E+06
-
2.7E+07
France
4.5E-01
2.7E-01
-
8.4E-01
4.60E+08
2.1 E+08
1.2E+08
-
3.9E+08
Gabon
45E-01
2.7E-01
-
8.4E-01
2.51 E+04
1.1 E+04
6.8E+03
-
2.1 E+04
Germany
4.5E-01
2.7E-01
-
8.4E-01
6.23E+08
2.8E+08
1.7E+08
-
5.3E+08
Greece
4.5E-01
2.7E-01
-
8.4E-01
3.39E+06
1.5E+06
9.1E+05
_
2.9E+06
Hong Kong
4.5E-01
2.7E-01
-
8.4E-01
3.64E+05
1.6E+05
9.8E+04
-
3.1E+05
Hungary
4.5E-01
2.7E-01
-
8.4E-01
2.28E+08
1.0E+08
6.1E+07
-
1.9E+08
Indonesia
4.5E-01
2.7E-01
-
8.4E-01
2.16E+08
9.8E+07
5.8E+07
-
1.8E+08
Iran
4.5E-01
2.7E-01
-
8.4E-01
4.77E+08
2.2E+08
1.3E+08
-
4.0E+08
Iraq
4.5E-01
2.7E-01
-
8.4E-01
3.58E+07
1.6E+07
9.6E+06
-
3.0E+07

-------
Table A-20. (Continued)
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ/vr)
Emissions
(g/yr)
Middle*
Ranqe
Middle*
Range
Ireland
4.5E-01
2.7E-01
-
8.4E-01
3.25E+07
1.5E+07
8.7E+06
-
2.7E+07
Israel
4.5E-01
2.7E-01
-
8.4E-01
1.29E+06
5.8E+05
3.5E+05
-
1.1E+06
Italy
4.5E-01
2.7E-01
-
8.4E-01
5.15E+08
2.3E+08
1.4E+08
-
4.3E+08
Japan
4.5E-01
2.7E-01
-
8.4E-01
1.52E+08
6.9E+07
4.1E+07
-
1.3E+08
Libya
4.5E-01
2.7E-01
-
8.4E-01
3.84E+07
1.7E+07
1.0E+07
-
3.2E+07
Luxembourg
4.5E-01
2.7E-01
-
8.4E-01
6.90E+03
3.1E+03
1.9E+03
-
5.8E+03
Malaysia
4.5E-01
2.7E-01
-
8.4E-01
4.44E+07
2.0E+07
1.2E+07
-
3.7E+07
Mexico
4.5E-01
2.7E-01
-
8.4E-01
5.90E+08
2.7E+08
1.6E+08
-
5.0E+08
Morocco
4.5E-01
2.7E-01

P 4E-01
3.08E+06
1.4E+06
8.3E+05
-
2.6E+06
Netherlands
4.5E-01
2.7E-01
-
8.4E-01
3.69E+08
1.7E+08
9.9E+07
-
3.1E+08
New Zealand
4.5E-01
2.7E-01
-
8.4E-01
4.77E+07
2.2E+07
1.3E+07
-
4.0E+07
Nigeria
4.5E-01
2.7E-01
-
8.4E-01
1.03E+07
4.7E+06
2.8E+06
-
8.7E+06
Peru
4.5E-01
2.7E-01
-
8.4E-01
1.94E+07
8.8E+06
5.2E+06
-
1.6E+07
Poland
4.5E-01
2.7E-01
-
8.4E-01
2.16E+08
9.8E+07
5.8E+07
-
1.8E+08
Portugal
4.5E-01
2.7E-01
-
8.4E-01
4.18E+04
1.9E+04
1.1E+04
-
3.5E+04
Qatar
4.5E-01
2.7E-01
-
8.4E-01
5.98E+07
2.7E+07
1.6E+07
-
5.0E+07
Romania
4.5E-01
2.7E-01
-
8.4E-01
1.23E+09
5.5E+08
3.3E+08
-
1.0E+09
South Africa
4.5E-01
2.7E-01
-
8.4E-01
1.21E+07
5.5E+06
3.3E+06
-
1.0E+07
South Korea
4.5E-01
2.7E-01
-
8.4E-01
3.14E+06
1.4E+06
8.4E+05
-
2.6E+06
Spain
4.5E-01
2.7E-01
-
8.4E-01
7.78E+07
3.5E+07
2.1E+07
-
6.6E+07
Sweden
4.5E-01
2.7E-01
-
8.4E-01
6.53E+06
3.0E+06
1.8E+06
-
5.5E+06
Switzerland
4.5E-01
2.7E-01
-
8.4E-01
2.37E+07
1.1E+07
6.4E+06
-
2.0E+07
Taiwan
4.5E-01
2.7E-01
-
8.4E-01
1.56E+07
7.1E+06
4.2E+06
-
1.3E+07

-------
Table A-20. (Continued)

Emission Factor
Activity

Emissions


(fl/GJ)
Factor

(g/yr)
Country
Middle*
Range
(GJ/yr)
Middle*
Range
Thailand
4.5E-01
2.7E-01 - 8.4E-01
1.67E+06
7.6E+05
4.5E+05 - 1.4E+06
Trinidad & Tobago
4.5E-01
2.7E-01 - 8.4E-01
9.04E+07
4.1E+07
2.4E+07 - 7.6E+07
Tunisia
4.5E-01
2.7E-01 - 8.4E-01
1.13E+07
5.1E+06
3.1E+06 - 9.6E+06
Turkey
4.5E-01
2.7E-01 - 8.4E-01
1.92E+03
8.7E+02
5.2E+02 - 1.6E+03
United Arab Emirates
4.5E-01
2.7E-01 - 8.4E-01
2.69E+07
1.2E+07
7.2E+06 - 2.3E+07
United Kingdom
4.5E-01
2.7E-01 - 8.4E-01
5.56E+08
2.5E+08
1.5E+08 - 4.7E+08
United States
4.5E-01
2.7E-01 - 8.4E-01
5.27E+09
2.4E+09
1.4E+09- 4.4E+09
Uruguay
4.5E-01
2.7E-01 - 8.4E-01
5.02E+04
2.3E+04
1.4E+04- 4.2E+04
USSR (Former)
4.5E-01
2.7E-01 - 8.4E-01
7.74E+09
3.5E+09
2.1E+09 - 6.5E+09



Total
9.4E+09
5.6E+09 - 1.8E+10
•"Middle" is meant to convey a representative emiss:?.. factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-21. Global Emissions Inventory for Industrial Boilers (Coal)

Emission Factor
Activity

Emissions

(g/GJ)

Factor
(g/yrt
Country
Middle*
Range
(GJ/yr)
Middle*
Range
Albania
6.6E+00
4.6E+00 -
1.0E+01
1.78E+07
1.2E+08
8.3E+07 - 1.8E+08
Algeria
6.0E+OO
4.6E+00 -
1.0E+01
270E+07
1.8E+08
1.3E+08 - 2.7E+08
Argentina
6.8E+00
4.6E+00 -
1.0E+01
4.18E+06
2.8E+07
1.9E+07 - 4.2E+07
Australia
6.8E+00
4.6E+00 -
1.0E+01
1.62E+08
1.1E+09
7.5E+08 - 1.6E+09
Austria
6.8E+00
4.6E+00 -
1.0E+01
6.19E+07
4.2E+08
2.9E+08 - 6.3E+08
Bangladesh
6.8E+00
4.6E+00 -
1.0E+01
1.36E+06
9.3E+06
6.3E+06 - 1.4E+07
Belgium
6.8E+00
4.6E+00 -
1.0E+01
1.56E+08
1.1E+09
7.3E+08 - 1.6E+09
Brazil
6.8E+00
4.6E+00 -
1.0E+01
3.40E+08
2.3E+09
1.6E+09 - 3.4E+09
Bulgaria
6.8E+00
4.6E+00 -
1.0E+01
1.55E+08
1.1E+09
7.2E+08 - 1.6E+09
Burma
6.8E+00
4.6E+00 -
1.0E+01
2.78E+06
1.9E+07
1.3E+07 - 2.8E+07
Canada
6.8E+00
4.6E+00 -
1.0E+01
2.22E+08
1.5E+09
1.0E+09 - 2.2E+09
Chile
6.8E+00
4.6E+00 -
1.0E+01
2.74E+07
1.9E+08
1.3E+08 - 2.8E+08
Colombia
6.8E+00
4.6E+00 -
1.0E+01
7.87E+07
5.4E+08
3.7E+08 - 8.0E+08
Cuba
6.8E+00
4.6E+00 -
1.0E+01
3.97E+06
2.7E+07
1.8E+07 - 4.0E+07
Cyprus
6.8E+00
4.6E+00 -
1.0E+01
3.89E+06
2.6E+07
1.8E+07 - 3.9E+07
Czechoslovakia
6.8E+00
4.6E+00 -
1.0E+01
3.54E+08
2.4E+09
1.6E+09 - 3.6E+09
Denmark
6.8E+00
4.6E+00 -
1.0E+01
1.37E+07
9.3E+07
6.4E+07 - 1.4E+08
Finland
6.8E+00
4.6E+00 -
1.0E+C,
6.23E+07
4.2E+08
2.9E+08 - 6.3E+08
France
6.8E+00
4.6E+00 -
1.0E+01
3.52E+08
2.4E+09
1.6E+09- 3.6E+09
Germany
6.8E+00
4.6E+00 -
1.0E+01
6.53E+08
4.4E+09
3.0E+09 - 6.6E+09
Greece
6.8E+00
4.6E+00 -
1.0E+01
4.60E+07
3.1E+08
2.1E+08 - 4.7E+08
Hong Kong
6.8E+CX)
4.6E+00 -
1.0E+01
1.34E+05
9.1E+05
6.2E+05- 1.4E+06
Hungary
6.8E+00
4.6E+00 -
1.0E+01
1.88E+07
1.3E+08
8.7E+07- 1.9E+08
Iceland
6.8E+00
4.6E+00 -
1.0E+01
2.43E+06
1.7E+07
1.1E+07 - 2.5E+07
India
6.0E+OO
4.6E+00 -
1.0E+01
1.29E+09
8.8E+09
6.0E+09- 1.3E+10

-------
Table A-21. (Continued)
Country
Emission Factor
(g/GJ)
Activity
Factor
(GJ / yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Ranae
Indonesia
6.8E+00
4.6E+00
-
1.0E+01
8.62E+06
5.9E+07
4.0E+07
-
8.7E+07
Iran
6.8E+00
4.6E+00
-
1.0E+01
2.31 E+07
1.6E+08
1.1E+08
_
2.3E+08
Ireland
6.8E+00
4.6E+00
-
1.0E+01
1.95E+07
1.3E+08
9.0E+07
-
2.0E+08
Italy
6.8E+00
4.6E+00
-
1.0E+01
2.26E+08
1.5E+09
1.0E+09
-
2.3E+09
Japan
6.8E+00
4.6E+00
-
1.0E+01
1.43E+09
9.7E+09
6.6E+09
-
1.4E+10
Kenya
6.8E+00
4.6E+00
-
1.0E+01
2.29E+06
1.6E+07
1.1 E+07
-
2.3E+07
Luxembourg
6.8E+00
4.6E+00
-
1.0E+01
3.86E+04
2.6E+05
1.8E+05
-
3.9E+05
Malaysia
6.8E+00
4.6E+00
-
1.0E+01
1.21E+07
8.2E+07
5.6E+07
-
1.2E+08
Mexico
6.8E+00
4.6E+00
-
1.0E+01
7.32E+07
5.0E+08
3.4E+08
-
7.4E+08
Morocco
6.8E+00
4.6E+00
-
1.0E+01
2.28E+06
1.6E+07
1.1 E+07
-
2.3E+07
Mozambique
6.8E+00
4.6E+00
-
1.0E+01
1.62E+06
1.1 E+07
7.5E+06
-
1.6E+07
Nepal
6.8E+00
4.6E+00
-
1.0E+01
2.13E+06
1.5E+07
9.9E+06
-
2.2E+07
Netherlands
6.8E+00
4.6E+00
-
1.0E+01
8.83E+07
6.0E+08
4.1E+08
-
8.9E+08
New Zealand
6.8E+00
4.6E+00
-
1.0E+01
2.87E+07
2.0E+08
1.3E+08
-
2.9E+08
Nigeria
6.8E+00
4.6E+00
-
1.0E+01
2.46E+06
1.7E+07
1.1 E+07
-
2.5E+07
North Korea
6.8E+00
4.6E+00
-
1.0E+01
9.46E+08
6.4E+09
4.4E+09
-
9.6E+09
Norway
6.8E+00
4.6E+00
-
1.0E+01
3.61E+07
2.5E+08
1.7E+08
-
3.7E+08
Pakistan
6.8E+00
4.6E+00
-
1.0E+01
7.36E+07
5.0E+08
3.4E+08
-
7.5E+08
Peru
6.8E+00
4.6E+00
-
1.0E+01
4.18E4-06
2.8E+07
1.9E+07
-
4.2E+07
Philippines
6.8E+00
4.6E+00
-
I.OE-^01
2.62E+07
1.8E+08
1.2E+08
-
2.7E+08
Poland
6.8E+00
4.6E+00
-
1.0E+01
4.18E+08
2.8E+09
1.9E+09
-
4.2E+09
Portugal
6.8E+00
4.6E+00
-
1.0E+01
2.61 E+07
1.8E+08
1.2E+08
-
2.6E+08
Romania
6.8E+00
4.6E+00
-
1.0E+01
2.18E+08
1.5E+09
1.0E+09
-
2.2E+09

-------
Table A-21. (Continued)
Countrv
Emission Factor
(g/GJ)
Activity
Factor
(GJ / vr)

Emissions
g/yr)
Middle*
Range
Middle*
Ranae
South Africa
6.8E+00
4.6E+00
-
1.0E+01
4.85E+08
3.3E+09
2.3E+09
-
4.9E+09
South Korea
6.8E+00
4.6E+00
-
1.0E+01
2.69E+08
1.8E+09
1.3E+09
-
2.7E+09
Spain
6.8E+00
4.6E+00
-
1.0E+01
1.74E+08
1.2E+09
8.1E+08
-
1.8E+09
Sri Lanka
6.8E+00
4.6E+00
-
1.0E+01
2.93E+04
2.0E+05
1.4E+05
-
3.0E+05
Sweden
6.8E+00
4.6E+00
-
1.0E+01
5.56E+07
3.8E+08
2.6E+08
-
5.6E-I-08
Switzerland
6.8E+00
4.6E+00
-
1.0E+01
1.50E+07
1.0E+08
7.0E+07
-
1.5E+08
Taiwan
6.8E+00
4.6E+00
-
1.0E+01
1.71E+08
1.2E+09
7.9E+08
-
1.7E+09
Tanzania
6.8E+00
4.6E+00
-
1.0E+01
1.30E+05
8.8E+05
6.0E+05
-
1.3E+06
Thailand
6.8E+00
4.6E+00
-
1.0E+01
1.98E+07
1.3E+08
9.2E+07
-
2.0E+08
Tunisia
6.8E+00
4.6E+00
-
1.0E+01
3.29E+06
2.2E+07
1.5E+07
-
3.3E+07
Turkey
6.8E+00
4.6E+00
-
1.0E+01
1.83E+05
1.2E+06
8.5E+05
-
1.9E+06
United Kingdom
6.8E+00
4.6E+00
-
1.0E+01
3.57E+08
2.4E+09
1.7E+09
-
3.6E+09
United States
6.8E+00
4.6E+00
-
1.0E+01
2.29E+09
1.6E+10
1.1E+10
-
2.3E+10
Uruguay
6.8E+00
4.6E+00
-
1.0E+01
2.51E+04
1.7E+05
1.2E+05
-
2.5E+05
USSR (Former)
6.8E+00
4.6E+00
-
1.0E+01
5.69E+09
3.9E+10
2.6E+10
-
5.8E+10
Vietnam
6.8E+00
4.6E+00
-
1.0E+01
9.04E+07
6.2E+08
4.2E+08
-
9.1E+08
Zambia
6.8E+00
4.6E+00
-
1.0E+01
1.39E+07
9.5E+07
6.5E+07
-
1.4E+08
Zimbabwe
6.8E+00
4.6E+00
-
1.0E+01
3.69E+07
2.5E+08
1.7E+08
-
3.7E+08





Total
1.2E+11
8.1E+10
—
1.8E+11
•"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-22. Global Emissions Inventory for Oil Refineries (Oil)
Country
Emission Factor
(g/Gj)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Albania
7.9E-01
2.7E-01
-
2.3E+00
9.37E+06
7.4E+06
2.6E+06
-
2.2E+07
Algeria
7.9E-01
2.7E-01
-
2.3E+00
3.7BE+07
3.0E+07
1.0E+07
-
8.7E+07
Argentina
7.9E-01
2.7E-01
-
2.3E+00
4.12E+07
3.3E+07
1.1E+07
-
9.5E+07
Australia
7.9E-01
2.7E-01
-
2.3E+00
5.10E+07
4.0E+07
1.4E+07
-
1.2E+08
Austria
7.9E-01
2.7E-01
-
2.3E+00
2.30E+07
1.8E+07
6.3E+06
-
5.3E+07
Bahrain
7.9E-01
2.7E-01

2.3E+00
4.52E+07
3.6E+07
1.2E+07
-
1.0E+08
Bangladesh
7.9E-01
2.7E—01
-
2.3E+00
1.65E+07
1.3E+07
4.5E+06
-
3.8E+07
Belgium
7.9E-01
2.7E-01
-
2.3E+00
6.90E+07
5.5E+07
1.9E+07
-
1.6E+08
Bolivia
7.9E-01
2.7E—01
-
2.3E+00
3.37E+06
2.7E+06
9.2E+05
-
7.8E+06
Brazil
7.9E-01
2.7E-01
-
2.3E+00
1.48E+08
1.2E+08
4.0E+07
-
3.4E+08
Bulgaria
7.9E-01
2.7E-01
-
2.3E+00
8.91 E+07
7.1E+07
2.4E+07
-
2.1E+08
Burma
7.9E-01
2.7E-01
-
2.3E+00
1.04E+07
8.3E+06
2.9E+06
-
2.4E+07
Canada
7.9E-01
2.7E-01
-
2.3E+00
1.72E+08
1.4E+08
4.7E+07
-
4.0E+08
Chile
7.9E-01
2.7E-01
-
2.3E+00
1.92E+07
1.5E+07
5.3E+06
-
4.4E+07
China
7.9E-01
2.7E-01
-
2.3E+00
2.58E+08
2.0E+08
7.1E+07
-
5.9E+08
Colombia
7.9E-01
2.7E-01
-
2.3E+00
8.37E+07
6.6E+07
2.3E+07
-
1.9E+08
Cuba
7.9E-01
2.7E-01
-
2.3E+00
1.89E+07
1.5E+07
5.2E+06
-
4.4E+07
Czechoslovakia
7.9E-01
2.7E-01
-
2.3E+00
5.06E+07
4.0E+07
1.4E+07
-
1.2E+08
Denmark
7.9E-01
2.7E-01
-
2.3E+00
1.55E+07
1.2E+07
4.2E+06
-
3.6E+07
Ecuador
7.9E-01
2.7E-01
-
2.3E+00
1.59E+07
1.3E+07
4.3E+06
-
3.7E+07
Egypt
7.9E-01
2.7E-01
-
2.3E+00
7.87E+07
6.2E+07
2.2E+07
-
1.8E+08
Finland
7.9E-01
2.7E-01
-
2.3E4-00
1.88E+07
1.5E+07
5.1E+06
-
4.3E+07
France
7.9E-01
2.7E—01
-
2.3E+00
1.61E+08
1.3E+08
4.4E+07
-
3.7E+08

-------
Table A-22. (Continued)
1
Country
Emission Factor
(fl/GJ)
Activity
Factor
(GJ / vr)

Emissions
(9/yr)


Middle*
Ranqe
Middle*
Ranqe
Germany
7.9E-01
2.7E-01
-
2.3E+00
2.03E+08
1.6E+08
5.5E+07
-
4.7E+08
Greece
7.9E-01
2.7E-01
-
2.3E+00
2.98E+07
2.4E+07
8.2E+06
-
6.9E+07
Hungary
7.9E-01
2.7E-01
-
2.3E+00
1.35E+07
1.1E+07
3.7E+06
-
3.1E+07
India
7.9E-01
2.7E-01
-
2.3E+00
1.57E+08
1.2E+08
4.3E+07
-
3.6E+08
Indonesia
7.9E-01
2.7E-01
-
2.3E+00
1.02E+08
8.1E+07
2.8E+07
-
2.3E+08
Iran
7.9E-01
2.7E-01
-
2.3E+00
8.79E+07
7.0E+07
2.4E+07
-
2.0E+08
Iraq
7.9E-01
2.7E-01
-
2.3E+00
6.40E+06
5.1 E+06
1.8E+06
-
1.5E+07
Ireland
7.9E-01
2.7E-01
-
2.3E+00
3.51 E+06
2.8E+06
9.6E+05
-
8.1 E+06
Israel
7.9E-01
2.7E-01
-
2.3E+00
1.70E+07
1.3E+07
4.7E+06
-
3.9E+07
Italy
7.9E-01
2.7E-01
-
2.3E+00
2.14E+08
1.7E+08
5.9E+07
-
4.9E+08
Jamaica
7.9E-01
2.7E-01
-
2.3E+00
6.61 E+06
5.2E+06
1.8E+06
-
1.5E+07
Japan
7.9E-01
2.7E-01
-
2.3E+00
3.79E+08
3.0E+08
1.0E+08
-
8.7E+08
Kuwait
7.9E-01
2.7E-01
-
2.3E+00
1.09E+08
8.6E+07
3.0E+07
-
2.5E+08
Malaysia
7.9E-01
2.7E-01
-
2.3E+00
9.00E+06
7.1 E+06
2.5E+06
-
2.1E+07
Mexico
7.9E-01
2.7E-01
-
2.3E+00
3.11E+08
2.5E+08
8.5E+07
-
7.2E+08
Morocco
7.9E-01
2.7E-01
-
2.3E+00
1.73E+07
1.4E+07
4.7E+06
-
4.0E+07
Netherlands
7.9E-01
2.7E-01
-
2.3E+00
8.45E+07
6.7E+07
2.3E+07
-
1.9E+08
New Zealand
7.9E-01
2.7E-01
-
2.3E+00
1.25E+07
9.9E+06
3.4E+06
-
2.9E+07
Nigeria
7.9E-01
2.7E-01
-
2.3E+00
1.03E+07
8.2E+06
2.8E+06
-
2.4E+07
Norway
7.9E-01
2.7E-01
-
2.3E+00
1 08E+07
8.6E+06
3.0E+06
-
2.5E+07
Pakistan
7.9E-01
2.7E-01
-
2.3E+00
8.20E+06
6.5E+06
2.2E+06
-
1.9E+07

-------
Table A-22. (Continued)
Country
Emission Factor
(fl/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Ranqe
Middle*
Ranqe
Pern
7.9E-01
2.7E-01
-
2.3E+00
2.65E+07
2.1E+07
7.3E+06
-
6.1E+07
Philippines
7.9E-01
2.7E-01
-
2.3E+00
6.02E+07
4.8E+07
1.7E+07
-
1.4E+08
Poland
7.9E-01
2.7E-01
-
2.3E+00
5.15E+07
4.1E+07
1.4E+07
-
1.2E+08
Portugal
7.9E-01
2.7E-01
-
2.3E+00
1.96E+07
1.6E+07
5.4E+06
-
4.5E+07
Qatar
7.9E-01
2.7E-01
-
2.3E+00
4.08E+06
3.2E+06
1.1E+06
-
9.4E+06
Romania
7.9E-01
2.7E-01
-
2.3E+00
9.75E+07
7.7E+07
2.7E+07
-
2.2E+08
Saudi Arabia
7.9E-01
2.7E-01
-
2.3E+00
1.28E+08
1.0E+08
3.5E+07
-
3.0E+08
Singapore
7.9E-01
2.7E-01
-
2.3E+00
7.74E+07
6.1E+07
2.1 E-1-07
-
1.8E+08
South Africa
7.9E-01
2.7E-01
-
2.3E+00
1.46E+08
1.2E+08
4.0E+07
-
3.4E+08
South Korea
7.9E-01
2.7E-01
-
2.3E+00
8.54E+07
6.8E+07
2.3E+07
-
2.0E+08
Spain
7.9E-01
2.7E-01
-
2.3E+00
1.44E+08
1.1E+08
4.0E+07
-
3.3E+08
Sweden
7.9E-01
2.7E-01
-
2.3E+00
2.86E+07
2.3E+07
7.8E+06
-
6.6E+07
Switzerland
7.9E-01
2.7E-01
-
2.3E+00
6.23E+06
4.9E+06
1.7E+06
-
1.4E+07
Syria
7.9E-01
2.7E-01
-
2.3E+00
3.28E+07
2.6E+07
9.0E+06
-
7.6E+07
Taiwan
7.9E-01
2.7E-01
-
2.3E+00
3.77E+07
3.0E+07
1.0E+07
-
8.7E+07
Thailand
7.9E-01
2.7E-01
-
2.3E+00
3.16E+07
2.5E+07
8.7E+06
-
7.3E+07
Tunisia
7.9E-01
2.7E-01
-
2.3E+00
4.73E+06
3.7E+06
1.3E+06
-
1.1E+07
Turkey
7.9E-01
2.7E-01
-
2.3E+00
6.86E+04
5.4E+04
1.9E+04
-
1.6E+05
United Arab Emirates
7.9E-01
2.7E-01
-
2.3E+00
7.91E+06
6.3E+06
2.2E+06
-
1.8E+07
United Kinqdom
7.9E-01
2.7E-01
-
2.3E+00
2.12E+08
1.7E+08
5.8E+07
-
4.9E+08

-------
Table A-22. (Continued)

Emission Factor
Activity

Emissions


(g / GJ)
Factor

(g/yr)
Country
Middle*
Ranae
(GJ / vr)
Middle*
Ranae
United States
7.9E-01
2.7E-01 - 2.3E+00
1.71E+09
1.4E+09
4.7E+08 - 3.9E+09
Uruguay
7.9E-01
2.7E-01 - 2.3E+00
4.85E+06
3.8E+06
1.3E+06- 1.1E+07
USSR (former)
7.9E-01
2.7E-01 - 2.3E+00
4.48E+08
3.5E+08
1.2E+08 — 1.0E+09
Zambia
7.9E-01
2.7E-01 - 2.3E+00
6.95E+05
5.5E+05
1.9E+05 - 1.6E+06



Total
5.2E+09
1.8E+09 - 1.5E+10
"'Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-23. Global Emissions Inventory for Oil Refineries (Gas)
>
d*
to
Country
Emission Factor
(fl/GJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
i
Algeria
4.5E-01
2.7E-01

8.4E-01
4.98E+06
2.3E+06
1.3E+06

4.2E+06
Australia
4.5E-01
2.7E-01
-
8.4E-01
8.12E+06
3.7E+06
2.2E+06
-
6.8E+06
Bahrain
4.5E-01
2.7E-01
-
8.4E-01
3.84E+07
1.7E+07
1.0E+07
-
3.2E+07
Belgium
4.5E-01
2.7E-01
-
8.4E-01
3.51 E+06
1.6E+06
9.5E+05
-
3.0E+06
Canada
4.5E-01
2.7E-01
-
8.4E-01
6.82E+07
3.1 E+07
1.8E+07
-
5.7E+07
Germany
4.5E-01
2.7E-01
-
8.4E-01
9.54E+06
4.3E+06
2.6E+06
-
8.0E+06
India
4.5E-01
2.7E-01
-
8.4E-01
1.92E+07
8.7E+06
5.2E+06
-
1.6E+07
Indonesia
4.5E-01
2.7E-01
-
8.4E-01
1.66E+07
7.5E+06
4.5E+06
-
1.4E+07
Netherlands
4.5E-01
2.7E-01
-
8.4E-01
1.78E+07
8.0E+06
4.8E+06
-
1.5E+07
Nigeria
4.5E-01
2.7E-01
-
8.4E-01
1.15E+06
5.2E+05
3.1E+05
-
9.7E+05
Qatar
4.5E-01
2.7E-01
-
8.4E-01
7.66E+05
3.5E+05
2.1E+05
-
6.5E+05
Saudi Arabia
4.5E-01
2.7E-01
-
8.4E-01
9.41 E+07
4.3E+07
2.5E+07
-
7.9E+07
Taiwan
4.5E-01
2.7E-01
-
8.4E-01
7.87E+05
3.6E+05
2.1E+05
-
6.6E+05
United Kingdom
4.5E-01
2.7E-01
-
8.4E-01
1.05E+06
4.7E+05
2.8E+05
-
8.8E+05
United States
4.5E-01
2.7E-01
-
8.4E-01
6.02E+08
2.7E+08
1.6E+08
-
5.1E+08
USSR (Former)
4.5E-01
2.7E-01
-
8.4E-01
5.86E+07
2.6E+07
1.6E+07
-
4.9E+07





Total
4.3E+08
2.5E+08
—
8.0E+08
"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-24. Global Emissions Inventory for Oil Refineries (Coal/Solid Fuel)

Emission Factor
(g/Qj)
Activity
Factor
Emissions
(g/yr)
Country
Middle*
Range
(GJ/yr)
Middle*
Range
China
Germany
United States
6.8E+00
6.8E+00
6.8E+00
4.6E+00 - 1 .OE+01
4.6E+00 - 1.0E+01
4.6E+00 - 1.0E+01
2.16E+07
8.83E+06
5.48E+06
1.5E+08
6.0E+07
3.7E+07
1.0E+08 -
4.1E+07 -
2.5E+07 -
2.2E+08
8.9E+07
5.5E+07



Total
2.4E+08
1.7E+08 -
3.6E+08
> 	
6\ *"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-25. Global Emissions Inventory for Residential (Gas)
Country
Emission Facta"
(g/GJ)
Activity
Factor
(GJ/yr)
Emissions
(9/yr)
Middle*
Range
Middle*
Range
Algeria
4.5E-01
2.7E-01
-
8.4E-01
3.88E+07
1.8E+07
1.0E+07 - 3.3E+07
Australia
4.5E-01
2.7E—01
-
8.4E-01
7.15E+07
3.2E+07
1.9E+07 - 6.0E+07
Austria
4.5E-01
2.7E-01
-
8.4E-01
6.19E+07
2.8E+07
1.7E+07- 5.2E+07
Belgium
4.5E-01
2.7E-01

8.4E-01
1.15E+08
5.2E+07
3.1E+07 - 9.7E+07
Brazil
4.5E-01
2.7E-01
-
8.4E-01
6.44E+06
2.9E+06
1.7E+06 - 5.4E+06
Canada
4.5E-01
2.7E-01
-
8.4E-01
4.18E+08
1.9E+08
1.1 E+08- 3.5E+08
Colombia
4.5E-01
2.7E-01
-
8.4E-01
2.47E+06
1.1E+06
6.6E+05 - 2.1 E+06
Cuba
4.5E-01
2.7E-01
-
8.4E-01
1.50E+06
6.8E-I-05
4.0E+05 - 1.3E+06
Czechoslovakia
4.5E-01
2.7E-01
-
8.4E-01
6.74E+07
3.0E+07
1.8E+07- 5.7E+07
Denmark
4.5E-01
2.7E-01
-
8.4E-01
3.27E+07
1.5E+07
8.8E+06 - 2.8E+07
Finland
4.5E-01
2.7E-01
-
8.4E-01
5.86E+05
2.6E+05
1.6E+05- 4.9E+05
France
4.5E-01
2.7E-01
-
8.4E-01
2.98E+08
1.3E+08
8.0E+07 - 2.5E+08
Germany
4.5E-01
2.7E-01
-
8.4E-01
6.07E+08
2.7E+08
1.6E+08- 5.1 E+08
Greece
4.5E-01
2.7E-01
-
8.4E—01
8.37E+04
3.8E+04
2.3E+04 - 7.1E+04
Hong Kong
4.5E-01
2.7E-01
-
8.4E-01
4.81 E+06
2.2E+06
1.3E+06 - 4.1 E+06
Hungary
4.5E-01
2.7E-01
-
8.4E-01
2.69E+06
1.2E+06
7.2E+05 - 2.3E+06
indonesia
4.5E-01
2.7E-01
-
8.4E-01
9.50E+05
4.3E+05
2.6E+05 - 8.0E+05
Ireland
4.5E-01
2.7E-01
-
8.4E-01
2.51 E+06
1.1 E+06
6.8E+05 - 2.1 E+06
Italy
4.5E-01
2.7E-01
-
8.4E-01
5.61 E+08
2.5E+08
1.5E+08 - 4.7E+08
Japan
4.5E-01
2.7E-01
-
8.4E-01
3.00E+08
1.4E+08
8.1E+07 - 2.5E+08
Liechtenstein
4.5E-01
2.7E-01
-
8.4E-01
2.46E+07
1.1E+07
6.6E+06 - 2.1E+07
Malaysia
4.5E-01
2.7E-01
-
8.4E-01
3.09E+06
1.4E+06
8.3E+05 - 2.6E+06
Mexico
4.5E-01
2.7E-01
-
8.4E-01
2.77E+07
1.3E+07
7.4E+06 - 2.3E+07
Netherlands
4.5E-01
2.7E-01
-
8.4E-01
3.87E+08
1.7E+08
1.0E+08- 3.3E+08

-------
Table A-25. (Continued)
>
6,
Country
Emission Factor
(fl/GJ)
Activity
Factor
(GJ/vr)
Emissions
(g/yr)
Middle*
Range
Middle*
Ranae
New Zealand
4.5E-01
2.7E-01
-
8.4E-01
7.53E+05
3.4E+05
2.0E+05
-
6.3E+05
Poland
4.5E-01
2.7E-01
-
8.4E-01
1.04E+08
4.7E+07
2.8E+07
-
8.7E+07
Portugal
4.5E-01
2.7E-01
-
8.4E-01
1.59E+06
7.2E+05
4.3E+05
-
1.3E+06
Singapore
4.5E-01
2.7E-01
-
8.4E-01
9.83E+05
4.4E+05
2.6E+05
-
8.3E+05
South Africa
4.5E-01
2.7E-01
-
8.4E-01
3.56E+05
1.6E+05
9.6E+04
-
3.0E+05
South Korea
4.5E-01
2.7E-01
-
8.4E-01
5.19E+06
2.3E+06
1.4E+06
-
4.4E+06
Spain
4.5E-01
2.7E-01
-
8.4E-01
2.00E+07
9.1E+06
5.4E+06
-
1.7E+07
Sweden
4.5E-01
2.7E-01
-
8A1 01
1.80E+06
8.1E+05
4.8E+05
-
1.5E+06
Taiwan
4.5E-01
2.7E-01
-
8.4E-01
1.65E+07
7.5E+06
4.4E+06
-
1.4E+07
Tunisia
4.5E-01
2.7E-01
-
8.4E-01
1.04E+06
4.7E+05
2.8E+05
-
8.8E+05
Turkey
4.5E-01
2.7E-01
-
8.4E-01
1.38E+03
6.2E+02
3.7E+02
-
1.2E+03
United Kingdom
4.5E-01
2.7E-01
-
8.4E-01
1.02E+09
4.6E+08
2.7E+08
-
B.6E+08
United States
4.5E-01
2.7E-01
-
8.4E-01
4.31 E+09
1.9E+09
1.2E+09
-
3.6E+09
Uruguay
4.5E-01
2.7E-01
-
8.4E-01
2.18E+05
9.8E+04
5.9E+04
-
1.8E+05
USSR (Former)
4.5E-01
2.7E-01
-
8.4E-01
2.47E+09
1.1 E+09
6.6E+08
-
2.1 E+09





Total
5.0E+09
3.0E+09

9.3E+09
*"Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
Table A-26. Global Emissions Inventory for Residential (Oil)
Country
Emission Factor
(g/GJ) _
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Range
Middle*
Range
Albania
7.9E-01
2.7E-01
-
2.3E+00
3.06E+06
2.4E+06
8.4E+05
-
7.1E+06
Algeria
7.9E-01
2.7E-01
-
2.3E+00
6.28E+07
5.0E+07
1.7E+07
-
1.4E+08
Australia
7.9E-01
2.7E-01
-
2.3E+00
1.70E+07
1.3E+07
4.7E+06
-
3.9E+07
Austria
7.9E-01
2.7E-01
-
2.3E+00
1.13E+08
8.9E+07
3.1 E+07
-
2.6E+08
Bahrain
7.9E-01
2.7E-01
-
2.3E+00
2.12E+06
1.7E+06
5.8E+05
-
4.9E+06
Belgium
7.9E-01
2.7E-01
-
2.3E+00
1.75E+08
1.4E+08
4.8E+07
-
4.0E+08
Bolivia
7.9E-01
2.7E-01
-
2.3E+00
1.08E+07
8.5E+06
3.0E+06
-
2.5E+07
Brazil
7.9E-01
2.7E-01
-
2.3E+00
1.86E+08
1.5E+08
5.1 E+07
-
4.3E+08
Bulgaria
7.9E-01
2.7E-01
-
2.3E+00
9.62E+06
7.6E+06
2.6E+06
-
2.2E+07
Burma
7.9E-01
2.7E-01
-
2.3E+00
4.06E+05
3.2E+05
1.1E+05
-
9.4E+05
Canada
7.9E-01
2.7E-01
-
2.3E+00
1.94E+08
1.5E+08
5.3E+07
-
4.5E+08
Chile
7.9E-01
2.7E-01
-
-.JE+OO
2.62E+07
2.1 E+07
7.2E+06
-
6.0E+07
Colombia
7.9E-01
2.7E-01
-
2.3E+00
3.01 E+07
2.4E+07
8.2E+06
-
6.9E+07
Cuba
7.9E-01
2.7E-01
-
2.3E+00
3.13E+07
2.5E+07
8.6E+06
-
7.2E+07
Czechoslovakia
7.9E-01
2.7E-01
-
2.3E+00
2.49E+07
2.0E+07
6.8E+06
-
5.7E+07
Denmark
7.9E-01
2.7E-01
-
2.3E+00
1.03E+08
8.1 E+07
2.8E+07
-
2.4E+08
Ecuador
7.9E-01
2.7E-01
-
2.3E+00
1.42E+07
1.1 E+07
3.9E+06
-
3.3E+07
Finland
7.9E-01
2.7E-01
-
2.3E+00
1.04E+08
8.3E+07
2.9E+07
-
2.4E+08
France
7.9E-01
2.7E-01
-
2.3E+00
8.24E+07
6.5E+07
2.3E+07
-
1:9E+08
Germany
7.9E-01
2.7E-01
-
2.3E+00
9.79E+08
7.8E+08
2.7E+08
-
2.3E+09
Greece
7.9E-01
2.7E-01
-
2.3E+00
5.69E+07
4.5E+07
1.6E+07
-
1.3E+08
Hong Kong
7.9E-01
2.7E-01
_
2.3E+00
5.15E+06
4.1E+06
1.4E+06
-
1.2E+07
Iceland
7.9E-01
2.7E-01
-
2.3E+00
9.20E+05
7.3E+05
2.5E+05
-
2.1E+06
India
¦' —————— - —~ - 1
7.9E-01
2.7E-01
-
2.3E+00
4.44E+08
3.5E+08
1.2E+08
-
1.0E+09

-------
Table A-26. (continued)
Country
Emission Factor
(g/GkJ)
Activity
Factor
(GJ/yr)
Emissions
(g/yr)
Middle*
Ranqe
Middle*
Ranae
Indonesia
7.9E-01
2.7E-01
-
2.3E+00
2.18E+08
1.7E+08
6.0E+07
-
5.0E+08
Iran
7.9E-01
2.7E-01
-
2.3E+00
3.33E+08
2.6E+08
9.1 E+07
-
7.7E+08
Iraq
7.9E-01
2.7E-01
-
2.3E+00
8.03E+07
6.4E+07
2.2E+07
-
1.9E+08
Ireland
7.9E-01
2.7E-01
-
2.3E+00
1.35E+07
1.1 E+07
3.7E+06
-
3.1 E+07
Israel
7.9E-01
2.7E-01
-
2.3E+00
1.05E+07
8.4E+06
2.9E+06
-
2.4E+07
Italy
7.9E-01
2.7E-01
-
2.3E+00
5.31 E+08
4.2E+08
1.5E+08
-
1.2E+09
Japan
7.9E-01
2.7E-01
-
2.3E+00
4.48E+08
3.5E+08
1.2E+08
-
1.0E+09
Kuwait
7.9E-01
2.7E-01
-
2.3E+00
4.81 E+06
3.8E+06
1.3E+06
-
1.1 E+07
Luxembourg
7.9E-01
2.7E-01
-
2.3E+00
1.33E+04
1.1E+04
3.6E+03
-
3.1E+04
Malaysia
7.9E-01
2.7E-01
-
2.3E+00
2.19E+07
1.7E+07
6.0E+06
-
5.0E+07
Mexico
7.9E-01
2.7E-01
-
2.3E+00
2.78E+08
2.2E+08
7.6E+07
-
6.4E+08
Morocco
7.9E-01
2.7E-01
-
2.3E+00
2.51 E+07
2.0E+07
6.9E+06
-
5.8E+07
Netherlands
7.9E-01
2.7E-01
-
2.3E+00
1.36E+07
1.1 E+07
3.7E+06
-
3.1 E+07
New Zealand
7.9E-01
2.7E-01
-
2.3E+00
1.21 E+06
9.6E+05
3.3E+05
-
2.8E+06
Nigeria
7.9E-01
2.7E-01
-
° 3E+00
7.28E+07
5.8E+07
2.0E+07
-
1.7E+08
Norway
7.9E-01
2.7E-01
-
2.3E+00
2.72E+07
2.2E+07
7.5E+06
-
6.3E+07
Pakistan
7.9E-01
2.7E-01
-
2.3E+00
4.27E+07
3.4E+07
1.2E+07
-
9.8E+07
Peru
7.9E-01
2.7E-01
-
2.3E+00
4.56E+07
3.6E+07
1.2E+07
-
1.1E+08
Poland
7.9E-01
2.7E-01
-
2.3E+00
6.90E+06
5.5E+06
1.9E+06
-
1.6E+07
Portugal
7.9E-01
2.7E-01
-
2.3E+00
2.09E+07
1.7E+07
5.7E+06
-
4.8E+07
Qatar
7.9E-01
2.7E-01
-
2.3E+00
4.73E+05
3.7E+05
1.3E+05
-
1.1E+06
Romania
7.9E-01
2.7E-01
-
2.3E+00
3.19E+07
2.5E+07
8.7E+06
-
7.4E+07
Sinaapore
7.9E-01
2.7E-01
-
2.3E+00
3.31 E+06
2.6E+06
9.1E+05
-
7.6E+06

-------
Table A-26. (continued)
t
00

Emission Factor

Activity

Emissions




(g/QJ)


Factor

(g/yr)


Country
Middle*
Ranae
(GJ/vrt
Middle*
Ranqe
South Korea
7.9E-01
2.7E-01
-
2.3E+00
1.72E+08
1.4E+08
4.7E+07
-
4.0E+08
Spain
7.9E-01
2.7E-01
-
2.3E+00
1.20E+08
9.5E+07
3.3E+07
-
2.8E+08
Sweden
7.9E-01
2.7E-01
-
2.3E+00
1.03E+08
8.2E+07
2.8E+07
-
2.4E+08
Switzerland
7.9E-01
2.7E-01
-
2.3E+00
1.62E+08
1.3E+08
4.4E+07
_
3.7E+08
Syria
7.9E-01
2.7E-01
-
2.3E+00
2.26E+07
1.8E+07
6.2E+06
-
5.2E+07
Taiwan
7.9E-01
2.7E-01
-
2.3E+00
4.35E+07
3.4E+07
1.2E+07
-
1.0E+08
Thailand
7.9E-01
2.7E-01
-
2.3E+00
2.38E+07
1.9E+07
6.5E+06
-
5.5E+07
Tunisia
7.9E-01
2.7E-01
-
2.3E+00
2.00E+07
1.6E+07
5.5E+06
-
4.6E+07
Turkey
7.9E-01
2.7E-01
-
2.3E+00
1.07E+05
8.5E+04
2.9E+04
-
2.5E+05
United Arab Emirates
7.9E-01
2.7E-01
-
2.3E+00
3.90E+06
3.1E+06
1.1E+06
-
9.0E+06
United Kingdom
7.9E-01
2.7E-01
-
2.3E+00
9.79E+07
7.8E+07
2.7E+07
-
2.3E+08
United States
7.9E-01
2.7E-01
-
2.3E+00
1.48E+09
1.2E+09
4.1E+08
-
3.4E+09
Uruguay
7.9E-01
2.7E-01
-
2.3E+00
5.48E+06
4.3E+06
1.5E+06
-
1.3E+07
USSR (Former)
7.9E-01
2.7E-01
-
2.3E+00
2.35E+08
1.9E+08
6.4E+07
-
5.4E+08
Zimbabwe
7.9E-01
2.7E-01
-
2.3E+00
6.19E+05
4.9E+05
1.7E+05
-
1.4E+06





Total
5.9E+09
2.0E+09
_
1.7E+10
*" Middle" is meant to convey a representative emission factor for the purposes of
this inventory. It is not necessarily the arithmetic average of emissions data.

-------
APPENDIX B
Statistical Analysis of Fuel Combustion
Emissions Data
B 1

-------
APPENDIX B
STATISTICAL ANALYSIS OF FUEL COMBUSTION EMISSIONS DATA
The data set used to develop the stationary fuel combustion emission factors is
presented in this appendix. The data set is followed by the results of the pairwise
comparison of coal-fired boilers classified (variable name COM RUN) as follows:
1 -
wall-fired
2 =
tangentially-fired
3 =
fluidized bed
4 -
other
• —
not included in analysis
For each comparison, if Prob> |Z| < = 0.05 the two sets of emission factors were
treated as different populations. The only comparison which failed this test was that
between 2 and 4 (tangentially-fired and other). These two sets of data were combined to
develop an emission factor, while separate emission factors were developed for wall-fired
and fluidized bed. A plot of the data is provided which further illustrates the differences
in the data sets.
The units of the original data were N20 concentration in ppm dry at 3% 02. These
were converted to lb/MMBtu according to the procedures given in pages 1005-1007 of CFR
Part 60, Appendix A. To obtain lbs/MMBtu, the emissions (in ppm) were first multiplied
by 1.141 x 10"7 (lb/scf)/ppm. Then these values were converted to lb/MMBtu using the
following formula:
where:
E = C F
0 d d
20.9
20.9 - %0,
N20 concentration (lb/scf);
F-faetor for 02; and
dkd.291\Appcndix.b
B-2

-------
%o2 =
Oxygen concentration (3% in this case).
The final step was conversion to g/GJ using 1 lb = 453.6 gram, and 1 Btu
1,054.4 joules.
The F-factors used in the conversions are provided below:
Fuel	dry scf/MMBtu
Bituminous Coal	9,780
Oil	9,190
Natural Gas	8,710
Wood	9,240
Wood Bark	9,600
The wood bark F-factor was used for peat.
dkd.291\Appendix.b	B-3

-------
OBS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
16
19
20
21
22
23
24
OBS
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
SAS
13:37 Friday, May 14. 1993 1
FUEL
COMBUS
WATER
Coal -
Coal -
Coal -
Coal-
Coal-
Coal-
Coal-
Coal-
Coal -
Coal -
Coal -
Coal-
Coal-
Coal-
Coal -
Coal -
Coal-
Coal-
Coal -
Coal-
Coal-
Coal-
Coal -
Coal -
eoiiE
la 11-
Corne
i red
i red
i red
1 red
i red
i red
i red
ired
i red
i red
1 red
1 red
ired
i red
1 red
i red
ired
ired
i red
1 red
ired
ired
ired
i red
i red
-fi red
lo« N3dx burners
Low NOdx burners
Srown coal (Fluldized bed}
Stoker
Wall-ft red
Wall-fired
Wall-firtd
Wall-fired
Wall-fired
Wal1-fired
Wall-fired
Wall-f1red
Wall-fired
Wall-fired
Wall-fired
Wal1-fired
Wall-fired
Tangentially-fired
Tangentially-fired
Tangentially-ftred
Tangentially-fired
Tangentially-fired
Tangentially-fi red
Tangentially-fired
CONTENT
16
2.3000000000
1
20
11
2
6
13
9
11
E
2
32
26
11
3
27
2
1
1
1
4.5000000000
10
0.5
N0IR1
GC
SS / glass bombs (Condenser)
PE-lined bags (Silica gel)
On-1ine
On-line
On-line
KD!R1
NDIR2
Continuous 1R on-line
Continuous 1R on-line
Continuous 1R on-line
PVC bag (Condenser)
PVC bag (Condenser)
PE-lined bags
PE-l1ned bags
PE-lined bags (Silica gel)
0n-line
On-1ine
On-1Ine
On-lIne
GC
N0IR1
Continuous
CI
16.0
2.3
1.0
20.0
11.0
2.0
6.0
13.0
9.0
U.O
6.0
2.0
32.0
26.0
11.0
3.0
27.0
2.0
1.0
1.0
1.0
4.5
10.0
0.5
COM RUN
B-4

-------
OBS
25
26
27
28
29
3D
31
32
33
34
35
36
3?
38
39
40
41
42
43
44
45
46
4?
48
OBS
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48





13:37
FUEL

COHSUS

WATER

Coal -
ired
Tangential ly-
red
Continuous

Coal -
ired
Tangential ly-
red
Grab sample «lth NaOH added
Coal -
ired
Tangentially-
red
Grab sample with NaOK added
Coal-
ired
Tangentially-
red
Continuous !R on-line

Coal-
(red
Tangentially-
red
Continuous 1R on-line

Coal-
ired
Tangential ly-
red
Continuous !R on-line

Coal-
ired
Tangentially-
red
Continuous IR on-line

Coal-
tred
Tangenttally-
red
PVC bag on-line (Condenser)
Coal-
ired
Tangentially-
red
PVC bag on-line (Condenser)
Coal-
ired
Tangentially-
red
On-line (Condenser)

Coal-
ired
Tangentially-
red
On-line (Condenser)

Coal-
ired
Tangentlally-
red
On-line (Condenser)

Coal-
ired
Tangentially-
red
On-line (Condenser)

Coal-
tred
Tangentially-
red
Glass bomb

Coal-
i red
Tangentially-
red
Glass bomb (Hd20/S0d2
removed)
Coal-
ired
Fluidized bed

PE-lined bags (Silica
gel)
Coal -
i red
Fluidized bed

PE-lined bags (Silica
9e1)
Coal-
i red
Fluidized bed

PE-lined bags (Silica
gel)
Coal -
i red
Fluidized bed

PE-lined bags (Silica
gel)
Coal -
Ired
Fluidized bed

PE-lined bags (Silica
gel)
Coal -
ired
Fluidized bed

PE-l1ned bags (Silica
gel)
Coal -
i red
Fluidized bed

PE-lined bags (Silica
gel)
Coal -
ired
Fluidized bed

PE-1ined bags (Si 1 tea
gel)
Coal -
i red
Fluidized bed

PE-lined bags (Silica
gel)
13:37 Friday, May 14, 1993 2
BOILER
CONTENT
CI COMRUN
Ci rculating
Circulating
BubblIng
Bubbling
Circulating
Circulating
Circulating
Ci rculating
Circulating
O.S
1 .
I
1
1
0.5
0.5
2.4000000000
4.6000000000
5.1000000000
2.1000000000
3.3000000000
2.5000000000
130
3
96
80
23
137
126
68
106
79
165
0.50
2
1.00
2
1.00
2
1.00
2
1.00
2
0.50
2
0.50
2
2.40
2
4.60
2
5.10
2
2.10
2
3.30
2
2.50
2
130.00
2
3.00
2
96.00
3
80.00
3
23.00
3
137.00
3
126.00
3
88.00
3
106.00
3
79.00
3
165.00
3
B-5

-------
OBS
<9
50
51
52
53
54
55
56
5?
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
OBS
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
66
69
70
71
72
SAS
13:37 Friday, (toy 14. 1993
FUEL
COMBUS
WATER
Coal -
Coal -
Coal -
Coal -
Coal-
Coal -
Coal-
Coal -
Coal -
Coal-
Coal -
Coal -
Coal-
Coal-
Coal-
Coal-
Coal -
Coal-
Coal-
Coal-
Coal-
Coal-
Coal-
Coal -
(red
ired
i red
1 red
1 red
i red
i red
i red
ired
1 red
1 red
ired
Ired
tred
i red
I red
i red
i red
i red
i red
1 red
Ired
i red
(red
Fluid!zed bed
Fluidized bed
Fluidized bed
Fluidized bed
Fluidized bed
Fluidized bed
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
SS t glass bombs (Condenser)
SS / glass bombs (Condenser)
SS / glass bombs (Condenser)
SS / glass bombs (Condenser)
SS / glass bombs (Condenser)
On-line IR
On-line
On-line
On-11ne
On-line
On-line (Condenser)
61 ass bomb (Condenser)
On-1Ine
On-line
On-line
On-1ine
On-1ine
On-1ine
0n-line
On-line
On-1ine
0n-line
T£F-lined bomb (Condenser)
TEF-lined bomb (Condenser)
BOILER
C0NTEKT
CI
C0H.fiUH
Pressurized
•'5
115.00 3
Pressurized
1 3
193.00 3
Pressurized
168
168.00 3
Pressurized
9£
95.00 3
Pressurized
95
95.00 3

100
100.00 3
DF tunnel
4.S0Q0000000
4.90 4
OF tunnel
2.5000000000
2.50 4
OF tunnel
4.7000000000
4.70 4
OF tunnel
2.6000000000
2.60 4
OF tunnel
5
5.00 4
OF tunnel
2.5
2.50 4
OF tunnel
1.3800000000
1.38 4
OF tunnel
2.0600000000
2.06 4
UA furnace
3.9100000000
3.91 4
UA furnace
4.6700000000
4.67 4
UA furnace
1.4000000000
1.40 4
Pre-NSPS. Triple
4.7000000000
4.70 4
Pre-NSPS, Circular
4.3000000000
4.30 4
Pre-NSPS, Tangential
1.7000000000
1.70 4
Pre-NSPS. Tangential
o.aooooooooo
0.80 4
Pre-NSPS. Tangential
1.7000000000
1.70 4

0.5
0.50 4

0.5
0.50 4
B-6

-------
OBS
73
74
75
76
77
78
79
BO
81
82
OBS
73
74
75
76
77
78
79
60
81
82
SAS
13:37 Friday. Hay 14. 1993 4
FUEL
CQHBUS
WATER
Coal-fired
Coal - fi red
Coal-fired
Coal -fi red
Coal-fired
Coal-fired
Coal-fired
Coal-fired
Coal-fired
Coal - fired
Other
Other
Other
Other
Other
Other
Other
Other
Other
Other
TEF-llned bomb (Condenser)
TEF-llned bomb (Condenser)
TEF-lined bomb (Condenser)
TEF-llned bomb (Condenser)
TEF-lined bomb (Condenser)
TEF-llned bomb (Condenser)
SS / glass bombs (Condenser)
SS / glass bombs (Condenser)
SS / glass bombs (Condenser)
On-line IR
BOILER
CONTENT
Ci
COH RUN
Vet bottom
Dry bottom
Dry bottom
Combustor
0.5
10
3
10
0.5
0.5
27
25
4
30
0.50
10.00
3.00
10.00
0.50
0.50
27.00
25.00
4.00
30.00
B-7

-------
SAS
13:3? Friday, Kay 14, 1993 IS
npariway procedure
Vilcoxon Scores (Rank. Suns) for Variable Ci
Classified by Variable COHJtUN
Slti of
Scores
Expected
Under HO
Std Dev
Under HO
Mean
Score
336.500000	234.0
293.500000	396.0
Average Scores were used for Ties
Vllcoxon 2-Sample Test (Normal Approximation)
(»1th Continuity Correction of .5)
29.1353261
29.1353261
25.6846154
13.3409091
S- 336.500
Z- 3.50090
Prob » |Z| • 0.0005
T-Test appro*. Significance
0.0013
Kruskal-Uallis Test (Chi-Square Approximation)
CH1SQ- 12.377	OF- 1
Prob » CH1SQ-
0.0004
B-8

-------
SAS
13:37 Friday. Kay 14. 1993 23
NPAR1VAY PROCEDURE
Yilcoxon Scores (Rank. Suns) for Variable CI
Classified by Variable C0H_RUN
Sun of
Scores
Expected
Under HO
Std Oev
Under HO
Nun
Score
94.0	188.500000
312.0	217.500000
Average Scores vert used for Ties
Vflcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
21.6874900
21.6874900
7.2307692
20.8000000
S« 94.0000
Z- -4.33430
Prob > |Z| - 0.0001
T-Test appro*. Significance ¦
0.0002
Kruskal-Wall is Test (Chi-Square Approximation)
CHISQ" 18.987	DF- 1
Prob » CHISQ-
0.0001
B-9

-------
SAS
13:37 Friday, Key 14. 19S3 31
N P A R 1 V A Y PROCEDURE
Wllcoxon Scores (Rank Suns) for Variable CI
Classified by Variable C0M_RUN
Sin of
Scores
Expected
Under HO
Std Dev
Under HO
Mean
Score
375.0	273.0
486.0	588.0
Average Scores were used for Ties
Wllcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
35.6433553
35.6433553
28.B461S38
17.3571423
S- 375.000
Z- 2.84766
Prob > fZ| - 0.0044
T-Test appro*. Significance •
0.0069
Kruskal-Vallis Test (Chf-Square Approximation}
CHISq- 8.1B92	OF" 1
Prob » CHISQ-
0.0042
B-10

-------
SAS
13:37 Friday, Hay 14, 1993 19
KPAD1VU PDOCEDURE
Wilcoxon Scores (Rank Suns) for Variable C!
Classified by Variable COM_RUN
Sun of
Scores
Expected
Under HO
Std Oev
Under HQ
Mean
Score
264.0	418.0
439.0	285.0
Average Scores were used for Ties
Wilcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
32.1976330
32.1978330
12.0000000
29.2666667
439.000
4.76740
Prob > |Z| • 0.0001
T-Test approx. Significance ¦
0.0001
ICruskal-Wall Is Test (Chi-Square Approximation)
CHISQ= 22.876	OF- 1
Prob » CHISQ*
0.0001
B-ll

-------
SAS
13:3? Friday. Hay 1«. 1993 47
N P A R 1 V A T PROCEOURE
Vilcoxon Scores (Rank Sims) for Variable CI
Classified by Variable C0H.RUN
Sun of
Scores
Expected
Under HO
Std 0«v
Under HO
Naan
Score
489.500000	561.0
78S.SOOOOO	714.0
Average Scores were used for Ties
Vllcoxon 2-Sample Test (Normal Approximation)
(with Continuity Correction of .5)
50.9361505
50.3361505
22.2500000
28.0535714
S- 489.500
Z- -1.39390
Prob > |Z1 - 0.1633
T-Test appro*. Significance
0.1696
Kruskal-VallIs Test (Chi-Square Approxlnatlon)
CH1SQ- 1.9704	DF- I
Prob » CHISQ«
0.1604
B-12

-------
SAS
13:37 Friday. Hay 14, 1SS3 55
N P A R 1 W A * PROCE0URE
Wilcoxon Scores (Rank Sums) for Variable CI
Classified by Variable COMJIUN
COH_RUN
3
4
Sum of
Scores
Expected
Under HQ
15	537.0	330.0
28	409.0	616.0
Average Scores were used for Ties
Wilconon 2-Sample Test (Normal Approxination)
(¦1th Continuity Correction of .5)
S- 537.000	Z- 5.26706
T-Test approx. Significance - 0.0001
Kruskal-ValUs Test (Chi-Square Approximation)
CHISQ* 27.877	OF- 1
Std De«
Under HO
39.2057779
39.2057779
Mean
Score
35.8000000
14.6071429
Prob > |Z| - 0.0001
Prob > CHISQ>
0.0001
B-13

-------
Var1able=Cl
220 ~
200 ~
180
160
120
SAS
UNIVARIATE PROCEDURE
Schematic Plots
13:37 friday. Nay 14. 1993 H
140 ~
I
10C
80
60
40
20 ~
0
C0M_RUN
~---—~
0
B-14

-------
APPENDIX C
Global Motor Vehicle Activity Data
C-l

-------
APPENDIX C
GLOBAL MOTOR VEHICLE ACTIVITY DATA
Traffic volume (Vehicle Kilometers Traveled, or VkmT) was needed to estimate
emissions of N20 from motor vehicles. These data were available for some countries for
some vehicle types from the International Road Federation (IRF, 1991). For the remaining
countries, VkmT had to be estimated using regressions of existing IRF data on population
or gross domestic product (GDP). The following table gives VkmT by country and vehicle
type. The "source" column indicates if the data were fitted (FIT) using a regression model
or are original data (IRF). If no good data fit could be made, NOF is shown in the "source"
column.
REFERENCE
International Road Federation. 1991. World Road Statistics. 1986-1990. Geneva,
Switzerland.
dkd 291\appendix.c
C-2

-------
4, 1995
1
Clobtl Motor V*h*ci« Activity D*t«
10.-51 Monday, J«nu«zy
Country
ANCUILLA
ANCUIiLA
AUC'JI LLA
AFCKASISTAN
AT CKAKJ STAN
ATGHAJ* I 5TA.V
ALBAK*A
ALBANIA
alba>:a
AUW.A
alc£*:a
ALCtRlA
Afc OSLA
ANGOLA
ANGOLA
AXCCL*
AWT IC'J A « Ba£ B.'D A
AHTICUA 4 BARBED*.
ANT.'CUA « SAjJBvDA
ARGtKTIMA
ARGLKTINA
arscktika
arccktika
AUSTRALIA
AUSTRALIA
AVSTRALIA
acstr:a
AJS7R1A
AJSTRIA
AvSTRA
BAHAKAS
BAKAHAS
BAi-JWkS
BAHRAIN
BAHRAIN
BAftRAT ~»
BANSLATESH
BAXCUCLSK
BA>'GUA££.5H
BARSADCS
BARBADOS
BARBADOS
bllg:--
eilc:jp
B^'-CUr
BELCIV*
BELIZE
BillIE
ft*'.. Ill
BtNlh
BLSJk
BtNIS
BLSI*
BtR^VDA
BtR-M.'-~A
B £*-•.'2 A
BrCTAV
B.-v'TAN
B-'JTAS
BOLIVIA
BOLIVIA
ftOLIv;*
BRA2:L
brai:l
BRAZIL
BRA2:L
V;RCIS ISLANDS UK
v:rc;s islands yj<
vine:* isuszs uk
virgin :slm:s l*k
IRf «nd Fittee Diu
TrifJic
VEHICLE
Vol use

CD?
Pcpul'tie
(Million VIup.Ti
Source
Million* S
<¦1000)
LDCV
6.39
tit
39
7
HDDT
i. o:
r it
39
1
LDCT
1 34
FIT
39
1
LDCV
31
tit
3587
15219
HDDT
93 23
tit
3M7
1S219
LPCT
123 59
ri?
3587
15219
LDCV
459 ?3
r it
2flOO
3283
HDDT
?2 79
riT
2800
3083
LDCT
96 48
FIT
2 BOO
3083
LDCV
IH5 67
FIT
54237
2429C
HCCT
1391.43
FIT
S423"»
24290
LOST
1133-74
FIT
54237
2429C
LDCV
9*9.16
TIT
ilO
•227
HDDT
1 SI.12
FIT
Sao
•227
LDCT
201 24
fit
SB43
9227
ID CT
000
nof
5813
9227
LDCV
44 -10
FIT
269
• 3
HDDT
7.00
FIT
269
• 3
LDCT
9.27
FIT
269
• 3
LDCV
13685.84
FIT
• 2433
31497
HDDT
2116.02
fit
• 2433
31497
LDCT
2134.IS
FIT
• 2433
31497
LDDT
0.00
WOF
• 2433
31497
LDCV
35693 52
FIT
210739
16249
HDDT
5302.63
FIT
210739
1(249
LOST
7C29.C6
FIT
2J0739
16249
LDCV
41900.ec
IRF
HUM
7576
HDDT
3037.95
IRF
i:7SI4
7576
LDCT
4027.OS
IRf
117 564
7576
LDDT
547 00
IFF
U7JI4
7576
LCCV
370.14
FIT
2257
240
HDDT
se.68
FIT
2257
240
LC'GT
7T.7|
FIT
2257
240
IX3V
<39. 09
FIT
3196
416
HD3T
101.26
FIT
3896
416
LDCT
134.23
FIT
3896
416
LDCV
31 £ 1.34
FIT
19227
102563
HDDT
498.50
FIT
19227
102563
LDCT
660.10
tit
19227
102S63
LC5V
231 91
FIT
14S7
2 S4
HDDT
J* II
f:t
1 4 i 7
254
IZ CT
SO.22
f:t
1 4 S 7
254
LD7V
41411.00
iRr
142708
9919
HDDT
2415.31
1RF
14 2 708
9919
LDCT
3201.69
IPF
142706
9919
LDDT
760.0C
IRF
142706
9919
LDCV
36 56
FIT
223
:7i
HDDT
5 10
FIT
223
17:
u:t
7.69
FIT
223
17:
' T3V
263.61
FIT
l€0S
4304
'CT
41 .11
FIT
26C8
4304
t CT
55.42
FIT
16C8
43C4
i DT
o.oc
NOF
1608
43C4
LDCV
207.75
FIT
1267
56
HDDT
32 94
FIT
1267
56
LC2T
43.67
FIT
1267
56
LDCV
4 5 4 2
FIT
<77
1420
HD2Z
7.20
FIT
2">'
1420
LDGT
9. 5S
FIT
277
1420
LDCV
649.27
FIT
3951
• 797
KDDT
102.17
FIT
39S8
6797
LDCT
136.36
FIT
3958
<797
LDCV
56280 14
FIT
32*250
141452
HDDT
8065 59
FIT
3262SC
141452
LDCT
10691.60
FIT
326»:
14 4 5 2
LTDT
0.00
NOF
32625?
141452
LDCV
11.69
FIT
: :<
14
HDDT
2.96
FIT
114
14
LDCT
3-93
FIT
U4
14
LDCV
199.71
FIT
XIS7
109
¦ NC Tit
/ TIT - Dit« Fit



C-3

-------
Sletul Motor V.Mel, activity Di i *	„aMiy. jinJ.ry
:rf md r;tc«d
Cojr.i ry
VEHICLE
Viae IS ISLANDS t'K
HDDT
VIRGIN IS-ANDS UK
LOOT
br:ne:
LDGV
Brunei
KDDT
brune:
LDCT
BULGARIA
LDCV
BULGARIA
HDCT
BULGARIA
LDCT
BU LCAR1A
LDCT
BURKINA FASO
LDCV
BURKINA FASO
HDDT
BURKINA FASO
LDCT
BURKINA FASO
LDCT
BURMA
LDCV
BURMA
HDDT
BURMA
LDCT
BURUNDI
LDCV
BURUNDI
HDDT
BURUNDI
LDCT
BURUNDI
LDDT
CAMEROON
LDCV
CAMEROON
KDDT
CAMEROON
LDCT
CAMEROON
LDDT
CANADA
LDCV
CAN ASA
KDDT
CANADA
LDCT
CANADA
LDDT
CAPE VERDE
LDCV
CAPE VERDE
HDCT
CAPZ VERDE
LDCT
CENTRAL ATiICAN REPUBLIC
LDCV
CENTRAL ATRICA* REPUBLIC
HDDT
CENTRA- AFRICAN REPUBLIC
LDCT
CENTRAL AFRICA* REPUBLIC
LDDT
CHAD
LDCV
cha;
HDCT
CAAD
LDCT
C.H1L£
LDCV
C.ilLE
HDCT
CHILE
LDCT
CHILE
LDDT
CHINA
LDCV
CHINA
HDCT
CHINA
LDCT
TAIWAN
LDCT
C0L0H3IA
LDCV
COLOMBIA
HDCT
COLOMBIA
LDCT
COLOMBIA
LDCT
COUDPOS
LDCV
COMOROS
HDCT
COMOROS
LDCT
CON DO
LDCV
CON DC
HDDT
COS DC
LDCT
COSTA RICA
LDCV
COSTA RICA
HDDT
COSTA RICA
LDCT
CCSTA RICA
LDDT
CUBA
LDCV
CUBA
HDCT
CUBA
LDCT
CYPRUS
LDCV
cy?*:s
HDDT
CYPRUS
LDCT
CYPRUS
LDDT
C2ECKOSLOVAKIA
LDCV
Chechoslovakia
HDDT
C2ECKOSLOVAKIA
LDCT
NOF - No fit /
Traffic
Volume

SD?
PcpuiJt ief>
ilion v*r.T!
Sojrc?
rv.liie*>» 5
I*.C03)
30.06
FIT
; t57
139
29.SB
tit
l 157
1 39
389 3<
FIT
2374
234
61 . 72
FIT
2>>4
234
• 1 .«]
FIT
2374
234
;c3?2.o?
IRF

I97C
1576.23
FIT
«i2o:
I97C
2069.4}
FIT
61200
• 970
1146.00
IRF
61203
• 97C
214 It
FIT
1672
• 306
43.47
FIT
16 72
• 306
if. (2
FIT
167}
• 306
0.00
NOF
1672
1306
1416.31
FIT
9354
39142
22b.12
FIT
9354
39142
311 .C
FIT
9354
39142
116.43
FIT
1137
SCO!
29.56
FIT
1137
5001
39.:?
FIT
n3*>
5301
o.oc
NOF
1137
S0C1
2557.*4
FIT
: 5564
10122
403.76
FIT
15564
16922
535.22
FIT
1 5564
10*22
O.OC
NOF
15564
10*22
13)52.11
FIT
41912?
25625
1C21V94
FIT
419122
25(25
13544.71
FIT
419122
25625
o.cc
NDF
419122
25625
29.11
FIT
1 7 i
34fl
4.63
FIT
171
34*
6. 14
F J T
1 7t
34f
212.14
FIT
1 2 SB
2 704
33. 7S
FIT
1291
2704
44 . 74
FIT
1291
2^04
o.oc-
NOF
1291
2704
18643
FIT
1137
5249
29. Si
f IT
1 137
5269
39.19
FIT
1137
5269
12215.03
IRF
: I9i 1
12536
111.41
IRF
1195 :
12536
1015.59
IRF
:§9i:
12536
413.00
IRF
:«9si
12536
42944¦31
FIT
251919
iciis?c
€291.•<
FIT
251919
10115 7 c
1349.(3
FIT
2S1919
10M570
0.03
NCF


13950.00
IRF
36.19
297?9
2554 20
IRF
36119
29729
33«! '0
IRF
36119
29729
204 C 3
JRF
36119
29729
33. 1
FIT
235
473
5.33
FIT
235
473
7.07
FIT
235
473
353.01
FIT
2153
1197
55.97
FIT
2153
1937
74.25
FIT
2153
1137
2933.03
IRF
4534
27*;
117.83
FIT
4534
27«1
156.19
FIT
4534
2711
C .03
NCF
4534
27«i
2536.41
FIT
15253
10216
395.71
fit
1 5253
10286
524.55
FIT
1 5253
10210
513 45
FIT
355")
6IC
92.45
FIT
3551
6i:
122.55
FIT
355"
6IC
o.eo
NOF
3S51
6IC
24119.32
FIT
1439CC
15551
514.71
IRF
14 390C
15551
61?. 29
IRF
!4 3 900
15558
- ctt* Fit



C-4

-------
Ciobii *3t3r Vrtleie Activity Oat.	I0;3# K9nUYt j.nujrjr
IRF md fitted D*t«
Traffic
V©iuR«	QQ»
Cowr.tr>	VEHICLE 16
DOMINICA* REPUBLIC
HtCT
14144
FIT
*7; j
1116
tominicak republic
LCCT
116.71
riT
$71*
6716
ECUADOR
IX cv
373.00
IRF
10606
9923
ECUADOR
HDDT
3<9.34
IRF
106C6
9923
-Ed'ADCR
LDCT
477 66
IRF
10606
9923
ECUADOR
LCD?
706.00
IRF
10606
9923
E-TPT
lpgv
15419 55
FIT
93143
50740
EGYPT
HCDT
2396.91
FIT
93143
50740
EGYPT
LCCT
3164 OS
FIT
93143
5074 0
EGYPT
LEDT
o.oc
NCF
93143
50740
EL SALVADOR
LECV
764.14
FIT
4662
SC09
EL SALVADOR
hcdt
12) 15
FIT
4662
*©09
EL SALVADOR
LCGT
160-60
FIT
4662
SCD9
EL Salvador
LDD7
O.OC
KOF
4662
SCO*
EQUATORIAL GUINEA
LDGV
22-79
FIT
1 39
41 I
EQUATORIAL GUINEA
HrCT
361
Fit
139
41 \
EQUATORIAL StJkEA
LDCT
4 79
fit
139
41 i
eth:c?:a
LCSV
SI.OC
ERF
5302
46194
ETHIC?IA
hcdt
51 .62
IRF
5302
46194
EThJOF TA
LCC~
16 34
IRF
5302
46194
ETHIOPIA
LDDT
34.0C
IRF
53C2
46194
FALKLAND ISLANDS
LDGV
9.28
FIT
56
2
FALKLAM) ISLANDS
HDDT
1.46
FIT
56
2
FALXLAK3 ISLANDS
LEGT
1 .93
FIT
56
2
f 1J1
LCSV
193-91
FIT
:: 13
716
FIJI
HDDT
30. 76
FIT
:t93
716
rt::
LDCT
<0.77
FIT
1193
716
riKLASC
LDGV
3C 73o.00
IRF
99421
4933
mk^i
h::t
2197.30
IRF
99421
4933
rih-A.v:
LCGT
2912.7C
r*F
19(21
4933
FINLAND
LDDT
670-0C
IRF
99421
4933
FRANCS
LCCV
josooo.ee
IRF
99145:
55630
FRANCE
HCDT
31700.00
IRF
9114*0
55630
FRAKCS
LDCT
11330•OC
IRF
IB 14 5 3
55630
TVJ&ZL
LDDT
4030.0C
IRF
•914*0
5543C
TMZZ
r.z
i6oco.o:
IRF
99KSC
5*630
FRENCH GUIANA
LDGV
39-02
FIT
239
• 7
FRENCH GUIANA
hcc?
I 19
FIT
231
ii
FRENCH GUIANA
LDCT
I.2C
FIT
239
• 7
FRENCH SVIAHA
LDDT
0 .CO
Nor
239
• 7
FRENCH POLYHES!A
LDGV
4 24 12
FIT
2596
170
FRENCH POLYNESIA
hDDT
67.22
FIT
2596
170
TRENCH POLYNESIA
LOST
19-11
FIT
2516
170
GABON
LOCV
708.IS
FIT
4221
ICS#
GABON
HDDT
112-35
fit
4321
ICS!
GABON
LEST
141 96
FIT
4321
10S9
GAMBIA
LCGV
33.77
FIT
206
lis
GA.-S1A
HDDT
534
FIT
206
799
GA?t3!A
LDCT
f. :c
fit
206
?99
SAKBIA
LOST
o .oc
*OF
206
1l>
GERKANY (»ASTj
LDGV
31641.94
FIT
197503
1664 )
CEftMAXY (EAST|
HDDT
4734 .14
FIT
197500
16641
CERKAKY IEA5T)
LDCT
6276.41
FIT
1175 CO
16641
GEftjUJi? (WS5TJ
LCGV
376)00.00
IRF
U16161
611"M

KOF - He Fit ,
' FIT - D«t» Fit



C-5

-------
C4.0fc«, Motor Vehicle Activity Dati	10:31 Monday, .January
2*F «nd Fitttd 0si4
Traffic
country
VtHICU
Vol W

GDP
POF-lUt i€
million VlurTi
Source
ttiliionf 3
lAiDCO)
CtfcrtWY IV#*5T)
HDD?
15695,00
inr
1114*61
611 7 J
tEAWY IWI5T1
LCCT
rcicsoc
J Rr
1116*61
41171
CEtLHXNt (WlSt 1
LDDT
ncD.oc
2*r
1116161
41171
CSWO.T iWlSTj
MC
tooo.oc
i*r
1116161
41171
CLR-A.SY 
LDGV
37*500. DC
nr
1116161
41171
GfcRnAh? IWISTJ
HDD?
1569).00
IHF
1116161
41171
GE*HA>Y IWIS"T>
LDGT
2C0C5. OC
mr
111616 i
611 ?1
GERKANY [Wli?)
LfiDT
35CC.0C
IS"
11)616)
4117]
Cfcft.lAM UtST>
ttC
73CQ.0C
isr
1116161
41171
Gf\A>A
LDGV
$.00
i*f
5225
13391
GHA*A
MBCT
135 ?7
FIT
522 5
13391
GhAKA
U>GT
11».^
FIT
5225
13391
GKA*A
L0D?
o.oc
MOF
522 5
13391
GREECE
LDGV
9192.OC
I*F
47 19C
9900
cuttzt
hc:t
H5? .TC
l*f
4719C
9900
GREE.C I
LSCT
1932.30
I«f
47190
9900
GREECE.
LDDT
413 OC
IPF
47199
9900
G*EtNlAKD
LDCV
€1 .32
rir
374
94
GMEKUAKD
MDCT
9. 73
FIT
374
54
GRtEN LAND
lcgt
12.19
TIT
374
54
GRENADA
LDCV
22 79
FIT
139
99
CM* ADA
HDD?
3.(1
FIT
139
99
GRENADA
LOOT
4 . 79
FIT
139
99
CJADELOVPI
LDGV
305.47
f:t
1164
336
GUADELOUPE
Hsrr
41.44
f:t
1164
336
GVADtLCJPc
LDCT
<4 24
FIT
1(64
336
GtA*
LDGV
196.17
FIT
120C
126
GJA-
KDDT
31 20
FIT
1200
126
Ct'AK
LDGT
41 Jfc
FIT
1200
126
GCATfcKALA
LDGV
U55.05
FIT
7C3I
• 431
GUATEMALA
hd:t
112 .13
FIT
7C3I
• 434
GUATE^.U*.
LDGT
242.35
FIT
">C3I
• 436
CtATEAA^A
lcdt
c .go
KDF
7036
• 431
g*-:kea
LDGV
350.95
FIT
2)40
4931
GtIKLA
MDCT
55 43
FIT
214 0
4931
GUINEA
LCCT
7 J . 75
FIT
214:
4931
cv:sLA-t;ssAi-
LDGV
2">.D5
FIT
165
925
GUINLA-SIJSAV
KDDT
4.29
f:t
165
925
cv:ma-2:ssa;
LDGT
5.49
FIT
165
925
CLYA.SA
LDGV
54.23
FIT
343
919
GV T AS A
HDD?
4.92
FIT
343
919
GVTA*A
LCGT
11 .12
FIT
34 3
949

LDGV
32T OC
tit
1994
5439
hait:
hOuT
51 .04
FIT
1994
5439
hait:
LDGT
61. 72
FIT
1994
5431
HON^vKAi
LDCV
161$.OC
i*f
4022
4456
hcsd>.*as
HDrr
as. ic
IAF
402?
4656
HOT'J RAS
LDCT
3< . 2C
IRF
4022
4656
HCVr'-'RAS
LDD?
1010.OC
:rf
4022
4656
HDND1TAAS
MC
34 .04
i*f
4022
4656
MCHC KOKC
LOGV
3663.CC
i*r
4€537
5613
HONG KCSG
HDDT
13H .24
mr
46537
5613
HCVG K N5
LDGT
1349.76
i*f
46537
5613
HCSG U.S3
LDDT
717.00
IAF
4653 7
5613
HCMC KO.H'G
HC
159.00
1RF
4653''
5613
htyCAFr
LDCV
11935 .OC
IBF

10613
ML'KGAUT
HDDT
2950.64
IFF

10613
H'v'HSVr
LDGT
3911.34
i*r

10613
h u>'GA.a r
LDDT
2152 00
1*F

10613
hunca* r
nz
965 . OC
:*r

1 06 i 3
ICELAND
LDGV
I79.61
fit
5361
246
ICELAND
HDD?
139.2C
FIT
5361
246
iceiakd
LDGT
194.66
FIT
5361
246
ICELAND
LDDT
o.oc
MOF
5361
246
xh::a
LDCV
43351.42
FIT
254203
7 813 7 4
ikd:a
r:Dcr
€353.73
FIT
254253
7K314
lfcriA
LDGT
1422-31
FIT
254203
791374
in?:*
LDDT
o.cc
nor
2542*3
70)374
INDONESIA
LDCV
11543.67
FIT
6966''
170179
JKDDSIS1A
HDDT
1791.91
FIT
69667
170179

NOF - KO Fit
/ FIT - Cat* Fit



C-6

-------
4, 1593

Gloe*i Hotcr Vehicle Activity :

IRF tns
Fltt#c D«tt


Traffic


vol -Jf»®
ry
VEHICLE
million Vnr'
IN2DSE5IA
LDCT
2375.J2
IKDCVES2A
LDDT
o.oo
I RAW
LOCV
33416.*1
IRAS
HID7
4914.60
!RAV
LOOT
<60?.5C
:rac
LDC7
17606.CO
JR>C
KDDT
3054 29
:r> w
LOOT
4C4I.71
IRAC
lcot
n»i. co
IRC LAN D
LOCV
11939.CO
IRE LAS":
KDDT
1696.79
IRE LAS' 2
LDCT
2249 2?
J»ELA*3
LDDT
243 00
IRELWC
«C
26C.CC
ISRAEL
LEKJV
586326
ISRAEL
MOOT
>:t k
ISRAEL
LDCT
1219 35
ITALY
LDCV
244963.CO
ITALT
HODT
19207.24
ITALY
LDCT
25460"»6
ITALY
LOOT
4579.05
ITALY
«e
37S9C.CC
:VCRY COAST
LDCV
1669.04
IVORY COAST
HOLT
2i3.93
IVORY COAST
LDCT
349.96
JAMAICA
LDCV
46175
JAMAICA
HDDT
?4.29
JAMAICA
LDCT
99.49
JAMAS'
LDCV
321496.00
J K? A.S
KDDT
106361.36
JA» AS
LDCT
14C990.64
JAP AS'
izci
6737,CC
20R3A>*
LDCV
4944.CC
jcr:a>
HT5T
996.32

LDCT
1329.69
JORCKS
LDDT
1?2.00
JOP.CAS
rtC
112.CO
KCSYA
LDCV
1357.17
KENYA
HCOT
2J4.?4
KE.srA
LCCT
2I4.CS
k:r:sat :
LDCV
3.93
Kiribati
XO=T
C. 62
KIPI5AT:
LDCT
0.93
fr'CRT.-. KOREA
LDCV
2910.70
NCST.H KOREA
MCDT
40.55
HSRTr KOREA
LDCT
517.93
SOCTh KOREA
LDCV
1146.00
SCJTM KORIA
KDDT
559C 43
SC-T.K KORIA
LDGT
?< 10.5?
SOVT/% kcrsa
LCD?
3709.CO
kiva;t
L£ CA-
938$.CD
*-JKA IT
HOOT
1283.9»
*«>a:t
LCCT
J7C2.C2
kjva:t
LDDT
licc.co
LAOS
LDCV
108.21
LAOS

17.J6
LAOS
LDCT
22 75
LAOS
L~DT
c.cc
LEBAVC*
LDCV
>06.0C
LEBA>.Cs
HCDT
41.$]
LEBA.SCK
LOST
64 31
lib:*:a
LDCV
Sfl-OC
LIBERIA
HDOT
1C.32
LIBERIA
LCCT
13.69
LIBERIA
LC?T
9.05
LIBERIA
m:
2.05
LIrTA
UCV
3?49.22
LIBYA
HDDT
S9CS4
LI £ "A
LPGT
7l2.fi
L^XEKBCvRC
LDCV
2613.00
lZ.it HOnd*y, JtrjAry
PcpuiitioA
FIT
i. or
fit
FIT
FIT
irf
IRF
f RF
IRf
I RF
IRF
:rf
IRF
irf
riT
fit
FIT
1	RF
:rf
IRF
IRF
IRF
FIT
FIT
FIT
fit
FIT
FIT
IRF
IRF
irf
IRF
2	A?
IRF
IRF
:rf
IRF
FIT
FIT
FIT
FIT
FIT
FIT
FIT
TIT
FIT
IRF
IRF
IRF
IRF
IRF
IRF
IRF
IRF
FIT
riT
tit
~of
FIT
Fl?
fit
IPF
IRF
IRF
IRF
IRF
FIT
FIT
FIT
3RF
iiion* 6
<*10001
69667
1?0l?9
69667
170179
197702
S109«
1977C?
51 ?6<
1977C2
51064
5Q669
17053
5C669
17053
5C669
17053
50669
17053
21250
3543
21250
3543
26250
3543
2I2SC
3543
2«250
3543
35571
4369
35571
4369
35571
4369
755965
57355
755165
5?355
7556C5
57355
755165
57355
755665
57355
10165
11142
1CI65
11142
IC165
12142
2159
2409
2151
2409
2659
2409
2 3 73 7C 7
122C91
23737C
222091
23:37c?
122091
237370?
122091
4216
379".
4216
3791
4216
3?91
4216
3?9i
4216
3791
6268
22936
6266
22936
6269
22936
24
66
24
<6
24
66
:?:co
21390
17100
21390
1 JiCO
21390
121310
41575
121310
415?5
121310
41575
121310
41575
11147
n?3
1614?
1973
19147
1973
i»:<7
1»73
660
3??9
660
3?79
66C
3??9
66C
3779
1166
2?62
1166
2?6 2
1166
2?6 2
1095
2349
106 5
2349
1085
2349
1015
2349
1015
2349
2279C
4063
2279C
4063
22790
4013
5993
361
#©F - Nc Fit / FIT - £«ta Fit
C-7

-------
4, 1993
Count ry
LUXEMBOURG
LUXEMBOURG
LVXEMBOvRC
HAZAJ
MACAU
MACAU
MADAGASCAR
KA^AJJASCAR
HJOA5ASCAA
MADACA5CAJ*
mala*:
halam:
HA LAW I
MALAYSIA
MALAYSIA
MALAYSIA
MALAYSIA
MALDIVES
MALDIVES
MALDIVES
mal:
mali
mal:
MALTA
MALTA
MALTA
MARTINIQUE
MAPT1NIC-E
HAJ.TIMO.'E
MAURITANIA
MA»RI TAJi IA
MAURITANIA
KAvRITI US
MAURITIUS
MAURITIUS
MAURITIUS
fl£X I CD
M£XICC
m£x:cc
MONACO
MONACO
MOSACC
MOKACC
MCNSCL1A
MONGOLIA
MONGOLIA
MOROCCO
MO^CCC
MOROCCO
MOROCCO
MC2A."3:5.E
HOlK"3lZJZ
MOZAMBIQUE
MOZAMBIQUE
NAUR-
NAUR'.:
NAURl
NEPAL
NEPAL
NEPAL
KETrtERLAKDS
WETHeRLANDS
NETHERLANDS
NETHERLANDS
NETHERLANDS
A*'J3A
AA'JiA
A?U3A
NETHERLANDS ANTILLES
NETHERLANDS ANTILLES
Cio&«l Meter Vthicl* Activity D*t«
1*F ird fitted D*t*
Traffic
Voiuae
VEHICLE
(Million vur.Ti
Socrca
HDDT
:?8.if
IAF
LDCT
170.43
IRF
LOST
44 - GO
:r f
LDCV
3*4.23
FIT
HDST
>6.1b
FIT
LDCT
u.««
FIT
LDCV
11411.CO
1BF
NDCT
2980 33
I*F
LDCT
3956.1?
I*F
LDCT
7SI6.0O
IAF
LDSV
232.6?
FIT
HDDT
32.14
FIT
LDCT
4?.60
FIT
LDCV
S3i2.ll
rit
HODT
134.21
FIT
LDCT
lies.19
FIT
LDDT
e.oc
NOF
IDCV
13.12
FIT
HDDT
2.00
FIT
LDCT
2 . 16
FIT
LDCV
310.>9
FIT
MODT
49.24
FIT
LDCT
i5.21
FIT
LDCV
3C024
FIT
HDDT
4"».60
FIT
LDCT
43.10
FIT
LDCV
42*42
FIT
HDDT
«7.5>
FIT
LDCT
• 9.5J
FIT
LDCV
136.38
FIT
HDDT
2: .95
FIT
LDCT
29.C9
FIT
LDCV
292.22
FIT
HDDT
46.33
FIT
LDCT

FIT
LDDT
o.o:
NDF
LDCV
23449.66
FIT
HD27
3561.21
FIT
LDCT
4720.76
FIT
LDCV
64 .43
FIT
HDDT
10.22
FIT
LDCT
13.$5
FIT
LDHT
0.00
WOc
L-GV
26?13
FIT
HDC7
42.35
FIT
LDCT
56.14
FIT
LDCV
3112.2C
FIT
h:dt
49C.lt
FIT
LDCT
650.59
FIT
LDDT
O 00
NOF
LDCV
U0.69
FIT
HDDT
21-65
FIT
LDCT
37.91
FIT
LDDT
0.03
NOF
LDCV
30.1?
FIT
HDDT
4.79
FIT
LDCT
6. 3<
FIT
LDCV
440.2C
FIT
HDDT
69.77
FIT
LDCT
92.49
FIT
LTSY
75J30.CC
IAF
HCDT
4655.99
IAF
LDCT
6437.01
IRF
LDDT
$74 00
IAF
«C
2460.03
IAF
IX CV
260.19
tit
HDDT
41.3?
FIT
LDCT
14 .83
FIT
LDCV
260.99
FIT
HDDT
41.3?
FIT
' HO Fit i
FIT - D*t» Fit

19:31
Monday, January
CDp
Population
11i OR 9
S (*10001
5993
366
5993
366
5993
366
2160
429
2163
429
2160
429
\I2«
10666
1124
10666
1824
10666
1924
10616
1236
7554
1236
7554
1236
75 54
32244
16526
32244
16526
32244
16526
32244
16526
60
195
• 0
195
13
195
1194
6675
1194
6675
1194
6675
1131
344
1131
344
1631
344
260C
334
26CC
3)4
?6CC
334
• 44
1665
• 44
1665
144
1665
'.T2
10
-------
ClebJl aeter v«?ucif Activity Data	10:31 Hona*// January
1*7 and Fittee Os'.s
Traffic
Count ry

Volume

COP
Popu lat it
VErt ] CLE
million viiffTt
Source
Millions 3
1*10001
NEThERI-ANDS ANTILLES
LDCr
54 1J
FIT
1591
116
NEK CALECONJA
LDCV
226.4b
n t
1391
\ 51
NEW CALECOMA
HDCT
35 . 91
r it
13*1
159
NEW CALEDONIA
LDCT .
47.65
fit
131)
151
*E* 2EALANC
LOCV
S7««,f7
FIT
34151
3400
NEW 1EALA.MC
HDDT
*01.K
FIT
34157
3400
NEN 2EAUA.S3
LDCT
1195.0)
FIT
34»57
940O
KE* ZEALAND
LDCT
0. 00
NOF
34157
3400
MICAAASL'A
LDCV
197.95
FIT
303*
3502
NICAKAC'JA
HDDT
11.92
fit
3034
35C2
N1CAAACVA
LDCT
104.61
fit
3C36
35C2
WICAHAWA
LttT
0.00
NOF
3036
3502
HICER
LDCv
354.7:
FIT
2163
<419
nicer
KDCT
36.2}
riT
2163
<419
NIGER
LDCT
74.54
FIT
2163
<499
NICER
LDCT
o.oe
NOF
216J
<419
NIGERIA
LOCV
3441.13
FIT
20927
101901
NIGERIA
KDCT
542-43
PIT
20927
101901
NIGERIA
LDCT
719.03
FIT
20)2?
101901
HOftNAY
LDCV
13IDI-ii
FIT
• 3123
4117
NOOMAY
HCCT
213349
fIT
• 3123
4111
NORWAY
LDCT
2121 .12
FIT
13123
4117
NORWAY
LDCT
0.00
NOF
• 3123
4117
OM>
LOCV
1234 .74
fit
7523
1334
OfAh
HDCT
195-41
FIT
1523
1334
OHAN
LOST
259 03
FIT
7S23
1334
PAKISTAN
LDCV
6SC1.22
f 17
39(11
102231
PAKISTAN
HODT
I0lt.73
fit
39411
102231
PAKISTAN
l:ct
1350.40
FIT
39411
102231
PAXISTAK
LDCT
0.00
NOf
39411
102231
PANAMA
LDCV
•72.36
FIT
S317
2214
PASAHA
HODT
131-16
FIT
5317
2274
PAN AW1
LZS7
193.14
FIT
S311
2274
PA?UA KEN GUINEA
Ltcv
*03.10
FIT
3011
3479
PAPVA NEW G'JlNCA
HDDT
11.11
FIT
30H
3479
PAPUA H£* CL'JNCA
LDCT
ICS.12
FIT
33H
3479
PAJ^AC'JAT
LDCV
743.62
FIT
4534
3922
PA*>C\JAY
HDCT
I17.6J
FIT
4334
3922
PARAGUAY
LOCT
156.19
FIT
4334
3922
PERU
LOCV
14(9.44
FIT
4S241
20727
PER'J
HCDT
1169.32
FIT
45241
20727
PEP'J
LDCT
ISM.70
F1I
45241
20127
PHILIPPINES
LDCV
5667.ID
FIT
34317
51356
PHILIPPINES
HCDT
•99-41
FIT
34317
57354
Philippines
LOCT
1176.99
FIT
34317
57356
PHILIPPINES
LDCT
0.00
MOF
34397
573*6
POLAND
LDCV
2H15.30
IAF

37664
POLAND
HDD?
9112.69
1RF

31664
*slasz
LOCT
i3icc.J;
IFF

37664
FSIAND
LOCT
4933 CO
i*F

37664
PCLAN2
KC
3660.o:
INF

3746<
pc?T'.;gal
LDCV
«ci;.«s
FIT
36121
1C2S0
PORTUGAL
HDCT
1320.10
IRF
36121
1 02 5 C
pcirjCA'-
LDCT
1749.90
IHF
36121
1025C
PDRT'JCAL
L-2T
95 . 00
IRF
36121
10250
PUERTO RICO
LDCV
4010.44
FIT
24372
3291
PUERTO RICO
NDDT
631 .31
FIT
24372
3291
PUE57C RJCC
LDCT
136.94
FIT
24372
3291
PUEFTC RICO
LDCT
0.00
NOF
24372
3291
QATAA
LDCV
•46.T6
FIT
5161
321
OATA*
HDDT
134 .11
FIT
5161
327
QATA*
LOCT
177.77
FIT
5161
321
fttVNlfis'
LOCV
556.7C
FIT
3394
S«S
REUNION
hdtt
• 1.22
FIT
3394
S6S
REvNlO.W
LDCT
116.94
FIT
3394
565
A
LDCV
19661.00
IRF

22936
ftOMANIA
HDDT
2476.37
IRF

22936
ROHA.TA
LDCT
3212 .63
I*F

22936
ro«ax;a
LDDT
102.00
IRF

22936
ROHAN IA
NC
nof • no rn
3731.00
/ riT - Data Fit
tftf

22936
C-9

-------
Cou.-it ry
RWANDA
R*AhDA
RWA^CA
RWAJOA
ST RJTTS-KEVIS
ST. KITTS-NEVJ S
ST. HITTS-NtVIS
ST. LUCIA
ST. LUCIA.
ST. LUCIA
ST. VINCE.N?
ST. VINCENT
ST. VIKCtNT
SAC TO»t£ A PRINCIPE
SAC TO*£ I PRINCIPE
SAC TOHI I fRIKCJPE
saudi aaajia
sacd: arabia
sauoi arabia
5a--i Arabia
SENEGAL
SEWECAL
5EKECA1
HfilZAl
SEYCHELLES
SEYCHELLES
SEYCHELLES
SIERRA LtCKf
SIERRA L£OHL
SIERRA LCOKE
SINGAPORE
SINGAPORE
SIKCAPORE
SIXCAPOR t
SCLCMC.H ISLANDS
SOLOMON ISLANDS
SCLCHCN islands
scroll a
SOMALIA
SOMALIA
SC'.'Trt AFRICA
JOVTH AFRICA
SOLTh AFRICA
SO'.T* AFRICA
SCJTM AFRICA
spa:*
SPAlK
$?a:v
spa:s
s?a:s
SRI LAN FA
S*I LAXKA
SRI IAHXA
SRI LANKA
sr; laska
SVDAS
SCDAK
SCDAS
scf r.vwi
s^r:ka.-j:
sja:».Ay£
SW.hk
SWEDES
SWEDE*
SWEDE#
SWEDES
SWITZERLAND
sw:?ierlak;
sw:tie*lan:.
Svc;-2LRLA>D
Ciocai Motor v«his;# Activity o*t«
IRF A-"id Fitted Djt*
Tr*ftic
Volume
VEHICLE
(Killion Vluf.T
ucv
342 . 50
HDD?
54 1.
LDCT
7l .99
LDDT
C-OC
LCCV
14 43
hddt
2 29
LDCT
J. OA
LDCV
32 .AO
HDDT
5.12
LOOT
6 79
LDCV
11. *4
HDD?
AO
LDCT
4.55
LDCV
6.S6
HOOT
1-04
LOOT
1.31
LDCV
11990.(7
HDD?
JI59.1S
LDCT
24*5 2*
LDCT
0.00
LDCV
757.20
HDDT
119.96
LDCT
119.01
LCD?
o.co
LDCV
43.12
*1SDT
«.«4
LDCT
9.07
LDCV
291. 57
HDD?
4<.23
LDCT
61.20
LDCV
3200.91
HDCT
51 7.2«
LDCT
615 6<
LDDT
0. 00
LDCV
24.10
hDDT
3 12
LDCT
5.CI
LDCV
214.34
kd:t
41.91
LDCT
55.56
LDCV
47550 .00
KDDT
11 € 16.C2
LDCT
15397,91
LCD?
5617.00
HC
2 951.00
LDCV
€9559.00
HDDT
9374.CO
LDCT
12426C0
iC-T
1450.0C
KC
1917.00
LDCV
1721.00
HDDT
1022-54
LDCT
13 5 5-46
LDCT
UCl.CO
h:
III.so
LDCV
1509.00
KDDT
231.03
LDCT
316 59
LDCV
175-12
HDCT
27.77
LDCT
36.11
LDCT
0.00
LDCV
5300.00
HDDT
2510.00
LDCT
342C-C0
LDCT
C.CO
LDCV
21625.2C
HDDT
4336 71
LDCT
5730.90
LDCT
0.00
' no rit /
riT • c*ta rit
10 )1 KondAy. Jjnaary
Source
CUP
P«pjl»tici
H:11iont 5
[*1000)
r: t
2009
6530
f:t
20«9
6530
fit
2309
(530
KOF
2009
(530
f IT
00
41
FIT
00
49
ru
00
40
FIT
197
1A2
FIT
197
132
m
197
132
FIT
132
107
m
i 32
107
FIT
132
IC7
FIT
40
103
FIT
4C
103
r:T
40
103
riT
72335
13612
FIT
72335
13612
f:t
72335
13(12
*CF
72335
13(12
FIT
46 V4
6919
FIT
4616
(919
FIT
4(16
(919
NCF
4616
6919
f:t
263
(€
FIT
263
66
FIT
263
46
FIT
1770
3149
FIT
1770
3(49
FIT
P70
)II9
FIT
1S952
2(13
FIT
19952
2(13
FIT
19952
2613
tOF
19952
2(13
FIT
147
2 90
FIT
147
29C
m
14*
290
FIT
1612
(066
FIT
1612
6066
FIT
1612
(0(6
IFF
0C 5 1 •
33016
IRF
(35»(
330} 6
IRF
03510
33016
IRF
0C5 11
33016
IRF
0:5:6
33016
IRF
20 9116
30032
IRF
209-16
AI032
IRF
209m
30032
IRF
209:06
30(32
IRF
209106
30(32
?1F
6423
i 636 i
IT
6« 2 3
16361
1*T
6423
1(3(4
IRF
(423
i(3(l
IRF
6423
16361
FIT
9)97
23129
FIT
919?
23129
rir
9197
23129
f:t
1060
306
FIT
2C60
3(6
FIT
1060
A06
MOF
1068
306
IRF
15956:
0399
IRF
159560
1399
IRF
159560
• 399
NOF
15956C
(399
FIT
17C387
6573
FIT
173O07
657J
f:t
1 73067
6573
hof
170017
(573
C-10

-------
4, 1993
Clooal Motor Vehicle Activity Data
10 3• H©n
5C243
IRF
(•I7 ? 7
SC243
IRF
(•8727
50243
IRF
(11727
50243
IRF
(•9727
5C243
IRF
4472910
243934
IRF
4472910
243934
IRF
4<7r9i;
243934
IRF
4472910
243934
IRF
44 7291C
243934
FIT
750
3042
FIT
7S01
3042
FIT
7501
3042
FIT
120
14*
FIT
120
14*
TIT
120
145
FIT
49(15
11272
tit
49(2 5
1«272
FIT
4961 5
11272
1.0F
49*1 S
11272
FIT
708 5
I2ICI
FIT
7CI5
62101
FIT
7015
(2(Cfl
FIT
121
1(6
FIT
12 i
1(6
FIT
121
1(6
IRF
4229
7309
IRF
4229
7309
IRF
4229
7309
IRF
4229
7309
C-11

-------
4, 1*53 U
Country
TLKiN
Yt*£.v
YEKLK
YEHEfc
Yugoslavia
YVCO SLAV: A
rucosi>v:A
YUGOSLAVIA
lAl*l
za:*e
ZAIRE
2AHSIA
IAH&! A
2AKV.A
2AM3IA
tlH&A&WZ
IJKBAftVE
Z2M0A3W£
BOTSWANA
BOTSWANA
BC:s*A>A
BOTSWANA
NAMIBIA
MAKIB1A
NAMIBIA
LtSOTXC
LISOTkP
USOTmC
SWAZILAND
ska2:la/o
s*azjlam:
S**AZ J IA-*1-
Heter Vehicle Activity D4t*

1C:]I
Kond«y. Jtnuii
I*f #rd
riitwa o*t«




Tr«:nc



VEHICLE
Volume

GDP
ropuUtler
iKlllior. VfcaT)
Soutce
Hi. :ons
5 U1000J
LOGV
2919.00
f*F
1 t6i
2431
HOOT
lD» 12
IRF
nt<
24 Ji
iw:
2)14.11
IRF
:: tb
2431
LCD?
1. CO
I*F
',165
2431
LDCv
mss.co
IBF
7JC1I
23I>?
O.CO
NQF
1923
1U9
LDCV
210.41
FIT
1*10
1T0S
HDDT
44-4«
FIT
PIC
1?05
LDCT
Si.fl
FIT
1?10
1705
LDCV
59.51
FIT
363
Hi 9
HDCT
9.44
FIT
343
16)9
LOG?
12.51
FIT
343
1619
LOCV
91.91
FIT
561
712
KDDT
14.19
fit
561
712
U>CT
19.34
FIT
541
?12
IZZ1
0.00
KSF
>61
712
wor - ko Fit / fit - c&c* fit
C-12

-------
APPENDIX D
Development of Soil NjO
Emission Factors
D-l

-------
APPENDIX D
DEVELOPMENT OF SOIL NaO EMISSION FACTORS
The data used to calculate means and 95% confidence intervals (CIs) for soil N20
emission rates are provided in Table D-l. Sample size could not be determined for most
of the data. Where it was given in the literature, the sample size (n) is shown in the table.
All means and CIs were calculated using the value reported, whether it represented a single
datum or a sample mean.
Confidence in these factors could be increased if all of the original data were
available for analysis. These emissions may be non-normally distributed, in which case
calculation of means could be improved by data transformation. Furthermore, if the
distribution of soil NaO emissions is skewed to the right, data transformation will produce
lower means than those calculated using raw data. The overall effect will be to reduce total
annual global emissions estimates.
'";d.291\Appendix.d
D-2

-------
TABLE D-l
SOIL n2o EMISSION FACTOR DATA
Cover Type
Measurement-derived
emission factor
(g N20-N/m2/yr)
Comments
Reference
Temperate Forests
Coniferous
0.0015 ±0.0022
Midpoint = 0.00335
NE Coniferous (red
pine stand)
Bowden et al. (1990)

0.2427
Wisconsin Coniferous
(pine plantation, red)
Bowden et al. (1990)

0.0350 to 0.0701
Throughout Central
European Forest
(predominantly
coniferous)
Schmidt et al. (1988)
Deciduous
0.0024 ±0.0025
NE Deciduous (Black
Oak, birch, maple)
Bowden et al. (1990)

0.0149
New Hampshire
deciduous
Bowden et al. (1990)

0.0473
Wisconsin deciduous
Bowden et al. (1990)

min = 0.0263
max = 0.0964
West Germany
deciduous
Bowden et al. (1990)

0.1406
New York State
deciduous; mineral soils
over 1 year
Duxbury et al. (1982)

0.02305
New Hampshire
hardwood forest (n = 29)
Duxbury et al. (1982)
Tropical Forests

min = 0.1375
midpoint = 0.1752
max = 0.2129
Amazon clay soils
(Terra Firma)
Matson et al. (1990)

0.0263
Amazon sand soils
Matson et al. (1990)

0.0088
Amazon floodplain soils
(Varzea)
Matson et al. (1990)

0.1567
Florida Everglades,
organic soil over 1 year
Duxbury et al. (1982)
dkd.291\Appendix.d
D-3

-------
Table D-l
(Continued)
Cover Type
Measurement-derived
: emission factor
(g N2ON/m2/yr)
Comments
Reference
Tropical
forests,
continued
0.5993
Brazil tropical
hardwoods (annual
means)
Keller et al. (1988)

0.3918
Brazil tropical moist
forest
Keller et al. (1986)

0.5762
Puerto Rico, dry season,
subtropical moist forest
Keller et al. (1986)

0.3227
Amazon undisturbed
tropical soils
Keller et al. (1988)

0.1139
Amazonian forests: 3
types of ecosystems
Livingston et al.
(1988)
Savanna




0.0392 ± 0.0645
Tropical savanna site I
(n=63)
Sanhueza et al. (1990)

0.2305 ± 0.0738
Tropical savanna site II
(n=29)
Sanhueza et al. (1990)

0.3940 ± 0.2397
Semi-deciduous tropical
savanna forest - day
time (n=34)
Sanhueza et al. (1990)

0.2328 ± 0.1706
Semi-deciduous tropical
savanna forest - m'ght
time (n=15)
Sanhueza et al. (1990)

0.1452 ± 0.1498
Transitional savanna
forest (between savanna
and semi-deciduous
forest) (n=20)
Sanhueza et al. (1990)

0.0576
Undisturbed tropical
savanna soil during dry
season
Hao et al. (1988)

0.0230
Undisturbed tropical
savanna soil during dry
season after 4 days of
simulated rainfall
Hao et al. (1988)
	
dkd.291\Appendix.d
D-4

-------
Table D-l
(Continued)
Cover Type
Measurement-derived
emission factor
(g N20-N/m2/yr)
Comments
Reference
Temperate



Grassland
0.0830
Clovergrass in
Canberra, Australia,
over 5 months
Freney et al. (1979)

0.1314
Natural shortgrass
prairie, Colorado
Mosier et al. (1981)
Sclerophyllous
Shrublands
0.1752
Chaparral ecosystem,
pre-burn
Levine et al. (1988)
dkd.291\Appendix.d
D-5

-------
Bowden, R.D., P.A. Steudler, J.M. Melillo, and J.D. Aber. 1990. "Annual Nitrous
Oxide Fluxes from Temperate Forest Soils in the Northeastern United States."
J. Geophys. Res. - Atmospheres. 95:3997-4005.
Duxbury, J.M., D.R. Bouldin, R.E. Terry, and R.L. Tate, III. 1982. "Emissions of
Nitrous Oxides from Soils." Nature, Vol. 298.
Freney, J.R., O.T. Demmeed, and J.R. Simpson. 1979. "Nitrous Oxide from Soils
at Low Moisture Contents." Soil Biol. Biochem. 11:167-173.
Hao, W.M., D. Scharffe, P.J. Crutzen, and E. Sanhueza. 1988. "Production of NzO,
CH4, and C02 from Soils in the Tropical Savanna During the Dry Season." J. Atmos.
Chem. 7:93-105.
Keller, M., W.A. Kaplan, and S. Wofsy. 1986. "Emissions of N20, CH4, and C02
from Tropical Forest Soils." J. Geophys. Res. 91(D11):11791-11802.
Keller, M., W.A. Kaplan, S.C. Wofsy and J.M. DaCosta. 1988. "Emissions of N>0
from Tropical Forest Soils: Response to Fertilization with NH4+, N03", and P04
J. Geophys. Res. 93(D2): 1600-1605.
Levine, J.S., W.R. Cofer, III, D.I. Sebacher, E.L. Winstead, S. Sebacher, and
P.J. Boston. 1988. "The Effects of Fire on Biogenic Soil Emissions of Nitric Oxide
and Nitrous Oxide." Global Biogeochemical Cycles. 2(4):445-449.
Livingston, G.P., P.M. Vitousek, and P.A. Matson. 1988. "Nitrous Oxide Flux and
Nitrogen Transformation Across a Landscape Gradient in Amazonia." J. Geophys.
Res. 93(D2): 1593-1599.^
Matson, P.A., P.M. Vitousek, G.P. Livingston, and N.A Swanberg. 1990. "Sources
of Variation in Nitrous Oxide Flux from Amazonian Ecosystems." J. Geophys. Res. -
Atmospheres. 95:6789-6798.
Mosier, A.R., M. Stillwell, WJ. Pauter, and R.G. Woodmansee. 1981. "Nitrous
Oxide Emissions from a Native Shortgrass Prairie." Soil Scien. Amer., J. 45:617-619.
Sanhueza, E., W.M. Hao, D. Scharffe, L. Donoso, and P.J. Crutzen. 1990. "N20 and
NO Emissions from Soils of the Northern Part of the Guayana Shield, Venezuela."
J. Geophys. Res. - Atmospheres. 95:22481-22488.
Schmidt, J., W. Seiler, and R. Conrad. 1988. "Emission of Nitrous Oxide from
Temperate Forest Soils into the Atmosphere." J. Atmos. Chem. 6:9615.
l.291\Appendu< d
D-6

-------
TECHNICAL REPORT DATA
(Picase rccd Instructions on :hc rr.mc before coir.p'
1 =1" \ 0. | 2.
EPA-600/R-95-105 ,


4, TITLt AND SU371 TuE
Characterization of Nitrous Cxide Emission Sources
5. REPORT DATE
July 1995
G. P£ RTORMiNG ORGANIZATION CODfc
7. AUTHOH(S)
Rebecca L. Peer, *Eric P. Epner, and Richard S.
Billings
8, PERFORMING ORGANIZATION REPORT NO.
9, PERFORMING O R 0 AN . Z ATI Cf\ NAM: AMD ADDRESS
Radian Corporation
1600 Perimeter Park Drive
Morrisville, North Carolina 27560
10. PROGRAM ELEMfcNT NC.
11. CONTRACT/GRANT NO.
68-D1-0031, Task 46
12. SPONSORING AGENCY \A\1 c AND ADDRESS
EPA. Office of Research and Development
Air and Energy Engineering Research Laboratory**
Research Triangle Park, NC 27711
13. TY?t or REPORT AND PERiOD CCVEREO
Task Final; 6/93 - 9/94
14. SPONSORING AGENCY CODE
EPA/600/13
15. supPLfcMbNTARv notes ^eeRL project officer is Lee L. Beck, Mail Drop 63, 919/541-
0617. (*) Radian Corp., 155 Corporate Woods, Suite 100, Rochester, NY 14623.
(**) Redesignated: Air Pollution Prevention and Control Division.
it., abstract report presents a global inventory of nitrous oxide (N2C) based on re-
evaluation of previous estimates and additions of previously uninventoried source
categories. (NCTE: N2C is both a greenhouse gas and a precursor of nitric oxide
(NC) which destroys stratospheric ozone. ) The best estimate of anthropogenic N20
is 5,7 Tg/yr, which is still much lower than natural source emissions. Much un-
certainty remains about estimates for many source categories. Inadequate data are
available for some categories, while others are limited by a lack of reliable func-
tional models of factors affecting emission rates.
17. KEY WORDS AND DOCUMENT ANALYSIS
a. DESCRIPTORS
b.lDENTIFIERS/OPEN ENDED TERMS
e. cosati l-icId/Group
Pollution
Nitrogen Cxide (N2C)
Emission
Greenhouse Effect
Inventories
Pollution Control
Stationary Sources
Global Emissions
13	B
07B
14	G
04 A
15E
13. D.S~R BUTION S'ATEVENIT
19, SECURITY CLASS (This Report}
Unclassified
21. NO. O^ 3 AG ES
161
Release to Public
20. SECURITY CLASS (This page.
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)

-------