United Siafes	Air And Radiation	cP A 440-5-9^-001
Environmental Protection	(.6306W)	August 1994
Agency
Applicability Of The Asbestos
NESHAP To Asbestos
Roofing Removal Operations
Guidance Manual

-------
GUIDANCE ON THE APPLICABILITY OF
THE ASBESTOS NESHAP TO ASBESTOS
ROOFING REMOVAL OPERATIONS
U.S. ENVIRONMENTAL PROTECTION AGENCY
Office of Air and Radiation
Office of Air Quality Planning and Standards
Emissions Standards Division
Research Triangle Park, North Carolina 27711
September 1994

-------
GUIDANCE ON THE APPLICABILITY OF THE
ASBESTOS NESHAP TO ASBESTOS
ROOFING REMOVAL OPERATIONS
EPA Contract No. 68-D1-Q118
EPA Project No. 80/41C
(RTI Project No. 5538-085)
September 1994
Prepared by
Research Triangle Institute
P.O. Box 12194
Research Triangle Park, NC 27709
Prepared for
Standards Development Branch
Emissions Standards Division
Office of Air Quality Planning and Standards
U.S. Environmental Protection Agency

-------
DISCLAIMER
This document:' was prepared under contract to the United
States Environmental Protection Agency (EPA). Neither the EPA
nor any of their employees makes any warranty, expressed or
implied, or assumes any legal liability for any third party's
use of or the results of such use of any information, product,
or process discussed in this document. The policies set forth
in this guidance document are intended solely as guidance.
EPA officials may decide to follow this guidance or act at
variance therewith, based on an analysis of individual
circumstances. Mention or illustration of company or trade
names, or of commercial products does not constitute
endorsement by the EPA.

-------
TABLE OF CONTENTS
Section	Page
1.0 INTRODUCTION	'		 .	1-1
1.1	BACKGROUND . 	 ........	1-1
1.2	OBJECTIVES					1-2
2.0 ROOFING INDUSTRY	'			2-1
2.1	NUMBER AND SIZE OF-ESTABLISHMENTS .....	2-1
2.2	TYPE OF PROJECTS: REROOFING VS. RE-COVERING	2-1
3.0 ROOF ASSEMBLIES AND MATERIALS			3-1
3.1	DECKS 				3-1
3.1.1	Slope	..."	.	3-1
3.1.2	Attachments				3-2
3.2	VAPOR RETARDERS	'		3-2
,3.3 THERMAL INSULATION		3-3
3.4 MEMBRANES ....... 	 .....	3-4
3.4.1	Built-Up Roof			3-4
3.4.2	Single-Ply Membrane .........	3-7
3.4.3	Shingles 			 . .	'3-7
3.4.4	Flashing 			 .	3-0
- 3.5 MEMBRANE SURFACING . . 			3-10
3.5.1 Aggregate for Built-up Roofing ...	3-10
3.5.2- Smooth-Surface ......		3-10
3.5.3 Mineral 			3-11
4.0 ASBESTOS ROOFING PRODUCTS .. 		4-1
4.1	FELTS		4-1
4.2	CEMENTS, COATINGS, AND ADHESIVES 		4-3
i

-------
TABLE OF CONTENTS
Section	Page
4.3	SINGLE-PLY PRODUCTS ............	. 4-3
4.4	SHINGLES			4-3
4.5	DECKING		4-3
4.6	INSULATION .................	4-3
4.7	OTHER ROOF COMPONENTS 			4-5
5.0 ROOF REMOVAL PRACTICES .............	5-1
5.1	BUILT-UP ROOFS		5-1
5.1.1	Surface Preparation ........	5-2
5.1.2	Manual Methods ............	5-2
5.1.3	Rotating Blade (RB) Roof Cutter . .	5-5
5.1.4	Slicer ......... 		5-7
5.1.5	Roof Plow		5-7
5.1.6	Concrete/Asphalt Planer ......	5-9
5.1.7	Power Remover (Power Tear-off Machine)	5-9
5.2	SHINGLED ROOFS		5-12
• 6.0 -DUST CONTROL METHODS		 . 6-1
6.1	REMOVAL METHODS		6-1
6.1.1	Modified RB Roof Cutter'Blade . . .	6-2
6.1.2	Slicing.		6-2
6.1.3	Concrete/Asphalt Planer ......	6-2
6.2	WETTING 				6-3
6.3	HE PA-FILTERED LOCAL EXHAUST VENTILATION . .	6-6
6.4	RE-COVERING VS. REROOFING		6-6
6.5	WASTE HANDLING AND DISPOSAL ........	6-7
ii

-------
7.0 SAFETY HAZARDS AND PROPERTY DAMAGE		7-1
7.1	GENERAL				7-1
¦ 7.1.1 Dust		7-1
7.1.2	Falls . 			7-2
7.1.3	Heat			7-2
7.1.4	Rushed Jobs			7-3
7.2	NESHAP RELATED	.	7-3
7.2.1	Safety Hazards 	 .....	7-3
7.2.2	Property Damage 	 .....	7-4
8.0 NESHAP REQUIREMENTS: INTERPRETIVE RULE GOVERNING
ROOF REMOVAL OPERATIONS 			8-1
I.	Applicability of the Asbestos NESHAP . . .	8-2
A.	Threshold Amounts of Asbestos-Containing
Roofing Material 		8-3
B.	A/C Shingle Removal (Category II ACM
Removal)			8-5
C.	Cutting vs. Slicing and Manual Methods
for Removal' of Category I ACM ....	8-6
II.	Notification			8-7
III.	Emission Control Practices . 		8-9
A.	Requirements to Adequately Wet and
Discharge No Visible Emission ....	-8-9
B.	Exemptions from Wetting Requirements .	8-10
C.	Waste Collection and Handling ....	8-11
IV.	Waste Disposal		8-.15
A.	Disposal Requirements 		8-15
B.	Waste Shipment Record ........	8-15
V.	Training		8-16
References ...... 	 .....	R-l
iii

-------
APPENDIXES
GLOSSARY
iv

-------
LIST OF TABLES
Table	Page
2-1.	TYPE OF PROJECT 			2-1
3-1.	MINIMUM SLOPE FOR LOW-SLOPE-ROOF SYSTEMS . . . 3-2
3-2. INSULATIONS USED IN NONRESIDENTIAL, LOW-SLOPED
ROOFING PROJECTS 	 ..... 3-4
3-3.	MEMBRANES USED IN NONRESIDENTIAL ROOFING
PROJECTS 		3-5
4-1.	ASPHALT-SATURATED AND ASPHALT-COATED ASBESTOS
ROOFING FELTS			 4-2
4-2. ASBESTOS-CONTAINING CEMENTS, COATINGS, AND
ADHES IVES		4-4
v

-------
LIST OF FIGURES
Figure	Page
3-1. Typical built-up roof 		3-6
3-2. Base flashing 		 .	3-9
5-1. Gravel removal by vacuuming 		5-3
5-2. Power broom ....... 	 ....	5-4
5-3. Rotating blade roof cutter 	 .....	5-6
5-4. Slicer and blade . 		5-6
5-5. Roof plow 			5-10
5-6.	Concrete planer and vacuum . . . 			5-11
6-1.	Rotating blade roof cutter equipped with a spray
nozzle and vacuum system 		6-5
vi

-------
1.0 INTRODUCTION
1.1 BACKGROUND
The asbestos national emission standards for hazardous
air pollutants (NESHAP) were initially promulgated in 1973 in
accordance- with Section 112 of the Clean Air Act (CAAJ of
19-70. Revised several times to expand coverage and increase-
stringency, the asbestos NESHAP was revised-on November 20,
1990, (55 FR 48406) for the purpose of enhancing enforcement
and promoting compliance without altering the stringency of
controls or expanding coverage.
Because of the complexities of the asbestos NESHAP and as
a result of discussions with representatives of the roofing
industry, it became evident that clarification was needed as
to the applicability of the asbestos NESHAP to the removal of
asbestos-containing roofing material (ACRM), as well as how
compliance with the regulation could be achieved. The U.S.
Environmental Protection Agency (EPA) decided (1) to develop
guidance that documents roof removal practices including those
that comply with the asbestos NESHAP and those that are not
subject to the NESHAP and (2) to develop an Interpretive Rule
that specifies how and when the asbestos NESHAP applies to the
removal of ACRM. The Interpretive Rule, published as Appendix
A to the Asbestos NESHAP (40 CFR part 61 subpart M), and this
guidance document'are intended to clarify for industry and
enforcement agencies how and under what circumstances the
NESHAP applies to the removal of ACRM and how compliance can"
be achieved.
1-1

-------
1.2 OBJECTIVES
The objectives of the guidance are as follows:
•	Provide an overview of the roofing industry
(Section 2.0), roof systems (Section 3.0}, 'and
asbestos roofing products (Section 4.0),
•	Describe current roofing removal practices (Section
5.0) .
•	Describe dust control measures, including removal
methods and add-on engineering controls (Section
6.0) .
•	Describe some of the hazards associated with roof
removal (Section 7.0).
•	Describe conditions under which the 1MESHAP is, and
is not, applicable to roof removal operations and
describe how to achieve compliance (Section 8.0).
While the emphasis in the guidance is on built-up roofing
(BUR), attention is also given to other roofing products such
as asbestos-cement (A/C) and asbestos-asphalt shingles.
1-2

-------
2.0 ROOFING INDUSTRY
2.1	NUMBER AND SIZE OF ESTABLISHMENTS
Roofing contractors are classified in SIC 1761, Roofing,
Siding, and Sheet Metal Work. Based on information from the
Census of Construction Industries,1 and the National Roofing
Contractors Association (NRCA)2 there are about 15,000 firms
that do primarily roofing work and between 132,000 and 150,000
workers employed by firms that do roofing primarily.
2.2	TYPE OF PROJECTS: REROOFING VS. RE-COVERING
The NRCA estimates that about 70,000 roof removal jobs
are done annually (excluding four-unit or less residential
structures) .2 Based on data collected from its membership,3
the NRCA estimates the percentages of all roofing projects
that are reroofing (with roof removal), re-covering (without
removal), and new construction. The results of their survey
are presented in Table 2-1.
TABLE 2-1. TYPE OF PROJECT
Type
Percent of all projects
New construction
Reroofing with roof removal
Re-covering without roof removal
21
48
31
Source: National Roofing Contractors Association, Annual
Market Survey, 1992-93.

-------

-------
3.0 ROOF ASSEMBLIES AND MATERIALS
This section provides a brief review cf roof assemblies
and materials, including decks, vapor retarders, insulation,
membranes and membrane surfacing.
3.1 DECKS
The -deck is the structural surface to which the roofing
system (including insulation) is applied.4 In addition to
serving as the structural base for the roof system,•decks must
meet other design requirements regarding deflection,
component-anchorage, dimensional stability, fire resistance
and surface character.5 Deck materials include: wood plank;
wood"panel (including plywood, oriented strand board, and
waferboard) meeting minimum industry standards; poured gypsum
concrete; lightweight insulating concrete; precast concrete or
cementitious wood fiber plank; precast-prestressed concrete;
reinforced concrete; and steel.4 Metal, concrete and wood
decks compose the majority of the market.3
Deck design must take into account strength, deflection,
drainage or slope, and component anchorage or attachments.
Two, critical deck design parameters are slope and component'
anchorage or attachments.
3.1.1 Slope
To provide drainage and prevent the accumulation of
rainwater, roofs are sloped. Slope is often provided by,the
deck, although in some situations it is provided by tapered
insulation and sloped insulating fills. Even so-called "flat"
roofs should be slightly sloped to promote positive drainage.
Suggested slopes for three types of roof are given in
Table 3-I.4
3-1

-------
TABLE 3-1. MINIMUM SLOPE FOR LOW-SLOPE ROOF SYSTEMS
Roof type
Slope (in, per ft)
Coal-tar, aggregate covered BUR
0.125
Other types of BUR and single-piles
0.25
Mineral-surfaced, roll roofing
1-4 +
Source: National Roofing Contractors Association, The NHCA
Roofing and Waterproofing Manual. July 1992.
3.1.2 Attachments
To prevent wind uplift from removing the roof membrane
from the insulation or deck, or removing the roof insulation
from the deck, attachment is essential. Two basic methods of
attaching roof system components are
•	Mechanical fastening {such as nailing, screwing,
etc.)
•	Adhering (such as with adhesives or asphalt*).
3.2 VAPOR RETARDERS
In cold weather, water vapor flows upward from a heated,
moist interior to a colder-, generally drier exterior. The use
of insulation in roof systems shifts the dewpoint from under
the roof system to within the roof system. Condensation of
water vapor within the roof systems may damage the insulation
or result in liquid water leaking into the space-below.
Condensate also may.freeze and expand, damaging the roof
system. To prevent interior moisture from damaging the roof
system, a vapor retarder is often employed.
Asphalt is a dark brown to black cementitious material in
which the predominating constituents are bitumens, which
occur in nature or are obtained in petroleum processing.4
Asphalts are designated as Types I through IV, with
softening points and viscosities increasing with the type
designation. Additional information on asphalts is
presented in Section 3.4.1.
3-2

-------
A variety of materials are used as vapor retarders,
including one or two plies of asphalt-saturated felt adhered
with bitumen; vinyl or polyethylene film; polyvinyl chloride
{PVC) sheets; aluminum foil; and laminated kraft paper sheets
with a bitumen-sandwiched or bitumen-coated kraft paper.
In temperate humid climates during much of the year,
water vapor flows in the opposite direction, i.e., down
through the roof to the interior.5 In these climates, the
roof membrane acts as the vapor retarder.
3.3 THERMAL INSOLATION
Four categories of insulation are used in low-slope roof
systems:
•	Rigid board insulation
•	Dual-purpose deck and insulating panels
•	Poured-in-place insulating-concrete fills
•	Sprayed-in-place polyurethane foam
In addition, blanket or loose-filled insulation maybe used in
joist cavities under the roof deck.
¦ Rigid board insulation includes wood and vegetable fiber
boards, foamed plastics, rigid glass fibers, perlite, cellular
glass, .mineral 'fiberboard, and poured lightweight insulating
concretes. Preformed structural wood-fiber decks made of
cement-coated wood fibers (e.g., Tectum®) also' serve as
insulation, lightweight insulating concretes contain perlite
(siliceous volcanic glass) ,, or. vermiculite (expanded mica)
aggregate and Portland cement. Polyurethane foam is the
principal sprayed-in-place plastic foam.
Insulation for steep-sloped roofs is often, applied under
the deck. Insulation used in nonresidential, low-sloped roofs
is summarized in Table 3-2.6
3-3

-------
TABLE 3-2. INSULATIONS USED IN NONRESIDENTIAL,
LOW-SLOPED ROOFING PROJECTS
Insulation
Percent of projects
Polyisocyanurate
43 . 3
Perlite
21.3
Expanded polystyrene
9.8
Extruded polystyrene
4.3
Glass fiber
6.4-
Cellular glass
0.7
Phenolic foam
2.9
Composite
4.0
Other
7.3
Source: National Roofing Contractors Association, 1391/1992
NRCA Market Survey.
3.4 MEMBRANES
Roofing contractors' experiences with various
low-sloped membranes, are summarized in Table 3-3,6 Built-up
roof and ethylene propylene diene monomer (EPDM) membranes are
currently the most frequently used.
3.4.1 . Built-uo Roof
A diagram of a typical built-up roof is shown in
Figure 3-1.7 Built-up roof membranes consist of alternating
layers of bitumen and roofing felt that may be surfaced with
an aggregate. Bitumen is (1) a class of amorphous, black or *
dark colored {solid, semi-solid or viscous) cementitious
substances, natural or manufactured, composed principally of ¦
• high-molecular-weight hydrocarbons, soluble in carbon
disulfide, and found in asphalts, tars, pitches and
asphaltites,* (2) a generic term used to denote any material
composed principally of bitumen.4
Both petroleum asphalts and coal tar, the bitumens used
in built-up roofing, have the following-desirable properties;.
•	Good resistance to water penetration and low water
absorptivity
•	Good weather durability
3-4

-------
TABLE 3-3. MEMBRANES USED IN NONRESIDENTIAL ROOFING PROJECTS
Membrane	Percent of projects
Built-up roofing
30.4
Ethylene propylene diene
27.3
monomer (EPDM)

Modified bitumen-APP
11.1
Modified bitumen-SBS
9.5
Asphalt shingles
5.6
Polyvinyl chloride (PVC)
3.4
Clorosulfonated polyethylene C.CSPE)

{e.g. Hypaion)
2.3
Tile
1.8
Other single-ply
1.7
Metal-architectural
1.7
Metal-structural
0.4
Polyurethane foam
0.9
Liquid-applied
0.4
Other
3.5
Source: National Roofing Contractors Association, 1991/1992
NRCA Market Survey.
3-5

-------
Bite Sheet
Aiphili
Inmlition
Bam**
{* l«T«™|

U" Felt —
14' Felt
ir Felt
1*" Tapered Cant Strip
Metal Dadi
Wood Blocking
© 1989, R.D. Hertwt III, Roofing: Dosign Criteria, Options, Selection, used by
permission of R.S. Means Co., Inc.
Figure S-1. Typical built-up roof.
3-6

-------
•	Good internal cohesion and adhesion
•	Thermoplasticity5
The bitumen is used as an adhesive as well as a waterproofing
layer.4 The roofing felts stabilize and reinforce the system.
The aggregate protects the membrane from the effects of
sunlight and weathering. Between the plies of roofing felt,
bitumen is mopped, typically at 20 to 35 lb/square (a square
is 100 ft2) .4 The top layer, or flood coat, of bitumen is
applied at SO lb/square, allowing about half of the aggregate
to become imbedded in it.
The primary advantage of asphalt is that it comes in a
wide range of viscosities; hence, high viscosity {high
resistance to flow) asphalts- are available for slopes up to 6
in./ft. In contrast, coal tar/bitumen has viscosities about
the same as dead-level {Type I) asphalt and, thus, is
generally only appropriate for slopes of 1/4 in./ft or less.4
The predominant reinforcing material used in roofing•
felts is glass fiber. Asbestos was manufactured and used as a
reinforcing material in roofing felts until about the early
1980s, after which its use and manufacture for that purpose
were discontinued.
3.4.2- Single Plv Membrane
' Synthetic, single-ply membranes can be- classified by
application technique and design. They may be sheet- or
fluid-applied and designed as fully or partially adhered,
-mechanically attached or loose-laid and ballasted membranes.
They may also be classified as thermosetting, e.g., EPDM;
thermoplastic, e.g., FVC, chlorinated polyethylene (CPE), and
polyisobutylene membranes CPIB) ,* and modified bitumen.
3.4.3' Shingles
A shingle is defined as a small unit of prepared
roofing material designed for installation with similar units
in overlapping rows on inclines normally exceeding 25
percent.4
3-7

-------
3.4.3.1	Asphalt Shingles. Asphalt shingles are made by
treating rolls of organic base mats (felts) or fiber glass
base mats with asphalt and cutting them to a desired size and
shape.8 The top surface of shingles is covered with ceramic-
coated granules to protect the asphalt coating from the
harmful effects of sunlight and to add some fire resistance,
3.4.3.2	A/C Shingles. A mixture of asbestos, cement and
silica is processed to form A/C sheet with an asbestos content
ranging from 15 to"40 percent. In turn, A/C shingles (no
longer manufactured in the U.S.) were cut from flat A/C sheet
in sizes ranging from 9 in. by IS in. to 14 in. by 3 0 in. A/C
shingles were extremely durable, lasting from 3 0 to 5 0 years,
and were produced in a variety of styles and colors. A/C
shingles were attached to the roof in the same way as asphalt
shingles, i.e., with roofing nails. .Pilot holes for
attachment were routinely predrilled or punched at the primary
manufacturing plant.9
a
3.4.4 Flashing
Plashing is the system used to seal membrane edges at
walls, expansion joints, drains, gravel stops, and other
places where the membrane "is interrupted or terminated. Base
flashing covers the edge of the membrane, and cap flashing or
counterflashing shields the upper edges of the base flashing.4
An application of flashing is illustrated in Figure 3-2.7
Typically, base-flashing materials include conventional
saturated and coated felts, reinforced/laminated asbestos felt
and scrim (a durable, plain-woven fabric), fiberglass or
cotton wovens impregnated with bitumens, vinyls-, neoprenes,
and butyl rubber. . Asbestos flashing have not been
manufactured in the U.S. since about the early 1980s.
Because they are exposed, counterflashings are usually
rigid and durable; metals including copper, aluminum,
galvanized steel, stainless steel, and lead have been used.
However, bituminous materials similar to the base flashing
also may be used.5
3-8

-------
Masonry Wall
Metal Receiver & Lock
Vinyl Vapor Retarder
Fasteners 8" O.C.
Metal Counterflashing
/ / \ LdZ
Composition
Base Flashing
Wood Blocking
Wood Cant
Insulation
771 ITv7
Roof
Insulation
Metal Deck
© 1989, R.D. Herbert III, Roofing: Design Criteria, Options, Selection, used by
permission of R.S. Means Co., Inc.
Figure 3*2. Base flashing.
3-9

-------
3.5 MEMBRANE SURFACING5
3.5.1	Aggregate for Built-up Roofing
Aggregate, 3/IS to 3/4 in. in size, embedded in the
bituminous flood coat is a common surfacing for built-up
roofs. Common roof aggregates are river-washed gravel,
crushed stone, and blast furnace slag. Gravel is typically
applied at a rate of 400 to 500 lb/square, and slag is applied
at a rate of about 300 to 400.lb/square.4 Approximately 50
percent of the aggregate is typically embedded in the flood
coat.5
An advantage of surfacing with a flood coat of bitumen
and aggregate is that it results in a very durable surface.
Other benefits of aggregate surfaces are
•	Shields the membrane from solar radiation
•	Resistance to bitumen erosion by wind and water, and
to heat aging
•	Impact resistance
•. Fire resistance
•	Wind-uplift resistance
•	• Reduced membrane temperature
3.5.2	Smooth Surface
A smooth-surfaced built-up roof membrane has a top coat
of hot, steep asphalt. Some smooth-surfaced built-up roofs
are also, coated with a reflective coating to reduce roof -
surface temperature. Compared to aggregate-surfaced roofs,
some, advantages of smooth-surfaced membranes are:- .
•	Easier inspection, maintenance, and repair
•	Easier installation of new penetrations in the roof
•	Easier reroofing -or replacement
•	Reduction in dead load (3 00 to 400 lb per square).
3-10

-------
3.5.3 Mineral
Mineral-surfaced roll roofing is made of felts often
coated with granules of slate, ceramic, or nineral embedded in
the weathering grade asphalt on the surface to be exposed.5
3-11

-------

-------
4.0 ASBESTOS ROOFING PRODUCTS
This section describes various roofing products and their
uses with particular emphasis on those that contain (or
contained) asbestos. Information on the time periods in which
asbestos-containing products were used is provided where
available.
4.1 FELTS5
Asbestos roofing felts were nonwoven fabrics of organic
and/or inorganic composition. Organic felts are made of
cellulose fibers--pulped wood and felted papers--saturated and
coated with coal tar bitumen or asphalt. Asbestos-reinforced
felts were saturated and coated with asphalt and were
relatively low in.cost and widely used.
Asbestos felts conforming to the specifications of ASTM-
D250 were made of 85 percent chrysotile and 15 percent organic
fibers saturated with asphalt though the ASTM standard was
changed frequently over the years. The addition of other
organic ' fibers allowed the felt to absorb more of the asphalt
saturant,.which asbestos fibers do not absorb. Asbestos ¦ .
felts,'like others, are quite thin. For example, dry asbestos
felts (before bitumen is added) weighed approximately 9 and 18
lb/square and were 0.023 and 0.047 in. thick, respectively.8
Glass fiber mats saturated with asphalt were-also used as
roofing felts.
The typical use, asbestos content, and time period sold
for asbestos felts are given in Table 4-1.10 Virtually all
4-1

-------
TABLE 4-1. ASPHALT-SATURATED AND ASPHALT-COATED ASBESTOS ROOFING FELTS
Common trade name*
ASTM specification
Type
Product weight
(fc/tOOfl*)
Asbestos weight
(fa/100ft2}
Typical use
Time period sold*
No. 15 asbestos, perforated, also
called asbestos "finishing" felt
0250
'
13-15
6-6
Ply felt lor smooth and
aggregate BURs, backer
felt in flashings, *5" course
cold applied "Asbestile"
flashings
36 in width: 1940 to
present*
32-in. width: before
WWII
No. 20 asbestos, perforated "Blue
Chip Fell"
D250
III
17-20
9-10
Ply felt for smooth and
aggregate BURs
1960s to 1980s
No. 25 asbestos, unperforated
"Centurion" Base Felt
D250
IV
21-25
12-14
Uncoaled base sheet
1960s to present*
No. 30 asbestos, unperforated
0250
II
25-28
15-18
Shingle underlay
1930s to 1960s
"Asbestosgard"
None

8-10
5-7
Fire-rated vapor retarder
1960s to 1980s






Asbestos base felt, also called "No.
45 asbestos base"
03378
I
II
37-39
39-43
68
9-10
Base sheet for asbestos
BURs
1960S to 1980s
Venting base sheet
D3672
1
68-70
9-10
Base sheet for reroofirig
1960s to 1980s
Asbestos base flashing, also called
"reinforced asbestos flashing", or
"composition base flashing"
Nona

5540
15 18
Hot mopped base flashing
for BURs
1960s to present
Asbestos base flashing "AB-20"
None

52
88
Hot or mastic applied
base flashing tor BURs
1960s to 1983
Source; The Roofing Industry Educational Institute. Englewood, CO., nd.
BUR: Built-up roofing.
" Some felts have a number designation which refers to the weight of the felt, e g., a No. IS felt has • weight of 15 lb /100 ft *
1 Refers to period sold in both the United States and Canada. Little, if any, roofing felt la now used in the United States.
'No longer being sold

-------
U.S. production of asbestos roofing felts was discontinued,
however, by the early 1980s, in part because of performance-
related problems with the product.
4.2	CEMENTS, COATINGS, AND ASHESIVES
Cements, coatings, and adhesives are typically made of
asphalt cutback, i.e., solvent-thinned bitumens, and include
cold-process roof primers, adhesives, roof and flashing
cements, and roof coatings. Typical uses, asbestos contents,
and time periods sold for asbestos-containing cements,
coatings, and adhesives are shown in Table 4-2.10
4.3	SINGLE-PLY PRODUCTS
Asbestos was used as a neoprene latex bonded asbestos
backing material in a few of the early single-ply roofing
systems such as TNA-200 (Tedlar-neoprene-asbestos), PIB
membranes, and Hypalon sheets. The'PIB membranes were sold
between 1960 and 1966.10 Other single-ply products (e.g. EPDM,
PVC, modified bitumen, and CPE) are not and have not in the
past been made with asbestos.
4.4	SHINGLES
A/C roofing shingles and asphalt-asbestos roofing
shingles have been in use in this country for more than 80
years. Asphalt-asbestos roofing shingles were sold until
1979, but were not used widely? A/C shingles were sold until
1992.
4.5	DECKING
Since the 1930s,, corrugated A/C sheets and flat A/C
sheets (Transite) have been used as wall.cladding, and
occasionally as roofing panels; flexible and utility A/C
products have been used as decking.11 However, unless damaged,
decks are not repaired or removed even if other parts of the
roof system are being replaced.4
4.6	INSULATION
Asbestos is not and has not been employed in thermal
insulation used in roof systems.
4-3

-------
TABLE 4-2. ASBESTOS-CONTAINING CEMENTS, COATINGS. AND ADHESIVES
Asbestos in
Product	ASTM	Type	dry flm	Typical use	Time period sold*
specification	(lb/100ft2!
Asphalt roof coating
(fibrated)
Aluminum roof coating
(asbestos fibrated}
Asphalt emulsion
(asbestos fibrated)
Cold process cement
Asphalt cement
(plastic cement, flashing
cement!
Roofing resaturants
D2823	1-2	Coat smooth-surfaced roofing
02824 I or II	2-3	Reflective coating for smooth-
surfaced roofing and modified
bitumens
D1227	I	0.1-0.8 Water-based coating for
smooth-surfaced roofing and
modified bitumens
!
D3019	II	2-4	Solvent-based adhesives for
coated felt systems (brush
grade), used with "split-
sheet" roll goods
02822	6-16 Solvent-based bodied
adhesives
2-8	Recoating old BURs, usually
regravelled
1930 to present
1930 to present
1930 to present
1930 to present
To present
To present
Source: The Roofing Industry Educational Institute.
* Refers to period sold in both the United States and
Englewood, CO., n.d.
Canada.

-------
4.7 OTHER ROOF COMPONENTS
Roofing materials not covered in previous sections of
Chapter 4 (e.g., vapor retarders, thermal insulation, modified
bitumen membranes) are not and have not in the past been made
with asbestos. Roofing felts and single-ply membranes
presently manufactured and used also do not contain asbestos.
4-5

-------

-------
5.0 ROOF REMOVAL PRACTICES
5,1 BUILT-UP ROOFS
Whenever roofs become damaged or deteriorate to the point
that.leaks are likely, a decision must be made on how to
restore the roof to its intended integrity. Usually the
course of action requires, at a minimum, the repair of the
damaged or deteriorated areas and, in some cases, replacement
of the entire roof may be necessary. Even when the decision
is to re-cover the existing roof, repairs are occasionally
made to the existing roof. Complete roof' removal typically
involves removal of the membrane, flashing, insulation, and
vapor retarder (if present) in the affected area. In some
instances, the roof deck may need repair or replacement.
The aspects of roof removal practices discussed here are
limited to the methods and equipment used in the removal of
the roof membrane and flashing, the components of a roof
system .where asbestos is most likely to be found. As
.discussed above, other components of roof systems do not
contain asbestos or are not repaired or replaced using methods
that trigger coverage under the asbestos NESHAP. Several
methods of cutting the roof membrane are available and the
method chosen often depends on the nature of the job as well
'as State and local asbestos regulations. Power roof cutters
are'used predominantly to cut-roof membranes into manageable
sections that can be lifted and removed by workers. Manual
methods are sometimes used. Other mechanical methods may be
used successfully to cut. and slice roof membranes, although
their use is not yet as well known or as widespread.
5-1

-------
Generally, for built-up roofs, the membrane is separated
(e.g., by cutting, slicing, punching or shearing) into
sections of approximately 2 ft by 2 ft, or 2 ft by 4 ft or
other sizes that can be managed by one or two workers and that
will fit into a cart or wheel-barrow and a 2 - ft diameter
chute. The sections are pried up using power roof removers,
shovels or tear-off bars, and lifted and stacked on a cart or
wheelbarrow. Single-ply membranes may be sliced into long
strips and rolled up.
Flashing is usually removed by slicing along the edge of
the field of the membrane, next to the flashing, and pulling
or prying the flashing loose. The roofing material is taken
by cart or wheelbarrow to the roof's edge where it is conveyed
by chute, hoist or crane into a -container on the ground below.
(Although it is not required by the NESHAP, even Category"!
material should not be dropped to the ground without going
through a chute.)
5.1.1	Surface Preparation
Loose, surface gravel is often removed from the
existing roof membrane before removal begins.5 This will help
to reduce the amount of dust generated during roof removal.
Gravel can be removed by manual methods--raking, sweeping and
shoveling--or by using a power vacuum. Gravel removal by
vacuuming can be done dry or wet.12 The removal of gravel by
vacuuming is shown in Figure 5-1. Power brooms like the one
shown in Figure '5-2 are also used to' remove gravel and consist
of a rotating brush that pushes gravel forward and to the
side.
5.1.2	Manual Methods
Removal by manual methods usually involves the use of
axes, hatchets and utility knives to chop or slice the roof. '
membrane into sections that can be lifted by one or two
workers with shovels, spud burs, etc. and loaded onto a cart
or wheelbarrow. Manual methods are often used when repairing
small areas of damaged membrane or when repairing small areas
of flashing, although they can be and occasionally are used to
5-2

-------

Figure 5-1. Gravel removal by vacuuming.
5-3

-------

3I»»

m
k {&•*4:
yv,v 6f/f,

pig^te
S-2-
pov*«f
wood-
s'4

-------
remove roof membranes on larger removal jobs. On large,
manual roof removal jobs, labor requirements usually increase
for the removal phase because it takes considerably more
workers to chop or slice the same amount of membrane that can
be cut using powered cutting equipment in the same time.
Manual removal was estimated by one roofing contractor to
increase labor requirements by about one and one-half times.13
5.1.3 Rotating Blade ¦'RB) Roof Cutter
RB roof cutters, like the one in Figure 5-3, are used
extensively by roofing contractors to cut roof membranes for
removal. A gasoline-powered engine mounted on a three- or
four-wheeled deck turns a blade mounted near or toward the
front of the machine. Standard engines range in size from
5 hp for cutters used for patch work and cutting around roof
fixtures such as vents and heating, ventilation, and air
conditioning (HVAC) components to 14 hp for cutters equipped
with double blades, with a- and 9-hp engines being typical for
the RB roof cutters that do the bulk of the cutting. RB roof
cutter blades typically have two cutting edges and are about
12 in. long. The cutting edge of the blade is blunt with
about a 1/4-in. kerf aa opposed to a tapered, sharp edge. The
blades are often carbide tipped to extend blade life. On
gravel-surfaced roofs, at a removal rate of about 4,000 ft2
per day, a standard blade lasts for 3 to 4 days.13 The blade
design allows the cutter to be used on gravel-covered roofs,
which would dull sharp blades and blades made of softer -
material.- The blade rotates so that the cutting action is
from the underside of the membrane when the cutter is moving
forward. The cutting can be adjusted to the desired depth
depending on the thickness of the membrane, the number of
layers present, and the presence or'absence of insulation
between the membrane and the deck. Because cutting depth is
adjustable, RB roof cutters can be used to cut membranes with
no underlying insulation if care is taken not to cut
completely through the membrane. Because roof systems are not
completely uniform in thickness, occasional gouging of the

-------
Figure 5-3. Rotating blade roof cutter.
5-6

-------
roof deck may occur when using RS power cutters. The blade
rotates in a plane perpendicular to the roof surface and is
usually housed in a metal blade guard that confines the dust
and minimizes the throwing of gravel. Blade guard designs
vary. One design completely encloses the blade to within
about an inch or less of the roof surface, and another
suspends 2-in. length chains from the sides of the shroud to
deflect thrown gravel. RB roof cutters are used on both
smooth- and gravel-surfaced roofs and are manually propelled-.
Cutters are commercially available from several manufacturers
of roofing equipment.
5.1.4 "Slicer"
A self-propelled, two-wheeled tractor equipped with a
blade can be used to slice through smooth roof membranes.14
Modified by attaching a heavy metal*plate to the tractor at
the rear, weight is placed on the blade while the plate slides
along the roof membrane surface. The blade extends down
through a slot cut into the center, near the rear of the metal
plate. The lower, slicing portion of the blade is triangular
so that, as the blade is pulled through the membrane, the
slicing edge is angled' back, much like the slicing motion made
when, using a utility knife. The slicing depth is adjustable.
The blade can slice through the membrane and insulation
without producing visible emissions or dust or debris. A
"slicer" is shown in Figure-5-4. This device may not - be
suitable for use on aggregate-surfaced roofs because the
aggregate would quickly dull' the blade. Although this device
is not presently available commercially, the slicer can be
fabricated using commercially available components. Other
similarly adapted roofing equipment has been used to slice
roofs by installing a roof cutter blade, perpendicular to the
roof surface on the front of a power remover.15
5.1.5 "Roof Plow"
The "roof plow" operates on a principle similar to that
of the "slicer," except that it slices the membrane from
below.15 Because it slices from below, it is not dulled by
5-7

-------
Figure 5-4. Siicer and blade.
5-8

-------
roof aggregate and may, therefore, be suitable for aggregate-
surfaced roofs. The "plow" shown in Figure 5-5 is attached to
the rear of a self-propelled garden tractor much like the
slicer and is pulled along through the membrane. To start,
the tip of the "plow" blade is inserted under the roof
membrane. Because the plow slices the membrane, no dust or
debris is created during its use. "Flows" are also not
presently available commercially, but, like the slicer, can be
fabricated' using commercially available materials.
5.1.6 Concrete/Asphalt Planer
A planer is a machine used to remove concrete or
asphalt from surfaces at controlled depths and profiles.17 It
uses a series of hardened steel or tungsten carbide cutters
that are aligned on four parallel shafts across a definite
width of cut and revolve on a drum. The cutters can be spaced
to produce various finishes and have a standard penetration
depth of 1/4 in. to 3/4 in. Deeper cuts may be achieved on
some substrates by modifying the cutters. Some models of
planers come equipped with a misting device over the cutter
assembly and can be used with a vacuum system designed for the
planer'. For roof removal purposes, all of the cutters except
one set are removed to obtain'a single cut. One manufacturer
is also considering additional design changes that would
permit a cutting depth of up to 2 in. An important feature of
the planer is that .it can be used in combination with a well
'designed HEPA^filtered vacuum system. Both the concrete
planer and vacuum unit are commercially available. The
planer, however, has rarely been used in roof removal
projects, because the cutters are easily clogged with
bituminous material, and the.short cutting depth requires
several passes. Figure 5-6 shows a planer with a vacuum
system.
5.1.7 Power Remover (Power Tear-off Machine)
Following the separation of roof membrane into
sections, workers using shovels and pry bars may manually pry
5-9

-------
Figure 5-5. Roof plow.
5-10

-------
s^lri
lain
Vacuum
Concrete Planer
Figure 5-6. Concrete planer and vacuum.
5-11

-------
up the pieces and load them onto a cart. An alternative to
manually prying up the membrane and other components is to use
a power remover, or power tear-off machine.
A power remover consists of a wide actuating blade that
can be mounted onto the front of a self-propelled tractor.
Power removers also come as a one piece assembly i.e., with
the blade and tractor as a single unit.
5.2 SHINGLED ROOFS18
Shingles are normally used on roofs with inclines
exceeding 3 in./ft5 and may be either asphalt or cement-based.
Because of steep slopes, shingles are removed manually.
Removal is accomplished using shovels and/or pry bars, which
are inserted under the shingle against the nails, so both the
shingle and nails are pried up together. Another method for
removing asbestos-cement shingles involves clipping, the heads
of the nails and then prying off .the shingles. Using- this
procedure, the nails remain and have to be removed separately
after the shingles have been removed. Where asphalt-saturated
felt underlayment under the shingles contains asbestos and is
in good condition, it can usually be rolled up for disposal.
5-12

-------
6.0 DUST CONTROL METHODS
Various methods - are available for minimizing dust
emissions from the removal of asbestos-containing roofing
materials. Dust control methods include modifying the way in
which the asbestos material is removed as well as add-on dust
control devices. The control methods discussed here are
intended for use in the removal of asbestos-containing BUR
membranes.
6.1 REMOVAL METHODS
The method used to separate the BUR membrane into
sections can affect the amount of dust generated. As
described in Section 5, the standard RB roof cutter, long used
by the roofing industry, uses a blade with a flat 1/4- to 3/8-
in.-wide cutting edge; As.this blunt edge passes rapidly
through,the roof system components, i.e., insulation,
membrane, and surface aggregate, visible emissions of dust are
typically generated.13'13 Dust created during the use of the
RB roof cutter on an asbestos-containing membrane has been
shown'to contain asbestos.20 Various methods devised to reduce
the amount of dust generated include modification of the
standard roof cutting blade and the use of methods -that
minimize the degree of damage to the roofing materials. ' For
example, it has been demonstrated that by adjusting the
cutting depth to cut only the membrane, it' is possible to
reduce visible emissions.20 In a test where a membrane and
insulation were being cut, most of the dust generated came
from the insulation materials (only 1 to 3 percent of the
sampled material was asbestos.)20
6-1

-------
6.1.1	Modified RB Roof Cutter Blade
In an effort to reduce dust levels, a contractor
replaced the standard RB roof cutter blade with a thinner
steel blade that had been fabricated at a metal shop.13 The
width of the blade was about 1/8 in. compared to the standard
1/4 in." to 3/8-in:-wide blade. The thinner blade was designed
to reduce the amount of material impacted by the blade,
thereby, reducing the amount of dust generated. Even though
the thinner blade produced less dust and cutting debris than
the standard blade, visible emissions and smoke were, observed
when it was used to cut a dry BUR membrane on a gravel-
surfaced roof.13
6.1.2	Slicing
Slicing a roof membrane involves pulling a sharp or
thin-edged blade through the membrane in a long continuous
motion. This differs from the standard RB roof cutter, which
has a high-speed, rotating blade that impacts the roof
membrane repeatedly to cut a path through it. The slicing
action may be either from the top down through the membrane,
or from the underside up through the membrane. The slicer and
roof plow, described in Section 5, are both examples of
prototypical devices that may be used to slice the membrane
under some field conditions. _ Observations of the two
different slicing operations showed that slicing produces no -
visible debris or dust, and can prevent visible emissions
without wetting.14,19 Slicers and plows are not yet
commercially available and may .not be- suitable for all field
conditions or roof surfaces. However, the materials and
equipment used to fabricate these machines are readily
available. Self-propelled garden tractors can be purchased
and the other materials can be readily fabricated at shops
that do welding and steel fabrication.
6.1.3	Concrete/Asphalt Planer
As discussed in Section 5, the concrete/asphalt planer
is used to impart a particular finish on hard, cured concrete
or asphalt concrete surfaces. By removing all but a single
6-2

-------
set of cutters, this machine has been used to separate BUR
membranes into sections for removal. Various models of
concrete planers are equipped with a misting device over the
cutter assembly to aid in dust control. In addition, a vacuum
system has been designed for use with the concrete planers to
control dust.17 These vacuum units are available with large
(150-ft2) paper-pleated filters and are also available with
HEPA filters.1*7 A 2 hp centrifugal blower generates 150 cfm of
suction and a 1 hp .air compressor automatically purges the
primary filter into a'collection tray under the machine.
During a demonstration of the concrete planer (set up for roof
cutting, i.e., all but one set of cutters removed) and the
vacuum unit, dust was effectively controlled and the planer
was operated without producing visible emissions.21 Planers,
however, are not typically used- in roof removal operations,
and may not be suitable under some-conditions.
6.2 WETTING
Wetting has been done in various ways to attempt to
control dust emissions from roof removals involving RB roof
cutters. Although asphalt materials do not absorb water, the
water helps to control dust by adhering to the particles,
causing them to settle out faster. One approach is to apply
water to the roof surface prior to cutting. This primarily
reduces emissions from dust that has collected on the roof.
In a test where- a local exhaust system had been .installed on a
RB roof cutter and a skirt added to extend the blade, guard to
the roof surface, the added precaution'of a general wetting of
the roof surface further reduced visible emissions. (The roof
had been swept and washed prior to cutting) .20 Water may also
be sprayed during cutting at- the point where the roof is being
cut by a worker walking beside the cutter. A hand-held,
garden-type sprayer or water hose with a spray nozzle is often
used to apply water at the point of cutting. (This method is
not always appropriate, however, for instance if the
insulation is being re-used.3
6-3

-------
Oil RB roof cutters and concrete planers, the blade guard
can be modified by installing- a spray nozzle on the inside of
the blade guard that directs a fine spray of water down at the
blade13 or the cutters, in the case of the concrete planer.
Water is supplied to the blade guard from either a water hose
or a garden-type sprayer attached to the cutter. The garden
sprayer must be pumped-up occasionally to maintain sufficient
pressure in the water bottle. During a roof removal operation
using an RB roof cutter equipped with a spray nozzle inside
the blade guard that directed a fine spray of water down over
the blade, the only emissions observed were some occasional
thrown gravel and smoke, apparently the result of friction
between the blade and asphalt.13 On the same removal operation
with no water being sprayed, the cutting of the roof membrane
produced copious amounts of brownish dust, apparently.from the
underlying insulation. Figure 6-1 shows a commercially
available roof cutter that has been modified by attaching a
spray nozzle to the blade guard. Care must be taken when
applying water not to introduce so much that it enters the
building or accumulates on the deck. All insulations and some
deck materials, especially wood, gypsum, cement wood fiber and
cement composition decking, may be adversely affected if they
become too wet. Where insulation is present and a fine spray
or mist- is applied (as opposed to a heavy stream of water),
the insulation adsorbs much of the water and prevents any
appreciable amounts of water from seeping down to the deck.
If the old insulation is to be replaced, this avoids the
"problems associated with putting down a new membrane over wet
insulation.
A method that is intended to produce the same effect as
wetting but avoid the potential problems associated with
wetting is the use of foam. In this method, a layer of foam,
2 to 3 inches, or more, thick would be put down over the area•
to be cut. The foam acts to trap dust emitted from cutting
operations. Fire retardant foams have been used for this
purpose. The foam dissipates after several hours. This
6-4

-------
HEPA Vacuum System
Water Bottle
Spray
Nozzle
Assembly
Water line

Vacuum Hose
Blade Guani
Figure 6-1. Rotating Blade Roof Gutter Equipped
with a Spray Nozzle and Vacuum System
6-5

-------
method has not been used extensively and may not be suitable
for all field conditions or roof surfaces.
6.3	HEPA-FILTERED LOCAL EXHAUST VENTILATION
Local exhaust ventilation and filtration systems have
been applied successfully to various types of dust-generating
tools and equipment outside of the roof industry, including
drills, saws, and concrete planers. They have also been
applied to RB roof cutters. A study that evaluated the
feasibility of preventing visible emissions from standard RB
roof cutting operations found that when a HEPA-filtered local
exhaust ventilation system was added to the blade guard,
visible emission were noticeably reduced over cutting without
any control, although emissions were still evident.20 By
adding a skirt to the blade guard to extend it closer to the
roof surface, visible emissions were further reduced.to the
extent that they were visible only when the cutter was tilted
to change directions or when the flexible skirting material
added to the blade guard was breached by flying gravel.20 The
sizing of vacuum systems has not been studied adequately, but
the vacuum should be sufficient to capture the dust generated
by the cutting. A roof cutter equipped with a HEPA-filtered
vacuum system is illustrated in Figure 6-1. At least one
manufacturer of roofing equipment has designed a. RB roof
cutter-with a HEPA filtered vacuum system mounted directly to
it, thereby avoiding some of the tripping hazards associated
with hoses on' the roof surface.
6.4	RE-COVERING VS. REROOFING
An alternative to removal of asbestos-containing roofing
is to re-cover the existing roof. This is occasionally done
for economic reasons, since it is usually less expensive to
place an additional roof membrane over an existing one than it
is to remove the old roof and put down a new one. Local
building codes and good roofing practices generally discourage
multiple re-coverings on the same roof. Several factors
determine whether re-covering is a viable alternative, such as
6-6

-------
the extent of damage to the existing rocf and the structure's
load-bearing capacity.
6.5 WASTE HANDLING AND DISPOSAL
The asbestos-containing waste generated during a roof
removal job generally includes the asbestos-containing
membrane and flashing. The dust created by the use of the R3
roof cutter has also been shown to contain asbestos.20 If the
dust from cutting is not controlled at the source, it may be
blown away from the cutting area and contaminate other parts
of the roof. Where controls are implemented, e.g., wetting
inside the blade guard, use of local exhaust ventilation with
the blade guard, and extending the blade guard down close to
the roof surface, most of the dust can be confined to the
surface immediately adjacent' to the cut. Vacuuming along the
cut while still wet is one method for collecting the dust for
disposal. When manual or slicing methods are used on roof
membranes that are not badly deteriorated, there is no
asbestos dust or debris formed. Nonasbestos waste and
nonRACM-contaminated waste can be disposed of in landfills
separately from RACM waste.
6-7

-------

-------
7.0 SAFETY HAZARDS AND PROPERTY DAMAGE
This section reviews the safety and health hazards that
normally accompany roof removals, as well as the potential for
additional safety hazards and property damage if the asbestos
NESHAP is applied to roof removals. This section has
relevance to NESHAP inspectors since they will be exposed to
many of the same safety and health hazards as roofing workers.
It is noted' that the responsibility for occupational safety
and health problems associated with roof removals lies with
OSHA and its state-level counterparts.
7.1 GENERAL
The primary safety and health problems of roof removals
include dust inhalation and skin and eye irritation during
removal, falls from ladders and roofs and through roof
openings, strains, sprains and hazards associated with lifting
heavy objects, and the effects of extreme heat.22,23 These and
other problems may be exacerbated when jobs are rushed.22
,7.1.1 Dust
Use of - power brooms to sweep loose aggregate and other
deposits from roofs and roof cutters to cut built-up membranes
can produce copious amounts of airborne dust. The dust from
power brooming is primarily a nuisance dust, although NIOSH
' suggests that dust from some slags may be a health problem
requiring worker protection.22 On the other hand, the dust
produced by roof cutting may contain asbestos, and dust from
coal tar pitch causes skin and eye irritation similar to that
resulting from exposure to volatile pitch emissions.22
The NIOSH has identified the following controls for dust
exposures. Engineering controls for dust problems include
7-1

-------
wetting the roof, using power tools equipped with water _rrr?.•
and/or power tools fitted with suction devices and filter:
capture the dust at the point of generation. If engineering
controls are not sufficient to protect workers, NICSK
recommends the use of respirators to prevent dust inhalation,
and gloves/coveralls and face shields/goggles to protect
against skin and eye irritation. It should be cautioned,
however, that respirators and face shields/goggles are not
mandated by OSHA, and may restrict vision and contribute to
falls and heat stress.
7.1.2	Falls
Slightly more than 5 percent of workers' compensation
claims (in terms of incidents) for roofers reported to the CNA
Insurance Company in fiscal 1992 (June-May) were from falls.23
CNA is the largest insurer of roofing contractors in the U.S.,
insuring some 1800 roofing- companies in over 35 states.15
These claims "include falls from ladders, scaffolds, and
vehicles, and to lower levels. Several Federal rules have
been promulgated by OSHA to prevent workers from falling.
These rules, enforced by OSHA, are contained in Subparts L and
M of .29 CFR 1926 and apply to ladders and scaffolding, roof
openings, and perimeter guarding.
7.1.3	Heat
Extremes of heat can place additional physiological
stress on the roof removal worker. When heat exposures exceed
the body's capacity to .cope, heat illness results. - The most
dangerous-heat illness is heat stroke, which occurs when the
body temperature exceeds 104 °F. If the body temperature is
not reduced promptly, permanent damage to the nervous system
or death may result. In heat exhaustion, the individual
collapses due to an insufficient supply of blood to the brain,
which in turn results from vasodilation and low arterial blood
pressure. Heat cramps--a less serious but nonetheless painful
condition--results from an excessive loss of sodium chloride
through perspiration.24,25
7-2

-------
Preventing heat illness involves reducing the time spent
in the heat, using tools to reduce the metabolic demands of
roof removals, having supervisors trained to recognize early
signs of heat illness, and drinking adequate amounts of cool
potable water.25
"7.1.4 Rushed Jobs
Rushing roof removal work to take advantage of
favorable weather and/or to increase worker productivity-can
contribute to roofing injuries. For example, in the rush to
complete a removal, protective equipment may not be cleaned or
may not be used, perimeter protection and guarding of roof
holes may be inadequate or overlooked, ladders may not be tied
off, the risk of heat stress under unfavorable temperature,
humidity, and wind conditions may be increased, and
inexperienced and untrained workers•pressed into service may
behave in an.unsafe manner.22
7 .2 NESHAP RELATED
The asbestos NESHAP may require wetting when RB roof
cutters are used to cut roofs.
7.2.1 Safety Hazards
Under certain circumstances, wetting, as may be
required by the NESHAP, could create, a safety hazard. Water
on a roof membrane may cause it to become slick, increasing
the potential for falls and, if the water freezes during cold
weather work, an even greater slippage problem.is created.26
The wetting required by the NESHAP can be accomplished
through use of a'blade guard fitted with a nozzle which
applies a fine water spray on an area approximately 2 in. on
either side of the cut. Thus, only a .very small portion of
the entire roof is wetted. On an aggregate surfaced roof, any
reduction in traction due to a wet surface would be minimal,
since the aggregate provides additional traction. The NESHAP
does provide for exceptions from the wetting requirement where
the Administrator has determined that wetting would present a
safety hazard or when the temperature is below freezing at the
point of removal (40 CFR 61.145(c)).
7-3

-------
7.2.2 Property Damage
There is concern, that wetting along the cut lines will
allow water to penetrate beneath the roof, risking damage to
the building structure and its contents.27 Another problem
that has been mentioned is that of wetting decks or causing
work delays, since roof membranes cannot be applied to wet
decks. It is possible to lightly wet a roof during removal,
to hold down airborne contaminants, without water problems.28
Water passing through the cut in the membrane would - probably,
be absorbed by the underlying insulation. Since insulation is
usually removed and disposed of along with the old roof
membrane, problems due to wetting would be minimized. The
NESHAF provides for exceptions from the wetting requirement
where the Administrator has determined that wetting would
unavoidably damage equipment (40 CFR 61.145(c)).
7-4

-------
8.0 NESHAP REQUIREMENTS: INTERPRETIVE RULE
GOVERNING ROOF REMOVAL OPERATIONS
The EPA has published, as a new Appendix A to Subpart M
of 40 C.P.R. Part 61, an interpretive rule, which is presented
in its entirety below. The purpose of the interpretive rule
is to clarify the Asbestos NESHAP as it affects roof removal
operations by. (i) specifying which roof removal operations
EPA construes the NESHAP to cover; and (ii) specifying roof
removal work practices that EPA deems to be in compliance with
the NESHAP in roofing operations where the NESHAP applies.
The interpretive rule does not supersede, alter or
replace the Asbestos NESHAP; nor does it change the scope or
stringency of the NESHAP. Rather the interpretive rule
interprets the NESHAP as it applies to roof removal
operations, in order to provide particularized guidance which,
if followed, would promote compliance with, and more effective
and consistent enforcement of, the NESHAP in such operations.
• In addition to EPA's asbestos NESHAP, other Federal
regulations (e.g., OSHA) and State and local environmental and
occupational safety and health regulations may apply to
roofing operations. These regulations often are more
stringent than EPA's asbestos NESHAP. Roofing contractors,
abatement contractors, and consultants on roofing jobs
involving the removal of roofing should be familiar with all
applicable Federal, State, and local regulations in addition
to the NESHAP.
8-1

-------
INTERPRETIVE RULE GOVERNING ROOF REMOVAL OPERATIONS
(Appendix A, 4 0 CFR Pare 61, Subpart M)
I. Applicability of the Asbestos NESHAP
1.1.	Asbestos-containing material (ACM} is material
containing more than one percent asbestos as determined using
the methods specified in appendix A, subpart F, 40 C.F.R. part
763, section 1, Polarized Light Microscopy. The NESHAP
classifies ACM as either "friable" or "nonfriable". Friable
ACM is ACM that, when dry, can be crumbled, pulverized or
reduced to powder by hand pressure. Nonfriable ACM is ACM
that, when dry, cannot be crumbled, pulverized or reduced to
powder by hand pressure.
1.2.	Nonfriable ACM is further classified as either.
Category I ACM or Category II ACM. Category I ACM and
Category II ACM are distinguished from each other by their
potential to release fibers when damaged- Category I ACM
includes asbestos-containing gaskets, packings, resilient
floor coverings, resilient floor covering mastic, and asphalt
roofing products containing more than one percent asbestos.
Asphalt roofing products which may contain asbestos include
built-up roofing? asphalt-containing single ply membrane ¦
systems? asphalt shingles? asphalt-containing underlayment
felts; asphalt-containing roof coatings and mastics? and .
asphalt-containing base flashings. ACM roofing products that
use other bituminous or resinous binders {such as coal tars or
pitches} are also considered to be Category I ACM. Category
II ACM includes all other nonfriable ACM, for example,
asbestos-cement (A/C) shingles, A/C tiles, and transite boards
or panels containing more than one percent asbestos.
Generally speaking, Category II ACM is more likely to become
friable when damaged than is Category I ACM. The
applicability of the•NESHAP to Category I and II ACM depends -
on: (1) the condition of the material at the time of
demolition or renovation, (2) the nature of the operation to
8-2

-------
which the material will be subjected, (3) the amount of ACM
involved.
1.3. Asbestos-containing material regulated under the
NESHAP is referred to as "regulated asbestos-containing
material" (RACM). RACK is defined in § 61.141 of the NESHAP
and includes; (1) friable asbestos-containing material;
(2)	Category I nonfriable ACM that has become friable;
(3)	Category I nonfriable ACM that has been or will be sanded,
ground, cut, or abraded; or (4) Category II nonfriable ACM ¦
that has already been or is likely to become crumbled,
pulverized, or reduced to powder. If the coverage threshold
for RACM is met or exceeded in a renovation or demolition
operation, then all friable ACM in the operation, and in
certain situations, nonfriable ACM in the operation, are
subject to the NESHAP.
A. Threshold Amounts of Asbestos-Containing Roofing Material
l.A.l. The NESHAP does not cover roofing projects on
¦single family homes or on residential buildings containing
four or fewer dwelling units. 40 C.F.R. § 61.141. For other
roofing renovation projects, if the total asbestos-containing
roof area undergoing renovation is less than ISO' ft2, the
NESHAP does not apply, regardless of the removal method to be
used', the type of material (Category I or II) , or its-
condition (friable versus nonfriable). 40 C.F.R.
161.145(a)(4). However, EPA would recommend the use of
methods that damage asbestos-containing roofing material as
little as possible. EPA has determined that where"a rotating
blade (RB) roof cutter or equipment that similarly damages the
roofing.material is used to remove Category I nonfriable
asbestos-containing roofing material, the removal of 5580 ft2
of that material will create 160 ft2 of RACM. For the
purposes of this interpretive rule, "RB roof cutter" means an
engine-powered roof cutting machine with one or more rotating
cutting blades the -edges of which are blunt. (Equipment with

-------
blades having sharp or tapered edges, and/or which does not
use a rotating blade, is used for "slicing" rather than
"cutting" the roofing material; such equipment is not included
in the term "RB roof cutter".) Therefore, it is EPA's
interpretation that when an RB roof cutter or equipment that
similarly damages the roofing material is used to remove
Category I nonfriable asbestos-containing roofing material,
any project that is 5580 ft2 or greater is subject to the
NESHAP; conversely, it is EPA's interpretation that when an RB
roof cutter or equipment that similarly damages the roofing
material is used to remove Category I nonfriable asbestos-
containing roofing material in a roof removal project that is
less than 5580 ft2, the project is not subject to the NESHAP,
except that notification is always required for demolitions.
EPA further construes the NESHAP to mean-that if slicing or
other methods that do not sand, grind, cut or abrade will be
used on Category I, nonfriable ACM, the NESHAP does not apply,
regardless of the area of roof to be removed.
I.A.2. For asbestos cement (A/C) shingles (or other
Category II roofing material), if the area of the roofing
material to be removed is at least 160 ft2 and the removal
methods will, crumble, pulverize, reduce to powder, or
contaminate with RACM (from other ACM. that has been crumbled,
pulverized or reduced to powder) 160 ft2 or more of such
roofing material, the removal is subject to the NESHAP.
Conversely,.if- the area of the A/C shingles (or other
Category II roofing materials) to be removed is less than 160
ft2, the removal is not subject to the NESHAP regardless of
the removal method used, except that notification is always
required for demolitions. 40 C.F.R. § 61.145(a). However,
EPA would recommend the use of methods that damage asbestos-
containing roofing material as little as possible. If A/C
shingles (or other Category II roofing materials) are removed
without 160 ft2 or more of such roofing material being
crumbled, pulverized, reduced to powder, or contaminated with
8-4

-------
RACM (from other ACM that has been crumbled, pulverized or
reduced to powder), the operation is not subject to the
NESHAP, even where the total area of the roofing material to
be removed .exceeds 160 ft2; provided, however, that if the
renovation' includes other operations involving RACM, the roof
removal operation is covered if the total area of RACM from
all renovation activities exceeds 160ft2, See the definition
of regulated asbestos-containing material (RACM)» 40 C.F.R. §
61.141.
I.A.3. Only roofing material that meets the definition
of ACM can'qualify as RACM subject to the NESHAP. Therefore,
to determine if a removal operation that meets or exceeds the
coverage threshold is subject to the NESHAP, any suspect
roofing material (i.e. roofing/material that may be ACM).
should be tested for asbestos. If any such roofing material
contains more than one percent asbestos and if the removal
operation is covered by the NESHAP, then EPA must be notified
and the work practices in § 61.145(c) must be followed." In
EPA's view, if a removal operation involves at least the
threshold level of suspect material, a roofing contractor may
choose not to test for asbestos if the contractor follows the
notification and work practice requirements of the NESHAP.
B. A/C Shingle - Removal (Category II ACM Removal)
l.B.l. A/C shingles, which are Category II nonfriable
ACM, become regulated ACM if the material has a high
probability of becoming or has become crumbled, pulverized or
reduced to powder by the forces expected to act on the
material in the course of demolition or renovation operations.
40-C.F.R. § 61.141. However, merely breaking an A/C shingle
(or any other category II ACM) that is not friable may not
necessarily cause the material to become RACM. A/C shingles
are typically nailed to buildings on which they are attached.
EPA believes that the extent of breakage that will normally
8-5
4

-------
result from carefully removing A/C shingles and lowering the
shingles to the ground will not result in crumbling,
pulverizing or reducing the shingles to powder. Conversely,
the extent of breakage that will normally occur if the A/C
shingles are dropped from a building or scraped off of a
building with heavy machinery would cause the shingles to
become RACM. SPA therefore construes the NESHAP to mean that
the removal of A/C shingles that are not friable, using
methods that do not crumble, pulverize, or reduce the A/C
shingles to powder (such as pry bars, spud bars and shovels to
carefully pry the material), is not subject to the NESHAP
provided that the A/C shingles are properly handled during and
after removal, as discussed in this paragraph and the asbestos
NESHAP. This interpretation also applies to other Category II
nonfriable asbestos-containing roofing materials.
C. Cutting vs. Slicing and Manual Methods for Removal of
Category I ACM
l.C.l. Because of damage to the roofing material, and
the potential for fiber release, roof removal operations using
rotating blade (RB) roof cutters or other equipment that sand,
grind, cut or -abrade the roof material are subject to the
NESHAP. As EPA interprets the NESHAP, the use of certain
manual methods (using equipment such as axes, hatchets, or
knives, spud bars, pry bars, and shovels, but not saws) or
methods that'slice, shear, or punch (using equipment such as a
power slicer or power plow) does not constitute "cutting,
sanding, grinding or abrading." This is because these methods
do not destroy the structural matrix or integrity of the
material such that-the material is crumbled, pulverized or
reduced to powder. Hence, it is EPA's interpretation that
when such methods are used, assuming the roof material is not
friable, the removal operation is not subject to the
regulation.
8-6

-------
l.C.2. Power removers or power tear-off machines are
typically used to pry the roofing material up from the deck
after the roof membrane has been cut. It is EPA's
interpretation that when these machines are used to pry
roofing material up, their use is not regulated by the NESHAP.
l.C.3. As noted previously, the NESHAP only applies to
the removal of asbestos-containing roofing materials. Thus,
the NESHAP does not apply to the use of RB cutters to remove
non-asbestos built up roofing {BUR}. On roofs containing some
asbestos-containing and some non-asbestos containing
materials, coverage under the NESHAP depends on the methods
used to remove each type of material in addition to other
coverage thresholds specified above. For example, it is not
uncommon for existing roofs to be made of non-asbestos BUR and
base flashings that do contain asbestos. In that situation,
EPA construes the NESHAP to be inapplicable to the removal of
the non-asbestos BUR using an RB cutter so long as the RB
cutter is not used to cut 5580 ft2 or more of the asbestos-
containing base flashing or other asbestos-containing material
into sections. In addition, the use of methods that slice,
shear, punch or pry could then be used to remove the asbestos
flashings and not trigger coverage under the NESHAP.
II. Notification
2.1. Notification for a.demolition is always required
under the NESHAP. However, EPA believes that few roof removal
jobs constitute "demolitions" as defined in the NESHAP
{§ 61.141). In particular, it is EPA's view that the removal
of roofing systems (i.e., the roof membrane, insulation,
surfacing, coatings, flashings, mastic, shingles, and felt
underlayment), when such removal is not a part of a demolition
project, constitutes a "renovation" under the NESHAP. If the
operation is a renovation, and Category I roofing material is
8-7

-------
being removed using either manual methods or slicing,
notification is not required by the NESHAP. If Category II
material is not friable and will be removed without crumbling,
pulverizing, or reducing it to powder, no notification is
required. Also, if the renovation involves less than the
threshold area for applicability as discussed above, then no
notification is required. However, if a roof removal meets
the applicability and threshold requirements under the NESHAP,
then EPA (or the delegated agency) must be notified in advance
of the removal in accordance with the requirements of
I 61.145(b), as follows:
•	Notification must be given in writing at least 10
working days in advance and must include the information in
§ 61.145(b)(4), except for emergency renovations as-'discussed
below.	.
•	The notice must be updated as necessary, including, for
example, when the amount of asbestos-containing roofing
material reported changes by 20 percent or more.
•	EPA must be notified if the start date of the roof
removal changes. If the start date of a roof removal project
is changed to an earlier da: , EPA must be provided with a
written.notice of the new st rt date^at least 10 working days
in advance. If the start date changes to a later date, EPA
must be notified by telephone as soon as possible before the
original start date and a written notice must be sent as soon
as possible.,
•	For emergency renovations (as defined "in §' 61.141),
where work must begin immediately to avoid safety or public
health hazards, equipment damage, or unreasonable financial
burden, the notification must be postmarked or delivered to
EPA as soon as possible, but no later than the following work
day.
8-8

-------
III. Emission Control Practices
A. Requirements to Adequately Wet and Discharge No Visible
Emission
3.A.I. The principal controls contained in the NESHAF
for removal operations include requirements that the affected
material be adequately wetted, and that asbestos waste be-
handled, collected, -and disposed of properly. The
requirements for disposal of waste materials are discussed
separately in section IV below. The emission control
requirements discussed in this section III apply only to roof
removal operations that are covered by the NESHAP as set forth
in Section I above.
3.A.2. For any operation subject to the NESHAP, the
regulation'(§S 61.145(c)(2)(i), (3), (6)(i)) requires that
RACM be adequately wet (as defined in § 61.141) during the
operation that damages or disturbs the asbestos material until
collected for disposal.
3.A.3. When using an RB roof cutter (or any other method
that sands, grinds, cuts or abrades the roofing material) to
remove Category I asbestos-containing roofing material, the
emission control requirements of § 61.145(c) apply as
discussed in ..Section I above. EPA will consider a roof
removal project to be in compliance with the "adequately wet"
and "discharge no visible emission" requirements of the NESHAP
if the RB roof cutter is equipped and operated with the-
following: (1) a blade^ guard that completely encloses the
blade and extends down close to the roof surface; and (2) a
device for spraying a fine mist of water inside the blade
guard, and which device is in operation during the cutting of
the roof.
8-9

-------
B. Exemptions from Wetting Requirements
3.3.1. The NESHAP provides that, in certain instances,
wetting may not be required during the cutting of Category I
asbestos roofing material with an R3 roof cutter. If EPA.
determines in accordance with § 61.145(c)(3)(i) , that wetting
will unavoidably damage the building, equipment inside the
building, or will present a safety hazard while stripping the
ACM from a facility component that remains in place,' the roof
removal operation will be exempted from the requirement to wet
during cutting. EPA must have sufficient written information
on which to base such a decision. Before proceeding with a
dry removal, the contractor must have received EPA's written
approval. Such exemptions will'be made on a case-by-case
basis.
3.B.2. It is EPA's view that, in most instances,
exemptions from the wetting requirements are not necessary.
Where EPA grants an exemption from wetting because of the
potential for damage to the building, damage to equipment
within the building or a safety hazard, the NESHAP specifies
alternative control methods (§ 61.145(c)(3)(i)(B)).
Alternative control methods include {a} the use of local
exhaust ventilation systems that capture the dust, and do not
produce visible emissions, or (b) methods that are designed
and operated in accordance with the requirements of § 61.152,
or (c) other methods -that have .received the written approval
of EPA. EPA will consider an alternative emission control
method in compliance with the NESHAP if the method has
received written approval from EPA and the method is being
implemented"consistent with the approved procedures
(§ 61.145(c) (3) (ii) or § 61.152(b)(3)).
3.B.3. An exemption from wetting is also allowed when
the air or roof surface temperature at the point of wetting is
below freezing, as specified in § 61.145(c)(7). If freezing
8-10

-------
temperatures are indicated as the reason for not wetting,
records must be kept of the temperature at the beginning,
middle and end of the day on which wetting is not performed
and the records of temperature must be retained for at least 2
years. 42 C.F.R. § 61.145(c) (7) (iii) . It is EPA's
interpretation that in such cases, no written application to,
or written approval by the Administrator is needed for using
emission control methods listed in § 61.145(c)(3)(i)(B), or
alternative emission control methods that have been-previously
approved by the Administrator. However, such written
application or approval is required for alternative emission
control methods that have not been previously approved. Any
dust and debris collected from cutting must still be kept wet
and placed in containers. All of the other requirements¦for
notification and waste disposal would continue to apply as
described elsewhere in this notice\and the Asbestos NESHAP.
C. Waste Collection and Handling
3.C..1. It is EPA's interpretation that waste resulting
from slicing and other methods that do not cut, grind, sand or
abrade Category I nonfriable asbestos-containing roofing
material is not subject to the NESHAP and can be disposed of
as nonasbestos waste. EPA further construes the NESHAP to
provide that if Category II roofing, material {such as A/C
shingles) is removed and disposed of without crumbling,
pulverizing, or reducing it to powder,' the waste from the
removal is not subject to the NESHAP waste disposal
requirements. EPA also interprets the NESHAP to be
inapplicable to waste resulting from roof removal operations
that do not meet or exceed the coverage thresholds described -
in section I above. Of course, other State, local, or Federal
regulations may apply.
3.C.2. It is EPA's interpretation that when an RB roof
cutter, or other method that similarly damages the roofing
8-11

-------
material, is used to cut Category I asbestos containing
roofing material, the damaged material from the cut (the
sawdust or debris) is considered asbestos containing waste
subject to § 61.150 of the NESHAP, provided the coverage
threshoidsi discussed above in section 1 are met or exceeded.
This sawdust or debris must be disposed of at a disposal site
operated in accordance with the NESHAP. It is also EPA's
interpretation of the NESHAP that if the remainder of the" roof
is free of the sawdust and debris generated by the cutting, or
if such sawdust or debris is collected as discussed below in
paragraphs.3.C.3, 3.C.4, 3.C.5 and 3 . C. 6, the remainder of the
roof can be disposed of as nonasbestos waste because it is
considered to be Category I nonfriable material (as long as .
the remainder of - the roof is in fact nonasbestos material or
if it is Category I asbestos material and the removal methods
do not further sand, grind, cut or abrade the roof material).
EPA further believes that if'the roof is not cleaned.of such
sawdust or debris, i.e., it is contaminated, then it must be
treated as asbestos-containing waste material and be handled
in accordance with § 61.150.
3.C.3. In order to be in compliance with the NESHAP
while using an RB roof cutter Cor device that similarly -
damages the roofing material} to cut Category I asbestos
containing roofing material, the dust and debris resulting
from the cutting of the roof should be collected as soon as
possible after the cutting operation, and kept wet until
collected and placed in leak-tight containers. EPA believes
that where the blade guard completely encloses the blade and
extends down close to the roof surface and is equipped with a
device, for spraying a fine mist of water inside the blade
guard, and the spraying device is in operation during the
cutting, most of the dust and debris from cutting will be
confined along the cut. The most efficient methods to collect
the dust and debris from cutting are to immediately collect or
vacuum up the damaged material where it lies along the cut
8-12

-------
using a filtered vacuum cleaner or debris collector that meets
the requirements of 40 C.F.R. § 61.152 to clean up as much of
the debris as possible, or to gently sweep up the bulk of the
debris, and then use a filtered vacuum cleaner that meets the
requirements of 40 C.F.R. § 61.152 to clean up as much of the
remainder of the debris as possible. On smooth surfaced roofs
(nonaggregate roofs), sweeping up the debris and then wet
wiping the surface may be done in place of using a filtered
vacuum cleaner. It is EPA-'s view that if these
decontamination procedures are followed, the remaining roofing
material does, not have to be collected and disposed of as
asbestos waste. Additionally, it is EPA's view that where
such decontamination procedures are followed, if the remaining
portions of the roof are non-asbestos or Category I nonfriable
asbestos material, and if the remaining portions are removed
using removal methods that slice, shear, punch or pry, as
discussed in section l.C above, then the remaining portions do
not have to be collected and disposed of as asbestos waste and
the NESHAP's no visible emissions and adequately wet
requirements are not applicable to the removal of the
remaining portions. In EPA's interpretation, the failure of a
filtered vacuum cleaner or debris collector to collect larger
chunks or pieces of damaged roofing material created by the RB
roof cutter does not require' the remaining roofing material to
be. handled and .disposed of as asbestos waste, provided that
such visible chunks or pieces of roofing material are
collected (e.g. by gentle sweeping) and disposed of as
asbestos waste. Other methods of decontamination may not be
adequate, and should be approved by the local delegated
agency.
3.C.4. In EPA's interpretation, if the debris from the
cutting is not collected immediately, it will be necessary to
lightly mist the dust or debris, until it is collected, as
discussed above, and placed in containers. The dust or debris
should be lightly misted frequently enough to prevent the
8-13

-------
material from drying, and to prevent airborne emissions, prior
to collection as described above. It is EPA's interpretation
of the NESHAF that if these procedures are followed, the
remaining roofing material does not have to be collected and
disposed of as asbestos waste, as long as the remaining roof
material is in fact nonasbestos material or if it is Category
I asbestos material and the removal methods do not further
sand, grind, cut or abrade the roof material.
•3.C.5. It is EPA's interpretation that, provided the
roofing material is not friable prior to the cutting
operation, and provided the roofing material has not been made
friable by the cutting operation, the appearance of rough,
jagged or damaged edges on the remaining roofing material, due
to the use of an RB roof cutter, does not- require that such
remaining roofing material be handled and disposed of as
asbestos waste. In addition, it is also EPA's interpretation
that if the sawdust or debris generated by the use of an RB
roof cutter has been collected as discussed in paragraphs
B.C.3, 3.C.4 and 3.C.6, the presence of dust along the edge of
the remaining roof material does not render such material
"friable" for purposes of this interpretive rule or the
NESHAP, provided the roofing material is not friable prior to
the cutting operation, and provided that the remaining roofing
material near the cutline has not been made friable by the
cutting operation. Where roofing material near the outline
has been made friable by the use of the RB cutter (i.e. where
such remaining roofing material near the cutline can be
crumbled, pulverized or reduced to powder using hand
pressure), it is EPA's interpretation that the use of an
encapsulant will ensure that such friable material need hot be
treated or disposed of as asbestos containing waste material.
The encapsulant may be applied to the friable material after
the roofing material has been collected into stacks for
subsequent disposal as nonasbestos waste. It is EPA's view
that if the encapsulation procedure set forth in this
8-14

-------
paragraph is followed in operations where roofing material
near the outline has been rendered friable by the use of an RB
roof cutter, and if the decontamination procedures set forth
in paragraph 3.C.3 have been followed, the NESHAP's no visible
emissions and adequately wet requirements would be met for the
removal, handling and disposal of the remaining roofing
material.
3.C.S.	As one way to comply with the NESHAP, the dust
and debris from cutting can be placed in leak-tight
containers, such as plastic bags, and the containers labeled
using warning labels required by OSHA {29 CFR 1926.58) . In
addition, the containers must have labels that identify the
waste generator (such as the name of the roofing contractor,
abatement contractor, and/or building owner or operator), and.
the location of the site at which the waste was generated.
IV. Waste Disposal
A. Disposal Requirements
4.A.I. Section 61.150(b) requires that, as soon as is
practical, all collected dust and debris from cutting as well
as any contaminated roofing squares, must be taken to a
landfill that is operated in accordance with § 61.154 or to an
EPA-approved site that converts asbestos was'te to nonasbestos
material in accordance with § 61.155. During the loading and -
unloading of affected waste, asbestos warning signs must be
affixed to the vehicles.
S. Waiste Shipment Record
4.B.I.	For each load of asbestos waste that is regulated
under the NESHAP, a waste shipment record (WSR) must be
maintained in accordance with § 61.150(d). Information that
must be maintained for each waste load includes the following:
8-15

-------
¦	Name, address, and telephone number cf the waste
generator
•	Name and address of the local, State, or EPA regional
office responsible for administering the asbestos NESHAF
program
•	Quantity of waste in cubic meters (or cubic yards)
¦	Name and telephone number of the disposal site operator
•	Name and physical site location of the disposal site
•	Date transported
¦	Name, address, and telephone number of the
transporter(s)
•	Certification that the contents meet all government
regulations for transport by highways.
4 tB.2. The waste generator is responsible for ensuring
that a copy of the WSR is delivered_to the disposal site along
with the waste shipment. If a copy of the WSR signed by the
disposal site operator is not returned to the waste generator
within 35 days, the waste generator must contact the
transporter and/or the disposal site to determine the status
of the waste shipment. 40" C. F.R. § 61. ISO  (3) . If the
signed WSR is not received within 45 days, the waste generator
must report, in writing, to the responsible NESHAP program
agency and send along a copy of the WSR. 40 C.-F.R. §
61.150(d)(4). Copies of WSRs, including those signed by the
disposal site_operator, must be retained for at least 2 years.
40 C.F.R. § 61.150(d)(5).
V. Training
5.1. For those roof removals that are subject to the
NESHAP, at least one on-site supervisor trained in the
provisions of the NESHAP must be present during the removal of
the asbestos roofing material. 40 C.F.R. § 61.145(c) (8). In
EPA's view, this person can be a job foreman, a hired
consultant, or someone who can represent the building owner or
8-16

-------
contractor responsible for the removal. In addition to the
initial training requirement, a refresher training course is
required every 2 years. The NHSMAP training requirements
became effective on November 20, 1991.
5.2. Asbestos training courses developed specifically to
address compliance with the NESHAP in roofing work, as well as
courses developed for other purposes can satisfy this
requirement of the NESHAP, as long as the course covers the
areas specified in the regulation. EPA believes that Asbestos
Hazard Emergency Response Act (AHERA) training courses will,
for example, satisfy the NESHAP training requirements.
However, nothing in this interpretive rule or in the NESHAP
shall be deemed to require that roofing contractors or roofing
workers performing operations covered by-the NESHAP must be
trained or accredited under AHERA, as amended by the Asbestos
School Hazard Abatement Reauthorization Act (ASHARA).
Likewise, state or local authorities may independently impose
additional training, licensing, or accreditation requirements
on roofing contractors performing operations covered by the
NESHAP, but such 'additional training, licensing or
accreditation is not called for by this interpretive rule or
the federal NESHAP.
5.3. For removal of Category I asbestos containing
roofing material where RB roof cutters or equipment that
similarly damages'the asbestos-containing roofing material are
used, the NESHAP training requirements (§ 61.145(c)(8)) apply
as discussed in Section I above. It is EPA's intention that
removal of Category I asbestos-containing roofing material
using hatchets, axes, knives, and/or the use of spud bars, pry
bars and shovels to lift the roofing material, or similar
removal methods that slice, punch, or shear the roof membrane
are not subject to the training requirements, since these
methods do not cause the roof removal to be subject to the
NESHAP. Likewise, it is EPA's intention that roof removal
8-17

-------
operations involving Category II nonfriable ACM are not
subject to the training requirements where such operations are
not subject to the NESHAP as discussed in section I above.
8-18

-------
REFERENCES
1.	Census of Construction Industries, 1987. INDUSTRY SERIES
CC87-1-18: Roofing, Siding, and Sheet Metal Work Special
Trade Contractors. U.S. Government Printing Office,
Washington, D.C., January 1990.
2.	Letter from W. A. Good, National Roofing Contractors
Association, to J. W. Rasnic, U.S. Environmental
Protection Agency, March 7, 1991.
3.	Annual Market Survey, 1992-1993, National Roofing
Contractors Association.
4.	National Roofing Contractors Association. The NRCA
Roofing and Waterproofing Manual. Third Edition.
Rosemont, IL: 1992.
5.	Griffin, C. W., Manual of Built-up Roof Systems, 2d Ed.
New York: McGraw-Hill Book Company,- 1982.
6.	National Roofing Contractors Association, 1991/1992 NRCA
Market Survey.
7.	Herbert, R. D. Ill, Roofing Design Criteria, Options,
Selection. Kingston, MA: R.S. Means Company, Inc.,
1989.
8.	Watson, J. A., Roofing Systems: Materials and
Application. Reston, VA: Reston Publishing Co., inc.,
1979,
9.	Andersen, P. H., M. A. Grant, R, G. Mclnnes, and W. J.
Farino, Analysis of Fiber Release from Certain Asbestos
Products, Draft Final Report, GCA-TR-82-53-G. Bedford,
MA: GCA Corporation, December 1982. -
10.	The Roofing Industry Educational Institute.- Englewood,
CO., n. d.
11.	Asbestos Containing-Portland Cement Binder Products, R-
358. Englewood, CO: The Roofing Industry Educational
Institute, May 1989.
12.	Telecon. M. Laney with R. Girouard and R. Shafer, R. K.
Hydro-Vac, Inc., Charlotte, NC. August 7 and 22, 1991.
13.	Trip Report. Martin Roofing Co., Inc., Wichita, KS.
July 10, 1991.
R-l

-------
14.	Trip Report. Lloyd Roofing Co., Inc., Beech Island, SC.
June 11, 1991.
15.	Letter from W. A. Good, National Roofing Contractors
Association, to S. Roy, U.S. Environmental Protection
Agency, November 2, 1993.
16.	Telecon. M. -Laney with L. Biggers, Young Sales Co.,
Inc., Louisville, KY. June 18, 1991.
17.	EDCO-Equipment Development Co. Product brochure, n.d.
18.	Telecon. M. Laney with D. Wiggins and R. Nixon, HDH
Associates, P.C., Salem, VA. September 5, 1991.
19.	Trip report, Young Sales Co., Inc. Louisville, KY.
July 25, 1991.
20.	'The School District of Greenville County, South Carolina.
Roofing ACM. Study: Simulating Roofing ACM Removal and
A Protocol: Identifying ACM in School Roofing. May 10,
1987.
21.	Trip report, Clean Waste, Incorporated, Adams, MA.
August 27, 1991.
22.	Health and Safety.Guide for the Commercial Roofing
Industry, DHEW (NIOSH) Publication. No. 78-194.
Cincinnati:- U.S. Department of Health, Education, and
Welfare, National Institute for Occupational Safety and
Health, September 1978.
23.	Unpublished CNA Insurance Claim Data, 1988-1991.
24.	Lee, D. H. K., Heat and Cold Effects and Their Control,
Public Health Monograph No. 72, Public Health Service
Publication No. 1084. Washington, D.C.; U.S. Government
Printing Office, 1964.
25.	U.S. Department of Health-and Human Services, National
Institute for Occupational Safety and Health, Criteria
for a,Recommended Standard....Occupational Exposure to
Hot Environments, Revised Criteria 1986. Washington,
D.C.: U.S. Government Printing Office, April 1986.
26.	Memorandum from Tom -Smith, National Roofing Contractors
Association to Carl Good, National Roofing Contractors
Association, January 23, 1991, Attachment B to Letter
from William A. Good, National Roofing Contractors
Association to William P. Reilly, U.S. Environmental
Protection Agency, January 26, 1991.
R-2

-------
27.	Letter from William A. Good, National Roofing Contractors
Association to William P. Reilly, U.S. Environmental
Protection Agency, January 26, 1991.
28.	Asbestos in Roofing: Work Practices and Disposal, R-3 91.
Englewood, CO: The Roofing Industry Educational
Institute, 1988.

-------

-------
APPENDIX A
GLOSSARY
Aggregate:Crushed stone, crushed slag, or water-worn gravel
used for surfacing a built-up roof; any granular mineral
material.
Alligatoring: The cracking of the surfacing bitumen on a
built-up roof,producing a pattern of cracks similar' to a
alligator's hide; the cracks may or may not extend
through the surfacing bitumen.
Asphalt: A dark brown to black cementitious material in which
the predominating constituents are bitumens, which occur
in nature or are obtained in petroleum processing.
Asphalt, Air Blown: An asphalt produced by blowing air
through molten asphalt at 'an elevated temperature to
raise its softening point and modify other properties.
Asphalt Felt: An asphalt-saturated felt.
Base Ply: The base ply is the first ply when it is a separate
ply and not part of a shingled system.
Base Sheet: A saturated or coated felt placed as the first
ply in some multiply, built-up membranes.
Bitumen: The generic term for an amorphous, semi-solid
mixture of complex hydrocarbons derived from any organic
source. Asphalt and coal tar are the two bitumens used
in the roofing industry.
Blind Nailing: The practice of nailing the back portion of a
ply-
Blister: A spongy raised portion of a roof membrane, ranging
in area from one inch in diameter and of barely
detectable height upwards. Blisters result from the
pressure build-up of gases entrapped in the membrane •
system. The gases most commonly are air/or water vapor.
Blisters usually involve delamination of the underlying
membrane plies,
Brooming: Embedding a ply of roofing material by using a
broom to smooth out the ply and ensure contact with the
adhesive under the ply.
A-l

-------
Built-up Roof Membrane: A continuous roof covering of
laminations, or plies, of saturated or coated felts
alternated with layers of bitumen, surfaced with mineral
aggregate or asphalt.
SUR: Abbreviation sometimes used for built-up roofing
membrane.
Cap Sheet: A granule-surfaced coated sheet used for the top
ply of a built-up roof membrane or flashing.
Coal Tar Bitumen: A dark brown to black, semi-solid
hydrocarbon formed as a residue from the partial
evaporation or distillation of coal tar. It is used as
the waterproofing agent in dead-level or low slope built-
up roofs. It differs from Coal Tar Pitch in having a
lower front-end volatility.
Coal Tar Fitch: A dark brown to black semi-solid hydrocarbon
formed as a residue from the partial evaporation or
distillation o£ coal tar. It is used as the
waterproofing agent in dead-level or low-slope built-up
roofs.
Coated Base Sheet: A felt that has previously been
"saturated" (impregnated with asphalt) and later coated
with harder, more viscous asphalt, which greatly -
increases its impermeability to moisture.
Cold-Process Roofing: A continuous semi-flexible roof
membrane, consisting of plies of felts, mats, or.fabrics
that are laminated on a roof with alternate layers of
cold-applied roof cement and surfaced with a cold-applied
coating.'
Countarflashing: Formed metal or elastomeric sheeting secured
on or into a wall, curb, pipe, rooftop unit or other
surface to cover and protect the upper edge of a base
flashing and its associated fasteners.
Cutback: Any bituminous roofing material that has been
solvent thinned. Cutbacks are used in cold-process
roofing adhesives, flashing cements, and roof coating.
Dead-level: Absolutely horizontal, or zero slope.
Dead-level Asphalt: A roofing asphalt that has a softening
point of 140 °F. (60°C) and that conforms to the
requirements of ASTM Standard D 312, Type 1.
Dead Loads: Non-moving roof top loads, such as mechanical
equipment, air conditioning units, and the roof deck
A-2

-------
Deck: The structural surface to which the roofing or water-
proofing system (including insulation) is applied.
EPDM: Ethylene Propylene Diene Monomer.
Felt: A fabric manufactured by the interlocking of fibers
through a.combination of mechanical work, moisture, and
heat without spinning, weaving or knitting. Roofing
felts are manufactured from vegetable fibers, asbestos
fibers or glass fibers.
Fishmouth: An opening formed by an edge wrinkle in a felt
where it overlaps another felt in a built-up roofing
membrane.
Flashing: The system used to seal the edges of a membrane at
walls,, expansion joints, drains, gravel stops, and other
areas where the membrane is interrupted or terminated.
Base flashing covers the edges of the membrane. Cap
flashing or counter-flashing shields the upper edges of
. the base flashing.
Flat Asphalt: A roofing asphalt that has a softening', point of
approximately 170°F. (77°C) and that conforms to the
requirements of ASTM Standard D 312, Type II.
Flood Coat: The top layer of bitumen in an aggregate surface,
built-up roofing membrane. Correctly applied, it is
poured, not mopped, to a weight of 60 pounds per square
for asphalt, 75 pounds per square for coal-tar pitch.
Fluid Applied Elastomer: An elastomeric material, which is
fluid at ambient temperatures, that dries or cures after
application to form a continuous membrane.
Glass Fiber Felt: A felt sheet in which glass fibers are
bonded into the felt sheet with resin. They are suitable
for impregnation and coating. They are-used in the
manufacture and coating of bituminous waterproofing
materials, roof membranes and. shingles.
Hypalon: A synthetic rubber (chemically chlorosulfonated
polyethylene), often used in conjunction with neoprene in
elastomeric roof coverings.
Inorganic: Being or composed of matter other than
hydrocarbons and their derivatives, or matter that is not
of plant or animal origin.
Insulation: A material applied to reduce the flow of heat.
A-3

-------
Membrane: A flexible or semi-flexible roof covering or
waterproofing layer, whose primary function is the
exclusion of water.
Metal Flashing: See Flashing; metal flashing is frequently
used as through-wall flashing, cap flashing,
counterflashing or gravel stops.
Mineral Fiber Felt: A felt with mineral wool as its principal
component.
Mineral Granules? Opaque, natural or synthetically colored
aggregate commonly used to surface cap sheets, granule-
surfaced sheets and roofing shingles.
Mineral-Surfaced Roofing: Built-up roofing materials whose
top ply consists of a granule-surfaced sheet.
Mineral-Surfaced Sheet: A felt that is coated on one or both
sides with asphalt and surfaced with mineral granules.
Mopping: An application of hot-bitumen applied to the
substrate or to the felts of a built-up roof membrane .
with a mop or a mechanical applicator.
Hailing: (1) In the exposed nail method, nail heads are
exposed to the weather; (2) In the concealed nail method,
-nail heads are concealed from the weather (see also Blind
Nailing).
Neoprene: A synthetic rubber (polychloroprene) used in liquid
applied and sheet applied elastomeric roof membranes or
flashing.
Organic; Being or composed of hydrocarbons or their
derivatives, or matter of plant or animal origin.
Perlite: An,aggregate used in light-weight insulating
concrete and in preformed perlitic insulation boards,
formed by heating and expanding siliceous volcanic glass.
Perm: A unit of water vapor transmission defined as one (1}
grain of water vapor per square foot per hour per inch of
mercury pressure difference (1 inch of mercury » 0.491
psi)..
Permeance: The rate of vapor transmission per -unit area at a
steady state through a membrane or assembly.
Pitch: (1) Roofers term as applied to coal tar bitumen. (2)
The degree of slope of a roof.
A-4

-------
Ply: A layer of felt in a built-up roof membrane system. A
four-ply membrane system has four plies of felt.
PVC: Polyvinyl-chloride single-ply membrane (as applied to
roofing).
Re-covering: The addition of a new membrane over a major
portion of a roof surface. This may or may not involve
removal of the old membrane and may not include
installation of additional insulation.
Reinforced Membrane: A roofing or waterproofing membrane
reinforced with felts, mats, fabrics or chopped fiber.
Reroofing: The removal of all roof system components down to
the structural deck followed by installation of
completely new roofing system.
Resaturant: Cold applied viscous tar or asphalt bitumen for
coating roofs.
Roll Roofing: The term applied,to smooth-surfaced or mineral-
surfaced coated felts.
Roof System: A system of interacting roof components designed
to weatherproof and normally, to insulate a building's
top surface.
Saturated Felt: A felt that has been impregnated with bitumen
of low softening point from 100*F to 160°F.
Shingle: (1) A small unit of prepared roofing material
designed to be installed with similar units in
overlapping rows on inclines normally exceeding 25%; (2)
To cover with shingles? (3) To apply any sheet material
in overlapping rows like shingles.
Slag: A grayish, porous aggregate left as a residue from
blast furnaces and used as surfacing aggregate.
Slope: The tangent of the angle between the roof surface and
the horizontal. It is measured in inches per foot.
Level slope - up to 1/2 inch per foot.
Low slope - 1/2 inch per foot to 1 1/2 inches per foot.
Steep slope - over l 1/2 inches per foot.
Smooth Surfaced Roof; A built-up roofing membrane surfaced
with a layer of hot mopped asphalt, cold-applied asphalt-
clay emulsion, cold-applied asphalt cutback, or sometimes
with an unmopped inorganic felt.
A-5

-------
Softening Point: The temperature at which bitumen becomes
soft enough to flow. The softening point of asphalt is
measured by the "ring and ball" test (ASTM standard D
2398). The softening point of coal tar pitch is measured
by the "cube in water" test (ASTM Standard D 61).
Special Steep Asphalt: A roofing asphalt that has a softening
point of approximately 220°F (104°C) and that conforms to
the requirements of ASTM standard D 312, Type IV.
Square: The term used to describe 100 square feet of roof
area.
Steep Asphalt: A roofing asphalt that has a softening point
of approximately 190°F (88°C) and that conforms to the
requirements of ASTM Standard D 312, Type III.
Thermal Insulation: A material applied to reduce the flow of
heat.
Vapor Barrier: (more precisely, vapor retarder) A layer of
material used to appreciably reduce the flow of water
vapor into thermal insulation from the high vapor
pressure side.
Vapor Migration: The movement of water vapor from a region of
high vapor pressure to a region of lower vapor pressure.
Vapor Retarder: A material designed to restrict the passage
of water vapor through a wall or roof. In the roofing
industry, a vapor retarder should have a perm rating of
0.S or less.
Veraicttlite: An aggregate used in lightweight insulating
concrete, formed by the heating and consequent expansion
of a micaceous mineral.
Waterproofing: 'Treatment of a surface of structure to prevent
. the passage of water under hydrostatic pressure.
Source; HDH Associates, P.c. Roofing Glossary. Salem, VA.
n.d.
A-6

-------

-------

-------