PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
February 1997
xi;£D S7^
C&j
% ^
PRO^°
For
U.S. Environmental Protection Agency
Region II
and
U.S. Army Corps of Engineers
Kansas City District
Volume 2C
Book 2 of3
TAMS Consultants, Inc.
The CADMUS Group, Inc.
Gradient Corporation

-------
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
Table of Contents
Page
Volume 2C (Book 1 of 3)
Table of Contents	i
LIST OF TABLES	v
LIST OF FIGURES 	 viii
LIST OF PLATES	xv
Executive Summary 	E-l
Chapter 1
INTRODUCTION 	 1-1
1.1	Purpose of Report	 1-1
1.2	Report Format and Organization 	 1-2
1.3	Technical Approach of the Data Evaluation and Interpretation Report	 1-2
1.4	Review of the Phase 2 Investigations	 1-5
1.4.1	Review of PCB Sources 	 1-5
1.4.2	Water Column Transport Investigation 	 1-6
1.4.3	Assessment of Sediment PCB Inventory and Fate 	 1-9
1.4.4	Analytical Chemistry Program	1-14
Chapter 2
PCB SOURCES TO THE UPPER AND LOWER HUDSON RIVER 	 2-1
2.1	Background	 2-1
2.2	Upper Hudson River Sources 	 2-2
2.2.1	NYSDEC Registered Inactive Hazardous Waste Disposal Sites ... 2-2
2.2.2	Remnant Deposits	2-18
2.2.3	Dredge Spoil Sites	2-21
2.2.4	Other Upper Hudson Sources	2-22
2.3	Lower Hudson River Sources 	 2-22
2.3.1	Review of Phase 1 Analysis	 2-23
2.3.2	Sampling of Point Sources in New York/New Jersey (NY/NJ)
Harbor	 2-23
2.3.3	Other Downstream External Sources	 2-28
Chapter 3
WATER COLUMN PCB FATE AND TRANSPORT IN THE HUDSON RIVER 3-1
3.1 PCB Equilibrium Partitioning 	 3-3
i	TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
Table of Contents (cont'd)
3.1.1	Two-Phase Models of Equilibrium Partitioning 	 3-4
3.1.2	Three-Phase Models of Equilibrium Partitioning 	 3-24
3.1.3	Sediment Equilibrium Partition Coefficients 	3-31
3.1.4	Summary	3-38
3.2	Water Column Mass Loading 	3-39
3.2.1	Phase 2 Water and Sediment Characterization	3-40
3.2.2	Flow Estimation	 3-41
3.2.3	Fate Mechanisms 	 3-46
3.2.4	Conceptual Model of PCB Transport in the Upper Hudson	 3-58
3.2.5	River Characterization	 3-60
3.2.6	Mass Load Assessment	 3-68
3.2.7	Source Loading Quantitation	 	3-86
3.3	Historical Water Column Transport of PCBs 	 3-91
3.3.1	Establishing Sediment Core Chronologies	 3-92
3.3.2	Surface Sediment Characterization 	 3-105
3.3.3	Water Column Transport of PCBs Shown by Sediment Deposited
After 1975 	 3-107
3.3.4	Estimation of the PCB Load and Concentration across the
Thompson Island Pool based on GE Capillary Column Data . . . . 3-124
3.3.5	Estimated Historical Water Column Loadings Based on USGS
Measurements 	 3-131
3.3.6	Conclusions Concerning Historical Water Column Transport .. 3-136
3.4	Integration of Water Column Monitoring Results	 3-140
3.4.1	Monitoring Techniques and PCB Equilibrium		3-141
3.4.2	Loadings Upstream of the Thompson Island Pool		3-143
3.4.3	Loading from the Thompson Island Pool during 1993 		3-146
3.4.4	Loading at the Thompson Island Dam - 1991 to 1996 		3-150
3.4.5	PCB Loadings to Waterford		3-155
3.4.6	PCB Loadings to the Lower Hudson		3-160
3.5	Integration of PCB Loadings to Lower Hudson River and New York/New
Jersey Harbor 		3-164
3.5.1	Review of Lower Hudson PCB Mathematical Model		3-164
3.5.2	Estimate of 1993 PCB Loading from the Upper Hudson River	3-166
3.5.3	Revised PCB Loading Estimates		3-167
3.6	Water Column Conclusion Summary	3-170
Chapter 4
INVENTORY AND FATE OF PCBs IN THE SEDIMENT OF THE HUDSON
RIVER	 4-1
ii	TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
Table of Contents (cont'd)
4.1	Characterization of Upper Hudson Sediments by Acoustic Techniques ... 4-2
4.1.1	Geophysical Data Collection and Interpretation Techniques 	 4-6
4.1.2	Correlation of Sonar Image Data and Sediment Characteristics .. 4-15
4.1.3	Delineation of PCB-Bearing and Erodible Sediments	4-21
4.2	Geostatistical Analysis of PCB Mass in the Thompson Island Pool, 1984 4-25
4.2.1	Data Preparation for PCB Mass Estimation	 4-26
4.2.2	Geostatistical Techniques for PCB Mass Estimation 	 4-32
4.2.3	Polygonal Declustering Estimate of Total PCB Mass	 4-33
4.2.4	Geostatistical Analysis of Total PCB Mass 	 4-34
4.2.5	Kriging Total PCB Mass	 4-38
4.2.6	Kriged Total Mass Estimate	 4-41
4.2.7	Surface Sediment PCB Concentrations	 4-42
4.2.8	Summary	4-48
4.3	PCB Fate in Sediments of the Hudson River	 4-49
4.3.1	Anaerobic Dechlorination and Aerobic Degradation 	4-50
4.3.2	Anaerobic Dechlorination as Documented in Phase 2 High-
Resolution Sediment Cores 	 4-52
4.4	Implication of the PCB Fate in the Sediments for Water Column Transport 4-71
4.5	Summary and Conclusions 	 4-83
REFERENCES	R-l
Volume 2C (Book 2 of 3)
Tables
Figures
Plates
Volume 2C (Book 3 of 3)
Appendix A
DATA USABILITY REPORT FOR PCB CONGENERS HIGH RESOLUTION
SEDIMENT CORING STUDY
A.l Introduction		A-l
A.2 Field Sampling Program		A-2
A.3 Analytical Chemistry Program	A-3
A.3.1 Laboratory Selection and Oversight		A-3
A.3.2 Analytical Protocols for PCB Congeners 		A-4
A.4 Data Validation 		A-7
A.5 Data Usability 		A-10
A.5.1 Approach 		A-10
iii	TAMS/Cadmus/Gradipnt

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
Table of Contents (cont'd)
A.5.2 Usability - General Issues	 A-ll
A.5.3 Usability - Accuracy, Precision, Representativeness and Sensitivity A-16
A.5.4	Usability - Principal Congeners 	 A-25
Appendix B
DATA USABILITY REPORT FOR PCB CONGENERS WATER COLUMN
MONITORING PROGRAM
B.l Introduction	B-l
B.2 Field Sampling Program	B-2
B.3 Analytical Chemistry Program	B-3
B.3.1	Laboratory Selection and Oversight	B-3
B.3.2 Analytical Protocols for PCB Congeners 	 B-4
B.4 Data Validation 	B-8
B.5 Data Usability 	 B-10
B.5.1 Approach 	 B-10
B.5.2 Usability - General Issues	 B-l 1
B.5.3 Usability - Accuracy, Precision, Representativeness and Sensitivity B-16
B.5.4 Usability - Principal Congeners 	 B-25
B.6 Conclusions 	 B-28
Appendix C
DATA USABILITY REPORT FOR NON-PCB CHEMICAL AND PHYSICAL DATA
C.l Introduction	C-l
C.2 High Resolution Coring Study and Confirmatory Sediment Sample Data . . C-4
C.2.1 Grain Size Distribution Data 	C-5
C.2.2 Total Organic Nitrogen (TON) Data 	 C-10
C.2.3 Total Carbon/Total Nitrogen (TC/TN) Data 	 C-13
C.2.4 Total Inorganic Carbon (TIC) Data	 C-l6
C.2.5 Calculated Total Organic Carbon (TOC) Data	 C-18
C.2.6 Weight-Loss-on-Ignition Data 	 C-18
C.2.7 Radionuclide Data	 C-l9
C.2.8 Percent Solids	 C-22
C.2.9 Field Measurements	 C-22
C.3 Water Column Monitoring Program and Flow-Averaged Sampling Programs
	 C-23
C.3.1 Dissolved Organic Carbon (DOC) Data	 C-24
C.3.2 Total Suspended Solids and Weight-Loss-on-Ignition (TSS/WLOI) Data
	 C-27
C.3.3 Chlorophyll-a	 C-33
iv	TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Tables
Tables	Title
1-1	Water Column Transect and Flow-Averaged Sampling Stations
1-2	Water Column Transect and Flow-Averaged Sampling Events
1 -3	High-Resolution Sediment Core Sample Locations
1-4	Phase 2 Target and Non-target PCB Congeners Used in Analyses (3 Pages)
2-1	Summary of Niagara Mohawk Power Corp. RI Data - Queensbury Site
2-2 Phase 1 Estimates of PCB Loads to the Lower Hudson
2-3 Summary of Results of USEPA Study of PCBs in NY/NJ Point Sources
2-4	Estimates of PCB Loading from Treated Sewage Effluent
3-1	Stepwise Multiple Regression for log(KPa) of Key PCB Congeners Showing Sign of
Regression Coefficients Determined to be Significant at the 95 Percent Level
3-2 Stepwise Multiple Regression for log(KPOCa) of Key PCB Congeners Showing Sign of
Regression Coefficients Determined to be Significant at the 95 Percent Level
3-3 Correlation Coefficient Matrix for Explanatory Variables Evaluated for Analysis of PCB
Partition Coefficients (KP0C a)
3-4 Temperature Slope Factors for Capillary Column Gas Chromatogram Peaks Associated with
Key PCB Congeners
3-5 Relative Performance of Distribution Coefficient Formulations: Squared Error in Predicting
Particulate-Phase PCB Congener Concentration from Dissolved-Phased Concentration
3-6a In Situ KP0C a Estimates for Hudson River PCB Congeners Corrected to 20°C (3 pages)
3-6b In Situ log (Kp^ a) Estimates for Hudson River PCB Congeners Corrected to 20°C (3 pages)
3-7 Three-Phase PCB Partition Coefficient Estimates Using Regression Mehtod
3-8 Three-Phase PCB Partition Coefficient Estimates Using Optimization with Temperature
Correction to 20°C
3-9 A Comparison of Two-Phase Sediment log (K0C a) and log (KP0Ca) Estimates for Hudson
River PCB Congeners
3-10a Three-Phase Partition Coefficient Estimates for PCBs in Sediment of the Freshwater
Portion of the Hudson River
3-10b Predicted Relative Concentration of PCB Congeners in Sediment Porewater for Various
Assumptions Regarding Three-Phase PCB Congener Partition Coefficients
3-11 Models for Predicting Flow at Stillwater and Waterford
3-12 Calculated Flows at Stillwater and Waterford for January 1993 to September 1993 (7
pages)
3-13 Summary of Prediction Uncertainty for Stillwater Flow Models
3-14 Summary of Prediction Uncertainty for Waterford Flow Models
v
TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Tables (cont'd)
3-15 Summary of River Segment Characteristics
3-16 Comparison of Water Column Mass Transport at Rogers Island, Thompson Island Dam
and Waterford
3-17 Application of Dating Criteria to High Resolution Cores (2 pages)
3-18 Estimated Sedimentation Rates for Dated Cores
3-19 Comparison of Total PCB Concentrations of Suspended Matter and Surficial Sediment
Deposited after 1990
3-20 Dated Sediment Cores Selected for Historical Water Column PCB Transport Analysis
3-21 Cumulative Loading Across the Thompson Island Pool by Homologue Group from GE
Data April 1991 through February 1996
3-22 Breakpoint of Flow Strata (cfs) Used for Total PCB Load Estimation in the Upper Hudson
River
3-23 Estimated Yearly Total PCB Loads (kg/yr) in the Upper Hudson Based on USGS
Monitoring
3-24 Comparison of Calculated Water Column Loads at Rogers Island and Thompson Island
Dam for Phase 2, GE and USGS Data
3-25	Total PCB Loading Contribution Relative to River Mile 143.5 Near Albany Based on
Dated Sediment Cores for 1991 to 1992
4-1	Results of Linear Regression Study - Grain Size Parameter vs Image DN
4-2 GC-Mass Spectrometer Split-Sample Results for Total PCB Concentrations and Point
Values Selected to Represent Reported Ranges for the 1984 Thompson Island Pool
Sediment Survey
4-3 Sample Statistics for Thompson Island Pool PCB Mass Concentration Estimates, 1984
Sediment Survey
4-4 Subreach Variogram Modelsa for Natural Log of PCB Mass Concentration, 1984
Thompson Island Pool Sediment Survey
4-5 Total PCB Mass Concentration in the Thompson Island Pool, 1984: Cross Validation
Comparison of Lognormal Kriging Results and Observed Values
4-6 Exponential Variogram Models for Natural Log of Surface Concentrations in the 1984
Sediment Survey of the Thompson Island Pool
4-7 Summary Results for Kriged Surface Layer Concentration of Total PCBs by Subreach,
1984 Sediment Survey of the Thompson Island Pool
4-8 Dechlorination of Aroclor 1242 (3 pages)
vi
T AMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Tables (cont'd)
4-9 Molar Dechlorination Product Ratio and Mean Molecular Weight of Various Aroclor
Mixtures
4-10 Representation of Three Aroclor Mixtures by the Phase 2 Analytical Procedure
4-11 Statistics for High Resolution Sediment Core Results Molar Dechlorination Product and
Change in Molecular Weight
vii
T AM S/C admus/Gradient

-------
HASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures
Figures	Title
1-1	PCB Structure
2-1	Fish PCB Results - Niagara Mohawk Queensbury RI Report
2-2 General Electric Company - Hudson Falls Plant and Vicinity
2-3 GE Fort Edward Outfall Discharge Monitoring Report Data
2-4 NY/NJ POTW Influent PCB Data - Congener Basis
2-5 NY/NJ POTW Influent PCB Data - Homologue Basis
2-6 NY/NJ POTW Effluent PCB Data - Congener Basis
2-7 NY/NJ POTW Effluent PCB Data - Homologue Basis
2-8 NY/NJ River Water PCB Data - Congener Basis
2-9	NY/NJ River Water PCB Data - Homologue Basis
3-1	Total Suspended Solids Concentration [TSS] Upper Hudson River Water Column
Transects
3-2 Particulate Organic Carbon Concentration [POC], Upper Hudson River Water Column
Transects
3-3 Two-Phase Partition Coefficients to Particulate Matter (KP-a) for Water Column Transects
3-4 Two-Phase Partition Coefficients to Particulate Organic Carbon (KPOC J for Water Column
Transects
3-5 Observed vs. Theoretical Partitioning to Organic Carbon for PCB Congeners in the
Freshwater Hudson
3-6 KP0C a Estimates vs. Water Temperature for BZ#52, Hudson River Water Column Transect
Samples
3-7 Variation in log KP a by Transect for BZ#44
3-8 Variation in log KPOC a by Transect for BZ#44
3-9 Variation in log KP a by River Mile for BZ#44
3-10 Variation in log KP0C a by River Mile for BZ#44
3-11 Temperature Correction Slope Estimates for PCB Capillary Column Peaks
3-12 Equilibration KP a Estimates for PCB Partitioning in Hudson River Transect Samples
3-13 KP a Estimates for Hudson River Transect 1
3-14 KP a Estimates for Hudson River Transect 4
3-15 KP a Estimates for Hudson River Transect 6
3-16 Percent Deviations in log KP0C a Estimates for PCB Congeners by River Mile
3-17 Prediction of Particulate-Phase PCB Congener Concentration Using KP a with Temperature
Correction
3-18 Prediction of Particulate-Phase PCB Congener Concentration Using KpoCa with
Temperature Correction
3-19 Median Values of log KP0C a Corrected to 20°C
viii
TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
3-20 PCB Congener KPOC a Estimates for Hudson River Flow-Averaged vs. Transect Samples
3-21 Relationship of Dissolved and Particulate Organic Carbon Concentrations in Upper
Hudson Transect Samples
3-22 Estimated Average Percent Distribution of PCB Congeners Among Dissolved, POC and
DOC Phases in Hudson River Water Column Transect Data
3-23 Comparison of USGS Measured Flows at Fort Edward, Stillwater, and Waterford for
Water Year 1992
3-24 Stillwater Low-Flow Model C Prediction Uncertainty as a Function of Stillwater Flow
3-25 Comparison of Flows Predicted by Stillwater Low-Flow Models (Fort Edward Flow<
8,000 cfs)
3-26 Comparison of Flows Predicted by Stillwater High-Flow (Fort Edward Flow > 8,000 cfs)
Models
3-27 Comparison of Flows Predicted by Stillwater Low-Flow (Fort Edward Flow< 8,000 cfs)
and Stillwater High-Flow (Fort Edward > 8,000 cfs) Models
3-28 Comparison of Flows Predicted by Waterford Low-Flow (Fort Edward Flow< 8,000 cfs)
Models
3-29 Comparison of Flows Predicted by Waterford High-Flow (Fort Edward Flow > 8,000 cfs)
Models
3-30 Comparison of Flows Predicted by Waterford Low-Flow (Fort Edward Flow< 8,000 cfs)
Models and Waterford High-Flow (Fort Edward > 8,000 cfs) Models
3-31 Homologue Distribution of the GE Hudson Falls Facility Source as Characterized by the
Transect 1 Remnant Deposit Area (RM 195.8) Sample
3-32 Suspended-Matter Loading in the Upper Hudson River - Transect 1 Low-Flow Conditions
3-33 Suspended-Matter Loading in the Upper Hudson River Transect 3 - Transition between
Low-Flow and High-Flow Conditions
3-34 Suspended-Matter Loading in the Upper Hudson River - Transect 4 High-Flow Conditions
3-35 Suspended-Matter Loading in the Upper Hudson River - Transect 6 Low-Flow Conditions
3-36 Sediment Homologue Distributions in the Thompson Island Pool
3-37 Estimated Porewater Homologue Distributions in Sediments from the Thompson Island
Pool
3-38 Upper River Water Column Instantaneous PCB Loading for Transect 1 Low-Flow
Conditions
3-39 Typical Homologue Distributions of the Batten Kill and Hoosic River PCB Water Column
Loads
3-40 Upper River Water Column Instantaneous PCB Loading for Transect 3 Transition from
Low-Flow to High-Flow Conditions
3-41 Homologue Distributions of Surficial Sediments (0 to 2 cm) in the Batten Kill and the
Hoosic River
3-42 Sediment Homologue Distributions in the Upper River Reaches below the Thompson
Island Dam
ix
T AMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
3-43 Upper River Water Column Instantaneous PCB Loading for Transect
Conditions
3-44 Upper River Water Column PCB Loading for Flow-Averaged Event
Conditions
3-45 Upper River Water Column PCB Loading for Flow-Averaged Event
Conditions
3-46 Upper River Water Column PCB Loading for Flow-Averaged Event
Conditions
3-47 Upper River Water Column Instantaneous PCB Loading for Transect
Conditions
3-48 Upper River Water Column PCB Loading for Flow-Averaged Event
Conditions
3-49 Upper River Water Column PCB Loading for Flow-Averaged Event
Conditions
3-50 The Coincidence of the 137Cs and ^Co Maxima at River Mile 43.2 (Core (
3-51 137Cs Concentrations in High Resolution Sediment Core 11 and Core 19
3-52 Comparison of 137Cs Profiles between a Phase 2 High-Resolution Sediment Core and a
Historical Core at River Mile 188.5
3-53 Upper River High-Resolution Sediment Cores Depth vs. I37Cs Concentration and PCB
Concentration
3-54 Lower River High-Resolution Sediment Cores Depth vs. 137Cs Concentration and PCB
Concentration
3-55 Tributaries and Background High Resolution Sediment Cores Depth vs. 137Cs
Concentration and PCB Concentration
3-56 Comparison of the Surficial Sediment Congener Distribution with the Corresponding
Transect 4 High-Flow Suspended-Matter Congener Distribution
3-57 Comparison of the Thompson Island Pool Surficial Sediment Congener Distribution with
the Thompson Island Dam Suspended-Matter Congener Distributions associated with Low-
Flow Winter and Summer Conditions
3-58 Comparison of the Albany Turning Basin Surficial Sediment Congener Distribution with
the Green Island Bridge Suspended-Matter Congener Distributions associated with Low-
Flow Winter and Summer Conditions
3-59 Total PCBs in Sediment vs. Approximate Year of Deposition at River Mile 188.5 Near
the Thompson Island Dam: High Resolution Sediment Core 19
3-60 Total PCB Content in Sediment Deposited Between 1991 and 1992 vs. River Mile
3-61 Total PCBs in Post-1975 Sediment vs. Approximate Year of Deposition in the Hudson
River
3-62 Total PCB Content in Sediment vs. River Mile
3-63 137Cs Levels in Surface Sediments in the Hudson River Based on High-Resolution
Sediment Coring Results
4	High-Flow
1	High-Flow
2	Low-Flow
3	Low-Flow
6 Low-Flow
5	Low-Flow
6	Low-Flow
x
TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
3-64 Total PCBs/137Cs Content in Sediment vs. River Mile
3-65 Time Interval Comparison for Total PCBs/137Cs Ratios: 1975 through 1992
3-66 Comparison of Measured and Calculated Total PCBs/137Cs Ratios for Sediment Deposited
between 1991 and 1992
3-67 Comparison of Measured and Calculated Total PCBs/137Cs Ratios for Sediment Deposited
between 1982 and 1986
3-68 Total PCBs/137Cs Ratios in Dated Sediment vs. River Mile: A Comparison of Calculated
and Measured Results
3-69 Comparison of the Duplicate Core Results on a Congener Basis for RM 177.8 near
Stillwater for 1991 to 1992
3-70 A Comparison between the Post-1990 Sediment PCB Congener Pattern for Core 21 at
River Mile 177.8 near Stillwater and Three Aroclor Mixtures
3-71 Normalized PCB Congener Concentrations in Stillwater 1991 to 1992 Sediments and
Rogers Island Suspended Matter vs. Aroclors 1254 and 1260
3-72 Comparison of PCB Congener Patterns: Suspended Matter from River Mile 194.6 at
Rogers Island for Transect 4, April 12 to 14, 1993 and a Mixture of 94% Aroclor 1242
+ 5% Aroclor 1254 + 1% Aroclor 1260
3-73 A Comparison between the 1991 to 1992 PCB Congener Pattern at River Mile 177.8 near
Stillwater with the Period 1975 to 1990
3-74 A Comparison of the PCB Congener Pattern Chronology between River Mile 143.5 near
Albany and River Mile 177.8 near Stillwater for 1975 to 1992
3-75 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated Post-1990
3-76 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1987 to
1990
3-77 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1982 to
1986
3-78 A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns in Sediments Dated 1975 to
1981
3-79 Comparison of PCB Congener Patterns at River Mile 143.5
3-80 Comparison of PCB Congener Patterns at River Mile -1.9
3-81 Monthly PCB Load, River Mile 194.6 at Rogers Island and River Mile 188.5 at Thompson
Island Pool Averaging Estimate on GE Data
3-82 Total PCB Concentrations at River Mile 194.6 GE Data, with Moving Average
3-83 Load across the Thompson Island Pool Total PCBs, GE Data
3-84 Load across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data
3-85 Load across the Thompson Island Pool Di-Chlorinated PCB Homologues, GE Data
xi
T AMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
3-86 Load across the Thompson Island Pool Tri-Chlorinated PCB Homologues, GE Data
3-87 Load across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data
3-88 Average Daily PCB Homologue Load at Rogers Island (River Mile 194.6) and Thompson
Island Dam (River Mile 188.5) April 1991 through February 1996, Averaging Estimate
on GE Data
3-89 Gain across the Thompson Island Pool Total PCBs, GE Data
3-90 Gain across the Thompson Island Pool Mono-Chlorinated PCB Homologues, GE Data
3-91 Gain across the Thompson Island Pool Di-Chlorinated PCB Homologues, GE Data
3-92 Gain across the Thompson Island Pool Tri-Chlorinated PCB Homologues, GE Data
3-93 Gain across the Thompson Island Pool Tetra-Chlorinated PCB Homologues, GE Data
3-94 PCB Homologue Composition Change across the Thompson Island Pool April 1991
through February 1995, GE Data
3-95 Summer PCB Homologue Concentrations June through August 1991, GE Data
3-96 Summer PCB Homologue Concentrations June through August 1992, GE Data
3-97 Summer PCB Homologue Concentrations June through August 1993, GE Data
3-98 Summer PCB Homologue Concentrations June through August 1994, GE Data
3-99 Summer PCB Homologue Concentrations June through August 1995, GE Data
3-100 Total PCB Load from USGS Data: Ratio Estimator
3-101 Total PCB Load from USGS Data: Averaging Estimator
3-102 Water Column PCB Homologue Composition at River Mile 194.6 at Rogers Island
3-103 Water Column PCB Homologue Composition of the Net Thompson Island Pool Load
3-104 Comparison of 1993 Upper Hudson River PCB Loadings at Waterford based on Phase 2
Data
3-105 Comparison of Transect Results, Flow-Averaged Event Results, and Monthly Mean Based
on GE Data
3-106 Mean PCB Loadings at the Thompson Island Dam from April 1991 through October 1995,
GE Data
3-107 Water Column Total PCB Concentrations at the Thompson Island Dam: June 1993 to May
1996 - GE Data
3-108 PCB Homologue Composition of the Net Thompson Island Pool Load, GE Data
3-109 Total PCB Load at Rogers Island and the Thompson Island Dam - May 27, 1996, GE Data
3-110 PCB Load vs. River Mile for Three Phase 2 Water Column Transects
3-111 PCB Loadings to the Hudson River at River Mile 153.9 near Albany based on the Water
Column Transect Sampling
3-112 Fractional PCB Loads at Albany for 1991 to 1992 Based on Dated High-Resolution
Sediment Core Results
3-113 Model-Projected PCB Loadings to Lower Hudson River and Harbor for 1993
3-114 Estimated PCB Loadings to Lower Hudson and Harbor for 1993
xii
T AMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
4-1 A Comparison Between River Flow Velocity and Maximum Sediment PCB Inventory by
River Mile in the Thompson Island Pool
4-2 Hudson River Cross-Sectional Area for 8400 cfs Flow at Fort Edward
4-3 Comparison of the DN Value for 10 ft and 50 ft Circles at Confirmatory Sampling Sites
4-4 Calibration Plots of DN vs. Grain-Size
4-5 Three-Dimensional Correlation Plot of Digital Number vs. Grain Size
4-6 Two-Dimensional Correlation Plot of Digital Number vs. Grain Size
4-7 Comparison of 500 kHz Acoustic Signal and 1984 NYSDEC PCB Levels in Surface
Sediments
4-8 Examples Semivariogram with Labels
4-9 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey
Subreaches 1 and 2, Isotropic Variogram
4-10 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey
Subreach 3, Major Axis N 35 W
4-11 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey
Subreach 4, Major Axis N 10 W
4-12 Variogram of Natural Log of PCB Mass Thompson Island Pool, 1984 Sediment Survey
Subreach 5, Isotropic Variogram
4-13 Typical Arrangement of the Point Estimates Used in Generating Block Kriging Values
4-14 Variogram of Natural Log of Surface PCB Concentration GC/MS Screening Data
Thompson Island Pool, 1984 Sediment Survey
4-15 Variogram of Natural Log of Surface PCB Concentration GC/ECD Analytical Data
Thompson Island Pool, 1984 Sediment Survey
4-16 Variogram of Natural Log of Surface PCB Concentration Cross-Variogram between
GC/ECD and GC/MS Data Thompson Island Pool, 1984 Sediment Survey
4-17 Locations of Potential Chlorine Sites on a PCB Molecule
4-18 Congener Content of Four Aroclor Mixtures
4-19 Histogram of the Molar Dechlorination Product Ratio
4-20 Histogram of the Fractional Molecular Weight Difference Relative to Aroclor 1242
4-21 Comparison Between the Molar Dechlorination Product Ratio and the Fractional Change
in Molecular Weight for All Post-1954 Freshwater Sediments
4-22 Molar Dechlorination Product Ratio vs. Total PCB Concentration in Post-1954 Sediments
from the Freshwater Hudson River
4-23 Molar Dechlorination Product Ratio vs. Total PCB Concentration with Depth (Age) in
Core 18 at River Mile 185.8
4-24 Molar Dechlorination Product Ratio vs. Total PCB Concentration with Depth (Age) in
Core 19 at River Mile 188.5
4-25 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight
4-26 Fractional Mass Loss as Measured by the Change in Mean Molecular Weight - Expanded
Scale
xiii
TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Figures (cont'd)
4-27 Molar Dechlorination Ratio and Total PCB Concentration vs. Depth for Phase 2 Sediment
Core Samples
4-28a Histogram of the Change in Molecular Weight as a Function of Time of Deposition in
Post-1954 Dated Sediments from the Hudson River
4-28b Fractional Mass Loss as Measured by the Change in Mean Molecular Weight in Post-1954
Dated Sediments from the Hudson River
4-29 A Comparison Between Sediment and Water Column Samples from Rogers Island and
Thompson Island Dam
4-30 A Comparison of the Net Thompson Island Pool Contribution to the Water Column with
the Sediments of the Upper Hudson
4-31 Relationship Between Phase 2 Hudson River Water Column Samples and the Sediment
Regression Line - Molar Dechlorination Product Ratio vs. Change in Molecular Weight
4-32 Molar Dechlorination Product Ratio vs. Change in Molecular Weight for Water Column
Transects Showing Trend with Station
4-33 Trend of High Resolution Core Top Molar Dechlorination Ratio and Total PCB
Concentration with River Mile
4-34 A Comparison Among Various Water Column and Sediment Samples on a Homologue
Basis
4-35 Comparison Between Various Water Column and Estimated Porewater Distributions on
a Homologue Basis
4-36 Estimation of the Age of the Sediments Responsible for the Thompson Island Pool Source
xiv
TAMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Plates
Plates	Title
1-1 Hudson River Drainage Basin and Site Location Map
1-2 Phase 2 Water Column Sampling Locations in Hudson River
1-3 Phase 2 High-Resolution Sediment Core Sampling Locations in Hudson River
1-4 NYSDEC Hot Spot Locations in Upper Hudson River
1-5	Sheet 1 of 2 - Geophysical and Confirmatory Sediment Sampling Locations in Upper
Hudson River (2 Sheets)
2-1	PCB Contaminated Sites in the Upper Hudson Watershed
2-2 General Electric Hudson Falls, NY - Site Plan and Shore Profile
2-3	USEPA Point Source Sampling Locations in NY/NJ Harbor
3-1	NYS Thruway Authority, Office of Canals, Staffing Gauge Locations in the Upper Hudson
River
3-2	Dated High-Resolution Sediment Core Locations in Hudson River
4-1	Side-Scan Sonar Mosaic of the Hudson River Sediments in the Vicinty of Hotspot 14
4-2 X-Radiograph of Confirmatory Core 88 Collected at Approximately RM 187.6, South of
Thompson Island Near Hotspot 24
4-3 Interpretation of the 500 kHz Side-Scan Sonar Mosaic (A) and Comparison of Fine-
Grained Sediments & NYSDEC Hot Spot Areas (B) in the vicinity of Hot Spot 14
4-4 Zones of Potentially High Sediment PCB Contamination in the Upper Hudson River (2
Sheets)
4-5 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island
Pool - Subreach 1
4-6 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island
Pool - Subreach 2
4-7 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island
Pool - Subreach 3
4-8 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island
Pool - Subreach 4
4-9 Polygonal Declustering Results for Sediment Total PCB Inventory in the Thompson Island
Pool - Subreach 5
4-10 Segmentation of the Thompson Island Pool for Semivariogram Analysis
4-11 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -
Subreach 1
4-12 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -
Subreach 2
xv
T AMS/Cadmus/Gradient

-------
PHASE 2 REPORT - REVIEW COPY
FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C - DATA EVALUATION AND INTERPRETATION REPORT
HUDSON RIVER PCBs REASSESSMENT RI/FS
List of Plates (cont'd)
4-13 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -
Subreach 3
4-14 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -
Subreach 4
4-15 Block Kriging Results for Sediment Total PCB Inventory in the Thompson Island Pool -
Subreach 5
4-16 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool
Based on Kriging Analysis - Subreach 1
4-17 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool
Based on Kriging Analysis - Subreach 2
4-18 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool
Based on Kriging Analysis - Subreach 3
4-19 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool
Based on Kriging Analysis - Subreach 4
4-20 Contoured Surface Sediment Total PCB Concentrations for The Thompson Island Pool
Based on Kriging Analysis - Subreach 5
xvi
T AMS/Cadmus/Gradient

-------

-------
Table 1-1
Water Column Transect and Flow-Averaged Sampling Stations
Station No.a
Location
River
Mileb
Abbreviation
Alternate Reference
0001
T
Glens Falls
199.5
GF
GF Public Works • -
0002
T and F
Fenimore Bridge
197.6
FB
Bakers Falls Bridge
0003
T
Remnants
195.5
RMNTS
Remnant Deposits Site
0004
T and F
Rt. 197
194.6
RT 197
Rogers Island, Fort
Edward
0005
T and F
Thompson Island Dam
188.5
TID
Crackers Reef Dam
0006
T
Schuylerville
181.3
SCHYLER
Rt 29 Bridge
0007
T
Stillwater
168.3
SW
Near USGS Water
Quality Sta. 01331095
0008
T and F
Waterford
156.5
WTFD
Rt 4 Bridge at
Waterford
0009
T
Saratoga Springs
NA
SS
Orenda Spring at
Saratoga Park
0010
T
Lock 7
193.7°
LOCK 7

0011
T
Batten Kill
182.1°
BK

0012
T
Hoosic River
167.5°
HOOS

0013
T
Mohawk River
156.2°
MOH

0014
T
Green Island Bridge
151.7
GIB

0015
T
Coxsackie
125.0
COS

0016
T
Cementon
110.0
CEM

0017
T
Highland
77.0
HIGH

0019
T
Mechanicville
165.4
MECH
Mechanicville Public
Dock
0020

Performance
NA
PE


Evaluation Sample

Notes:
a.	T - Transect Sampling Station
F - Flow-Averaged Sampling Station
b.	Water-column transect and flow-averaged samples were collected
within a half mile of the river mile noted.
c.	Tributary river mile designations correspond to point of confluence with the
Hudson River.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradie

-------
Table 1-2
Water-Column Transect and Flow-Averaged Sampling Events
Sampling Event
Sampling Date
Seasonal Conditions
Transect 1
January 29 - February 8, 1993
Winter - Low-Flow
Transect 2
February 19 - February 26, 1993
Winter - Low-Flow
Transect 3
March 26-March 31, 1993
Spring - Transition from Low-Flow
to High-Flow
Transect 4
April 12 - April 14, 1993
Spring - Low-Flow
Transect 5
June 24 - June 30, 1993
Summer - Low-Flow
Transect 6
August 19 - September 1, 1993
Summer - Low-Flow
Transect 8
April 23, 1993
Spring - High-Flow
Flow-Average 1
April 23 - May 8, 1993
Spring - High-Flow
Ala
April 23, 25, 27, 29, 1993
Spring - High-Flow
A2a
May 1,3, 5, 7, 1993
Spring - High-Flow
Flow-Average 2
May 12 - May 27, 1993
Spring - Low-Flow
Flow-Average 3
June 6 - June 19, 1993
Spring - Low-Flow
Flow-Average 4
July 6 - July 20, 1993
Summer - Low-Flow
Flow-Average 5
August 2 - August 17, 1993
Summer - Low-Flow
Row-Average 6
September 9 - September 23, 1993
Summer - Low-Flow
Note:
a. Event includes samples taken only at River Mile 156.6 at Waterford.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradiei

-------
Table 1-3
High-Resolution Sediment Core Sample Locations
RIVER MILE
HIGH RESOLUTION CORES
CORE NO.
202.9
Background - Above Feeder Canal
27
197.1
Bakers Falls
28
194.IE
Rogers Island (East Channel)
26
194.2W
Rogers Island (West Channel)
25
191.2
Thompson Island Pool
20
189.3
Thompson Island Pool
23
188.5
Thompson Island Dam
19
185.8
Above Lock No. 5
18
(NA)
Batten Kill
17
177.8
Stillwater Pool
22
177.8
Stillwater Pool
21
(NA)
Hoosic River
24
166.3
Above Lock No. 3
16
159.0
Below Lock No. 1
15
(NA)
Mohawk River
12
143.5
Albany Turning Basin
11
124.1
Stockport
14
99.2
Tivoli Bay
13
88.5
Kingston
10
59.6
Denning's Point
9
54.0
Foundry Cove
8
43.2
Lents Cove
7
43.2
Lents Cove
6
25.0
Piermont Marsh
1
2.4
Mid-Harbor
4
(NA)
Newtown Creek
5
-1.9
Upper NY Bay
2
-2.2
Upper NY Bay
3
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Table 1-4
Phase 2 Target and Non-Target PCB Congeners Used in Analyses
Page 1 of 3
Congener Number3
Homologue
Congener Name
Conversion
Targetc

Group

Factor6

BZ#1
Mono
2-Chlorobiphenyl

Yes
BZ#2
Mono
3-Chlorobiphenyl

Yes
BZ#3
Mono
4-Chlorobi phenyl

Yes
BZ#4
Di
2,2'-Dichlorobiphenyl

Yes
BZ#5
Di
2.3-Dichlorobiphenyl

Yes
BZ#6
Di
2,3-Dicblorobiphenyl

Yes
BZ#7
Di
2.4-Dichlorobiphenyl

Yes
BZ#8
Di
2,4'-Dichlorobiphenyl

Yes
BZ#9
Di
2.5-Dichlorobiphenyl

Yes
BZ#10
Di
2,6-Dichlorobiphenyl

Yes
BZ#12
Di
3,4-Dichlorobiphenyl

Yes
BZ#15
Di
4,4'-Dichlorobipfaenyl

Yes
BZ#16
Tri
2.2',3-Trichlorobiphenyl

Yes
BZ#17
Tri
2.2',4-TrichJorobiphenyl
1.1589
No
BZ#18
Tri
2,2',5-Trichlorobipheny]

Yes
BZ#19
Tri
2,2' ,6-T richlorobipheny]

Yes
BZ#20
Tri
2.3.3'-Trichlorobiphenyl

No
BZ#22
Tri
2,3.4'-Trichlorobiphenyl

Yes
BZ#23
Tn
2,3,5-Trichlorobiphenyl
0.774
No
BZ#24
Tri
2,3.6-Trichlorobiphenyl
0.708
No
BZ#25
Tri
2,3',4-Trichlorobiphenyl

Yes
BZ#26
Tn
2,3 ,5-Tnchlorobiphenyl

Yes
BZ#27
Tri
2,3'.6-Trichlorobiphenyl

Yes
BZ#28
Tri
2.4,4-Trichlorobiphenyl

Yes
BZ#29
Tn
2.4.5-TrichlorobiphenyI

Yes
BZ#31
Tri
2,4',5-Trichlorobiphenyl

Yes
BZ#32
Tri
2.4',6-Trichlorobiphenyl
0.901
No
BZ#33
Tn
2',3,4-Trichlorobtphenyl
0.894
No
BZ#34
Tri
2',3,5-Trichlorobiphenyl
1.12
No
BZ#37
Tri
3.4,4-Trichlorobiphenyl

Yes
BZ#40
Tetra
2,2'.3,3'-Tetrachlorobiphenyl

Yes
BZ#4l
Tetra
2,2' ,3,4-T etrachlorobiphenyl

Yes
BZ#42
Tetra
2,2',3,4-Tetrachlorobiphenyl
0.729
No
BZ#44
Tetra
2,2',3,5-Tetrachlorobiphenyl

Yes
BZ#45
Tetra
2.2'.3,6-Tetrachlorobiphenyl
1.06
No
BZ#47
Tetra
2.2',4,4-Tetrachlorobiphenyl

Yes
BZ#48
Tetra
2.2',4.5-Tetrachlorobiphenyl
0.926
No
BZ#49
Tetra
2,2',4,5'-Tetrachlorobiphenyl

Yes
BZ#51
Tetra
2.2',4,6-Tetrachlorobiphenyl
1.009
No
BZ#52
Tetra
2,2,5,5-Tetrachlorobiphenyl

Yes
BZ#53
Tetra
2,2,5,6'-T etrachlorobiphenyl

Yes
BZ#56
Tetra
2,3.3',4'-Tetrachlorobiphenyl

Yes
BZ#58
Tetra
2,3,3',5'-Tetrachlorobiphenyl
0.792
No
BZ#60
Tetra
2,3.4,4-Tetrachlorobiphenyl
0.56
No
BZ#63
Tetra
2,3,4.5-Tetrachlorobiphenyl
0.654
No
BZ#64
Tetra
2.3.4',6-Tetrachlorobiphenyl
0.577
No
BZ#66
Tetra
2,3',4,4'-Tetrachlorobiphenyl

Yes
BZ#67
Tetra
2,3',4.5-Tetrachlorobiphenyl

No
BZ#69
Tetra
2.3' ,4.6-T etrachlorobiphenyl
0.731
No
BZ#70
Tetra
2.3' ,4'.5-T etrachlorobiphenyl

Yes
TAMS/Cadmus/Gradient

-------
Table 1-4
Phase 2 Target and Non-Target PCB Congeners Used in Analyses
Page 2 of 3
Congener Number®
Homologue
Congener Name
Conversion
Target0

Group

Factor6

BZ#74
Tetra
2,4,4',5-Tetrachlorobiphenyl
0.944
No
BZ#75
Teira
2.4,4',6-Tetrachlorobiphenyl

Yes
BZ#77
Tetra
3.3'.4,4'-Tetrachlorobiphenyl

Yes
BZ#82
Penta
2.2'.3,3',4-Pentachlorobiphenyl

Yes
BZ#83
Penta
2,2',3.3',5-Pentachlorobiphenyl

Yes
BZ#84
Penla
2.2,3.3,6-Pentachlorobiphenyl

Yes
BZ#85
Penta
2,2',3,4,4-Pentachlorobiphenyl

Yes
BZ#87
Penta
2,2'.3,4,5'-Pentachlorobiphenyl

Yes
BZ#91
Penta
2,2'.3,4'.6-Pentachlorobiphenyl

Yes
BZ#92
Penta
2,2',3,5.5'-Pentachlorobiphenyl

Yes
BZ#95
Penta
2,2',3,5',6-Pentachlorobiphenyl

Yes
BZ#96
Penta
2,2',3,6.6'-Pentachlorobiphenyl
0.992
No
BZ#97
Penta
2,2',3',4,5-Pentachlorobiphenyl

Yes
BZ#99
Penta
2,2',4,4',5-Pentachlorobiphenyl

Yes
BZ#101Z
Penta
2,2',4,5,5'-Pentachlorobiphenyl

Yes
BZ#105
Penta
2,3.3',4,4'-Pentachlorobiphenyl

Yes
BZ#I07
Penta
2,3.3',4',5-Pentachlorobiphenyl

Yes
BZ#110
Penta
2,3.3',4'.6-Pentachlorobiphenyl
0.822
No
BZ0114
Penta
2,3.4,4'.5-Pentachlorobiphenyl
0.564
No
BZ#115
Penta
2,3,4,4'.6-Pentachlorobiphenyl

Yes
BZ#118
Penta
2,3'.4,4'.5-Pentachlorobiphenyl

Yes
BZ#119
Penta
2.3'.4,4'.6-Pentachlorobiphenyl

Yes
BZ#122
Penta
2'.3.3'.4.5-Pentachlorobiphenyl

Yes
BZ#123
Penta
2'.3.4.4,5-Pentachlorobiphenyl

Yes
BZ#126
Penta
3.3 ,4,4 .5-Pentachlorobiphenyl

Yes
BZ#128
Hexa
2.2'.3.3'.4,4-Hexachlorobiphenyl

Yes
BZS129
Hexa
2.2 .3.3 ,4.5-Hexachlorobiphenyl

Yes
BZ#135
Hexa
2.2'.3.3'.5.6'-Hexachlorobiphenyl

No
BZ#136
Hexa
2.2',3.3',6.6'-Hexachlorobiphenyl

Yes
BZ#137
Hexa
2.2'.3,4.4'.5-Hexachlorobiphenyl

Yes
BZ#138
Hexa
2.2'.3.4.4'.5'-Hexachlorobiphenyl

Yes
BZ#140
Hexa
2.2'.3.4,4.6'-Hexachlorobiphenyl
0.57
No
BZ#14i
Hexa
2.2'.3.4.5.5'-Hexachlorobiphenyl

Yes
BZ#143
Hexa
2,2'.3,4.5.6'-Hexachlorobiphenyl
0.689
No
BZ#144
Hexa
2.2'.3,4,5'.6-Hexachlorobiphenyl
0.574
No
BZS146
Hexa
2.2'.3,4'.5.5'-Hexachlorobiphenyl
0.562
No
BZ#149
Hexa
2.2',3.4',5'.6-Hexachlorobiphenyl

Yes
BZ#151
Hexa
2.2'.3,5,5'.6-Hexachlorobiphenyl

Yes
BZ#153
Hexa
2.2',4.4'.5.5 -Hexachlorobiphenyl

Yes
BZ#156
Hexa
2.3,3',4,4'.5-Hexachlorobipheny]
0.741
No
BZ#157
Hexa
2.3.3 .4,4,5 -Hexachlorobiphenyl

Yes
BZ#158
Hexa
2.3.3'.4.4'.6-Hexachlorobiphenyl

Yes
BZ#167
Hexa
2,3'.4.4',5,5'-Hexachlorobiphenyl

Yes
BZ#169
Hexa
3.3'.4,4',5.5'-Hexachlorobiphenyl
0.604
No
BZ#t70
Hepta
2,2',3.3'.4.4'.5-Heptachlorobiphenyl

Yes
BZ#171
Hepta
2.2 ,3.3 ,4.4 6-Heptachlorobiphenyl

Yes
BZ#172
Hepta
2.2',3.3',4.5.5'-Heptachlorobiphenyl

No
BZ#174
Hepta
2.2',3.3',4.5.6'-Heptachlorobiphenyl
0.609
No
BZ#175
Hepta
2,2',3.3'.4.5.6-Heptachlorobiphenyl
0.483
No
BZ#177
Hepta
2,2'.3.3',4 5.6-Heptachlorobtphenyl

Yes
TAMS/Cadmus/Gradient

-------
Table 1-4
Phase 2 Target and Non-Target PCB Congeners Used in Analyses
Page 3 of 3
Congener Number®
Homologue
Congener Name
Conversion
Target'

Group

Factor6

BZ#178
Hepta
2.2'.3,3',5,5.6-Heptachlorobiphenyl

No
BZ#180
Hepta
2,2'.3,4.4.5,5-Heptachlorobipbenyl

Yes
BZ#183
Hepta
2,2',3,4,4',5',6-Heptachlorobiphenyl

Yes
BZ#184
Hepta
2,2'.3.4,4',6.6'-Heptachlorobiphenyl
0.592
No
BZ#185
Hepta
2.2',3,4,5.5',6-Heptachlorobiphenyl

Yes
BZ#187
Hepta
2.2'.3,4',5.5'.6-Heptachlorobiphenyl

Yes
BZ#189
Hepta
2,3,3',4.4',5,5-Heptachlorobiphenyl

Yes
BZ#I90
Hepta
2,3,3',4,4',5,6-Heptachlorobiphenyl

Yes
BZ#191
Hepta
2,3,3',4,4',5',6-Heptachlorobiphenyl

Yes
BZ#193
Hepta
2,3.3',4'.5,5'.6-Heptachlorobiphenyl

Yes
BZ#194
Octa
2,2',3.3',4,4',5.5'-Octachlorobiphenyl

Yes
BZ#195
Octa
2,2'.3.3'.4,4',5,6-Octachlorobiphenyl

Yes
BZ#196
Octa
2,2.3,3',4,4',5',6-OctachlorobiphenyI

Yes
BZ#197
Octa
2.2',3,3',4.4',6,6-Octachlorobiphenyl
0.489
No
BZ#198
Octa
2,2',3.3',4.5,5',6-Octachlorobiphenyl

Yes
BZ#199
Octa
2,2',3,3',4,5,6,6'-Octachlorobiphenyl

Yes
BZ#200
Octa
2,2',3,3',4.5',6,6'-Octachlorobiphenyl

Yes
BZ#20I
Octa
2,2',3.3',4',5,5',6-Octachlorobiphenyl

Yes
BZ#202
Octa
2,2',3.3',5,5',6,6'-Octachlorobiphenyl

Yes
BZ#203
Octa
2.2',3.4,4',5,5.5-Octachlorobiphenyl
0.447
No
BZ#205
Octa
2,3,3'.4,4',5,5',6-Octachlorobiphenyl

Yes
BZ#206
Nona
2.2'.3.3',4,4'.5.5'.6-Nonachlorobiphenyl

Yes
BZ#207
Nona
2,2',3.3'.4,4'.5,6,6'-Nonachlorobiphenyl

Yes
BZ#208
Nona
2.2',3,3',4,5,5',6.6'-Nonachlorobiphenyl

Yes
BZ#209
Deca
2,2',3.3'.4,4',5.5',6.6'-Decachlorobiphenyl

Yes

Homologue
Congener



Group
Ratio"*



Mono
3:3



Di
9:12



Tri
18:24



Tetra
23:42



Penta
23:46



Hexa
19:42



Hepta
16:24



Octa
11:12



Nona
3:3



Deca
1:1



Sum
126:209


Source: TAMS/Gradient Database
Notes:
a.	BZ # represents congener nomenclature system developed by Ballschmiter & Zell (1980).
b.	Conversion factors for non-target congeners.
c.	Yes: Target; No: Non-target; No - Cal: Calibrated non-target.
d.	Ratio of number of congeners used to total number of congeners in homologue group.
TAMS/Cadmus/Gradient

-------
Table 2-1
Summary of Niagara Mohawk Power Corp. RI Data - Queensbury Site
Media
Total PCB
Concentrations
Units
Comments
Sediment near RM 210
Shallow (0 to 9")
•	Deeper (9" to
18")
•	Background
0.2 to 550
<0.1 to 2,000
<0.004 to 0.25
mg/kg
(ppm)
1.	Samples collected by NMPC at 169 locations
2.	Zones of elevated total PCB concentrations
within 100 feet of site's contaminated soils;
Aroclor 1242 dominant, lesser amounts of
Aroclors 1248 and 1260
3.	In general, PCB concentrations decrease with
increasing distance from shoreline;
river/reservoir approximately 800 ft wide near
site
4.	RI background samples essentially
uncontaminated
Soil
<0.1 to >1,000
mg/kg
(ppm)
1.	Contaminated zone (soils exceeding 1 ppm
cleanup level) extends 600 feet paralleling the
shoreline from Corinth Rd. to Hudson River,
and 50 to 100 ft in width; Aroclor 1248
dominant
2.	Surficial soil samples collected north of Corintl
Rd. were essentially uncontaminated
Groundwater
< 1
Mg/L
1. Below Aroclor quantitation limits
Surface Water
<65-72
ng/L
1. Eight river water samples were below Aroclor
quantitation limits, including a sample at the
Town of Queensbury water supply intake,
approx. 0.8 miles downstream of site
Fish
Phase I(1992)
Phase II (1993)
• Background
<0.1 to 10
2 to 23
<0.1 to 1.4
mg/k
g-wet
(ppm)
1.	Four of ten Phase I samples exceeded 2 mg/kg
FDA limit
2.	Although benthic data are not available, highei
concentrations in smallmouth bass, perch, and
pumpkinseed, compared to minnows, suggests
food chain biomagnification (see Figure 2-1)
3.	RI background samples essentially
uncontaminated; maximum of 1.4 ppm-wet (7<
ppm-lipid) in pumpkinseed sample at Spier
Falls pool (approx. RM 214)
Source: Engineering-Science (1994)
TAMS/Cadmus/Grad

-------
Table 2-2
Phase 1 Estimates of PCB Loads to the Lower Hudson
Source
Range of Load Estimates
kg/day Ob/day)
Tributaries (not including Upper Hudson River)
0.1-1.0(0.2-2.3)
Sewage
1.4-2.1 (3-4.6)
Combined Sewers and Stormwater
0.9-1.4 (2-3)
Atmospheric Deposition
0.05-0.23 (0.1-0.5)
Landfill Leachate
0-0.3 (0-0.7)
Source: TAMS/Gradient (1991)
TAMS/Cadmus/Gradient

-------
Table 2-3
Summary of Results of USEPA Study of PCBs in NY/NJ Point Sources*
Treatment
Plant
Receiving
Water
Sum of 50
Congeners
(ng/L)
Total PCB
Estimate
(ng/L)
Aroclor
Pattern
Influent to Sewage Treatment Plant During Rainfall Event
(Representing Combined Sewer Overflow)
Passaic Valley
Upper Bay
380
400
1232
Newtown Creek
East River
150
160
1254
North River
Hudson River
150
160
1254
Wards Island
East River
50
55
No Pattern
Sewage Effluent
Passaic Valley
Upper Bay
90
100
1232
Newtown Creek
East River
40
45
1254
North River
Hudson River
18
20
No Pattern
Wards Island
East River
9
10
No Pattern
Owls Head
Upper Bay
18
20
1232
Tributaries (River Water Samples)
Hudson River1* (approx. River Mile 12)
24
26
1248
Passaic Riverb
24
26
1248
Hackensack River*
24
26
1248
Raritan River6
12
13
1242/1016
Notes:
a.	See Plate 2-3 for approximate locations of "tributary" and sewage treatment plant sampling points
b.	River samples do not represent "tributary inflow" to the Harbor since the sampling points are located
within the tidal estuary and exhibit significant salinities.
TAMS/Cadmus/Gradient
Source: Battelle Ocean Sciences for USEPA (1993)

-------
Table 2-4
Estimates of PCB Loading from Treated Sewage Effluent
Treatment
Plant
Receiving
Water
Total PCB
Estimate
(ng/L)
(1)
1992
Average
Flow
(MGD)
(2)
Estimated Total PCB
Load (lb/day)
ag-MG
Passaic Valley
Upper Bay
100
278
0.23 (0.11 kg/day)
Newtown Creek
East River
45
297
0.11 (0.05 kg/day)
North River
Hudson River
20
177
0.03 (0.01 kg/day)
Wards Island
East River
10
267
0.02 (0.01 kg/day)
Owls Head
Upper Bay
20
126
0.02 (0.01 kg/day)
Totals


1145
0.42 (0.2 kg/day)
Calculation of Total Load from Sewage:
1.	According to Hydroqual (3), approximate total 1989 sewage flow = 2,500 MGD (includes plants
discharging to Hudson River, East River, Upper Bay, Jamaica Bay, Lower Bay, Raritan Bay, Sandy Hook
Bay, Arthur Kill, Raritan River, and Hackensack River)
2.	Ratio of flow from 5 plants which were analyzed to total flow = 1145/2500 = 0.46
3.	Estimate of total PCB load from 2500 MGD of sewage = 0.42 lb/day -r 0.46 = 0.91 Ib/dav (0.4 kg/dav)
OR
Assuming mean sewage concentration = 40 ng/L:
PCB Load = (2500 MGD) x (40 ng/L) x (8.34x10*) = 0.83 lb/day (0.4 kg/day)
Notes:
a.	1 MGD (million gallons per day) =1.55 cfs (cubic feet per second)
b.	1 lb/day = 0.454 kg/day
TAMS/Cadmus/Grad
Sources: Battelle Ocean Sciences for USEPA (1993); Interstate Sanitation Commission 1992
Annual Report (1993); and Hydroqual, Inc. for USEPA (1991)

-------
Table 3-1
Stepwise Multiple Regression for log(KPjl) of Key PCB Congeners
Showing Sign of Regression Coefficients'
Determined to be Significant at the 95 Percent Level
PCB
Congener
Temperature
(DOC]
[TSS]
c b
Flow at
Fort
Edward
BZ#1
-



-
BZ#8





BZ#18
-

-


BZ#28
-

-


BZ#52
-

-

-
BZ#70
-

-


BZ#87

+
-

+
BZ#101
-




BZ#118
-

-


BZ#138
-

-

+
Notes:
a. ~ indicates a significant negative regression coefficient.
+ indicates a significant positive regression coefficient,
b. C4a is the analytically-resolved dissolved-phase concentration of the
congener.	
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient

-------
Table 3-2
Stepwise Multiple Regression for log(KPOCa) of Key PCB Congeners
Showing Sign of Regression Coefficients*
Determined to be Significant at the 95 Percent Level
PCB
Congener
Temperature
[DOCJ
[TSS]
c b
d J
Flow at
Fort
Edward
BZ#1





BZ#8





BZ#18
-




BZ#28




+
BZ#52
-




BZ#70
-




BZ#87





BZ#101





BZ#118




+
BZ#138




+
Notes:
a.	™ indicates a significant negative regression coefficient;
+ indicates a significant positive regression coefficient.
b.	Cd a is the analytically-resolved dissolved-phase concentration of the
congener.
Source: TAMS/Gradient Database
T AMS/Cadmus/ Gradient

-------
Table 3-3
Correlation Coefficient Matrix for Explanatory Variables Evaluated for Analysis of PCB
Partition Coefficients (KPOCa)

[DOCJ
Temperature
(TSSJ
Flow
Dissolved
Concentration
(DOC)
1.0
0.147
-0.183
-0.530
0.071
Temperature

1.0
-0.042
-0.514
0.008
[TSSJ


1.0
0.191
-0.033
Flow



1.0
-0.021
Dissolved
Concentration




1.0
Source: TAMS/Gradient Database
T AM S/Cadmus/Gradi

-------
Table 3-4
Temperature Slope Factors for Capillary Column
Gas Chromatogram Peaks Associated with Key PCB Congeners
PCB
Congener
Capillary Column
Peak
Slope Estimate
BZ#1
Not resolved
no data
BZ#4
la
1463.1
BZ#8
Id
no data
BZ#18
2b
1135.1
BZ#28
4d
920.1
BZ#52
6b
1116.7
BZ#70
9b
1337.3
BZ#101
lOd
no data
BZ#138
15a
1599.0
BZ#180
18a
529.5
Source: Warren et al. (1987)
TAM S/Cadmus/Gradient

-------
Table 3-5
Relative Performance of Distribution Coefficient Formulations:
Squared Error in Predicting Particulate-Phase
PCB Congener Concentration from Dissolved-Phase Concentration
x. Calculation
N. Method
for
Evaluations. K
Criterion
Average of
Estimates, no
Temperature
Correction
Average of
Estimates,
with
Temperature
Correction
Median of
Estimates, no
Temperature
Correction
Median of
Estimates, with
Temperature
Correction
Mean Squared
Error, Predicted
from KP a and
[TSS]
30.15
22.90
7.50
7.85
Mean Squared
Error, Predicted
from Kpoc a and
[POC]
3.15
3.04
3.51
3.11
Median Squared
Error, Predicted
from KP a
0.061
0.032
0.013
0.008
Median Squared
Error, Predicted
from KPOC a
0.026
0.017
0.013
0.006
Note: Smaller squared error indicates better fit between observed particulate-phase concentrations and
particulate-phase concentrations predicted from observed dissolved concentration using calculated
partition coefficients (K) for each congener and equilibrium partitioning assumptions.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 3-6a
In-Situ KPOO Estimates for Hudson River
PCB Congeners Corrected to 20 °C
Page 1 of 3
Kpoc. Corrected to 20° C (L/kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Standard
Deviation
1
25
143,000 ^
392,000
24,300
3,080,000
747,000
4
4
65,100
202,000
30,600
646,000
297,000
6
17
429,000
680,000
203,000
3,020,000
768,000
7
1
198,000
198,000
198,000
198,000
-
8
22
255,000
432,000
159,000
2,780,000
555,000
9
6
344,000
983,000
124,000
4,270,000
1,620,000
10
10
166,000
233,000
40,300
800,000
221,000
12
10
884,000
1,030,000
282,000
1,840,000
537,000
15
23
1,260,000
3,380,000
483,000
25,100,000
5,960,000
16
20
215,000
273,000
90,500
1,050,000
208,000
18
29
228,000
297,000
112,000
1,470,000
275,000
19
12
155,000
255,000
40,100
1,450,000
387,000
22
34
524,000
716,000
205,000
2,880,000
572,000
25
15
678,000
873,000
332,000
2,280,000
485,000
26
32
586,000
710,000
115,000
3,130,000
521,000
27
20
306,000
440,000
165,000
1,950,000
405,000
28
32
619,000
798,000
280,000
2,380,000
577,000
29
14
580,000
806,000
288,000
2,360,000
584,000
31
30
543,000
723,000
285,000
3,360,000
615,000
37
32
930,000
1,090,000
408,000
2,870,000
645,000
40
34
558,000
697,000
262,000
2,438,000
483,000
41
24
599,000
766,000
315,000
2,870,000
576,000
44
40
558,000
731,000
231,000
4,020,000
651,000
47
33
856,000
948,000
68,600
3,760,000
621,000
49
26
724,000
864,000
357,000
2,340,000
478,000
52
35
607,000
729,000
333,000
2,150,000
438,000
53
21
362,000
689,000
148,000
3,630,000
858,000
56
9
884,000
1,130,0001
313,000
2,920,000
832,000
TAMS/Cadmus/Gradient

-------
Table 3-6a
In-Situ Kpoo Estimates for Hudson River
PCB Congeners Corrected to 20°C
Page 2 of 3
KPOCa Corrected to 20° C (L/kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Standard
Deviation
66
33
1,140,000
1,480,000
555,000
4,810,000
943,000
70
38
1,140,000
1,420,000
411,000
5,570,000
1,080,000
77
3
2,190,000
2,420,000
1,020,000
4,050,000
1,530,000
82
12
1,320,000
1,820,000
766,000
6,390,000
1,530,000
83
10
1,440,000
1,670,000
692,000
5,140,000
1,270,000
84
17
918,000
1,060,000
329,000
4,310,000
874,000
85
17
1,540,000
1,790,000
742,000
6,230,000
1,220,000
87
20
1,290,000
1,490,000
420,000
4,820,000
949,000
91
13
1,150,000
1,010,000
394,000
1,970,000
435,000
92
12
1,210,000
1,570,000
521,000
6,280,000
1,530,000
95
9
1,050,000
1,310,000
546,000
3,820,000
962,000
97
18
1,530,000
1,850,000
656,000
6,320,000
1,630,000
99
19
1,640,000
2,030,000
575,000
7,710,000
1,700,000
101
21
1,340,000
1,630,000
366,000
4,760,000
1,100,000
105
5
2,670,000
2,270,000
929,000
3,460,000
997,000
107
7
2,650,000
3,030,000
1,260,000
6,310,000
1,600,000
118
12
2,350,000
2,580,000
1,160,000
7,670,000
1,710,000
119
3
1,360,000
1,520,000
1,310,000
1,890,000
321,000
122
1
3,170,000
3,170,000
3,172,812
3,170,000
-
128
3
2,640,000
2,360,000
1,120,000
3,300,000
1,120,000
136
7
1,920,000
1,800,000
883,000
3,320,000
836,000
137
7
2,530,000
2,590,000
999,000
4,740,000
1,390,000
138
9
2,210,000
2,420,000
976,000
3,960,000
1,000,000
141
5
1,660,000
1,880,000
1,010,000
3,340,000
957,000
149
3
2,320,000
2,300,000
2,140,000
2,440,000
151,000
151
10
2,080,000
2,160,000
852,000
4,240,000
1,040,000
T AMS/Cadmus/Gradien

-------
Table 3-6a
In-Situ KP(X jl Estimates for Hudson River
PCB Congeners Corrected to 20°C
Page 3of 3
Kpo^ j, Corrected to 20° C (L/kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Standard
Deviation
153
10
2,770,000
2,970,000
627,000
9,750,000
2,580,000
170
2
2,070,000
2,070,000
794,000
3,350,000
1,810,000
171
1
717,000
717,000
717,000
717,000
-
177
1
846,000
846,000
846,000
846,000
-
180
1
600,000
600,000
600,000
600,000
-
183
1
381,000
381,000
381,000
381,000
-
187
1
690,000
690,000
690,000
690,000
-
191
1
813,000
813,000
813,000
813,000
-
194
1
365,000
365,000
365,000
365,000
-
201
2
1,240,000
1,240,000
793,000
1,680,000
630,000
Source: TAMS/Gradient Database.
TAMS/Cadmus/Gradie

-------
Table 3-6b
In Situ log (Kpoc,,) Estimates for Hudson River
PCB Congeners Corrected to 20°C
Page 1 of 3
log (KPOC J Corrected to 20° C (L/Kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Theoretical
logCKJ
1
25
5.15
5.21
4.39
6.49
4.35
4
4
4.80
4.98
4.49
5.81
4.76
6
17
5.63
5.66
5.31
6.48

7
1
5.30
5.30
5.30
5.30
4.83
8
22
5.41
5.50
5.20
6.44
4.83
9
6
5.53
5.64
5.09
6.63
4.83
10
10
5.22
5.23
4.61
5.90
4.76
12
10
5.95
5.95
5.45
6.27
4.85
15
23
6.10
6.22
5.68
7.40
4.91
16
20
5.33
5.36
4.96
6.02
5.16
18
29
5.36
5.39
5.05
6.17
5.24
19
12
5.19
5.16
4.60
6.16

22
34
5.72
5.76
5.31
6.46

25
15
5.83
5.89
5.52
6.36

26
32
5.77
5.78
5.06
6.50
5.31
27
20
5.49
5.54
5.22
6.29

28
32
5.79
5.82
5.45
6.38
5.31
29
14
5.76
5.83
5.46
6.37
5.26
31
30
5.73
5.77
5.45
6.53
5.31
37
32
5.97
5.98
5.61
6.46
5.26
40
34
5.75
5.77
5.42
6.39
5.57
41
24
5.78
5.81
5.50
6.46

44
40
5.75
5.78
5.36
6.60
5.64
47
33
5.93
5.91
4.84
6.58
5.72
49
26
5.86
5.89
5.55
6.37
5.71
52
35
5.78
5.81
5.52
6.33
5.91
53
21
5.56
5.67
5.17
6.56
5.76
TAMS/Cadmus/Gradii

-------
Table 3-6b
In Situ log (KPOCjl) Estimates for Hudson River
PCB Congeners Corrected to 20 °C
Page 2 of 3
log (Kpocj,) Corrected to 20° C (L/Kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Theoretical
logCKJ
56
9
5.95
5.96
5.49
6.47

66
33
6.06
6.11
5.74
6.68
5.74
70
38
6.06
6.08
5.61
6.75
5.73
77
3
6.34
6.32
6.01
6.61
5.75
82
12
6.12
6.18
5.88
6.81

83
10
6.16
6.15
5.84
6.71
6.04
84
17
5.96
5.95
5.52
6.63

85
17
6.19
6.20
5.87
6.79

87
20
6.11
6.12
5.62
6.68
6.07
91
13
6.06
5.96
5.60
6.29

92
12
6.08
6.09
5.72
6.80

95
9
6.02
6.05
5.74
6.58
6.16
97
18
6.19
6.17
5.82
6.80

99
19
6.21
6.22
5.76
6.89
6.14
101
21
6.13
6.15
5.56
6.68
6.14
105
5
6.43
6.31
5.97
6.54

107
7
6.42
6.44
6.10
6.80

118
12
6.37
6.36
6.06
6.88

119
3
6.13
6.18
6.12
6.28

122
1
6.50
6.50
6.50
6.50

128
3
6.42
6.33
6.05
6.52
6.42
136
7
6.28
6.22
5.95
6.52
6.42
137
7
6.40
6.35
6.00
6.68

138
9
6.34
6.35
5.99
6.60
6.49
141
5
6.22
6.23
6.01
6.52

149
3
6.37
6.36
6.33
6.39

T AMS/Cadmus/Gradienl

-------
Table 3—6b
In Situ log (KpocJ Estimates for Hudson River
PCB Congeners Corrected to 20 °C
Page 3 of 3
log (KPOCjl) Corrected to 20° C (L/Kg)
PCB
Congener
(BZ#)
Count
Median
Average
Minimum
Maximum
Theoretical
log (KJ
151
10
6.32
6.29
5.93
6.63

153
10
6.44
6.36
5.80
6.99
6.57
170
2
6.21
6.21
5.90
6.53
6.85
171
1
5.86
5.86
5.86
5.86
6.94
177
1
5.93
5.93
5.93
5.93

180
1
5.78
5.78
5.78
5.78
6.51
183
1
5.58
5.58
5.58
5.58

187
1
5.84
5.84
5.84
5.84
6.99
191
1
5.91
5.91
5.91
5.91

194
1
5.56
5.56
5.56
5.56
7.27
201
2
6.06
6.06
5.90
6.23

Source: TAMS/Gradient Database;	TAMS/Cadmus/Gra<
Note: Theoretical values of log (K^) are based on Burkhard (1984) as cited in Mackay et al.
(1992). These represent a consistent set of estimates for partitioning to suspended
particulate organic carbon developed from octanol-water partition coefficients. Blanks
indicate data not available.

-------
Table 3-7
Three-Phase PCB Partition Coefficient Estimates
Using Regression Method*
PCB
Congener
(BZ#)
Sample
Size
l°g(Kpoc)
(L/kg)
log(KDOC)
(L/kg)
Intercept
probability
value
Slope
probability
value
1
25
5.65
5.77
0.822
0.535
4
15c
NC
NC
0.535
0.208
8
22
5.98
5.56
0.346
0.114
18
29
6.07
5,95
0.697
0.112
28
32
6.72
6.12
0.718
0.032
31
30
NC
NC
0.713
0.023
44
40
6.15
5.44
0.390
0.259
52
35
6.10
5.29
0.262
0.299
66
33
6.73
5.80
0.608
0.127
70
38
6.47
5.46
0.366
0.215
101
21
6.11
NC
0.043
0.749
118
12
6.81
5.65
0.556
0.220
138
9
6.49
4.77
0.057
0.558
151
10
6.37
4.87
0.621
0.857
153
10
6.02
NC
0.122
0.367
Notes:
a.	Regression method adapted from Brannon et al. (1991).
b.	NC = Did not yield physically realistic estimate (KPOC <0).
c.	Analysis for BZ #4 includes samples with suspected blank contamination
and a quantitation value within 3 times the blank concentration. Samples
with these characteristics are omitted for all other congeners.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 3-8
Three-Phase PCB Partition Coefficient Estimates Using
Optimization with Temperature Correction to 20°C
PCB
Congener
(BZ#)
Optimization
Method*
Estimated
log (Kpoc)
(L/kg)
Estimated
'og (^doc)
(L/kg)
Phase Distribution1*
Dissolved
Fraction
DOC
Fraction
POC
Fraction
1
1
5.65
5.12
0.44
0.28
0.28
4C
2
5.19
5.43
0.40
0.51
0.09
8
1
5.67
5.56
0.29
0.51
0.20
18
2
5.40
4.66
0.64
0.14
0.22
28
1
5.84
4.16
0.49
0.03
0.48
31
1
5.80
4.40
0.50
0.06
0.44
44
3
5.85
4.16
0.49
0.03
0.48
52
3
5.82
4.28
0.49
0.05
0.46
66
1
6.27
4.89
0.25
0.09
0.66
70
1
6.15
4.65
0.31
0.07
0.62
101
1
6.18
4.54
0.31
0.05
0.64
118
1
6.41
NC
0.22
0.00
0.78
138
1
6.43
4.86
0.20
0.07
0.73
151
1
6.55
5.09
0.15
0.09
0.76
153
1
6.3'S
5.00
0.21
0.10
0.69
Notes:
NC not convergent, estimate goes toward zero.
a.	Key to Optimization Methods:
1.	Simultaneous optimization.
2.	Simultaneous optimization with outlier rejection.
3.	Two-stage optimization.
b.	Fractional distribution calculated at 20°C with [DOC]=4.79 mg/L and
[POC]=1.40 mg/L.
c.	Analysis for BZ #4 includes samples with suspected blank contamination and a
quantitation value within 3 times the blank concentration. Samples with these
characteristics are omitted for all other congeners.
Source: TAMS/Gradient Database
T AMS/Cadmus/ Grac

-------
Table 3-9
A Comparison of Two-Phase Sediment log (K^^) and log (KPOOl)
Estimates For Hudson River PCB Congeners
GE
Peak
No.
PCB
Congener
Identification
(BZ#)
Sample
Size
GE-Based
Mean*
log (Kqcj)
Standard
Deviation
Minimum
Maximum
Theoretical
log(Koc)b
(L/kg)
Phase 2
Mean log
(K,oc,)c
(L/kg)
2
1
80
4.40
0.52
2.83
6.40
4.35
5.21
5
4& 10
84
4.92
0.70
3.46
8.74
4.71,4.76
4.98, 5.22
8
8 & 5
84
5.68
0.47
4.77
7.52
4.83, -
5.50, --
14
18& 15
84
5.75
0.45
4.69
6.89
5.24, 4.91
5.39, 6.22
24
28 & 50
84
6.17
0.54
5.00
7.45
5.31,5.70
5.82, --
23
31
84
5.92
0.57
4.71
7.34
5.31
5.77
37
44 & 104
78
5.71
0.54
4.20
6.94
5.64, 6.2
5.78, --
31
52 & 73
84
5.72
0.61
4.32
7.07
5.91,-
1
1
00
50
56 & 60
81
5.55
0.50
4.46
6.82
-, 5.67
5.96, -
47
70 & 76 &
61
83
5.87
0.56
4.71
7.22
5.73, -,
5.61
6.08, --, -
48
66 & 93 &
95
84
5.72
0.55
4.64
7.11
5.74,
6.16
5.91,--,
6.05
53
101 & 90
84
5.54
0.52
4.33
7.05
6.14,-
6.15,-
69
118 & 149 &
106
84
5.49
0.48
4.33
6.86
~5
6.36, 6.36,
75
153
48
5.38
0.42
4.11
6.37
6.57
6.36
82
138 & 163
59
5.50
0.47
4.22
6.77
6.49, -
6.35, -
88
187 & 182
L 52
5.21
0.40
4.05
5.78
5.84, -
6.17,--
Source: TAMS/Gradient Database.
Notes:
a)	Quality of fit of the partitioning model is difficult to ascertain for the sediment due to concerns with GE
sample handling and compositing procedures, which may have altered the in situ phase distribution, so
relative predictive ability of mean versus median estimates of the partition coefficient cannot be
evaluated. Comparison to water-column partitioning is made on the basis of the mean of all log-
transformed estimates of Koc a for each congener, which should approximate the median arithmetic valu
for lognormally distributed observations.
b)	From Burkhard (1984) as cited in Mackay et al. (1992).
c)	Two-phase water column estimates, from Table 3-6b.	TAMS/Cadmus/Gradien

-------
Table 3-10a
Three-Phase Partition Coefficient Estimates for PCBs in Sediment of the
Freshwater Portion of the Hudson River
PCB
Congener
(Ezm
Estimated from CE Data
Reported for New Bedford
Harbor Sediments*
Water Column Partition
Coefficient Estimates'*
logKoc
(L/ke>
Kjjoc
(L/kg)
Method'
logKoc
(L/ke)
log Kpoc
(L/kg)
logKoc
(L/kg)
log Knoc
(L/kg)
i •
4.41
3.00
3


5.65
5.12
4& 10
5.63
5.17
3
4.43
4.55
5.19,-
5.43, -
8 & 5
5.95
4.24
1
4.43
4.55
5.67, -
5.56, -
18 & IS
5.91
3.92
1
5.05, 4.43
4.86, 4.55
5.40, -
4.66, -
22 & 51
5.82
3.44
1
5.05, 5.29
4.86, 5.06

"> ~
28 & 50
6.23
3.10

5.05, 5.29
4.86, 5.06
5.84,-
4.16,-
31
6.13
4.49
1
5.05
4.86
5.80
4.40
44 & 104
' 5.87
4.24

5.29, 5.43
5.06,5.12
5.85, -
4.16,-
52 & 73
6.06
4.71
1
5.29
5.06
5.82, -
4.28, -
66 & 93 & 95
5.70
3.70
1
5.29, 5.43
5.06, 5.12
6.27, -, -
4.89, -, -
70 & 76 & 61
5.91
4.18

5.29
5.06
6.15, -,-
4.65, -, -
101 & 90
5.79
4.39
1
5.43
5.12
6.18,-
4.54, -
118&149&
106
5.77
4.39
1
5.43, 5.44
5.12,5.04
6.41,-,-
"*
138 & 163
6.02
4.95
1
5.44
5.04
6.43, -
4.86, -
153
5.60
4.10
1
5.44
5.04
6.38
5.00
Notes:
a.	Averages by homologue reported by Burgess et al. (1996) for the 4-8 cm. depth layer.
b.	From Table 3-8.
c.	Optimization Methods:
1.	Direct optimization.
2.	Direct optimization with outliers deleted.
3.	Conditional optimization based on estimated two-phase K^,.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 3-1 Ob
Predicted Relative Concentration of PCB Congeners in Sediment Porewater for
Various Assumptions Regarding Three-Phase PCB Congener Partition Coefficients.
Porewater Concentrations (ng/L) in Equilibrium with I mg/kg (Dry Weight) Total Sediment Concentration.
PCB Congener
(BZ#)
Ko< , Kjkk Estimated
from GE Data
Koo KD0C Reported
for New Bedford Harbor •
K0o Kdoc Estimated
from Water Column Data b
Observed
Median d
Dissolved
(ng/L)c
DOC-
sorbed
(ng/L)'
Total
Porewater
(ng/L)
Dissolved
(ng/L)c
DOC-sorbed
(ng/L)c
Total
Porewater
(ng/L)
Dissolved
(ng/L)'
DOC-sorbed
(ng/L)c
Total
Porewater
(ng/L)
Total
Porewater
(ng/L)
1
2101
78
2179
-
-
-
46
227
273
2180
4 & 10
128
693
821
771
1015
1786
135
1347
1482
850
8 & 5
61
40
101
771
1015
1786
44
591
635
127
18 & 15
67
20
87
185
498
683
84
141
225
109
22 & 51
82
8
90
185
498
683
35'
7
42
82
28 & 50
32
1
33
185
498
683
30
16
46
36
31
40
47
87
185
498
683
33
30
63
73
44 & 104
74
58
132
107
454
561
30
16
46
92
52 & 73
48
91
139
107
454
561
31
22
53
111
66, 93, 95
107
20
127
107
454
561
11
32
43
103
70 76, 61
66
37
103
107
454
561
15
24
39
74
101 & 90
88
80
168
77
378
455
14
18
32
175
118 149, 106
92
84
176
77
378
455
8
0
8
186
138 & 163
52
171
223
75
307
382
8
21
29
201
153
137
63
200
75
307
382
9
32
41
232
Notes'
a. Averages by homologue reported by Burgess et al. (1996) for the 4-8 cm. depth layer,
b Calculated for first of multiple congeners listed.
c." Phase distribution computed with porosity = 38.3%, m = 0.837 g/cc, TOC = 18,413 mg/Kg, [DOC] = 37.08 mg/L
d Median of observed ratio of porewater concentration (ng/L) to sediment concentration (mg/kg). 			
• TAMS/Cadm us/Gradient
Source: TAMS/Gradient Database

-------
Table 3-11
Models for Predicting Flow al Stillwater and Waterford
Stillwater Models
{General MtnJcl Formulation (see Notes a • r):
I Row ¦ Ao ~ l*'(Gauge 115)' C*(Gau£c 114) + D*(Gauge 113) + F*(Gauge 113)1 + F*(Gauge 109) * G*(Gaugc I09)J + H*(Gaugc I09)}t l*(Gau • 104) » J*(Gauge 104)* * K*(Gauge 104)1 ~ L*(Gauge 103) * M*(Fort Edward Flow)


i Coefficient
Units
Model A
Model II
Model C
Model 1)
m.hIcI k
Model F
Model G
Model V
| Ao (Intercept)
els
-.1276049.7337020
-33784029482520
-5957242 6098480
926684 2046496
KM 3923 1756045
185919 0495747
18366545 0131290
270837 U9XI8I8

cfs/fl
0
0
0
473 3300669
0
0
0
(J I
C
cfs/fl
0
0
0
813 0709879
0
0
0
0 I
l>
cfs/ll
•22215 1555485
•24174 3361228
-20269 7658305
-27907 2209644
-5040 2093731
-6634 6009283
U
¦9114 90395-11
K
cfs/n'
137 3872350
151 6237246
124.8551945
170 729507V
39 9231368
52.8026899
CI
70 3401991
I
cfs/n
0
0
545 2425207
703 0331240
-215789322948
0
•60*8419284429
0
 C
0
K
c M(\l
34.36529)7
35 2983604
54 8013558
0
ft
0
0
U
1
cfs/n
549 5417837
0
497.9488527
0
0
0
0
1)
1 M

03955830
03645739
03708952
0
02124434
02352177
044433t>8
0
Waterford Mudcls:
|(>ctirrai Model Formulation (.Sec Notes a - d):







Mow = Ao i H*(Gmigc 113) + C*(Gaugc 111)2 »• D*(Gauge 113)' + L'CGauge 109) t F*(Gauge 109)
+ G*(Gauge I09)J+ H'(Gauge 104) * l*(Gauge 104)' ~ J*(G;iugc I04)1 + K*(Gauge 103) »L*(Gaugc 103)' + M*(Gauge 103)' N*(Fort lidward Flow) + 0*(Forl Bdward How-t un)
Coefficient
Units
Model H
Model I
Model J
Model K
Model L
Model M
Model N
Mndrl \\ '
Ao (Intercept)
cfs
60589328 2249240
-II763551 0063700
51998478 3513660
942511 2282085
158644354 8177900
7965094 5678358
7482988 8714942
12 382072 952W70
U
cfs/fl
•2725236 8S92380
1518 2932751
•2223606.4751900
183169925537
0
-499279 3648327
->74007.9803440
0
(
~ cft/H1
318244729540
0
25711 1721566
-99 8302380
0
5796 5889442
6601 4783M9
II
D
cfs/u'
-1238095313
0
•98.9468044
0
0
-223356125
-25 1609474
0
k
cfs/ft
905.5135839
0
0
-25667 6932483
•5817960 2146860
-54317 8005877
0
0
i
cls/ft*
0
0
0
156 6231076
67571 8552761
328 5094230
0
0
<;
ctvil1
0
0
0
0
•261 4070585
0
0
0
II
cfs/ft
878081.3161150
727530.9378804
732822.2618892
•19700 8434590
509508 8910785
526667 1085706
i55864 962341 1
•699894 1291)952
i
cfs/ll'
•17817 3332271
-14809.8942210
• 14911.74124%
203 6555497
•I0S49 3939164
-10815.0617960
•11370.1754706
13047 6X52323
J
cls/ft*
120.5397914
100 5247672
1012333061
0
72 9270266
74.1110955
77 6146718
• 79 9944KU.
K
cfs/fl
258820 2096101
•192142996200
0
-16914.3932^13
0
0
0
0
1.
cfs/ft'
-8433.8689033
330.4976230
0
291 9458319
0
0
0
0

cfs/fl#
91.9776902
0
0'
0
0
0
0
0
N

0
0
0
0
02230530
0
0
0
1 o

0
0.0616570
0
0
0
-0 0492896
•0 0568143
0
Notes
a Models yield Stillwater and Waterford (lows in cfs
b Gauge reference in llie general How model eg . Gauge 104, corresponds lo the staff gauge measurement in feet
c I on Fdw.ird How reference corresponds to flow measured at Fort Edward in cfs
d Fort ndwiitd Flow - Lap reference corresponds to Fort tdward How. with a one-day lag. in cfs
c Gunge-only model used during the period Mutcli 27 to April 5, 1993
.mice US(iS, NYS 'lliruway Authority. Olliee oFCanals
1AMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 1 of 7

Fort Edward
Stillwater

Waterford

Date
Measured Flow
(cfs)
Calculated Flow
b
(cfs)
Model
Calculated Flow
b
(cfs)
Model
1/1/93





1/2/93

10,700
D
13,800
J
1/3/93

10,500
D
13,500
J
1/4/93

8,100
D
9,800
J
1/5/93

10,100
D
11,500
J
1/6/93
10,300
15,400
E
19,400
L
1/7/93
11,000
15,900
E
20,000
M
1/8/93
10,100
16,000
E
19,300
M
1/9/93
8,870
14,400
E
17,700
M
1/10/93
12,200
13,800
E
15,600
M
1/11/93
6,970
12,000
E
13,700
M
1/12/93
7,110
12,100
E
14,000
M
1/13/93
7,140
12,100
E
13,600
M
1/14/93
7,020
12,200
E
13,900
M
1/15/93
6,760
12,800
E
14,500
M
1/16/93
6,690
12,100
E
14,200
M
1/17/93
6,720
11,700
E
13.400
M
1/18/93
6,610
9,400
Interpolated
12,300
Interpolated
1/19/93
6,120
9,400
Interpolated
9,500
L
1/20/93
6,100
7,900
D
10,300
J
1/21/93
6,260
7,700
D
9,600
J
1/22/93
6,430
8,100
D
10,500
J
1/23/93
6,360
7,900
D
10,000
J
1/24/93
6,700
8,700
D
11,200
J
1/25/93
6,500
9,400
D
12,500
M
1/26/93
6,490
9,000
D
11,300
J
1/27/93
6,100
8,300
D
10,500
J
1/28/93
6,120
7,700
D
9,700
J
1/29/93
6,030
7,800
D
9,800
J
1/30/93

8,100
D
10,300
J
1/31/93

8,400
D
11,000
J
2/1/93

8,900
D
11,600
J
2/2/93
5,150
8,800
D
11,500
J
2/3/93
4,160
8,900
D
11,700
J
2/4/93
4,240
8,500
D
11,300
J
2/5/93
4,210
8,100
D
10,500
J
2/6/93
4,430
7,700
D
9,900
J
2/7/93
5,120
7,900
Interpolated
10,300
Interpolated
2/8/93
4,050
8,100
D
10,800
J
2/9/93
4,160
8,300
D
11,100
J
2/10/93
3.970
7.800
D
10.400
J
TAMS/Cadmus
Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 2 of 7

Fort Edward
Stillwater

Waterford

Date
Measured Flow
(cfs)
Calculated Flow
b
(cfs)
Model
Calculated Flow
b
(cfs)
Model
2/11/93
4,320
7,800
B
10,400
J
2/12/93
4.630
7,600
B
9,800
J
2/13/93
4,570
7,500
B
9,800
J
2/14/93
4,500




2/15/93
4,560




2/16/93
4,570




2/17/93
4,710
7,700
B
10,000
J
2/18/93
4,590
7,500
Interpolated
9,700
Interpolated
2/19/93
4,540
7,300
B
9,400
J
2/20/93
4,510
7,400
B
9,500
J
2/21/93
4,610
7,200
B
9,100
J
2/22/93
4,520
6,900
B
8,600
J
2/23/93
4,530
7,300
B
9,300
J
2/24/93
4,510
7,400
B
9,600
J
2/25/93
4,700
7,500
B
9,600
J
2/26/93
4,530
7,400
B
9,600
J
2/27/93
4,570
7,400
B
9,600
J
2/28/93
4,480
7,400
B
9,600
J
3/1/93
4,440
7,000
B
8,800
J
3/2/93
4,460
7,200
B
9,200
J
3/3/93
4,470
7,000
B
8,800
J
3/4/93
4,300
6,900
B
8,800
J
3/5/93
4,570
6,800
B
8,500
J
3/6/93
4,550
6,600
B
8,200
J
3/7/93
4,430
6,600
B
8,200
J
3/8/93
3,000
5,400
Interpolated
6,700
Interpolated
3/9/93
2,880
4,300
B
5,100
J
3/10/93
3,010
4,800
B
6,000
J
3/11/93
2,880
5,200
B
6,800
J
3/12/93
2,890
4,400
B
5,500
J
3/13/93
2,720
4,400
B
5,500
J
3/14/93
2,660
4,800
Interpolated
6,200
Interpolated
3/15/93
2,850
5,300
B
7,000
J
3/16/93
2,500
4.800
B
6,300
J
3/17/93
2,630
4,500
B
5,700
J
3/18/93
3,460
5,100
B
6,300
J
3/19/93
2,870
4,800
Interpolated
6,000
Interpolated
3/20/93
2,890
4,600
B
5,700
J
3/21/93
2,890
4,300
B
5,200
J
3/22/93
2,400
4,200
B
5,300
J
3/23/93
2.660
4.500
B
5.700
J
TAMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 3 of 7

Fort Edward
Stillwater

Waterford

Date
Measured Flow
a
Calculated Flow
b
Model
Calculated Flow
b
Model

(cfs)
(cfs)

(cfs)

3/24/93
2,880
4,700
Interpolated
5,900
Interpolated
3/25/93
2,870
4,800
B
6,100
J
3/26/93
3,310
5,100
Interpolated
6,500
Interpolated
3/27/93
3,300
6,000
V
6,500
W
3/28/93
3,420
9,000
V
9,400
W
3/29/93
4,410
14,300
V
20,400
W
3/30/93
7,350
23,000
V
44,400
W
3/31/93
8,830
22,200
V
37,800
W
4/1/93
10,200
21,000
V
32,600
W
4/2/93
9,440
19,000
V
28,100
W
4/3/93
8,060
15,800
V
29,900
W
4/4/93
7,660
14,800
V
21,300
W
4/5/93
6,310
11,800
V
14,800
W
4/6/93
6,390
11,700
F
15,700
N
4/7/93
6,110
11,500
E
15,400
M
4/8/93
7,010
12,200
E
16,000
M
4/9/93
7,280
12,000
E
15,900
M
4/10/93
10,300
13,900
E
18,600
M
4/11/93
17,200
20.600
E
28,500
M
4/12/93
20,300
26,300
E
33,800
M
4/13/93
18,100
24.400
E
31,800
M
4/14/93
13,500
19,200
E
24,700
M
4/15/93
13,500
17,700
E
21,900
M
4/16/93
14,000
17,100
G
21,200
L
4/17/93
24,900
27,100
Interpolated
32,300
Interpolated
4/18/93
28,800
37,100
E
43,300
M
4/19/93
21,400
30,100
E
35,700
M
4/20/93
16,200
23,300
E
30,100
M
4/21/93
14,000
17,900
E
28,300
Interpolated
4/22/93
19,600
22,100
E
26,600
M
4/23/93
27.900
33.800
E
40,300
K
4/24/93
27,600
36,300
E
47,700
M
4/25/93
27,100
33,900
E
41,800
M
4/26/93
24,300
31,300
E
29,100
K
4/27/93
27,500
33,200
E
38,000
K
4/28/93
25,400
31,000
E
34,000
K
4/29/93
23,300
27,600
E
28,300
K
4/30/93
20,400
25,000
E
26,600
K
5/1/93
16,900
20,300
E
20,000
K
5/2/93 '
16,100
18,300
E
17,200
K
5/3/93
14.900
18.000
E
16.700
K
TAMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 4 of 7
Date
Fort Edward
Measured Flow
(cfs)
Stillwater
Calculated Flow
b
(cfs)
Model
Waterford
Calculated Flow
b
(cfs)
Model |
5/4/93
12,300
14,200
E
10,300
H
5/5/93
11,100
13,100
E
10,800
H
5/6/93
8,860
10,200
E
10,600
H
5/7/93
9,040
10,100
E
10,900
H
5/8/93
8,930
9,700
C
10,000
H
5/9/93
8,460
8,900
C
9,300
H
5/10/93
7,830
8,200
C
8,500
H
5/11/93
6,240
6,800
C
7,100
H
5/12/93
5,830
6,600
C
7,100
H
5/13/93
5,830
6,300
C
6,500
H
5/14/93
4,620
6,300
C
6,600
H
5/15/93
4,380
4,900
A
5,200
I
5/16/93
4,570
5,500
A
5,900
I
5/17/93
4,550
5,300
A
5,800
I
5/18/93
4,110
5,000
A
5,500
I
5/19/93
3,740
3,900
A
4,100
I
5/20/93
2,060
3,700
A
4,500
I
5/21/93
2,510
4,100
A
4,800
I
5/22/93
1,850
4.100
C
5,300
H
5/23/93
2,130
5,200
A
7,200
I
5/24/93
1,840
4,500
C
6,300
H
5/25/93
1,080
4,100
C
6,100
H
5/26/93
2,230
4,600
C
6,200
H
5/27/93
2,830
4,600
C
5,600
H
5/28/93
2,900
4,100
C
4,800
H
5/29/93
2,740
4,600
C
5,700
H
5/30/93
2,810
4,400
C
5,300
H
5/31/93
2,520
4,200
C
5,300
H
6/1/93
2,610
3,900
C
4,800
H
6/2/93
2,920
4,300
C
5,300
H
6/3/93
3,120
5,200
C
6,500
H
6/4/93
3,340
5,900
c
7,300
H
6/5/93
2,760
5,500
c
7,100
H
6/6/93
2,570
5,300
c
7,000
H
6/7/93
2,870
5,700
c
7,500
H
H
6/8/93
2,830
5,500
c
7,200
6/9/93
2,910
5,100
c
6,300
H
6/10/93
2,960
5,200
c
6,600
H
6/11/93
3,200
5,200
c
6,400
H
6/12/93
3,740
5,700
c
6,900
H
6/13/93
3.500
5.000
c
5.900
H
TAMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 5 of 7
Date
Fort Edward
Measured Flow
(cfs)
Stillwater
Calculated Flow
b
(cfs)
Model
Waterford
Calculated Flow
b
(cfs)
Model
6/14/93
2,920
4,700
C
5,800
H
6/15/93
2,620
4,900
C
6,500
H
6/16/93
3,000
5,600
c
7,600
H
6/17/93
3,300
5,300
c
6,600
H
6/18/93
2,600
4,600
c
5,900
H
6/19/93
2,810
5,000
c
6,600
H
6/20/93
2,970
5,200
c
6,600
H
6/21/93
2,960
5,300
c
7,100
H
6/22/93
3,070
5,900
c
8,000
H
6/23/93
3,510
6,000
c
7,800
H
6/24/93
1,580
3,900
c
5,300
H
6/25/93
2,810
5,400
c
7,200
H
6/26/93
2,560
4,700
c
6,200
H
6/27/93
2,530
4,400
c
5,600
H
6/28/93
2,400
4,300
c
5,500
H
6/29/93
2,570
4,500
c
5,700
H
6/30/93
2,380
4,600
c
6,100
H
7/1/93
2,490
4,700
c
6,100
H
7/2/93
2,360
4,500
c
5,900
H
7/3/93
2,080
4,200
c
5,400
H
7/4/93
2,350
4,600
c
6,100
H
7/5/93
2,290
4,200
c
5,300
H
7/6/93
2,610
4,300
c
5,300
H
7/7/93
2,670
5,000
c
6,700
H
• 7/8/93
2,530
5,200
c
6,900
H
7/9/93
2,680
4,900
c
6,300
H
7/10/93
2,690
4,900
c
6,300
H
7/11/93
2,520
4,800
c
6,300
H
7/12/93
2,560
4,600
c
6,000
H
7/13/93
2,440
4,400
c
5,600
H
7/14/93
2,520
4,700
c
6,000
H
7/15/93
2,470
4,900
c
6,700
H
7/16/93
2,310
4,600
c
6,000
H
7/17/93
2,340
4,700
c
6,300
H
7/18/93
2,430
4,700
c
6,000
H
7/19/93
2,310
4,500
c
5,800
H
7/20/93
2,180
4,200
c
5,500
H
7/21/93
2,210
4,600
c
6,100
H
7/22/93
2,440
4,800
c
6,400
H
7/23/93
2,410
4.500
c
5,800
H
7/24/93
2.280
4.400
c
5.600
H
TAMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 6 of 7
Date
Fort Edward
Measured Flow
(cfs)
Stillwater
Calculated Flow
b
(cfs)
Model
Waterford
Calculated Flow
b
(cfs)
Model
7/25/93
2,340
4,400
C
5,700
H
7/26/93
2,280
4,400
C
5,700
H
7/27/93
3,290
5,400
C
6,800
H
7/28/93
2,660
4,900
c
6,300
H
7/29/93
1,990
4,400
c
5,800
H
7/30/93
2,050
4,500
c
6,000
H
7/31/93
2,580
4,800
c
6,300
H
8/1/93
2,770
4,700
c
6,000
H
8/2/93
2,540
4,900
c
6,300
H
8/3/93
2,230
4,400
c
5,700
H
8/4/93
2,440
5,000
c
6,600
H
8/5/93
2,600
4,900
c
6,200
H
8/6/93
2,750
5,000
c
6,400
H
8/7/93
2,460
4,700
c
6,000
H
8/8/93
2,500
4,800
c
6,200
H
8/9/93
2,480
4,600
c
6,000
H
8/10/93
2,350
4,600
c
5,900
H
8/11/93
2,440
4,500
c
5,900
H
8/12/93
2,520
4,700
c
6,000
H
8/13/93
2,480
4.600
c
6,000
H
8/14/93
2,590
4,400
c
5,500
H
8/15/93
2,690
4,800
c
6,200
H
8/16/93
2,640
4,400
c
5,500
H
8/17/93
2,490
4,500
c
5,800
H
8/18/93
2,630
5,000
c
6,600
H
8/19/93
2,290
4,700
c
6,400
H
8/20/93
2,320
4,600
c
6,000
H
8/21/93
2,190
4,300
c
5,600
H
8/22/93
2,800
4,800
c
6,100
H
8/23/93
2,500
4,600
c
6,100
H
8/24/93
2,550
4,400
c
5,300
H
8/25/93
2,810
4,600
c
5,500
H
8/26/93
2,360
4,800
c
6,400
H
8/27/93
2,280
4,800
c
6,400
H
8/28/93
2,540
4,500
c
5,800
H
8/29/93
2,510
4,500
c
5,900
H
8/30/93
2,300
4,700
c
6,300
H
8/31/93
2,370
4,600
c
6,100
H
9/1/93
2,630
4,900
c
6,300
H
9/2/93
2,510
5,000
c
6,600
H
9/3/93
2.500
4.500
c
5.800
H
T AMS/Cadmus/Gradient

-------
Table 3-12
Calculated Flows at Stillwater and Waterford
for January 1993 to September 1993
Page 7 of 7
Date
Fort Edward
Measured Flow
(cfs)
Stillwater
Calculated Flow
b
(cfs)
Model
Waterford
Calculated Flow
b
(cfs)
Model
9/4/93
2,980
5,000
C
6,200
H
9/5/93
2,870
5,000
C
6,400
H
9/6/93
3,050
5,200
c
6,400
H
9/7/93
2,450
5,000
c
6,500
H
9/8/93
2,240
5,000
c
6,500
H
9/9/93
2,430
5,100
c
6,800
H
9/10/93
1,910
4,700
c
6,600
H
9/11/93
2,830
5,300
c
7,000
H
9/12/93
2,720
5,800
c
7,600
H
9/13/93
2,160
5,300
c
6,900
H
9/14/93
2,830
5,600
c
7,400
H
9/15/93
2,950
5,700
c
7,500
H
9/16/93
2,830
5,400
c
7,000
H
9/17/93
2,700
6,300
c
8.000
H
9/18/93
2,170
4,500
c
6,000
H
9/19/93
2,160
4,600
c
6,100
H
9/20/93
2,480
5,000
c
6,700
H
9/21/93
2,980
5,700
c
7,800
H
9/22/93
2,500
5.300
c
7,300
H
9/23/93
2,070
5,200
c
7,700
H
9/24/93
1,980
4,500
c
6,000
H
9/25/93
2,310
4,900
c
6,500
H
9/26/93
2,490
4,700
c
6,100
H
9/27/93
2,910
5,300
c
6,700
H
9/28/93
2,570
5,400
c
7,400
H
9/29/93
2,880
5,800
c
8,000
H
9/30/93
3.170
4.800
D
5.800
J
Source: TAMS/Gradient Database; and NYS Thruway Authority, Office of Canals.	TAMS/Cadmus/Gradient
Notes:
a.	Blank cells indicate that no measurement was reported by the U.S.G.S.
b.	Blank cells indicate thatflow was not calculated due to lack of data.

-------
Table 3-13
Summary of Prediction Uncertainty for Sltllwater Flow Models



Percent Uicerttlnty about Predicted Flow"
Model Description
Model
Stillwater Flow Regime (cfs)
Based on the Central 95*/. Quaadle of the Percent
Rtilduil Errors
Bated on 1 Standard
Deviations of the Percent
Residual Errors'



Lower
Upper



Flow <4,000
-21.2%
13.6%
17.6%

A
4,000 < Flow <6,000
-11.7%
17.9%
12.8%


6,000 < Flow < 10,000
-8.3%
-10.6%
10.2%
Low-How Models

Flow < 4,000
-23.5%
14.5%
19 8%

B
4,000 < Flow <6,000
-12,7%
17.5%
15.3%
Criteria for use of Low-Flow Models:

6,000 < Flow < 10,000
-12.4%
12.3%
12.4%
Fort F.dward Flow < 8,000 cfs

Flow <4,000
-18.5%
12.2%
16.8%
and
C
4,000 < Flow <6,000
-10.8%
13.5%
11.8%
Stillwater Flow < 10,000 cfs

6,000  14,000
-9.4%
7.6%
7.9%
F
10,000 < Flow < 14,000
-10.1%
13.2%
U.6%
Criteria for use of High-Flow Models:

Flow > 14,000
-10.3%
8.3%
8.3%
Fort Kdward Flow > 8,000 cfs
G
10,000 < Flow < 14,000
-12.8%
16,3%
15.6%
or

Flow > 14,000
-11.7%
14.8%
U 4%
Stillwater Flow > 10,000 cfs
V
10,000 < Flow < 14,000
-11.4%
13.8%
13.4%

Flow > 14,000
-11.2%
8,9%
8,6%
Notes*
a- For Example, the range of prediction uncertainty for a 5,000 cfs flow calculated using Model A is as follows:
Based on the central 95% quantile of the percent residual errors:
lower Bound: (5,000 cfs + (-0.117 x 5,000 cfs) = 4,415 cfs.
Upper Bound: (5,000 cfs + (0.179 x 5,000 cfs) = 5,895 cfs.
Based on 2 standard deviations of the percent residual errors:
Lower Bound: (5,000 cfs + (-0.128 x 5,000 cfs) = 4,360 cfs.
Upper Bound: (5,000 cfs + (0.128 x 5,000 cfs) = 5,640 cfs.
h This error is calculated assuming the percent residual errors to be normally distributed. The extent of non-normality in Ihe error distribution can be estimated based on the difference
between the absolute values of the upper and lower boundsof the central 95% quantile of the percent residual errors The smaller the difference between the upper and lower bounds,
the more normally distributed the data set.
Source: TAMS/Gradient Database; USGS; and NYS Thruway Authority, Office of Canals
T AMS/Cadmus/Gradient

-------
Table 3-14
Summary of Prediction Uncertainty for Waterford Flow Models
-


Percent Uncertainty about Predicted Flow* 1
Model Description
Model
Waterford Flow Regime (eft)
Based on tie Central *5% Quaatile of tie Percent
Residual Errori
Biied oi 2 Standard
Deviations of the Perceat
Residual Errors*



Lower
Upper



Flow < 4,000
-29.4%
14.1%
22.4%

H
4,000 < Flow <8,000
-19.2%
19.4%
19.2%
I,ow Flow Models

8,000 < Flow < 12,000
-16.5%
20.4%
17.9%


Flow < 4,000
-30.8%
13.7%
22.6%
Criteria for use of Low-Flow Models:
I
4,000 < Flow < 8,000
-20.7%
22.3%
20.2%
Fort Edward Flow < 8,000 cfs

8,000 < Flow < 12,000
-18.0%
23,0%
18.5%
and

Flow <4,000
-36.9%
15.8%
27.6%
Waterford Flow < 12,000 cfs
J
4,000 < Flow <8,000
-25.1%
25.9%
25.8%


8,000 < Flow <12,000
-21.2%
24.9%
23.1% 1

K
12,000 < Flow < 14,000
-15.5%
19.0%
17.1%


Flow > 14,000
-10 0%
15.6%
12.0%
High Flow Models
L
12,000 < Flow < 14,000
-24.0%
25.0%
23.0%

Flow > 14,000
-16.5%
24.9%
18.5%
Criteria for use of High-Flow Models:
M
12,000 < Flow < 14,000
-20.2%
21.0%
20.8%
Fort Edward Flow > 8,000 cfs

Flow > 14,000
-13.9%
23.4%
17.2%
or
N
12,000 < Flow < 14,000
-22.2%
21.6%
22.2%
Waterford Flow > 12,000 cfs

Flow > 14,000
-14.6%
23.8%
18.6%

W
12,000 < Flow < 14,000
-33.0%
29.0%
31.8%


Flow > 14,000
-23.7%
24.9%
23.4%
Notes*
a. For Example, the range of prediction uncertainty for a 5,000 cfs flow calculated using Model H is as follows:
Based on the central 95% quantile of the percent residual errors:
Lower Bound: (5,000 cfs + (-0192 x 5,000 cfs) * 4,040 cfs
Upper Bound: (5,000 cfs + (0.194 x 5,000 cfs) = 5,970 cfs.
Based on 2 standard deviations of the percent residual errors:
1 ower Bound: (5,000 cfs + (-0.192 x 5,000 cfs) = 4,040 cfs.
Upper Bound: (5,000 cfs + (0.192 x 5,000 cfs) = 5,960 cfs,
b Thi o is calculated assuming the percent residual errore to be normally distributed. The extent of non-normality in the error distribution can be estimated based on the difference
between^the absolute values of the upper and lower boundsof the central 95% quantile of the percent residual errors. The smaller the difference between the upper and lower bounds,
the more normally distributed the data set
Source: TAMS/Gradient Database; USGS; and NYS Throway Authority, Office of Canals
TAMS/Cadmus/Gradient

-------
Table 3-15
Summary of River Segment Characteristics
Segment
No.
River"
Mile
PCBs (% of total)
Tributaries
Tofllemire, 1980"
Percentage of Total PCB
Mass Stored in Sediments
TofTlemire and Quinn, 1979c
Percentage of Total PCB Mass
Stored in Hot Spots
1
199.5-197.2
-
-
_
2
197.2-194.6
1%
1%

3
194.6-188.5
41%
62%
Snook & Moses Kills
4
188.5-181.3
22%
23%
Batten Kill
5
181.3-168.2
15%
3%
Fish Creek
6
168.2-156.6
16%
12%
Hoosic River
7
156.2-151.7
4%
0%
Mohawk River
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Notes:
a.	River mite designations are based on Phase 2 sampling stations. Segments as reported in NUS (1984) are assigned to the nearest Phase 2 segment.
b.	TofTlemire (i 980) reported in NUS (1984) as percentage of total PCB mass stored in sediments.
c.	TofTlemire and Quinn (1979) reported in NUS (1984) as percentage of total PCB mass stored in hot spots ,

-------
)
Table 3-16
Comparison of Water-Column Mass Transport at Rogers Island, Thompson Island Dam and Waterford


Total I'CB Load (kg/d)
Thompson Island Pool
Thompson Island Dam to
Waterford
Seasonal
Characteristics
Sampling Event
Rogers Island
Thompson
Island Dam
Waterford
Net TIP PCB
Load (Jain (kg/d)
Percent Load'
Net T1D PCB
Load Gain (kg/d)
Percent Load'
Winter -
Transect 1
b
0.80
0.97
--
-
0.17
21%
l.ow Flow
Transect 2
0.17
0.61
0.38
0.43
248%
-0.23
-37%'
Spring -
Transition Flow
Transect 3
0.20
1.07
17.7
. . ,.
0.87
425%
16.7
1550%
Spring -
High Flow
Transect 4
Flow Average 1
17.9
7.15
18.1-
5.90
18.3
d
	-i*—
-1.26
-18%
-
-










Transect 5
e
1.57
1.19
--
-
-0.38
-24%
Spring/Early Summer -
Low Flow
Flow Average 2
0.41
1.48
1.34
1.08
264%
-0.14
-10%

Flow Average 3
1.29
1.49
1.46
0.19
15%
-0.02
-2%

Transect 6
0.17
0.67
0.74
0.50
292%
0.07
10%
Summer -
Flow Average 4
0.23
1.38
1.19
1.15
507%
-0.19
-14%
Low Flow
Flow Average 5
0.22
0.87
1.02
0.65
297%
0.15
18%

Flow Average 6
0.17
0.63
0.88
0.46
268%
0.25
39%
Low Flo
w Mean
0.49
1.16
1.16




High Flow Mean
17.9
18.1
18.0




Notes:
a.	Percent Increase = 100 * (Downstream Station - Upstream Station)/Upstream Station.
b.	Discrepant Rogers Island sample.
c.	Schuylerville load used Thompson Island Dam sample reflected inappropriate degree of dilution hy Moses Kill.
d.	Waterford samples are inappropriate for comparison due to Lock I construction activities.
e.	Sediment was disturbed during sample collection.
f.	Transport from Schuylerville south did not vary by more than 5%.
Source: TAMS/Gradient Database; USGS; and NYS Thruway Authority, Office of Canals
TAMS/Cadmus/Gradicnt

-------
Table 3 -17
Application of Dating Criteria to High Resolution Cores
Core # (a)
River Mile
Criterion #1 (b)
Criterion #2 (b)
Criterion #3 (b)
Criterion U4 (b)
Criterion #5 (b)
Criterion #6 (b)
1
25.0
~
~
NA(c)
NA (c)
¦
NA (el
2
'1.9
D
II
a
a
a
a
3
-2.2
S
¦ (d)
NA (c,d)
NA (c.d)
~
NA (c.d)
4
2.4
~
¦ (d)
NA (c.d)
NA (c.d)
~
NA (c,d)
5
Newtown Creek
¦
¦
NA(e)
NA (c)
~
NA (c)
6
4X2
D
O
NA (c,f>
a
¦&)
NA<<1)
?
4$,2
~
O
NA(o,f>
a
D
NA(c)
8
54.0
O
B
a
~
¦
O
9
59.6
O
O
¦
¦
¦
~
10
88.5
D
~
a
a
D
D
11
143,5.
D
0{f>
NA {c,f>
D(h)
~ 0)
NA{c)
12
Mohawk R» w
d
a
HA(e>
a
D
~
13
99.2
~
~
a
~
S(g)
O
14
124.1
¦
B
¦
NA (c)
~
¦
15
159.0
o
~
¦
~
¦
o
16
166.3
~
~
¦
~
o
¦
1?
Batten ICili
a
. B

0
¦ Cgl
a
18
1818
~
D
~
&
a
D
19
1883
~
O
D
~
0
D
20
191.2
~
O
¦
o
~
~
2t -
177.8
p
D
a
. a
. a
D
• 22
. 177.8
a
H
Na(c4)
na
NA(c)
~
NA{c)
25
194.2W
¦
¦
¦
NA (c)
~
NA (c>
26
194. IE
~
~
ay)
~
¦ (k)
O
27
202.9
o
HI
a
II
a
NA
-------
Table 3-17 (continued)
Application of Dating Criteria to High Resolution Cores
Notes:
a.	Shading indicates that a core chronology was established.
b.	Core Selection Criteria for Dating.
River Section
Section Endpoints
(River Miles)
Minimum "'Cs - Peak
Concentration (oCi/ks)



Freshwater
203 to 153.1
1000
Freshwater Tidal
153 to 60.1
900
Power
60 to 30
1000
Upper New York Bay
29.9 to-2.2
500
Tributaries
NA
500
2.	A clear "'Cs peak relating to the 1963 or 1971 event, or a clear and defined lime horizon, e.g., a dredge boundary which occurred in a documented year.
3.	The " Cs peak associated with 1963 being clearly deeper than the PCB maximum which has been ascribed to the early 1970s (Bopp, et at , 1982) which indicates a significant
deposition rate and low bioturbation.
4.	A minimum sedimentation rate of 0.75 cm/yr based on the 1963 or 1971 "'Csmaximum.
5.	Presence of :Be in the surface layer.
6.	The sedimentation rates being consistent to within 50 percent when multiple time horizons are available.
c.	Insufficient data for determination.
d.	Insufficient core depth.
e.	No documented PCB releases associated with tributaries,
f Documented occurrence of dredging event.
g 'Be was present in a co-located core collected at the same time.
h.	The presence of "'Cs at 104 cm depth can provide a minimum approximation of the sedimentation rate since the coring site was dredged in the early 1970s.
i.	'Be was not analyzed soon enough to be measured as deep in the core as expected,
j. Resolution reduced since core contains 8 cm slices.
k. Core location was subsequently observed (Summer 1993) to be exposed to air.
Source. TAMS/Gradient Database
T AMS/Cadmus/Gradient

-------
Table 3-18
Estimated Sedimentation Rates for Dated Cores
Core No,
River Mile
Location
Sedimentation Rate
(cm/yr)
Main Dating Horizon
2
-1.9
Upper New York Bay
1.6
1963137Cs and also 1971 60Co event
6
43.2
Lents Cove
1.4
1971 l37Cs event
7
43.2
Lents Cove
1.4
1971 137 Cs event
10
88.5
Kingston
1.7
1963 137Cs event and7 Be
11
143.5
Albany Turning Basin
5
1970 Dredge Event
18
185.8
Above Lock No. 5
0.76
1963 l37Cs Event
19
188.5
Thompson Island Dam
0.9
1963 l37Cs Event
21
177.8
Stillwater Pool
1.1
1963 137Cs Event
22
177.8
Stillwater Pool
1.7
Match to Core No. 21
23
189.3
Thompson Island Pool
1.2
1963 l37Cs Event
27
202.9
Glens Falls
0.48
1963 137Cs Event
12
NA
Mohawk
1.9
1963 l37Cs Event
17
NA
Batten Kill
1.3
1963 137Cs Event
24
NA
Hoosic
>0.87
7Be
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Table 3-19
Comparison of Total PCB Concentrations of Suspended Matter and Surficial Sediment Deposited after 1990
Core Lo
cation
Surficial Sediment
Total PCB
Concentration
(mg/kg)
Water-Column Sampling Locations
Water-Column Transect Suspended
Solids Total PCB Concentration
(mg/kg)
Thompson Island
Pool
RM 188.5
25.1
Rogers Island
RM 194.6
Median 17.3
Minimum 1.9
Maximum 21.3
Thompson Island
Dam
RM 188.5
Median 5.3
Minimum 3.2
Maximum 7.1
Stillwater Pool
RM 177.8
5.0
Stillwater
RM 168.3
0.4, 2.4, 4.7
Stillwater Pool
RM 177.8
12.5
Albany Turning
Basin
RM 143.5
3.0
Green Island
Bridge
RM 151.7
1.2,1.8,1.2

RM 88.5
0.96
Cementon
RM 110.0
0.8
I Kingston
Highland
RM 77.0
0.4, 1.5
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Table 3-20
Dated Sediment Cores Selected for Historical Water-Column PCB Transport Analysis
Core Number
1
! River Mile
! Description
i
27
202.9
Background
19
188.5
Thompson Island Dam
18
1
185.8
Above Lock No. 5
21 and 22
177.8
Stillwater Pool
11
143.5
Albany Turning Basin
10
88.5
Kingston
.
6 and 7 (duplicate cores)
43.2
Lents Cove
!
2 !
-1.9
Upper New York Bay
12
NA
Mohawk River
17
NA
Batten Kill
24 j
NA
Hoosic River
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Table 3-21
Cumulative Loading Across the Thompson Island Pool by Homologue Group from GE Data
April 1991 through February 1996

Total
PCBs
Monochloro-
I lomologues
Diehloro-
Homologues
Tr ichloro-
Homologues
Tetrachloro-
Homologues
Pentachloro-
Homologues
Hexa- and
Heptachloro-
Homologues
River Mile 194.6
(Rt. 197 Bridge; kg)
2190.3
9.8
248.7
864.7
767.9
205.7
93.5
River Mile 188.5
(Thompson Island
Dam; kg)
3188.3
320.6
539.2
1163
859.6
219.1
86.8
Gain in Load across
Thompson Island
Pool (kg, cumulative)
998
310.8
290.5
298.3
91.7
13.4
-6.7
Gain in Load across
Thompson Island
Pool (kg/yr)
203.1
63.3
59.1
60.7
18.7
2.7
-1.4
Average Loading
Rate at River Mile
188.5 (kg/day)
1.78
0.17
0.3
0.65
0.48
0.12
-0.004
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 3-22
Breakpoints of Flow Strata (cfs) Used for Total PCB Load Estimation
in the Upper Hudson River
Breakpoint #
Fort Edward
Schuylerville
Stillwater
i
Waterford
1
5000
6000
7000
9000
2
11000
12000
16000
19200
3
20000
23000
25000
30000
Note: The breakpoints are used to develop ratio estimates of PCB load by stratification
of the data into four distinct flow regimes, as described in Section 3.3.5.
Source: Analysis of USGS flow data.
TAMS/Cadmus/Gradient

-------
Table 3-23
Estimated Yearly Total PCB Loads (kg/yr)in the Upper Hudson Based on USGS Monitoring*
Calendar
Year
River Miie 194.3
River Mile 181.3
River Mile 168.2
River Mile 156.6
Ratio
Averaging
Ratio
Averaging
Ratio
Averaging
Ratio
Averaging
1977
1414s
s=1216
2308'"
n=3 (3)
2519
s=463
3106
n=37(33)
2926
s=493
3956
n=36(35)
2439
s=235
3371
n=60 (49)
1978
544
s=74
544
n=35 (29)
2747
s=294
2497
n=I2 (12)
2138
s=234
2087
n=31(30)
2260
s=205
2218
n=31 (28)
1979
1272
s=390
1321
n=54 (30)
4635
s=1363
5351
n=15(15)
3008
s=372
3701
n=36(34)
2963
s=219
3953
n=39(33)
1980
439
s=30
499
n=55(25)
760
s=93
834
n=I5 (11)
899
s=68
922
n=28 (26)
1007
s= 119
892
n=43(33)
1981
354
s=15
371
n=58 (26)
962
s=70
1652
n=36 (25)
922
s=94
1420
n=33 (28)
1299
s=71
1392
n=26(24)
1982
374
s=31
388
n=50(27)
528
s=34
566
n=34(27)
635
s=51
821
n=44 (29)
818
s=107
966
n=33(27)
1983
657'
s=145
619*
n=44 (33)
997
s=l 18
1005
n=44(36)
1612
s=343
1671
n=50(37)
1191
s=l 17
1308
n=53(44)
1984
477
s= 152
462
n=32 (23)
830
s=295
678
n=30 (28)
826
s=166
908
n=32 (28)
702
s=l 39
625
n=39 (30)
1985
294
s=53
275
n=16 (11)
324
s=47
379^
n=15 (14)
299
s=38
301
n=17 (14)
432
s=29
437"
n=6 (5)
1986
423
s=80
385
n=28 (23)
320
s=28
321
n=23 (23)
358
s=65
358
n=26(26)
366
s=24
375
n=26 (23)
1987
197
s=58
301
n=15 (8)
213
s=25
237
n=10(10)
235
s=89
328"
n=8(8)
300
s=59
364"
n=27(15)
1988
119
s=39
97
n=38(21)
83
s=15
79
n=21 (21)
105
s=15
107
n=23 (23)
100
S=I5
100
n=21(21)
1989
445
s=358
247J
n=23 (12)
195
s=30
2014
n=20 (20)
200
s=30
212a
n=19(19)
151
s=16
1694
n=26(24)
1990
398
s=372
341
n=l 1 (7)
Discontinued

220
s=133
185
n=10 (10)
115
s=32
98
n=II (11)
1991
185
s= 137
138
n=19 (17)


208
s=l 12
150
n=16(16)
212
s= 101
130
n=16(16)
1992
825
s=442
951
n=21 (20)


411
s=70
537"
n=24(16)
317
s=74
441"
n=25(17)
1993
310
s=85
205
n=27(27)


420
s=l 15
497'
n=22(22)
229
s=25
244
n=56(38)
1994
90
s=26
85
n=26(26)


r
168f
n=18(18)
f
177'
n=2(27)
Notes:
a Nondetects set at one-half the detection limit
b Abbreviations;
n = total number of measurements (and number of individual days with measurements)
s = estimated asymptotic standard deviation for ratio estimator
c Insufficient data
d Quarter missing: average concentration for year used to estimate load for that quarter
e Observation of 77 ^ig/L in one channel omitted from calculation
f Daily flow data not available; quarterly flow sum extrapolated from Fort Edward
Source: TAMS/Gradient Database; additional data from USGS/WATSTORE.	TAMS/Cadmus/Gradient

-------
Table 3-24
Comparison of Calculated Water Column Loads at Rogers Island and Thompson Island Dam for Phase 2, GE and USGS Data
Seasonal
Characteristics
Winter -
Low Flow
Spring -
Transition Flow
Spring -
High Flow
SSUSSSsEBSS
Spring/
Early Summer •
Low Flow
Summer -
Low Flow
Date
Jan 93
Feb 93
Mar 93
Apr 93
Apr - May
93

May 93
Jun 93
Jun 93
Jul 93
Aug 93
Aug 93
Sep 93
Phase 2
Sampling Event
Transect 1
Transect 2
Transect 3
Transect 4
Flow Average 1
Flow Average 2
Flow Average 3
Transect 5
Flow Average 4
Transect 6
Flow Average 5
Flow Average 6
Phase 2
(kg/month)
Rogers
Island
5.2
6.1
540
215
S38S
12
39
9
SBfi
6.8
5.1
6.5
5.1
Thompson
Island Dam
24
18
32
180
ases
45
45
47
41
20
26
19
Load Gain
(kg/month)
13
26
-35
SB®
32
5.8
35
15
19
14
General Electric
(kg/month)
Rogers
Island
220
11
17
110
110
100
6.1
6.1
12
6.5
6.5
6.1
Thompson
Island Dam
24
19
44
190
190
76
43
43
41
32
32
24
Load Gain
(kg/month
	1	
-200
7.7
27
80
80
-24
36
36
30
26
26
18
USGS
(kg/month)
Rogers Island
18
18
270
270

270
270
270
h
h
h
h
Notes:
a.	Phase 2 data represent instantaneous or 15-day-mean conditions which were converted to a monthly basis for this table.
b.	General Electric data were used to generate monthly average conditions.
c.	USGS values were calculated quarterly due to limited data and converted to a monthly basis.
d.	Discrepant Rogers Island sample.
e.	Thompson Island Dam load could not be calculated due to incomplete mixing of Moses Kill flow,
f.	Phase 2 Flow Average Event 1 data which span late April to early May are compared to General Electric data for
April since load conditions at Rogers Island are more similar than those for May.
g.	Flux could not be calculated due to disturbed sediment included in sample.
h.	USGS load was not calculated for the third quarter since only one measurement was available. 	
Source: TAMS/Gradient Database
T A M S/Cad m u s/G rati ien t

-------
Tn../3-25
Total PCB Loading Contribution Relative to River Mile 143.5 Near Albany Based On Dated Sediment Cores for 1991 to 1992
Coring Location
Background (RM 202.9)
Thompson Island Pool (RM 188.5)
Above Lock 5 (RM 185.8)
Batten Kill-Core 17
Batten Kill-Core 33
Stillwater Pool (RM 177.8)-Core 22
Stillwater Pool (RM 177.8)-Core 21
Hoosic River
Mohawk River-core 12
Mohawk River-core 29
Upper Hudson Contribution at RM 143.5
Total Tributaries
PCB/Cs-137
(mg/pCi)
0.27
1.26
15.9
8.43
0.29
1.74
}
}
}
Average
PCB/Cs-137*
(mg/pCl)
0.05
19.5
12.9
0.77
12.2
0.83
1.01
5.99
Drainage
Basin Area
(ml2)
2800
2954
2996
435
3773
712
3456
8288
Percentage of Albany Load
Main-Stem
Stations
Background and
Tributaries
0.3%
107%
69%
.2% ^
.1% J
0.7%
112%
55%
}
83%
2.0% \
12.1%
1%
7%
91%
9%
Total Load at Albany
100.0%
Notes*
a.	This represents the average PCB/Cs-137 ratio at the coring location for the period 1991-1992.
b.	Percentage is calculated as follows:
Percentage = 100 *	|Atea*fr.PCBV[.Cs-137]U«ion - {Area * [LPCB)/[Cs-137J}BKtimiaj. InllM.B
g	|Area* [£PCB]/lCs-l37]}tMI43s
£PCB	= total PCB concentration on the sediments in mg/kg
Cs-137	= cesium-137 concentration in pCi/kg
Area	= drainage basin area in square miles
1«M" r.avi-ttrer	TA MS/Cfulmus/Gradient

-------
Table 4-1
Results of Linear Regression Study - Grain Size Parameter vs Image DNa




Reduced 500 kHz Images





Median Digital Number
Median Digital Number
Standard Deviation Digital number


Grain Size
Slope
Intercept
r-Squared
Slope
Intercept
r-Squared
Slope
Intercept
r-Squared


Parameter'











d(15)
-6.713
60.450
0.529
-6.788
61.838
0.526
-1.334
15.428
0.256


d(40)
-5.992
66.337
0.500
-6.073
67.813
0.499
-1.236
16.669
0.261


d(50)
-5.834
68.785
0.484
-5.924
70.315
0.484
-1.245
17.259
0.270


d(70)
-6.128
76.216
0.497
-6.231
77.892
0.499
-1.357
19.001
0.299


d(85)
-6.297
83.653
0.518
-6.403
85.454
0.520
-1.404
20.686
0.315


d(90)
-6.197
86.599
0 498
-6.300
88.443
0.500
-1.379
21.332
0.302


% gravel
0.387
52.458
0.148
0.391
53.757
0.147
0.059
14.042
0.042


% sand
0.404
34.207
0.271
0.412
35.107
0.274
0.109
8.617
0.241


% mud
-0.502
73.154
0.529
-0.511
74.774
0.531
-0.114
18.413
0.334


mean
-6.798
74.409
0.539
-6.896
76.010
0.539
-1.438
18.425
0.295


std. dev.
5.185
47.310
0 013
4.942
49.109
0.012
-0.301
15.278
0.001


Reduced 100 kHz Images



Median Digital Nunber
Median Digital Number
Standard Deviation Digital number


Grain Size
Slope
Intercept
r-Squared
Slope
Intercept
r-Squared
Slope
Intercept
r-Squared


„ b
Parameter











d( 15)
-5.490
52.442
0.325
-5.387
55.219
0.310
-1.004
19.327
0.091


d(40)
-4.994
57.404
0 3)9
-4.901
60.090
0.304
-0.900
20.212
0.087


d(50)
-4.704
59.120
0.289
-4.617
61.775
0.275
-0 846
20.519
0078


d(70)
-4.472
63.635
0 243
-4.381
66.180
0.231
-0.795
21.301
0.064


d(85)
-4.343
67.988
0.227
-4.251
70.430
0.215
-0.784
22.127
0.062


d(90)
-4.267
69.989
0.217
-4.175
72.379
0.205
-0.769
22.481
0.059


% gravel
0.510
43.686
0.236
0489
46.762
0.214
0 061
18.099
0.028


% sand
0.111
43 312
0.019
0.120
45.605
0.022
0.054
15.735
0.038


% mud
-0.328
60.145
0 207
-0.325
62.900
0 202
-0.072
21.117
0.083


mean
-5.231
63 012
0.293
-5.126
65.574
0.279
-0.941
21.220
0 080


std. dev.
11.737
27.841
0 063
11 601
30,926
0 060
2.282
14.578
0020

Notes:










a. DN= (grain size parameter)
* (slope) +
(intercept)






b. Correlation among tbe image digital number 
-------
Table 4-2
GC-Mass Spectrometer Split-Sample Results for Total PCB Concentrations
and Point Values Selected to Represent Reported Ranges for the
1984 Thompson Island Pool Sediment Survey
Split-Sample Comparison
Point
Representation
Mass Spectrometry
Category
Total
Number
Screened
Number
of Split
Samples
Mean (and
Standard
Deviation)
(mg/kg)
Median
(mg/kg)
Log
Transform
Mean (and
Standard
Deviation)
Used by
Brown
etaL
(1988)
(mg/kg)
Used in
current
analyses
(mg/kg)
<10 ppm
957
61
15.0
(39.2)
3.30
1.41
(2.45)
15.0
3.3
10-50 ppm
482
347
30.8
(42.6)
18.20
2.76
(1.65)
30.8
18.2
50-100 ppm
71
67
133.6"
(143.8)
88.7
4.40
(1.23)
134.6
88.7
>100 ppm
	
26
22
517.9
(1397)
126.3
4.87
(2.84)
517.9
126
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Note:
a. This value is obtained directly from the reported samples. It is slightly different from the actual value
used by Brown et al. (1988).

-------
Table 4-3
Sample Statistics for Thompson Island Pool
PCB Mass Concentration Estimates, 1984 Sediment Survey

PCB mass (g/m2)
Natural log
Number of Locations
1098
1098
Mean
10.92
1.32
Median
3.48
1.25
Standard Deviation
41.65
1.41
Skewness
22.92
0.08
Minimum
0.04
-3.23
Maximum
1218.39
7.10
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 4-4
Subreach Variogram Models* for Natural Log ofPCB Mass Concentration,
1984 Thompson Island Pool Sediment Survey

Subreach 5
1163000 -
1170100N
Subreach 4
1170100-
1177000N
Subreach 3
1177000-
1181900N
Subreaches
1 and 2
1181900-
1191700N
Observations
235
320
238
321
Nugget
0.750 (.284)
0.484 (.154)
0.0 (-)
1.54 (.108)
Sill-Nugget
1.520 (.282)
1.092 (.153)
1.733 (.060)
0.203 (.106)
Practical Range (ft)
340 (75)
280(68)
286(49)
582 (521)
Anisotropy Ratio
1.0
1.5
2.5
1.0
Major Axis
"
N 10° W
N 35° W
-
Note:
a. Variograms are exponential models, showing fit along the major axis and anisotropy ratio. Standard
errors of the coefficients from the least squares estimation are shown in parentheses.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 4-5
Total PCB Mass Concentration in the Thompson Island Pool, 1984:
Cross Validation Comparison of Lognormal Kriging Results
and Observed Values

Subreach 5
1163000-
1170100 N
Subreach 4
1170100-
1177000 N
Subreach 3
1177000-
1181900 N
Subreaches 1
and 2
1181900-
1191700N
All Data
Predicted arithmetic
mean (g/m2)
16.79
11.51
12.09
13.12
13.22
Observed arithmetic
mean (g/m2)
13.66
10.66
10.56
10.26
11.16
Predicted mean of
natural logs
1.27
1.54
1.34
1.12
1.32
Observed mean of
natural logs
1.31
1.55
1.33
1.11
1.32
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 4-6
Exponential Variogram Models for Natural Log of Surface Concentrations
in the 1984 Sediment Survey of the Thompson Island Pool

GC Data
(First
Structure)
GC Data
(Second
Structure)
Mass
Spectrometry
Screening Data
Cross-
Variogram
Nugget
0.427
—
0.678
0.377
Sill - Nugget
1.191
0.095
0.458
0.120
Practical Range (ft)
123
750
752
750
Inflation Factor
1.38
1.38
1.0
1.17
Anisotropy Ratio
1.0
1.0
1.0
1.0
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 4-7
Summary Results for Kriged Surface Layer
Concentration of Total PCBs by Subreach,
1984 Sediment Survey of the Thompson Island Pool
Subreach
(with NYS Northing range)
Surface Area (m2)
Mean Surface PCB
Concentration (ppm)
Subreach 5
1163000- 1170100N
512,274
33.42
Subreach 4
1170100- 1177000N
476,067
35.65
Subreach 3
1177000- 1181900N
383,356
28.89
Subreaches 1 and 2
1181900- 1191700 N
642,683
20.17
Total for All Subreaches
2,024,379
28.72
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Table 4-8
Dechlorination of Aroclor 1242
Page 1 of 3
_Only_congcne rs detec ted in Aroclor 1242 are represented.
Congener
Number- Congener Name
Mass Percent
in Aroclor
1242"
Mol. Wt, of
Congener
Mass Percent
Mol. Wt
(moles/1 OOg of A1242)
Final
Dechlorination
Product*
Final
Product
Reported?
Mass
Reduction
Factor*
Mass Percent
of Final
Product'
No. of Moles
Remaining
After Dechlor.
BZ#l
BZ»3
BZ#4
BZ#6
szn
2-CMorobiphenyl
4-Chlorobiphenyl
2.2'-Dichlorobipheny!
2.3'-Dicblorohipheisyl
2.4'-Dichlorobiphenyl
BZ#9	2.5Dichlorobiphenyl
BZslO	2,6-Dichlorobiphenyl
R/.X12	3,4-DichlorobiphenyI
BZ815	4,4'-Dicblorobiphenyl
BZ#16	2,2',3-TrichlorobiphenyI
BZ#17	2.2'.4-Trichlorobiphenyl
BZ# 18	2,2',5-TricMorobiphenyl
BZ#19	2,2',6-Trichtorobiphenyl
BZ#20	2.3.3'-TrichIorobiphenyI
BZS22	23.4'-Trichloiobiphenyl
BZ»23	23.5-TrichIorobipheoyI
BZ#25	2,3'.4-Trichlorobiphcnyl
BZ#26	2J'.5-Trichk)robiphenyl
BZ#27	2.3',6-Triclilorobiphenyl
BZ«8	2,4.4'-Trichlorobiphenyl
BZ«29	2,4,5-Trichlorobiphenyl
BZS31	2,4',5-Trichlorobiphenyl
BZ#32	2,4,,6-Trichlorobiphenyl
BZ833	2'.3,4-Trichlorobiphenyl
BZ#34	2',3,5-T ricUorobiphenyl
3ZM7	3,4,4'-T ricblorobiphenyl
3ZS41	2.2',3.4-Iciachlorobiphenyl
3Z#42	2,2.3,4'-T etrachlorobiphenyl
3Z#44	2.2',3.5'-T ettachlorobipbenyl
)ZM5	2,2',3,6-Tetraclttorobiphenyl
iZ#47	2.2,,4,4,-Tetrachlotobip)ienyl
iZ#48	2^',4,5-TetmcliIorobiphenyl
iZ#49	2_2,.4.5'-Te(raclilcwobiplienyl
1Z#51	2J'.4,6'-Tctrachlorobipheny!
mS2	2,2',5 .S'-Tettachlorobipbeiiyl
JZ#53	2,2',5,6'-Tetmcl>Iorobipher>yJ
JZ#56	2,3.3',4'Tetrachlorobiphenyl
IZ860	2.3,4,4'-T«»ct>iorobiphenyl
IZH63	2.3.4'.5-Telr»cblorobiphenyt
JZ#64	2.3,4',6-Tetrachlorobiphenyl
0,59
0,26
3 13
1,36
7,20
1*9,0
189.0
223.1
223,1
223,1
0.58
0,22
O.tW
1 83
2.67
223.1
223.1
223.1
223.1
257.5
3.28
8,72
084
DM
2,59
257.5
257 5
257.5
257.5
257.5
0.07
0.55
1.53
0.53
801
257.5
257.5
257.5
257.5
257.5
0.13
7.06
1.83
4.66
002
257.5
257.5
257,5
257 5
257.5
1.85
1.76
1,10
3.61
1.03
257.5
292.0
292.0
292.0
292.0
0.73
1.44
2.93
0.28
3.43
292.0
292.0
292.0
2920
292.0
0.75
1.66
0,59
0.14
1.70
292.0
292.0
292.0
292.0
292.0
0 0031
0.0014
0.0140
0.0061
0.0323
0.0026
0.0010
0.0004
0.0082
0.0104
0.0127
0.0339
0.0033
00038
0.0101
0.0003
0 0021
0 0059
0.0021
0 0311
00005
0.0274
0.0071
0.0181
0.0001
0.0072
0.0060
00038
0.0124
0.0035
0.0025
0.0049
0,0100
0,0010
0.0118
0 0026
0.0057
0.0020
0.0005
0.0058
BZ#1
Biphenyl
BZ#4
BZ#1
BZ#1
BZS1
Bzmo
Biphenyl
Biphenyl
BZ#4
BZ#4
BZ#4
BZ#19
BZ»l
BZ#l
BZ«
BZ#1
BZ#1
BZolO
BZS1
BZM
B'/.til
BZ#10
BZ#1
BZ#1
Biphenyl
BZ«4
BZ#4
BZ#4
BZ#19
BZ#4
BZ&4
BZ#4
BZ#19
BZ#4
BZ819
BZ#1
Bz/n
BZS1
BZ#10
Yes
No
Yes
Yes
Yes
Yes
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yea
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
100
0.00
1.00
0.85
0.85
0.85
1.00
0.00
0,00
0.87
0.87
0.87
1.00
0.73
0,73
0.73
0.73
0.73
0.87
0.73
0.73
0.73
0.87
0.73
0.73
0.00
0.76
076
0.76
0.88
0.76
0.76
0.76
0.88
0,76
088
0.65
0,65
0.65
076
0.59
0.00
3.13
115
610
0.49
0.22
000
0.00
2.31
2.84
7 56
0.84
0.72
1.90
0.05
0.40
1.12
0.46
5.88
0.10
5.18
1.58
3.42
0.01
0.00
1.34
0.84
2,76
091
0.56
1 10
2.24
0.25
262
0.66
1.08
038
0.09
1.30
0.003098
0000000
0 014043
0.006083
0.032287
0.002600
0 000990
0000000
0 000000
0,010361
0.012725
0.033872
0.003257
0 003828
0.010069
0.000286
0 002139
0.005924
0.002064
0 031109
0.000522
0.027416
0.007101
0.018092
0.000077
0,000000
0.006021
0003758
0012370
0.003535
0 002511
0.004927
0.010027
0.000965
0.011761
0.002577
0.005693
0.002027
0.000477
0 005805

-------
Table 4-8
Dechlorination of Arocior 1242
Page 2 of3
Onj^con^n^detected in Arocior 1242 are represented.


Mass Percent

Mass Percent-
Final
Final
Mass
Mass Percent
No. of Moles
Congener

In Arocior
Mol. Wt. of
>101. wt.
DecMori nation
Product
Reduction
of Final
Remaining
Number
Congener Name
1242"
Congener
(moIes/lOOg of A1242)
Product1
Reported?
Factor*
Product'

BZ#66
2,3',4.4'-l etrachlorobiphenyl
3.46
292.0
0.0119
BZ#1
Yes
0.65
2,24
0011854
BZS67
2.3',4.5-Tetrichlorobiphenyl
0.15
292.0
0.0005
BZS1
Yes
0,65
0.10
0.000517
BZ#70
2,3 ',4',5-Tetrachlorobtphenyl
3 74
292.0
00128
BZ#I
Yes
0,65
2.42
0.012791
BZ#74
2,4.4'.5- I'etrachlorobiphcnyl
1 90
292.0
0.0065
BZ#I
Yes
065
1 23
0.006513
BZ*75
2.4,4',6-Teirachlorobiphenyl
0.11
292.0
0.0004
BZ*10
Yes
0 76
0.09
0.000382
BZ#77
3. J '.4.4'-Vet rach iorobiphenyl
035
292.0
0.0012
Biphenyl
No
O.OO
0.00
0 000000
Bzmi
2.}'J.3'.4-Pem»chlorobiphenyl
0.36
326.0
0.0011
BZ#4
Yes
0.68
0,24
0.001089
mm
2,2'.3,3'.>-Peo!achlorobiphenyl
0 II
326.0
0.0003
BZ#4
Yes
0.68
0,07
0.000334
azm
2,2,,3,3',6-PenMchlorobiphenyl
0.50
326.0
0.0015
BZ»19
Yes
0.79
0,39
0.001526
3Z#85
2.r,3,4.4'-Penlachlorobiphenyl
0 39
326.0
0.0012
BZM
Yes
0.68
0.27
0.0111198
3Z#87
2.2'J.4,5'-Pentaehlorobtphe[iyl
061
326.0
0 0019
BZM
Yes
0.68
0.42
0.001863
um
2,2'J,4',6-Peniach Iorobiphenyl
0.23
326.0
0.(1007
BZ#19
Yes
0.79
018
0.000707
izm
2,2',3,5.5'-Pentachlorobiphenyl
0.17
326.0
0.0005
BZM
Yes
0,68
0.11
0.000512
i?M5
2,2'.3.5'.6-PeDtachlorobiphenyl
0.07
326.0
0,0002
BZ#19
Yes
0,79
0.06
0000225
am
2,2'.3,6.6'-Peat»ch.lotobiphenyl
0.08
326.0
0,0003
BZ*54
No
O.OO
0.00
0000000
\7M1
2.2'.3',4.5-Pentachlorobiphenyl
0.48
326.0
0.0015
BZM
Yes
0.68
0.33
0.001471
iz m
2,2',4,4'.5-Pemachlorobjphenyl
0.62
326.0
0.0019
BZM
Yes
0.68
0.43
0 001912
!ZSI01&»Og
2,2',4,5,5'-Peniadtlorobiphenyl
1 02
326.0
0.0031
BZM
Yes
0.68
0.70
0.003129
IZ#105
2,3,3'.4.4'-Pent*chlorobiphenyl
0.55
3260
0 0017
BZ#1
Yes
058
032
0 001702
IZ#I07
2,3,3',4' ,5-PeniachIorobiphenyl
0.10
326.0
0.0003
BZ#1
Yes
0.58
0.06
0 000301
iz»l 10
2,3,3',4'.6-Pentachlorobiphenyl
1 09
3260
0.0034
BZ«10
Yes
0,68
0.75
0.0033S1
iZ#U4
2.3,4,4'.5-Pentachlorobiphenyl
0.06
326.0
0.0002
Bzm
Yes
0.58
0.03
0.000171
¦zms
2,3,4,4',6-Pentachlorobiphenyl
0.10
326.0
0.0003
BZS10
Yes
0,68
0,07
0.000306
;Z#11B
2,3'.4,4',5-Pentachlorobiphenyl
076
326.0
0.0023
BZfll
Yes
0.58
0.44
0 002338
Z#II9
2,3',4,4',6-PentichIoiobiphenyl
0.06
326.0
0.0002
BZ»10
Yes
0.68
0.04
0000172
znm
2',3,3',4.5-Pentaclilorobiphenyl
0.05
326.0
0.0002
BZSI
Yes
0.58
'0.03
0.000165
z»m
2',3.4.4'.5-Penuchlorobiphenyl
0.05
326.0
0.0001
BZS1
Yes
0.58
0.03
0.000148
znm
2,2',3,3'.4,4'-Hexachlorobiphenyl
0,08
361.0
0.0002
BZM
Yes
0.62
0.05
0.000218
Z#129
2.2',3,3'.4.5-Jiexachlorobiphenyl
004
361.0
0 0001
BZ#4
Yes
062
0.03
0.000124
Z#136
2,2',3.3'.6.6 Hexichlorobiphenyl
0.05
361.0
0.0001
BZ#54
No
0.00
0.00
0.000000
Z#137
2,2',3,4.4',5-Hexichlorobipheiiyl
0.06
361.0
00002
BZM
Yes
0.62
004
0,000163
ZS138
2,2,3,4.4'.5'-Hex«clilorobipbenyl
0.20
361,0
0.0006
BZM
Yes
0.62
0.12
0.000553
Z#141
2,2',3,4,S,5'-Hex*chlorobtpheuyt
0,06
361.0
0.0002
BZM
Yes
0.62
0.04
0.000179
Z#146
2,2',3,4',5.5'-Hexachlorobiphenyl
0.01
361.0
0.0000
BZM
Yes
0,62
0.01
O.OQO037
2*149
2,2,3,4,5' ,6- Hejuchlorobiphenyl
0.13
361.0
0.0004
BZ#19
Yes
0,71
0.09
0 000359


-------
Table 4-8
Dechlorination of Aroclor 1242
Page 3 of 3
Only congeners detected in Aroclor 1242 are represented.
Congener
Number
Congener Name
Mass Percent
in Aroclor
1242"
Mol. Wl. of
Congener
Mass Percent*
Mol. Wt.
(moles/1 OOg of Al 242)
Final
Dechlorination
Product*
Final
Product
Reported?
Mass
Reduction
Factor*
Mass Percent
of Final
Product*
No. of Moles
Remaining
After Dechlor.
1ZS153
2,2',4,4',5.5'.He*achlorobiphenyl
0 12
361 0
0.0003
BZS4
Yes
0.62
0.07
0.000336
3Z#I56
2,3_}',4,4'.5-HeXichlorobipbenyl
0.04
361.0
00001
BZ#J
Yes
0.52
0.02
0 000120
JZS157
2,3,3',4,4',5'-HexachlorobiphenyI
0.09
361 0
0.0002
B2#l
Yes
0.S2
0.05
0 000244
iZ# 158
2.3,3'.4,4'.6-Hexichlorobiphenyl
0.06
161.0
0 0002
BZS10
Yes
0.62
0.04
0.000168
IZ#167
2,3',4,4'j,S'-Hexachlorobiphenyl
0.04
361.0
0,0001
BZS1
Yes
0.52
0.02
0.000097
IZ#170
2,2'.3,3'.4.4'.5-Heptachlorobiphenyl
0.06
395 3
0.0001
BZ*4
Yes
0.56
0.03
0 000144
1ZS17S
2.2',3,3'.5.5'.6-Heptachk>robiphenyl
0.06
395 3
0.0001
BZ#19
Yes
0,65
004
0.000141
Summary:

100%
Moles/I OOg A1242-
.Vlolecular weight of A1242 -
0.38
265,7 g/mole

Mass Remaining - 73.9%
Moles Remaining from a 1 OOg Initial mixture -
0.36
Final Molecular Weight » 206,4
Fractional Change in Molecular Weight Relative to Al242 - 0.223
Fractional Change in Mass Relative 10 A1242 - 0.261
mrce; TAMS/Gradient Database
tes:
BZfl represents Ihe congener nomenclature system developed by Ballschmiter & Zeil (1980).
This mass percentage is normalized to the muss of Aroclor 1242 reported by the Phase 1 analysis. It does not include the 9% of Aroclor 1242 miss not represented by Ihe 126 congeners reported in the Phase 2 melhod.
This value represents the number of moles of the congener in lOOg of Aroclor 1242 as reported by the Phase 2 analysis method.
This compound represents the futal form of the congener after undergoing complete meta- and para- dechlorination.
This factor is the fraction of the original congener mass which remains after meta- and para- dechlorination. This factor has been assigned a value of zero (0 00) for congeners whose final dechlorination products
are biphenyl and BZ#54, which are not reported in the Phase 2 analytical data.
This is the product of the mass percentage and the mass reduction factor. The sum of this column represents the mass of Aroclor 1242 remaining after undergoing complete meta- and para- dechlorination, is would be
reported by the Phase 2 method,
BZ#90 and BZ#101 are coelutiog penucWoiobiphenyls The structural name given is for BZ#I 01, However, both breakdown to form B7.M4 and thus they have identical reduction factors. For this analysis,
ihey can be treated as i single entity with no loss of accuracy.

-------
Table 4-9
Molar Dechlorination Product Ratio and Mean Molecular Weight of Various Aroclor Mixtures
Molar Dechlorination Product Ratio (MDPR)

U PCB Congener
Mole Fraction3
Mole Fraction = (Moles BZ#X)/(Total PCBs in moles)
•
1
Aroclor 1016
Aroclor 1242
Aroclor 1254

I BZ#1
0.010
0.008

0.000

J BZ#4
0.045
0.038

0.000

J Bzm
0.106
0.086

0.001

J BZ#10
0.003
0.003

0.000


BZ#19
0.011
0.009

0.000


Sum
(Initial Molar Dechlorination
Product Ratio)
0.174
0.144
0.001


Molecular Weight



Aroclor
Mean Molecular
Weightb
Fractional Molecular
Weight Change Relative
to Aroclor 1242" (AMW)


1016
257.9
0.03



1221
204.0
0.23



1232
229.7
0.14



1242
265.7
0.00



1248
291.4
-0.10



1254
327.7
-0.23



1260
372.2
-0.40


Notes:
a.	Mole fraction based on chromatographic analysis of Aroclor standards performed as part of Phase 2 investigation.
b.	See text (Equations 4-7 and 4-8) for the definition of these terms.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Table 4-10
Representation of Three Aroclor Mixtures by the Phase 2 Analytical Procedure


Mass Basis



No. of

Mass Fraction


Congener Fraction
Congeners8
Aroclor 1016
Aroclor 1242
Aroclor 1254


Ortho-Substituted Congeners
With Measured Dechlorination
Products
Congeners With Unmeasured
Dechlorination Products (x)
108
0.897
0.866
0.949


18
0.036
0.041
0.009


Total Congener Analysis (y)
126
0.933
0.907
0.958


Percent of Mass Lost to
Unmeasured Products via
Dechlorination0

3,9%
4.5%
0.97%



Mole Basis





No, of
Mole Fraction"


Congener Fraction
Congeners8
Aroclor 1016
Aroclor 1242
Aroclor 1254


Ortho-Substituted Congeners
With Measured Dechlorination
Products
Congeners With Unmeasured
Dechlorination Products (x)
108
18
0.957
0.043
0.950
0.050
0.991
0.009


Total Congener Analysis (y>
126
1.000
1.000
1.000


Percent of Moles Lost to
Unmeasured Products via
Dechlorination'

4.3%
5.0%
0.89%

Notes:
a.	There are 209 different congeners, 126 congeners were quantitated based on commercially available standards during the Phase 2 geochemical sampling program
and were determined for all sampled matrices.
b.	Based on chromatographic analysis of Aroclor standards performed as part of Phase 2 investigation,
c.	This percentage is the ratio of the congeners with unmeasured dechlorination products to the fraction of the total Aroclor represented (i.e. x/y).
d Mole fraction based solely on congeners represented in Phase 2 analysis,

-------
Table 4-11
Statistics for High Resolution Sediment Core Results
Molar Dechlorination Product and Change in Molecular Weight
Statistic
Molar 1
)echlorination Prodi
jet Ratio
Change in Mole
cular Weight Relative to Aroclor 1242
Expected Mass Loss' (%)
Upper Hudson
Lower Hudson
Tributaries and
Background
Upper Hudson
Lower Hudson
Tributaries and
Background
Upper Hudson
Lower Hudson
Mean
0.43
0.11
0.03
0.07
-0.02
-0.28
8.2%

Median
0.36
0.10
0.00
0.06
-0.02
-0.22
7.0%
—
Minimum
0.00
0.01
0.00
-0.12
-0.12
-0.67
-
—
Maximum
0.93
0.37
0.79
0.21
0.07
0.10
24.6%
8.2%
No. of Samples
131
68
45
131
68
45
131
68
viotes:
l Expected mass loss is calculated assuming the change in molecular weight is directly proportional to mass loss as follows:
Mass Loss = 0.261 x Change in Molecular Weight x 100
0.223
where 0.261 is the maximum theoretical mass loss possible via meta- and para- dechlorination and 0.223 is the maximum theoretical change in molecular weight
relative to Aroclor 1242 via meta- and para- dechlorination. Expected mass loss values calculated only for positive values of change in molecular weight. Expected
mass loss was not calculated for the background and tributary samples since the evidence strongly indicates that their PCB contamination was not Aroclor 1242-based
rce: TAMS/Gradient Database
TAMS/Cadmus/Gradicnt

-------
Figures

-------
Potential Chlorine Atom Locations
Ortho sites: 2, 6, 2\ 6'
Meta sites: 3, 5, 3', 5'
Parasites: 4,4'
Generic Structure:
PCB Congener Example
CI
3,3',4,4',5 - pentachlorobiphenyl
TAMS/Ca<'mus/Gradient
Figure 1-1
PCB Structure

-------
Mean Total PCB Concentration
(ppm-wet)
Pumpkinseed
Smallmouth Bass
Yellow Perch
Fish Species
Minnows
Hudson River Sampling Locations
TAMS/Cadmus/Gradient
Source: Engineering-Science (1994)
Figure 2-1
Fish PCB Results - Niagara Mohawk Queensbury RI

-------
GE Hudson Falls Plant
Building Pump House	Building No. 7
No" 1 Former	Boiler House Eastern
Outfall	Raceway
Abandoned
Allen Mills
Abandoned Bakers Falls
Hydro Plant
Approximate
River Mile 196.8
Approximate Bakers Falls
River Mile	Dam
197.1
Hudson River
Wing Dam
Tailrace Tunnel
Outlet
Adirondack
Hydro Power
Facility
(Not Shown)

Source: Image photographed from Old Fenimore Bridge by TAMS Consultants, Inc. on July 24, 1994
TAMS/ Cadmus/ Gradient
Figure 2-2
General Electric Company - Hudson Falls Plant and Vicinity

-------
1.4
1.2
I
c
o
'3
u
G
O
U
a
u
Ou
-o-PCB Cone. (|ig/L)
—PCB Load (kg/day)
1.4E-03
1.21*-03
1.0E-03
"0
8.0E-04 8
r
o
a>
a.
6.0E-04
4.0E-04
2.0E-(!4
0.0E-HK)

Month (December 1991 - April 1994)
Notes: a) 1 kg/day = 2.2 lb/day
b) Concentrations reported as "< 0.065 fig/L" shown as 0.065 ng/L
Source: DMR Printout for SPDES NY-0007048 (NYSDEC, 1994b)
Figure 2-3
GE Fort Edward Outfall Discharge Monitoring Report Data
T AMS/Cadmus/Gradient

-------
40
35
30
25
20
15
10
5
0
Passaic Valley Plan! Influent
Total PC8 = 400 ng/L




























l_ A.








L
J


.jLU
Jr-

Lu
u



VE Oi
O* O
—
40
35
30
25
20
15
10
5
0
Passaic Valley Plant Influent, Duplicate
Total PCB = 400 ng/L
























1 ill





r

i,
J*

liJ
u.


L-


BZ*
B2#
Newtown Creek Plant Influent
Total PCB = 160 ng/L
40
35
30
25
20
15
10
5
0
xt
'(mi I'liUi.t- .i irt .it.if,' 		Ati.'f."! j.*ii!
ilii'iiL] 4-

iuL
llllfl. Ull^l
c\= _
BZ#
40
35
30
25
20
15
10
5
0
North River Plant Influent
Total PCB = 160 ng/L

fall LiJLiI
M-
2
(N
BZ a
40
35
30
25
20
15
10
Wards Island Plant Influent
Total PCB = 55 ng/L
	lul				
oe c*
— — (N
BZ#
iach graph represents a maximum of 50 congeners
: Battelle Ocean Sciences for USEPA (1993)
TAMS/Cadmus/Gradient
Figure 2-4
NY/NJ POTW Influent PCB Data - Congener Basis

-------
40
35
30
25
20
15
10
5
0
Passaic Valley Plant Effluent
Total PCB = 100 ng/L







2
BZ#
Passaic Valley Plant Effluent, Duplicate
Total PCB - 100 ng/L
40
35
30
25
20
15
10
5
0









1
I II
¦ It.

S3 O r-J v~, 90 —
BZ#
£
Q
'S
S
S
o
c
o
U
m
a
40
35
30
25
20
15
10
5
0
Newtown Creek Plant Effluent
Total PCB = 45 ng/L
iii.l'i.jwfa.,

»llfc##l|inAl«MUIIII'l
OH
o
o
\oe*r>iv")oe
BZ*
Owls Head Plant Effluent
Total PCB = 20 ng/L
40
35
30
25
20
15
10
5
0

wHmtmn
IN in »
o o —
BZ#
lote: Each graph represents a maximum of 50 congeners
ouree: Battelle Ocean Sciences for USEPA (1993)
TAMS /Cadmus/G radiei
Figure 2-6
NY/NJ POTW Effluent PCB Data - Congener Basis

-------
i
100
e,
80
e

s
60
s
b
40
c

o
U
20
CO

a
0
Passaic Valley Plant Effluent
ToUl PCB = 100 ng/L
m
7 8 9 10
Passaic Valley Plant Effluent, Duplicate
Total PCB = 100 ng/L
Homology*
i
100
c.
80
6

'3
60
5

40
e

e
U
20
CQ


0
111
23456789 10
Homologue
£
100
£
80
e

¦s
60
s

40
=

o
o
20

0
Newtown Creek Plant Effluent
Total PCB = 45 ng/L

23456789 10
Homologue
i
100

80
§

¦a
60
s
§
40
o
u
20
s
0
North River Plant Effluent
Total PCB = 20 ng/L
3 4 5 6
Homologue
8 9 10
3 100

£
6
O
e
o
U
§
80
60
40
20
0
Wards Island Plant Effluent
Total PCB = 10 ng/L
2 3 4 5 6 7
Homologue
10
3 100
M
S 80
e
©
| 60
| 40
8 20
CO
£ 0
Owls Head Plant Effluent
Total PCB = 20 ng/L
123456789 10
Homologue
>urce: Battelle Ocean Sciences for USEPA (1993)
TAMS/Cadmus/Gradien
Figure 2-7
NY/NJ POTW Effluent PCB Data - Homologue Basis

-------
c
U
02
U
o.
Hudson River nr. Riverdale Water Data
Total PCB = 26 ng/L
BZI5/BZI"







| II


. 90 —
O. (N o ~
r-	Z.
BZ#
Passaic River Water Data
Total PCB = 26 ng/L
¦s	6
&	5
I	4
a
p	3
I	2
c	l
g	0
a.


BZ13/BZI?





L.

¦¦ik^JbLLl—luJ	
w ^ ? wO — r»*>	in r- » 0^
•*"> o r** o\ M M m	aa	m ~
BZ#
Hackensack River Water Data
Total PCB - 26 ng/L
6
ILilii	ili..a.,llyjllllu	I
wrfufcfXwAww
. *ri oo —>
f" O rn >0
Tf ir\ f- 0©	O
BZ#
Raritan River Water Data
Total PCB = 13 ng/L
6
iJ
g
o
e
o
O
3Z13/B217

iliiiJigiiiLiiwiiwBifAAiwrtiliiiifaAaiJUiihmiiuifawi^AHiiaiin.'inih-iiiliiiMBiiiil
trtoo — ^r-Or-iVOOv
x © — r*>	w>	00 C\ ©
—	_ (N
BZ#
© r-> no ^ 
-------
Hudson River nr. Riverdale Water Data
Tola! PCB = 26 ng/L
O
OQ
U
a.
10
Homologue
10
'5 6
G
a.
Passaic River Water Data
ToU! PCB = 26 ng/L
SB
i
10
Homologue
10
•3 6
J3
i *
§
U 2
CO
a. 0
Hackensack River Water Data
Total PCB = 26 ng/L
lilt i
10
Homologue
Raritan River Water Data
Total PCB = 13 ng/L
10
S 4
u
OQ
U
Qu
1111 ¦
Homologue
10
Raritan River Water Data, Duplicate
Total PCB = 13 ng/L
10
U
CQ
U
Cm
¦ fill
10
Homologue
Source: Battelle Ocean Sciences for USEPA (1993)
T AM S/Cadmus/G radu
Figure 2-9
NY/NJ River Water PCB Data -
Homologue Basis

-------
Figure 3-1
Total Suspended Solids Concentration [TSS],
Upper Hudson River Water Column Transects
400
300
J .
w> 200
S

-------
Figure 3-2
Particulate Organic Carbon [POC],
Upper Hudson River Water Column Transects
OD
g,
O
o
CM
20
15
10
- 3 4-
Transect Number
7
"6
Station
Number
Note: POC concentration calculated from weight loss on ignition data.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Figure 3-3
Two-Phase Partition Coefficients to Particulate
Matter (KP a) for Water-Column Transects
2,000,000
Legend:
— Uncorrected median value
I 95% confidence interval on mean
1,500,000 --
ot
a.
1,000,000
500,000 --
1 8 12 18 25 28 37 44 52 66 82 85 92 99 107 128 138 151 201
4 9 15 19 26 29 40 47 53 70 83 87 95 101 118 136 141 153
6 10 16 22 27 31 41 49 56 77 84 91 97 105 119 137 149 170
PCB Congener (BZ#)
Notes:
a.	No temperature correction.
b.	Plot includes congeners having at least three samples quantitated for both dissolved and particulate phases.
c.	For some congeners with skewed sample distributions the median may be below the confidence interval on
the mean.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient

-------
Figure 3-4
Two-Phase Partition Coefficients to Particulate Organic
Carbon (KPOC?a) for Water-Column Transects
10,000,000 „
Legend:
— Uncorrected median value
I 95% confidence interval on mean
8,000,000 .
6,000,000 ..
DC
9- 4,000,000 ..
2,000,000 ..
8
12 18 25 28 37 44 52 66 82 85 92 99 107 128 138 151 201
4 9 15 19 26 29 40 47 53 70 83 87 95 101 118 136 141 153
6 10 16 22 27 31 41 49 56 77 84 91 97 105 119 137 149 170
PCB Congener (BZ#)
Notes:
a.	No temperature correction.
b.	Plot includes congeners having at least three samples quantitated for both dissolved and particulate phases.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient

-------
Figure 3-5
Observed vs Theoretical Partitioning to Particulate Organic
Carbon for PCB Congeners in the Freshwater Hudson
7 .






¦ /

6.5 -

Line of 100%
Agreement
¦ /
__

— 6 -
2




j


/ " "

o
2 5.5 -
*


/ ¦
a

OA
-2

m
¦

.2 5 -




QJ
U


¦
¦ ¦ *



m •
¦

H 4.5 -

¦
¦

4 .





4.5
5 5.5
6 6.5 7

Average Observed log[KPOC (L/kg)]
Note: Theoretical values from Mackay et al. (1992).
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient

-------
Figure 3-6
KPOc?a Estimates vs. Water Temperature for BZ#52,
Hudson River Water-Column Transect Samples
4,000,000
3,000,000 -
bx>
J*
o 2,000,000
Am
*
w
v
>-
L.
C
o
a
3
1,000,000 -
• •t
-h
0
10	15	20
Temperature (°C)
25
30
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradier

-------
Figure 3-7
Variation in log KP^ by Transect for BZ#44
Legend:
Station River Mile
- 3	195.8
6.5 ..
194.4
188.5
181.3
156.6
es
©£
O
J
4.5
5
T ransect
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradie

-------
Figure 3-8
Variation in log KPOC a by Transect for BZ#44
Legend."
Station River Mile
- 3	195.8
6.8
194.4
188.5
181.3
6.4
156.6
5.6
5.2
1	2	3	4	5	6
Transect
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradier

-------
Figure 3-9
Variation in log KP a by River Mile for BZ#44
7.0
Legend:
Transect Event
6.5 --
6.0 --
m 5.5 --
m
a."
5.0 --
4.5 --
4.0
200	190	180	170	160	150
River Mile
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradie

-------
Figure 3-10
Variation in log KPOC^ by River Mile for BZ#44
Legend:
Transect Event
6.8 --
6.4 --
6.0 --
SB
DX)
C
5.2
200	190	180	170	160	150
River Mile
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradien

-------
Figure 3-11
Temperature Correction Slope Estimates for
PCB Capillary Column Peaks
1800
a	£
0	®
*¦&
"S	P
M
S-
•a 2
© A
ox h
1	&
Li S
O
IS c
C5 q
E 2
~ s
W *3
« E
g- v
35 Q
1400
1000 --
600
200
la 2a 3a 4a 4c 5a 5b2 6a 6c 7a 8a 9a 10a 11a 12a 13a 16a
lb 2b 3b 4b 5b 1	6b 7b 8b 9b 10b lib 12b 13bl5al8a
4d 5c	7c 8c 9c 10c	14a 17a
12c 14c 19a
Capillary Column Peak
Source: Warren et al. (1987)
T AMS/Cadmus/Gradien

-------
Figure 3-12
Equilibration KP a Estimates for PCB Partitioning
in Hudson River Transect Samples
A. Transect 2
4.0
Legend:
Transect Median
Equilibration Median
* 5.0
—I	h
22
H	h
H	1-
26 OO 40	47 o 66 -»« 83
25 28 37 41 44 52 53 70 82
PCB Congener (BZ#)
H	H
85
118
97
B. Transect 6
5.0 --
4.0 "
3.5
Legend:
Transect Median
Equilibration Median
I I I I I I I I I I I I I I I I I 1 I 1 1 I I I I I I I I I I 1 1 1
1 15 19 26 41 49 66 84 91 99 118 170
6 16 22 31 44 52 70 85 92 101 136
12 18 25 40 47 56 83 87 97 107 151
PCB Congener (BZ#)
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradie

-------
Figure 3-13
KP a Estimates for Hudson River Transect 1
800,000
Legend:
BZ#52
BZ#1 _g_ BZ#70
BZ#28
BZ#101
600,000 --
WD
=* 400,000 ..
J
«
a.'
*
200,000
200
180
160
140
120
100
River Mile
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradie

-------
Figure 3-14
KP>a Estimates for Hudson River Transect 4
250,000
Legend:
BZ#28
BZ#101
200,000 --
150,000 --
50,000 --
200 180 160 140 120 100 80 60
River Mile
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradie

-------
Figure 3-15
KP^ Estimates for Hudson River Transect 6
250,000
Legend:
BZ#28
jm- BZ#52
BZ#70
BZ#101
200,000 --
150,000
100,000 --
«
CL
50,000 --
200
180
160
140
120
100
60
80
River Mile
Note: Estimates without temperature correction.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradie

-------
Figure 3-16
Percent Deviations in log KPOC
-------
Figure 3-17
Prediction of Particulate-Phase PCB Congener Concentration
Using KP a with Temperature Correction
40
A. Arithmetic Scale
J
"bJd
a.
U
-O

-------
Figure 3-18
Prediction of Particulate-Phase PCB Congener Concentration
Using KPOC a with Temperature Correction
A. Arithmetic Scale
Line of 100%
Agreement
0
20
25
5
10
15
30
Observed CP (ng/L)
B. Logarithmic Scale
100
J
If 10-
a.
u
-o
v
ZJ
•3
V
u
cu
5* _ -
0.1
1
10
100
Observed CP (ng/L)
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient

-------
Figure 3-19
Median Values of log KPOC^ Corrected to 20 °C
7
6
5
4
11 jI I,i,i I,I6I m ^ I3I,I IJ,I Ij,i Ij6i \p g„i g,i ij,i mj (|j yj m w i,y y,
4 8 12 18 25 28 37 44 52 66 82 85 92 99 107 122 137 149 170 180 191
6 9 15 19 26 29 40 47 53 70 83 87 95 101 118 128 138 151 171 183 194
PCB Congener (BZ #)
Source: TAMS/Gradient Database

-------
Figure 3-20
PCB Congener KPoc^ Estimates for
Hudson River Flow-Averaged vs. Transect Samples
GA
U
a
a
& 6.5
WO
c«
u
i 6
Line of 100%
Agreement
St
v
o
a.
*
W)
©
5.5
5.5	6	6.5
log [KPOCjl (L/kg)], Transect Estimates at 20 °C
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradiei

-------
Figure 3-21
Relationship of Dissolved and Particulate Organic Carbon
Concentrations in Upper Hudson River Transect Samples
[POC] (rog/L)
Note: [POC] calculated from weight-loss-on-ignition data.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradi<

-------
Figure 3-22
Estimated Average Percent Distribution of PCB Congeners
among Dissolved, POC, and DOC Phases
in Upper Hudson River Water-Column Transect Data
BZ #1
POC (28%)
DOC (28%)
BZ #4
POC (9%) —^ Dissolved (40%)
Dissolved (44%)
DOC (51%)
BZ#52
BZ#138
POC (46%)
Dissolved (49%)
POC (73%)
issolved (20%)
DOC (7%)
DOC (5%)
Note: Percentages calculated at mean concentrations observed in Upper Hudson River of DOC = 4.79 mg/L
and POC = 1.40 mg/L.
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradiei

-------
Flow Reported by the USGS for October 1, 1991 through March 31, 1992
30,000
Legend:
—	Ft. Edward
-	- Stillwater
• • - Waterford
25,000
20,000
15,000
10,000
5.000
12/18
1/13
2/8
3/5
3/31
10/1
10/27
11/22
Date of Measurement (Water Year 1992)
Flow Reported by the USCS for April 1, 1992 through September 30, 1992
30,000
25,000 -
20,000 H
15,000 -
10.000
5.000 -
Legend:
Fl. toward
x - - Stillwater
Waterford
9/30
Date of Measurement (Water Year 1992)
Source; TAMS/Gradiem Daiabase
TAMS/Cadmus/GradieDl
Figure 3-23
Comparison of USGS Measured Flows at Fort Edward,
Stillwater and Waterford for Water Year 1992

-------
0	2.000 4.000 6.000 8,000 10,000 12,000 14,000
Stillwater Flow (cfs)
Notes:
a.	For Stillwater Flow < 4,000 cfs:
97.5% Quantile = 12.2%
2.5% Quantile = -18.5%
b.	For 4,000 cfs < Stillwater Flow < 6,000 cfs:
97.5% Quantile = 13.5%
2.5% Quantile = -10.8%
c.	For Stillwater Flow > 6,000 cfs:
97.5% Quantile = 11.2%
2,5% Quantile = -8.5%
Source: NYS Thruway Authority, Office of Canals (1994)	TAMS/Cadmus/Gradient
Figure 3-24
Stillwater Low-Flow Model C Prediction Uncertainty
as a Function of Stillwater Flow

-------
28.000
January 1, 1993 to March 31, 1993
Legend:
— tr- - Model B
—Model D

mAwc."

t I
s\t, V
2/5	2/23
Date
April 1, 1993 to June 30, 1993
\
13.000 ~| j
1
Legend:
-	Model A
-	Model B
• Model C
11.000
j
7.000 ~
A
5,000
3.000 -J~
Date
July 1, 1993 to September 30, 1993
7.000
Legend:
-®	Model A
«- • Model B
• - - Model C
•b-- - Model D
6.500
6.000
5.500
5.000
4.500
4.000
3.500
7/1
9/30
7,'! 9
9/11
8/6
Date
Source TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-25
Comparison of Flows Predicted by Stillwater
Low«Flow Models (Fort Edward Flow < 8,000 cfs)

-------
20.000 H
©
£
©
J 5,000
10.000
1/13
40.000 —
35,000 H
30.000 -
-i
25.000 -1
]
20.000
15.000 "
ro.coo -
January 1, 1993 to March 31, 1993
Legend:
i - - Model F
}— Model G
—I	
1/20
Date
April 1, 1993 to May 31, 1993
Legend:
¦	Model E
¦	Model F
• Model G
Date
3/31
Source TA.MS/Gradier.t Daiabase
T A M S/Cftd mus/G radient
Figure 3-26
Comparison of Flows Predicted by Stillwater
High-Flow (Fort Edward Flow > 8,000 cfs) Models

-------
March 1993
*
o
tZ
Legend:
25.000 -
20.000 -
15,000 -
10.000
5.000 -
fr- - Model B (Low-Flow) {
¦ • - • Model F (High-Flow) ;
a-	• -
v
High Flow
3/29
Date
May 1993
25.000
20.000
15.000
10,000
—>¦ Low Flow
Legend:
Model A (Low-Flow)
: — - Model B (Low-Flow)
' - - • - - Model C (Low-Flow)
—o- • • - Model D (Low-Flow)
-	Model E (High-Flow)
-	Model F (High-Flow) :
~ Model G (High-Flow)
High Flow ^
Source: TAMS/Gradieni Database
TAMS/Cadmus/Gradient
Figure 3-27
Comparison of Flows Predicted by Stillwater
Low-Flow (Fort Edward Flow < 8,000 cfs) and
Stillwater High-Flow (Fort Edward Flow > 8,000 cfs) Models

-------
J
£
h.
January 1, 1993 to March 31, 1993
Legend:
30.000 -
20.000 -
	a— Model H
-	6- • Model I
-	- # - - Model J
10.000 - *
j
J
V-
V 'N,

2/4
2/27
2/16
Date
April 1, 1993 to June 30, 1993
20.000
18.000
16.000
14.000
12.000
10,000
8.000
6.000
4.000
J •
Legend:
• Model H
—	tr- ' Model J
-	- • - - Model J
* •
• t
5/5	5/17	5/28
Date
July 1, 1993 to September 30, 1993
9,000
8.000
Legend:
Model H
— tr- - Model I
| - - • - - Model J
8/16
Date
Source; TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-28
Comparison of Flows Predicted by Waterford
Low-Flow (Fort Edward Flow < 8,000 cfs) Models

-------
*
3
th
i
—
£
21,000
20,000
19.000
18,000
17,000
16,000
15.000
50,000
40,000
30,000 A
20,000
January 1, 1993 to March 31, 1993
Legend:
—	- Model K
	•— Model L
—	- 9 - • Model M
—	Model N*
2/16
Date
April 1, 1993 to May 31, 1993
3/23
Legend:
- «- - Model K
•— Model L
• - v - - Model M
Mode! N
5/5
5/28
Date
Source: TAMS/Gradient Database
TAMS/Cadmus/Cradient
Figure 3-29
Comparison of Flows Predicted by Waterford
High-Flow (Fort Edward Flow > 8,000 cfs) Models

-------
March 1993
45.000
Low Flow : High Flow
Legend:
40,000
• Model J (Low-Flow)
- Model N (High-Flow)
35,000
30.000
25.000
20,000
15.000
!0.000
5.000
3/12
3/18
3/29
3/1
3/6
Date
(J
*
o
£
May 1993
30.000
25.000
Legend:
Model H (Low-Flow)
Model 1 (Low-Flow)
Model J (Low-Flow)
Model K (High-Flow)
Model L (High-Flow)
Model M (High-Flow)
Model N (High-Flow)
20.000
15.000
High •<:; -> Low Flow
Flo-* '
10.000 -
5.000
Date
Source: TAMS/Gradiem Database
TAMS/Cadmus/Gradient
Figure 3-30
Comparison of Flows Predicted by Waterford
Low-Flow (Fort Edward Flow < 8,000 cfs) Models and Waterford
High-Flow (Fort Edward Flow > 8,000 cfs) Models

-------
u
04
u
b
a
0.5
0.4
0.3
0.2
PCB Homologue
urce: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-31
Homologue Distribution of the GE Hudson Falls Facility Source

-------
1.2
oo
on
e
•3
«
o
-J
2
©

•o
4>
•a
c
o.
CA
3
00vOTrtN©00'O'«t-(N©00v©Tl-r-ie>
©©osOvOsoo\oooooooooor^r--r-r^r-vovO'Ovovo
-------
60
"JJD
C
¦s
A
O
-J
in
2
©
C/3
¦a
a>
T3
c
4>
a
(/>
s
i/i
500
400-
300
200-
100
0
Legend:
o
~
A
Total Measured Main-Stem Hudson River
Suspended Matter Load
Batten Kill Contribution*
Fish Creek Contribution*,b
Hoosic River Contribution"
Hoosic River Load—
Measured on 3/30/93
Hoosic River Load
Measured on 3/27/93
I 1*1 1*1 1*1*1 I I I I 1*1 I I I I I ^ V I I I I I I I I I I I lal I I I I I I I I I I I I | | | |
o o

-------
la
DC
a
•(¦tf
XJ
«
o
-J
¦o
©
t/5
T>
V
¦a
a
4>
a
W9
9
C«
120
100
80
60
40
20
0
Legend
—0_
- Total Measured Main-Stem Hudson River

Suspended Matter Load
0
Batten Kill Contribution3
a
Fish Creek Contribution3 b
A
Hoosic River Contribution3
O
Mohawk River Contribution"
o
n
CN O	00
© ©	C*
M N	-
-f-rf1-
I | I I I I I I I I I I T I I I I T I I I I I I I I I II I II I
vOrrfNOOOvO-tCSOOOvO'tMOOOvCi
osOncjso\oeoooooooor~-r~(*-r~r~>oi>o
River Mile
I M M m i i i i i
N O 00	t N O
sjd *r> iri 
-------
"3d
MS
S
•mm
•ts
m
o
-J
<0
2
©
c«
¦a
¦o
c
4»
a
1/5
s
tfl
0.7-
0.6-
0.5
0.4
0.3-
0.2
0.1-
Legcnd:
—•—
Total Measured Main-Stem Hudson River

Suspended-Matter Load
0
Batten Kill Contribution"
~
Estimated Fish Creek Contribution,b
A
Hoosic River Contribution*
O
Mohawk River Contribution*
0 —|—|—i [ [- [ i | i i i i i i i i I I I I I ill M I I l l l l l l l 1 1 l l l l l I I I I i i i i i i
rviOoc^C!'^-fSOoO'>0"«J-r^ooovp5-MpQO>cs"grcsooovott^f^^vo«vov0«n
-------
RM 189
0-2 cm
0-2 cm
RM 190
PCB Homolnguc
PCB Homutogue
RM 195.5
0-2 cm
RM 188.5
0-2 cm
	1	L_
E
PCB Hninoluyuc
PCB Hnmolngue
RM 189
6-8 cm
RM 188.5
6-8 cm
PCB Hnmoluguc
;vel of dechlorination shown in the sediment distribution patterns increases from graph A through F.
PCB Hiwwilngue
TAMS/Gradient Database
Figure 3-36
Sediment Homologue Distributions in the Thompson Island Pool
TAMS/Cadmus/Gradient

-------
)
)
)
RM 189
0-2 cm
Pl'B Hnnmloguc
KM 190
0-2 cm
PC'B Hnnuilnguc
RM 195.5
.1	 1_.
0-2 cm
RM 188.5
0-2 cm
B
E
PCB Hiiiim»1i
-------
Whole-Water PCBs Dissolved-Phase PCBs Suspended-Phase PCBs;
Fenimore Bridge
River Mile = 197.6
Total Load «¦ 0.47 mg/s
Flow = 170 m3/s
Rogers Islandb
River Mile = 194.6
Total Load = 12 mg/s
Flow = 170 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 9.3 mg/s
Flow >* 170 m3/s
Batten Kill
River Mile = 182.1c
Total Load - 0.09 mg/s
Flow = 30 m'/s
Schuylerville
River Mile =181.3
Total Load = 9.2 mg/s
Flow = 2 J 0 mVs
Hoosic River
River Mile = 167.5'
Total Load = 0.11 mg/s
Flow = 62 m'/s
Waterford
River Mile = 156.5
Total Load = 11 mg/s
Flow = 330 m3/s
Mohawk River
River Mile = 156.2C
Total Load = 0.09 mg/s
Flow — 80 m3/s
Green Island Bridge
River Mile = 151.7
Total Load = 8.6 mg/s
Flow » 370 m3/s
2.8 nj/L
C - 0.25 ng/L
DimM
iSng/L
71 ng/L
C_ -"Or^L
M ng/L
I f 3 ! a
46 BC/L
7.4 ng/L
silts
- 0.32 »g/L
24 ng/L

H S I I | 8 I &
36 Og'L
8.4 ng/L
l-glltSJa
.2 »g/L;
0.53 ng/L
34 ne/Li
31 ng/L
3.0 ng/L
j * * 11 i I s i
1 p I 1 I f 5 I
c_ - 6J5 ng/L
- 0.79 ng/L
rT-s-r~2-T-
Q H .2 g 2 B-
23 ag/L
Is ng/L
&2 ng/L
rrrrrrrn
!s£III!fIS
PCB Homologue
%	i- £
PCB Homologue
_ 8 I 1
PCB Homologue
Source: TAMS/Gradient Database. USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)	TAMS/Cadmus/Gradient
Notes:
a.	Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L).
b.	The homologue pattern measured for this station was unlike any seen in other Phase 2 samples and is considered suspect.
c.	Tributary river mile designations correspond to point of confluence with the Hudson River.
Figure 3-38
Upper River Water-Column Instantaneous PCB Loading for Transect 1 Low-Flow Conditions

-------
I
u,
Whole-Water PCBs
0—o
P(li Homologue
Whole-Water PCBs
| 5 E I i I I « ! s
Pf"B Homologue
Batten Kill (Transect 1)
Dissolved-Phase PCBs
O—o
PCB Homologue
Hoosic River (Transect 6)
Dissolved-Phase PCBs
U<
3
s
Suspended-Phase PCBi
PCB Homologue
Suspended-Phase PCBs
I I 1 1 I 1 I
PCB Homologue
PCB Homologue
e: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-39
- — .	. m. 	*1..	I/-SH	nrn		 « >

-------
Whole-Water PCBs Dissolved-Phase PCBs Suspended-Phase PCBs'
Fenimore Bridge
River Mile = 197.6
Total Load = 0.16 mg/s
Flow = 94 m'/s
Rogers Island
River Mile - 194.6
Total Load = 2.4 mg/s
Flow = 94 m'/s
Thompson Island Dam
River Mile = 188.5
Total Load = 12 mg/s
Flow «= 98 i„Vs
Batten Kill
River Mile = 182.1b
Total Load = 0.08 mg/s
Flow = 38 m3/s
SchujJerville
River Mile- 181.3
Total Load = 11 mg/s
Flow = 140 m3/s
Stillwater
River Mile - 168.3
Total Load * 20 mg/s
Flow ** 400 m7s
Hoosic River
River Mile= 167.5"
Total Load « 0.15 mg/s
Flow = 12 m3/s
Wat«rtordcJ
River Mile - 156,5
Toial Load = 200 mg/s
Flow = 1300 m5.'s
IJ •go.
-0.42 ug/L

% S a £ £ a £
2s ng/L
9.7 ttg/L
I® rtg/L

° eI I!18 ! I
"ft-
C: - 98 ng/L
28 ng/L
rrrm
CugsKiL3!l
2JJ eig/L
0,51 ng/L
i.5 eg/L
i o ^
111 i i s
1.1 nen.l
C_ - 76 ne/L
6J ng/L
JTkt 2 fc 4 *
a s. u ss rc c v
U ^ J. U ft
IllfSI
i j, rrrrrt
^ I ! I I


13 ng/L


® J— S
S1118 I a
ISO »t(l.
I€& ng/L
15 *i/l.
m
i "g1 A) ^ « M
H 2 ! 5 f I
PCB Homologue
t ^ l i i b i &
PCB Homologue
* I I I|8 1
PCB Homologue
Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)	TAMS/Cadmus/Gradient
Notes:
a. Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L),
I b. Tributary river mile designations correspond to point of confluence with the Hudson River.
c.	Scour event due to onset of spring flood in lower part of the Upper River.
d.	Vertical scale expanded to show full scour event loading.
Figure 3-40
Upper River Water-Column Instantaneous PCB Loading for Transect 3
Transition from Low-Flow to High-Flow Conditions

-------
Batten Kill
e
©
0.6
0.5
0.4
0.3
m
«
s
0.2
0.1
o
c
o
O
—i—
£
H
—r-
2
n
«
a*
s
x
—p-
2
c.
o
X
s
—r~
«
c
Z
w
PCB Homologue
Hoosic River
G
o
*w
£
«
0.4
0.3
0.2
O
o
c
o
2
PCB Homologue
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-41
Homologue Distributions of Surftcial Sediments (0 to 2
in the Batten Kill and the Hoosic River
cm)

-------
Thompson Island Dam to Schuylerville
(near River Mile 185.8)
PCB Homologue
Thompson Island Dam to Schuylerville
(near RM 185.8)
3 f 2 3 3
£ ! I « I &
PCB Homologue
Surficial Sediment (0 to 2 cm)
Schuylerville to Stillwater
(nearRM 177.8)
.2 03
PCB Homologue
Sediment-at-Depth (0 to 8 cm)
0.5 T
Schuylerville to Stillwater
(nearRM 177.8)
PCB Homologue
Stillwater to Waterford
(RM 166.3 to RM 159.0)
2
u.
T5
9t
V-
U.
PCB Homologue
Stillwater to Waterford
(RM 166.3 to RM 159.0)
PCB Homologue
jrce: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-42
Sediment Homologue Distributions in the Upper River Reaches below the Thompson Island Dam

-------
Whole-Water PCBs Dissolved-Phase PCBs Suspended-Phase PCBsa
Fenimore Bridge
River Mile = 197.6
Total Load = 0.68 mg/s
Flow = 580 m3/s
Rogers Island
River Mile = 194.6
Total Load = 210 mg/s
Flow = 580 m3/s
Thompson Island Damb
River Mile = 188.5
Total Load = 120 mg/s
Flow = 600 m3/s
Batten Kill
River Mile = 182.IC
Total Load = 0.77 mg/s
Flow = 75 m3/s
Schuylerville
River Mile = 181.3
Total Load = 210 mg/s
Flow = 690 mJ/s
Stillwater
River Miie = 168.3
Total Load = 180 mg/s
Flow = 690 m3/s
Hoosic River
River Mile = 167.5'
Total Load = 0.80 mg/s
Flow =180 m3/s
Waterford
River Mile = 156.5
Total Load = 210 mg/s
Flow = 900 m3/s
Mohawk River
River Mile « 156.2C
Total Load = 41 mg/s
Flow = 1000 m3/s
Green Island Bridge*1
River Mile = 151.7
Total Load = 380 mg/s
Flow = 1900 m3/s

1.2 ng/L
1.0 ng/L
f"* a c jl & S £ v
360 ng/L
C _ , » 48 nuL
cs-^-3,0n^
120
rTrrnxn
" I 1 I fBis
? 5 J i 4 s ! | S5
190 ng/L
$7 aj/L
¦ 130 ng/L
10 ng/L
CL. . .-12 na/L
-3.1 mg/L
s TTTT1
S ! ! f 8 I
300 «g/L
C„ . -94«g/L
210 flg/L
i-rn
i-iiifsia
n m n m m
I |8 I i
C.	65 ng/L
c - 200 ng/L
270 Bfcl,
* -i# *
IlfSIS
I ? s ijjjj
C_ . -2.0«g/L
- 2.6 n*/L
¦ 4.5 ng/L
120
^ *11 |S I!

C_ -75rtfL
U#n|/L
38 ng/L
• Muc/L
1.4 ng/L
i JfSHI
- 140 ng/L
» 200 ag/L
C _ »53 ng/L
IlllfSIa
•- 5 E S *• i
£ £ = £ o
PCB Homologue
PCB Homologue
* *£ * 5 i» • $
£ e 5 B. j5 S *
$ & x £ O i &
PCB Homologue
Source: TAMS/Gradient Database, USGS (1993a. 1993b), NYS Thruwav Authority, and Office of Canals (1994a,
Notes:
a.	Suspended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total
b.	Sample is believed to over-represent dilution by Moses Kill due to proximity of sampling location to Moses Kill
c.	Tributary river mile designations correspond to point of confluence with the Hudson River.
d.	Sample is believed to over-represent upstream load contribution due to incomplete mixing of the Mohawk River.
1993)
TAMS/Cadmus/Gradient
suspended solids concentration (mg/L).
confluence.
Figure 3-43
Upper River Water-Column Instantaneous PCB Loading for Transect 4 High-Flow Conditions

-------
Whole-Water PCBs
Fenimore Bridge
River Mile = 197.6
Total Load = 1.4 mg/s
Flow = 530 m3/s
05
W
E
A
O
Rogers Island
River Mile = 194.6
Total Load = 83 mg/s
Flow = 530 m3/s
"2
OA
s
09
e
J
Thompson Island Dam
River Mile = 188.5
Total Load = 68 mg/s
Flow = 560 m3/s
"3d
e
w
¦o
33
e
J
2-6 ng/L
Total
CI ,= 160 ng/L
Tota
= 120 ng/L
Tota
PCB Homologue
Source: TAMS/Gradient Database, USGS (1993a, 1993b). NYS Thruway Authority, and Office of Canals (1994a, 1993)
Notes:
a. Flow-Averaged Event 1 samples were collected during the period of April 23 to May 8, 1993.
T AMS/Cadmus/Gi
Samples collected at Waterford arc not represented here due to local canal construction which is believed to have
influenced the samples.
Figure 3-44
Upper River Water-Column PCB Loading for
Flow-Averaged Event 1 High-Flow Conditions

-------
Whole-Water PCBs
Fenimore Bridge
River Mile = 197.6
Total Load = 0.03 mg/s
Flow = 96 m3/s
Rogers Island
River Mile = 194.6
Total Load = 4.7 mg/s
Flow = 96 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 17 mg/s
Flow = 100 m3/s
Waterford
River Mile = 156.5
Total Load = 16 mg/s
Flow = 160 m3/s
S,
•a
eg
o
J
OJO
B
IS
«
e
J
ee
E,
•o
es
o
J
tt
E
"O
SJ
e
-J
C = 0.29 ng/L
Total	w
Total
= 170 ng/L
Total
Tota
PCB Homologue
Source: TAMS/Gradicnt Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)
Note: Flow-Averaged 2 samples were collected during the period of May 12 to May 27, 1993.	TAMS/Cadmus/Grad
Figure 3-45
Upper River Water-Column PCB Loading for
Flow-Averaged Event 2 Low-Flow Conditions

-------
Whole-Water PCBs
Fenimore Bridge
River Mile = 197.6
Total Load = 0.05 mg/s
Flow = 85 m3/s
Rogers Island
River Mile = 194.6
Total Load = 15 mg/s
Flow = 85 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 17 mg/s
Flow = 89 mVs
Water ford
River Mile = 156.5
Total Load = 17 mg/s
Flow = 188 m3/s
tt
a,
•o
et
o
J
Ml
E
w
•o
O
J
Ml
S,
¦o
<8
O
-J
OH
E
w
"O
08
e
J
C = 0.61 ng/L
Total	^
= 180 ng/L
Total
= 190 ng/L
Total
C =90 ng/L
Total
PCB Homologue
Source: TAMS/Gradient Database. USGS (1993a, 1993b). NYS Thruway Authority, and Office of Canals (1994a, 1993)
Note: Flow-Averaged 3 samples were collected during the period of June 6 to June 19, 1993.	TAMS/Cadmus/Grai
Figure 3-46
Upper River Water-Column PCB Loading lor
Flow-Averaged Event 3 Low-Flow Conditions

-------
Whole-Water PCBs Dissolved-Phase PCBs Suspended-Phase PCBs8
Fenimore Bridge
River Mile = 197.6
Total Load = 0.0! mg/s
Flow = 65 m3/s
Rogers Island
River Mile = 194.6
Total Load = 2.0 mg/s
Flow = 65 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 7.8 mg/s
Flow = 69 m3/s
Batten Kill
River Mile = 182.1b
Total Load = 0.0 mg/s
Flow = 30 m3/s
Schuylerville
River Mile = 181.3
Total Load = 8.7 mg/s
Flow - 99 mJ/s
Hoosic River
River Mile = 167.5s
Total Load = 0.04 mg/s
Flow = 21 m3/s
Waterford
River Mile = 156.5
Total Load = 8.6 mg/s
Flow = 150 mJ/s
Mohawk River
River Mile - 156.2b
Total Load ¦= 0.22 mg/s
Flow * 63 m3/s
Green Island Bridge
River Mile = 151.7
Totai Load = 7.1 mg/s
Flow = 220 mJ/s
CTh-*012 "S'1-
-0.11 ng'L

C ¦ 31 ne/L
Teul	-
C_ -28 ng/L

- 110 ng'L
5.1 ag/L
115 ng/L
C, - 0.02 ng/L
- 0.0 ag/L
04)2 ag/L
5 I If 5 1 £
K2|ll-8|a
C -89 ag/L
r~\

M IIS 1 i

2 i £ i 6 £ *
r 4 J r»g/Ll

g,
•a
a
0.51 ng/L
2.0 ng/L

l£iilllfSIa
	-49 ag/L
SwpwdH™ ®g/L
2	£ X £ • O Z <5
C.	- 0.41 n*/L

rTrvTrrrn
iIJ8 J I
c_ - 29 ng/L|
Cuvt^4miJ^L
PCB Homologue
PCB Homologue
PCB Homologue
Source: TAMS/Gradient Database. L'SGS (1993a, 1993b), NYS Thruwav Authority, and Office of Canals (1994a. 1993)	TAMS/Cadmus/Gradient
Notes:
a.	Susoended-phase PCB concentration in ng/L calculated as function of dry weight concentration (ug/kg) and total suspended solids concentration (mg/L).
b.	Tributary river mile designations correspond to point of confluence wiifi the fiudson River.
Figure 3-47
Upper River Water-Column Instantaneous PCB Loading for Transect 6 Low-Flow Conditions

-------
Whole-Water PCBs
Fenimore Bridge
River Mile = 197.6
Total Load = 0.27 mg/s
Flow = 71 m3/s
Rogers Island
River Mile = 194.6
Total Load = 2.5 mg/s
Flow = 71 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 10 mg/s
Flow = 75 m3/s
Waterford
River Mile = 156.5
Total Load = 12 mg/s
Flow =171 m3/s
Bt
B
•a
el
©
J
M
e
¦o
eg
o
-J
0X1
£
¦o
os
e
J
DC
s,
•o
si
e
J
Total
Total
C = 130 ng/L
Total
= 69 ng/L
Total
PCB Homologue
Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)
Note: Flow-Averaged 5 samples were collected during the period of August 2 to August 17, 1993. TAMS/Cadmus/Gradienl
Figure 3-48
Upper River Water-Column PCB Loading for
Flow-Averaged Event 5 Low-Flow Conditions

-------
Whole-Water PCBs
Fenimore Bridge
River Mile = 197.6
Total Load = 0.02 mg/s
Flow = 71 m3/s
Rogers Island
River Mile = 194.6
Total Load = 2.0 mg/s
Flow = 71 m3/s
Thompson Island Dam
River Mile = 188.5
Total Load = 7.3 mg/s
Flow = 75 m3/s
Waterford
River Mile = 156.5
Total Load = 10 mg/s
Flow = 201 m3/s
Dfi
js
¦o
«
o
-J
M
~oe
£
a
©
-J
cc
g,
a
o
-1
v>
~sc
E
o
-J
C = 0.23 ng/L
Total
Total
=98 ng/L
= 51 ng/L
Total
PCB Homologue
Source: TAMS/Gradient Database, USGS (1993a, 1993b), NYS Thruway Authority, and Office of Canals (1994a, 1993)
Note: Flow-Averaged 6 water column samples were collected during the period of September 9 to September 23, 1993.
T AMS/Cadmus/Gradient
Figure 3-49
Upper River Water-Column PCB Loading for
Flow-Averaged Event 6 Low-Flow Conditions

-------
High-Resolution Sediment Core 6 (River Mile 43.2)
Lents Cove
a. ffl
E
¦j
a
4)
a
.10
40
50
60-
1992
Legend:
—		'Cs
* 'Be
Possible dredge boundary
Deposited pre-1954
~r
t

<- 1971
0 500 1,000 1,500 2,000 2,500 3,000 3,500
'"Cs & 'Be (pCi/kg)
ote:
Error bars represent two standard deviations in counting uncertainty. The radionuclide
is considered to be present when this uncertainty does not contain zero. 	
>urce: TAMS/Gradient Database
a
ft
Possible dredge boundary
Legend:
60 ¦+~t"r--> -r
0	20
Co (pCi/kg)
<-1971
Figure 3-50
The Coincidence of the '"Cs and "Co Maxima at River Mile 43.2 (Core 6)
TAMS/Cadmus/Gradient

-------
Core 11 (River Mile 143.5)
Albany Turning Basin
Core 19 (River Mile 188.5)
Thompson Island Dam

Legend:
Jt Sf
Jm ^0
Hstimated Sedimentation Rate > 5 cm/yr
I20i—1—'—'—!—1—'—'—I 1 ' ¦"
0	2,000 4,000 6,000 8,000 10,000
Legend:
x 'Be
JS 30-
De posited pre-1954
1963
10,000
137
Cs & 7 Be (pCi/kg)
137
Cs & 7Be (pCi/kg)
itor bars represent two standard deviations of counting uncertainty. The
dionuclide is considered to be present when this uncertainty does not contain zero.
e: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-51
,}7r«! rnnnontraHnns in Hioh Rp«n1ntinn Sprliment fnrp 11 anil Cnrt> 10

-------
Core 19 at River Mile 188.5 -
Collected in 1992
Legend
Q O
Jotes:
1963
50—f—i—'—i—i—<—1—1—i—1—'—1—i—1—1—1 1 1 1—>~
0 2,000 4,000 6,000 8,000 10,000
mCs & 7Be (pCi/kg)
V
Q
Core at River Mile 188.5 -
Collected in 1984 by LDEO
Legend:
1963
50 1 ' 1 ' 1 I 1 1 ' 1 ( 1 1 1 1 | i i 		r-
0	5,000 10,000 15,000 20,000
137
Cs (pCi/kg)
a.	Error bare represent two standard deviations of counting uncertainty. The radionuclide is considered to be present when this uncertainty does not contain zero.
b.	The historical core was not analyzed for 'Be; its core top is assumed to represent the 1984 period of collection.
mice: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-52
137.
Comparison of Cs Profiles between a Phase 2 High-Resolution
r> .	r1,,.,,	„ uictnrii»il Pnro o* Divar IVfilo 188 ^

-------
Core 23 (RM 1893)
Total "7Cs (pCi/kg)
Core 19 (RM 188.5)
Total ,37Cs (pCi/kg)
0 1000 2000 3000 4000 5000 6000 7000 8000
, I ¦ ¦ i »).. i . ¦ i i i i . I .,t, ¦ i i ¦ . ¦ . I . i ¦ i i .
2000 4000 6000 8000 1 10*
-I	•	¦	u_J	.			,	L_
IS 10
2 10*
Core 18 (RM 185.8)
Total "'ci (pCi/kg)
2000 4000 6000 8000 1 10* |.2 |0J
Total PCBs (ng/kg)
r	' ¦ 1 I • ¦ ¦ T-
1 10s 1.5 10* 2 10s 2.5 10'
Total PCBs (ng/kg)
Core 22 (RM 177.8)
Total l!,Cs (pCi/kg)
1000 2000 3000 4000 500O
Core 21 (RM 177.8)
Total ,3,Cs (pCi/kgJ
500 1000 1500 2000 2500 3000
2 10s 3 10' 4 10
Total PCBs (Mgfltg)
5 10' 6 10"
I 1 ' ' 1 I ¦ ¦ • 1 I ¦ ' • ' 1 1 ¦ ¦ 1 i
5 tO4 1 105 1.5 1 05 2 10s 2.5 I0J 3 10s
Total PCBs (Mg'kg)
5 10
I 10' IS 10* 2 10* 2,5 10*
Total PCBj (Mg^kg)
Legend:
O 137
Note:
a. Scales of horizontal axes diff er
Source: TAMS/Gradient Database
Figure 3-53
TAMS/Cadmus/Gradient

-------
Core 11 (RM 143.5)
Total '"Cs (pCi/kg)
0 200 400 600 800 1000 1200 1400
Core 10 (RM 88.5)
Total "'Cs (pCi/kg)
0 200 400 600 800 1000 1200 1400 1600
Core 7 (RM 43 2)
Total "'C* (pCtfkg)
0 500 1000 1500 2000 2500 3000 3500 4000
5000	1 10'	1,5 10'	2 10'
Total PCBs (Mg^g)
0 2000 4000 6000 8000 1 10' 1.2 10' 1.4 10*
Total PCBs (ng/kg)
' i ' ¦ 1 ' i 1 ' i ¦ ¦ ' • i '
0 1000 2000 3000 4000 5000 6000 7000 8000
Total PCBs (Mtfkg)
Core 6 (RM 43 J)
Total "'Cs (pCi/kg)
0 500 1000 1500 2000 2500 3000 3500
o	2000 4000 6000 8000 1 10*
Total PCBs (ng/kg)
Core 2 (RM-1.9)
Total '"Cs (pCi/lcg)
0 100 200 300 400 500 600
i . i i . I
0 1000 2000 3000 4000 5000 6000 7000
Total PCBs (Mg/kg)
Legend:
? '"Cs
 PCBs
Note:
Scales of horizontal and vertical axes differ
ource: TAMS/Gradient Database
Figure 3-54
T A MS/Cadmus/Gradient

-------
Core 27 (RM 202.9, Background)
Total mCs (pCi/kg)
200 400 600 SOO 1000 1200
30
35
¦ i * * ' ' i * ' ' ' i ¦ 1 1 1 i 1 1 1 1 i 1 ¦ 1 • i 1 1 1 ' r1 1
0 100 200 300 400 500 600 700 800
Total PCBs (jjg/kg)
Core 17 (Batten Kill)
Total "'Cs (pCi/kg)
900 1200
60)
70
1500
T ' I ' ' ' ' l-*-	¦' ¦ "¦ T"'	'' ' ' I	
0 1000 2000 3000 4000 5000 6000
Total PCBs (Mg/kg)
Core 24 (Hooslc Itlver)
Total "'Cs (pCi/kg)
0	50	100	150	200
,	t i . i ¦¦ i ¦ ¦ ' 1 t	I"'
50 101) 150 200 250
Total PCBs (ng'kl)
250
300
Core 12 (Mohawk River)
Total "'Cs (pCi/kg)
0	600 1200 1800 2400 3000
10
20
•S 30
e-
o
40
50
60
a o
| %	
9	
w
/ o
A
I3*0
	—
"
o. _


o —


9P; . . . .


500	1000
Total PCBs (ng/kg)
1500
2000
Legend:
o imCs
PCBs
Note:
Scales of horizontal arid vertical axes differ
Source: TAMS/Gradient Database	Figure 3-55	TAMS/Cadmus/Gradient
Tributaries and Background High Resolution Sediment Cores

-------
Comparison of Thompson Island Pool Surficial Sediment with Thompson Island Dam Suspended Matter
JiUjl
-lll UL
11 ii ill nil i ii 11 ii 11111
JUUIX
I'll
Cor* 23 (RM II) 2)
0 I
- Sutpcndrd M
-------
a
o
U
08
08
s
Transect 1 - Low Flow Winter Conditions
0.15
0 1 -
0.05
ill i ii li . i . I 'In nil I ii In nil III I II I I ll I I I I I II ll
In,,I,
i i I I 1111 I I i i I 1111 i i I
'11ln i I I 1111 I 111111 I I I 11 111111111 1111n11¦11¦I11¦.11n111 I i. I ¦ ii.Ii11i I ¦¦i.11 1111 n,iIi ,. |
Legend:
	•	Core 23 (RM 189.3)
- - - - - Suspended Matter (RM 188.5)
n
_	_	~	n^-, ri^,n^°ir'Cl/l0ir'0,n<:,r'(5,/'l0^0710Ti0^0vi
PCB Congener (BZ#)
a
jo
o
08
taa
u<
08
£
0.15
0.05 -
Transect 6 - Low Flow Summer Conditions
. I .... I. i . , I I >. ¦ ¦ 11 i n I ¦ I 11 I i n I 111111 Ml 111 11 11 I I 11 l.l.l H 1 11 I I t I 11 I 11 I I 1111111
I l 'I i 11 11 11111 11111 '111 ii I I I n I i n i 1111111 I i i I n 111111 i 11 111 111 i 1111 i 111
Legend:
Core 23 (RM 189.3)
Suspended Matter (RM 188.5)
«
A
PCB Congener (BZ#)
ource: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-57
Comparison of the Thompson Island Pool Surficial Sediment Congener Distribution with the
. „ r. 	j_j	r«nnnnaf nictrihntinnc accnriiitpH with Inw-Flnw Winter and Snmmpr fnnHUinnc

-------
e
jo
^»0>r10«n0«0<'l0i«0«20<^i0A
o>^ow-lO«;o«2o^:lg2SSSSSo^oo•~~MMM,n'^'2;!2,n^0v0t~",^00a0<:,•<3,oo
PCB Congener (BZ#)
urce: TAMS/Gradient Database
TAMS/Cadrnus/Gradient
Figure 3-58
Comparison of the Albany Turning Basin Surficial Sediment Congener Distribution with the
- - «	¦ .» * <• - A * .»	A** Itictrihtillnnc ¦jctdciotoH with I nw-Flnw Wintpr and Summer rnnHitinnc

-------
Legend:
Core 19
1990-
Measurement
uncertainty"
1985 -
1980-
1975-
1,000,000
0
800,000
200,000
400,000
600,000
Total PCBs (jAg/kg)
Note:
a. Measurement uncertainty is estimated to be 0.75 * Sample Thickness/Sedimentation Rate,
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-59
Total PCBs in Sediment vs. Approximate Year of Deposition at River Mile 188.5
Npar thp Thnmntnn fclanri Ham1 Hioh Rpcnlnh'nn <*pHimpnt Cnra 10

-------
Oft
a
"5b
GA
CO
u
e-
o
H
tote:
30,000
25,000
20,000
15,000
10,000
5,000
¦a
* §
03 &
Legend:
River Mile 188.5
Total PCBs
O Background & Tributary Contributions
O Duplicate Measurements
200
River Mile
n	$r
8.2: 3.2:
Xct Sec
a punHcate pairs exist at River Miles 177.8 and 43.2. The solid symbol represents the mean of the duplicate pair.
urce: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-60
T„f«i ppr rnntpnt in Sediment Deposited Between 1991 and 1992 vs. River Mile

-------
Thompson Island Dam - River Mile 188.5
Stillwater Pool - River Mile 177.8*
Legend:
1990-
s
>
1980-1
1975
50,000 100,000 150.000 200,000 250,000 300,000
0
1990-
I9S5-
1980-
1975
100.000 200.000 300,000 400.000 500,000 . 600,000
0
Total PCBs (jig/kg)	Total PCBs (ng/kg)
Albany Turning Basin * River Mile 143.5
Kingston - River Mile 88.5
Core 11
1 ¦ - ¦ 1
i —Core 10 I
5,000	10,000	15,000
Total PCBs (M-g/kg)
Lents Cove • River Mile 43.2
0 2,000 4,000 6,000 8,000 1 0.000 12,000 14,000
Total PCBs (pg/kg)
Upper New York Bay - River Mile -1.9
1990-J
1985-
Core 6
2.000	4.000
Core 2
8.000	10.000
Total PCBs (jig/kg)
1.000 2.000 3.000 4.000 5,000 6,000 7,000
Total PCBs (Mg/kg)
a.	Measurement uncertainty is not shown in order to improve visual clarity of the data.
b.	Dashed line represents a weighted running average of the data and is included for visual reference.
c.	For all diagrams, measurement uncertainty T is estimated to be = 0.75 x sample thickness/sedimentation rate.
Source: TAMS/Gradiem Database
TAMS/Cadmus/Gradii
Figure 3-61
Total PCBs in Post-1975 Sediment vs.
Approximate Year of Deposition in the Hudson River

-------
Noie:
Sediment Deposited Between 1991 and 1992
30,000 •
25.000 •
20,000
15.000
10,000
5,000
0

Legend:
t
¦ ~ - Total PCBs 1
1
o Background & Tributary Contributions

« Duplicate Measurements i
1
\ °


r 150
100
River Mile
50
od* =<£ 35
Sediment Deposited Between 1987 and 1990
ak —a. 2
Sediment Deposited Between 1982 and 1986
60,000
50.000 -
40.000
30,000
20.000
10,000
0
Legend:
» Total PCBs
o Background & Tributary Contributions
© Duplicate Measurements
1 f1 ' ^ Jiio
l_ 'is as
— — 5 > o >
£* = « See
" 1 1 160 1	io
River Mile
Sediment Deposited Between 1975 and 1981

350.000 -q-

300,000 -|

~
t*
250,000 H

q

200.000 -4
cc
3
o_
150.000 H
2
100.000 -3
t-
3
Legend:
- Total PCBs
o Background & Tributary Contributions
o Duplicate Measurements
50.000 -3
r : oo
if
is P
ZZa Zee
100
River Mile
35.000
30.000
Total PCBs
o Background & Tributary Contributions
o Duplicate Measurements
25.000
20,000
15,000
10,000
River M e
a.	Vertical axis range increases in successive diagrams as age of sediment represented increases.
b.	Duplicate pa;rs exist on all graphs at River Miles 177.8 and -*3.2 The solid symbol represents the mean of »he duplicate pair.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-62
Total PCB Content in Sediment vs. River Mile

-------
Legend:
1400 -
Main Stem Hudson
Tributaries
1200 -
Measurement
uncertainty*
1000
Mean [1S7Cs] level between RM 177.8 and -1.9.
800 -
U
a.
W
2 ct uncertainty about mean
600
400 -
o-
200
125
100
150
175
75
200
50
25
0
River Mile
Notes:
a. Measurement uncertainty represents ± two standard deviations (±2 a).
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-63
137Cs Levels in Surface Sediments in the Hudson River
Based on High-Resolution Sediment Coring Results

-------
Sediment Deposited between 1991 and 1992
Note:
25 —
20 4
15 -
10
5 -
Legend:
—•— Measured
c Background & Tributary Contributions
o Duplicate Measurements


s — © !
lbo
River Mile
50
cc£ =£
Sediment Deposited between 1987 and 1990
Legend:
—•— Measured
o Background & Tributary Contributions
o Duplicate Measurements
°r>^r

50
l()0
River Mile
40
5= 8> =>
: r: a. -> u.
Sediment Deposited between 1982 and 1986
Legend:
30 -2
°r^2t)0 t
~ Measured
o Background & Tributary Contributions
o Duplicate Measurements
ibo '	io
River Mile
Sediment Deposited between 1975 and 1981
150 •
Legend:
~ 100-
—Measured
o Background & Tributary Contributions
o Duplicate Measurements
rC 200
1O0
River Mile
a. Vertical axis ranee increases in successive diagrams as age of sediment represented increases.
b- Dupltcaic pairs exist on all graphs a: River Miies I?1?.8 and 43.2. The solid symboi represents the mean of the dupiicale pair.
Source; TAMS'Gradicnt Database
TAMS/Cadmus/Gradient
Figure 3-64
Total PCBs/13'Cs Content in Sediment vs. River Mile

-------
150
100
Legend:
—•-
- 1975 - 1981
- - m -
- 1982 - 1986
------
- 1987- 1990
—*—
- 1991 - 1992
0
Background
RM 188.5, Thompson Island Dam, Core 19
50
0
200
*o
A §
s|
03 S)
150
s
c&U
M
lb
8 > o >
12 SS
* fc
100
River Mile
rce: TAMS/Gradient Database
Figure 3-65
TAMS/Cadmus/Gradient

-------
/
u
a
ei
(A
u
r-
GA
CO
u
CU
ote:
a
20
15
10
0
•4 §
a i
PQ &
Legend:
—~— Measured
O Duplicate Measurements
—	X- - Calculated - Based on Thompson Island Dam Measurement
-	- + - - Calculated - Based on Stillwater Measurement
O Background & Tributary Contributions
Q
o
T-jr
200
150
c
1=
CQ t/
g 6 5 b
o.S
acos So!
i i | i i i i |
100	50
River Mile
~i i r
0
Duplicate pairs exist at River Miles 177.8 and 43.2. The solid symbol represents the mean of the duplicate pair.
Durce: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-66
Comparison of Measured and Calculated Total PCBs/137Cs Ratios
Codimpnt HpnnsiteH between 1991 and 1992

-------
u
o.
"©a
=L
m
u
I-**
r*>
m
m
u
o-
Note:
60
50
. "O
M 5
Q 5
M 8
CO So
Legend:
Measured
Duplicate Measurements
Calculated - Based on Thompson Island Dam Measurement
Calculated - Based on Stillwater Pool Measurement
Background & Tributary Contributions
S
g=5
m
J*
Sg 56
o .2 o >
Eos Si*
River Mile
Duplicate pairs exist at River Miles 177.8 and 43,2, The solid symbol represents the mean of the duplicate pair.
Source: TAMS/Gradient Database	—	" TAMS/Cadmus/Gradient
Figure 3-67
Comparison of Measured and Calculated Total PCBs/137Cs Ratios
for Sediment Deposited between 1982 and 1986

-------
Sediment Deposited between 1991 and 1992
Legend:
Measured
Duplicate Measurements
- *- - Calculated - Based on Stillwater Pool Measurement
o Background & Tributary Contributions
River Mile
35
Sediment Deposited between 1987 and 1990
30 -E
25
20
15 -=
10 -E
5
Legend:
Measured
© Duplicate Measurements
— x- • Calculated - Rased on Stillwater Pool Measurement
o Background — Tributary Contributions
°r^2bo f '? " jiio
lfao
River Mile
60
50
40 -j
30
20 i
10 q
o
50
:££ Sis
Sediment Deposited between 1982 and 1986
Legend:
- Measured
Duplicate Measurements
• Calculated • Based on Stillwater Measurement
Background & Tributary Contributions
r-*26o t '? ' jlio
lo"
100
II || |J	River MUe
Sediment Deposited between 1975 and 1981
Measured
Duplicate Measurements
- x- - Calculated - Based on Stillwater Measurement
Background & Tributary Contributions
River Mile
ex	2k
Note:
a.	Vertical axis range increases in successive diagrams as age of sediment represented increases.
b.	Enor bars represent ±25% uncertainty in the measured value.
—_£^_Pupljcate_paire exist on all graphs at_RivgrjjiIesJ77j_an^3.2. The solid symbol represents the mean of the duplicate pair.
Source: TAMS/Gradicm Database	TAMS/Cadmus/Gradient
Figure 3-68
Total PCBs/137Cs Ratios in Dated Sediment vs. River Mile:
A Comparison of Calculated and Measured Results

-------
)
)
)
3
Legend:
Core 21 1991-1992
s
Core 22 1991-1992
*
a
z 1
TTTT
0
©
©

-------
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration	PCB Congener Concentration
Normalized to BZ#52	Normalized to BZ#52

-------
a
o
•e
m w
km
§1
wga
S3
o e
U ~
S <">
M 1 Q
O S B
2.IL®8
© EE 2
B 2
— ft.""
N *
S" 0
o ° ©
OB"
.J S|
^ tftSJ
K> |fi
#«~
o
a
jurce: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-71
Normalized PCB Congener Concentrations in Stillwater 1991 to 1992
Sediments and Rogers Island Suspended Matter vs. Aroclors 1254 and 1260

-------
3
Legend:
—-— RM 194.6
94% A1242 + 5% AI254
+ 1% A1260
PCB Congener (BZ#)
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-72
rnmnariwn of PCB Congener Patterns: Suspended Matter from River Mile 194.6 at Rogers Island for Transect 4,
April 12 to 14, 1993 and a Mixture of 94% Aroclor 1242 + 5% Aroclor 1254 + 1% Aroclor 1260

-------
PCB Congener Concentration
Normalized to BZ*52
.P"
uo-,
150:
PCB Congener Concentration
Normalized to BZ#52
I 1
PCB Congener Concentration
Normalized to BZ*52
PCB Congener Concentration
Normalized to BZ#52
50 I
2
X * i
U
Source: TAMS'Gradicr.t Database
TAMS/Cadmus/Gradient
Figure 3-73
A Comparison between the 1991 to 1992 PCB Congener Pattern
at River Mile 177.8 near Stillwater with the Period 1975 to 1990

-------
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration
Normalized to BZ#52
99
N
PCB Congener Concentration
Normalized to BZ#52
i 9 z
PCB Congener Concentration
Normalized to BZ#52
I 100-=
180-q*
0	>
1	?
Source: TAMS.-Gradicat Database
TAMS/Cadmus/Gradienl
Figure 3-74
A Comparison of the PCB Congener Pattern Chronology
between River Mile 143.5 near Albanv and
River Mile 177.8 near Stillwater for 1975 to 1992

-------
PC8 Coagener Concectration
Normalizes! w BZS52
PCB Congener Cooeeotxafion
Norma ii2ed to BZ#S2
PCB Congener Concentration
Normalized 10 BZ#52
PCB Congener Coacesnratiou
Normalized to BZ*S2
o
w
o
c
95
N
\6S-i
no-
Sourcc: TAMS Gradtcni Database
T AM S/Cadmus/Gradient
Figure 3-75
A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns
in Sediments Dated Post-1990

-------
PCB Congener Concentration
Normalized to 8Z#S2
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration
Normalized to BZ#52
too -i
130-5
150-
160 -
160 -
65 -
85 -i
190-
200 -
205 -
Source: TAMS/Gradient Database
T A M S /Cadmus ('Gradient
Figure 3-76
A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns
in Sediments Dated 1987 to 1990

-------
PCB Congener Conceuiratico
Normalized to BZ#52
PCB Congener Concentration
Normalized 10 BZ#52
PCB Congener Concentration
Normalized 10 BZ#52
PCB Congener Concentration
Normalized to B2P52
100 -
30-
160 -J
Source: TAMS-Gradicm Database
TAMS/Cadmus/Gradicnt
Figure 3-77
A Comparison of the Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stilbvater with Downstream Congener Patterns
in Sediments Dated 1982 to 1986

-------
-9
n
cs
n
o
9
90
PCB Congener Concentration
Normalized to BZ#52
PCB Congener Concentration
Norraaiized to BZ#52
PCB Congener Concentration
Normalized to BZ#52
Source. TAMS Gradient Database
T AM S/Cadmus/G radient
Figure 3-78
A Comparison of tbe Combined Thompson Island Dam PCB Load Congener Pattern
Recorded at Stillwater with Downstream Congener Patterns
in Sediments Dated 1975 to 1981

-------
<5^4
J3 irx
C %
c oa
O Q
U 2
*o
4) V
C N
o	ur
00 cj
e p
o E
U o
CD	Z
U
a.
Comparison of PCB Congener Patterns: RM 143.5 near Albany
and Mohawk River Sediments for 1991 to 1992 Deposition
BZ*4/BZ#52 - 36
Legend:
- RM 143.5
• Mohawk River
i - - -	AL	..... w	¦^ifiif i*A*	- 			.....I. u. .. - - - -1.
•T"T'| ' ' » l l-y^l W|<»I ' I |n'i i i pw^T) I J I I |	| I 1W»pTpB|iiT»iyW6IC^^
PCB Congener (BZ#)
¦ a
: CQ
a'
u
a.
Comparison of PCB Congener Patterns: RM 143.5 near Albany
and a Calculated Mixture for 1991 to 1992 Deposition
Legend:
RM 143.5
	77% RM 177.8 ~ 1% M.iliuwk River
+ 3% AI260+ I9H A1016
° RM 177.8
£ | 2
PCB Congener (BZ#)
Comparison of PCB Congener Patterns: RM 143.5 near Albany
and a Calculated Mixture for 1982 to 1986 Deposition
Legend:
RM 143.3
+- -85% RM 177.8 * 15% Al2(.0
o RM 177.8
00 w
Ml
Note:"
a. The vertical scale range is increased to accommodate the peak for BZ#110.
PCB Congener (BZ#)

-------
Comparison of PCB Congener Patterns: RM -1.9 in Upper New York Bay and the RM 177.8 Stillwater Core for 1991 to 1992 Deposition
PCB Congener (BZ#)
Legend:
— -X-— RM -I 9(Uppei New York Oay)
RM 1778


e
o
y

<
H
C	31
«	N
c	m
O	o
U	2
~.	"O
Comparison of PCB Congener Patterns: RM -1.9 in Upper Nov York Ray and the Newtown Creek Core for 1991 to 1992 Deposition
Legend:
	X - RM -1 ^(Uppcf New Yoik Hay)
4- - Newiuwn Creek


PCB Congener (DZ#)
Comparison of PCB Congener Patterns: RM -1.9 and a Mixture of 44% RM 177.8 and 56% Newtown Creek for 1991 to 1992 Deposition
Legend:
- RM -19 (Upper New
• 44% RM 177 K ~ V*
York Hay)
• Nc"io*n ( itvk
"rJ+5fCt |y.>aC|TrT^

PCB Congener (HZtf)
Comparison of I'CB Congener Patterns: Newtown Crick for 1991 to 1992 Deposition and a Mixture of Aroclors
Legend:
—X— Newiowfi Creek
H	4(rti ,UM2 * 36% A!
2 M • 24% AI2W)
U .
m '
u
Note:
a The vertical scale range is increased lo accommodate ihe peak for BZ#l 10.

PCB Congener (UZ#)
O
c/5
s
<
H
L.
Oi
© —
= s
Um ®
^ ©
u
03
o
On
a
a
E
o
U

-------
it
S0S
m
v
0-
350
300 -
250 -
200
150
100 -
50
0
Legend:
_m_ River Mile 188.5
River Mile 194.6
4/\

10/91
1
tt mtf i rt,L i ft f lit 11 fftrt ttfl 11 ti
11 'U111 'm11 'UJfl	1
Month
Source: TAMS/Gradient Database
Figure 3-81
Monthly PCB Load, River Mile 194.6 at Rogers Island
and River Mile 188.5 at Thompson Island Pool
Averaging Estimate on GE Data
TAMS/Cadmus/Gradient

-------
i
CA
«
u
Pm
o
H
10,000
Legend:
x Observations
Moving Average
1,000
100
10
4/91
4/92
1991
1992
4/93
1993
Date
4/94
1994
4/95
1995
1996
Source; TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-82
Total PCB Concentrations at River Mile 194.6
GE Data, with Moving Average

-------
>
«
m
*3
S
s
u
W)
X
n
u
Sk
3,500
3,000
2,500
2,000
1,500
1,000
500
Legend:
River Mile 188.5
River Mile 194,6
w River Mile 197.6




• ^	K
£

r+

><^K
»<){><)<><><><><><"*
\m " ' ' 10/93" " ' 4/94 " " To/9'4' ' ' 4/$
Month
Source; TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-83
Load across the Thompson Island Pool
Total PCBs, GE Data

-------
£
i
3
O
t£i
X
1/1
m
u
350
300
250
200
150
100
Legend:
River Mile 188.5
River Mile 194.6
Fm


/
"AT11
Month
Source; TAMS/Gtadient Database
TAMS/Cadmus/Gradient
Figure 3-84
Load across the Thompson Island Pool
Mono-Chlorinated PCB Homologues, GE Data

-------
4)
>
"a
S
9
W
0*
00
X
(A
CO
u
0*
600
500 -
400
300 	
200
100
Legend:
River Mile 188.5
River Mile 194.6

Month
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-85
Load across the Thompson Island Pool
Di-Chlorinated PCB Homologues, GE Data

-------
«u
>
'S
«
"3
S
s
w
wo
e
1200
1000
800
600
400 -
200
0
Legend:
„ River Mile 188.5
_ _ River Mile 194.6


¦P^


4/S
^4
4*
^4-
«r®
f +
f
/ +-
+*
	
z-t'f-

isr^1 11 w11 w11 ui11 m111 w11 m111 m11 m111
Month
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-86
Load across the Thompson Island Pool
Tri-Chlorinated PCB Homologues, GE Data

-------
4)
>
•¦c
J5
*3
E
9
u
Wl
£
»
u
P*
1000
800
Legend:
_ River Mile 188.5
.. River Mile 194.6
600 -
400
200
OTok1.111 w11 m111 w11 ¦ ,'oU ¦1 'Ui11 '.w m ¦' m1111
Month
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 3-87
Load across the Thompson Island Pool
Tetra-Chlorinated PCB Homologues, GE Data

-------
M
13
w
m
«
u
c-
700
600
500
400
300
200
100
0
Legend:
CZZ3 River Mile 194.6
River Mile 188.5
Mono
Tetra
Penta
PCB Homologue
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-88
Average Daily PCB Homologue Load at Rogers Island (River Mile 194.6)
and Thompson Island Dam (River Mile 188.5)
April 1991 through February 1996, Averaging Estimate on GE Data

-------
200
"Bfc
j*
w
*
U
CM
o
H
150
100
50
0
-50
-100
-150
.In.!
,1 .il|liiiniu.hliiiiir.dhnillL
&\11 w.111 m11 w11 ui11 m111 ui11 m111 m11 w
Month
Source: TAMS/Gradient Database
T AM S/Cadmus/Gradient
Figure 3-89
Gain across the Thompson Island Pool
Total PCBs, GE Data

-------
20
Month
T AMS/Cadmus/Gradient
Source: TAMS/Gradient Database
Figure 3-90
Gain across the Thompson Island Pool
Mono-Chlorinated PCB Homologues, GE Data

-------
T3
«
e
-1
»
u
CL,
25
20
15
10
0
¦III.
I
ll,
l"l
riJiihiu

i,i111 ,y9'i ¦11 m11 ','oU111 uj 11 m111 ui11 m111 m11 m111
Month
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-91
Gain across the Thompson Island Pool
Di-Chlorinated PCB Homologues, GE Data

-------
~§>
w
•o
m
©
J
CQ
u
0-
80
60
40
20
-20
-40
-60
ill
¦1¦IbIsIiIb I
lllyl ill^liinii
IlllllU ^lullaJ,
4r
U11W11 W11 m111UJ11W11 Ui111 AM111 W11W1
Month
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradienl
Figure 3-92
Gain across the Thompson Island Pool
Tri-Chlorinated PCB Homologues, GE Data

-------
tt
U
B*
60
40
20
e
a
"5b
w
¦o
«
J -20
-40
-60
-80
ll.
I-.bI.
I' I
A

P

J.
4/'
y 111111 |;y 11'l'olgk'1' UJ'1 W 11UJ'1 1Wa1 1' 1/U 11 'i'oWs' 11
Month
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 3-93
Gain across the Thompson Island Pool
Tetra-Chlorinated PCB Homologues, GE Data

-------
Hepta (0.2%) —
Hexa (4.5%)
Penta (12.0%)
— Mono (0.1%)
Di (10.6%)
Tetra (34.4%)
Hepta (0.1%)
Hexa (2.7%)
Penta (7.3%)
Mono (11.3%)
Tetra (25.7%)
Tri (38.2%)
Di (17.9%)
Tri (35.0%)
River Mile 194.6
River Mile 188.5
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 3-94
PCB Homologue Composition Change across the Thompson Island Pool
April 1991 through February 1995, GE Data

-------
M
B

-------
J
W)
e
G
©
• urn
«
2m
•w
c
«
u
a
©
U
a>
3
m
o
»
V
e*
200
150
100
50

River Mile 188.5
V^—	--
River Mile 194.6
Tn Tetra Penta Hexa
PCB Homologue
Hepta
Source: TAMS/Gradient Database
TA MS/Cadmus/Gradient
Figure 3-96
Summer PCB Homologue Concentrations
June through August 1992, GE Data

-------
00
e
"w*
(3
.2
"¦S3

CJ
C
o
U
3
©0
o
CQ
U
A*
60
50
40
30
20
10
River Mile 188.5
/v-
_	J
River Mile 194.6

$&s»
Mono Di ^Tn	tw;	r-—__
letra Penta Hexa
PCB Homologue
Hepta
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradienl
Figure 3-97
Summer PCB Homologue Concentrations
June through August 1993, GE Data

-------
eS
e«o
e
.2
«
im
¦»->
6

-------
6C
C
c
©
'•M
OS
la
*•>
a

-------
Figure 3-100
Total PCB Load from USGS Data:
Ratio Estimator
5,000
Legend:
USGS Upper Hudson River
Sampling Stations
Rogers Island
Schuylerville
Stillwater
x— Waterford
4,000 ..
3,000
oa 2,000
1,000 --
1^7:r~,~T9^79—+~T9feT_,~T9fe3—l—r^5—|~T^7 ' 19"89 ' 19'91 ' 19'93
Year
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradi

-------
Figure 3-101
Total PCB Load from USGS Data:
Averaging Estimator
u
6,000
5,000 ..
4,000 ..
3,000 --
•o
es
o
-
«
y 2,000 ±
Qa
1,000 ..
Legend
USGS Upper Hudson River
Sampling Stations
Rogers Island
Schuylerville
Stillwater
Waterford
hi ' 19*79 1981 19*83 ' 19*85 1987 1989
Year
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradiei

-------
5*
"W
n
e
•c
u
m
u
t*
otes:
50-
40
30-
20-
10-
Legend:
M Dissolved-Phase PCBs
Q Suspended-Phase PCBs
a
c
u
eu
CO
X
DC
a
ceS
c
o
z
33
o
PCB Homologue
Transect 3*: March 26-31,1993
6 kg/month
Loading for Transect 3 converted to monthly basis.
Represents whole-water analysis,
rce: TAMS/Gradient Database
6
S
©
£
8!
Legend:
Whole-Water PCBs
PCB Homologue
Mean March Condition
Based on GE Datab
17 kg/month
TAMS/Cadmus/Gradient
Figure 3-102
WO HftttinlnoiiP Cnmnncitinn at Rivor Ml!» 104 6 a# Rnoorc felan#!

-------
s
©
'S
Legend:
Dissolved-Phase PCBs
Q Suspended-Phase PCBs
o
O
c
o
S3
O
U
Q
PCB Hornologue
Transect 3*: March 26 - 31,1993
26 kg/month
Jote:
. Loading for transects converted to monthly basis,
urce: TAMS/Gradicnt Database
£¦
S3
e
¦c
u
C9
U
s
Legend:
Dtssolved-Phase PCBs
~ Suspended-Phase PCBs
PCB Hornologue
Transect 6*: August 19 - September 1,1993
15 kg/month
TAMS/Cadmus/Gradient
Figure 3-103
Water-Column PCB Hornologue Composition of the Net Thompson Island Pool Load

-------
Legend:
63	PCB Loading Originating Above Bakers Falls
£3	Incremental PCB Loading between Bakers Falls and Rogers Island
H	Incremental PCB Loading from Thompson Island Pool
¦	Incremental PCB Loading between Thompson Island Dam and Waterford
Thompson Island Pool
0.87 kg/day
Thompson Island Pool
0.14 kg/day
Early Spring Condition"
March 26 to 31, 1993
18 kg/day
Spring Runoff Event
April 12 to 14, 1993
18 kg/day
Thompson Island Pool
0.59 kg/d;
Thompson Island Pool
0.75 kg/day
Late Spring Meanc
May to June 1993
1.4 kg/day
Summer Mean
July to September, 1993
1.0 kg/day
a The large PCB loading below the Thompson Island Pool is the result of scour of the Hudson River sediments caused by onset of the spring flood event
in the Hoosic River.
b.	The PCB loading across ihe Thompson Island Pool is estimated as the difference between ihe PCB loadings at Schuylerville and Rogers Island since the
Thompson Island Dam sample is considered to over-represent dilution by the Moses Kill.
c.	The 7^ decrease in PCB load between Thompson Island Dam and Waierford is wjihin measurement uncertainty and is not represented here.
Source: TAMS/Gradieni Database
TAMS/Cadmus£rra/j£nf
Figure 3-104
Comparison of 1993 Upper Hudson River PCB Loadings
at Waterford based on Phase 2 Data

-------
Transect Results"
Flow-Averaged Event
Results2
March
32 kg/month
April
('AVAVvV'v'v'/
540 kg/month
May
180 kg/month
'x'x'x'x'x'x 1
44 kg/month
June
44 kg/month
July
41 kg/month
August
20 kg/month
September
Lcaend:
\>3
26 kg/month
19 kg/month
PCB Loading Originating abo%e Bakers Falls
Incremental Loading between Bakers Falls and
Rogers Island
Incremental Loading from the Thompson Island
Pool
Notes:
Monthly Mean Based
on GE Data
44 kg/month
190 kg/month
>Vx\\\'x'



76 kg/monthc
43 kg/month
42 kg/month
32 kg/moiilh
.rfll
24 kg/month
PCB Loading for transects and flow-averaged events is convened to a monthly basis.
The PCB loading across the Thompson Island Pool is estimated as the difference between the PCB loading
at Schuv lemlle"and Rogers Island since the Thompson Island Darn sample is considered to over-represent
dilution by the Moses Kill.
. Sampling evem exhibits a net decrease m PCB load between Rogers Island and Thompson Island Dam
which is not represented here.
Source: TAMS/Gradiem Database
T AM S/Cad m u Gradient
Figure 3-105
rnmnaricrvti of Trnncprl Rpcultc F1nw.Avpr»oprl F.vpnf RaciiIU. and Vfnnthlv Mmii Raced nn HF. Data

-------
Net Load from
Thompson Island
Pool Sediments
0.36 kg/day
Background Load
0.08 kg/day
April - August 1991
Prior to Onset of Major
Releases from GE Hudson
Falls Facility/Remnant
Deposit Area
21 kg/month
Load from GE
Hudson Falls
Facility/Remnant
Deposit Areas
0.27 kg/day
Net Load from
Thompson Island
Pool Sediments
0.66 kg/day
Background Load
0.13 kg/day
Sent 1991 ¦ May 1993
Period of Erratic
Releases from the GE
Hudson Falls Facility/
Remnant Deposit Areas
98 kg/month
Load from GE
Hudson Falls
Facility/Remnant
Deposit Areas
2.5 kg/day
Net Load from
Thompson Island
Pool Sediments
0.82 kg/day
Backpound Load
0.11 kg/day
June 1993 - June 1994
One Year Period
Following Bakers Falls
Renovation
35 kg/month
Load from GE
Hudson Falls
Facility/Remnant
Deposit Areas
0,23 kg/day
Net Load from
Thompson Island
Pool Sediments
0.46 kg/day
Background Load
0.17 kg/day
July 1994 - Oct. 1995
27 kg/month
Load from GE
Hudson Falls
Facility/Remnant
Deposit Areas
0.28 kg/day
MRP 002

Note
a. Data for November 1995 through February 1996 are not represented here due to two anomalously high background load
measurements which were not observed consistently at downstream locations.
Source: TAMS/Gradienl Database
Figure 3-106
Mean PCB Loadings at the Thompson Island Dam
From April 1991 through October 1995, GE Data
TAMS/Cadmus/Gradient

-------
Ik
B
©
»M
«
u

-------
e
©
*n
m
s
50
40 -
30 -
20 -
10 -




JZ31_
I	I	I	I ^1	I
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
June 1991
11 kg/month (0.37 kg/day)
a
o
£
2
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
August 1993
26 kg/month (0.87 kg/day)
s
o
08
2
2
30
25
s?
w 20
B
O
•c
« 15
10-
5 -




i

t— i i	1	r
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
June 1993
36 kg/month (1.2 kg/day)
35
S 30
a 25
9
•s
m 20
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
June 1994
34 kg/month (1.1 kg/day)
5 10
Note:
. Mass
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
June 1995
22 kg/month (0.73 kg/day)
transport is based on instantaneous flow values reported by GE.
i ' i ' i " "i
Mono Di Tri Tetra Penta Hexa Hepta
PCB Homologue
May 1996*
52 kg/month (1.7 kg/day)
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradier
Figure 3-108
PCB Homologue Composition of the Net Thompson
Island Pool Load, GE Data

-------
Thompson Island Dam Total PCB Load: 3 kg/day
Rogers Island Total PCB Load: 0.4 kg/day
S 0.80
0.60
Mono d i Tri
Tetra Penta Rpyn u »
Hexa Hepta Octa
PCB Homologue
Thompson Island Dam
Rogers Island
Source: GE Remnant Deposit Monitoring Report Monthly Update, July 5, 1996	TAMS/Cadmus/Gradicnt
Figure 3-109
Total PCB Load at Rogers Island and the Thompson Island Dam - May 27 1996, GE Data

-------
Note:
>->
a
5
M
•o
CS
e
-I
aa
U
eu
es
M
•a
n
e
-J
as
U
Am
«
~6£
©
-J
aa
U
A.
20
15
10 -
5 -
210
20
15
10 -
0.6 -
210
Transect 3 - March 26 to 31, 1993
Legend:
River Stations
Tributaries
Hoosic River
3/30/93
Mohawk River
Hoosic River 3/27/93
190	180	170
Batten Kill	River Mile
Transect 4 - April 12 to 14, 1993
150
Legend:

- River Stations
•
Tributaries
Mohawk River
Batten Kill
Hoosic River
160
River Mile
Transect 6 - August 19 Through September 1, 1993
150
-O
Legend:

— River Stations
•
Tributaries
Batten Kill
l—W—|	1	1	r
180
River Mile
Hoosic River Mohawk River
t	•-[	1	1	j	r-^—i	r
170
160
150
a.	The vertical scale for each plot is adjusted to accommodate the range of loads.
b.	Hoosic River dissolved and suspended matter PCB concentrations for 3/27/93 were used here to provide a upper
bound estimate on the Hoosic River load.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradier
Figure 3-110
PCB Load vs. River Mile for Three
Phase 2 Water-Column Transects

-------
Transect 1 - January 1993
0.98 kg.day
Transect 3 - March 1993
21 kg/day
Transect 4 - April 1993
22 kg/day
Transect 6 - August 1993
0.76 kg/day
Legend:
PCB Loading Originating above Bakers Falls
HRP
2149
PCB Loading from the Hoosic River
/ ~ ~
\ -\
< / /
X \ \
/ ~ ~
X \ N
Incremental PCB Loading between Bakers Falls & Waterford
PCB Loading from the Batten Kill
PCB Loading from the Mohawk River
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradie
Figure 3-111
PCB Loadings to the Hudson River at River Mile 153.9
near Albany based on the Water-Column Transect Sampling

-------
Legend:
PCB Loading Originating above Bakers Falls
PCB Loading from the Hoosic River
Incremental PCB Loading between Bakers Falls & Waterford
PCB Loading from the Mohawk River
PCB Loading from the Batten Kill
HRP 002 2.150
Note: Based on Table 3-25.
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradien
Figure 3-112
Fractional PCB Loads at Albany for 1991 to 1992
Based on Dated High-Resolution Sediment Core Results

-------
Leachate
0.03 lb/day (1%)
Storm water
0.9 lb/day (20%)
Tributaries
1.1 lb/day (24%)
CSOs
0.6 lb/day (13%)
Atmosphere
16 lb/day (3%)
Upper Hudson River
0.5 lb/day (11%)
Sewage
.3 lb/day (28%)
Projected Total Load « 4.6 lb/day (2.1 kg/day)
Notes:
a.	Exponential decline in Upper Hudson load = 0.2765/year
b.	Exponential decline in downstream loads = 0.057/year
c.	1 lb/day = 0.454 kg/day
Source: Thomann, et al. (1989 and 1991)
TAMS/Cadmus/Gradient
Figure 3-113
Model-Projected PCB Loadings to Lower Hudson River and Harbor for 1993

-------
Atmosphere
0.16 lb/day (2%)
Tributaries
i.O lb/day (11%)
Leachate 0.03 Ib'day (-0°^
Stormwiier
0.5 lb/day (5%)
CSOs
0.4 lb/day (4%)
Sewage
0,9 lb
-------
Maximum Flow Velocity
o
10
9
Legend:
Thompson
Island
—¦—
63.700 cfs

46,600 cfs
—*—
30,000 cfs

20,000 cfs

10,000 cfs
	A	
5,000 cfs
-r
i 91
River Mile
s
CD
£3
V
a
|
3
o
Crt
S
X
C3
500
400
300 —
200 —
100 —
Maximum Sediment Total PCB Inventory Based
on Results from 1978 and 1984 NYSDEC
Surveys and 1990 GE Survey
Legend:
PCB Inventory
Flow Velocity
o
®
o
£
"o
>
>
o
u,
191
River Mile
Sources: Zimmie (1985); TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-1
A Comparison between River Flow Velocity and Maximum Sediment
PCB Inventory by River Mile in the Thompson Island Pool

-------
20,000
a
w
i-
<
mmt
m
B
'S
«
w
m
m
m
O
u
U
15,000
10,000
5,000
0
196
Legend:
—¦— Phase 2 Cross Sections
- - o - • Zimmie Cross Sections

194
192
190
188
River Mile
~r~"
186
184
182
Source: Zimmie (1985); Phase 2 Bathymetric Survey
TAMS/Cadmus/Gradient
Figure 4-2
Hudson River Cross-Sectional Area for 8400 cfs Flow at Fort Edward

-------
m
4j
mm
U
*p-»
u
e
e
m
Im
£
Z
fi
N
a
e
e
wj
120
100
80
60
40
20
~
o
~
~
ft n
~ a^y
~
~
/ nD°
/ ~
J ~
~
~
~

cP /~ fi1 ~
d#ddd
/ ~ u
n
~

~
~
% £'
a p- D
(Diy° ~
S„/D
ill D
[ED
O
~
f
/
/
/
^L
/


/
~
^ &
~ a
~



~
o


~

~
1	-i	r
"r~—"~i	r-
20
40
60
I
80
1	
100
500 kHz DN for 10 ft Circles
Source; Phase 2 Side-Scan Sonar Images
120
T AMS/Cadmus/Gradient
Figure 4-3
Comparison of the DN Value for 10 ft and SO ft Circles
at Confirmatory Sampling Sites

-------
120
100
z
o
a
s»
¦o
v
S
N
3
• V
40
\
-2
0
2
4
6
8
Mean Grain Size (phi)
Z
a
•o
S
N
X
u
Note:
a. phi = loaf grain-size (mm>l
	log 2	
Mean Grain Size (phi)
Source: Phase 2 Side-Scan Sonar Images; TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 4-4
Calibration Plots of DN vs. Grain-Si**

-------
O, v-
Legend:
~	500 kHz Median
81500 kHz Mean
~	500 kHz Std. Dev.
H 100 kHz Median
BS 100 kHz Mean
II100 kHz Std. Dev.
500 kHz Median
500 kllz Mean
500 kHz Std. Dev.
100 kHz Median » t . , -
100 kHz Mean\
Sonar Image 100 kHz std. Dev. \
DN Value	\ ,
r2 of Linear Regression
T"
' % %
std. mean	sand graVd
dev.
		 _T~dr70) '1<50) 'll401 d
d(90) «85> ' '
Grain Size Parameter Used for Fit
Source: Phase 2 Side-Scan Sonar Images; TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 4-5
Three-Dimensional Correlation Plot of Digital Number vs. Grain Size

-------
Legend:
@500 kHz Median DN
0500 kHz Mean DN
~ 500 kHz DN Std. Dev.
H 100 kHz Median DN
El 00 kHz Mean DN
0 100 kHz DN Std. Dev.
Grain Size Parameter Used for Fit
Source: Phase 2 Side-Scan Sonar Images; TAMS/Gradieni Database
T A M S/Cadmus/Grad ient
Figure 4-6
Two-Dimensional Correlation Plot of Digital Number vs. Grain Size

-------
.000,000
OD
"ei
A.
V)
a
v
•9
v
Ui
2 100,000
c*x
la
9
CM
«
i.
¦**
e
V
w
e
o
U
£0
U
su
o
H
10,000
.000
Legend
rtl

Mean PCB
Level
Median PC
Level
Maximum
75% Quartile
25% Quartile
Minimum
© «/->
m
m fS  O w->
m 
-------
Gamma
Sill
¦£»-
Model Fit
2.5 -
2 -
JSm
c#
E
E
«
O
Nugget-
0.5 -<3-
Range

200
400
600
0
800
1,000
,200
Separation Distance h (ft)
Figure 4-8
Example Semivariograra with Labels
TAMS/Cadmus/Gradient

-------
500
Separation (feet)
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-9
Variogram of Natural Log of PCB Mass
Thompson Island Pool, 1984 Sediment Survey
Subreaches 1 and 2, Isotropic Variogram

-------
250	500
Separation (feet)
750
1000
Source: TAMS/Gradient Database
T AMS/Cadmus/Gradient
Figure 4-10
Variogram of Natural Log of PCB Mass
Thompson Island Pool, 1984 Sediment Survey
Subreach 3, Major Axis N 35 W

-------
0.0
0	250	500	750	1000
Separation (feet)
.	TAMS/Cadmus/Gradient
Source: TAMS/Gradient Database
Figure 4-11
Variogram of Natural Log of PCB Mass
Thompson Island Pool, 1984 Sediment Survey
Subreach 4, Major Axis N 10 W

-------
0.0 -I	1	1	1	1	1	1	1	
0	250	500	750	1000
Separation (feet)
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-12
Variogram of Natural Log of PCB Mass
Thompson Island Pool, 1984 Sediment Survey
Subreach 5, Isotropic Variogram

-------
125
100
75--
0>
« 50-
e9
5
25 —
-25-
n	!	1	1	1	1	i	1	r~
-25 0	25 50 75 100 125
Distance (ft)
Legend
• Point Estimate
p-l Area Represented by a
1 1 Single Block Estimate
TAMS/Cadmus/Gradien
Figure 4-13
Typical Arrangement of the Point Estimates
Used in Generating Block Kriging Values

-------
1.5
e
&
«
O
1.0
0.5
0.0

_|	h
-•	1-
250
500
Separation (feet)
750
1000
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 4-14
Variogram of Natural Log of Surface PCB Concentration
GC/MS Screening Data
Thompson Island Pool, 1984 Sediment Survey

-------
2.0
1.5
1.0
0.5
0.0
400
200
600
800
1000
Separation (feet)
Source; TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-15
Variogram of Natural Log of Surface PCB Concentration
GC/ECD Analytical Data
Thompson Island Pool, 1984 Sediment Survey

-------
0.0
o	250	500	750	1000
Separation (feet)
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-16
Variogram of Natural Log of Surface PCB Concentration
Cross-Variogram between GC/ECD and GC/MS Data
Thompson Island Pool, 1984 Sediment Survey

-------
T AM S/Cadmus/Gradient
Figure 4-17
Locations of Potential Chlorine Sites on a PCB Molecule

-------
Percent Mass
Percent Mass
Percent Mass
Percent Mass
o	** c\ oe cs
180 "3
n ^
n %
210 "
2)0*
* HO
210
2)0"
Source; TAMS/Gradient Database
TA M S/Cadmus/Gradient
Figure 4-18
Congener Content of Four Aroclor Mixtures

-------
60
50"
Legend:
H Upper Hudson
H Lower Hudson - freshwater only
~ Tributaries and Background
m
9i
9
.fi
S
3
z
40"
30"
20-
Aroclor 1242
0.4 0.5 0.6 0.7 0.8 0.9
Molar Dechlorination Product Ratio
Source: TAMS/Gradient Database	TAMS/Cadmus/Ciradient
Figure 4-19
Histogram of the Molar Dechlorination Product Ratio

-------
ft
a
M
«3
u
4»
XS
S
s
Z
80
70
Aroclor 1242
Legend:
- Presence of Heavier Aroclors
Dechlorination

or uegradative toss
>
t
Loss

—j>
® Upper Hudson
~ Lower Hudson - freshwater only
0 Tributaries and Background



-0 5	-0.4	-0.3	-0 2	-0.
Fractional Molecular Weight Difference
(MWini,-MWt ,)/MW	
> A1242	Sample'	A1242
Theoretical limit for meta- and para-
dechlorination of Aroclor 1242
Source: TAMS/Gradient Database
TAMS/Cadmus/O radient
Figure 4-20
Histogram of the Fractional Molecular Weight Difference Relative to Aroclor 1242
Results of All Freshwater Post-1954 High Resolution Sediment Samples

-------
4>
OA
e
«
jc
O r*
r*
XL i-K
oc
^¦2
o
u t-
0
u o
V <*a*
S.£
-4-»
— «g
09 *7?
fM 
-------
m
«
X>
o —
33 ©
£ B
i
__
¦or*
o y
Ih fl_
o- _
e *
2 e
as d
es ~
H
-*!«? *
*g O
O oo
© "*
S*
N
B.
e
3
wa
0.8
0.6
0.4
0.2
Legend:
a Upper Hudson Sediments
v Lower Hudson Sediments
(Freshwater only)
+ Tributary and Background Sediments
——— Regression Line to Upper and
Lower Hudson Sediments
* A
• •+ + + + ++
~1	1	1 T i l l t
gB y
	?
V? v 9

' V
*
^	,	,	,—(> I I (-r-|	—	r——I	,—f -t. t T-|	r——,	,—i i i i i
~l	1	1—I I I I I
100
1,000
10,000
100,000
1,000,000
10,000,000
Notes:
Total PCBs (tig/kg)
J	Solid line represents best fit to all1 "Cs-bearing sediments from the Upper and Lower Hudson (r*= 0.75).
2~	Thin dashed lines represent the 95% confidence interval about the regression line for individual measurements.
3	Regression excludes outliers marked with an "X". These outliers were selected based on a statistical analysis of the data.
4.	The dashed horizontal line represents the original molar ratio in Aroclor 1242.	
Source: TAMS/Gradient Database	Figure 4-22	TAMS/Cadmus/Gradient .
Molar Dechlorination Product Ratio vs. Total PCB
Concentration in Post-1954 Sediments from the Freshwater Hudson River

-------
O W)
~ CO
5 u
03
£ H
ft, :r
« o
s 1
•j* (fcJT
1m flo
i<
g i-M
4> %
Q	N
u	M
«	—'
o	E
5	3
*	M

-------
)
O
~ CO
£ u
3	88
a	°
£	H
ft-	~
e	e*
0	i-i
«	2
u	oe
5	rr
£	_T
a>	%
Q	N
u	*
A
1	S
S	3
c/5
0.8-
0.6
0.4
0.2-
1954-195
1991-1992
Legend:
—©— (2) - Core slice result connected
sequentially in increasing
sediment depth and age
1991 -1992 - Approximate dates of sediment
deposition within slice
1,000
~1	1	1	1	1 I ' ' |
10,000
-1—I—I—I I I I
100,000
1,000,000
~1	1	III!
10,000,000
Note:	J • .	Total PCBs (|^g/kg)
Diagram represents post-1950 deposition only.
;ource:TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-24
Molar Dechlorination Product Ratio vs. Total PCB Concentration
...ui, nnnth (Anf>\ in Pnrp 1Q at Rivpr IVfilp

-------
W)
• PN
£
u
«
3
% ^
s
e ©
W (J
" ©
5 *¦»
•S o
•
A1
L.
A) W
SB*
IS ^
P®
"S
B
©
u
«
b.
b
0.2
-0.2
-0.4
-0.6
7
A—«- uui^ V
^	A A
* -*~	A
+ j. +
+ * + +
+ +++
+
Legend:
* Upper Hudson Sediments
v Lower Hudson Sediments - freshwater only
+ Tributary and
Background Sediments
X Outliers excluded from regression
Notes:
a.	Solid line represents least squares fit to Upper Hudson
and Lower Hudson values excluding outliers.
AMW = -0.251 + 0.0699*log(Total PCBs) ?= 0.73
b.	Outliers were selected based on a statistical analysis
of the data.
Aroclor 1242
Theoretical
Dechlorination Limit
1—i—i—i i M
100
1,000
10,000
100,000
1,000,000
10,000,000
Total PCBs (ng/kg)
Source: TAMS/Gradient Database
T AM S/Cadmus/GraUient
Figure 4-25
Fractional Mass Loss as Measured by the Change in Mean Molecular Weight
a 11	mr-i i-	t		 f.. »•

-------
M
08
*3
«-*r
© M
S"*
*=- u
a ©
a o
3 o
3 w
v
W 4)
e >
 i i |	
10,000
1	1—I—1—I t I I [	
100,000
Total PCBs (Mg/kg)
n—i—i i r rn
—r i " i i
1,000,000
10,000,000
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-26
Fractional Mass Loss as Measured by the Change in Mean Molecular Weight - Expanded Scale

-------
Figure 4-27a
Molar Dechlorination Product Ratio vs. Depth in
Post-1954 Sediments from the Hudson River
9 t
Unaltered
Aroclor 1242
Depth (cm)
00
ec
3
as
U
a.
©
H
10,000,000-T
1,000,000^
1* *
100,000 — A *
Figure 4-27b
Total PCBs vs. Depth in Post-1954
Sediments from the Hudson River
' $
I
A A
10.000-
1,000-=
Ut' *
i:?s»5
ji<<« ?
i
*	$
A V	*
$ „	V
+
: t
' i
i <
' !

y V y
ioo^| + + * * + * +
10-
-r
20
-1-
40
TT
60
-r
80
Depth (cm)
Legend:
100
a Upper Hudson Sediments
v Lower Hudson Sediments -
freshwater only
+ Tributary and Background
Sediments
Source: TAMS/Gradient Database	TAMS/Cadmus/Gradient
Figure 4-27
Molar Dechlorination Ratio and Total PCB Concentration vs.
Depth for Phase 2 Sediment Core Samples

-------
25
20
u
s

-------
0.2
•SP
'3
u
CO
3 2
cj
(D 
C3 -3
^ C3
f\
y Pi
"a
a
©
• ^
«*•»
u
CQ
U
fa
0.15 -
0.1 -
0.05
-0.05
-0.1
1,000
Notes:
a.	Background and tributary results excluded.
b.	Line represents regression curve from Figure 4-26.
Lesend:
N 1954 - 1964
0 1965 - 1974
1975 - 1984
1985 - 1992
~ Upper Hudson Sediments
V Lower Hudson Sediments
V v
100,000
1 1 1 ' I
10,000
1,000,000
Total PCBs (jig/kg)
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 4-28b
Fractional Mass Loss as Measured by the Change in Mean Molecular Weight
in Post-1954 Dated Sediments from the Hudson River

-------

-------

— «
<=£
.2 ®
*¦*3
o
eg
u
Note:
0.2 —
0.1 —
f
Lesend:
^3P"y '
%£F ' V .
-o.i
-0.2
.i. Net Thompson Island Pool Load
Is! Rogers Island Water Column
•	Thompson Island Dam Water Column
	Sediment Regression Line
	 Sediment 95% Confidence Interval
Upper Hudson
Lower Hudson - freshwater only
*	Background and Tributaries
Aroclor 1242
i—i—|—i—r~
~i—i—i—i—|—i—i—j—i—|—i—i—i—i—|—i—i—i—i—|—i—i—i—i—i—i—i—i—i—| i—i—i—i—|—i—i i—i—1—i—i—i—r~
Aroclor 1242
theoretical
dechlorination
limit
0.2	0.4	0.6
Molar Dechlorination Product Ratio
0.8
Regression line and confidence intervals are based on Upper and Lower Hudson sediment results only.
Source: TAMS/Gradient Database
TAMS/Cadmus/Gradient
Figure 4-30
A Comparison of the Net Thompson Island Pool Contribution to the Water Column
with the Sediments of the Upper Hudson

-------
o

-------
Transect 1 - Winter
Transect 2 * Winter
0-15-
e
— 0.05-
e
e
o tl
S.t
a
-O.Oi
-0
•0.2
0
0.2
0.4
OS
0.15-
e
u 0.05-
e
<
e
005-
0.6
0.2
0.4
-0.1
Molar Dechlorination Product Ratio	Molar Dechlorination Product Ratio
Note: Station 4 not shewn
Transect 3 « Early Spring
0	0.2	0 4	0.6
Motar Dechlorination Product Ratio
Transect 4 - Spring Runoff Event
Molar Dechlorination Product Ratio
Transect S - Early Summer
Transect 6 - Late Summer
0 0S-H
0-05—
Wlw Column T«a»i Simx* H
Stdumem	line
Stii0M*t f39- Canft
-------
0.7
x»
o
u
Sm
s
e
0,6
0.5
0.4
105
Legend
o
-e— Total PCB Concentration
• - Molar Dechlorination Product Ratio
104
.o
o
Aroclor 1242
103
200
180
160
140	120
River Mile
100
H
o
»¦*
M
U
o
00
rs
e
a
r>
n
a
o
s
T=
oro_
90
Note:
Value marked with an "X" was considered an outlier and was not used to generate the regression line for the MDPR.
ource: TAMS/Gradient Database
Figure 4-33
Trend of High Resolution Core Top Molar Dechlorination Ratio
and Total PCB Concentration with River Mile
T A M S / Cad mus/G rad i en t

-------
Rogers Island - RM 194.6
Early Spring
Transect 3
' \	- 0 Kojrcn Ivlaf-J Waxr Column .
A		:
0l_L
! 5 •= I i
I £ | £ 2 £
Early Spring
Transect 3
A '
¦; V''
¦'/ \
H
; o TIO \V»wf ('iilumn
—»• rirScOimcm .•m.OUOtu:'**;
.	Acntluc 12<2
I £ - I ! J I l ! I
Waterford - RM 156.5
Early Spring • Hoosic River Spring Flood
Transect 3
- WoJcftwC W.*kt CoKmir
StJifflfiH KM P' h . IJ.mUl
& OJ •
5
j ^
t S
i
j i l « i i
e Hot* Rivet eWVrttcc »cri»n » KM lis" )
Stillwater - RM 168.3
Late Spring
Flow Averaged Event 2
Rojcts lOar.d W.«c» l olu».ri
Thompson Island Dam - RM 188.5
Late Spring
Flow Averaged Event 2
T1D W»Kf Coiomn
TIP Sediment t<>9 OTO Ji?/k
lor i:<:
Winter
Transect 1
I V
— WJttvfift'd Who' Ci'lumn
T1?* > i»:
i 1 8 I i
Late Summer
Transect 6
- Ropen Itl.iad Column
A
I I 24(. .711:301
. 1242
| 5 I
I I i I 3 | &
Late Summer
Transect 6
- o TIO Waict Column
—«• Til' Scdntriii •*>2.000 us[Vl
-------
Thompson Island Dam: Transect 3 - Spring
Thompson Island Dam: Transect 5 - Early Spring
.5 0.3-
H
S 0.2-
.2 0.3-
2 0.2-
0.1 -
¦O— Thompson island Dun Water Column :
- Pnrewaier • RM 194.2 (6.500 Mg/kg)
- • Sediment - RM 194.2 (6.500ug/kg)
0.4 •
J
2 0.2-
Tcira
Homologue Group
—y—f—f—
Hexa	Ocm	Dcca
—O—Thompson Island Dam Water Column
I —~- - Porewater- RM 194.2 (6.500 yg/kg)
I —V --Sedimeni • RM 1942(6.500ng/kg)
~v—v—f~
Tcira	Hexa
Homologue Group
Thompson Island Dam: Transect 6 - Late Summer
0.5-
= 0.3 H
S 0.2-
-O—— Thompson Island Dam Water Column
Porewaier-RM 189.3 (3.100 pg/kg)
?••• Sediment • RM 189.3 (3.100 |ig/kg) i
~i	1	1	i	r~
Di	Tcira	Hcxa	Ocm	Dcca
Homologuc Group
Waterford: Transect 1 - Winter
Waterford: Transect 6 - Summer
| —O— Wateriord Water Column
¦ —- Porewaicr-RM 189 3<3.lOOngAg) I
•V •• • Scdinwnt • RM J89.3 (3.100 Hg/kg) ,
	Y	
S 0.2-
Tcira	Hexa	Octa	Dcca
Homologuc Group
O— Wjiertord Wjicr Column	>
- Purewatcr - RM 159 (1.100 jig/Vgl
¦?•••Sediment • RM 159 (l.lOOjig/kg) \
Source: TAMS/Gradient Database
—?—f—
Tcira	Hcxa	Ocia	Dcca
Homologuc Group
TAMS/Cadmus/Gradient
Figure 4-35
Comparison Between Various Water Column and Estimated Porewater
Distributions on a Homologue Basis

-------
%
*i
g-B
©«
L**td4
¦ ttoger* Istod Water Coiurnn
• Tfcoaptott 111 tod Dam Wuti Col one
Sediment Rtpetiioa Line
Sc4oeeai 95% Cocfideoc* iMemi
Upp« HskUoc Sediment*
howti Hu&oa Sedimftntt
Tribumy tnd B*U£ioaad Sedmmtt
Arocks 1242
MDPR Range of
MoUr Dechloriattioa Product lUUo	Sediments Responsible
for the TIP Source
A Comparison Between Sediment and Water Column Samples
from Rogers Island and Thompson Island Dam
Aroclor 1242
theoretical-
dechlortnaiion
limit
IS
Legend:
sst=====±====s==±s^i£*=±r-=i
Upper HwMcis Sedirranu
Lower Hndaoc Satimrnts
(Fiesbwaier only)
i.'ilm.of) 4J1.: b«.ij,lL«;ii1iSv*ili
- Rejpettjon Ltoe to Upper tad

00,000
1.000.000
1,000
10,000
ToUl PCBs (v«/k|)
Concentration Range of
Sediments Responsible
for the TIF Source
Molar Dechlorination Product Ratio vs Total PCB
Concentration in Post-1954 Sediments from the Freshwater Hudson River
10,000,000
Minimum Age
of Sediments
Responsible for
liie Thompson
island Fool Source
Legend:
Cofc 19
Me»tarwst»t
«ecsn*iiiy
100.000	200,000	300,000	400,000
Total PCB. (fl«*0
500,000
Total PCBs in Sediment vs. Approximate Year of Deposition at River Mile 188.5
Near the Thompson Island Dam: High Resolution Sediment Core 19
LwaenJ:
Note
v'-. Chan Region Characteristic of the
V\ ftiumpMin IsljnJ Pool .Source.
l or nolcs regarding the individual figures, see original figures 4-29. 4-26 and 3-59, respectively.
Source TAMS/Gradienl Database
T AMS/Cadmus/Gradient
Figure 4-36
Estimation of the Age of the Sediments Responsible for
the Thompson Island Pool Source

-------

-------
CANADA
UNITED STATES
Lake
Champlain
VERMONT
UPPER
HUDSON
LAKE ONTARIO
Chamvlain
V
Ctnal
Gfens
\'
A' BANY•/'Troy
NEW YORK
MASSACHUSETTS
m c/)
PENNSYLVANIA
CONNECTICUT
SOURCES:
1.	NCW YORK STATE DLPAR1MKN1 Oh 1RANSP0R i A HON. 1987
2.	NYS:)i:.C. 19/8
nj rn
NEW YORK
NEW
JERSEY

-------
OXNS FAUS (*» IM S)
STATION >
nmum. moot (rh »«>.«) -
•tec* ? («u m n -
STATION 10
ROWANI OC^OSTS
Iftu *95 5} -
STATION 3 	'
(«M If*.*) - Sf*IK3N 4
THOMPSON ISLAMO OAK
(Mi 186.3) - STATION 5
SCMUtURWUC <«l 111.3} - STATCN £
STKLWAltft (RM 16&J) - STATION 7
HOOSC *VER - STATION 12
MCCHAMCVtUC (*M J6S.4) - StAlKM «B
WATCRfORO (RU IMS) - STATION 9
CBIEH tSLANO BfflOGC (RU S51.7) - STATION 14
¦0
UPPER HUDSON RIVER
	(in
Troy
ALfiAKT m'
COSSACxC (RM 125) -
STATION 15 	
ccucmtom (fw tie} -
STATION Ji 	—
HtOtANO (RU 77.0) -
WATCft-COlUMN TRANSCCT SAMPUNC
STATION - »iT
*Af£ft-CCU*N IftANSCCT AMQ rt.0W-
AVCAAGCO SAMPUKG STATION
»«« mc C»") u^stflCAw or I* saiurt
k««q «¦> AHS. mC . 11'?]
BMhraiC su	cww.i^	aAi*rM
»*>» TK HVO&ON IB**	fQH Nrsac
OtOfiMAHCCAU ASSOOAICS, MC, <«»*}
8K0W fCOCft*. DAM - *mGBU«f, At M&cmmxms 4*8
HUDSON RIVER PCS REASSESSMENT Rt/FS
PHASE 2: fO»TH(R SlU CMA«ACTt»alATKJN ANG ANAL*S»S
VOLUME 2C: OATA CVALUAliQN ANO WtCftPfttUIKM MPQR1
Newark
NEW YORK
CITY
PHASE 2 WATER-COLUMN
SAMPLING LOCATIONS
IN HUDSON RIVER
LOWER HUDSON RIVER
TAMS / Cftdrnus / Cradftnl

-------
- -
CCfiE 2? (RU 202.9)
CORE 76 {M 19? l)
CORE 26 {»« 194.1E)
CORE 20 (RU 191.2)
CORE 25 (SM 1S4.2W)
CORE 23 (m 189.3)
CORE 19 (Ru I8J5)
CORE IB (DM 185.8)
t? (8AIICN KILL)
CORE 21 AND CORC 22
(tol 17?8)
CORt 24 (HOOSC RIVER)
CORE 16 (8V t«.3j
CORt W {UOHAm »V£R)
CORE IS (ftl 159.0)
UPPER HUDSON RIVER
CORE U (RU |«3 S)
14 (RU 124 .1)
COW 13 {RU 99.2}
CORE 10 {RM SO. 5)
CORE I (fel 2*0)
COfiE 5 (N£WT0«W CREEK)
CORt 4 (By 2.4)
CORC 2 im -19} AND
CORC 3 {m -2.2)
Klniilan
ccre 9
inn st a)
ccre t «o
a*E 7
(BM 4J.2)
r«M«i (w
a>2»*
NEW YORK
cm
th* faitcy
c
-m RttCR HUE 0 HUfiSOh f«iiS - VO»tL»«C Aw
0liCH*t«0».$ *X) tWWlMWS MKT Pft»«C#Atir
(X4)*0 «r t««* r«0M JM£ HUDSON «*««! SuOVCt, i«>6-
1977. ro* unoic £HO«w**ar«, assooati*. wc. i»/h
*MSC*S or l«	A»QUMC ROCCRS *StM«
amo g*s(»s r«tLS •€« ottMNCo («ou MntKc sa^io
on sussfsuiNt sua*?* nmstmo m »w* mi
(vftftjeuSHco)
l rioeRAi oa- io KHun(ft*ir - sucou**. hu
QCSrfXAbCNS ANO KbSUtMACS Willi OC»vlO 9* U
««* tftfMycscH su**i*	tw
MV$0CC (MMMWCity aSSOOaUS *«£. nn)
* Bfi.O«r ffSfflM 8AM -	. MM MVCMA AMD
ineuT**** «tw (Mitwe raox rx huoso* mm
rajtciAW*, \990
HUDSON ftlVEft PCS REASSESSMENT ft/TS
PHASE 2: fURTHCR Si IE CwARACffRlZAfiON A*0 ANAivS*
VOLUWC JC QATA EVALUATION ANO MIERPRCUTlON REPORT
LOWER HUDSON RIVER
PHASE 2
HIGH-RESOLUTION SEDIMENT CORE
SAMPLING LOCATIONS
IN HUDSON RIVER
¦JAMS / c«a»y» / Gradient |HAK

-------
Edward
muurai M(UM
woe» oui m i«u)
pvm huo tm im itw
SchuylyrviUe ^
C
Stillwater
Mectwnicville
170
1-gGTNDt
—NYSOCC HOT SPOT NUMBER
^ NYSOCC HOT SPOT AREA
— SO ftvER M*£ (RM) UPSTREAM Of THE 8AT7ERV
NOTTS;
t. HOT SPOTS ft THROUGH 20 «CftE DIGITIZED FROM
NY50CCS *PC9 RECLAMATION PROJECT" DRAMNCS
(DECEMBER 1BBS) AT A SCALE Of 1* - 200'.
2. HOT SPOTS 2« THROUGH 40 MERE DtCfflZEO FROM
CORPORATION'S "UPPER HUDSON RIVER AREA* 0RA1
(APRIL 19*4} AT A SCALE Of 1-1/4* - 1 MAX.
S. THERE ARE NO OESCNATEO N130EC HOT SPOTS
BETWEEN RM <63 ANO RM 17a
4. HOT SPOTS 1 THROUGH 4 ARE NOT SHOMW 9NCE 1
CONTINUED EXISTENCE is HIGHLY UNCERTAIN DUE V
CHANNEL MAINTENANCE DREOCMC SUBSEQUENT TO
NVSOEC*S )#?7/7B SAMPUNC.
SHOACUKCS MID RU OC9CNATIONS AMI AMUPlOMMt-
i	sc^'nfe - s«r*v* and *v oescmkws
•c*i MMOP*u.t onenco rr i«ms niQM tmc kuoscm
avtv st/Rvrr.	*cm msec (MMiomocmi
ASSOOATCS. MC . 19r») PORTIONS Of 1HC »«*£UNC
AfKX/nC ItOCftS t&lAMC AMD B**r*S »"AU.S «C*f OBlMHtt
rnoM ntsdcc basco on SU6SC0UCNT sw»*c« ec*a*uta
¦N 1M4-IM2 (UNPu«uSKO)
s mow so^imoiMLLC - snomcimc aw kh ccsouncws
¦cm ocuivtD e* a nrow tmc hjoscm unc* suwr.
197*-1t?7. FOR MYSOCC (MOAMANOCAV ASSOCIATES. MC. I!
HUDSON RIVER PCS REASSESSMENT K/fS
PHASE T FURTHER 9TE CHARACTERIZATION ANO ANALV
VOLUME 2C: DATA EVALUATION ANO INTERPRETATION RP
NYSDEC HOT SPOT LOCATION
IN UPPER HUDSON RIVER
1AM5 / C*dmu» / Gradient plate i-

-------

$
\i ! I VoL;00 I
MATCH LINE A
LEGEND:
AREA COVERED BY GEOPHYSICAL SURVEY
o CONFIRMATORY CORE SAMPLE
CONFIRMATORY GRAB SAMPLE
SOURCES:
1.	SHORELINE IS APPROXIMATE AND WAS PRINCIPALLY DERIVED
BY TAMS FROM THE HUDSON RIVER SURVEY, 1976-1977, FOR
NYSDEC (NORMANDEAU ASSOCIATES, INC., 1977). PORTIONS
OF THE SHORELINE AROUND RM 194 AND RM 197 WERE
OBTAINED FROM NYSDEC BASED ON SUBSEQUENT SURVEYS
PERFORMED IN 1986-1992 (UNPUBLISHED).
2.	RIVER MILES: THOMPSON ISLAND DAM = RM 188.5.
1000 500
0
1000 FEET
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
GEOPHYSICAL AND CONFIRMATORY
SEDIMENT SAMPLING
LOCATIONS IN UPPER
HUDSON RIVER
1AMS / Cadmus / Gradient
PLATE 1-5
SHEET 1 OF 2

-------
Name: X:\HUDS0N\V0L_C.M0D\PLATES\PLT1-5A1.dwg Dote: 1-17-97 User: ER
FOR CONTINUATION, SEE PLATE 1-5, SHEET 1 OF 2

LOCK 6

Nil 4 )0ilu
H/wW
[v: • • iOt iuf
1} .'Hi jn
&
a*1:
LOCK 5
LEGEND:
AREA COVERED BY GEOPHYSICAL SURVEY
CONFIRMATORY CORE SAMPLE
CONFIRMATORY GRAB SAMPLE
SOURCES:
SEE SHEET 1 OF 2
1000 500 0
1000 FEET
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
GEOPHYSICAL AND CONFIRMATORY
SEDIMENT SAMPLING
LOCATIONS IN UPPER
HUDSON RIVER
TAMS / Cadmus / Gradient
PLATE 1-5
SHEET 2 OF 2

-------
\ WARREN COUNTY *
WASHINGTON
COUNTY
CLEX3 rAUS
FORMER HUDSON FALLS
WASTEWATER TREATMENT PLANT
A
«ST &.ENS rAUS \
CDNUMMEMT 9TE \
IXOOO CU. YDS 1
WNCS8URY LANOflU.
SB9.000 Oj. YDS.
J. BOO.OOO LBS PCS
FORT EDWARD MUNICIPAL LAN Of ILL
301.000 CU. YDS
1.700.000 LBS PC8
SOUTH GLENS FALLS
~SACS TRIP
(SURflQAL SOILS
CE HUOSON PALIS PLANT STE
(see Plate 2-2 for octal)
moo om>
abandoned alien kills
CE FORT COWARO PLANT SITE
OLD FO*«T COWARO LANDFILL
1.000 CU. YDS
620.000 LBS. PCS
GE-MOREAU SITE
ieo CU. YDS
n0.000 lbs pes
REMNANT OCPOSITS
339.500 CU. YDS
46.820 LBS PCB
FORMER FORT COWARO OAU
¦OCOf SUM	// —J
rrjRT eham
UOREAU LANSFu.
464.000 CU. YDS.
PAPER UU SUIOCE
OLD MOREAU SITE
378.000 CU. YDS
92.300 LBS. PCS
SITE S18
2.300 CU. YDS.
1,900 LBS PCS
NIAGARA MOHAWK
0UEENS8URV SITE
UPSTIgAU NCAA RW 21Q
NEW MOREAU STE
194.000 CU. YDS.
32.000 LBS PCB
ROGERS ISLANO
230.000 CU. YDS
14.000 LfiS PC8
191.000 CU. YDS
2S.000 U9S PCS
BUOY 212
3C0 CU. YDS
10.000 LBS PCS
SARATOGA COUNTY
WASHINGTON
COUNTY
204 ANNEX
1000 CU. TttS
SOO LBS PCS
4	REMNANT DEPOSITS
HIH MUMQPAL LANDFILLS
f j DUMP SITES
1*0 ¦ 	 RTVCR HU (MM) UPSTWEAM or tme BATTEWY
MOTE;
1. AOOtTtOMAL OftEDCE SPO* AREAS
A.	LOCK 4 - St,300 Of. US..
B.	LOCK 1 - 43.400 CU. YDS.
SOURCES-
1.200 LBS PCB
700 LBS PCS
©
O
r®
£
-S5
V SITE LOCATIONS AND OATa (SEOiMENT VClUWCS AND PCS MASS)
OBTAINED FROM NYSOEC (1993e) EXCEPT BOUNDARIES OF
REMNANT OCPOSJT AREAS 2. 3. 4 AND S 06TAMCO FROM GENERAL
ClCCTRiC CO. HUOSON RiVCR REMNANT OEPOST CHARACTERIZATION
(CAKOMC ENVIRONMENTAL. 1991). REMNANT DEPOSIT
VOLUMES AND PCB MASS OBTAINED FROM NUS ('9B4).
2. SHORCLMC IS APPROXIMATE AND WAS PRINCIPALLY DERIVED FROM
THE HUDSON RiVCR SURVEY. 1979-1977 FOR N>*D£C (NORUANOCAU
ASSOCIATES. INC.. 1977). PORTIONS Of THE SHOffEUNC AAOUNO
ROCCRS iSLANO ANO BAKERS FallS "ERE OBTAINED FROM NYSOEC
BASED ON SUBSEQUENT SjftvCVS PCWORMEO >N t«M-l99J
(UNPUBLISHED). SHORELINE A80VC HUDSON FALLS ANO TR0UTAR1CS
«CRC OBTajnCO FROM USGS TOPOCRAPHiC MAPS
HUOSON RIVER PCS REASSESSMENT RI/FS
PHASE 2: FURTHER 9TC CHARACTERIZATION ANO ANAL1»
VOLUME 7C DATA EVALUATION ANO INTERPRETATION IICPORT
PCB CONTAMINATED SITES IN
THE UPPER HUDSON
WATERSHED
TAMS / Cadmus / Cradient
PLATE 2-1

-------
SITE PLAN

BAKERS FALLS
BUILDING NO. 5
PUMP HOUSE
BAKERS FALLS
CATE STRUCTURE
LOWER
RACEWAY
INLET
OIL PUMP
HOUJiE/"> 3-30,000
FUEL OIL
DAM RUINS
CENTRAL
TAILRACE
RACEWAY
OUTLET

LOCATI
TAILRACE
TUMM
BANDONED NIAGARA
MOHAWK POWER CORP.
HYDROELECTRIC FACILITY
ABANDONED
BAR SCREEN
F AJLEO
CAPACIJOR
STORAGE
AREA
BAKERS FALLS
POWERHOUSE
ABANDONED
MIU STRUCTURE
DRW SHAFT
(FILLED IN)
JOHN STREET
APPROXIMATE SCALE IN FEET
EASTERN SHORE PROFILE
HUDSON FALLS PLANT
BUILOING NO. 1
FILLED IN TUNNEL
CENTRAL TAILRACE
PUMPHOUSE
• COMBINED
SEWER OVERFLOW
FORMER
OUTFALL 002
BOILER HOUSE
ABANDONED ALLEN
MILLS STRUCTURE
DROP SHAFT
DAM
HUDSON RIVER
UPPER RACEWAY.
ABANDONED
BAKERS FALLS
HYDRO PLANT
TURBINE
RUINS
LOWER
RACEWAY
INTAKE'
nnn
TAILRACE TUNNEL
- LOWER
RACEWAY
TURBINE
LOCATION
OLD
DAM
TAILRACE TUNNEL
OUTLET
BAKERS	
	FALLS	
HUDSON RIVER
,BAKERS
FALLS
DAM
UPPER RACEWAY
LOWER RACEWAY
ABANDONED
DAM
FALLS)
HYDRAULIC PROFILE
(APPROXIMATE)
75
75
NOTE: ELEVATIONS AND LOCATIONS ARE ESTIMATED.
ESTIMATED SCALE IN FEET
DRAWINGS OBTAINED FROM O'BRIEN k GERE (1994a).
HUDSON RIVER PCB REASSESSMENT Ri/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
GENERAL ELECTRIC
HUDSON FALLS, NY
SITE PLAN AND SHORE PROFILE
TAMS / Cadmus / Gradient	PLATE 2-2
^	1	_____

-------
TAPPAN ZEE
BRIDGE
ORADELL
DAM
NEW YORK
Long
Island
Sound
DUNDEE
DAM
NORTH
RIVER
NEW JERSEY
WARDS
ISLAND
PASSAIC VALLEY
(PUMPED TO
UPPER BAY)
LONG
ISLAND
Jamaica
Bay
Newark
Bay
OWLS
HEAD •
STATEN
ISLAND
Lower
Bay
ROCKAWAYS
TRANSECT
Raritan
Bay
;'andy
Hook
Bay
Atlantic Ocean
HRF
LEGEND:
A TR:8UTARV SAVDUNG _OCAT;ONS
• SEWAGE TREATMENT PLANT SAMPLING LCCA'IOVS
SOURCE:
BATTELLE OCEAN SCENCES "OR 'v. SEP A („-ANU ARY 1993)
ASi'D SQU'BB, K.S., ET Ai_. (^ANUARV 1991)
6	3	0	6 MILES
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE ChARACTERIZAT'ON AND ANAlvSiS
VO-UVE 2C: data evaluation AKO IMtE3PRETATiON RE-'ORT
USEPA POINT SOURCE
SAMPLING LOCATIONS
IN NY/NJ HARBOR
mMS / Cadmus / Gradient I =lAtE 2-3

-------
GAUGE 119
GAUGE 118
THOMPSON JSIAKD DAM (RW 180.5)
GAUGE 116
GAUGE 115
Had:ey
\ G1*ns Fells
200
Kuclen Fails f
£
\ So-Jih	D0l,
9AKERS F,
I IS C.eng Fells
Fori E6w®rd
LOCK 7
LOCK 6
FORT MILLER DAM (RM 186 2)
NORTHUMBERLAND DAM (RU 183 4}
GAUGE 114
lervHJe
LOCK S
GAUGE 113
#180
Stili»%ier I
STILLWATER CAM (R* 168 2)
GAUGE 109
GAUGE 108
LOCK 3 DAM (RM J66 0)
ffoosic
Mech&mc^ilie
GAUGE 106
GAUGE 105
GAUGE 104
GAUGE 103
LOCK 2 DAM («M I63.S)
GAUGE 102
GAUGE 101
LOCK I DAM (RM 1M.4)
Waterford \[
Coho«s
3 MILES
EDERAL DAM (RM JS3 B)
LEGEND
220 R VER Mi it (»M) jPSTftEAM Cf THE Ba~T£Ry
SOURCES'
ShO^lUNlS and Rv CfSiCNA-iCKS ARE a^ROXWATE
A8CVE HUDSON s-AwlS - SHDRtt.Nf. Rm designations and
"AR:£S
C0Tai^:D from JSCS TOMOGRAPHIC MAPS
SC*-v.E3v>l.£ *S -wDSCs *"a„S - S-C*E.:sE. ftv DES'GM.""DNS AND 7R'9.TA*£S WERE P«?:NC(Pally DER'VED B* TAMS FROM" Th£
-UDSCN *.v£3 SwRvi*. "S76--9?? "0" NYSCEC fNDRWASOiAw aSSODaTES .£ SrtOREu^E AftO'JNO ROGERS
S.a*D and BA'.E-S "au..S «£*E C»Ta:*ED frqv nySDEC BASED Cn Su2S£0u-:nt SU^VE^S PERFORMED IN 1986-1992 (UNPUNISHED)
3.	Dam 7£ SCnLt.ER^L.E - S^CRElNE, Ry DlSDMaTiOnS AND TRi^TaRiES WERE DERIVED BY CE FROM The
-uDSOn R^vER S^RvE\ •,s?6-'9?? FOR N'SCEC (nDRvanOEau ASSOCIATES. inc.. 197?}.


-------
CORC 27 (RU 202.9)
CORE 23 8M MuOttW fAi.15 - SmONTLwC.
0£*<0 #T i*J»S fBOM IMC HUDSON «UA«*( »»>»
w>. i« wrscec	*ssoo*«s. m; , i«m
or it*	mound «w««s iSiaw
**© «M(RS f«U.S *« OitMHfQ JSC* 4TS0CC 8*5(6
ON sussfouCNt 5u»v*rs PdtrceMie m iw-C8 REASSESSMENT RJ/TS
PMAX Sh fUSTMCft Site CHABACItftlZAf>ON AN8 AfcAl*&S
VOLUME ?C DATA EVAtMAlHX AMD INTERPRETATION ftC^ORr
NEW YORK
CITY
DATED HIGH-RESOLUTION SEDIMENT
CORE LOCATIONS
IN HUDSON RIVER
LOWER HUDSON RIVER
1AMS / Cadmus / Gr»di«n*

-------
EPA REGION II
SCANNING TRACKING SHEET
DOC ID # 80109
DOC TITLE/SUBJECT:
PLATE 4-1
HUDSON RIVER PCB UPDATE #1
SIDE SCAN SONAR MOSAIC
OF THE HUDSON RIVER SEDIMENTS
IN THE VICINITY OF HOT SPOT 14
THIS DOCUMENT IS OVERSIZED AND CAN BE
LOCATED IN THE ADMINISTRATIVE RECORD FILE
AT THE
SUPERFUND RECORDS CENTER
290 BROADWAY, 18™ FLOOR
NEW YORK, NY 10007

-------
¦EDGE OF CORE-
LENGTH (CM)
-EDGE OF CORE '
.LENGTH (CM)
CORE TOP
MATCH UNP
ap* y* rrfoy

NOTES:
a THE VERTICAL SCALE REPRESENTS APPROXIMATE CORE tfUCTM
IN CENTWETERS; EACH IIMX C&SE90NDS TO A CNE-
C3E3NT1ME1ER INCREMENT.
b.	USHT AREAS REPRESENT HIGH tXHSm UAIHHAi. GENCULLY
SANDS AND GRAVELS DARK AREAS REPRESENT LOW DEHSffY
UATERULS GENERALLY HIGH M ORGANIC CONTENT.
c.	A DUPUCATE CORE WAS POUND TO CONTAIN A LAMER OT WOOD
CHIPS AND TWSS AT A DEPTH OF APPROXIMATELY 1ft CM
TOM TIC CORE TOP,
ftfPoot m3
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: fURTWER SITE CHAKACTfHiZAtiON AND ANALYSIS
VOLUME 2C DATA EVALUATION AND INTtRWCTATlON REPOST
X-RADIOGRAPH OF CONFIRMATORY CORE 88
COLLECTED AT APPROXIMATELY RM 187.6.
SOUTH OF THOMPSON ISLAND NEAR HOTSPOT 24
TAMS / C.Umu. / Cr.dt.nt
PLATE 4-2

-------
GRIFFIN
ISLAND
SOE-SCAN SONAR
NTERPflCTATiON
Hot Spot 12
Hot Spot 13
Hot Spot 14
GRIFFIN	^
ISLAND
LEGEND:
Q WTSOCC HOT SPOTS
erg nwt CRAiNCO SEGMENTS MTH
tka POTENTiAur MICH PCB CONCENTRATE
Q UNSURVtYEO MOT SPOT AREAS
NOTE:
: - not CHARACTERIZED
5»0«U'< IS «P»*OawATt MO WAS	OCR'«TO
by tams rnoM m n^oson mivcr sy**r '97*-'977.
e»to*B£C '00 *«n;£C (K0«M»N0C*U ASSOO*Tts. wc . '9'*)
»S»roNS C* *«£ SmcK.mC a'OunS «m '•* MO *w i$7
o&tamco 'row m*socc KAsco on suestoucxr
SgRvlvj PCWOPMtD in 19B6-H9? (UtfjeiiWD)
Hot Spot 16
HUDSON RIVER PCB REASSSSMENT Rl/FS
PHASE 2: FURTHER STE CXAAACTtRlZATTCK ANO ANAfS
WLUME 2C: QATA CVAUJATION ANO INTERPRETATION REPt
INTERPRETATION OF THE 500 kl-
SIDE-SCAN SONAR MOSAIC (/
AND COMPARISON OF FINE-
GRAINED SEDIMENTS & NYSDE
HOT SPOT AREAS (B) IN THE
VICINITY OF HOT SPOT 14
TAMS / Cadmus / Gradient

-------

coce or data
WATCH UNE A
MO SURVEY OATA
OCT OF 0ATA
COCE Or DATA
MO SUWVCY DATA
mo sumcv oat*
CDGC or DATA
-© KYSOCC HOT SPOT WUU0O?
PfTSOCC HOT SPOT Aft£AS
MT8DCC MOT SPOT MICAS NOT COVERCD BY
TX 1991/92 SOE-9CAM SONAR SUttCY
1. 9
-------
FOR CONTINUATION, SEE PLATE 4-4. SHEET 1 Of 2
I
7?
"0
U
M
O
Cr
UNCMAfUCTERlZED
PC8-BCARMC
SEGMENTS HAY
DOST HERE
MARSH MAT
K HOT SPOT
V DATA
NO HOt 90
OCUNCATtO m
LOCK S LAM> CUT
I
tgcgw*
SEBMCNTS «TH POTENTIALLY MCH ICttLS
Of PCS CONTAMMABON
-©
NVSOCC NOT SPOT NUMBER
NYJDEC HOT SPOT AREAS
WYSOCC HOT SPOT AREAS NOT CO«OI£B
THE 1M1/V2 SCC-SCAH SONAR SUttCY
SEE sen 2 or 2
HUDSON RIVER PCS REASSESSMENT Rf/TS
PHASE 2: rUtTHER STE CHAftACTBUATKM AND ANAL'
VQLMC 2C DATA EVALUATION ANO MTERPRETATIQN RE
ZONES OF POTENTIALLY HIG
SEDIMENT PCB CONTAMINATN
IN THE UPPER HUDSON RIVE
1AMS / Ctdmui / Gradlaat

-------
, Fort Edw&rd
Rogers
• slonc
.-/ r'.istt
^ 28
SCALE IN MEIERS
HUDSON-RIVER PCB REASSESSMENT Rt/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
POLYGONAL DECLUSTERING RESULTS
FOR SEDIMENT TOTAL PCB
INVENTORY IN THE
THOMPSON ISLAND POOL -
SUBREACH 1
TAMS / Cadmus / Gradient

-------
IRP
• Fort Edward
Sogers Island ,
gck No. ?
ffi'' N>,
*V 	/	/
ISO 'Qy	|
it	; 5
l\l,	\ i
Thorrpsan ISion^A	¦*.
Dam	! ~
	il
~
002
Total PCB
Concentration
(g/m2)
0-	1
1-	2
2-	4
4- 6
e- s
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
SCALE in meters
HUDSON RIVER PCB REASSESSMENT Rl/FS
PHASE 2: FURTHER Silt CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION ANO INTERPRETATION REPORT
POLYGONAL DECLUSTERING RESULTS
FOR SEDIMENT TOTAL PCB
INVENTORY IN THE
THOMPSON ISLAND POOL -
SUBREACH 2
[TAMS / Cadmus / Gradient

-------
^—7"
<; Fort Edw&rd
Rogers Islcnd \J>-<
: Nc 7
•5',-- 	A''. /
^ i9o-T//y i
)>- if
A
fhompson islcrtd^i.	< -
Oam	n '•
	It	i.
I 8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
Total pcb
Concentration
(g/m2)
0-	1
1-	2
2-	4
4- 6
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
POLYGONAL DECLUSTERING RESULTS
FOR SEDIMENT TOTAL PCB
INVENTORY IN THE
THOMPSON ISLAND POOL -
SUBREACH 3
tams / Cadmus / Gradienll plate 4.7

-------
mMmm
Fort Edward
Roger3 lalond \\j
Lock No. 7
^ \\
/S-J
*V RM.
ISO
1/

7T
Thompson !slon28
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATTON AND INTERPRETATTON REPORT
POLYGONAL DECLUSTERING RESULTS
FOR SEDIMENT TOTAL PCB
INVENTORY IN THE
THOMPSON ISLAND POOL -
SUBREACH 4
TAMS / Cadmus / Gradii

-------
); Fort Edward
Rogers laic

/~

.ock No. 7 •
aw
193
.0 ^
/
//	A^7
am A' / i}
^ :
Thompson
Ooi
r4
1.
M
w
m
Total PCB
Concentration
(g/m2)
~	<-2
~	«•«
4- 6
6- 8
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
POLYGONAL DECLUSTERING RESULTS
FOR SEDIMENT TOTAL PCB
INVENTORY IN THE
THOMPSON ISLAND POOL -
SUBREACH 5
TAMS / Cadmus / Gradient plate 4.-9

-------
/ ,
/ /'
(D
87500 N
^,S}/ /
>v\~V/
¦' ^ v"5
1181900 N
1177000 N
i v
lui i
®
O»:")"?
170100 N
LEGEND
(3) SUBREGION
	 RIVER OUTLINE
SCALE M kCTDW
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION ANO ANALY!
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REP
SEGMENTATION OF THE
THOMPSON ISLAND POOL
FOR SEMIVARIOGRAM ANALYSIS
TAMS / Cadmus / Gradient plate 4-1

-------
SCALE IN METERS
t-.f C.r
• iru
/
J ' Fort Edyf&rd
Rogers
Island \W\-
4-
//
/7
I (
/
ock iNo. 7
:iVi
>/
\\
^ f v o ^
Z? C o- • .-v /
S' .-UV,	i\> /
isc n•//
Thompson IslondySf
Dam
	iiilL
7-
~
~
I
m
007
0-	1
1-	2
2-	4
4- 6
6- 8
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
K
>	O
>	1
*
Total PCB.
Concentration
(g/m 2)
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION ANO ANALYSI
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPO
BLOCK KRIGING RESULTS FOR
SEDIMENT TOTAL PCB INVENTORY
IN THE THOMPSON ISLAND POOL
SUBREACH 1
1AMS / Cadmus / Gradient puTC +.

-------

(? /
• i Fort Edward
'k~%/
Rccers :3lond \\W
^ytock No. 7
[\
0?^
C 1
/
^ F?;v
SCALE IN METERS
' ?A /
~W/
Vr
vs.
Thompson Islcndy**
Dam
	te.
Total PCB
Concentration
(g/m 2)
~
~
~
H
0-	1
1-	2
2-	4
4- 6
6- 8
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
* •'
< •
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALVSf!
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPO
BLOCK KRIGING RESULTS FOR
SEDIMENT TOTAL PCB INVENTORY
N THE THOMPSON ISLAND POOL
SUBREACH 2
TAMS / Cadmus / Gradient PLATE 4-t2

-------
M
n
(' /
: ¦ Fort Edv/krd
/
Roqers Island YJ]^'
YLock No. 7
¦-£... niu-i
/? 103 v
\\
#
/	r\_
IT y
~r 	& /
190 i'.///
Tncnpson lslGncfvr\	) ^
Oom	6

Total PCB
Concentration
(g/m2)
~
~
0-	1
1-	2
2-	4
4- 6
6- 8
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
HRP 002 27 J
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPOR'
BLOCK KRIGING RESULTS FOR
SEDIMENT TOTAL PCB INVENTORY
N THE THOMPSON ISLAND POOL -
SUBREACH 3
TAMS / Cadmus / Gradient
PLATE 4-13

-------
Fort Edward
Rogers iiiond
ock No. 7
TTfi&X
Is / /
Thompson Islcnef
Dam ^yj

'• ¦'//<
HRP 002
2- 4
4- 6
6- 8
8- 10
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
Total PCB
Concentration
(g/m2)
0-	1
1-	2
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
BLOCK KRIGING RESULTS FOR
SEDIMENT TOTAL PCB INVENTORY
IN THE THOMPSON ISLAND POOL -
SUBREACH 4
TAMS / Cadmus / Gradient
PLATE 4-H

-------

lslon<
Rogers Isiond
Dam
Fort Edyard

HRP OOP
Total PCB
Concentration
(g/m2)
o- 1
~	1-2
~	2-4
6- 8
8- HO
10- 12
12- 14
14- 16
16- 20
20- 24
24- 28
>28
"T '-i -j ~*v
.t- y.l .1 /
1
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION ANO ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
BLOCK KRIGING RESULTS FOR
SEDIMENT TOTAL PCB INVENTORY
N THE THOMPSON ISLAND POOL -
SUBREACH 5
TAMS / Cadmus / Gradient
PLATE 4-15

-------
•'.j Fort Edward
Rogers
Island
Thompson
Total PCB
Concentration
(ppm)
5- 10
75-100
100-200
200-SCO
HUDSON RIVER PC8 REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION ANO ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPOR
CONTOURED SURFACE SEDIMENT
TOTAL PCB CONCENTRATIONS FOR
THE THOMPSON ISLAND POOL
BASED ON KRIGING ANALYSIS -
SUBREACH 1
300
SCALE IN METERS
IA.MS / Cadmus / Gradient

-------
7T
Fort Edyard
Rogers Islond \Ua
7
/
¦OCk No 7
rm
193 -i, r'
f J \\
RtVi
'3C"

7 >
SCALE IN METERS
V7;
..L
&
Thompson Islands.
Dom •^Sv\
iiL
Total PCB
Concentration
(ppm)
~
~
n
~
i
m
HRF' 002
0- 2
2- 5
5- 10
10- 15
15- 20
20- 25
25- 50
50- 75
75 -100
100-200
200 - 500
>500
2219
HUOSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: OATA EVALUATION AND INTERPRETATION REPORT
CONTOURED SURFACE SEDIMENT
TOTAL PCB CONCENTRATIONS FOR
THE THOMPSON ISLAND POOL
BASED ON KRIGING ANALYSIS -
SUBREACH 2
TAMS / Cadmus / Gradient PLATE 4-17

-------
HRP
IT
i, Port Edy&rd
Roqers Island A?,/
1/LOCK No. 7
AM
iSO
~500
\
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPORT
CONTOURED SURFACE SEDIMENT
TOTAL PCB CONCENTRATIONS FOR
THE THOMPSON ISLAND POOL
BASED ON KRIGiNG ANALYSIS -
SUBREACH 3
raMS / Cadmus / Gradient

-------
Fort Ed^rard
S\/
Rogers Island yMj
r v '/
»f rVT]
' ^ RW
ISO
.ock No. 7
aw
1S3
fiN./l
J&l

Thompson lsior500
2221
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPOR
CONTOURED SURFACE SEDIMENT
TOTAL PCB CONCENTRATIONS FOR
THE THOMPSON ISLAND POOL
BASED ON KRIGING ANALYSIS -
SUBREACH 4
TAMS / Cadmus / Gradient.
PLATE 4-19

-------
Fort Edvard
Rogers Islcnd
.ock No. 7
Rtvl
193 *r
\\
\\ , V
«K //
RM & 7 >
^ 19G—P '
Thompson
Oam &
m
Total PCB
Concentration
(ppm)
~
~
¦
0- 2
2- 5
5- 10
10- IS
15- 20
20- 25
25- 50
50- 75
75-100
100 - 200
200 - 500
>500
l-lh'F' 002
* ~
SCALE IN METERS
HUDSON RIVER PCB REASSESSMENT RI/FS
PHASE 2: FURTHER SITE CHARACTERIZATION AND ANALYSIS
VOLUME 2C: DATA EVALUATION AND INTERPRETATION REPOR
CONTOURED SURFACE SEDIMENT
TOTAL PCB CONCENTRATIONS FOR
THE THOMPSON ISLAND POOL
BASED ON KRIGING ANALYSIS -
SUBREACH 5
TAMS / Cadmus / Gradient
PLATE 4-20

-------