Appendix C: Bioavailability Model Comparisons

for the

Metals Cooperative Research and Development
Agreement (CRADA) Phase I Report:

Development of an Overarching Bioavailability Modeling

Approach to Support
US EPA's Aquatic Life Water Quality Criteria for Metals

(EPA-822-R-22-001)

March 2022

Table 1: Bioavailability Model Comparisons, Table 2: Supporting Information, and References
were developed by the CRADA Partners.


-------
Appendix C, Table 1: Bioavailability Model Comparison Tablt

Metal

Model Name

Version/ Identification

Type

Freshwater/
Saltwater

User-Interface

Output

Source

References

Primary toxicity modifying factors

Taxa model is applicable to

Chemistry Inputs needed

Aluminum

BLM

3.18.2.42

Full BLM

Freshwater

Free Software2

HC5

www, wind wa rdenv.com/biotic-liaa nd-model/

[1]

pH, DOC, Hardness,Temperature

algae, invertebrates,fish

Temperature, pH, DOC, Al, Ca, Mg, Na, K, S04, CI

MLR

N/A

MLR

Freshwater

Equation

HC5

Windward Environmental LLC

[2]

pH, DOC, Hardness

algae, invertebrates,fish

pH, DOC, Hardness

Cobalt

BLM

3.15.2.41

Full BLM

Freshwater

In Development

HC5

Windward Environmental LLC

In Development

Hardness, pH, DOC

algae, invertebrates,fish

Temperature, pH, Co, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

MLR

N/A

MLR

Freshwater

In Development

Bioavailable [Cobalt]

In Development /Windward Environmental LLC

In Development

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Hardness |Ca,Mg)

BioMet

v5.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

HC5, Bioavailable
[Cobalt], RCR

In Development

In Development

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Ca, Co

Copper

USEPA BLM

USEPA 2007

Full BLM

Freshwater

Free Software2

CMC, CCC

www.eoa.aov/wac/aauatic-life-CTifei'ia-coooei'

[3],

supported by [4-121

pH, alkalinity, hardness, DOC

invertebrates, fish

Temperature, pH, Cu, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, alkalinity, S

ECCC BLM

vl.10

Full BLM

Freshwater

Free Software2

HC5

chanae/sei'vices/evaluatina-existina-substances/fedei'al-
environmental-aualifv-auidelines-coBDei'. html

[13, 14]

pH, alkalinity, hardness, DOC

algae, plants,
invertebrates, fish

Required: Temperature, pH, Cu, DOC, hardness;
Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S

BC BLM

vl.ll

Full BLM

Freshwater

Free Software2

WQG

htfos://www2.aov.bc.ca/assets/aov/environment/air-land"
water Avatei'/wateraua litv/watei'-aualitv-
auidelines/aoDcoved-waas/coBDei'/bc him setuo.exe

[15-17]

pH, alkalinity, hardness, DOC

algae, plants,
invertebrates, fish,

Required: Temperature, pH, Cu, DOC, hardness;
Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S

Windward BLM

V3.41.2.45

Full BLM

Freshwater

Free Software2

L(E)C50, CMC, CCC

www.windwardenv.comfciQ^^

[18],

supported by [4-101

pH, alkalinity, hardness, DOC

invertebrates, fish

Required: Temperature, pH, Cu, DOC, hardness;
Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S

BLM/gBAM

Modified HydroQual
BLM software

Mixed regression +
speciation model

Freshwater

Free Software2

L(E)C50, EC10

[21]

[19-21]

pH, alkalinity, hardness, DOC

invertebrates, fish

Temperature, pH, Cu, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, alkalinity, S

BioMet

v5.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

HC5, Bioavailable
[Copperl, RCR

www.bio-met.et

[22]; supported by
[19-21, 23-28]

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Cu

M-BAT

v30.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

PNEC, Bioavailable
[Copperl, RCR



[29]; supported by
[30-32]

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Cu

PNEC-Pro

v6.0

[M]LR

Freshwater

Free Software2

PNEC, Bioavailable
[Copperl, RCR

htto://www, onec-oro.com

[33]

DOC

algae, invertebrates,fish

Required: DOC;
Optional: pH, Mg, Ca, Na, Cu

WHAM-Fto<

N/A

Toxicity model
linked to speciation

Freshwater

WHAM 7
software +
toxicity equation

EC50

[34]

[34]

Not specified

plants

Temperature, pH, Cu, DOM (fulvic and humic acids), Ca, Mg,
Na, K, S04, CI, alkalinity, metals

MLR

N/A

MLR

Freshwater

Equation

L(E)C50

[35]

[35]; additional
examples [25,27, 36,
37]

Hardness, pH, DOC

invertebrates, fish

pH, hardness, DOC

Windward
Marine BLM

V3.41.2.45

Full BLM

Sa Itwater

Free Software2

L(E)C50

www\w1ndw7!rdefn^com/bjotk>JlaMilOodsi£.

[18]; supported by
[4-10,12, 38-40]

pH, salinity, DOC

invertebrates, fish

Required: Temperature, pH, Cu, DOC, salinity;
Optional: Ca, Mg, Na, K, S04, CI, P04, DIC

Marine MLR

N/A

[M]LR

Sa Itwater

Equation

EC50

[38]

[38, 40]; additional
examples: [41, 421

DOC

invertebrate (Mytilus sp.)

DOC

Lead

BLM

Unified/North America

Full BLM

Freshwater

Free Software2

ECx; FAV; FCV; acute and
chronic HC5

htto://www,windwa rdenv.com/biotir-iiaand-model/

[43]; supported by
[44-63]

Hardness, pH, DOC

invertebrates, fish

Temperature, pH, Pb, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

BLM/gBAM

EU Risk Assessment

Full BLM

Freshwater

Free Software2

Normalized SSD; HC5

httDs://www,ila-lead,org/resoonsibilitv/lead-blm-

[64]; supported by
[44-63, 65,66]

Hardness, pH, DOC

algae, invertebrates,fish

Temperature, pH, Pb, DOC, Ca, Mg, Na, K, S04, CI, C03

Lead EQS
Screening Tool

vl.O (EU Risk
Assessment)

DOC Equation

Freshwater

Free Software2

PNEC; bioavailable [Pb],
RCR

httDs://www,wca-
environment.com/index.oho/modeta-and-
downloads/Pb-EOS-Srreenina-Tool

[32], [67]

DOC

algae, invertebrates,fish

DOC, Pb

BioMet

v5.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

HC5, Bioavailable [Pb],
RCR

www,bio-met,net

In Development /
WCA

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Pb

PNEC Pro

v6.0

[M]LR

Freshwater

Free Software2

PNEC

htto://www, onec-oro.com

[68]

DOC

algae, invertebrates,fish

Required: DOC;
Optional: pH, Mg, Ca, Na, Pb

MLR

Canadian WQG

MLR

Freshwater

N/A

long-term WQG

httDs://www,ca nada.ca/en/environment-dimate-
chanae/services/evaluatina-existina-
substances/federai-environ mental-aualitv-auidelines-
lead.htrnl

[69]

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Hardness

MLR

N/A

MLR

Freshwater

N/A

ECx; HC5

Unpublished Report

[70]

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Hardness


-------
Appendix C, Table 1: Bioavailability Model Comparison Tablt

Metal

Model Name

Version/ Identification

Type

Freshwater/
Saltwater

User-Interface

Output

Source

References

Primary toxicity modifying factors

Taxa model is applicable to

Chemistry Inputs needed

Nickel

BLM

EU Risk Assessment

Full BLM

Freshwater

Excel + WHAM
based software

HC5

Nys et al. 2016 [71], WHAM VI

[71-74]

Hardness, pH, DOC

algae, invertebrates,fish

Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

BioMet

v5.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

HC5, Bioavailable [Nickel],
RCR

www,bio-met,net

In Development /
WCA

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Ni

M-BAT

20150206

Simplified BLM
Lookup Tool

Freshwater

Free Software2

PNEC, Bioavailable
[Nickel], RCR

htto:// www, wfduk.org/

[32]

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Ni

BLM

Best Overall Pooled

Full BLM

Freshwater

Free Software2

ECx, HC5, FAV

www, wind wa rdenv.com/biotic-liga nd-model

[88]

Hardness, pH, DOC

algae, invertebrates,fish

Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

BLM

North American
C. dubio Model

Full BLM

Freshwater

Free Software2

ECx

www.windwardenv.com/biotic-liga nd-model

[88]

Hardness, pH, DOC, Alkalinity

invertebrates (may be
limited to C. dubio)

Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

PNEC Pro

v6.0

[M]LR

Freshwater

Free Software2

PNEC, RCR

htto://www, onec-oro.com

[68]

Hardness, pH, DOC

algae, invertebrates,fish

Required: DOC;
Optional: pH, Mg, Ca, Na, Ni

MLR

N/A

MLR

Freshwater

Equation

ECx

Equation in Croteau et al. 12021). Accepted

[89]

Hardness, DOC

algae, invertebrates,fish

Hardness ICa/Mg), DOC, pH, Ni

BLM

Marine

Full BLM

Sa Itwater

Free Software2

ECx

www.windwardenv.com/biotic-liga nd-model

[90]

DOC

invertebrates

Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

Zinc

BLM

Unified/North America

Full BLM

Freshwater

Free Software2

ECx; FAV; FCV

www.windwacdenv.com/biotic-liaand-model/

[75]; supported by
[4, 76-80]

Hardness, pH, DOC

invertebrates, fish

Temperature, pH, Zn, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

BLM/gBAM

EU Risk Assessment

Full BLM

Freshwater

Free Software2

ECx; HC5 after post-
processing1

www.windwacdenv.com/hiotic-lteand-model/

[81]; supported by
[80, 82]

Hardness, pH, DOC

algae, invertebrates,fish

Temperature, pH, Zn, DOC, Humic acid %, Ca, Mg, Na, K, S04,
CI, Alkalinity, S

M-BAT

v30.0 -20150206

Simplified BLM
Lookup Tool

Freshwater

Free Software2

PNEC

bioavailabilitv-assessment-tool-m-bat

[32]

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Zn

BioMet

v5.0

Simplified BLM
Lookup Tool

Freshwater

Free Software2

HC5

www.bio-met.net

In Development /
WCA

pH, DOC, Ca

algae, invertebrates,fish

pH, DOC, Ca, Zn

PNEC Pro

v6.0

[M]LR

Freshwater

Free Software2

PNEC

htto://www, onec-oro.com

[68]

DOC

algae, invertebrates,fish

Required: DOC;
Optional: pH, Mg, Ca, Na, Zn

MLR

Canadian WQG

MLR

Freshwater

N/A

short-term WQG; long-
term WQG

htfo://ce(U!-rc(ie.ccme.ca/download/en/360

[83]

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Hardness

MLR

N/A

MLR

Freshwater

N/A

ECx; FAV; FCV

In Development

In Development

Hardness, pH, DOC

algae, invertebrates,fish

pH, DOC, Hardness

BLM

Marine

Full BLM

Sa Itwater

N/A

ECx; FAV; FCV

Preliminary/Pilot BLM [84]

[84]

pH, salinity, DOC

invertebrates, fish

Required: Temperature, pH, Zn, DOC, salinity;
Optional: Ca, Mg, Na, K, S04, CI, P04, DIC

1Model can produce effect concentrations normalized to specified water chemistry conditions, but HC5 must be derived from normalized SSDs after model application
2 Registration may be required to download the software
Definitions:

BC - British Columbia
BLM - Biotic ligand model
CCC - Criteria continuous concentration
CMC - Criteria maximum concentration
DIC - Dissolved inorganic carbon
DOC - Dissolved organic carbon
ECCC - Environment and Climate Change Canada
EC10 -10 percent effect concentration
EC50 - 50 percent effect concentration
ECx - Y percent effect concentration
EU - European Union
FAV-Final acute value
FCV-Final chronic value
gBAM - Generalized bioavailability model
HC5 - Hazardous concentration 5th percentile
L(E)C50 - 50 percent lethal or effect concentration
M-BAT- Metal bioavailability assessment tool
MLR - Multiple linear regression

[M]LR - Multiple linear regression and/or simple linear regression

PNEC - Predicted no effect concentration

RCR- Riskcharacterization ratio

SSD - Species sensitivity distribution

TRV - Toxicity reference value

USEPA - United States Environmental Protection Agency
WHAM - Windermere humic aqueous model
WQG - Water quality guideline


-------
Appendix C, Table 2: Supporting Information for Bioavailability Model Comparison Table

Metal

Model Name

Version/
Identification

Status

Endpoint
(acute or chronic)

Species used in development

Applicable pH range

Applicable DOC range
(mg/L)

Applicable Ca range
(mg/L Ca)

Speciation Programme?

Used in regulatory framework and/or
example applications

Natural waters validated

Validated pH ranges

Validated DOC ranges
(mg/L)

Validated Hardness ranges
(mg/L CaC03)

Validation process -
Cross-species

Aluminum

BLM

3.18.2.42

Complete

Chronic

P. subcapitata, C. dubia, P. promelas

Algae: 6.0-8.5
Invertebrates: 6.0-8.5
Fish 5.0-8.5

0.3-14.0

10-400

Model V (WHAM)

REACH

4 Natural Waters
(5 more in process)

6.4-8.0

1.0-19.8

24-204

Gastropod (Lymnaea stagnalis)
Rotifer (Brachionus calyciflorus)

MLR

N/A

Complete

Chronic

P. subcapitata, C. dubia, P. promelas

Algae: 6.0-8.5
Invertebrates: 6.0-8.5
Fish 5.0-8.5

0.3-14.0

10-400

N/A

USEPA

4 Natural Waters
(5 more in process)

6.4-8.0

1.0-19.8

24-204

Gastropod (Lymnaea stagnalis)
Rotifer (Brachionus calyciflorus)

Cobalt

BLM

3.15.2.41

Complete

Chronic

P. subcapitata, C. dubia, P promelas

Algae: 6.1-7.9
Invertebrates: 6.4-8.6
Fish: 6.4-8.4

Algae: 0.3
Invertebrates: <0.5-9.4
Fish: <0.5-8.7

Algae: 16-412
Invertebrates: 44-396
Fish: 24-390

Model V (WHAM)

REACH

5 Natural Waters

5.5-8.5

0.87-10.82

16-248

Aquatic plant (Lemna minor),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

MLR

N/A

In Development

Chronic

P. subcapitata, C. dubia, P promelas, B calyciflorus, D
magna

Algae: 6.1-7.9
Invertebrates: 6.4-8.6
Fish: 6.4-8.4

Algae: 0.3
Invertebrates: <0.5-9.4
Fish: <0.5-8.7

Algae: 16-412
Invertebrates: 44-396
Fish: 24-390

N/A

In Development

5 Natural Waters

5.5-8.5

0.87-10.82

16-248

Aquatic plant (Lemna minor),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

BioMet

v5.0

In Development

Chronic

P. subcapitata, C. dubia, P promelas

Algae: 6.1-7.9
Invertebrates: 6.4-8.6
Fish: 6.4-8.4

Algae: 0.3
Invertebrates: <0.5-9.4
Fish: <0.5-8.7

Algae: 16-412
Invertebrates: 44-396
Fish: 24-390

WHAM 6

In Development

5 Natural Waters

5.5-8.5

0.87-10.82

16-248

Aquatic plant (Lemna minor),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

Copper

USEPA BLM

USEPA 2007

Complete

Acute and Chronic

Not specified

Not specified

Not specified

Not specified

CHESS with Model V (WHAM)

USEPA WQC [3];

Site-specific WQGs in Australia and New
Zealand

Not specified

Not specified

Not specified

Not specified

Not specified

ECCC BLM

vl.10

Draft

Chronic

Not specified

5.5-8.75

0.2-33.4

7.9-525

CHESS with Model V (WHAM)

Draft Canadian Federal Environmental
Quality Guidelines [13]

Not specified

Not specified

Not specified

Not specified

Not specified

BC BLM

vl.ll

Complete

Acute and Chronic

Not specified

4.7-9.0

0.05-20

7.8-237

CHESS with Model V (WHAM)

WQGs for British Columbia, Canada [15]

Not specified

Not specified

Not specified

Not specified

Not specified

Windward BLM

V3.41.2.45

Complete

Acute

Acipenser transmontanus, Ceriodaphnia dubia,
Chironomus tentans, Daphnia magna, Daphnia
pulex, Daphnia pulicaria, Lampsilisfasciola,
Lampsilis siliquoidea, Lepomis macrochirus,
Oncorhynchus mykiss, Oncorhynchus tshawytscha,
Pimephales promelas, Utterbackia imbecillis, Villosa
iris

4.9-9.2

0.05-30

7.9-525

CHESS with Model V (WHAM)

Some site-specific WQC in USA

Not specified

Not specified

Not specified

Not specified

Not specified

Modified BLM

Modified HydroQual BLM
software

Complete

Acute and Chronic

Daphnia magna

D. magna. : 5.5-8.5;
H.azteca: 6.49-8.47;
H.depressa: 6.5-7.5;
L. siliquoidea : 8.0-8.7;
P. promelas: 6.63-8.65;
O.mykiss: 6.0-8.0

D. magna: 1.6-23;
H. azteca: <01-1.1;
H. depressa: 0-11.6;
L. siliquoidea : 0.5-11;
P. promelas: 0.4-18.2;
O.mykiss: N/A

D. magna: 10-500;
H. azteca : 12-312;
H. depressa: 38;
L. siliquoidea : 40-379;
P. promelas: 46-446;
O. mykiss: 30-360

CHESS with Model V (WHAM)

EU Copper Voluntary Risk Assessment [21]

For Daphnia magna:
24 natural waters

For Daphnia magna:
Field-6.20-8.61;
Lab-6.6-8.7

For Daphnia magna:
0.9-21.6

For Daphnia magna:
75-590

Acute: Amphipod (Hyalella azteca),

Fish (Pimephales promelas);

Chronic: Mussel (Hyridella depressa),

Clam (Lampsilis siliquoidea),

Fish (Pimephales promelas, Oncorhynchus mykiss)

BioMet

v5.0

Complete

Chronic

Daphnia magna, Oncorhynchus mykiss,
Pseudokirchneriella subcapitata

Algae: 5.7-8.8
Invertebrates: 5.6-8.7
Fish: 6.6-8.7

Algae: 1.3-20
Invertebrates: 1.7-18
Fish: 1

Algae: 5-160
Invertebrates: 7-179
Fish: 14-94

N/A

Water Framework Directive; [85, 86]

N/A

Algae: 5.5-8.7
Invertebrates: 5.5-8.5
Fish: 6.0-8.6

Algae: 0-20
Invertebrates: 0-20
Fish: 0-18

Algae: 2.5-179
Invertebrates: 2.5-179
Fish: 3.1-129

N/A

M-BAT

V30.0-20150206

Complete

Chronic

Daphnia magna, Oncorhynchus mykiss,
Pseudokirchneriella subcapitata

6-8.5

Upper value of 15

3.1-9.3

N/A

Water Framework Directive [85, 86]

Not specified

Not specified

Not specified

Not specified

N/A

P NEC-Pro

v6.0

Complete

Chronic

Daphnia magna, Oncorhynchus mykiss,
Pseudokirchneriella subcapitata

5.5-8.8

Not specified

Not specified

N/A

Water Framework Directive [85]

Not specified

Not specified

Not specified

Not specified

N/A

WHAM-Ftox

N/A

Complete

Acute

Lemna aequinoctialis, Lemna paucicostata

L. aequinoctialis: 6.5:
L. paucicostata: N/A

L. aequinoctialis: 0.3;
L. paucicostata: N/A

L. aequinoctialis: 38;
L. paucicostata: 69

WHAM 7

Unknown

None

N/A

N/A

N/A

FW plants (Lemna aequinoctialis, Lemna paucicostata)

MLR

N/A

Complete

Acute

Ceriodaphnia dubia, Daphnia magna, Daphnia
obtusa, Daphnia pulex, Pimephales promelas

5.5-9.01

0.07-32.9

7-440

N/A

Calculated example criteria [35]

None

N/A

N/A

N/A

N/A

Windward Marine BLM

V3.41.2.45

Complete

Acute

Crassostrea gigas, Crassostrea virginica, Dendraster
excentricus, Lampsilisfasciola, Lampsilis siliquoidea,
Mytilus edulis, Mytilus galloprovincialis,
Strongylocentrotus purpuratus

6.3-9

0.1-12

2-41.7 (salinity in %o)

CHESS + 3-site fit for binding to
DOM

Some site-specific WQC in USA

Not specified

Not specified

Not specified

Not specified

Not specified

Marine MLR

N/A

Complete

Acute

Mytilus sp.

Not specified

1.0-12.0

30 (salinity in %o)

None

Unknown

None

N/A

N/A

N/A

N/A

Lead

BLM

Unified/North America

Complete

Acute and Chronic

C. dubia, P. promelas

Invertebrates: 5.7-8.6
Fish: 5.7-8.5

Invertebrates: 0.4-17.6
Fish: <0.5-15.9

Invertebrates: 5.8-354
Fish: 5-305

CHESS with Model V (WHAM)

[43, 70]

7 Natural Waters

5.5-8.7

0.4-14.9

4-298

Insect (Baetis tricaudatus, Chironomus riparius),

Snail (L. stagnalis),

Rotifer (Philodina rapida, Brachionus calyciflorus)

BLM/gBAM

EU Risk Assessment

Complete

Chronic

P. subcapitata, C. dubia, P. promelas

Algae: 6.0-8.4
Invertebrates: 6.1-8.5
Fish: 6.3-8.2

Algae: 0.5-22.4
Invertebrates: 0.4-17.3
Fish: 0.7-12

Algae: 12-300
Invertebrates: 9.0-510
Fish: 9.0-210

NICA-Donnan formulation with
Visual MINTEQ3.1

EU Risk Assessment; EU CLP classification;
[64, 87]

7 Natural Waters

6.0-8.4

0.5-17.3

9-210

Aquatic plant (Lemna minor),

Insect (Chironomus riparius),

Snail (L. stagnalis),

Rotifer (Philodina rapida, Brachionus calyciflorus)

Lead EQS Screening Tool

vl.O (EU Risk Assessment)

Complete

Chronic

Rotifer (Philodina rapida)

N/A

0.9-16.9

N/A

Visual MINTEQ 3.1 and WHAM

EU Water Framework Directive and risk
assessent [32, 64, 67, 87]

N/A

N/A

1.0-17.3

N/A

Aquatic plant and algae (L. minor, P. subcapitata),
Cladoceran (C. dubia),

Snail (L. stagnalis),

Fish (P. promelas)

BioMet

v5.0

Complete

Chronic

P. subcapitata, C. dubia, P. promelas

Algae: 6.0-8.4
Invertebrates: 6.1-8.5
Fish: 6.3-8.2

Algae: 0.5-22.4
Invertebrates: 0.4-17.3
Fish: 0.7-12

Algae: 12-300
Invertebrates: 9.0-510
Fish: 9.0-210

N/A

EU Risk Assessment [32, 87]

N/A

6.0-8.4

0.5-17.3

9-210

Aquatic plant (Lemna minor),

Insect (Chironomus riparius),

Snail (L. stagnalis),

Rotifer (Philodina rapida, Brachionus calyciflorus)

PNECPro

v6.0

Complete

Chronic

P. subcapitata, C. dubia, P. promelas

Algae: 6.0-8.4
Invertebrates: 6.1-8.5
Fish: 6.3-8.2

Algae: 0.5-22.4
Invertebrates: 0.4-17.3
Fish: 0.7-12

Algae: 12-300
Invertebrates: 9.0-510
Fish: 9.0-210

N/A

EU Risk Assessment [87]

N/A

N/A

N/A

N/A

N/A

MLR

Canadian WQG

Proposed, Under review by ECCC

Chronic

P. subcapitata, C. dubia, P. promelas, L. stagnalis

Algae: 6.0-8.4
Invertebrates: 6.1-8.5
Fish: 6.3-8.2

Algae: 0.5-22.4
Invertebrates: 0.4-17.3
Fish: 0.7-12

Algae: 12-300
Invertebrates: 9.0-510
Fish: 9.0-210

N/A

Canadian WQG [69]

N/A

N/A

N/A

N/A

N/A

MLR

N/A

Draft

Acute and Chronic

P. subcapitata, C. dubia, P. promelas, L. stagnalis, B.
caliciflorus

Algae: 6.0-8.4
Invertebrates: 5.7-8.6
Fish: 6.3-8.3

Algae: 2.1-22.4
Invertebrates: 0.4-31.4
Fish: 0.5-15.9

Algae: 18.7-312
Invertebrates: 5.8-511
Fish: 5.0-305

N/A

In Development [70]

In Development

In Development

In Development

In Development

In Development

Nickel

BLM

EU Risk Assessment

Complete

Chronic

P. subcapitata, C. dubia, D. magna, O. mykiss

Algae: 5.7-8.0
Invertebrates: 5.9-8.7
Fish: 5.4-8.5

Algae: 2.5-25.8
Invertebrates: 2.5-25.8
Fish: 3.8-18.4

Algae: 2.4-144
Invertebrates: 3.0-72.7
Fish: 3.8-83

WHAM 6

Water Framework Directive [85, 86]

5 Natural Waters

6.9-8

0.69-7

16-256

Insect (Chironomus tentans),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

BioMet

v5.0

Complete

Chronic

P. subcapitata, C. dubia, D. magna, O. mykiss

Algae: 5.7-8.0
Invertebrates: 5.9-8.7
Fish: 5.4-8.5

Algae: 2.5-25.8
Invertebrates: 2.5-25.8
Fish: 3.8-18.4

Algae: 2.4-144
Invertebrates: 3.0-72.7
Fish: 3.8-83

N/A

Water Framework Directive [85, 86]

17 natural waters

5.7-8.2

0.5-26

0.96-83

Chlorella spp.,
Lemna minor,
Brachionus calyciflorus,
Chironomus tentans,
Lymnaea stagnalis

M-BAT

V30.0-20150206

Complete

Chronic

P. subcapitata, C. dubia, D. magna, O. mykiss

Algae: 5.7-8.0
Invertebrates: 5.9-8.7
Fish: 5.4-8.5

Algae: 2.5-25.8
Invertebrates: 2.5-25.8
Fish: 3.8-18.4

Algae: 2.4-144
Invertebrates: 3.0-72.7
Fish: 3.8-83

N/A

Water Framework Directive [85, 86]

N/A

N/A

N/A

N/A

Aquatic plant (Lemna minor),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

BLM

Best Overall Pooled

Complete

Acute and Chronic

D. magna, D. pulex, O. mykiss, P. promelas

3.5-8.9 | <0.1-41 | <0.1-392 | CHESS with Model V (WHAM)

CCME, BCMOE

44 natural waters

3.5-8.9

<0.1-34

0.13-1100

In Development

BLM

North American
C. dubia Model

Complete

Acute and Chronic

C. dubia

6.5-8.7

0.2-41

0.8-237

CHESS with Model V (WHAM)

CCME, BCMOE

44 natural waters

3.5-8.9

<0.1-34

0.13-1100

In Development

PNECPro

v6.0

Complete

Chronic

P. subcapitata, C. dubia, D. magna, O. mykiss

Algae: 5.7-8.0
Invertebrates: 5.9-8.7
Fish: 5.4-8.5

Algae: 2.5-25.8
Invertebrates: 2.5-25.8
Fish: 3.8-18.4

Algae: 2.4-144
Invertebrates: 3.0-72.7
Fish: 3.8-83

N/A

Water Framework Directive [85]

In Development

In Development

In Development

In Development

Aquatic plant (Lemna minor),
Gastropod (Lymnaea stagnalis),
Rotifer (Brachionus calyciflorus)

MLR

N/A

Complete

Acute and Chronic

C. dubia, D. magna, D. pulex, D. pulicaria, P.
promelas, O. mykiss, P. subcapitata

5.5-8.8

0.2-41

0.8-237

N/A

In Development

44 natural waters

3.5-8.9

<0.1-34

0.13-1100

In Development

BLM

Marine

In Development

Chronic

S. purpuratus,
In Development

In Development

In Development

In Development

CHESS with Model V (WHAM)

In Development

In Development

In Development

In Development

In Development

In Development

Zinc

BLM

Unified/North America

Complete

Acute and Chronic

D. magna, D. pulex, P. promelas, O. mykiss

Invertebrates: 5.5-9.0
Fish: 5.68-7.87

Invertebrates: <0.5-10.8
Fish: <0.5-3.0

Invertebrates: 14-826
Fish: 28-398

CHESS with Model V (WHAM)

[75]

7 Natural Waters

6.0-8.4

<0.5-17.3

14-250

Cladoceran (C. dubia),
Rotifer (Brachionus calyciflorus)

BLM/gBAM

EU Risk Assessment

Complete

Chronic

P. subcapitata, D. magna, O. mykiss

Algae: 6.0-8.4
Invertebrates: 5.7-8.0
Fish: 5.7-8.1

Algae: 0.3-22.3
Invertebrates: 0.3-17.3
Fish: 0.3-22.9

Algae: 5.0-65.4
Invertebrates: 5.0-160.3
Fish: 7.8-155.8

CHESS with Model V (WHAM)

EU Risk Assessment [81]

7 Natural Waters

6.0-8.4

<0.5-17.3

14-250

Cladoceran (C. dubia),
Rotifer (Brachionus calyciflorus)

M-BAT

V30.0-20150206

Complete

Chronic

P. subcapitata, D. magna, O. mykiss

Algae: 5.6-8.0
Invertebrates: 5.5-8.0
Fish: 5.7-8.1

Algae: 0.3-22.3
Invertebrates: 0.3-17.3
Fish: 0.3-22.9

Algae: 5.0-65.4
Invertebrates: 5.0-160.3
Fish: 7.8-155.8

N/A

Water Framework Directive [85, 86]

N/A

N/A

N/A

N/A

N/A

BioMet

v5.0

Complete

Chronic

P. subcapitata, D. magna, O. mykiss

Algae: 5.6-8.0
Invertebrates: 5.5-8.0
Fish: 5.7-8.1

Algae: 0.3-22.3
Invertebrates: 0.3-17.3
Fish: 0.3-22.9

Algae: 5.0-65.4
Invertebrates: 5.0-160.3
Fish: 7.8-155.8

N/A

Water Framework Directive [85, 86]

N/A

N/A

N/A

N/A

N/A

PNECPro

v6.0

Complete

Chronic

P. subcapitata, D. magna, O. mykiss

Algae: 5.6-8.0
Invertebrates: 5.5-8.0
Fish: 5.7-8.1

Algae: 0.3-22.3
Invertebrates: 0.3-17.3
Fish: 0.3-22.9

Algae: 5.0-65.4
Invertebrates: 5.0-160.3
Fish: 7.8-155.8

N/A

Water Framework Directive [85]

N/A

N/A

N/A

N/A

N/A

MLR

Canadian WQG

Complete

Acute and Chronic

D. magna, D. pulex, O. mykiss

Acute: N/A
Chronic: 6.5-8.13

Acute: 0.3-17.3
Chronic: 0.3-22.9

Acute: 13.8-250.51
Chronic: 23.4-3991

N/A

Canadian WQG

N/A

N/A

N/A

N/A

N/A

MLR

N/A

Draft

Acute and Chronic

C. dubia, D. magna, D. pulex, O. mykiss, Pomacea
paludosa, P. promelas, L. stagnalis, P. subcapitata

Algae: 6.5-8.5
Invertebrates: 5.4-8.6
Fish: 5.7-8.3

Algae: 0.3-22.3
Invertebrates: 0.1-29.0
Fish: 0.3-22.9

Algae: 0.8-159.1
Invertebrates: 1.6-320.6
Fish: 1.6-157

N/A

In Development

In Development

In Development

In Development

In Development

In Development

Windward Marine BLM

V3.41.2.45

Complete/Preliminary

Acute

Americamysis bahia, Crassostrea gigas, Crassostrea
virginica, Dendraster excentricus, Haliotis rufescens,
Mytilus edulis, Mytilus galloprovincialis,
Strongylocentrotus purpuratus

6.0-8.2

1-3.3

5-38 (salinity in %o)

CHESS + 3-site fit for binding to
DOM

[84]

Not specified

Not specified

Not specified

Not specified

Not specified

1Units reported as hardness (mg CaC03/L)

CCME - Canadian Council Ministers of the Environment

BCMOE - British Columbia Ministry of the Environment


-------
References

1	Santore, R.C., et al., Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms.
Environmental toxicology and chemistry, 2018. 37(1): p. 70-79.

2	DeForest, D.K., et al., Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines.
Environmental toxicology and chemistry, 2018. 37(1): p. 80-90.

3	US Environmental Protection Agency, Aquatic life ambient freshwater quality criteria - copper. 2007: Washington, District of Columbia, USA.

4	HydroQual, Biotic Ligand Model, Windows Interface, Version 2.2. 3 . 2007.

5	Di Toro, D.M., et al., Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 2001. 20(10): p. 2383-2396.

6	Paquin, P.R., et al., Revisiting the aquatic impacts of copper discharged by water-cooled copper alloy condensers used by power and desalination plants. Environmental
Science & Policy, 2000. 3: p. 165-174.

^ Paquin, P.R., et al., The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002. 133(1-2): p. 3-35.

8	Paquin, P.R., et al., The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environmental Science & Policy, 2000. 3: p. 175-182.

9	Santore, R.C., et al., Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and
Chemistry: An International Journal, 2001. 20(10): p. 2397-2402.

10	Santore, R.C., et al., Developing site-specific water quality criteria for metals using the biotic ligand model. Proceedings of the Water Environment Federation, 2003.
2003(4): p. 997-1009.

11	Meyer, J.S. and W.J. Adams, Relationship between biotic ligand model -based water quality criteria and avoidance and olfactory responses to copper by fish. Environmental
toxicology and chemistry, 2010. 29(9): p. 2096-2103.

12	US Environmental Protection Agency, The biotic ligand model: Technical support document for its application to the evaluation of water quality criteria for copper . 2003:
Washignton, District of Columbia, USA.

13	Environment and Climate Change Canada, Federal Environmental Quality Guidelines: Copper. 2019: Gatineau, QC, Canada.

14

Environment and Climate Change Canada, Federal Water Quality Guideline for Copper: Biotic Ligand Model (BLM) Tool and User Manual. 2019: Gatineau, QC, Canada.

15	BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: Technical Report .2019, Ministry
of Environment and Climate Change Strategy: Province of British Columbia, Victoria, BC, Canada.

16	BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: BC BLM User's Manual .2019,
Ministry of Environment and Climate Change Strategy: Province of Bitish Columbia, Victoria, BC, Canada.

17	BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: User's Guide. 2019, Ministry of the
Environment and Climate Change Strategy: Province of British Columbia, Victoria, BC, Canada.

18	Windward Environmental LLC, Biotic Ligand Model Windows Interface: User Guide and Reference Manual. 2019: Seatlle, WA, USA.

19	De Schamphelaere, K.A.C., D.G. Heijerick, and C. Janssen, Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna.
Comparative Biochemistry and Physiology Part C, 2002. 133: p. 243-258.

20	De Schamphelaere, K.A.C. and C. Janssen, Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environmental
Toxicology and Chemistry, 2004. 23: p. 1365-1375.

21	Van Sprang, P., et al., Effects to freshwater organisms (Chapter 3.2. 2). European Union Risk Assessment Report: Voluntary risk assessment of copper, copper II sulphate
pentahydrate, copper (I) oxide, copper (I) oxide, dicopper chloride trihydroxide, 2008: p. 194.

22	European Copper Institute, et al., Bio-Met Bioavailability Tool: User Guide . 2019.

23	De Schamphelaere, K.A.C., D.G. Heijerick, and C.R. Janssen, Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a
freshwater rotifer, Brachionus calyciflorus (Pallas). Ecotoxicology and environmental safety, 2006. 63(2): p. 189-195.

24	De Schamphelaere, K.A.C. andC.R. Janssen, A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium,
potassium, and pH. Environmental science & technology, 2002. 36(1): p. 48-54.


-------
25	De Schamphelaere, K.A.C. and C.R. Janssen, Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to
Daphnia magna. Environmental Toxicology and Chemistry, 2004. 23(5): p. 1115-1122.

26	De Schamphelaere, K.A.C. and C.R. Janssen, Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry.
Environmental science & technology, 2006. 40(14): p. 4514-4522.

27	De Schamphelaere, K.A.C., et al., Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environmental
Toxicology and Chemistry, 2003. 22(10): p. 2454-2465.

28	De Schamphelaere, K.A.C., et al., Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environmental Toxicology and Chemistry, 2004.
23(5): p. 1248-1255.

29	Water Framework Directive - United Kingdom Technical Advisory Group, UKTAG River & Lake Assessment Method: Specific Pollutants (Metals). Metal Bioavailability
Assessment Tool (M-BAT). 2014, Water Framework Directive - United Kingdom Technical Advisory Group: Stirling, Scotland.

30	Environment Agency, Using biotic ligand model to predict copper toxicity to Daphnia magna and site-specific copper criteria across multiple surface-water drainages in an
arid landscape. . Environmental Toxicology and Chemistry, 2009. 33: p. 1865-1873.

31	Water Framework Directive - United Kingdom Technical Advisory Group, Development and use of the copper bioavailability assessment tool. 2012, Water Framework
Directive -United Kingdom Technical Advisory Group: Stirling, Scotland.

32	WCA, Technical guidance to implement bioavailability-based environmental quality standards for metals . 2014.

33	Deltares, C.M.L. (Institute of Environmental Sciences), and R.I.V.M. (National Institute for Public Health and the Environment), PNEC-pro. 2016: Deltares, Utrect, The
Netherlands.

34

Tipping, E. and S. Lofts, Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Aquatic toxicology, 2013. 142: p. 114-122.

35	Brix, K.V., et al., Use of multiple linear regression models for setting water quality criteria for copper: A complementary approach to the biotic ligand model. Environmental
science & technology, 2017. 51(9): p. 5182-5192.

36	Cremazy, A., et al., Investigating copper toxicity in the tropical fish cardinal tetra (Paracheirodon axelrodi) in natural Amazonian waters: Measurements, modeling, and
reality. Aquatic Toxicology, 2016. 180: p. 353-363.

37	Fulton, B.A. and J.S. Meyer, Development of a regression model to predict copper toxicity to Daphnia magna and site -specific copper criteria across multiple surface -water
drainages in an arid landscape. Environmental toxicology and chemistry, 2014. 33(8): p. 1865-1873.

38	Arnold, W.R., J.S. Cotsifas, and K.M. Corneillie, Validation and update of a model used to predict copper toxicity to the marine bivalve Mytilus sp. Environmental
Toxicology, 2006. 21(1): p. 65-70.

39	Arnold, W.R., R.C. Santore, and J.S. Cotsifas, Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Marine pollution bulletin, 2005.
50(12): p. 1634-1640.

40	Arnold, W.R., Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria. Integrated Environmental Assessment and Management,
2005. 1(1): p. 34-39.

41	Deruytter, D., et al., Salinity and dissolved organic carbon both affect copper toxicity in mussel larvae: Copper speciation or competition cannot explain everything.
Environmental toxicology and chemistry, 2015. 34(6): p. 1330-1336.

42	Sanchez-Marin, P., et al., Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquatic
Toxicology, 2010. 96(2): p. 90-102.

43	DeForest, D.K., et al., Development of biotic ligand model-based freshwater aquatic life criteria for lead following US Environmental Protection Agency guidelines.
Environmental toxicology and chemistry, 2017. 36(11): p. 2965-2973.

44	Besser, J.M., et al., Effect of diet quality on chronic toxicity of aqueous lead to the amphipod Hyalella azteca. Environmental toxicology and chemistry, 2016. 35(7): p. 1825-
1834.

45	Nys, C., C.R. Janssen, and K.A.C. De Schamphelaere, Development and validation of a chronic Pb bioavailability model forthe freshwater rotifer Brachionus calyciflorus.
Environmental toxicology and chemistry, 2016. 35(12): p. 2977-2986.

46	Nys, C., et al., Development and validation of a biotic ligand model for predicting chronic toxicity of lead to Ceriodaphnia dubia. Environmental toxicology and chemistry,
2014. 33(2): p. 394-403.

47	Blust, R., Chemical analysis and speciation modeling of lead solubility under ecotoxicity testing relevant exposure scenarios . 2014, International Lead Zinc Research
Organization: Department of Biology, University of Antwerp, Belgium, p. 34.


-------
48	Munley, K.M., et al., Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis. Aquatic
toxicology, 2013. 128: p. 60-66.

49	Nys, C. and K.A.C. De Schamphelaere, Effect ofCa and pH on acute toxicity of Pb to Ceriodaphnia dubia . 2013, International Lead Zinc Research Organization: Durham,
NC, USA.

50	Nys, C., C. Janssen, and K.A.C. De Schamphelaere, A comparison of chronic Pb sensitivity between laboratory and field populations of Lymnaea stagnalis . 2013,
International Lead Zinc Research Organization: Durham, NC, USA.

51	Esbaugh, A.J., et al., Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead
toxicity in invertebrates. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012. 155(2): p. 423-431.

52	Brix, K.V., et al., Investigations into the mechanism of lead toxicity to the freshwater pulmonate snail, Lymnaea stagnalis. Aquatic toxicology, 2012. 106: p. 147-156.

53	AquaTox, Report on the toxicity of lead to the freshwater invertebrate, Ceriodaphnia dubia . 2012, International Lead Zinc Research Organization: Durham, NC, USA.

54	Nguyen, L.T.H., C. Janssen, and K.A.C. De Schamphelaere, Chronic toxicity of Pb to Chironomus riparius in five natural waters . 2012, International Lead Zinc Research
Organization: Durham, NC, USA.

55	Esbaugh, A.J., et al., Multi-linear regression models predict the effects of water chemistry on acute lead toxicity to Ceriodaphnia dubia and Pimephales promelas.
Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011. 154(3): p. 137-145.

56	Mager, E.M., et al., Effects of water chemistry on the chronic toxicity of lead to the cladoceran, Ceriodaphnia dubia. Ecotoxicology and environmental safety, 2011. 74(3): p.
238-243.

57	Mager, E.M., et al., Influences of water chemistry on the acute toxicity of lead to Pimephales promelas and Ceriodaphnia dubia. Comparative Biochemistry and Physiology
Part C: Toxicology & Pharmacology, 2011. 153(1): p. 82-90.

58	Mager, E.M. and M. Grosell, Effects of acute and chronic waterborne lead exposure on the swimming performance and aerobic scope of fathead minnows (Pimephales
promelas). Comparative Biochemistry and Physiology PartC: Toxicology & Pharmacology, 2011. 154(1): p. 7-13.

59	Mager, E.M., K.V. Brix, and M. Grosell, Influence of bicarbonate and humic acid on effects of chronic waterborne lead exposure to the fathead minnow (Pimephales
promelas). Aquatic toxicology, 2010. 96(2): p. 135-144.

60	Grosell, M. and K.V. Brix, High net calcium uptake explains the hypersensitivity of the freshwater pulmonate snail, Lymnaea stagnalis, to chronic lead exposure. Aquatic
Toxicology, 2009. 91(4): p. 302-311.

61	Parametrix, Evaluation of chronic lead toxicity to the great pond snail, Lymnaea stagnalis . 2007, Lead Development Association: London, UK.

62	Grosell, M., R. Gerdes, and K.V. Brix, Influence of Ca, humic acid and pH on lead accumulation and toxicity in the fathead minnow during prolonged water-borne lead
exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006. 143(4): p. 473-483.

63	Grosell, M., R.M. Gerdes, and K.V. Brix, Chronic toxicity of lead to three freshwater invertebrates—Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis.
Environmental Toxicology and Chemistry, 2006. 25(1): p. 97-104.

64	Van Sprang, P.A., et al., The derivation of effects threshold concentrations of lead for European freshwater ecosystems. Environmental toxicology and chemistry, 2016.
35(5): p. 1310-1320.

65	De Schamphelaere, K.A.C., C. Nys, and C. Janssen, Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter-
species sensitivity comparison. Aquatic toxicology, 2014. 155: p. 348-359.

66	Antunes, P.M.C. and N.J. Kreager, Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach. Environmental toxicology and chemistry, 2014.
33(10): p. 2225-2233.

67	European Commission, Lead and its compounds EQS Sheet. 2010, Prepared by UK, Envrionment Agency on behalf of the European Union.

68	Verschoor, A.J., M.G. Vijver, and J.P.M. Vink, Refinement and cross-validation of nickel bioavailability in PNEC-Pro, a regulatory tool for site-specific risk assessment of
metals in surface water. Environmental toxicology and chemistry, 2017. 36(9): p. 2367-2376.

69	Environment and Climate Change Canada (ECCC), Federal Environmental Quality Guidelines - Lead. Published in July 2020, https://www.canada.ca/en/environment-
climate-change/services/evaluating-existing-substances/federal-environmental-quality-guidelines-lead.html. Accessed on July 13, 2020.

70	DeForest, D.K., L.M. Tear, and K.V. Brix, Multiple linear regression models for predicting acute and chronic lead toxicity to freshwater organisms . 2020, International Lead
Association: Durham, NC, USA.

71	Nys, C., et al., The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models. Environmental
Toxicology and Chemistry, 2016. 35(5): p. 1097-1106.


-------
72	Deleebeeck, N.M.E., et al., A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water research, 2009.
43(7): p. 1935-1947.

73	Deleebeeck, N.M.E., K.A.C. De Schamphelaere, and C.R. Janssen, A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and
fathead minnow (Pimephales promelas) in synthetic and natural waters. Ecotoxicology and Environmental Safety, 2007. 67(1): p. 1-13.

74	Deleebeeck, N.M.E., K.A.C. De Schamphelaere, and C.R. Janssen, A novel method for predicting chronic nickel bioavailability and toxicity to Daphnia magna in artificial
and natural waters. Environmental Toxicology and Chemistry, 2008. 27(10): p. 2097-2107.

75	DeForest, D.K. and E.J. Van Genderen, Application of US EPA guidelines in a bioavailability-based assessment of ambient water quality criteria for zinc in freshwater.
Environmental toxicology and chemistry, 2012. 31(6): p. 1264-1272.

76

Clifford, M. and J.C. McGeer, Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquatic toxicology, 2009. 91(1): p. 26-32.

77	De Schamphelaere, K, D. Heijerick, and C. Janssen, Development and validation of Biotic Ligand Models for predicting chronic zinc toxicity to fish, daphnids and algae.
2003.

78	Heijerick, D.G., K.A.C. De Schamphelaere, and C.R. Janssen, Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics:
development and validation of a biotic ligand model. Environmental Toxicology and Chemistry, 2002. 21 (6): p. 1309-1315.

79	Santore, R.C., et al., Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comparative Biochemistry and
Physiology Part C: Toxicology & Pharmacology, 2002. 133(1-2): p. 271-285.

80	De Schamphelaere, K.A. and C.R. Janssen, Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): comparison with other fish species
and development of a biotic ligand model. Environmental science & technology, 2004. 38(23): p. 6201-6209.

81	Van Sprang, P.A., et al., Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Science of the total environment, 2009. 407(20): p. 5373-
5391.

82	Heijerick, D.G., et al., Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicology and environmental safety, 2005. 62(1): p. 1-10.

83	Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life: Zinc . 2018, Canadian Council of Ministers of the
Environment: Winnipeg, MB, Canada.

84	HydroQual, Development of a Marine Biotic Ligand Model for Zinc . 2007: Mahwah, NJ, USA.

85	Rudel, H., et al., Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based
approaches in risk assessment frameworks. Environmental Science and Pollution Research, 2015. 22(10): p. 7405-7421.

86	DHI, Bioavailability Modeling of Three Metals in Danish Freshwater Systems . 2014, Danish Nature Agency: Horsholm, Denmark.

87	Peters, A., et al., Are Lead Exposures a Risk in European Fresh Waters? A Regulatory Assessment Accounting for Bioavailability. Bulletin of environmental contamination
and toxicology, 2018. 100(1): p. 127-133.

88	Santore, R.C. et al., A Review of Water Quality Factors that Affect Nickel Bioavailability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute
and Chronic Exposures . Environ Toxicol Chem, 2021. DOI: 10.1002/etc.5109

gg Croteau, K. et al., Comparison of Multiple Linear Regression and Biotic Ligand Models to Predict the Toxicity of Nickel to Aquatic Freshwater Organisms . Environ Toxicol
Chem. 2021. DOI: 10.1002/etc.5063

gg Sherman, S., et al., Complexation reduces nickel toxicity to purple sea urchin embryos (Strongylocentrotus purpuratus), a test of biotic ligand principles in
seawater. Ecotoxicology and environmental safety, 2021. 216, 112156.


-------