PEER REVIEW DRAFT, DO NOT CITE OR QUOTE xvEPA United States Environmental Protection Agency Office of Chemical Safety and Pollution Prevention Draft Risk Evaluation for Methylene Chloride (Dichloromethane, DCM) Systematic Review Supplemental File: Data Extraction Tables for Consumer and Environmental Exposure Studies October 2019 NOTICE: This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications. CASRN: 75-09-2 H 1 ------- Monitoring Data Extracted for Methylene Chloride for Indoor Air, Personal Breathing Zone, Surface Water, and Wastewater K) Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score Indoor Air (jig/m3) US CA (five regions) Commercial/Public Commercial buildings (n= 37), 1 m from floor: Fleet service / Gas station convenience store, Dentist office / Healthcare facility, Grocery / Restaurant, Hair salon / Gym, Office, Miscellaneous, Retail 2011 40(1) 1.68 ND to 17.1 NR (mean); 0.83 (GM) 1062239 (Wu et al.. 2011) High US CA School Early childhood education facilities (n=34) at sample height of 1 m. 2010- 2011 34 (0.03) 0.36 0.36 to 0.5 0.36 (mean); 0.36 (median) 1.3 3453092 (Hoana et al.. 2016) High us Detroit, MI area Residential Homes (n=126) with children with asthma 2009- 2010 126 (0.06) 0.71 ND to 7.85 0.54 (mean); 0.71 (median) 0.91 2443355 (Chin et al.. 2014) High us Boston, MA Residential Garage of residences 2004- 2005 16(0.25) 0.39 to 1.25 ND to 147 (95th) 9.8 (mean); 0.3 (median) 36 1065844 (Dodson et al.. 2008) High us Boston, MA Residential Apartment hallway of residences 2004- 2005 10(0.2) 0.39 to 1.25 ND to 15 (95th) 2.6 (mean); 0.4 (median) 4.6 1065844 (Dodson et al.. 2008) High us Boston, MA Residential Basement of residences 2004- 2005 52 (0.42) 0.39 to 1.25 ND to 0.66 (95th) 9.5 (mean); 0.4 (median) 28 1065844 (Dodson et al.. 2008) High ------- CO Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score US Boston, MA Residential Interior room of residences 2004- 2005 83 (0.4) 0.39 to 1.25 ND to 10 (95th) 0.28 (mean); 0.21 (median) 8.7 1065844 (Dodson et al., 2008) High US NR Commercial/Public (Near Source: printmaking) Printmaking art studio at a university (n =1). Mechanically vented second-floor studio, with area samples collected near a cleaning station and in the middle of the studio during a printmaking session. 2002 18 (NR) NR NR 27.2 (mean); 9.6 (median) 0.5 49414 (Rvan et al.. 2002) High us NR Commercial/Public Non-art related floor at a university, three floors above a printmaking floor with separate ventilation (n =1). Area samples collected from hallway. 2002 18(<1) NR ND to NR 0.2 (mean); 0.25 (median) 0.9 49414 (Rvan et al., 2002) High us Los Angeles, CA Residential Homes (n=32) in inner-city neighborhood, sampled in the fall 2000 32(1) 0.22 0.2 to 4.3 1.4 (mean); 1.1 (median) 1.2 1066049 (Sax et al., 2004) High ------- Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score US Los Angeles, CA Residential Homes (n=40) in inner-city neighborhood, sampled in the winter 2000 40 (0.95) 0.27 0.27 to 8.7 2.4 (mean); 1.9 (median) 2 1066049 (Sax et al.. 2004) High US Minneapolis, MN Residential Indoors in the child's primary residence, during the spring. 2000 113 (0.20) NR ND to 1.2 (90th) NR (mean); 0.3 (median) 632310 (Adaate et al.. 2004) Medium us Minneapolis, MN Residential Indoors in the child's primary residence, during the winter. 2000 113 (0.23) NR ND to 1.3 (90th) NR (mean); 0.4 (median) 632310 (Adaate et al.. 2004) Medium us Minneapolis, MN School Indoors in five randomly selected classrooms in each school, during the spring. 2000 113 (0.02) NR NR NR (mean); 0.3 (median) 632310 (Adaate et al.. 2004) Medium us Minneapolis, MN School Indoors in five randomly selected classrooms in each school, during the winter. 2000 113 (0.02) NR NR NR (mean); 0.4 (median) 632310 (Adaate et al.. 2004) Medium us New York, NY Residential Homes (n=30) in inner-city neighborhood, sampled in the summer 1999 30 (0.28) 1.63 1.63 to 176 10 (mean); 1.4 (median) 32.9 1066049 (Sax et al.. 2004) High ------- Ul Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score US New York, NY Residential Homes (n=36) in inner-city neighborhood, sampled in the winter 1999 36 (0.97) 0.22 0.2 to 69 5.5 (mean); 2.2 (median) 12.3 1066049 (Sax et al.. 2004) High US Southeast Chicago Residential Urban homes (n=10) sampled over a 10- month period. Stationary samples were collected from the kitchen in the breathing zone. 1994- 1995 48(1) NR 0.76 to 1190 140 (mean); 60.5 (median) 235 31210 (Van Winkle and Scheff. 2001) High us Denver, CO Residential VOCs from homes, pre-occupancy (n=8) 1994 9 (0.78) 0.14 0.14 to NR 2.64 (mean); 1.57 (median) 2.63 78782 (Lindstrom et al.. 1995) Medium CA NR Residential Homes (n=6), main floor 1987 6(1) NR 4 to NR 26.9 (mean); NR (median) 27974 (Chan et al.. 1990) Medium CA NR Residential Homes (n=12), main floor 1986 12 (0.92) NR ND to NR 9.1 (mean); NR (median) 27974 (Chan et al.. 1990) Medium SA Kuwait Residential Houses (n=20), sampled from living room 1998 226 (0.66) 0.26 ND to NR NR (mean) 1.36 1744157 (Bouhamra and Elkilani. 1999) Medium ------- CD Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score CN NR Commercial/Public Non-office premises (n=10) including one library, one social services center, two customer services centers, two shopping malls, two recreational building units, one reception area and one training center under renovation. 1.1 rn above the floor level. 1998- 2000 10(0.9) 0.2 ND to 35.8 14.1 (mean); 10.7 (median); 7.41 (GM) 9.6 824555 (Chao and Chan, 2001) Medium CN Metropolitan area Commercial/Public Restaurants (n=4) in urban area, ventilated using central air- conditioning systems. Samples collected during dinner or lunch in main seating area. 2000 16(1) 0.2 0.9 to 139 7.1 (mean); NR (median) 1642248 (Lee et al., 2001) Medium CN Southern China Commercial/Public New hotels (n=13), sampled from 1 meter above floor 2006- 2007 13 (NR) NR NR to 34 10 (mean); NR (median) 4.53 1978790 (Chan et al.. 2011) High ------- Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score CN Beijing Residential 50 residences during the heating season (December 2011) and 50 residences during the non-heating season (April/May 2012). 2011- 2012 100 (NR) NR NR to 780 12.5 (mean); 4.05 (median); (GM) 3449449 (Duan et al.. 2016) High CN Shanghai Residential Eight residences that had been renovated within the previous year. Three sampling sites were used in each participating residence (the living room, bedroom, and study). 2015 8 (NR.) NR NR 47.43 (mean); 15.48 (median) 3453725 (Dai et al.. 2017) High JP Katsushika Ward, Tokyo Residential Houses (n=30), sampled from bedrooms 1995 238(1) NR 0.769 to 1790 108 (mean); NR (median); 36.1 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=30), sampled from bathrooms. 1995 117(1) NR 0.75 to 1030 56.2 (mean); NR (median); 22.3 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=30), sampled from living rooms 1995 237(1) NR 1.13 to 2280 112 (mean); NR (median); 33.1 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=30), sampled from kitchens. 1995 116(1) NR 1.46 to 1950 109 (mean); NR (median); 34.6 (GM) 3545469 (Amaaai et al.. 1999) Medium ------- 00 Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score JP Katsushika Ward, Tokyo Residential Houses (n=13), samples collected from living rooms 1995 51(1) NR 2.57 to 341 58.1 (mean); NR (median); 35 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=13), samples collected from kitchens 1995 51(1) NR 3.81 to 368 62.6 (mean); NR (median); 38.7 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=13), samples collected from bedrooms 1995 50(1) NR 1.04 to 305 55.7 (mean); NR (median); 35.4 (GM) 3545469 (Amaaai et al.. 1999) Medium JP Katsushika Ward, Tokyo Residential Houses (n=13), sampled from bathrooms. 1995 51(1) NR 2.79 to 294 46 (mean); NR (median); 31.5 (GM) 3545469 (Amaaai et al.. 1999) Medium Personal Breathing Zone (jig/m3) US NR Commercial/Public (Near Source: printniaking) 12 students and 1 faculty member in university art (printmaking) studio. Mechanically ventilated second- floor. 2002 90 (NR) NR NR 4.9 (mean); 2.6 (median) 8.4 49414 (Rvan et al.. 2002) High US Minneapolis, MN Residential In personal breathing zones, during the spring. 2000 113 (0.17) NR NR 0.3 (median) 632310 (Adaate et al.. 2004) Medium ------- CD Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score US Minneapolis, MN Residential In personal breathing zones, during the winter. 2000 113 (0.19) NR NR 0.4 (median) 632310 (Adaate et al., 2004) Medium US Minneapolis-St. Paul, MN General Adults, non-smoking (n=70) living in three neighborhoods: (inner- city/economically disadvantaged, blue- collar/near manufacturing plants, and affluent) 1999 333 (1) NR NR 6.7 (mean); 1.4 (median) 730121 (Sexton et al., 2007) High us Greater Boston Metropolitan Area Commercial/Public Department Stores (n=10). 2004 5 (NR) 2.55 ND to 10.5 2.04 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Drug Stores (11= 8) 2003 7 (NR) 2.55 ND to 9.67 2.31 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Electronics Stores (ii=9) 2004 7 (NR) 2.55 ND to 4.75 1.06 (GM) 2442846 (Loh et al., 2006) High ------- o Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score US Greater Boston Metropolitan Area Commercial/Public Furniture Stores (ii=ll) 2003 6 (NR) 2.55 ND to 14.5 1.275 (GM) 2442846 (Loh et al., 2006) High US Greater Boston Metropolitan Area Commercial/Public Grocery Stores (n=16) 2003 12 (NR) 2.55 ND to 6.13 1.275 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Hardware Stores (n=32) 2003- 2004 23 (NR) 2.55 4.17 to 123 11.12 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Home Stores (11= 16) 2003 7 (NR) 2.55 ND to 3.64 1.275 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Multipurpose Stores (n=24) 2003- 2005 15 (NR) 2.55 ND to 9.36 3.97 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Sporting Goods Stores (n=14) 2003 7 (NR) 2.55 ND to 7.45 1.275 (GM) 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Dining Stores (n=20) 2004 20 (NR) 2.55 ND to 90.3 NR 2442846 (Loh et al., 2006) High us Greater Boston Metropolitan Area Commercial/Public Transportation Stores (ii=5) 2003- 2004 21 (NR) 2.55 ND to 1.46 1.275 (GM) 2442846 (Loh et al.. 2006) High ------- Country St ate/C ity/Region Site Year No. of Samples (Det. Freq.) Detection Level Concentration Reference (HERO ID) Range Central Tendency Standard Deviation HERO Citation Data Eval. Score Surface Water (ng/L) US NR Background Nation-wide; Surface water for drinking water sources (rivers and reservoirs) 1999- 2000 375 (0.0027) 0.2 ND to 2.6 NR NR 3975046 (Usgs. 2003) Medium US to CL NR Background Eastern Pacific Ocean (California, US to Valparaiso, Chile) 1979- 1981 30 (0.93) 0.0004 ND to 0.008 0.0031 (mean); NR (median) 0.0032 29192 (Sinah et al.. 1983) Medium BR NR Background Santo Antonio da Patrulha, Tres Coroas, and Parobe in the Sinos River Basin; River samples collected from seven points on the three main rivers of the Sinos River Basin 2012- 2013 60 (0.72) NR ND to 0.0058 0.0019 (mean) NR 3489827 (Bianchi et al.. 2017) Medium CN NR Background Daliao River (n=20 sites), heavily industrialized 2011 20 (0.75) 0.675 ND to 4.47 0.678 (mean) NR 3488897 (Ma et al.. 2014) High EU NR Background Estuaries of the Scheldt, Thames, Loire, Rhine 1997- 1999 73(1) NR 0.0003 to 4.98 NR NR 3242836 (Christof et al.. 2002) High ------- No. of Concentration Reference (HERO ID) Country State/City /Region Site Year Samples (Det. Freq.) Detection Level Range Central Tendency Standard Deviation HERO Citation Data Eval. Score FR NR Background Paris; River samples (raw) collected from the River Seine (n=14 stations), River Marne (n=l station) and River Oise (n=l station). Wastewater treatment plants are located on the river. 1994- 1995 43(1) NR 0.016 to 4.92 1.004 (mean); 0.473 (median) 1.218 3587944 (Duclos et al., 2000) Medium JP NR Background Osaka; Rivers and estuaries (30 sites) in industrialized city 1993- 1995 136 (NR) NR NRto 134 1.7 (median) NR 645789 (Yamamoto etal.. 1997) High Wastewater (ug/L) IR NR Near Facilit\> (WWTP for automotive manufacturing industry') Influent wastewater 2012 15 (NR) NR NR 64 (mean) 12 2667557 (Abtahi et al.. 2013) Medium IR NR Near Facilit\> (WWTP for automotive manufacturing industry') Effluent following treatment by flow equalization basin, primary sedimentation tank, conventional activated sludge process 2012 15(0) NR ND 2667557 (Abtahi et al.. 2013) Medium KR Nation-wide Near Facility (industrial WWTPs) Influent/Effluent 2012 81 1 1 to 120 5 (median) 3580141 (Lee et al., 2015) Medium ------- KR Nation-wide Near Facilit\> 2012 81 1 ND — — 3580141 (Lee et al.. Medium (industrial WWTPs) 2015) Effluent Study Info: The information provided includes the HERO ID and citation; country and year samples collected; number of samples and detection frequency. Abbreviations: If a value was not reported, it is shown in this table as ND = not detected at the reported detection limit; GM = geometric mean; DF = detection frequency; NR = Not reported. The following abbreviations are for countries/continents: BR = Brazil; CA = Canada; CL = Chile; CN = China; EU = Europe; FR = France; IR = Iran; .TP = Japan; KR = Korea; SA = Saudi Arabia; US = United States. Parameters: All statistics are shown as reported in the study. All minimum values determined to be less than the detection limit are shown in this table as "ND". If a maximum value was not provided, the highest percentile available is shown (as indicated in parentheses); if a minimum value was not provided, the lowest percentile available is shown (as indicated in parentheses). ------- DCM Biomonitoring Studies Systematic review identified biomonitoring measurements from only one source, the National Health and Nutrition Examination Survey (NHANES), conducted by CDC's National Center for Health Statistics (NCHS). The survey is "a complex, stratified, multistage, probability- cluster design survey" designed to collect data on the health and nutrition of a representative sample of the US population. Based on subsamples of approximately 2,500 participates in each 2-year survey cycle, the concentration of methylene chloride in blood of males and females age 12 to 60+ yrs were non-detect between 2003 and 2016. Detection limits varied between 0.07 and 0.25 ng/mL (C'dc. 2019). Note, only CDC 2017 was identified in systematic review which has data from 2003-2008. The 2019 report had the same data, plus new data through 2016. References Abtahi. M; Naddafi. K; Mesdaghinia. A; Yaghmaeian. K; Nabizadeh. R; Jaafarzadeh. N; Rastkari. N; Saeedi. R; Nazmara. S. (2013). Dichloromethane emissions from automotive manufacturing industry in Iran: Case study of the SAIPA automotive manufacturing company. Toxicol Environ Chem 95: 757-764. http://dx.doi.org/10.1080/02772248.2Q13.821126 Adgate. JL; Church. TR; Ryan. AD; Ramachandran. G; Fredrickson. AL; Stock. TH: Morandi. MT; Sexton. K. (2004). Outdoor, indoor, and personal exposure to VOCs in children. Environ Health Perspect 112: 1386-1392. http://dx.doi.org/10.1289/ehp.7107 Amagai. T; Olansandan; Matsushita. H; Ono. M; Nakai. S; Tamura. K; Maeda. K. (1999). A survey of indoor pollution by volatile organohalogen compounds in Katsushika, Tokyo, Japan. Indoor Built Environ 8: 255-268. http://dx.doi.org/10.1159/000024649 Bianchi. E: Lessing. G; Brina. KR: Angeli. L: Andriguetti. NB: Peruzzo. J. R.; Do Nascimento. CA: Spilki. FR: Ziulkoski. AL: da Silva. LB. (2017). Monitoring the Genotoxic and Cytotoxic Potential and the Presence of Pesticides and Hydrocarbons in Water of the Sinos River Basin, Southern Brazil. Arch Environ Contain Toxicol 72: 321-334. http://dx.doi.org/10.1007/s00244-016-Q334-0 Bouhamra. WS: Elkilani. AS. (1999). Investigation and modeling of surface sorption-desorption behavior of volatile organic compounds for indoor air quality analysis. Environ Technol 20: 531-545. http://dx.doi.org/10.1080/095933320Q8616849 Cdc. (2019). Fourth National Report on Human Exposure to Environmental Chemicals, Updated Tables, January 2019, Volume 2. Atlanta, GA: U.S. Department of Health and Human Services. https://www.cdc.gov/exposurereport/pdf/FourthReport UpdatedTables Volume2 Jan2019-508.pdf Chan. C: Lee. SC: Chan. W: Ho. K: Tian. L: Lai. S: Li. Y: Huang. Y. u. (2011). Characterisation of Volatile Organic Compounds at Hotels in Southern China. Indoor Built Environ 20: 420-429. http://dx.doi.org/10.1177/1420326X11409458 Chan. CC: Vainer. L: Martin. JW; Williams. DT. (1990). Determination of organic contaminants in residential indoor air using an adsorption- thermal desorption technique. J Air Waste Manag Assoc 40: 62-67. Chao. CY; Chan. GY. (2001). Quantification of indoor VOCs in twenty mechanically ventilated buildings in Hong Kong. Atmos Environ 35: 5895-5913. http://dx.doi.Org/10.1016/s 1352-2310(01)00410-1" Chin. JY: Godwin. C: Parker. E: Robins. T: Lewis. T: Harbin. P: Batterman. S. (2014). Levels and sources of volatile organic compounds in homes of children with asthma. Indoor Air 24: 403-415. http://dx.doi.org/10. Ill 1/ina. 12086 Christof. O: Seifert. R; Michaelis. W. (2002). Volatile halogenated organic compounds in European estuaries. Biogeochemistry 59: 143-160. ------- Dai. H; Jing. S; Wang. H; Ma. Y; Li. L; Song. W; Kan. H. (2017). VOC characteristics and inhalation health risks in newly renovated residences in Shanghai, China. Sci Total Environ 577: 73-83. http://dx.doi.Org/10.1016/i.scitotenv.2016.10.071 Dodson. RE; Lew. JI; Spengler. JD; Shine. JP; Bennett. DH. (2008). Influence of basements, garages, and common hallways on indoor residential volatile organic compound concentrations. Atmos Environ 42: 1569-1581. http://dx.doi.Org/10.1016/i.atmosenv.2007.10.088 Duan. H: Liu. X: Yan. M: Wu. Y: Liu. Z. (2016). Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China. Front Env Sci Eng 10: 73-84. http://dx.doi.org/10.1007/sll783-014-Q743-0 Duclos. Y: Blanchard. M: Chesterikoff. A: Chevreuil. M. (2000). Impact of paris waste upon the chlorinated solvent concentrations of the river Seine (France). Water Air Soil Pollut 117: 273-288. http://dx.doi.Org/10.1023/A: 1005165126290 Hoang. T; Castorina. R; Gaspar. F; Maddalena. R; Jenkins. PL; Zhang. Q; McKone. TE; Benfenati. E; Shi. AY; Bradman. A. (2016). VOC exposures in California early childhood education environments. Indoor Air 27: 609-621. http://dx.doi.Org/10.l 111/ina. 12340 Lee. SC; Li. WM; Chan. LY. (2001). Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong. Sci Total Environ 279: 181-193. Lee. W; Park. SH; Kim. J; Jung. JY. (2015). Occurrence and removal of hazardous chemicals and toxic metals in 27 industrial wastewater treatment plants in Korea. Desalination Water Treat 54: 1141-1149. http://dx.doi.org/10.1080/19443994.2014.93581Q Lindstrom. AB; Proffitt. D; Fortune. CR. (1995). Effects of modified residential construction on indoor air quality. Indoor Air 5: 258-269. http://dx.doi.Org/10.llll/i.1600-0668.1995.00005.x Loh. MM; Houseman. EA; Gray. GM; Lew. JI; Spengler. JD; Bennett. DH. (2006). Measured concentrations of VOCs in several non-residential microenvironments in the United States. Environ Sci Technol 40: 6903-6911. http://dx.doi.org/10.1021/es060197g Ma. H; Zhang. H; Wang. L; Wang. J; Chen. J. (2014). Comprehensive screening and priority ranking of volatile organic compounds in Daliao River, China. Environ Monit Assess 186: 2813-2821. http://dx.doi.org/10.1007/slQ661-013-3582-8 Ryan. TJ; Hart. EM; Kappler. LL. (2002). VOC exposures in a mixed-use university art building. AIHA J 63: 703-708. http://dx.doi.org/10.1202/0002-8894(2002)063<0703:VEIAMU>2.0.CQ:2^ Sax. SN; Bennett. DH; Chillrud. SN; Kinney. PL; Spengler. JD. (2004). Differences in source emission rates of volatile organic compounds in inner-city residences of New York City and Los Angeles. J Expo Anal Environ Epidemiol 14: S95-109. http://dx.doi.org/10.1038/si.iea.7500364 Sexton. K; Mongin. SJ; Adgate. JL; Pratt. GC; Ramachandran. G; Stock. TH; Morandi. MT. (2007). Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data. J Toxicol Environ Health A 70: 465-476. http://dx.doi.org/10.1080/1528739060087Q858 Singh. HB; Salas. LJ; Stiles. RE. (1983). Selected man-made halogenated chemicals in the air and oceanic environment. J Geophys Res 88: 3675- 3683. Usgs. (2003). A national survey of methyl tert-butyl ether and other volatile organic compounds in drinking-water sources: Results of the random survey. Reston, VA: U.S. Department of the Interior, U.S. Geological Survey, https://pubs.er.usgs.gov/publication/wri024079 Van Winkle. MR; Scheff. PA. (2001). Volatile organic compounds, polycyclic aromatic hydrocarbons and elements in the air of ten urban homes. Indoor Air 11: 49-64. http://dx.doi.org/10.1034/i.l600-0668.206L011001049.x Wu. XM; Apte. MG; Maddalena. R; Bennett. DH. (2011). Volatile organic compounds in small- and medium-sized commercial buildings in California. Environ Sci Technol 45: 9075-9083. http://dx.doi.org/10.1021/es202132u ------- Yamamoto. K; Fukushima. M; Kakutani. N; Kuroda. K. (1997). Volatile organic compounds in urban rivers and their estuaries in Osaka, Japan. Environ Pollut 95: 135-143. http://dx.doi.org/10.1016/S0269-7491(96)00100-5 CD ------- |