Appendix C: Bioavailability Model Comparisons for the Metals Cooperative Research and Development Agreement (CRADA) Phase I Report: Development of an Overarching Bioavailability Modeling Approach to Support US EPA's Aquatic Life Water Quality Criteria for Metals (EPA-822-R-22-001) March 2022 Table 1: Bioavailability Model Comparisons, Table 2: Supporting Information, and References were developed by the CRADA Partners. ------- Appendix C, Table 1: Bioavailability Model Comparison Tablt Metal Model Name Version/ Identification Type Freshwater/ Saltwater User-Interface Output Source References Primary toxicity modifying factors Taxa model is applicable to Chemistry Inputs needed Aluminum BLM 3.18.2.42 Full BLM Freshwater Free Software2 HC5 www, wind wa rdenv.com/biotic-liaa nd-model/ [1] pH, DOC, Hardness,Temperature algae, invertebrates,fish Temperature, pH, DOC, Al, Ca, Mg, Na, K, S04, CI MLR N/A MLR Freshwater Equation HC5 Windward Environmental LLC [2] pH, DOC, Hardness algae, invertebrates,fish pH, DOC, Hardness Cobalt BLM 3.15.2.41 Full BLM Freshwater In Development HC5 Windward Environmental LLC In Development Hardness, pH, DOC algae, invertebrates,fish Temperature, pH, Co, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S MLR N/A MLR Freshwater In Development Bioavailable [Cobalt] In Development /Windward Environmental LLC In Development Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Hardness |Ca,Mg) BioMet v5.0 Simplified BLM Lookup Tool Freshwater Free Software2 HC5, Bioavailable [Cobalt], RCR In Development In Development Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Ca, Co Copper USEPA BLM USEPA 2007 Full BLM Freshwater Free Software2 CMC, CCC www.eoa.aov/wac/aauatic-life-CTifei'ia-coooei' [3], supported by [4-121 pH, alkalinity, hardness, DOC invertebrates, fish Temperature, pH, Cu, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S ECCC BLM vl.10 Full BLM Freshwater Free Software2 HC5 chanae/sei'vices/evaluatina-existina-substances/fedei'al- environmental-aualifv-auidelines-coBDei'. html [13, 14] pH, alkalinity, hardness, DOC algae, plants, invertebrates, fish Required: Temperature, pH, Cu, DOC, hardness; Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S BC BLM vl.ll Full BLM Freshwater Free Software2 WQG htfos://www2.aov.bc.ca/assets/aov/environment/air-land" water Avatei'/wateraua litv/watei'-aualitv- auidelines/aoDcoved-waas/coBDei'/bc him setuo.exe [15-17] pH, alkalinity, hardness, DOC algae, plants, invertebrates, fish, Required: Temperature, pH, Cu, DOC, hardness; Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S Windward BLM V3.41.2.45 Full BLM Freshwater Free Software2 L(E)C50, CMC, CCC www.windwardenv.comfciQ^^ [18], supported by [4-101 pH, alkalinity, hardness, DOC invertebrates, fish Required: Temperature, pH, Cu, DOC, hardness; Optional: Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S BLM/gBAM Modified HydroQual BLM software Mixed regression + speciation model Freshwater Free Software2 L(E)C50, EC10 [21] [19-21] pH, alkalinity, hardness, DOC invertebrates, fish Temperature, pH, Cu, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, alkalinity, S BioMet v5.0 Simplified BLM Lookup Tool Freshwater Free Software2 HC5, Bioavailable [Copperl, RCR www.bio-met.et [22]; supported by [19-21, 23-28] pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Cu M-BAT v30.0 Simplified BLM Lookup Tool Freshwater Free Software2 PNEC, Bioavailable [Copperl, RCR [29]; supported by [30-32] pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Cu PNEC-Pro v6.0 [M]LR Freshwater Free Software2 PNEC, Bioavailable [Copperl, RCR htto://www, onec-oro.com [33] DOC algae, invertebrates,fish Required: DOC; Optional: pH, Mg, Ca, Na, Cu WHAM-Fto< N/A Toxicity model linked to speciation Freshwater WHAM 7 software + toxicity equation EC50 [34] [34] Not specified plants Temperature, pH, Cu, DOM (fulvic and humic acids), Ca, Mg, Na, K, S04, CI, alkalinity, metals MLR N/A MLR Freshwater Equation L(E)C50 [35] [35]; additional examples [25,27, 36, 37] Hardness, pH, DOC invertebrates, fish pH, hardness, DOC Windward Marine BLM V3.41.2.45 Full BLM Sa Itwater Free Software2 L(E)C50 www\w1ndw7!rdefn^com/bjotk>JlaMilOodsi£. [18]; supported by [4-10,12, 38-40] pH, salinity, DOC invertebrates, fish Required: Temperature, pH, Cu, DOC, salinity; Optional: Ca, Mg, Na, K, S04, CI, P04, DIC Marine MLR N/A [M]LR Sa Itwater Equation EC50 [38] [38, 40]; additional examples: [41, 421 DOC invertebrate (Mytilus sp.) DOC Lead BLM Unified/North America Full BLM Freshwater Free Software2 ECx; FAV; FCV; acute and chronic HC5 htto://www,windwa rdenv.com/biotir-iiaand-model/ [43]; supported by [44-63] Hardness, pH, DOC invertebrates, fish Temperature, pH, Pb, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S BLM/gBAM EU Risk Assessment Full BLM Freshwater Free Software2 Normalized SSD; HC5 httDs://www,ila-lead,org/resoonsibilitv/lead-blm- [64]; supported by [44-63, 65,66] Hardness, pH, DOC algae, invertebrates,fish Temperature, pH, Pb, DOC, Ca, Mg, Na, K, S04, CI, C03 Lead EQS Screening Tool vl.O (EU Risk Assessment) DOC Equation Freshwater Free Software2 PNEC; bioavailable [Pb], RCR httDs://www,wca- environment.com/index.oho/modeta-and- downloads/Pb-EOS-Srreenina-Tool [32], [67] DOC algae, invertebrates,fish DOC, Pb BioMet v5.0 Simplified BLM Lookup Tool Freshwater Free Software2 HC5, Bioavailable [Pb], RCR www,bio-met,net In Development / WCA pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Pb PNEC Pro v6.0 [M]LR Freshwater Free Software2 PNEC htto://www, onec-oro.com [68] DOC algae, invertebrates,fish Required: DOC; Optional: pH, Mg, Ca, Na, Pb MLR Canadian WQG MLR Freshwater N/A long-term WQG httDs://www,ca nada.ca/en/environment-dimate- chanae/services/evaluatina-existina- substances/federai-environ mental-aualitv-auidelines- lead.htrnl [69] Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Hardness MLR N/A MLR Freshwater N/A ECx; HC5 Unpublished Report [70] Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Hardness ------- Appendix C, Table 1: Bioavailability Model Comparison Tablt Metal Model Name Version/ Identification Type Freshwater/ Saltwater User-Interface Output Source References Primary toxicity modifying factors Taxa model is applicable to Chemistry Inputs needed Nickel BLM EU Risk Assessment Full BLM Freshwater Excel + WHAM based software HC5 Nys et al. 2016 [71], WHAM VI [71-74] Hardness, pH, DOC algae, invertebrates,fish Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S BioMet v5.0 Simplified BLM Lookup Tool Freshwater Free Software2 HC5, Bioavailable [Nickel], RCR www,bio-met,net In Development / WCA pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Ni M-BAT 20150206 Simplified BLM Lookup Tool Freshwater Free Software2 PNEC, Bioavailable [Nickel], RCR htto:// www, wfduk.org/ [32] pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Ni BLM Best Overall Pooled Full BLM Freshwater Free Software2 ECx, HC5, FAV www, wind wa rdenv.com/biotic-liga nd-model [88] Hardness, pH, DOC algae, invertebrates,fish Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S BLM North American C. dubio Model Full BLM Freshwater Free Software2 ECx www.windwardenv.com/biotic-liga nd-model [88] Hardness, pH, DOC, Alkalinity invertebrates (may be limited to C. dubio) Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S PNEC Pro v6.0 [M]LR Freshwater Free Software2 PNEC, RCR htto://www, onec-oro.com [68] Hardness, pH, DOC algae, invertebrates,fish Required: DOC; Optional: pH, Mg, Ca, Na, Ni MLR N/A MLR Freshwater Equation ECx Equation in Croteau et al. 12021). Accepted [89] Hardness, DOC algae, invertebrates,fish Hardness ICa/Mg), DOC, pH, Ni BLM Marine Full BLM Sa Itwater Free Software2 ECx www.windwardenv.com/biotic-liga nd-model [90] DOC invertebrates Temperature, pH, Ni, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S Zinc BLM Unified/North America Full BLM Freshwater Free Software2 ECx; FAV; FCV www.windwacdenv.com/biotic-liaand-model/ [75]; supported by [4, 76-80] Hardness, pH, DOC invertebrates, fish Temperature, pH, Zn, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S BLM/gBAM EU Risk Assessment Full BLM Freshwater Free Software2 ECx; HC5 after post- processing1 www.windwacdenv.com/hiotic-lteand-model/ [81]; supported by [80, 82] Hardness, pH, DOC algae, invertebrates,fish Temperature, pH, Zn, DOC, Humic acid %, Ca, Mg, Na, K, S04, CI, Alkalinity, S M-BAT v30.0 -20150206 Simplified BLM Lookup Tool Freshwater Free Software2 PNEC bioavailabilitv-assessment-tool-m-bat [32] pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Zn BioMet v5.0 Simplified BLM Lookup Tool Freshwater Free Software2 HC5 www.bio-met.net In Development / WCA pH, DOC, Ca algae, invertebrates,fish pH, DOC, Ca, Zn PNEC Pro v6.0 [M]LR Freshwater Free Software2 PNEC htto://www, onec-oro.com [68] DOC algae, invertebrates,fish Required: DOC; Optional: pH, Mg, Ca, Na, Zn MLR Canadian WQG MLR Freshwater N/A short-term WQG; long- term WQG htfo://ce(U!-rc(ie.ccme.ca/download/en/360 [83] Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Hardness MLR N/A MLR Freshwater N/A ECx; FAV; FCV In Development In Development Hardness, pH, DOC algae, invertebrates,fish pH, DOC, Hardness BLM Marine Full BLM Sa Itwater N/A ECx; FAV; FCV Preliminary/Pilot BLM [84] [84] pH, salinity, DOC invertebrates, fish Required: Temperature, pH, Zn, DOC, salinity; Optional: Ca, Mg, Na, K, S04, CI, P04, DIC 1Model can produce effect concentrations normalized to specified water chemistry conditions, but HC5 must be derived from normalized SSDs after model application 2 Registration may be required to download the software Definitions: BC - British Columbia BLM - Biotic ligand model CCC - Criteria continuous concentration CMC - Criteria maximum concentration DIC - Dissolved inorganic carbon DOC - Dissolved organic carbon ECCC - Environment and Climate Change Canada EC10 -10 percent effect concentration EC50 - 50 percent effect concentration ECx - Y percent effect concentration EU - European Union FAV-Final acute value FCV-Final chronic value gBAM - Generalized bioavailability model HC5 - Hazardous concentration 5th percentile L(E)C50 - 50 percent lethal or effect concentration M-BAT- Metal bioavailability assessment tool MLR - Multiple linear regression [M]LR - Multiple linear regression and/or simple linear regression PNEC - Predicted no effect concentration RCR- Riskcharacterization ratio SSD - Species sensitivity distribution TRV - Toxicity reference value USEPA - United States Environmental Protection Agency WHAM - Windermere humic aqueous model WQG - Water quality guideline ------- Appendix C, Table 2: Supporting Information for Bioavailability Model Comparison Table Metal Model Name Version/ Identification Status Endpoint (acute or chronic) Species used in development Applicable pH range Applicable DOC range (mg/L) Applicable Ca range (mg/L Ca) Speciation Programme? Used in regulatory framework and/or example applications Natural waters validated Validated pH ranges Validated DOC ranges (mg/L) Validated Hardness ranges (mg/L CaC03) Validation process - Cross-species Aluminum BLM 3.18.2.42 Complete Chronic P. subcapitata, C. dubia, P. promelas Algae: 6.0-8.5 Invertebrates: 6.0-8.5 Fish 5.0-8.5 0.3-14.0 10-400 Model V (WHAM) REACH 4 Natural Waters (5 more in process) 6.4-8.0 1.0-19.8 24-204 Gastropod (Lymnaea stagnalis) Rotifer (Brachionus calyciflorus) MLR N/A Complete Chronic P. subcapitata, C. dubia, P. promelas Algae: 6.0-8.5 Invertebrates: 6.0-8.5 Fish 5.0-8.5 0.3-14.0 10-400 N/A USEPA 4 Natural Waters (5 more in process) 6.4-8.0 1.0-19.8 24-204 Gastropod (Lymnaea stagnalis) Rotifer (Brachionus calyciflorus) Cobalt BLM 3.15.2.41 Complete Chronic P. subcapitata, C. dubia, P promelas Algae: 6.1-7.9 Invertebrates: 6.4-8.6 Fish: 6.4-8.4 Algae: 0.3 Invertebrates: <0.5-9.4 Fish: <0.5-8.7 Algae: 16-412 Invertebrates: 44-396 Fish: 24-390 Model V (WHAM) REACH 5 Natural Waters 5.5-8.5 0.87-10.82 16-248 Aquatic plant (Lemna minor), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) MLR N/A In Development Chronic P. subcapitata, C. dubia, P promelas, B calyciflorus, D magna Algae: 6.1-7.9 Invertebrates: 6.4-8.6 Fish: 6.4-8.4 Algae: 0.3 Invertebrates: <0.5-9.4 Fish: <0.5-8.7 Algae: 16-412 Invertebrates: 44-396 Fish: 24-390 N/A In Development 5 Natural Waters 5.5-8.5 0.87-10.82 16-248 Aquatic plant (Lemna minor), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) BioMet v5.0 In Development Chronic P. subcapitata, C. dubia, P promelas Algae: 6.1-7.9 Invertebrates: 6.4-8.6 Fish: 6.4-8.4 Algae: 0.3 Invertebrates: <0.5-9.4 Fish: <0.5-8.7 Algae: 16-412 Invertebrates: 44-396 Fish: 24-390 WHAM 6 In Development 5 Natural Waters 5.5-8.5 0.87-10.82 16-248 Aquatic plant (Lemna minor), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) Copper USEPA BLM USEPA 2007 Complete Acute and Chronic Not specified Not specified Not specified Not specified CHESS with Model V (WHAM) USEPA WQC [3]; Site-specific WQGs in Australia and New Zealand Not specified Not specified Not specified Not specified Not specified ECCC BLM vl.10 Draft Chronic Not specified 5.5-8.75 0.2-33.4 7.9-525 CHESS with Model V (WHAM) Draft Canadian Federal Environmental Quality Guidelines [13] Not specified Not specified Not specified Not specified Not specified BC BLM vl.ll Complete Acute and Chronic Not specified 4.7-9.0 0.05-20 7.8-237 CHESS with Model V (WHAM) WQGs for British Columbia, Canada [15] Not specified Not specified Not specified Not specified Not specified Windward BLM V3.41.2.45 Complete Acute Acipenser transmontanus, Ceriodaphnia dubia, Chironomus tentans, Daphnia magna, Daphnia pulex, Daphnia pulicaria, Lampsilisfasciola, Lampsilis siliquoidea, Lepomis macrochirus, Oncorhynchus mykiss, Oncorhynchus tshawytscha, Pimephales promelas, Utterbackia imbecillis, Villosa iris 4.9-9.2 0.05-30 7.9-525 CHESS with Model V (WHAM) Some site-specific WQC in USA Not specified Not specified Not specified Not specified Not specified Modified BLM Modified HydroQual BLM software Complete Acute and Chronic Daphnia magna D. magna. : 5.5-8.5; H.azteca: 6.49-8.47; H.depressa: 6.5-7.5; L. siliquoidea : 8.0-8.7; P. promelas: 6.63-8.65; O.mykiss: 6.0-8.0 D. magna: 1.6-23; H. azteca: <01-1.1; H. depressa: 0-11.6; L. siliquoidea : 0.5-11; P. promelas: 0.4-18.2; O.mykiss: N/A D. magna: 10-500; H. azteca : 12-312; H. depressa: 38; L. siliquoidea : 40-379; P. promelas: 46-446; O. mykiss: 30-360 CHESS with Model V (WHAM) EU Copper Voluntary Risk Assessment [21] For Daphnia magna: 24 natural waters For Daphnia magna: Field-6.20-8.61; Lab-6.6-8.7 For Daphnia magna: 0.9-21.6 For Daphnia magna: 75-590 Acute: Amphipod (Hyalella azteca), Fish (Pimephales promelas); Chronic: Mussel (Hyridella depressa), Clam (Lampsilis siliquoidea), Fish (Pimephales promelas, Oncorhynchus mykiss) BioMet v5.0 Complete Chronic Daphnia magna, Oncorhynchus mykiss, Pseudokirchneriella subcapitata Algae: 5.7-8.8 Invertebrates: 5.6-8.7 Fish: 6.6-8.7 Algae: 1.3-20 Invertebrates: 1.7-18 Fish: 1 Algae: 5-160 Invertebrates: 7-179 Fish: 14-94 N/A Water Framework Directive; [85, 86] N/A Algae: 5.5-8.7 Invertebrates: 5.5-8.5 Fish: 6.0-8.6 Algae: 0-20 Invertebrates: 0-20 Fish: 0-18 Algae: 2.5-179 Invertebrates: 2.5-179 Fish: 3.1-129 N/A M-BAT V30.0-20150206 Complete Chronic Daphnia magna, Oncorhynchus mykiss, Pseudokirchneriella subcapitata 6-8.5 Upper value of 15 3.1-9.3 N/A Water Framework Directive [85, 86] Not specified Not specified Not specified Not specified N/A P NEC-Pro v6.0 Complete Chronic Daphnia magna, Oncorhynchus mykiss, Pseudokirchneriella subcapitata 5.5-8.8 Not specified Not specified N/A Water Framework Directive [85] Not specified Not specified Not specified Not specified N/A WHAM-Ftox N/A Complete Acute Lemna aequinoctialis, Lemna paucicostata L. aequinoctialis: 6.5: L. paucicostata: N/A L. aequinoctialis: 0.3; L. paucicostata: N/A L. aequinoctialis: 38; L. paucicostata: 69 WHAM 7 Unknown None N/A N/A N/A FW plants (Lemna aequinoctialis, Lemna paucicostata) MLR N/A Complete Acute Ceriodaphnia dubia, Daphnia magna, Daphnia obtusa, Daphnia pulex, Pimephales promelas 5.5-9.01 0.07-32.9 7-440 N/A Calculated example criteria [35] None N/A N/A N/A N/A Windward Marine BLM V3.41.2.45 Complete Acute Crassostrea gigas, Crassostrea virginica, Dendraster excentricus, Lampsilisfasciola, Lampsilis siliquoidea, Mytilus edulis, Mytilus galloprovincialis, Strongylocentrotus purpuratus 6.3-9 0.1-12 2-41.7 (salinity in %o) CHESS + 3-site fit for binding to DOM Some site-specific WQC in USA Not specified Not specified Not specified Not specified Not specified Marine MLR N/A Complete Acute Mytilus sp. Not specified 1.0-12.0 30 (salinity in %o) None Unknown None N/A N/A N/A N/A Lead BLM Unified/North America Complete Acute and Chronic C. dubia, P. promelas Invertebrates: 5.7-8.6 Fish: 5.7-8.5 Invertebrates: 0.4-17.6 Fish: <0.5-15.9 Invertebrates: 5.8-354 Fish: 5-305 CHESS with Model V (WHAM) [43, 70] 7 Natural Waters 5.5-8.7 0.4-14.9 4-298 Insect (Baetis tricaudatus, Chironomus riparius), Snail (L. stagnalis), Rotifer (Philodina rapida, Brachionus calyciflorus) BLM/gBAM EU Risk Assessment Complete Chronic P. subcapitata, C. dubia, P. promelas Algae: 6.0-8.4 Invertebrates: 6.1-8.5 Fish: 6.3-8.2 Algae: 0.5-22.4 Invertebrates: 0.4-17.3 Fish: 0.7-12 Algae: 12-300 Invertebrates: 9.0-510 Fish: 9.0-210 NICA-Donnan formulation with Visual MINTEQ3.1 EU Risk Assessment; EU CLP classification; [64, 87] 7 Natural Waters 6.0-8.4 0.5-17.3 9-210 Aquatic plant (Lemna minor), Insect (Chironomus riparius), Snail (L. stagnalis), Rotifer (Philodina rapida, Brachionus calyciflorus) Lead EQS Screening Tool vl.O (EU Risk Assessment) Complete Chronic Rotifer (Philodina rapida) N/A 0.9-16.9 N/A Visual MINTEQ 3.1 and WHAM EU Water Framework Directive and risk assessent [32, 64, 67, 87] N/A N/A 1.0-17.3 N/A Aquatic plant and algae (L. minor, P. subcapitata), Cladoceran (C. dubia), Snail (L. stagnalis), Fish (P. promelas) BioMet v5.0 Complete Chronic P. subcapitata, C. dubia, P. promelas Algae: 6.0-8.4 Invertebrates: 6.1-8.5 Fish: 6.3-8.2 Algae: 0.5-22.4 Invertebrates: 0.4-17.3 Fish: 0.7-12 Algae: 12-300 Invertebrates: 9.0-510 Fish: 9.0-210 N/A EU Risk Assessment [32, 87] N/A 6.0-8.4 0.5-17.3 9-210 Aquatic plant (Lemna minor), Insect (Chironomus riparius), Snail (L. stagnalis), Rotifer (Philodina rapida, Brachionus calyciflorus) PNECPro v6.0 Complete Chronic P. subcapitata, C. dubia, P. promelas Algae: 6.0-8.4 Invertebrates: 6.1-8.5 Fish: 6.3-8.2 Algae: 0.5-22.4 Invertebrates: 0.4-17.3 Fish: 0.7-12 Algae: 12-300 Invertebrates: 9.0-510 Fish: 9.0-210 N/A EU Risk Assessment [87] N/A N/A N/A N/A N/A MLR Canadian WQG Proposed, Under review by ECCC Chronic P. subcapitata, C. dubia, P. promelas, L. stagnalis Algae: 6.0-8.4 Invertebrates: 6.1-8.5 Fish: 6.3-8.2 Algae: 0.5-22.4 Invertebrates: 0.4-17.3 Fish: 0.7-12 Algae: 12-300 Invertebrates: 9.0-510 Fish: 9.0-210 N/A Canadian WQG [69] N/A N/A N/A N/A N/A MLR N/A Draft Acute and Chronic P. subcapitata, C. dubia, P. promelas, L. stagnalis, B. caliciflorus Algae: 6.0-8.4 Invertebrates: 5.7-8.6 Fish: 6.3-8.3 Algae: 2.1-22.4 Invertebrates: 0.4-31.4 Fish: 0.5-15.9 Algae: 18.7-312 Invertebrates: 5.8-511 Fish: 5.0-305 N/A In Development [70] In Development In Development In Development In Development In Development Nickel BLM EU Risk Assessment Complete Chronic P. subcapitata, C. dubia, D. magna, O. mykiss Algae: 5.7-8.0 Invertebrates: 5.9-8.7 Fish: 5.4-8.5 Algae: 2.5-25.8 Invertebrates: 2.5-25.8 Fish: 3.8-18.4 Algae: 2.4-144 Invertebrates: 3.0-72.7 Fish: 3.8-83 WHAM 6 Water Framework Directive [85, 86] 5 Natural Waters 6.9-8 0.69-7 16-256 Insect (Chironomus tentans), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) BioMet v5.0 Complete Chronic P. subcapitata, C. dubia, D. magna, O. mykiss Algae: 5.7-8.0 Invertebrates: 5.9-8.7 Fish: 5.4-8.5 Algae: 2.5-25.8 Invertebrates: 2.5-25.8 Fish: 3.8-18.4 Algae: 2.4-144 Invertebrates: 3.0-72.7 Fish: 3.8-83 N/A Water Framework Directive [85, 86] 17 natural waters 5.7-8.2 0.5-26 0.96-83 Chlorella spp., Lemna minor, Brachionus calyciflorus, Chironomus tentans, Lymnaea stagnalis M-BAT V30.0-20150206 Complete Chronic P. subcapitata, C. dubia, D. magna, O. mykiss Algae: 5.7-8.0 Invertebrates: 5.9-8.7 Fish: 5.4-8.5 Algae: 2.5-25.8 Invertebrates: 2.5-25.8 Fish: 3.8-18.4 Algae: 2.4-144 Invertebrates: 3.0-72.7 Fish: 3.8-83 N/A Water Framework Directive [85, 86] N/A N/A N/A N/A Aquatic plant (Lemna minor), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) BLM Best Overall Pooled Complete Acute and Chronic D. magna, D. pulex, O. mykiss, P. promelas 3.5-8.9 | <0.1-41 | <0.1-392 | CHESS with Model V (WHAM) CCME, BCMOE 44 natural waters 3.5-8.9 <0.1-34 0.13-1100 In Development BLM North American C. dubia Model Complete Acute and Chronic C. dubia 6.5-8.7 0.2-41 0.8-237 CHESS with Model V (WHAM) CCME, BCMOE 44 natural waters 3.5-8.9 <0.1-34 0.13-1100 In Development PNECPro v6.0 Complete Chronic P. subcapitata, C. dubia, D. magna, O. mykiss Algae: 5.7-8.0 Invertebrates: 5.9-8.7 Fish: 5.4-8.5 Algae: 2.5-25.8 Invertebrates: 2.5-25.8 Fish: 3.8-18.4 Algae: 2.4-144 Invertebrates: 3.0-72.7 Fish: 3.8-83 N/A Water Framework Directive [85] In Development In Development In Development In Development Aquatic plant (Lemna minor), Gastropod (Lymnaea stagnalis), Rotifer (Brachionus calyciflorus) MLR N/A Complete Acute and Chronic C. dubia, D. magna, D. pulex, D. pulicaria, P. promelas, O. mykiss, P. subcapitata 5.5-8.8 0.2-41 0.8-237 N/A In Development 44 natural waters 3.5-8.9 <0.1-34 0.13-1100 In Development BLM Marine In Development Chronic S. purpuratus, In Development In Development In Development In Development CHESS with Model V (WHAM) In Development In Development In Development In Development In Development In Development Zinc BLM Unified/North America Complete Acute and Chronic D. magna, D. pulex, P. promelas, O. mykiss Invertebrates: 5.5-9.0 Fish: 5.68-7.87 Invertebrates: <0.5-10.8 Fish: <0.5-3.0 Invertebrates: 14-826 Fish: 28-398 CHESS with Model V (WHAM) [75] 7 Natural Waters 6.0-8.4 <0.5-17.3 14-250 Cladoceran (C. dubia), Rotifer (Brachionus calyciflorus) BLM/gBAM EU Risk Assessment Complete Chronic P. subcapitata, D. magna, O. mykiss Algae: 6.0-8.4 Invertebrates: 5.7-8.0 Fish: 5.7-8.1 Algae: 0.3-22.3 Invertebrates: 0.3-17.3 Fish: 0.3-22.9 Algae: 5.0-65.4 Invertebrates: 5.0-160.3 Fish: 7.8-155.8 CHESS with Model V (WHAM) EU Risk Assessment [81] 7 Natural Waters 6.0-8.4 <0.5-17.3 14-250 Cladoceran (C. dubia), Rotifer (Brachionus calyciflorus) M-BAT V30.0-20150206 Complete Chronic P. subcapitata, D. magna, O. mykiss Algae: 5.6-8.0 Invertebrates: 5.5-8.0 Fish: 5.7-8.1 Algae: 0.3-22.3 Invertebrates: 0.3-17.3 Fish: 0.3-22.9 Algae: 5.0-65.4 Invertebrates: 5.0-160.3 Fish: 7.8-155.8 N/A Water Framework Directive [85, 86] N/A N/A N/A N/A N/A BioMet v5.0 Complete Chronic P. subcapitata, D. magna, O. mykiss Algae: 5.6-8.0 Invertebrates: 5.5-8.0 Fish: 5.7-8.1 Algae: 0.3-22.3 Invertebrates: 0.3-17.3 Fish: 0.3-22.9 Algae: 5.0-65.4 Invertebrates: 5.0-160.3 Fish: 7.8-155.8 N/A Water Framework Directive [85, 86] N/A N/A N/A N/A N/A PNECPro v6.0 Complete Chronic P. subcapitata, D. magna, O. mykiss Algae: 5.6-8.0 Invertebrates: 5.5-8.0 Fish: 5.7-8.1 Algae: 0.3-22.3 Invertebrates: 0.3-17.3 Fish: 0.3-22.9 Algae: 5.0-65.4 Invertebrates: 5.0-160.3 Fish: 7.8-155.8 N/A Water Framework Directive [85] N/A N/A N/A N/A N/A MLR Canadian WQG Complete Acute and Chronic D. magna, D. pulex, O. mykiss Acute: N/A Chronic: 6.5-8.13 Acute: 0.3-17.3 Chronic: 0.3-22.9 Acute: 13.8-250.51 Chronic: 23.4-3991 N/A Canadian WQG N/A N/A N/A N/A N/A MLR N/A Draft Acute and Chronic C. dubia, D. magna, D. pulex, O. mykiss, Pomacea paludosa, P. promelas, L. stagnalis, P. subcapitata Algae: 6.5-8.5 Invertebrates: 5.4-8.6 Fish: 5.7-8.3 Algae: 0.3-22.3 Invertebrates: 0.1-29.0 Fish: 0.3-22.9 Algae: 0.8-159.1 Invertebrates: 1.6-320.6 Fish: 1.6-157 N/A In Development In Development In Development In Development In Development In Development Windward Marine BLM V3.41.2.45 Complete/Preliminary Acute Americamysis bahia, Crassostrea gigas, Crassostrea virginica, Dendraster excentricus, Haliotis rufescens, Mytilus edulis, Mytilus galloprovincialis, Strongylocentrotus purpuratus 6.0-8.2 1-3.3 5-38 (salinity in %o) CHESS + 3-site fit for binding to DOM [84] Not specified Not specified Not specified Not specified Not specified 1Units reported as hardness (mg CaC03/L) CCME - Canadian Council Ministers of the Environment BCMOE - British Columbia Ministry of the Environment ------- References 1 Santore, R.C., et al., Development and application of a biotic ligand model for predicting the chronic toxicity of dissolved and precipitated aluminum to aquatic organisms. Environmental toxicology and chemistry, 2018. 37(1): p. 70-79. 2 DeForest, D.K., et al., Multiple linear regression models for predicting chronic aluminum toxicity to freshwater aquatic organisms and developing water quality guidelines. Environmental toxicology and chemistry, 2018. 37(1): p. 80-90. 3 US Environmental Protection Agency, Aquatic life ambient freshwater quality criteria - copper. 2007: Washington, District of Columbia, USA. 4 HydroQual, Biotic Ligand Model, Windows Interface, Version 2.2. 3 . 2007. 5 Di Toro, D.M., et al., Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environmental Toxicology and Chemistry, 2001. 20(10): p. 2383-2396. 6 Paquin, P.R., et al., Revisiting the aquatic impacts of copper discharged by water-cooled copper alloy condensers used by power and desalination plants. Environmental Science & Policy, 2000. 3: p. 165-174. ^ Paquin, P.R., et al., The biotic ligand model: a historical overview. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002. 133(1-2): p. 3-35. 8 Paquin, P.R., et al., The biotic ligand model: a model of the acute toxicity of metals to aquatic life. Environmental Science & Policy, 2000. 3: p. 175-182. 9 Santore, R.C., et al., Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environmental Toxicology and Chemistry: An International Journal, 2001. 20(10): p. 2397-2402. 10 Santore, R.C., et al., Developing site-specific water quality criteria for metals using the biotic ligand model. Proceedings of the Water Environment Federation, 2003. 2003(4): p. 997-1009. 11 Meyer, J.S. and W.J. Adams, Relationship between biotic ligand model -based water quality criteria and avoidance and olfactory responses to copper by fish. Environmental toxicology and chemistry, 2010. 29(9): p. 2096-2103. 12 US Environmental Protection Agency, The biotic ligand model: Technical support document for its application to the evaluation of water quality criteria for copper . 2003: Washignton, District of Columbia, USA. 13 Environment and Climate Change Canada, Federal Environmental Quality Guidelines: Copper. 2019: Gatineau, QC, Canada. 14 Environment and Climate Change Canada, Federal Water Quality Guideline for Copper: Biotic Ligand Model (BLM) Tool and User Manual. 2019: Gatineau, QC, Canada. 15 BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: Technical Report .2019, Ministry of Environment and Climate Change Strategy: Province of British Columbia, Victoria, BC, Canada. 16 BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: BC BLM User's Manual .2019, Ministry of Environment and Climate Change Strategy: Province of Bitish Columbia, Victoria, BC, Canada. 17 BC Ministry of Environment and Climate Change Strategy, Copper Water Quality Guideline for the Protection of Freshwater Aquatic Life: User's Guide. 2019, Ministry of the Environment and Climate Change Strategy: Province of British Columbia, Victoria, BC, Canada. 18 Windward Environmental LLC, Biotic Ligand Model Windows Interface: User Guide and Reference Manual. 2019: Seatlle, WA, USA. 19 De Schamphelaere, K.A.C., D.G. Heijerick, and C. Janssen, Refinement and field validation of a biotic ligand model predicting acute copper toxicity to Daphnia magna. Comparative Biochemistry and Physiology Part C, 2002. 133: p. 243-258. 20 De Schamphelaere, K.A.C. and C. Janssen, Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environmental Toxicology and Chemistry, 2004. 23: p. 1365-1375. 21 Van Sprang, P., et al., Effects to freshwater organisms (Chapter 3.2. 2). European Union Risk Assessment Report: Voluntary risk assessment of copper, copper II sulphate pentahydrate, copper (I) oxide, copper (I) oxide, dicopper chloride trihydroxide, 2008: p. 194. 22 European Copper Institute, et al., Bio-Met Bioavailability Tool: User Guide . 2019. 23 De Schamphelaere, K.A.C., D.G. Heijerick, and C.R. Janssen, Cross-phylum comparison of a chronic biotic ligand model to predict chronic toxicity of copper to a freshwater rotifer, Brachionus calyciflorus (Pallas). Ecotoxicology and environmental safety, 2006. 63(2): p. 189-195. 24 De Schamphelaere, K.A.C. andC.R. Janssen, A biotic ligand model predicting acute copper toxicity for Daphnia magna: the effects of calcium, magnesium, sodium, potassium, and pH. Environmental science & technology, 2002. 36(1): p. 48-54. ------- 25 De Schamphelaere, K.A.C. and C.R. Janssen, Effects of dissolved organic carbon concentration and source, pH, and water hardness on chronic toxicity of copper to Daphnia magna. Environmental Toxicology and Chemistry, 2004. 23(5): p. 1115-1122. 26 De Schamphelaere, K.A.C. and C.R. Janssen, Bioavailability models for predicting copper toxicity to freshwater green microalgae as a function of water chemistry. Environmental science & technology, 2006. 40(14): p. 4514-4522. 27 De Schamphelaere, K.A.C., et al., Development and field validation of a predictive copper toxicity model for the green alga Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry, 2003. 22(10): p. 2454-2465. 28 De Schamphelaere, K.A.C., et al., Effect of dissolved organic matter source on acute copper toxicity to Daphnia magna. Environmental Toxicology and Chemistry, 2004. 23(5): p. 1248-1255. 29 Water Framework Directive - United Kingdom Technical Advisory Group, UKTAG River & Lake Assessment Method: Specific Pollutants (Metals). Metal Bioavailability Assessment Tool (M-BAT). 2014, Water Framework Directive - United Kingdom Technical Advisory Group: Stirling, Scotland. 30 Environment Agency, Using biotic ligand model to predict copper toxicity to Daphnia magna and site-specific copper criteria across multiple surface-water drainages in an arid landscape. . Environmental Toxicology and Chemistry, 2009. 33: p. 1865-1873. 31 Water Framework Directive - United Kingdom Technical Advisory Group, Development and use of the copper bioavailability assessment tool. 2012, Water Framework Directive -United Kingdom Technical Advisory Group: Stirling, Scotland. 32 WCA, Technical guidance to implement bioavailability-based environmental quality standards for metals . 2014. 33 Deltares, C.M.L. (Institute of Environmental Sciences), and R.I.V.M. (National Institute for Public Health and the Environment), PNEC-pro. 2016: Deltares, Utrect, The Netherlands. 34 Tipping, E. and S. Lofts, Metal mixture toxicity to aquatic biota in laboratory experiments: application of the WHAM-FTOX model. Aquatic toxicology, 2013. 142: p. 114-122. 35 Brix, K.V., et al., Use of multiple linear regression models for setting water quality criteria for copper: A complementary approach to the biotic ligand model. Environmental science & technology, 2017. 51(9): p. 5182-5192. 36 Cremazy, A., et al., Investigating copper toxicity in the tropical fish cardinal tetra (Paracheirodon axelrodi) in natural Amazonian waters: Measurements, modeling, and reality. Aquatic Toxicology, 2016. 180: p. 353-363. 37 Fulton, B.A. and J.S. Meyer, Development of a regression model to predict copper toxicity to Daphnia magna and site -specific copper criteria across multiple surface -water drainages in an arid landscape. Environmental toxicology and chemistry, 2014. 33(8): p. 1865-1873. 38 Arnold, W.R., J.S. Cotsifas, and K.M. Corneillie, Validation and update of a model used to predict copper toxicity to the marine bivalve Mytilus sp. Environmental Toxicology, 2006. 21(1): p. 65-70. 39 Arnold, W.R., R.C. Santore, and J.S. Cotsifas, Predicting copper toxicity in estuarine and marine waters using the biotic ligand model. Marine pollution bulletin, 2005. 50(12): p. 1634-1640. 40 Arnold, W.R., Effects of dissolved organic carbon on copper toxicity: implications for saltwater copper criteria. Integrated Environmental Assessment and Management, 2005. 1(1): p. 34-39. 41 Deruytter, D., et al., Salinity and dissolved organic carbon both affect copper toxicity in mussel larvae: Copper speciation or competition cannot explain everything. Environmental toxicology and chemistry, 2015. 34(6): p. 1330-1336. 42 Sanchez-Marin, P., et al., Effect of dissolved organic matter (DOM) of contrasting origins on Cu and Pb speciation and toxicity to Paracentrotus lividus larvae. Aquatic Toxicology, 2010. 96(2): p. 90-102. 43 DeForest, D.K., et al., Development of biotic ligand model-based freshwater aquatic life criteria for lead following US Environmental Protection Agency guidelines. Environmental toxicology and chemistry, 2017. 36(11): p. 2965-2973. 44 Besser, J.M., et al., Effect of diet quality on chronic toxicity of aqueous lead to the amphipod Hyalella azteca. Environmental toxicology and chemistry, 2016. 35(7): p. 1825- 1834. 45 Nys, C., C.R. Janssen, and K.A.C. De Schamphelaere, Development and validation of a chronic Pb bioavailability model forthe freshwater rotifer Brachionus calyciflorus. Environmental toxicology and chemistry, 2016. 35(12): p. 2977-2986. 46 Nys, C., et al., Development and validation of a biotic ligand model for predicting chronic toxicity of lead to Ceriodaphnia dubia. Environmental toxicology and chemistry, 2014. 33(2): p. 394-403. 47 Blust, R., Chemical analysis and speciation modeling of lead solubility under ecotoxicity testing relevant exposure scenarios . 2014, International Lead Zinc Research Organization: Department of Biology, University of Antwerp, Belgium, p. 34. ------- 48 Munley, K.M., et al., Growth inhibition in early life-stage tests predicts full life-cycle toxicity effects of lead in the freshwater pulmonate snail, Lymnaea stagnalis. Aquatic toxicology, 2013. 128: p. 60-66. 49 Nys, C. and K.A.C. De Schamphelaere, Effect ofCa and pH on acute toxicity of Pb to Ceriodaphnia dubia . 2013, International Lead Zinc Research Organization: Durham, NC, USA. 50 Nys, C., C. Janssen, and K.A.C. De Schamphelaere, A comparison of chronic Pb sensitivity between laboratory and field populations of Lymnaea stagnalis . 2013, International Lead Zinc Research Organization: Durham, NC, USA. 51 Esbaugh, A.J., et al., Multi-linear regression analysis, preliminary biotic ligand modeling, and cross species comparison of the effects of water chemistry on chronic lead toxicity in invertebrates. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2012. 155(2): p. 423-431. 52 Brix, K.V., et al., Investigations into the mechanism of lead toxicity to the freshwater pulmonate snail, Lymnaea stagnalis. Aquatic toxicology, 2012. 106: p. 147-156. 53 AquaTox, Report on the toxicity of lead to the freshwater invertebrate, Ceriodaphnia dubia . 2012, International Lead Zinc Research Organization: Durham, NC, USA. 54 Nguyen, L.T.H., C. Janssen, and K.A.C. De Schamphelaere, Chronic toxicity of Pb to Chironomus riparius in five natural waters . 2012, International Lead Zinc Research Organization: Durham, NC, USA. 55 Esbaugh, A.J., et al., Multi-linear regression models predict the effects of water chemistry on acute lead toxicity to Ceriodaphnia dubia and Pimephales promelas. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011. 154(3): p. 137-145. 56 Mager, E.M., et al., Effects of water chemistry on the chronic toxicity of lead to the cladoceran, Ceriodaphnia dubia. Ecotoxicology and environmental safety, 2011. 74(3): p. 238-243. 57 Mager, E.M., et al., Influences of water chemistry on the acute toxicity of lead to Pimephales promelas and Ceriodaphnia dubia. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2011. 153(1): p. 82-90. 58 Mager, E.M. and M. Grosell, Effects of acute and chronic waterborne lead exposure on the swimming performance and aerobic scope of fathead minnows (Pimephales promelas). Comparative Biochemistry and Physiology PartC: Toxicology & Pharmacology, 2011. 154(1): p. 7-13. 59 Mager, E.M., K.V. Brix, and M. Grosell, Influence of bicarbonate and humic acid on effects of chronic waterborne lead exposure to the fathead minnow (Pimephales promelas). Aquatic toxicology, 2010. 96(2): p. 135-144. 60 Grosell, M. and K.V. Brix, High net calcium uptake explains the hypersensitivity of the freshwater pulmonate snail, Lymnaea stagnalis, to chronic lead exposure. Aquatic Toxicology, 2009. 91(4): p. 302-311. 61 Parametrix, Evaluation of chronic lead toxicity to the great pond snail, Lymnaea stagnalis . 2007, Lead Development Association: London, UK. 62 Grosell, M., R. Gerdes, and K.V. Brix, Influence of Ca, humic acid and pH on lead accumulation and toxicity in the fathead minnow during prolonged water-borne lead exposure. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006. 143(4): p. 473-483. 63 Grosell, M., R.M. Gerdes, and K.V. Brix, Chronic toxicity of lead to three freshwater invertebrates—Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis. Environmental Toxicology and Chemistry, 2006. 25(1): p. 97-104. 64 Van Sprang, P.A., et al., The derivation of effects threshold concentrations of lead for European freshwater ecosystems. Environmental toxicology and chemistry, 2016. 35(5): p. 1310-1320. 65 De Schamphelaere, K.A.C., C. Nys, and C. Janssen, Toxicity of lead (Pb) to freshwater green algae: development and validation of a bioavailability model and inter- species sensitivity comparison. Aquatic toxicology, 2014. 155: p. 348-359. 66 Antunes, P.M.C. and N.J. Kreager, Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach. Environmental toxicology and chemistry, 2014. 33(10): p. 2225-2233. 67 European Commission, Lead and its compounds EQS Sheet. 2010, Prepared by UK, Envrionment Agency on behalf of the European Union. 68 Verschoor, A.J., M.G. Vijver, and J.P.M. Vink, Refinement and cross-validation of nickel bioavailability in PNEC-Pro, a regulatory tool for site-specific risk assessment of metals in surface water. Environmental toxicology and chemistry, 2017. 36(9): p. 2367-2376. 69 Environment and Climate Change Canada (ECCC), Federal Environmental Quality Guidelines - Lead. Published in July 2020, https://www.canada.ca/en/environment- climate-change/services/evaluating-existing-substances/federal-environmental-quality-guidelines-lead.html. Accessed on July 13, 2020. 70 DeForest, D.K., L.M. Tear, and K.V. Brix, Multiple linear regression models for predicting acute and chronic lead toxicity to freshwater organisms . 2020, International Lead Association: Durham, NC, USA. 71 Nys, C., et al., The effect of pH on chronic aquatic nickel toxicity is dependent on the pH itself: Extending the chronic nickel bioavailability models. Environmental Toxicology and Chemistry, 2016. 35(5): p. 1097-1106. ------- 72 Deleebeeck, N.M.E., et al., A single bioavailability model can accurately predict Ni toxicity to green microalgae in soft and hard surface waters. Water research, 2009. 43(7): p. 1935-1947. 73 Deleebeeck, N.M.E., K.A.C. De Schamphelaere, and C.R. Janssen, A bioavailability model predicting the toxicity of nickel to rainbow trout (Oncorhynchus mykiss) and fathead minnow (Pimephales promelas) in synthetic and natural waters. Ecotoxicology and Environmental Safety, 2007. 67(1): p. 1-13. 74 Deleebeeck, N.M.E., K.A.C. De Schamphelaere, and C.R. Janssen, A novel method for predicting chronic nickel bioavailability and toxicity to Daphnia magna in artificial and natural waters. Environmental Toxicology and Chemistry, 2008. 27(10): p. 2097-2107. 75 DeForest, D.K. and E.J. Van Genderen, Application of US EPA guidelines in a bioavailability-based assessment of ambient water quality criteria for zinc in freshwater. Environmental toxicology and chemistry, 2012. 31(6): p. 1264-1272. 76 Clifford, M. and J.C. McGeer, Development of a biotic ligand model for the acute toxicity of zinc to Daphnia pulex in soft waters. Aquatic toxicology, 2009. 91(1): p. 26-32. 77 De Schamphelaere, K, D. Heijerick, and C. Janssen, Development and validation of Biotic Ligand Models for predicting chronic zinc toxicity to fish, daphnids and algae. 2003. 78 Heijerick, D.G., K.A.C. De Schamphelaere, and C.R. Janssen, Predicting acute zinc toxicity for Daphnia magna as a function of key water chemistry characteristics: development and validation of a biotic ligand model. Environmental Toxicology and Chemistry, 2002. 21 (6): p. 1309-1315. 79 Santore, R.C., et al., Application of the biotic ligand model to predicting zinc toxicity to rainbow trout, fathead minnow, and Daphnia magna. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2002. 133(1-2): p. 271-285. 80 De Schamphelaere, K.A. and C.R. Janssen, Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): comparison with other fish species and development of a biotic ligand model. Environmental science & technology, 2004. 38(23): p. 6201-6209. 81 Van Sprang, P.A., et al., Environmental risk assessment of zinc in European freshwaters: a critical appraisal. Science of the total environment, 2009. 407(20): p. 5373- 5391. 82 Heijerick, D.G., et al., Development of a chronic zinc biotic ligand model for Daphnia magna. Ecotoxicology and environmental safety, 2005. 62(1): p. 1-10. 83 Canadian Council of Ministers of the Environment, Canadian Water Quality Guidelines for the Protection of Aquatic Life: Zinc . 2018, Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada. 84 HydroQual, Development of a Marine Biotic Ligand Model for Zinc . 2007: Mahwah, NJ, USA. 85 Rudel, H., et al., Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. Environmental Science and Pollution Research, 2015. 22(10): p. 7405-7421. 86 DHI, Bioavailability Modeling of Three Metals in Danish Freshwater Systems . 2014, Danish Nature Agency: Horsholm, Denmark. 87 Peters, A., et al., Are Lead Exposures a Risk in European Fresh Waters? A Regulatory Assessment Accounting for Bioavailability. Bulletin of environmental contamination and toxicology, 2018. 100(1): p. 127-133. 88 Santore, R.C. et al., A Review of Water Quality Factors that Affect Nickel Bioavailability to Aquatic Organisms: Refinement of the Biotic Ligand Model for Nickel in Acute and Chronic Exposures . Environ Toxicol Chem, 2021. DOI: 10.1002/etc.5109 gg Croteau, K. et al., Comparison of Multiple Linear Regression and Biotic Ligand Models to Predict the Toxicity of Nickel to Aquatic Freshwater Organisms . Environ Toxicol Chem. 2021. DOI: 10.1002/etc.5063 gg Sherman, S., et al., Complexation reduces nickel toxicity to purple sea urchin embryos (Strongylocentrotus purpuratus), a test of biotic ligand principles in seawater. Ecotoxicology and environmental safety, 2021. 216, 112156. ------- |