FINAL

Mixing Zone Dilution Modeling for Six Alaska POTWs

Prepared for:

United States Environmental Protection Agency
Cincinnati Procurement Operations Division
Cincinnati, Ohio 45268

USEPA OW Contract: 68HERC20D0010; Task Order: 68HERV21F0114

Technical Support for National Pollutant Discharge
Elimination System (NPDES), Clean Water Act Section 301(h),
and Endangered Species Act Section 7 Implementation
in EPA Region 10 NPDES Permits Section

Prepared by:

GleC

Great Lakes Environmental Center

739 Hastings St.
Traverse City, MI 48686
Contact: Douglas Endicott

Phone: (231)941-2230

Email: dendicott@glec.com
www.glec.com

Date: August 5, 2021


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table of Contents

Table of Contents	ii

List of Tables	ii

List of Figures	ii

Mixing Zone Dilution Modeling for Six Alaska POTWs	1

Haines	8

Ketchikan	15

Petersburg	23

Sitka	28

Skagway	35

Wrangell	42

Summary	47

References	50

Appendix: VP and FARFIELD Output for Each Location	51

No. of Pages

Appendix: VP and FARFIELD Output for Each Location	52

List of Tables

Table 1. Maximum Effluent FC Concentrations Based on EPA (1991) Reasonable Potential Procedure

(Maximum Monthly Concentrations Reported in DMRs Over the Past 5 Years)	2

Table 2. Summary of Data Used for Mixing Zone Dilution Modeling	5

Table 3. Haines mixing zone dilution modeling results	11

Table 4. Ketchikan Mixing Zone Dilution Modeling Results	18

Table 5. Petersburg Mixing Zone Dilution Modeling Results	25

Table 6. Sitka Mixing Zone Dilution Modeling Results	31

Table 7. Skagway Mixing Zone Dilution Modeling Results	38

Table 8. Wrangell Mixing Zone Dilution Modeling Results	44

Table 9. Average Dilution Factor Predictions at Distances from the Discharge Point Corresponding to 1-

10 Times the Depth of Discharge	47

Table 10. Average Dilution Factor Predictions at the Distance from the Outfall to Shore	47

Table 11. Dilution Factor Predictions at Distances Equal to Initial Mixing Region Boundaries	48

Table 12. Dilution Factors and Mixing Zone Distances Required to Attain FC Criteria	49

List of Figures

Figure 1. Aerial View of the POTW Outfall Location at Haines	8

Figure 2. Vertical Ambient Profile of Temperature, Salinity and Density in Haines Mixing Zones

Resulting in Least Mixing	9

Figure 3. Haines Discharge Plume Boundary Plan View from Above	14

Figure 4. Haines Discharge Plume Centerline and Boundary Profile View from Side	14

Figure 5. Haines Discharge Plume Average and Centerline Dilution vs. Distance from Outfall	14

Figure 6. Aerial View of the POTW Outfall Location at Ketchikan	15

ii


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 7. Vertical Ambient Profile of Temperature, Salinity and Density in Ketchikan Mixing Zone

Resulting in Least Mixing	16

Figure 8. Ketchikan Discharge Plume Boundary Plan View from Above	21

Figure 9. Ketchikan Discharge Plume Centerline and Boundary Profile View from Side	21

Figure 10. Ketchikan discharge plume average and centerline dilution vs. distance from outfall	22

Figure 11. Aerial View of the POTW Outfall Location at Petersburg	23

Figure 12. Vertical Ambient Profile of Temperature, Salinity and Density in Petersburg Mixing Zone

Resulting in Least Mixing	24

Figure 13. Petersburg Discharge Plume Boundary Plan View from Above	27

Figure 14. Petersburg Discharge Plume Centerline and Boundary Profile View from Side	27

Figure 15. Petersburg Discharge Plume Average and Centerline Dilution vs. Distance from Outfall	27

Figure 16. Aerial View of the POTW Outfall Location at Sitka	28

Figure 17. Vertical Ambient Profile of Temperature, Salinity and Density in Sitka Mixing Zone Resulting

in Least Mixing	29

Figure 18. Sitka Discharge Plume Boundary Plan View from Above	33

Figure 19. Sitka Discharge Plume Centerline and Boundary Profile View from Side	33

Figure 20. Sitka Discharge Plume Average and Centerline Dilution vs. Distance from Outfall	34

Figure 21. Aerial View of the POTW Outfall Location at Skagway	35

Figure 22. Vertical Ambient Profile of Temperature, Salinity and Density in Skagway Mixing Zone

Resulting in Least Mixing	36

Figure 23. Skagway Discharge Plume Boundary Plan View from Above	41

Figure 24. Skagway Discharge Plume Centerline and Boundary Profile View from Side	41

Figure 25. Skagway Discharge Plume Average and Centerline Dilution vs. Distance from Outfall	41

Figure 26. Aerial View of the POTW Outfall Location at Wrangell	42

Figure 27. Vertical Ambient Profile of Temperature, Salinity and Density in Wrangell Mixing Zone

Resulting in Least Mixing	43

Figure 28. Wrangell Discharge Plume Boundary Plan View from Above	46

Figure 29. Wrangell Discharge Plume Centerline and Boundary Profile View from Side	46

Figure 30. Wrangell Discharge Plume Average and Centerline Dilution vs. Distance from Outfall	46

Figure 31. DF Predictions Graphed as a Function of Distance from the Outfall	48

Hi


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Mixing Zone Dilution Modeling for Six Alaska POTWs

For each of the six POTWs of interest in southeast Alaska (Haines, Ketchikan, Petersburgh, Sitka,
Skagway, and Wrangell) mixing zone dilution models were developed and applied to predict the steady-
state dilution of effluent being discharged into the marine coastal receiving waters. Because of the nature
of the discharges and receiving waters, initial dilution models within the EPA-approved Visual Plumes
software (EPA 2003) were selected for use. From a modeling perspective, each of the receiving water
mixing zones share several important characteristics that led to the selection of Visual Plumes, as opposed
to the alternative EPA-approved modeling framework, CORMIX:

•	Discharge of buoyant effluent into a deep (20-30 meter), stratified marine water body;

•	No shoreline boundaries within 100 meters of the outfalls;

•	Relatively small discharge flow rates (0.6-7 MGD); and

•	No obstructions in the receiving waters to impede circulation near the outfalls, making tidal
build-up of pollutants unlikely.

For each site, appropriate models were applied to predict average dilution at various distances
(corresponding to 1-10 times the depth of discharge) from the discharge point, as well as the geometry
(depth, width, etc.) of the plume itself. Aquatic life-based mixing zone analyses involve the concept of
determining reasonable worst-case values for various parameters because the durations established for
these water quality criteria vary for both acute and chronic toxicities (Washington DoE, 2018). The term
reasonable worst-case refers to the value selected for a specific effluent or receiving water parameter.
Critical conditions refer to a scenario involving reasonable worst-case parameters, which has been set up
to run in a mixing zone model. For this work, steady-state mixing zone models were applied using a
combination of parameters (e.g., effluent flow, current speed, density profile) to simulate critical
conditions. The predictions were based on input data representing critical conditions demonstrated to
minimize the dilution of effluent pollutants. It should be understood that each critical condition (by itself)
has a low probability of occurrence.

It should also be understood that mixing zone modeling is not an exact science (Reese et al., 2021). With
limited data and numerous variables, mixing zone sizes may be considered best estimates to ± 50%.
Sensitivity analysis and comparison of alternative models were used to develop confidence in the dilution
model predictions. All simulations explicitly included fecal coliform (FC) as a pollutant, which required
the models to simulate bacterial decay in the receiving waters. Maximum effluent (end-of-pipe) FC
concentrations were estimated for modeling by applying the EPA (1991) reasonable potential procedure
to maximum monthly concentrations reported over the past five years in Discharge Monitoring Reports
(DMRs) provided by EPA Region 10. The maximum effluent FC concentrations for each discharge are
presented in Table 1 along with the dilution factors required to meet the Alaska marine water quality
standards for harvesting for consumption of raw mollusks or other raw aquatic life (18 AAC 70 Water
Quality Standards, amended as of March 5, 2020):

The geometric mean of samples may not exceed 14 fecal coliform/100 ml, and not more than 10% of the
samples may exceed 43 MPN per 100 mL for a five-tube decimal dilution test.

1


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 1. Maximum Effluent FC Concentrations Based on EPA (1991) Reasonable Potential
Procedure (Maximum Monthly Concentrations Reported in DMRs Over the Past 5 Years)

City

Haines

Kechikan

Petersburg

Sitka

Skagway

Wrangell

Maximum expected
effluent FC (daily

2,100,000

2,900,000

2,000,000

3,700,000

2,600,00

190,000

max, 99%; n/100 mL)













Dilution factor1













required to meet
14/100 mL FC

150,000

210,000

140,000

270,000

190,000

14,000

criterion













Dilution factor













required to meet
43/100 mL FC

50,000

67,000

47,000

87,000

60,000

4,400

criterion













Model predictions of the size of the mixing zones required to attain these dilution factors are presented in
the summary of this report.

Most mixing zone simulations required the combination of initial dilution and far-field models. Initial
dilution models simulate the "initial mixing region" or "hydrodynamic mixing zone" defined to end
where the self-induced turbulence of the discharge collapses under the influence of ambient stratification
and initial dilution reaches its limiting value (EPA, 1994). At the end of this region/zone the waste field is
established and then drifts with the ocean currents and is diffused by oceanic turbulence.

The initial dilution models included UM3, DKHW and NRFIELD, all contained within the Visual Plumes
(VP) framework. Although the three initial dilution models run under the same VP interface, they differ in
terms of origin and development, underlying assumptions, empirical datasets, solution techniques and
coding. UM3 is a three-dimensional Updated Merge (UM) model for simulating single and multiport
submerged diffusers. DKHW is an acronym for the Davis, Kannberg and Hirst model, a three-
dimensional model for submerged single or multi-port diffusers. DKHW is limited to positively buoyant
plumes and considers either single or multiport discharges at an arbitrary horizontal angle into a stratified,
flowing current. NRFIELD is based on the Roberts, Snyder and Baumgartner (RSB) model, an empirical
model for multiport diffusers (T-risers, each having two ports for a total of 4-ports) in stratified currents.
A shortcoming of each of these initial dilution models in VP is their inability to recognize and address
lateral boundary constraints, although that is not a major issue for these Alaskan mixing zone sites.
Although the original 2001 version of VP is still available from EPA's CEAM site, it is currently
unsupported and known to contain a number of errors (Frick et al. 2010; Frick and Roberts, 2019). We
instead used the updated VP version 20, maintained and distributed by the California State Water
Resources Control Board, Ocean Standards Unit (https://ftp.waterboards.ca.gov).

The Brooks far-field model was used to extend dilution simulations beyond the spatial bounds of initial
dilution. Although this model is incorporated in VP, we also used a stand-alone spreadsheet version of the

1 Dilution Factor, DF = (end of pipe) concentration/mixed concentration.

2


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brooks model, FARFIELD, that is contained in the Washington Department of Ecology (DoE), Permit
Calculation workbook (https://ecology.wa.gov/Regulations-Permits/Guidance-technical-assistance/Water-
quality-permits-guidance). FARFIELD calculates dilution using the method of Brooks (1960) and is
recommended by Frick et al. (2010) in lieu of using far-field predictions within VP, since the latter does
not allow for the use of linear diffiisivity as recommended in estuaries. FARFIELD was used to double-
check the far-field results in VP, and in some instances to replace them.

The initial dilution models relied upon a variety of data to characterize the effluent, discharge outfall and
receiving water. These data are summarized in Table 2. The data were gathered from a number of sources
including EPA Region 10 and the State of Alaska; from the permittees as documented in permit files, as-
built drawings and charts, etc.; tidal current predictions made by the National Oceanic and Atmospheric
Administration (NOAA); and other literature sources found by Internet search.

All six of the POTWs discharge effluent using deeply-submerged outfalls with diffusers and multiple
ports (Table 2). Haines and Petersburg both use two-diffiiser ports, while the others use multiport
diffusers with 6 to 16 ports. Modeling initial dilution from the four sites using multiport diffusers required
additional considerations, because these diffusers have opposing ports (ports on both sides of the diffuser
pipe that discharge effluent into opposite directions), creating co-flowing and counter-flowing plumes.
Counter-flowing plumes are discharged opposing the ambient current and will generally rise and bend
back into the direction from whence they came, eventually merging with the co-flowing plumes that are
discharged on the opposite side of the pipe in the direction of the current. This is called cross-diffuser
merging (EPA, 2003). Two alternative modeling approaches were applied to simulate initial mixing from
opposing ports in the UM3 and DKHW models (NRFIELD models cross-diffuser merging directly). The
first approach ("half spacing") treated the diffuser as if all ports are on one side with half the spacing. In
the context of merging plumes, this approach works well when the distances of interest are somewhat
beyond the point of merging.

The second approach ("downstream only") involves simulating only downstream ports. This necessitates
doubling the flow per port (assuming there is an even number of ports in the diffuser) and increasing the
diameter of the ports to maintain approximately the same densimetric Froude number. With this approach
only the downstream ports would be used when determining spacing and number of ports. The
Washington DoE Permit Writer's Manual, Appendix C (2018) discusses the merits of these approaches.
When possible, we applied both approaches to modeling cross-diffuser merging and compared the results.

We assumed that all ports on a multiport diffuser discharged effluent flow equally and at the same depth.
The multiport diffuser at Ketchikan was unique because it was the only diffuser that combined ports of
different sizes. Five 6-inch opposing ports were spaced along a 12-inch manifold, and a sixth 12-inch port
was located at the manifold's end. The CORMIX hydraulic module CorHyd (MixZone, 2020) was used to
determine the flow distribution between the 6-inch ports and the 12-inch port. At a nominal flow rate of
5.35 MGD, CorHyd calculated that the 6-inch ports would discharge 52% of the flow, and the remaining
48% would be discharged from the 12-inch port. These same percentages were applied to other flow rates
at Ketchikan. Initial model simulations suggested that the plumes emanating from the 12-inch port would
not merge with the plume from the other ports, due to the 90° difference in port orientations. Therefore,
these plumes were modeled separately.

3


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

The diffuser port orifice contraction coefficient is an initial dilution model hydraulic parameter that is
specified according to how ports are machined in the diffuser pipe wall (EPA, 2003). For all of the
outfalls except Sitka, sharp-edged ports were assumed, and contraction coefficients of 0.61 were
specified. For Sitka, the port orifices were bell-shaped, so a contraction coefficient of 1.0 was applied.

Tidal current predictions were used to calculate 10th percentile and average current velocities at each site.
The tidal prediction location nearest each discharge site was identified and tidal velocity predictions for
2021 were downloaded from the NOAA Tides & Currents web site (http://tidesandcurrents.noaa.gov).
These data were imported into a spreadsheet and the predictions for the month in which the critical
ambient conditions fell were selected. For Haines, Ketchikan and Skagway, 6-minute tidal velocity
predictions were available. The tenth percentile of the absolute value of these velocities were calculated
and used as the critical ambient velocity input for mixing zone dilution modeling. For the other locations,
only times and velocities for ebb, slack and flood tides were available. The Excel FORECAST function
was then used to interpolate hourly values from the tidal velocity predictions, and the tenth percentile of
the absolute value of these interpolated hourly values was calculated and used for modeling2. These
velocities, ranging from 1.4 to 5.9 cm/s, are presented in Table 2. The compass directions of tidal currents
(also presented in Table 2) were based on the tidal current predictions, the orientation of the nearest
shoreline (presuming currents to flow parallel to the shoreline), and other information from the permit
files. The average hourly ebb and flood tidal velocities were calculated similarly and are also presented in
Table 2 and were used in the model sensitivity analysis.

The decay of fecal coliform was included in the initial dilution and far-field models by using the Mancini
(1978) bacteria model that incorporates four variables (salinity, temperature, solar insolation, and water
column absorption) to determine the rate of first-order decay. Summertime solar insolation in southeast
Alaska was based upon the models and measurements of Dissing and Wendler (1998). Summertime solar
radiation flux, that takes into account both latitude and fractional cloud cover, averaged 190 Watts/m2
(16.3 Langleys/hr) in the Alexander Archipelago. The bacterial decay model used ambient water
temperature and salinity, and a default light absorption coefficient of 0.16, to calculate decay rates of
~0.0002/d. Decay of fecal coliform was found to be insignificant in comparison to physical dilution at the
time and space scales of interest for mixing zone analysis.

2 Comparison between linear interpolation and cubic spline interpolation of the tidal velocity predictions suggests
that linear interpolation may yield average velocities that could be low by a factor of 1.6 to 2.3. The impact of this
discrepancy on DF predictions will be demonstrated via sensitivity analysis.

4


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 2. Summary of Data Used for Mixing Zone Dilution Modeling

City

Haines

Ketchikan

Petersburg

Sitka

Skagway

Wrangell

Permit

AK0021385

AK0021440

AK0021458

AK0021474

AK0020010

AK0021466

DMR data available

2011-2020

2013-18

2015-2019

2015-20

2007-19

2007-19

DMR data used

2016-2020

2013-2018

2015-2019

2015-2020

2014-2019

2015-2019

Permit Maximum Flow
Rate (MGD3)

2.9

7.2

3.6

5.3

0.63

3.0

monthly4 average
effluent temperature

12.0

14.65

13.2

14.0

14.7

17.3

monthly maximum
effluent temperature

15.8

20.5

14.6

15.0

17.3

18.4

Outfall

distance from shore (m)

549

221

366

114

125

457

depth at LWWD (m)

21.3

29.9

18.3

24.4

18.3

30.5

number of diffuser
ports

2 (3rd is capped)

6

2

(3 others capped)

16 bell-shaped

8

16

diffuser length (ft)

30

190

45.9

195

25

240

port diameter (in)

3

5@6", 1@12"

4

4

3

3

Elevation of ports
above bottom (in)

8

12

9

18

6

6

Port spacing (ft)

15-306

40

(20' apart on
alternating sides of
pipe)

10-346

26 (13' apart on
alternating sides
of pipe)

7

32 (16' apart
on alternating
sides of pipe)

Port orientation

horizontal

horizontal
(opposing/
alternating) +
diffuser end

horizontal

horizontal
opposing/
alternating

horizontal
opposing

horizontal
opposing/
alternating

3	Million gallons per day.

4	Average effluent temperature for month of limited dilution

5	Average of maximum monthly effluent temperatures (no monthly averages in DMR)

6	Port spacing is uncertain given information in permit fact sheet.

5


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

City

Haines

Ketchikan

Petersburg

Sitka

Skagway

Wrangell

VP discharge angle7
(degrees)

90

115 (5x6" ports),
205 (1x12" port)

115

300

350

90

Receiving Water

Water body

Portage Cove,
Chinook Inlet

Tongass Narrows,
Charcoal Point

Frederick Sound

Sitka Sound,
Middle Channel

Tiaya Inlet

Zimovia Strait

tidal range (ft)

14.2

13

15

7.7

14.1

13

data source/file8 name
for ambient data

NA; used
Skagway data

AK0021440_Ketch
ikantempsalinity

PetersburgRecei
ving Water Data

Sitka Receiving
Water
Monitoring

Table 2-5 v2

Wrangell FC

and RW
Monitoring

Ambient salinity/temp
profile limiting dilution

Skagway site 1,
June 2005

Ketchikan site 3,
July 1997

Petersburg site 1,
August 2005

Sitka site C,
July 2010

Skagway site 1,
June 2005

Wrangell site 4,
August 2016

NOAA tides & current
predictions

Battery Point,
Chinook Inlet
(SEA0826)

East of Airport
(SEA0711)

Cosmos Point
(PCT3811)

Sitka Harbor,
Channel off
Harbor Island
(PCT4166)

Tiaya Inlet
(SEA0825)

Wrangell
Harbor
(PCT3131)

Tidal current 10th
percentile (cm/s)

June: 2.1 @ 35',
2.8 @ 133'; 2.3
(interpolated to
discharge depth)

July: 5.9 @87'

August: 1.6

July: 1.7

June: 1.4 @37'

August: 4.0

Tidal current average
(Ebb/Flood, cm/s)

June: 10.2/10.7 @
35', 11.3/16.1 @
133'; 10.5/12.6
(interpolated to
discharge depth)

July: 49.2/20.1
@87'

August: 10.4/7.8

July: 10.3/8.0

June: 6.9/12.2
@37'

August:
20.8/23.5

VP current angle7
(degrees)

90

140

120

225

350

90

7	Zero degrees is eastward.

8	Names of electronic files provided by EPA Region 10 on March 31, 2021.

6


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

In the following sections, the modeling of effluent dilution in mixing zones at each site is presented and
results are displayed in both tables and graphs. Text output from the VP and FARFIELD model
simulations at each location are provided in an appendix to this report.

7


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Haines

The wastewater treated at Haines is discharged 549 m offshore in Portage Cove, Chinook Inlet (Figure 1),
from a 2-port diffuser at a depth of 21.3 m (MLLW9). The permitted maximum flow rate is 2.9 MGD
Other site-specific data for the wastewater discharge, outfall, and ambient receiving water is summarized
in Table 2. The diffuser port spacing at Haines is uncertain (somewhere in the range of 15 to 30 ft.) due to
one of three ports being closed. The models predicted lower DFs for the narrowest port spacing (15 ft.),
so that spacing was used for all model simulations.

>



1 , m ¦ f u

" * 1 " m

*¦ s«w2H<,ar1 * - •

urch ~ ~

i '" ' ' hmriei lr'


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

2002, July and August 2004, and June 2005. Preliminary initial dilution simulations made with UM3 for
profiles measured at four of the locations (the fifth was excluded because it was influenced by freshwater
input from a tributary near Skagway), determined that the June 2005 vertical profile from site 1 (shown in
Figure 2) was limiting in terms of minimizing effluent dilution. That profile was used for all subsequent
dilution modeling at Haines.

Figure 2. Vertical Ambient Profile of Temperature, Salinity and Density in Haines Mixing Zones
Resulting in Least Mixing

Mixing zone dilution modeling results for Haines are summarized in Table 3. The two applicable initial
mixing models, UM3 and DKHW, gave nearly identical results for dilution at a distance of 1* depth
(Table 3, simulations 10 vs. 11). UM3 was selected for further analysis at Haines. The initial mixing
model was combined with the Brooks far-field model to extend dilution predictions beyond the initial
mixing region. Dilution factors at distances of l*depth to 10*depth range from 100 to 766 (Table 3,
simulations 15-18); accounting for bacterial decay had a negligible effect on dilution factors. Graphical
examples of the dilution model predictions are presented in Figures 3 (plan view from above of the
discharge plume boundary), 4 (profile view from the side of the discharge plume centerline and boundary)
and 5 (discharge plume average and centerline dilution vs. distance from the outfall). As shown in Table
3, the plume was trapped at a depth of 20 m by the ambient density stratification, the initial mixing region
extended 16 m from the outfall, and the travel time to the mixing zone boundaries ranged from 4 minutes
(MZ=l*depth) to 143 minutes (MZ= 10*depth). A dilution factor of 99 was predicted for the boundary of
the initial mixing region and at the distance to the shore (549 m) the DF was 2770.

The sensitivity of the initial mixing model to a number of inputs (effluent temperature1", current velocity
and direction, and discharge flow rate) is demonstrated in simulations 20-28 (Table 3). Of these

111 The alternative effluent temperature used for sensitivity analysis was the monthly average effluent temperature for
the month found to have the most limited dilution.

9


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

parameters, DFs were most sensitive to variation in effluent flow rate (Q), with dilution increasing with
greater flow. DFs were relatively insensitive to variation in ambient velocity. Sensitivity of the far-field
model to bounding values of the diffusion parameter a (alpha) was also found to have a significant effect
on dilution factors, as was substituting the 4/3-power law with linear eddy diffusivity (see Washington
DoE, 2018 for explanation).

10


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 3. Haines mixing zone dilution modeling results

Model simulation

Ambient Input

Model(s)

MZ
Distance
(m)

Froude
Number

Dilution
Factor

Dilution
Factor
w/Bacteria
Decay

Trapping
depth (m)

Length of
Initial
Mixing
Region (m)

Travel
Time to
MZ
Boundary
(min)11

1. MZ=1* depth

Skagway site 1
Oct. 2002

UM3

21.3

190

117

118

17

>21.3



2. " "

Skagway site 2
Oct. 2002

UM3

a a

191

118

118

17

>21.3



3. " "

Skagway site 4
Oct. 2002

UM3

a a

190

117

118

17

>21.3



4 " "

Skagway site 1
Jul. 2004

UM3

a a

189

117

118

17

>21.3



5. " "

Skagway site 2
Jul. 2004

UM3/FF

a a

185

110

113

19

20

2

6. " "

Skagway site 4
Jul. 2004

UM3/FF

a a

181

113

116

19

21

0.5

y a a

Skagway site 1
Aug. 2004

UM3

a a

188

118

118

17

>21.3



8. " "

Skagway site 2
Aug. 2004

UM3

a a

186

117

117

17

>21.3



9 " "

Skagway site 4
Aug. 2004

UM3/FF

a a

181

114

117

19

21

0.2

10. " "

Skagway site 1
June 2005

UM3/FF

a a

179

99

104

20

16

5

11. " "

Skagway site 1
June 2005

DKHW/FF

a a

179

99

99

20

16

4

12. " "

Skagway site 2
June 2005

UM3/FF

a a

183

105

109

20

18

2

13. " "

Skagway site 4
June 2005

UM3

a a

185

117

117

17

>21.3



11 Travel time to MZ boundary was calculated only for distances exceeding length of initial mixing region.

11


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model simulation

Ambient Input

Model(s)

MZ
Distance
(m)

Froude
Number

Dilution
Factor

Dilution
Factor
w/Bacteria
Decay

Trapping
depth (m)

Length of
Initial
Mixing
Region (m)

Travel
Time to
MZ
Boundary
(min)11

Different mixing zone distances:

14. MZ= initial
mixing region

Skagway site 1
June 2005

UM3

16

179

99

100

20



1

15. MZ=1* depth

a a

UM3/FF

21.3

179

100

100

20

16

4

16. MZ=2*depth

a a

UM3/FF

42.6

179

136

137

20

16

19

17. MZ=5* depth

a a

UM3/FF

106.5

179

330

331

20

16

65

18. MZ=10*depth

a a

UM3/FF

213

179

766

768

20

16

143

19. MZ=distance
to nearest shore

a a

UM3/FF

549

179

2770

2780

20

16

386

Model sensitivity:

20.avg.effluent
T=11.975° C

Skagway site 1
June 2005

UM3/FF

21.3

181

100

100

20

16

4

21. lA* current
v=1.15 cm/s

a a

UM3/FF

a a

178

101

101

20

16

8

22. % * current
v=0.575 cm/s



UM3/FF

a a

179

120

120

20

16

16

23. 2*current
v=4.6 cm/s

a a

UM3/FF

a a

179

105

105

20

17

2

24. average
current v=12.6
cm/s

a a

UM3/FF

a a

179

126

126

20

19

4

25. reverse current
direction=270°

a a

UM3/FF

a a

179

92

92

20

15

4

26. average
Q=0.27 MGD

a a

UM3/FF

a a

17

63

63

18

5

12

27. Q/2=1.45
MGD

a a

UM3/FF

a a

89

87

87

20

11

7

28. 2*Q=5.8
MGD

a a

UM3

a a

358

111

111

20

21

0.5

12


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model simulation

Ambient Input

Model(s)

MZ
Distance
(m)

Froude
Number

Dilution
Factor

Dilution
Factor
w/Bacteria
Decay

Trapping
depth (m)

Length of
Initial
Mixing
Region (m)

Travel
Time to
MZ
Boundary
(min)11

Far-field model sensitivity to diffusion parameter:

29. alpha=0.0001

Skagway site 1
June 2005

UM3/FF

213

178

248

249

20

16

143

30.

alpha=0.000453

a a

UM3/FF

a a

178

1280

1280

20

16

143

31. Linear eddy
diffusivity

a a

UM3/FF

a a

178

486

488

20

16

143

13


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Plan View













































V





-75	-SO	-25	0	25	50	75	100

Vtest-East (m)

Figure 3. Haines Discharge Plume Boundary Plan View from Above

Elevation View

Figure 4. Haines Discharge Plume Centerline and Boundary Profile View from Side

Plumes Effective DMIon Prediction

Distance frtm Soiree (m)

Figure 5. Haines Discharge Plume Average and Centerline Dilution vs. Distance from Outfall

14


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Ketchikan

The wastewater treated at Ketchikan is discharged 221 m offshore of Charcoal Point in the Tongass
Narrows (Figure 6), at a depth of 29.9 m (MLLW). Other site-specific data for the wastewater discharge,
outfall, and ambient receiving water is summarized in Table 2.

Figure 6. Aerial View of the POTW Outfall Location at Ketchikan

Charcoal Point is at the narrowest width of the Narrows and is approximately 400 m wide and 34 m deep.
According to the 2000 Permit application, the Tongass Narrows has a net northwest seaward exchange
(away from the City and Pennock Island) with the Gulf of Alaska. Strong currents (that do not vary
seasonally) provide vertical mixing in Tongass Narrows, minimizing the vertical density gradient and
preventing stratification. Ambient tidal current data were collected with a current meter deployed near
shore in December 1988 to verify published Tidal Current Table predictions. The data collected indicate
that the flood tide current velocity was 34 cm/s, while the ebb tide currents was 1 cm/s in both directions.
NOAA 6-minute tidal current predictions from East of Airport (SEA0711) were used to calculate the 10th
percentile and average tidal current velocities at a depth of 87 ft. (26.5 m; Table 2). The 10th percentile
current velocity used for modeling was 5.9 cm/s, while the average ebb and flood tidal velocities were
49.2 and 20.1 cm/s.

Preliminary initial dilution simulations made with UM3 for five available ambient profiles, determined
that the July 1997 vertical profile from Site 3 (Figure 7) was limiting in terms of minimizing effluent
dilution. As noted previously, the diffuser at Ketchikan was a hybrid, consisting of five 6-inch ports on a
manifold and a single 12-inch port. These were modeled separately, and initial simulations with both
UM3 and DKHW demonstrated that effluent dilution from the single 12-inch port was lower than from
the five, 6-inch ports. UM3 gave more conservative dilution predictions (see Table 4, simulations 5 vs. 6),
so that initial mixing model was selected for further analysis at Ketchikan.

15


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 7. Vertical Ambient Profile of Temperature, Salinity and Density in Ketchikan Mixing Zone
Resulting in Least Mixing.

-Temperature (°C)
-Salinity (g/kg)
-Density (sigma-T)

10	15	20	25

Temperature, Salinity and Density

Site 3 7/15/1997

The initial mixing model was combined with the Brooks far-field model to extend dilution predictions
beyond the initial mixing region. Because the nearest shoreline was within ten times the plume diameter
(calculated as the 10*depth mixing zone distance), it was assumed to impose a boundary constraint on
far-field mixing. Following the guidance of Frick et al. (2010), we based far-field predictions at
Ketchikan on the linear eddy diffusivity (LED) parameterization in FARFIELD. Sensitivity of DF
predictions to this assumption is shown in Table 4 (simulations 20 vs. 31 and 32).

Dilution factors at distances of l*depth to 10*depth range from 52 to 179 (Table 4, simulations 17-20). It
should be noted that the 10*depth distance (299 m) is greater than the distance from the diffuser to shore
(221 m), so it may be appropriate to truncate DF predictions at the distance to shore. Graphical examples
of the dilution model predictions are presented in Figures 8 (plan view from above of the discharge plume
boundary), 9 (profile view from the side of the discharge plume centerline and boundary) and 10
(discharge plume average and centerline dilution vs. distance from the outfall). Note that these figures
include dilution model predictions for both the single 12-inch port and the five 6-inch ports. As shown in
Table 4, the plume was trapped at a depth of 22 m by the ambient density stratification, the initial mixing
region extended 13 m from the outfall. The travel time to the mixing zone boundaries ranged from 5
minutes (MZ=l*depth) to 81 minutes (MZ= 10*depth). A dilution factor of 51 was predicted forthe
boundary of the initial mixing region and at the distance to the shore (221 m) the DF was 141.

16


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

The sensitivity of the initial mixing model to a number of inputs (effluent temperature12, current velocity
and direction, and discharge flow rate) is demonstrated in simulations 22-30 (Table 4). Of these
parameters, DFs were most sensitive to variation in ambient velocity (simulations 23-26).

12 The alternative effluent temperature used for sensitivity analysis was the average of maximum monthly effluent
temperatures (no monthly averages in DMR).

17


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 4. Ketchikan Mixing Zone Dilution Modeling Results

Model
simulation

Ambient
input

Model(s)

MZ
distance
(m)

Diffuser
port(s)

Froude
number

Dilution
factor

Dilution
factor w /
bacteria
decay

Trapping
depth (m)

Length
of initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

1. MZ=1* depth

Ketchikan
2000

UM3/FF

29.9

12" port

14

73

75

19

15

4

2. " "

a a

UM3(half
spacing)/FF

a a

5x6" ports

18

117

123

22

12

5

3. " "

Ketchikan
Pier
12/1988

UM3/FF

a a

12" port

14

158

168

7

17

4

4. " "

a a

UM3(half
spacing)/FF

a a

5x6" ports

18

305

324

8

18

3

5. " "

Ketchikan
site 3
7/1997

UM3/FF

a a

12" port;
limiting

14

52

54

22

13

5

6. " "

a a

DKHW/FF

a a

12" port

14

79

79

24

12

5

7. " "

a a

UM3(DS
only, 3 ports
x7.35")/FF

a a

5x6" ports

17

60

62

23

12

5

8. " "

Ketchikan
site 3
9/1997

UM3/FF

a a

12" port

14

99

104

14

15

4

9 cc cc

Ketchikan
site 3
8/1997

UM3/FF

a a

12" port

13

106

112

12

14

4

10. " "

Ketchikan
site 3
7/1996

UM3/FF

a a

12" port

13

99

104

14

15

4

11.""

Ketchikan
site 3
8/1996

UM3/FF

a a

12" port

14

79

83

18

15

4

18


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model
simulation

Ambient
input

Model(s)

MZ
distance
(m)

Diffuser
port(s)

Froude
number

Dilution
factor

Dilution
factor w /
bacteria
decay

Trapping
depth (m)

Length
of initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

12. " "

Ketchikan
site 3
9/1996

UM3/FF

a a

12" port

14

101

106

15

16

4

13. " "

Ketchikan
site 3
7/1998

UM3/FF

a a

12" port

14

89

93

16

6

4

14. " "

Ketchikan
site 3
8/1998

UM3/FF

a a

12" port

13

112

118

13

17

4

15. " "

Ketchikan
site 3
9/1998

UM3/FF

a a

12" port

14

92

97

16

16

4

Linear eddy diffusivity (LED) far-field mode

and different mixing zone distances:

16. MZ= initial
mixing region

Ketchikan
3 7/1997

UM3

13

12" port

14

51

52

22



1

17.

MZ=1* depth

Ketchikan
3 7/1997

UM3/FF-LED

29.9

a a

14

52

52

22

13

5

18.

MZ=2* depth

a a

a a

59.8

a a

14

62

63

22

13

13

19.

MZ=5* depth

a a

a a

149.5

a a

14

105

106

22

13

39

20.

MZ=10* depth

a a

a a

29913

a a

14

179

180

22

13

81

21.

MZ=distance to
nearest shore

a a

a a

221

a a

14

141

141

22

13

59

Model sensitivity:

22.avg.effluent
T=14.6° C

Ketchikan
3 7/1997

UM3/FF-LED

29.9

12" port

14

52

52

22

13

5

13 Distance is greater than the distance from the diffuser to shore.

19


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model
simulation

Ambient
input

Model(s)

MZ
distance
(m)

Diffuser
port(s)

Froude
number

Dilution
factor

Dilution
factor w /
bacteria
decay

Trapping
depth (m)

Length
of initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

23. lA* current
v=2.95 cm/s

a a

a a

a a

a a

14

54

54

20

13

10

24. % * current
v=1.475 cm/s

a a

a a

a a

a a

14

67

67

20

13

19

25. 2*current
v=11.8 cm/s

a a

a a

a a

a a

14

88

88

24

14

2

26. average
current v=49.2
cm/s

a a

UM3

a a

a a

14

179

180

27

30

1

27. reverse
current

direction=320°

a a

UM3/FF-LED

a a

a a

14

47

47

22

10

6

28. Q/4=0.864
MGD

a a

a a

a a

a a

4

72

72

22

6

7

29. Q/2=1.728
MGD

a a

a a

a a

a a

7

58

59

22

8

6

30. 2*Q=6.912
MGD

a a

a a

a a

a a

28

56

57

23

20

3

Far-field model sensitivity to diffusion parameter:

31.

alpha=0.0001

Ketchikan
3 7/1997

UM3/FF

299

12" port

14

94

94

22

13

81

32.

alpha=0.000453

a a

a a

a a

a a

14

396

398

22

13

81

20


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Plan View

West-East (m)

Figure 8. Ketchikan Discharge Plume Boundary Plan View from Above

(plume from 12-inch port is red; plume from five 6-inch ports is blue)

Elevation View

-	Centerline

-	Centerline

-	Centerline

-	Plume Bndry

*	Plume Bndry

•	Plume Bndry

Figure 9. Ketchikan Discharge Plume Centerline and Boundary Profile View from Side

21


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Pfcmes Effective Dilution Prediction



	—-





/

—1 1



















/







1















17







77. •















•	CenterUne

•	Centerline

•	Centerline
— Verification

Distance from Source (m)

Figure 10. Ketchikan discharge plume average and centerline dilution vs. distance from outfall

Figure is based on graphic output by VP; DFs in far field (beyond 13 m for the 12-inch port) are
overestimated because VP assumes 4/3-power law instead of linear eddy diffusivity.

22


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Petersburg

Wastewater treated at Petersburg is discharged 366 m offshore in Frederick Sound (Figure 11), from a
two-port diffusa" at a depth of 18.3 m (MLLW). The permitted maximum flow is 3.6 MGD. Other site-
specific data for the wastewater discharge, outfall, and ambient receiving water is summarized in Table 2.
The port spacing at Petersburg is uncertain (somewhere in the range of 10 to 34 ft.) due to only two of
five diffuser ports being open. The models predicted lower DFs forthe narrowest port spacing (10 ft.), so
that spacing was used for all model simulations.

Figure 11. Aerial View of the POTW Outfall Location at Petersburg

Frederick Sound is connected to the Pacific Ocean via Chatham Strait to the northwest and Dry
Strait/Sumner Strait to the southeast. According to the 1990 permit questionnaire, surface water densities
near the outfall van due to freshwater inputs from nearby streams. Maximum freshwater input to
Frederick Sound occurs in summer (June or July) and minimum freshwater input occurs in March. The
freshwater input is due primarily to the combined flows of the Stikine and Iskut Rivers. Currents
generally flow northwestward in Frederick Sound with southwestward flows during large tides. NOAA
tidal current predictions for nearby Cosmos Point (PCT3811) were used to calculate the 10th percentile
current velocity used for modeling, 1.6 cm/s, and the average ebb and flood tidal velocities, 10.4 and 7.8
cm/s. According to the questionnaire, current velocities in the area are reportedly in the range of two to
five knots (100 to 260 cm/s), 10 to 100 times larger than the velocities calculated from NOAA tidal
current predictions and used for modeling. This discrepancy in the magnitude of ambient velocities could
not be resolved given the information available, but may warrant further inquiry.

Preliminary initial dilution simulations made with UM3 for eight available ambient profiles sampled at
two ZID boundary monitoring locations in January of 2002 and 2004, and August 2003 and 2005,
determined that the August 2005 vertical profile from Site 1 (Figure 12) was limiting in terms of
minimizing effluent dilution.

23


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 12. Vertical Ambient Profile of Temperature, Salinity and Density in Petersburg Mixing
Zone Resulting in Least Mixing

Mixing zone dilution modeling results for Petersburg are summarized in Table 5. The two applicable
initial mixing models, UM3 and DKHW, gave very similar results for dilution at a distance of 1* depth
(67 vs. 70). UM3 gave slightly more conservative dilution predictions, so that initial mixing model was
selected for further analysis at Petersburg. The initial mixing model was combined with the Brooks far-
field model to extend dilution predictions beyond the initial mixing region. Dilution factors at distances of
l*depth to 10*depth range from 67 to 647 (Table 5, simulations 11-14); accounting for bacterial decay
had a negligible effect on dilution factors. Graphical examples of the dilution model predictions are
presented in Figures 13 (plan view from above of the discharge plume boundary), 14 (profile view from
the side of the discharge plume centerline and boundary) and 15 (discharge plume average and centerline
dilution vs. distance from the outfall). As shown in Table 5, the plume was trapped at a depth of 14 m by
the ambient density stratification, the initial mixing region extended 23 m from the outfall, and the travel
time to the mixing zone boundaries ranged from 1 minute (MZ=l*depth) to 167 minutes (MZ= 10*depth).
A dilution factor of 74 was predicted for the boundary of the initial mixing region and at the distance to
the shore (366 m) the DF was 1720.

The sensitivity of the initial mixing model to a number of inputs (effluent temperature, current velocity
and direction, and discharge flow rate) is demonstrated in simulations 16-24 (Table 5). DFs were
moderately sensitive to variation in ambient velocity (DFs increase with velocity, simulations 17-19) and
effluent flow rate (DFs decrease with Q, simulations 21-24). Sensitivity of the far-field model to
bounding values of the diffusion parameter a (alpha) was also found to have a significant effect on
dilution factors, as was substituting the 4/3-power law with linear eddy diffusivity.

24


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 5. Petersburg Mixing Zone Dilution Modeling Results

Model simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel
time to
MZ
boundary
(min)14

1. MZ=1* depth

Petersburg 1
8/2005

UM3

18.3

114

67

67

15

>18.3



2. " "

a a

DKHW

18.3

114

70

70

14

>18.3



3. " "

Petersburg 1
8/2003

UM3

18.3

95

72

73

12

>18.3



4 " "

Petersburg 1
1/2002

UM3

18.3

114

69

69

14

>18.3



5. " "

Petersburg 2
1/2002

UM3

18.3

113

69

69

14

>18.3



6. " "

Petersburg 1
1/2004

UM3

18.3

114

69

69

14

>18.3



y a a

Petersburg 2
1/2004

UM3

18.3

114

69

69

14

>18.3



8. " "

Petersburg 2
8/2003

UM3

18.3

94

72

72

12

>18.3



9 " "

Petersburg 2
8/2005

UM3

18.3

116

68

68

15

>18.3



Dilution at different distances:

10. MZ= initial
mixing region

Petersburg 1
8/2005

UM3

23

115

74

75

14



1

11. MZ=1* depth

a a

UM3

18.3

115

67

67

15

>18.3

1

12. MZ=2*depth

a a

UM3/FF

36.6

115

90

90

14

23

15

13. MZ=5* depth

a a

UM3/FF

91.5

115

256

257

14

23

72

14. MZ=10*depth

a a

UM3/FF

183

115

647

650

14

23

167

15. MZ=distance to
nearest shore

a a

UM3/FF

366

115

1720

1730

14

23

358

14 Travel time to MZ boundary was calculated only for distances exceeding length of initial mixing region.

25


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel
time to
MZ
boundary
(min)14

Model sensitivity:

16.avg.effluent
T=13.2° C

Petersburg 1
8/2005

UM3

18.3

115

67

68

15

>18.3



17. Yi*current v=0.8
cm/s

a a

UM3

18.3

115

66

66

15

>18.3



18. 2*current v=3.2
cm/s

a a

UM3

18.3

115

70

70

15

>18.3



19. average current
v=10.4 cm/s

a a

UM3

18.3

115

80

81

16

>18.3



20. reverse current
direction=300°

a a

UM3

18.3

115

66

66

15

>18.3



21. average Q=0.43
MGD

a a

UM3/FF

18.3

14

81

82

12

6

13

22. 0/4=0.9 MGD

a a

UM3/FF

18.3

29

68

69

13

9

9

23. 0/2=1.8 MGD

a a

UM3/FF

18.3

57

65

65

14

15

4

24. 2*Q=7.2 MGD

a a

UM3

18.3

229

65

65

17

>18.3



Far-field model sensitivity to diffusion parameter:

25. alpha=0.0001

Petersburg 1
8/2005

UM3/FF

183

114

202

203

14

23

167

26. alpha=0.000453

a a

UM3/FF

183

114

1090

1091

14

23

167

27. Linear eddy
diffusivity

a a

UM3/FF

183

114

397

399

14

23

167

26


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

West-East (tn)

Figure 13. Petersburg Discharge Plume Boundary Plan View from Above

Elevation View

—	Centerline

—	Centerline

—	Centerline

•	Plume Bndry
« Plume Bndry

•	Plume Bndry

—	Verification

Figure 14. Petersburg Discharge Plume Centerline and Boundary Profile View from Side

Plumes Effective Dilution Preddion

Distance from Source (m)

Figure 15. Petersburg Discharge Plume Average and Centerline Dilution vs. Distance from Outfall

27


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Sitka

The wastewater treated at Sitka is discharged 114 m offshore in the Middle Channel of Sitka Sound
(Figure 16), from a 16-port diffliser at a depth of 24.4 m (MLLW). The permitted maximum flow is 5.3
MGD.

Figure 16. Aerial View of the POTW Outfall Location at Sitka

According to the permit fact sheet, the Middle Channel has relatively weak tidal currents, rotating in a
clockwise pattern, which are superimposed on the seaward flow of fresh water in Sitka Sound. The net
current is toward the southeast and included an easterly wind-driven component. The direction of
transport of effluent from the outfall varies, depending upon the tidal stage and direction of prevailing
winds. NOAA tidal current predictions for Sitka Harbor, Channel off Harbor Island (PCT4166) were used
to calculate the 10th percentile current velocity used for modeling, 1.7 cm/s, and the average ebb and flood
tidal velocities, 10.3 and 8.0 cm/s.

Other site-specific data for the wastewater discharge, outfall, and ambient receiving water is summarized
in Table 2. Detailed vertical ambient profiles were only available for one location (Site C, a reference
station west of the outfall) that was in sampled in the months of April and July in 2010 and 2015.
Preliminary initial dilution simulations made with UM3 for these four available ambient profiles,
determined that the July 2010 vertical profile from Site C (Figure 17) was limiting in terms of minimizing
effluent dilution (Table 6, simulations 1, 2, 8 and 9).

28


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 17. Vertical Ambient Profile of Temperature, Salinity and Density in Sitka Mixing Zone
Resulting in Least Mixing

Mixing zone dilution modeling results for Sitka are summarized in Table 6. The two initial mixing
models, DKHW and UM3, combined with the Brooks far-field model gave similar results for dilution at a
distance of l*depth (sims. 2 and 5); simulation results for the downstream-only cross-diffuser merging
approach and the third initial mixing model, NRFIELD, also fell within this range of DFs. DKHW gave
slightly more conservative dilution predictions, so that initial mixing model was selected for further
analysis at Sitka.

The initial mixing model was combined with the Brooks far-field model to extend dilution predictions
beyond the initial mixing region. Because the nearest shoreline was within ten times the plume diameter
(calculated as the 10*depth mixing zone distance), it was assumed to impose a boundary constraint on
far-field mixing. Following the guidance of Frick et al. (2010), we based far-field predictions at Sitka on
the linear eddy diffusivity (LED) parameterization in FARFIELD. Sensitivity of DF predictions to this
assumption is shown in Table 6 (simulations 14 vs. 25 and 26).

Dilution factors at distances of l*depth to 10*depth range from 87 to 227 (Table 6, simulations 11-14);
accounting for bacterial decay had a negligible effect on dilution factors. It should be noted that the
5*depth and 10*depth distances (122 and 244 m) are greater than the distance from the diffuser to shore
(114 m), so it may be appropriate to truncate DF predictions at the distance to shore. Graphical examples
of the dilution model predictions are presented in Figures 18 (plan view from above of the discharge
plume boundary), 19 (profile view from the side of the discharge plume centerline and boundary) and 20
(discharge plume average and centerline dilution vs. distance from the outfall). As shown in Table 6, the
plume was trapped at a depth of 10 m by the ambient density stratification, the initial mixing region
extended 6.9 m from the outfall, and the travel time to the mixing zone boundaries ranged from 17
minutes (MZ=l*depth) to 232 minutes (MZ= 10*depth). A dilution factor of 86 was predicted for the
boundary of the initial mixing region and at the distance to the shore (114 m) the DF was 138.

29


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

The sensitivity of the initial mixing model to a number of inputs (effluent temperature, current velocity
and direction, and discharge flow rate) is demonstrated in simulations 16-24 (Table 6). DFs were
moderately sensitive to variation in ambient velocity (DFs increase with velocity, simulations 17-19) and
effluent flow rate (DFs decrease with Q, simulations 22-24).

30


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 6. Sitka Mixing Zone Dilution Modeling Results

Model simulation

Ambient
input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w /
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel time

to MZ
boundary
(min)15

1. MZ=1* depth

Sitka C
7/2015

UM3(half
spacing)/FF

24.4

11

131

133

9

7

17

2. " "

Sitka C
7/2010

55 a

24.4

12

118

119

12

6

18

3. " "

Sitka C
7/2010

55 a

16.0

12

113

114

12

6

10

4 " "

Sitka C
7/2010

NRFIELD

16.0

12

89



10





5. " "

Sitka C
7/2010

DKHW(half
spacing)/FF

24.4

12

87

87

10

7

17

6. " "

a a,

5

UM3(DS-only, 8
portsx5.3")/FF

24.4

11

109

110

11

7

17

y a a

a a

DKHW(D S -only, 8
portsx5.3")/FF

24.4

11

90

90

10

8

16

8. " "

Sitka C
4/2010

UM3(half-
spacing)/FF

24.4

12

179

181

4

7

17

9 " "

Sitka C
4/2015

55 a

24.4

11

172

174

5

7

17

Linear eddy diffusivity (LED) far-field model and different mixing zone distances:

10. MZ= initial
mixing region

Sitka C
7/2010

DKHW(half-
spacing)

6.9

12

86

86





1

11. MZ=1* depth

a a

DKHW(half-
spacing)/FF-LED

24.4

12

87

87

10

7

17

12. MZ=2*depth

a a

a a

48.8

12

97

97

10

7

41

13. MZ=5* depth

a a

a a

12216

12

143

143

10

7

113

14. MZ=10*depth

a a

a a

24416

12

227

227

10

7

232

15	Travel time to MZ boundary was calculated only for distances exceeding length of initial mixing region.

16	Distance is greater than the distance from the diffuser to shore.

31


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model simulation

Ambient
input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w /
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel time

to MZ
boundary
(min)15

15. MZ=distance to
nearest shore

a a

a a

114

12

138

138

10

7

105

Model sensitivity:

16.avg.effluent
T=14° C

Sitka C
7/2010

DKHW(half-
spacing)/FF-LED

24.4

12

87

87

10

7

17

17. V2*current
v=0.85 cm/s

a a

a a

a a

12

79

79

9

7

35

18. 2*current v=3.4
cm/s

a a

a a

a a

12

119

119

11

9

8

19. average current
v=10.3cm/s

a a

a a

a a

12

187

187

15

22

0.5

20. reverse current
direction=45°

a a

a a

a a

12

87

87

10

7

17

21. current dir +30°

a a

a a

a a

12

131

131

12

7

17

22. average Q=0.98
MGD

a a

a a

a a

2

208

208

15

4

20

23. Q/2=2.65 MGD

a a

a a

a a

6

121

121

12

5

19

24. 2*Q=10.6 MGD

a a

a a

a a

23

66

66

8

12

12

Far-field model sensitivity to diffusion parameter:

25. alpha=0.0001

Sitka C
7/2010

DKHW(half-
spacing)/FF

244

12

126

126

10

7

233

26. alpha=0.000453

a a

a a

a a

12

426

426

10

7

233

32


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

-40	-30	-20	-10	0	10

West-East (m)

Figure 18. Sitka Discharge Plume Boundary Plan View from Above

—	Centerline

—	Centerline

—	Centerline

—	Outline

—	Outline

—	Outline

—	Verification

Elevation View

Distance trom Otiain fmi

Figure 19. Sitka Discharge Plume Centerline and Boundary Profile View from Side

33


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Plumes Effective Dilution Prediction





\ y





s







s











































1













Distance from Source (m)

—	Average

—	Average

—	Average

*	Centerline
» Centerline

*	Centerline

—	Verification

Figure 20. Sitka Discharge Plume Average and Centerline Dilution vs. Distance from Outfall

(Figure is based on graphic output by VP; DFs in far field (beyond 7 m) are overestimated because VP
assumes 4/3-power law instead of linear eddy diffusivity).

34


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Skagway

Wastewater treated at Skagway is discharged 125 m offshore in Tiaya Inlet (Figure 21), at a depth of 18.3
ill (MLLW), from an 8-port diffuser. The permitted maximum flow rate is 0.63 MGD.

Figure 21. Aerial View of the POTW Outfall Location at Skagway

According to the permit fact sheet, Taiya Inlet is a deep fjord with a 457 m average depth. Taiya Inlet
supports a classic fjord-type, two-layer circulation, with a large saline lower layer and a very thin upper
brackish layer. The circulation of the inlet is dependent on tides and freshwater flow into the inlet. There
are no obstructions to impede circulation near the outfall. Stratification in Taiya Inlet is dependent on
freshwater inflows from the Taiya and Skagway Rivers with the highest stratification typically occurs
during the high runoff summer period from June through August. As noted in the 2007 permit
reapplication, a small cross-current (2 cm/s) was present under stratified condition in a June 1999
temperature/salinity data set.

NO A A 6-minute tidal current predictions from Tiaya Inlet (SEA0825) were used to calculate the 10th
percentile and average tidal current velocities (Table 2). The 10th percentile current velocity used for
modeling was 1.4 cm/s, while the average ebb and flood tidal velocities were 6.9 and 12.2 crn/s.

Other site-specific data for the wastewater discharge, outfall, and ambient receiving water is summarized
in Table 2. Vertical profiles of temperature and salinity measured in Tiaya Inlet were available for five
locations that were sampled in October 2002, July and August 2004 and June 2005. Preliminary initial
dilution simulations made with UM3 for all available profiles, determined that the June 2005 vertical
profile measured at site 1 (shown in Figure 22) was limiting in terms of minimizing effluent dilution17.
That profile was used for all subsequent dilution modeling at Skagway.

17 A different vertical profile measured in June 2005 at site 5 (a site in the cmise ship terminal harbor nearest to
freshwater inflow from the Skagway River) actually produced smaller DF predictions. However, the unusually low

35


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 22. Vertical Ambient Profile of Temperature, Salinity and Density in Skagway Mixing Zone
Resulting in Least Mixing

Mixing zone dilution modeling results for Skagway are summarized in Table 7. Two of the applicable
initial mixing models, UM3 and DKHW, gave similar results for dilution at a distance of l*depth, for
both cross-diffuser merging approaches (simulations 11-13). UM3 gave slightly more conservative
dilution predictions, so that initial mixing model was selected for further analysis at Skagway. We also
applied the third initial mixing model, NRFIELD, that predicted DFs reasonably comparable to UM3
(simulations 14 vs. 15) at a distance shorter than l*depth (5.9 m).

The initial mixing model was combined with the Brooks far-field model to extend dilution predictions
beyond the initial mixing region. Because the nearest shoreline was within ten times the plume diameter
(calculated as the 10*depth mixing zone distance), it was assumed to impose a boundary constraint on
far-field mixing. Following the guidance of Frick et al. (2010), we based far-field predictions at Skagway
on the linear eddy diffusivity (LED) parameterization in FARFIELD. Sensitivity of DF predictions to this
assumption is shown in Table 7 (simulations 23 vs. 33 and 34).

Dilution factors at distances of l*depth to 10*depth range from 56 to 330 (Table 7, simulations 20-23);
accounting for bacterial decay had a negligible effect on dilution factors. It should be noted that the
10*depth distance (183 m) is greater than the distance from the diffuser to shore (125 m), so it may be
appropriate to truncate DF predictions at the distance to shore. Graphical examples of the dilution model
predictions are presented in Figures 23 (plan view from above of the discharge plume boundary), 24

salinity of the upper 3-4 m of that profile led to difficulties in modeling dilution over the range of parameters and
conditions of interest, so the site 1 June 2005 profile (that was the next most conservative in terms of limiting DFs)
was used instead.

36


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

(profile view from the side of the discharge plume centerline and boundary) and 25 (discharge plume
average and centerline dilution vs. distance from the outfall). As shown in Table 7, the plume was trapped
at a depth of 15 m by the ambient density stratification, the initial mixing region extended 3.5 m from the
outfall, and the travel time to the mixing zone boundaries ranged from 18 minutes (MZ=l*depth) to 214
minutes (MZ= 10* depth). A dilution factor of 42 was predicted for the boundary of the initial mixing
region and at the distance to the shore (125 m) the DF was 233.

The sensitivity of the initial mixing model to a number of inputs (effluent temperature, current velocity
and direction, and discharge flow rate) is demonstrated in simulations 25-32 (Table 7). DFs were
moderately sensitive to variation in ambient velocity (minimum DFs at velocities near 2 cm/s, simulations
26-28) and effluent flow rate (DFs decrease with Q, simulations 30-32).

37


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 7. Skagway Mixing Zone Dilution Modeling Results

Model
simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth (m)

Length

of
initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

1. MZ=1* depth

Skagway site 1 10/02

UM3 (half
spacing) /FF

18.3

10

129

130

9

4

17

2. " "

Skagway site 2 10/02

55 a

18.3

10

145

147

7

5

16

3. " "

Skagway site 4 10/02

55 a

18.3

10

127

128

9

4

17

4 " "

Skagway site 1 7/2004

55 a

18.3

10

94

95

12

4

18

5. " "

Skagway site 2 7/2004

55 a

18.3

10

97

97

12

4

17

6. " "

Skagway site 4 7/2004

55 a

18.3

10

79

79

13

4

17

y a a

Skagway site 1 8/2004

55 a

18.3

10

130

131

9

4

17

8. " "

Skagway site 2 8/2004

55 a

18.3

10

113

114

10

4

17

9 " "

Skagway site 4 8/2004

55 a

18.3

10

82

83

13

4

17

10. " "

Skagway site 1 6/2005

55 a

18.3

10

59

59

15

3

18

11. " "

a a

UM3(DS-

only,
4x3.95")/FF

18.3

10

59

59

14

5

16

12. " "

a a

DKHW(half
spacing)/FF

18.3

10

62

63

16

3

18

13. " "

a a

DKHW(DS-

only,
4x3.95")/FF

18.3

10

66

66

15

4

17

14. " "

a a

NRFIELD

5.9

10

39



14





15. " "

a a

UM3(half
spacing) /FF

5.9

10

42

42

15

3

3

16. " "

Skagway site 2 6/2005

55 a

18.3

10

80

80

13

4

17

17. " "

Skagway site 4 6/2005

55 a

18.3

10

100

100

12

4

17

18. " "

Skagway site 5 6/2005

55 a

18.3

9

39

39

16

2

19

Linear eddy diffusivity (LED) far-field model and different mixing zone distances:

19. MZ= initial
mixing region

Skagway site 1 6/2005

UM3(half
spacing)

3.5

10

42

42

15



0.7

38


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model
simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth (m)

Length

of
initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

20. MZ=1* depth

a a

UM3(half
spacing) /FF-
LED

18.3

10

56

56

15

3

18

21. MZ=2* depth

a a

a a

36.6

10

86

86

15

3

39

22. MZ=5* depth

a a

a a

91.5

10

177

178

15

3

105

23.

MZ=10* depth

a a

a a

18318

10

330

331

15

3

214

24. MZ=distance
to nearest shore

a a

a a

125

10

233

234

15

3

145

Model sensitivity:

25.avg.effluent
T=14.7° C

Skagway site 1 6/2005

UM3(half
spacing) /FF-
LED

18.3

10

56

56

15

3

18

26. lA* current
v=0.7 cm/s

a a

a a

a a

10

76

76

15

3

36

27. 2*current
v=2.8 cm/s

a a

a a

a a

10

52

52

15

4

9

28. average
current v=12.2
cm/s

a a

a a

a a

10

101

101

17

6

2

29. reverse
current

direction=170°

a a

a a

a a

10

56

56

14

5

19

30. average
Q=0.27 MGD







4

73

73

15

2

19

31. Q=0.5 MGD

a a

a a

a a

8

60

60

15

3

18

18 Distance is greater than the distance from the diffuser to shore.

39


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model
simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth (m)

Length

of
initial
mixing
region
(m)

Travel
time to
MZ
boundary
(min)

32. 2*Q=1.26
MGD

a a

a a

a a

20

49

49

15

5

16

Far-field model sensitivity to diffusion parameter:

33. alpha=0.0001

Skagway site 1 6/2005

UM3(half
spacing) /FF

183

10

173

174

15

3

214

34.

alpha=0.000453

a a

a a

183

10

1100

1103

15

3

214

40


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Figure 23. Skagway Discharge Plume Boundary Plan View from Above

-	Centerline

-	CenterNne

-	Centerline

•	Plume Bndry

-	Plume Bndry

•	Plume Bndry

-	Verification

Distance from Origin (m)

Figure 24. Skagway Discharge Plume Centerline and Boundary Profile View from Side

Plumes Effective Dilution Predctlon











: y\

: /













:

/ :











; /











	

₯



































/











/













/.

























Distance from Source (m)

175	20

Figure 25. Skagway Discharge Plume Average and Centerline Dilution vs. Distance from Outfall

(Figure is based on graphic output by VP; DFs in far field (beyond 3 m) are overestimated because VP
assumes 4/3-power law instead of linear eddy diffxisivity)

41


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Wrangell

The wastewater treated at Wrangell is discharged 457 m offshore in the Zimovia Strait (Figure 26), at a
depth of 30.5 m (MLLW), from a 16-port diffuser. The permitted maximum flow rate is 3.0 MGD.

Figure 26. Aerial View of the POTW Outfall Location at Wrangell

According to the permit fact sheet, Zimovia Strait has a net northwest seaward exchange with the Gulf of
Alaska. The maximum current velocity is around 51.4 cm/sec (1.0 knot) and the water circulation patterns
do not vary seasonally. Strong currents provide vertical mixing, minimize the vertical density gradient,
and prevent stratification. Also, according to the permit fact sheet, prior dilution modeling in Zimovia
Strait used a conservative current speed of 2.35 cm/sec and no stratification. NOAA tidal current
predictions for Wrangell Harbor (PCT3131) were used to calculate the 10th percentile current velocity
used for modeling, 4.0 cm/s, and the average ebb and flood tidal velocities, 20.8 and 23.5 cm/s.

Other site-specific data for the wastewater discharge, outfall, and ambient receiving water is summarized
in Table 2. Vertical profiles of temperature and salinity measured in Zimovia strait at the ZID boundaries
were available for two mixing zone locations that were sampled in August of 2015, 2016 and 2017.
Preliminary initial dilution simulations made with UM3 for all profiles, determined that the vertical
profile measured at station 4 in August of 2016 (shown in Figure 27) was limiting in terms of minimizing
effluent dilution. That profile was used for all subsequent dilution modeling at Wrangell.

42


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Station 4 8/17/2016

0
5
10

?

£ 15

Q.

OJ

D

$ 20

4->

i

25
30
35

0	2	4	6	8	10	12	14	16	18

Temperature, Salinity and Density

Figure 27. Vertical Ambient Profile of Temperature, Salinity and Density in Wrangell Mixing Zone
Resulting in Least Mixing

Mixing zone dilution modeling results for Wrangell are summarized in Table 8. Two of the applicable
initial mixing models, UM and DKHW, gave different results for dilution at a distance of l*depth (30.5
m; simulations 3 vs. 4). The third initial mixing model, NRFIELD, predicted a lower DF at a distance
shorterthan l*depth (16.8 m; simulations 5 vs. 6). UM3 gave more conservative DF results (simulation
7) when run using the downstream-only cross-diffuser merging, so we selected this approach for further
analysis at Wrangell. The initial mixing model was combined with the Brooks far-field model to extend
dilution predictions beyond the initial mixing region. Sensitivity of the far-field model to bounding values
of the diffusion parameter a was found to have a significant effect on dilution factors, as was substituting
the 4/3-power law with linear eddy diffusivity.

Dilution factors at distances of l*depth to 10*depth range from 112 to 229 (Table 8, simulations 10-13);
accounting for bacterial decay had a negligible effect on dilution factors. Graphical examples of the
dilution model predictions are presented in Figures 28 (plan view from above of the discharge plume
boundary), 29 (profile view from the side of the discharge plume centerline and boundary) and 30
(discharge plume average and centerline dilution vs. distance from the outfall). As shown in Table 8, the
plume was trapped at a depth of 24 m by the ambient density stratification, the initial mixing region
extended 12 m from the outfall, and the travel time to the mixing zone boundaries ranged from 8 minutes
(MZ=l*depth) to 122 minutes (MZ=10*depth). A dilution factor of 112 was predicted for the boundary
of the initial mixing region and at the distance to the shore (457 m) the DF was 323.

The initial mixing model was moderately sensitive to a number of inputs (effluent temperature, current
velocity and direction, and discharge flow rate) is demonstrated in simulations 16-24 (Table 8). DFs were
sensitive to variation in ambient velocity (dilution increasing with velocity, simulations 17-19) and
effluent flow rate (dilution decreases with Q, simulations 21-24).

43


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Table 8. Wrangell Mixing Zone Dilution Modeling Results

Model simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel
time to
MZ
boundary
(min)19

1. MZ=1* depth

Wrangell station
4 8/2015

UM3(half
spacing)/FF

30.5

34

262

274

23

15

7

2. " "

Wrangell station
3 8/2016

a a

a a

33

232

243

23

13

8

3. " "

Wrangell station
4 8/2016

a a

a a

32

153

160

25

10

8

4 " "

a a

DKHW(half
spacing)/FF

a a

32

228

228

26

11

8

5. " "

a a

UM3 (half
spacing)/FF

16.8

32

153

157

25

10

3

6. " "

a a

NRFIELD

16.8

33

75



25





y a a

a a

UM3(DS-only,
8x3.95")/FF

30.5

33

112

117

24

12

8

8. " "

Wrangell station
3 8/2017

UM3(half-
spacing)/FF

a a

39

494

516

17

25

2

9 " "

Wrangell station
4 8/2017

a a

a a

40

743

791

6

21

4

Dilution at different distances:

10. MZ= initial
mixing region

Wrangell station
4 8/2016

UM3 (DS-
only, 8x3.95")

12

33

112

113

24



2

11. MZ=1* depth

a a

UM3(DS-only,
8x3.95")/FF

30.5

33

112

113

24

12

8

12. MZ=2*depth

a a

a a

61

33

115

115

24

12

20

13. MZ=5* depth

a a

a a

152.5

33

149

149

24

12

59

14. MZ=10*depth

a a

a a

305

33

229

230

24

12

122

19 Travel time to MZ boundary was calculated only for distances exceeding length of initial mixing region.

44


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Model simulation

Ambient input

Model(s)

MZ
distance
(m)

Froude
number

Dilution
factor

Dilution
factor w/
bacteria
decay

Trapping
depth
(m)

Length of
initial
mixing
region (m)

Travel
time to
MZ
boundary
(min)19

15. MZ=distance
to nearest shore

a a

a a

457

33

323

325

24

12

185

Model sensitivity:

16. avg. effluent
T=17.3° C

Wrangell station
4 8/2016

UM3(DS-only,
8x3.95")/FF

30.5

33

112

112

24

12

8

17. lA*current v=2
cm/s

a a

a a

a a

33

86

86

24

11

16

18. 2*current v=8
cm/s

a a

a a

a a

33

198

199

25

15

3

19. ave. current
v=23.5 cm/s

a a

UM3 (DS-
only, 8x3.95")

a a

33

412

412

27

31

2

20. reverse current
direction=270°

a a

UM3(DS-only,
8x3.95")/FF

a a

33

112

113

24

12

8

21. ave. Q=0.36
MGD

a a

a a

a a

3.9

243

244

26

5

11

22. Q/4=0.75
MGD

a a

a a

a a

8.1

161

161

25

6

10

23. Q/2=l .5 MGD

a a

a a

a a

16

125

126

25

8

9

24. 2*Q=6.0 MGD

a a

a a

a a

65

119

120

25

18

5

Far-field model sensitivity to diffusion parameter:

25. alpha=0.0001

Wrangell station
4 8/2016

UM3(DS-only,
8x3.95")/FF

305

33

130

131

24

12

122

26.

alpha=0.000453

a a

a a

a a

33

321

323

24

12

122

27. Linear eddy
diffusivity

a a

a a

a a

33

203

204

24

12

122

45


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

WKt-EosUm)

Figure 28. Wrangell Discharge Plume Boundary Plan View from Above

Elevation View



- Centerline

•	Plume Bndry

•	Plume Bndry

Figure 29. Wrangell Discharge Plume Centerline and Boundary Profile View from Side

Piixnes Effective Diution Prediction

¦ Cer*etfne
- Verification

Distance from Source (m)

Figure 30. Wrangell Discharge Plume Average and Centerline Dilution vs. Distance from Outfall

46


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Summary

A summary of the average dilution predictions at various distances (corresponding to 1-10 times the depth
of discharge) from the discharge point at each Alaskan mixing zone location is presented in Table 9. As
indicated in this table, some of the distances exceed the distance from the outfall to the nearest shore.
Under some conditions the tidal currents could direct the discharge plume towards the shore and, upon
reaching this boundary, further mixing would likely not occur. The distance from the outfall to nearest
shore at each location and the predicted DFs and travel times for these distances are presented in Table
10. The dilution predictions are also graphed as a function of distance from the outfall (Figure 31). In this
figure, DFs for Ketchikan, Sitka and Skagway have been truncated at the distance to shore.

Table 9. Average Dilution Factor Predictions at Distances from the Discharge Point Corresponding
to 1-10 Times the Depth of Discharge

Location

1 * depth

2* depth

5*depth

10*depth

Distance
(m)

DF

Time
(min)

Distance
(m)

DF

Time
(min)

Distance
(m)

DF

Time
(min)

Distance
(m)

DF

Time
(min)

Haines

21.3

100

4

43

136

19

107

330

65

213

766

143

Ketchikan

29.9

52

5

60

62

13

150

105

39

299*

179

81

Petersburg

18.3

67

1

37

90

15

92

256

72

183

647

167

Sitka

24.4

87

17

49

97

41

122*

143

113

244*

227

232

Skagway

18.3

56

18

37

86

39

92

177

105

183*

330

214

Wrangell

30.5

112

8

61

115

20

153

149

59

305

229

122

* Distance greater than the distance from the outfall to shore.

Table 10. Average Dilution Factor Predictions at the Distance from the Outfall to Shore



Distance from

DF at distance from

Travel time to

Location

outfall to shore (m)

outfall to shore

shore (min)

Haines

549

2770

386

Ketchikan

221

141

59

Petersburg

366

1720

358

Sitka

114

138

105

Skagway

125

233

145

Wrangell

457

323

185

47


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

900

—~—Haines
-«~— Ketchikan

— « — Petersburg

0

0	SO	100	ISO	200	?S0	300	350

Distance (m)

Figure 31. DF Predictions Graphed as a Function of Distance from the Outfall

(predictions are DFs for distances corresponding to 1-10 times the depth of discharge; in the cases of
Ketchikan, Sitka and Skagway, DFs have been truncated at the distances to the shore)

A summary of the dilution factors predicted at the initial mixing region boundaries is presented in Table
11. For each location this table includes the distance to this boundary, the predicted DF and the travel
times to the boundary. Compared to the depth-based distances in Table 9, the initial mixing region
boundary distances are quite short, although the DFs at a distance of 1* depth are comparable (within
25%) of the initial mixing region dilution factors.

Table 11. Dilution Factor Predictions at Distances Equal to Initial Mixing Region Boundaries

Location

Initial Mixing

Region
Boundary (m)

DF

Travel Time
to Boundary
(min)

Haines

16

99

1

Ketchikan

13

51

1

Petersburg

23

74

1

Sitka

6.9

86

1

Skagway

3.5

42

0.7

Wrangell

12

112

2

48


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

The far-field model was also used to calculate the distances required to attain the FC criteria (i.e., the DFs
in Table 1). These distances, presented in Table 11, range from 3.4 to 135 km to attain the 43/100 mL FC
criterion and 7.2 to 420 km to attain the 14/100 mL FC criterion. These distances greatly exceed the
mixing zone sizes certified by the state in the current wastewater discharge permits for the six POTW
facilities.

Table 12. Dilution Factors and Mixing Zone Distances Required to Attain FC Criteria



DF required to

Distance to attain

DF required to

Distance to attain

Location

attain the 43/100

the 43/100 mL

attain the 14/100

the 14/100 mL FC



mL FC criterion

FC criterion (km)

mL FC criterion

criterion (km)

Haines

50,000

4.0

150,000

8.3

Ketchikan

67,000

135

210,000

420

Petersburg

47,000

3.4

140,000

7.2

Sitka

87,000

126

270,000

390

Skagway

60,000

36

190,000

114

Wrangell

4,400

3.9

14,000

8.9

49


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

References

Dissing, D. and G. Wendler. 1998. Solar Radiation Climatology of Alaska. Theor. Appl. Climatol. 61, pp.
161-175.

Environmental Protection Agency (EPA). 1991. Technical Support Document for Water Quality-based
Toxics Control. United States Environmental Protection Agency, Office of Water. Washington, D.C.
March 1991. EPA/505/2-90-001.

Environmental Protection Agency (EPA). 1994. Dilution Models for Effluent Discharges, 3rd Edition.
United States Environmental Protection Agency, Office of Research and Development. Washington, DC.
June 1994. EPA/600/R-94/086.

Environmental Protection Agency (EPA). 2003. Dilution Models for Effluent Discharges, 4th Edition
(Visual Plumes). United States Environmental Protection Agency, National Exposure Research
Laboratory. Research Triangle Park, NC. March 2003. EPA/600/R-03/025.

Frick, W., Ahmed, A., George, K. and P. Roberts. 2010. On Visual Plumes and associated applications.
Presented at the 6th International Conference on Marine Waste Water Discharges and Coastal
Environment. Langkawi, Malaysia. October 2010.

Frick, W. and P.J.W. Roberts. 2019. Visual Plumes (Plumes20.exe) October 2019 Update, the UM3
plume-water surface reflection approximation and mixing zone endpoints
(https://ftp.waterboards.ca.gov/Surface%20reflection%20tech.docx).

MixZone Inc. 2020. CorHyd Internal Diffuser Hydraulics Model User Manual. December 15, 2020.

Reese, C., George, K. and Gerry Brown. 2021. Mixing zones 101 (PowerPoint presentation). Alaska
Department of Environmental Conservation (https://dec.alaska.gov/media/16267/mixing-zones.pdf.
accessed April 21, 2021).

Washington Department of Ecology (DoE). 2018. Permit Writer's Manual (Revised January 2015/
Updated September 2018). Publication no. 92-109 Part 1. Appendix C. Water Quality Program,
Washington State Department of Ecology. Olympia, Washington
(https://fortress.wa.gov/ecy/publications/SummaryPages/92109partl.html).

50


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

Appendix: VP and FARFIELD20 Output for Each Location

Haines (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Haines" memo4

Model configuration items checked: Brooks far-field solution;

Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 0.61
Light absorption coefficient 0.16
Farfield increment (m) 200
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ UM3. 6/23/2021 5:19:37 AM

Case 1; ambient file C:\Plumes20\Haines_Skagway_l_Jun05.006.db; Diffuser table record 1:	

Ambient Table:

Depth Amb-cur
Density

m	m/s	deg	psu

0.0	0.023	90.00	7.100

I.523	0.023	90.00	14.16
3.047	0.023	90.00	23.30
4.570	0.023	90.00	23.25
6.090	0.023	90.00	25.20
7.617	0.023	90.00	26.37
9.140	0.023	90.00	26.74
10.45	0.023	90.00	27.46

II.75	0.023	90.00	28.24
13.06	0.023	90.00	28.92
14.37	0.023	90.00	29.08
15.68	0.023	90.00	29.29
16.98	0.023	90.00	30.42

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s
11.12 0.0 0.000192

10.08	0.0 0.000194

8.650	0.0 0.000193

8.670	0.0 0.000193

8.220	0.0 0.000193

8.020	0.0 0.000193

7.980	0.0 0.000193

7.570	0.0 0.000193

7.100	0.0 0.000193

6.920	0.0 0.000193

6.880	0.0 0.000192

6.790	0.0 0.000192
6.260

0.0
0.0

0.0 0.000192

deg
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

m0.67/s2 sigma-
90.00 0.0003 5
0.0003

90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

If required.

51


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

22.00 0.023 90.00 34.78 4.213 0.0 0.000192 0.023 90.00 0.0003 27.61629
Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.0000 0.0 90.000 0.0 0.0 2.0000 15.000 21.300 200.00 21.100 2.9000 0.0 15.800
2.13E+6

Simulation:

Froude No: 178.8; StratNo: 2.20E-3; Spcg No: 76.82; k: 992.9; eff den (sigmaT) -0.960860; eff vel
22.84(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn y-posn Iso dia

Step

(m)

(cm/s)

(in) (col/dl) ()

(m)

(m)

(m)



0

21.10

2.300

2.343 2.130E+6

1.000

0.0

0.0

0.0; 10.68 T-90hr,

100

21.10

2.300

23.86 208749.0

10.20

0.000

1.346

0.6058; 10.68 T-90hr,

160

21.03

2.300

77.28 63725.7

33.42

0.000

4.775

1.9614; bottom hit; 10.65 T-90hr,

200

20.49

2.300

166.7 28847.1

73.76

0.000

10.62

4.2261; 10.42 T-90hr,

204

20.37

2.300

179.9 26645.8

79.84

0.000

11.48

4.5599; trap level; 10.37 T-90hr,

205

20.34

2.300

183.3 26122.1

81.44

0.000

11.71

4.6475; merging; 10.36 T-90hr,

232

19.97

2.300

305.7 21392.8

99.34

0.000

16.27

7.7425; local maximum rise or fall;

10.20

T-90hr,













Horiz plane projections in effluent direction: radius(m): 0.0; CL(m): 16.274
Lmz(m): 16.274

forced entrain 1 1.873 1.132 7.764 1.000

Rate sec-1 0.00019515 dy-1 16.8607 kt: 0.000062421 Amb Sal 33.0175
Const Eddy Diffusivity. Farfield dispersion based on wastefield width of 12.34 m

cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

21392.8 99.34 12.34 16.27 2.78E-4 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
20539.8 99.48 14.21 21.30 0.061 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
18354.2 113.1 20.80 37.57 0.258 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
count: 1

5:19:40 AM. amb fills: 4
/ UM3. 6/23/2021 5:20:06 AM

Case 1; ambient file C:\Plumes20\Haines_Skagway_l_Jun05.006.db; Diffuser table record 1:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

Density





















m

m/s

deg

psu

C kg/kg

s-1 m/s

deg m0.67/s2 sigma

-T

0.0

0.023

90.00

7.100

11.12

0.0 0.000194

0.023

90.00

0.0003 5.180276

1.523

0.023

90.00

14.16

10.08

0.0

0.000198

0.023

90.00

0.0003

10.78304

3.047

0.023

90.00

23.30

8.650

0.0

0.000197

0.023

90.00

0.0003

18.06627

4.570

0.023

90.00

23.25

8.670

0.0

0.000196

0.023

90.00

0.0003

18.02474

6.090

0.023

90.00

25.20

8.220

0.0

0.000196

0.023

90.00

0.0003

19.60292

7.617

0.023

90.00

26.37

8.020

0.0

0.000196

0.023

90.00

0.0003

20.54204

9.140

0.023

90.00

26.74

7.980

0.0

0.000196

0.023

90.00

0.0003

20.83621

10.45

0.023

90.00

27.46

7.570

0.0

0.000196

0.023

90.00

0.0003

21.45192

52


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

11.75
13.06
14.37
15.68
16.98
22.00

0.023
0.023
0.023
0.023
0.023
0.023

90.00
90.00
90.00
90.00
90.00
90.00

28.24
28.92
29.08
29.29
30.42
34.78

7.100
6.920
6.880
6.790
6.260
4.213

0.0	0.000196

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.023
0.023
0.023
0.023
0.023
0.023

90.00
90.00
90.00
90.00
90.00
90.00

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

22.12180
22.67724
22.80770
22.98359
23.93584
27.61629

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.0000 0.0 90.000 0.0 0.0 2.0000 15.000 42.600 200.00 21.100 2.9000 0.0 15.800
2.13E+6

Simulation:

Froude No:
22.84(m/s);

Depth Amb-cur

178.8; StratNo: 2.20E-3; Spcg No: 76.82; k: 992.9; eff den (sigmaT) -0.960860; eff vel

I.346
4.775
10.62

II.48
11.71
16.27

0.6058; 10.68 T-90hr,

1.9614
4.2261
4.5599
4.6475

P-dia Polutnt Dilutn x-posn y-posn Iso dia
(m) (cm/s) (in) (col/dl) () (m) (m) (m)

21.10 2.300 2.343 2.130E+6 1.000 0.0 0.0 0.05935; 10.68 T-90hr,
21.10 2.300 23.86 208749.0 10.20 0.000
21.03 2.300 77.28 63725.7 33.42 0.000
20.49 2.300 166.7 28847.1 73.76 0.000
20.37 2.300 179.9 26645.8 79.84 0.000
20.34 2.300 183.3 26122.1 81.44 0.000
19.97 2.300 305.7 21392.8 99.34 0.000
10.20 T-90hr,

Horiz plane projections in effluent direction: radius(m):

Lmz(m): 16.274

forced entrain 1 1.873 1.132 7.764 1.000

Rate sec-1 0.00019515 dy-1 16.8607 kt: 0.000062421 Amb Sal 33.0175
Const Eddy Diffusivity. Farfield dispersion based on wastefield width of 12.34 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

Step
0

100
160
200

204

205
232

bottom hit; 10.65 T-90hr,
10.42 T-90hr,
trap level; 10.37 T-90hr,
merging; 10.36 T-90hr,

7.7425; local maximum rise or fall;
0.0; CL(m): 16.274

(col/dl)
21392.8
19386.1
15243.7
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

99.34
118.7
136.7

12.34
23.00
30.62

16.27 2.78E-4
42.60 0.318
58.87 0.515

0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5

5:20:07 AM. amb fills: 4

53


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 99.34
Estimated initial width (B) of plume after initial 12.34
dilution (meters)

Travel distance of plume after initial dilution 16.27
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

42.6

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.023

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

2.14E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

8.5548E-03
3.6170E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

0.317995
169

26.33

42.6

1.36E+02

1.56E+04

13/

54


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 6/23/2021 5:20:24 AM

Case 1; ambient file C:\Plumes20\Haines_Skagway_l_Jun05.006.db; Diffuser table record 1:

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.023	90.00	7.100

I.523	0.023	90.00 14.16
3.047	0.023	90.00 23.30
4.570	0.023	90.00 23.25
6.090	0.023	90.00 25.20
7.617	0.023	90.00 26.37
9.140	0.023	90.00 26.74
10.45	0.023	90.00 27.46

II.75	0.023	90.00 28.24
13.06	0.023	90.00 28.92
14.37	0.023	90.00 29.08
15.68	0.023	90.00 29.29
16.98	0.023	90.00 30.42
22.00	0.023	90.00 34.78

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s

11.12
10.08
8.650
8.670
8.220
8.020
7.980
7.570
7.100
6.920
6.880
6.790
6.260
4.213

0.0 0.000194
0.0 0.000198
0.0 0.000197
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000195
0.0 0.000195
0.0 0.000195
0.0 0.000195
0.0 0.000195

deg
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

m0.67/s2 sigma-
90.00 0.0003 5
0.0003

90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

27.61629

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.0000 0.0 90.000 0.0 0.0 2.0000 15.000 106.50 200.00 21.100 2.9000 0.0 15.800
2.13E+6

Simulation:

Froude No:
22.84(m/s);

Depth Amb-cur

178.8; StratNo: 2.20E-3; Spcg No: 76.82; k: 992.9; eff den (sigmaT) -0.960860; eff vel

I.346
4.775
10.62

II.48
11.71
16.27

0.6058; 10.68 T-90hr,

1.9614
4.2261
4.5599
4.6475

P-dia Polutnt Dilutn x-posn y-posn Iso dia
(m) (cm/s) (in) (col/dl) () (m) (m) (m)

21.10 2.300 2.343 2.130E+6 1.000 0.0 0.0 0.05935; 10.68 T-90hr,
21.10 2.300 23.86 208749.0 10.20 0.000
21.03 2.300 77.28 63725.7 33.42 0.000
20.49 2.300 166.7 28847.1 73.76 0.000
20.37 2.300 179.9 26645.8 79.84 0.000
20.34 2.300 183.3 26122.1 81.44 0.000
19.97 2.300 305.7 21392.8 99.34 0.000
10.20 T-90hr,

Horiz plane projections in effluent direction: radius(m):

Lmz(m): 16.274

forced entrain 1 1.873 1.132 7.764 1.000

Rate sec-1 0.00019515 dy-1 16.8607 kt: 0.000062421 Amb Sal 33.0175
Const Eddy Diffusivity. Farfield dispersion based on wastefield width of 12.34 m

cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

Step
0

100
160
200

204

205
232

bottom hit; 10.65 T-90hr,
10.42 T-90hr,
trap level; 10.37 T-90hr,
merging; 10.36 T-90hr,

7.7425; local maximum rise or fall;
0.0; CL(m): 16.274




-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

21392.8 99.34 12.34 16.27 2.78E-4 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
16299.5 181.1 56.68 106.5 1.090 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
10795.8 194.1 66.75 122.8 1.287 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5
count: 1

5:20:24 AM. amb fills: 4

56


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.
The initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width)4/3.	

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 99.34
Estimated initial width (B) of plume after initial 12.34
dilution (meters)

Travel distance of plume after initial dilution	16.27

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

106.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.023

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

2.14E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

8.5548E-03
3.6170E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

1.089734
3

90.23

106.5

3.30E+02

6.43E+03

331

57


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

/ UM3. 6/23/2021 5:20:41 AM

Case 1; ambient file C:\Plumes20\Haines_Skagway_l_Jun05.006.db; Diffuser table record 1:	

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.023	90.00	7.100

I.523	0.023	90.00 14.16
3.047	0.023	90.00 23.30
4.570	0.023	90.00 23.25
6.090	0.023	90.00 25.20
7.617	0.023	90.00 26.37
9.140	0.023	90.00 26.74
10.45	0.023	90.00 27.46

II.75	0.023	90.00 28.24
13.06	0.023	90.00 28.92
14.37	0.023	90.00 29.08
15.68	0.023	90.00 29.29
16.98	0.023	90.00 30.42
22.00	0.023	90.00 34.78

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1

m/s

11.12
10.08
8.650
8.670
8.220
8.020
7.980
7.570
7.100
6.920
6.880
6.790
6.260
4.213

0.0 0.000194
0.0 0.000198
0.0 0.000197
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000196
0.0 0.000195
0.0 0.000195
0.0 0.000195
0.0 0.000195
0.0 0.000195

deg
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023
0.023

m0.67/s2 sigma-
90.00 0.0003 5
0.0003

90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

27.61629

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.0000 0.0 90.000 0.0 0.0 2.0000 15.000 213.00 200.00 21.100 2.9000 0.0 15.800
2.13E+6

Simulation:

Froude No: 178.8; StratNo: 2.20E-3; Spcg No: 76.82; k: 992.9; eff den (sigmaT) -0.960860; eff vel
22.84(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn y-posn Iso dia

Step

(m)

(cm/s)

(in) (col/dl) 0

(m)

(m)

(m)



0

21.10

2.300

2.343 2.130E+6

1.000

0.0

0.0 0.05935; 10.68 T-90hr,

100

21.10

2.300

23.86 208749.0

10.20

0.000

1.346

0.6058; 10.68 T-90hr,

160

21.03

2.300

77.28 63725.7

33.42

0.000

4.775

1.9614; bottom hit; 10.65 T-90hr,

200

20.49

2.300

166.7 28847.1

73.76

0.000

10.62

4.2261; 10.42 T-90hr,

204

20.37

2.300

179.9 26645.8

79.84

0.000

11.48

4.5599; trap level; 10.37 T-90hr,

205

20.34

2.300

183.3 26122.1

81.44

0.000

11.71

4.6475; merging; 10.36 T-90hr,

232

19.97

2.300

305.7 21392.8

99.34

0.000

16.27

7.7425; local maximum rise or fall;

10.20

T-90hr,













Horiz plane projections in effluent direction: radius(m): 0.0; CL(m): 16.274
Lmz(m): 16.274

forced entrain 1 1.873 1.132 7.764 1.000

Rate sec-1 0.00019515 dy-1 16.8607 kt: 0.000062421 Amb Sal 33.0175
Const Eddy Diffusivity. Farfield dispersion based on wastefield width of 12.34 m

cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

21392.8 99.34 12.34 16.27 2.78E-4 0.0 16.27 2.300 90.00 3.00E-4 6.2421E-5

58


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

12646.5 246.9 121.4 200.0 2.219 0.0 16.27 2.300
8191.65 256.7 134.2 216.3 2.416 0.0 16.27 2.300
count: 1

90.00 3.00E-4 6.2421E-5
90.00 3.00E-4 6.2421E-5

5:20:41 AM. amb fills: 4

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 99.34
Estimated initial width (B) of plume after initial 12.34
dilution (meters)

Travel distance of plume after initial dilution 16.27
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

213

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.023

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

2.14E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =

Bftta =

8.5548E-03
3.6170E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

2.375966
184

196.73

213

7.66E+02

2.77E+03

768

59


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Ketchikan (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Ketchikan_lport" memo

Model configuration items checked: Brooks far-field solution;

Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 0.61
Light absorption coefficient 0.16
Farfield increment (m) 200
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ UM3. 6/23/2021 5:27:49 AM

Case 1; ambient file C:\Plumes20\Ketchikan_3_Julyl997.004.db; Diffuser table record 3:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m m/s

0.0	0.059
1.000 0.059
16.10 0.059
33.90 0.059

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports MZ-dis Isoplth P-depth Ttl-flo Eff-sal Temp
Polutnt

(in) (deg) (deg) (m) (m) () (m)(concent) (m) (MGD) (psu) (C)(col/dl)
12.000 0.0 205.00 0.0 0.0 1.0000 29.900 100.00 29.600 3.4560 0.0 20.500 20000.0

Simulation:

Froude No: 14.08; StratNo: 1.68E-3; Spcg No: 9.00E+8; k: 57.66; eff den (sigmaT) -1.837438; eff
vel 3.402(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn y-posn Time Iso dia
Step (m) (cm/s) (in) (col/dl) () (m) (m) (s) (m)

0 29.60 5.900 9.372 20000.0 1.000 0.0 0.0 0.0 0.2374; 13.41 T-90hr,
100 29.37 5.900 61.18 2975.1 6.722 -2.606 -1.081 3.096 1.5410; 13.32 T-90hr,

deg	psu	C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

140.0	24.50	15.20 0.0 0.000196 0.059	140.0 0.0003 17.89918

140.0 24.50	15.20 0.0 0.0002 0.059	140.0 0.0003 17.89918

140.0 26.80	13.80 0.0 0.0002 0.059	140.0 0.0003 19.93814

140.0 30.90	8.000 0.0 0.000199 0.059 140.0 0.0003 24.08526

60


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

200

27.61

5.900

135.6

1142.4

17.50 -6.017 -2.060

14.40

249

24.16

5.900

233.0

562.5

35.49 -9.308 -2.435

34.83

276

22.92

5.900

300.9

445.7

44.77 -10.56 -2.414

45.33

90hr,













300

22.48

5.900

333.7

414.4

48.13 -11.13 -2.377

50.59

400

21.94

5.900

383.7

388.9

51.25 -12.54 -2.254

64.07

417

21.94

5.900

385.5

387.6

51.42 -12.73 -2.235

65.91

3.3681; 12.62 T-90hr,
5.6507; trap level; 11.26 T-90hr,
7.2032; begin overlap; 10.77 T-

7.9496; 10.60 T-90hr,
9.1014; 10.40 T-90hr,
9.1403; local maximum rise or

fall; 10.39 T-90hr,

Horiz plane projections in effluent direction: radius(m): 2.4839; CL(m): 12.480
Lmz(m): 14.964

forced entrain 1 1.28E+9 7.663 9.791 1.000

Rate sec-1 0.00019971 dy-1 17.2550 kt: 0.000059972 Amb Sal 28.1446
4/3 Power Law. Farfield dispersion based on wastefield width of 9.79 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

387.592 51.42 9.799 12.92 2.78E-4 0.0 16.00 5.900 140.0 3.00E-4 5.9972E-5
372.140 52.31 12.10 29.90 0.0802 0.0 16.00 5.900 140.0 3.00E-4 5.9972E-5
346.023 56.38 13.95 42.82 0.141 0.0 16.00 5.900 140.0 3.00E-4 5.9972E-5
count: 1

5:27:49 AM. amb fills: 4

61


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 51.42
Estimated initial width (B) of plume after initial 9.79
dilution (meters)

Travel distance of plume after initial dilution	12.92

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

29.9

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.42E-
04







4. Horizontal current speed (m/sec)



0.059

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

3.88E+
02
2.00E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.2830E-03
1.3053E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

7.99E-02

16.98

29.90

5.22E+01

3.82E+02

52

62


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 6/23/2021 5:28:05 AM

Case 1; ambient file C:\Plumes20\Ketchikan_3_Julyl997.004.db; Diffuser table record 3:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.059 140.0 24.50

1.000	0.059 140.0 24.50

16.10	0.059 140.0 26.80

33.90	0.059 140.0 30.90

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

15.20 0.0 0.000195 0.059	140.0 0.0003 17.89918

15.20 0.0 0.0002 0.059	140.0 0.0003 17.89918

13.80 0.0 0.0002 0.059	140.0 0.0003 19.93814
8.000 0.0 0.000199 0.059 140.0 0.0003 24.08526

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports MZ-dis Isoplth P-depth Ttl-flo Eff-sal Temp
Polutnt

(in) (deg) (deg) (m) (m) () (m)(concent) (m) (MGD) (psu) (C)(col/dl)
12.000 0.0 205.00 0.0 0.0 1.0000 59.800 100.00 29.600 3.4560 0.0 20.500 20000.0

Simulation:

FroudeNo: 14.08; StratNo: 1.68E-3; Spcg No: 9.00E+8; k:
vel 3.402(m/s);

P-dia Polutnt
(in) (col/dl)

9.372 20000.0
61.18 2975.1

57.66; eff den (sigmaT) -1.837438; eff

Depth Amb-cur

Step
0

100

200

249

276

90hr,

300

400

417

fall;

(m)
29.60
29.37
27.61
24.16
22.92

22.48
21.94
21.94

(cm/s)
5.900
5.900
5.900
5.900
5.900

5.900
5.900
5.900

Dilutn x-posn y-posn Time

0 (m) (m) (s) (m)

Iso dia

135.6
233.0
300.9

333.7
383.7
385.5

1142.4

562.5
445.7

414.4
388.9

387.6

1.000
6.722
17.50
35.49
44.77

48.13
51.25
51.42

0.0 0.0 0.2222; 13.41 T-90hr,

0.0

-2.606	-1.081	3.096	1.5410; 13.32 T-90hr,

-6.017	-2.060	14.40	3.3681; 12.62 T-90hr,

-9.308	-2.435	34.83	5.6507; trap level; 11.26 T-90hr,

-10.56	-2.414	45.33	7.2032; begin overlap; 10.77 T-

-11.13	-2.377	50.59	7.9496; 10.60 T-90hr,

-12.54	-2.254	64.07	9.1014; 10.40 T-90hr,

-12.73	-2.235	65.91	9.1403; local maximum rise or

10.39 T-90hr,

Horiz plane projections in effluent direction: radius(m): 2.4839; CL(m): 12.480
Lmz(m): 14.964

forced entrain 1 1.28E+9 7.663 9.791 1.000

Rate sec-1 0.00019971 dy-1 17.2550 kt: 0.000059972 Amb Sal 28.1446
4/3 Power Law. Farfield dispersion based on wastefield width of 9.79 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
387.592
361.000
273.501
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

51.42 9.799 12.92 2.78E-4 0.0 16.00 5.900
64.47 16.52 59.80 0.221 0.0 16.00 5.900
71.65 18.57 72.72 0.282 0.0 16.00 5.900

140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5

63


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 51.42
Estimated initial width (B) of plume after initial 9.79
dilution (meters)

Travel distance of plume after initial dilution	12.92

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

59.8

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.42E-
04







4. Horizontal current speed (m/sec)



0.059

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

3.88E+
02
2.00E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.2830E-03
1.3053E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

2.21 E-01

46.88

59.80

6.24E+01

3.19E+02

63

64


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

5:28:05 AM. amb fills: 4
/ UM3. 6/23/2021 5:28:34 AM

Case 1; ambient file C:\Plumes20\Ketchikan_3_Julyl997.004.db; Diffuser table record 3:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.059 140.0 24.50

1.000	0.059 140.0 24.50

16.10	0.059 140.0 26.80

33.90	0.059 140.0 30.90

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

15.20 0.0 0.000195 0.059	140.0 0.0003 17.89918

15.20 0.0 0.0002 0.059	140.0 0.0003 17.89918

13.80 0.0 0.0002 0.059	140.0 0.0003 19.93814
8.000 0.0 0.000199 0.059 140.0 0.0003 24.08526

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports MZ-dis Isoplth P-depth Ttl-flo Eff-sal Temp
Polutnt

(in) (deg) (deg) (m) (m) () (m)(concent) (m) (MGD) (psu) (C)(col/dl)
12.000 0.0 205.00 0.0 0.0 1.0000 149.50 100.00 29.600 3.4560 0.0 20.500 20000.0

Simulation:

FroudeNo: 14.08; StratNo: 1.68E-3; Spcg No: 9.00E+8; k:
vel 3.402(m/s);

P-dia Polutnt
(in) (col/dl)

9.372 20000.0
61.18 2975.1

57.66; eff den (sigmaT) -1.837438; eff

Depth Amb-cur

Step
0

100

200

249

276

90hr,

300

400

417

fall;

(m)
29.60
29.37
27.61
24.16
22.92

22.48
21.94
21.94

(cm/s)
5.900
5.900
5.900
5.900
5.900

5.900
5.900
5.900

Dilutn x-posn y-posn Time
0 (m) (m) (s) (m)

Iso dia

135.6
233.0
300.9

333.7
383.7
385.5

1142.4

562.5
445.7

414.4
388.9

387.6

1.000
6.722
17.50
35.49
44.77

48.13
51.25
51.42

0.0 0.0 0.2222; 13.41 T-90hr,

0.0

-2.606	-1.081	3.096	1.5410; 13.32 T-90hr,

-6.017	-2.060	14.40	3.3681; 12.62 T-90hr,

-9.308	-2.435	34.83	5.6507; trap level; 11.26 T-90hr,

-10.56	-2.414	45.33	7.2032; begin overlap; 10.77 T-

-11.13	-2.377	50.59	7.9496; 10.60 T-90hr,

-12.54	-2.254	64.07	9.1014; 10.40 T-90hr,

-12.73	-2.235	65.91	9.1403; local maximum rise or

10.39 T-90hr,

Horiz plane projections in effluent direction: radius(m): 2.4839; CL(m): 12.480
Lmz(m): 14.964

forced entrain 1 1.28E+9 7.663 9.791 1.000

Rate sec-1 0.00019971 dy-1 17.2550 kt: 0.000059972 Amb Sal 28.1446
4/3 Power Law. Farfield dispersion based on wastefield width of 9.79 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
387.592
329.541
149.151
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

51.42
122.8
132.4

9.799
32.26
34.81

12.92 2.78E-4
149.5 0.643
162.4 0.704

0.0 16.00 5.900
0.0 16.00 5.900
0.0 16.00 5.900

140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5

5:28:34 AM. amb fills: 4

65


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 51.42
Estimated initial width (B) of plume after initial 9.79
dilution (meters)

Travel distance of plume after initial dilution	12.92

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

149.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.42E-
04







4. Horizontal current speed (m/sec)



0.059

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

3.88E+
02
2.00E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.2830E-03
1.3053E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

6.43E-01

136.58

149.50

1.05E+02

1.89E+02

106

66


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

/ UM3. 6/23/2021 5:28:46 AM

Case 1; ambient file C:\Plumes20\Ketchikan_3_Julyl997.004.db; Diffuser table record 3:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.059 140.0 24.50

1.000	0.059 140.0 24.50

16.10	0.059 140.0 26.80

33.90	0.059 140.0 30.90

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

15.20 0.0 0.000195 0.059	140.0 0.0003 17.89918

15.20 0.0 0.0002 0.059	140.0 0.0003 17.89918

13.80 0.0 0.0002 0.059	140.0 0.0003 19.93814
8.000 0.0 0.000199 0.059 140.0 0.0003 24.08526

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports MZ-dis Isoplth P-depth Ttl-flo Eff-sal Temp
Polutnt

(in) (deg) (deg) (m) (m) () (m)(concent) (m) (MGD) (psu) (C)(col/dl)
12.000 0.0 205.00 0.0 0.0 1.0000 299.00 100.00 29.600 3.4560 0.0 20.500 20000.0

Simulation:

FroudeNo: 14.08; StratNo: 1.68E-3; Spcg No: 9.00E+8; k:
vel 3.402(m/s);

P-dia Polutnt
(in) (col/dl)

9.372 20000.0
61.18 2975.1

57.66; eff den (sigmaT) -1.837438; eff

Depth Amb-cur

Step
0

100

200

249

276

90hr,

300

400

417

fall;

(m)
29.60
29.37
27.61
24.16
22.92

22.48
21.94
21.94

(cm/s)
5.900
5.900
5.900
5.900
5.900

5.900
5.900
5.900

Dilutn x-posn y-posn Time

0 (m) (m) (s) (m)

Iso dia

135.6
233.0
300.9

333.7
383.7
385.5

1142.4

562.5
445.7

414.4
388.9

387.6

1.000
6.722
17.50
35.49
44.77

48.13
51.25
51.42

0.0 0.0 0.2222; 13.41 T-90hr,

0.0

-2.606	-1.081	3.096	1.5410; 13.32 T-90hr,

-6.017	-2.060	14.40	3.3681; 12.62 T-90hr,

-9.308	-2.435	34.83	5.6507; trap level; 11.26 T-90hr,

-10.56	-2.414	45.33	7.2032; begin overlap; 10.77 T-

-11.13	-2.377	50.59	7.9496; 10.60 T-90hr,

-12.54	-2.254	64.07	9.1014; 10.40 T-90hr,

-12.73	-2.235	65.91	9.1403; local maximum rise or

10.39 T-90hr,

Horiz plane projections in effluent direction: radius(m): 2.4839; CL(m): 12.480
Lmz(m): 14.964

forced entrain 1 1.28E+9 7.663 9.791 1.000

Rate sec-1 0.00019971 dy-1 17.2550 kt: 0.000059972 Amb Sal 28.1446
4/3 Power Law. Farfield dispersion based on wastefield width of 9.79 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
387.592
313.051
94.9421
54.9006
count: 2

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

51.42
161.8
348.2
361.8

9.799
42.56
91.63
95.21

12.92 2.78E-4
200.0 0.881

400.0
412.9

1.823
1.884

0.0	16.00 5.900

0.0	16.00 5.900

0.0	16.00 5.900

0.0	16.00 5.900

140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5
140.0 3.00E-4 5.9972E-5

67


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 51.42
Estimated initial width (B) of plume after initial 9.79
dilution (meters)

Travel distance of plume after initial dilution	12.92

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

299

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.42E-
04







4. Horizontal current speed (m/sec)



0.059

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

3.88E+
02
2.00E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.2830E-03
1.3053E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

1.35E+00

286.08

299.00

1.79E+02

1.11E+02

180

68


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Petersburg (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Petersburg" me

Model configuration items checked: Brooks far-field solution;

Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 0.61
Light absorption coefficient 0.16
Farfield increment (m) 200
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ UM3. 6/23/2021 5:40:38 AM

Case 1; ambient file C:\Plumes20\Petersburg_l_Aug05.002.db; Diffuser table record 1:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m m/s

0.0	0.016
9.150 0.016
18.29 0.016
20.00 0.016

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
4.0000 0.0 115.00 0.0 0.0 2.0000 10.000 18.300 200.00 18.070 3.6000 0.0 14.600
2.02E+6

Simulation:

Froude No: 114.5; StratNo: 7.46E-4; Spcg No: 38.41; k: 996.7; eff den (sigmaT) -0.776899; eff vel
15.95(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn y-posn Time Iso dia
Step (m) (cm/s) (in) (col/dl) () (m) (m) (s) (m)

0 18.07 1.600 3.124 2.020E+6 1.000 0.0 0.0 0.0 0.0746; 9.342 T-90hr,

deg	psu	C kg/kg s-1 m/s deg m0.67/s2 sigma-T

120.0	25.80	9.500 0.0 0.000195 0.016 120.0 0.0003 19.89413

120.0 28.10	8.200 0.0 0.000196 0.016 120.0 0.0003 21.86897

120.0 30.90	7.300 0.0 0.000196 0.016 120.0 0.0003 24.18118

120.0 31.42	7.132 0.0 0.000195 0.016 120.0 0.0003 24.61448

69


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

100

18.07

1.600

27.00 233103.2

8.665 -0.637

1.364

0.470

0.6855; 9.340 T-90hr,

177

17.70

1.600

121.5

50815.2

39.73 -3.202

6.837

9.667

3.0831; merging; 9.198 T-90hr,

200

16.92

1.600

192.0

38804.9

51.98 -4.867

10.37

20.86

4.8693; 8.895 T-90hr,

212

15.74

1.600

258.0

32719.8

61.58 -6.629

14.10

35.23

6.5408; trap level; 8.436 T-

90hr,

















221

14.97

1.600

323.8

29956.8

67.21 -7.796

16.57

45.91

8.2053; MZ dis; 8.143 T-90hr,

forced entrain 1 1.914 3.095 8.224 0.970

Rate sec-1 0.00019604 dy-1 16.9376 kt: 0.000077955 Amb Sal 29.8950
Mixing Zone reached in near-field, no far-field calculation attempted

5:40:38 AM. amb fills: 4
/ UM3. 6/23/2021 5:40:52 AM

Case 1; ambient file C:\Plumes20\Petersburg_l_Aug05.002.db; Diffuser table record 1:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.016 120.0 25.80

9.150	0.016 120.0 28.10

18.29	0.016 120.0 30.90

20.00	0.016 120.0 31.42

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

9.500 0.0 0.000195 0.016	120.0 0.0003 19.89413
8.200 0.0 0.000196 0.016 120.0 0.0003 21.86897
7.300 0.0 0.000196 0.016 120.0 0.0003 24.18118
7.132 0.0 0.000195 0.016 120.0 0.0003 24.61448

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
4.0000 0.0 115.00 0.0 0.0 2.0000 10.000 36.600 200.00 18.070 3.6000 0.0 14.600
2.02E+6

Simulation:

Froude No: 114.5; StratNo: 7.46E-4; Spcg No: 38.41; k: 996.7; eff den (sigmaT) -0.776899; eff vel
15.95(m/s);

Depth Amb-cur

Step
0

100

177

200

212

90hr.

269

(m)
18.07
18.07
17.70
16.92
15.74

(cm/s)
1.600
1.600
1.600
1.600
1.600

P-dia Polutnt
(in) (col/dl)
3.124 2.020E+6
27.00 233103.2
121.5 50815.2
192.0 38804.9
258.0 32719.8

Dilutn x-posn
0 (m) (m)
1.000 0.0
8.665 -0.637
39.73 -3.202
51.98 -4.867
61.58 -6.629

Iso dia

y-posn Time

(s) (m)
0.0 0.0 0.07918;

9.342 T-90hr,

1.364	0.470 0.6855; 9.340 T-90hr,

6.837	9.667	3.0831; merging; 9.198 T-90hr,

10.37	20.86	4.8693; 8.895 T-90hr,

14.10	35.23	6.5408; trap level; 8.436 T-

14.43 1.600

74.42 -9.596 20.37 63.81 10.443; local maximum rise or

22.520

412.1 27015.9

fall; 7.935 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.03203; CL(m):
Lmz(m): 22.552

forced entrain 1 2.252 3.642 10.47 1.000

Rate sec-1 0.00019608 dy-1 16.9412 kt: 0.000080118 Amb Sal 29.7168
4/3 Power Law. Farfield dispersion based on wastefield width of 13.51 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

70


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

27015.9	74.42	13.51

24577.8	89.58	21.72

13316.6	149.2	37.30
count: 1

22.52 2.78E-4 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5
36.60 0.245 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5
59.12 0.636 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5

5:40:52 AM. amb fills: 4
/ UM3. 6/23/2021 5:41:05 AM

Case 1; ambient file C:\Plumes20\Petersburg_l_Aug05.002.db; Diffuser table record 1:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.016 120.0 25.80

9.150	0.016 120.0 28.10

18.29	0.016 120.0 30.90

20.00	0.016 120.0 31.42

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

9.500 0.0 0.000195 0.016	120.0 0.0003 19.89413
8.200 0.0 0.000196 0.016 120.0 0.0003 21.86897
7.300 0.0 0.000196 0.016 120.0 0.0003 24.18118
7.132 0.0 0.000195 0.016 120.0 0.0003 24.61448

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
4.0000 0.0 115.00 0.0 0.0 2.0000 10.000 91.500 200.00 18.070 3.6000 0.0 14.600
2.02E+6

Simulation:

Froude No: 114.5; StratNo: 7.46E-4; Spcg No: 38.41; k: 996.7; eff den (sigmaT) -0.776899; eff vel
15.95(m/s);

Depth Amb-cur

Step
0

100

177

200

212

90hr.

269

(m)
18.07
18.07
17.70
16.92
15.74

(cm/s)
1.600
1.600
1.600
1.600
1.600

P-dia Polutnt
(in) (col/dl)
3.124 2.020E+6
27.00 233103.2
121.5 50815.2
192.0 38804.9
258.0 32719.8

Dilutn x-posn
0 (m) (m)
1.000 0.0
8.665 -0.637
39.73 -3.202
51.98 -4.867
61.58 -6.629

Iso dia

y-posn Time

(s) (m)
0.0 0.0 0.07916;

9.342 T-90hr,

1.364	0.470 0.6855; 9.340 T-90hr,

6.837	9.667	3.0831; merging; 9.198 T-90hr,

10.37	20.86	4.8693; 8.895 T-90hr,

14.10	35.23	6.5408; trap level; 8.436 T-

14.43 1.600

74.42 -9.596 20.37 63.81 10.443; local maximum rise or

22.520

412.1 27015.9

fall; 7.935 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.03203; CL(m):
Lmz(m): 22.552

forced entrain 1 2.252 3.642 10.47 1.000

Rate sec-1 0.00019608 dy-1 16.9412 kt: 0.000080118 Amb Sal 29.7168
4/3 Power Law. Farfield dispersion based on wastefield width of 13.51 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)

27015.9
18670.4
5869.71
count: 1

; 5:41:06 AM. amb fills: 4

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

74.42 13.51 22.52 2.78E-4 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5
255.8 64.12 91.50 1.198 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5
340.7 85.44 114.0 1.589 0.0 16.25 1.600 120.0 3.00E-4 8.0118E-5

71


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 74.42
Estimated initial width (B) of plume after initial 13.51
dilution (meters)

Travel distance of plume after initial dilution 22.52
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

91.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.016

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

2.70E+
04
1.96E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.6530E-03
5.3588E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

1.197569
444

68.98

91.5

2.56E+02

7.86E+03

257

72


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

/ UM3. 6/23/2021 5:41:17 AM

Case 1; ambient file C:\Plumes20\Petersburg_l_Aug05.002.db; Diffuser table record 1:

Ambient Table:

Depth Amb-cur
Density

m	m/s deg psu

0.0	0.016 120.0 25.80

9.150	0.016 120.0 28.10

18.29	0.016 120.0 30.90

20.00	0.016 120.0 31.42

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s deg	m0.67/s2 sigma-T

9.500 0.0 0.000195 0.016	120.0 0.0003 19.89413
8.200 0.0 0.000196 0.016 120.0 0.0003 21.86897
7.300 0.0 0.000196 0.016 120.0 0.0003 24.18118
7.132 0.0 0.000195 0.016 120.0 0.0003 24.61448

Diffuser table:

P-diaVer angl H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
4.0000 0.0 115.00 0.0 0.0 2.0000 10.000 183.00 200.00 18.070 3.6000 0.0 14.600
2.02E+6

Simulation:

Froude No: 114.5; StratNo: 7.46E-4; Spcg No: 38.41; k: 996.7; eff den (sigmaT) -0.776899; eff vel
15.95(m/s);

Depth Amb-cur

Step
0

100

177

200

212

90hr.

269

(m)
18.07
18.07
17.70
16.92
15.74

(cm/s)
1.600
1.600
1.600
1.600
1.600

P-dia Polutnt
(in) (col/dl)
3.124 2.020E+6
27.00 233103.2
121.5 50815.2
192.0 38804.9
258.0 32719.8

Dilutn x-posn
0 (m) (m)
1.000 0.0
8.665 -0.637
39.73 -3.202
51.98 -4.867
61.58 -6.629

Iso dia

y-posn Time

(s) (m)
0.0 0.0 0.07916;

9.342 T-90hr,

1.364	0.470 0.6855; 9.340 T-90hr,

6.837	9.667	3.0831; merging; 9.198 T-90hr,

10.37	20.86	4.8693; 8.895 T-90hr,

14.10	35.23	6.5408; trap level; 8.436 T-

14.43 1.600

74.42 -9.596 20.37 63.81 10.443; local maximum rise or

22.520

412.1 27015.9

fall; 7.935 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.03203; CL(m):
Lmz(m): 22.552

forced entrain 1 2.252 3.642 10.47 1.000

Rate sec-1 0.00019608 dy-1 16.9412 kt: 0.000080118 Amb Sal 29.7168
4/3 Power Law. Farfield dispersion based on wastefield width of 13.51 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
27015.9
11807.9
2638.61
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

74.42
646.9
760.1

13.51
162.2
190.6

22.52 2.78E-4

183.0
205.5

2.786
3.177

0.0
0.0
0.0

16.25 1.600
16.25 1.600
16.25 1.600

120.0 3.00E-4 8.0118E-5
120.0 3.00E-4 8.0118E-5
120.0 3.00E-4 8.0118E-5

5:41:17 AM. amb fills: 4

73


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 74.42
Estimated initial width (B) of plume after initial 13.51
dilution (meters)

Travel distance of plume after initial dilution 22.52
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

183

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.016

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

2.70E+
04
1.96E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.6530E-03
5.3588E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

2.786111
111

160.48

183

6.47E+02

3.11E+03

650

74


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Sitka (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Sitka" memo

Model configuration items checked: Brooks far-field solution; Report effective dilution;;
Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 1
Light absorption coefficient 0.16
Farfield increment (m) 100
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ uDKHLRD; for extra details examine output file \Plumes20\dkhwisp.out

Case 1; ambient file C:\Plumes20\Sitka_C_Jull0.005.db; Diffuser table record 2:	

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m

m/s

deg

psu

C kg/kg

s-1 m/s

deg m0.67/s2 sigma-T

0.0

0.017

225.0

26.60

12.70

0.0 0.000196

0.017

225.0

0.0003 19.98988

1.000

0.017

225.0

26.60

12.70

0.0

0.000198

0.017

225.0

0.0003 19.98988

5.000

0.017

225.0

28.20

12.20

0.0

0.000198

0.017

225.0

0.0003 21.31369

10.00

0.017

225.0

29.10

11.60

0.0

0.000198

0.017

225.0

0.0003 22.11543

15.00

0.017

225.0

29.60

10.60

0.0

0.000197

0.017

225.0

0.0003 22.67329

20.00

0.017

225.0

29.80

9.800

0.0

0.000197

0.017

225.0

0.0003 22.95817

25.00

0.017

225.0

29.90

9.500

0.0

0.000196

0.017

225.0

0.0003 23.08290

30.00

0.017

225.0

29.90

9.100

0.0

0.000196

0.017

225.0

0.0003 23.14401

Diffuser table:

















P-dia VertAng H-Angle SourceX

SourceY

Ports

Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

Temp Polutnt

















(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
4.0000 0.0 300.00 0.0 0.0 16.000 13.000 24.400 200.00 23.940 5.3000 0.0 15.000
3.74E+6

Simulation:

75


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

FroudeNo: 11.60; StratNo: 5.45E-4; Spcg No: 39.00; k: 105.3; eff den (sigmaT) -0.836341; eff vel
1.790(m/s);

Depth Amb-cur P-dia Polutnt net Dil x-posn y-posn Time Iso dia
(in) (col/dl) () (m) (m) (s) (m)

4.000 3.740E+6 0.0 0.0 0.0 0.0 0.1014; 11.44 T-90hr,
4.000 3.740E+6 1.000 0.0 0.0 0.0 0.1016; 11.44 T-90hr,
10.94 1.929E+6 1.939 -0.497 0.285 0.320 0.2780; 11.43 T-90hr,
14.30 1.472E+6 2.540 -0.585 0.334 0.385 0.3632; 11.43 T-90hr,
21.15 988111.0 3.785 -0.763 0.432 0.566 0.5372; 11.42 T-90hr,
28.20 733621.0 5.098 -0.940 0.527 0.820 0.7162; 11.41 T-90hr,
38.91 519516.6 7.199 -1.202 0.662 1.331 0.9883; 11.38 T-90hr,

Step

(m)

(cm/s)

0

23.94

1.700

1

23.94

1.700

2

23.93

1.700

3

23.92

1.700

5

23.90

1.700

7

23.87

1.700

9

23.80

1.700

11

23.64

1.700

13

23.42

1.700

17

22.83

1.700

21

22.14

1.700

27

21.03

1.700

55

19.66

1.700

67

17.85

1.700

79

15.49

1.700

133

12.24

1.700

151

9.808

1.700

11.32	T-90hr,
merging; 11.24T-90hr,

11.01 T-90hr,
10.75 T-90hr,

10.33	T-90hr,

52.78 364415.9 10.26 -1.539 0.825 2.240 1.3405
63.65 283591.1 13.19 -1.848 0.963 3.349 1.6165
76.78 206140.1 18.14 -2.365 1.164 5.764 1.9498
87.81 163240.4 22.91 -2.776 1.297 8.271 2.2298
104.8 125663.6 29.76 -3.270 1.419 12.28 2.6616

131.6	99789.2 37.48 -3.747 1.497 17.53 3.3416; 9.805 T-90hr,

164.7	79160.1 47.25 -4.268 1.537 24.48 4.1811; 9.113 T-90hr,
218.5 62651.8 59.70 -4.873 1.525 33.78 5.5450; 8.222 T-90hr,
351.2 49337.1 75.81 -5.704 1.423 48.38 8.9048; 7.033 T-90hr,
947.0 43327.2 86.32 -6.744 1.206 68.20 24.008; 6.180 T-90hr,

4/3 Power Law. Farfield dispersion based on wastefield width of 83.49 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

43327.2 86.32 83.51 6.851 2.78E-4 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
3.53E+6 87.12 100.3 24.40 0.287 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
9.94E+5 89.08 107.1 31.25 0.399 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
count: 1

76


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 86.32
Estimated initial width (B) of plume after initial 83.49
dilution (meters)

Travel distance of plume after initial dilution	6.851

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

24.4

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

1.31E-
03







4. Horizontal current speed (m/sec)



0.017

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

4.33E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

1.0947E-01
9.2555E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

2.87E-01

17.549

24.40

8.70E+01

4.30E+04

87

77


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

/ uDKHLRD; for extra details examine output file \Plumes20\dkhwisp.out
Case 1; ambient file C:\Plumes20\Sitka_C_Jull0.005.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur
Density

m	m/s	deg

0.0	0.017	225.0

1.000	0.017 225.0

5.000	0.017 225.0

10.00	0.017 225.0

15.00	0.017 225.0

20.00	0.017 225.0

25.00	0.017 225.0

30.00	0.017 225.0

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

psu	C kg/kg s-1 m/s	deg	m0.67/s2 sigma-T

26.60	12.70	0.0 0.000196	0.017	225.0	0.0003 19.98988

26.60	12.70	0.0 0.000198	0.017 225.0	0.0003 19.98988

28.20	12.20	0.0 0.000198	0.017 225.0	0.0003 21.31369

29.10	11.60	0.0 0.000198	0.017 225.0	0.0003 22.11543

29.60	10.60	0.0 0.000197	0.017 225.0	0.0003 22.67329

29.80	9.800	0.0 0.000197	0.017 225.0	0.0003 22.95817

29.90	9.500	0.0 0.000196	0.017 225.0	0.0003 23.08290

29.90	9.100	0.0 0.000196	0.017 225.0	0.0003 23.14401

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m)(concent) (m) (MGD) (psu)

4.0000 0.0
3.74E+6

300.00 0.0 0.0 16.000 13.000 48.800 200.00 23.940 5.3000

(C)(col/dl)
0.0 15.000

Simulation:

FroudeNo: 11.60; StratNo: 5.45E-4; Spcg No: 39.00; k:
1.790(m/s);

Depth Amb-cur

Step

(m)

(cm/s)

0

23.94

1.700

1

23.94

1.700

2

23.93

1.700

3

23.92

1.700

5

23.90

1.700

7

23.87

1.700

9

23.80

1.700

11

23.64

1.700

13

23.42

1.700

17

22.83

1.700

21

22.14

1.700

27

21.03

1.700

55

19.66

1.700

67

17.85

1.700

79

15.49

1.700

133

12.24

1.700

151

9.808

1.700

P-dia Polutnt net Dil x-posn
(in) (col/dl) () (m) (m)

105.3; eff den (sigmaT) -0.836341; eff vel
Iso dia

y-posn Time
(s) (m)

4.000 3.740E+6 1.000 0.0 0.0 0.0 0.1014; 11.44 T-90hr,
4.000 3.740E+6 1.000 0.0 0.0 0.0 0.1016; 11.44 T-90hr,
10.94 1.929E+6 1.939 -0.497 0.285 0.320
14.30 1.472E+6 2.540 -0.585 0.334 0.385
21.15 988111.0 3.785 -0.763 0.432 0.566
28.20 733621.0 5.098 -0.940 0.527 0.820
38.91 519516.6 7.199 -1.202 0.662 1.331
52.78 364415.9 10.26 -1.539 0.825 2.240
63.65 283591.1 13.19 -1.848 0.963 3.349
76.78 206140.1 18.14 -2.365 1.164 5.764
87.81 163240.4 22.91 -2.776 1.297 8.271
104.8 125663.6 29.76 -3.270 1.419 12.28

131.6	99789.2 37.48 -3.747 1.497 17.53

164.7	79160.1 47.25 -4.268 1.537 24.48
218.5 62651.8 59.70 -4.873 1.525 33.78
351.2 49337.1 75.81 -5.704 1.423 48.38
947.0 43327.2 86.32 -6.744 1.206 68.20

4/3 Power Law. Farfield dispersion based on wastefield width of 83.49 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

43327.2 86.32 83.51 6.851 2.78E-4 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5

0.2780;
0.3632;
0.5372;
0.7162;
0.9883;
1.3405
1.6165
1.9498
2.2298
2.6616

11.43 T-90hr,
11.43 T-90hr,
11.42 T-90hr,
11.41 T-90hr,
11.38 T-90hr,

11.32	T-90hr,
merging; 11.24T-90hr,

11.01 T-90hr,
10.75 T-90hr,

10.33	T-90hr,
3.3416; 9.805 T-90hr,
4.1811; 9.113 T-90hr,
5.5450; 8.222 T-90hr,
8.9048; 7.033 T-90hr,
24.008; 6.180 T-90hr,

78


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

3.26E+6 98.22 125.2 48.80 0.686 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
2.14E+5 102.8 132.5 55.65 0.798 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
count: 1

August 5,2021

79


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 86.32
Estimated initial width (B) of plume after initial 83.49
dilution (meters)

Travel distance of plume after initial dilution	6.851

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

48.8

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

1.31E-
03







4. Horizontal current speed (m/sec)



0.017

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

4.33E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

1.0947E-01
9.2555E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

6.85E-01

41.949

48.80

9.65E+01

3.87E+04

97

80


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ uDKHLRD; for extra details examine output file \Plumes20\dkhwisp.out
Case 1; ambient file C:\Plumes20\Sitka C JullO.005.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur
Density

m	m/s	deg

0.0	0.017	225.0

1.000	0.017 225.0

5.000	0.017 225.0

10.00	0.017 225.0

15.00	0.017 225.0

20.00	0.017 225.0

25.00	0.017 225.0

30.00	0.017 225.0

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

psu C kg/kg s-1 m/s deg m0.67/s2 sigma-T

26.60	12.70	0.0 0.000196	0.017	225.0

26.60	12.70	0.0	0.000198	0.017	225.0

28.20	12.20	0.0	0.000198	0.017	225.0

29.10	11.60	0.0	0.000198	0.017	225.0

29.60	10.60	0.0	0.000197	0.017	225.0

29.80	9.800	0.0	0.000197	0.017	225.0

29.90	9.500	0.0	0.000196	0.017	225.0

29.90	9.100	0.0	0.000196	0.017	225.0

0.0003 19.98988

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

19.98988
21.31369
22.11543
22.67329
22.95817
23.08290
23.14401

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m)(concent) (m) (MGD) (psu)

4.0000 0.0 300.00
3.74E+6

0.0 0.0 16.000 13.000 122.00 200.00 23.940 5.3000

(C)(col/dl)
0.0 15.000

Simulation:

FroudeNo: 11.60; StratNo: 5.45E-4; Spcg No: 39.00; k: 105.3; eff den (sigmaT) -0.836341; eff vel
1.790(m/s);

Depth Amb-cur

Step

(m)

(cm/s)

0

23.94

1.700

1

23.94

1.700

2

23.93

1.700

3

23.92

1.700

5

23.90

1.700

7

23.87

1.700

9

23.80

1.700

11

23.64

1.700

13

23.42

1.700

17

22.83

1.700

21

22.14

1.700

27

21.03

1.700

55

19.66

1.700

67

17.85

1.700

79

15.49

1.700

133

12.24

1.700

151

9.808

1.700

P-dia Polutnt net Dil x-posn
(in) (col/dl) () (m) (m)

4.000 3.740E+6 1.000 0.0
4.000 3.740E+6 1.000 0.0
10.94 1.929E+6 1.939 -0.497
14.30 1.472E+6 2.540 -0.585
21.15 988111.0 3.785 -0.763
28.20 733621.0 5.098 -0.940
38.91 519516.6 7.199 -1.202
52.78 364415.9 10.26 -1.539
63.65 283591.1 13.19 -1.848
76.78 206140.1 18.14 -2.365
87.81 163240.4 22.91 -2.776
104.8 125663.6 29.76 -3.270

131.6	99789.2 37.48 -3.747

164.7	79160.1 47.25 -4.268
218.5 62651.8 59.70 -4.873
351.2 49337.1 75.81 -5.704
947.0 43327.2 86.32 -6.744

4/3 Power Law. Farfield dispersion based on wastefield width of 83.49 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

43327.2 86.32 83.51 6.851 2.78E-4 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
2.76E+6 138.1 183.2 100.0 1.522 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5

y-posn

(s)
0.0
0.0
0.285
0.334
0.432
0.527
0.662
0.825
0.963
1.164
1.297
1.419
1.497
1.537
1.525
1.423
1.206

Time Iso dia
(m)
0.0 0.1014;
0.0 0.1016;

11.44 T-90hr,
11.44 T-90hr,

0.320

0.385

0.566

0.820

1.331

2.240

3.349

5.764

8.271

12.28

17.53

24.48

33.78

48.38

68.20

11.43 T-90hr,
11.43 T-90hr,
11.42 T-90hr,
11.41 T-90hr,
11.38 T-90hr,

11.32	T-90hr,
merging; 11.24T-90hr,

11.01 T-90hr,
10.75 T-90hr,

10.33	T-90hr,
9.805 T-90hr,

4.1811; 9.113 T-90hr,
5.5450; 8.222 T-90hr,
8.9048; 7.033 T-90hr,
24.008; 6.180 T-90hr,

0.2780;
0.3632;
0.5372;
0.7162;
0.9883;
1.3405
1.6165
1.9498
2.2298
2.6616
3.3416;

81


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

46877.1	236.4 315.8 200.0 3.156 0.0 8.000 1.700	225.0 3.00E-4 5.5441E-5

23592.2	243.8 325.7 206.9 3.268 0.0 8.000 1.700	225.0 3.00E-4 5.5441E-5
count: 2

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 86.32
Estimated initial width (B) of plume after initial 83.49
dilution (meters)

Travel distance of plume after initial dilution	6.851

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

122

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

1.31E-
03







4. Horizontal current speed (m/sec)



0.017

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

4.33E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

1.0947E-01
9.2555E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce(m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

1.88E+00

115.149

122.00

1.43E+02

2.61 E+04

143

82


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ uDKHLRD; for extra details examine output file \Plumes20\dkhwisp.out
Case 1; ambient file C:\Plumes20\Sitka C JullO.005.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur
Density

m	m/s	deg

0.0	0.017	225.0

1.000	0.017 225.0

5.000	0.017 225.0

10.00	0.017 225.0

15.00	0.017 225.0

20.00	0.017 225.0

25.00	0.017 225.0

30.00	0.017 225.0

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

psu C kg/kg s-1 m/s deg m0.67/s2 sigma-T

26.60	12.70	0.0 0.000196	0.017	225.0

26.60	12.70	0.0	0.000198	0.017	225.0

28.20	12.20	0.0	0.000198	0.017	225.0

29.10	11.60	0.0	0.000198	0.017	225.0

29.60	10.60	0.0	0.000197	0.017	225.0

29.80	9.800	0.0	0.000197	0.017	225.0

29.90	9.500	0.0	0.000196	0.017	225.0

29.90	9.100	0.0	0.000196	0.017	225.0

0.0003 19.98988

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

19.98988
21.31369
22.11543
22.67329
22.95817
23.08290
23.14401

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m)(concent) (m) (MGD) (psu)

4.0000 0.0 300.00
3.74E+6

0.0 0.0 16.000 13.000 244.00 200.00 23.940 5.3000

(C)(col/dl)
0.0 15.000

Simulation:

FroudeNo: 11.60; StratNo: 5.45E-4; Spcg No: 39.00; k: 105.3; eff den (sigmaT) -0.836341; eff vel
1.790(m/s);

Depth Amb-cur

Step

(m)

(cm/s)

0

23.94

1.700

1

23.94

1.700

2

23.93

1.700

3

23.92

1.700

5

23.90

1.700

7

23.87

1.700

9

23.80

1.700

11

23.64

1.700

13

23.42

1.700

17

22.83

1.700

21

22.14

1.700

27

21.03

1.700

55

19.66

1.700

67

17.85

1.700

79

15.49

1.700

133

12.24

1.700

151

9.808

1.700

P-dia Polutnt net Dil x-posn
(in) (col/dl) () (m) (m)

4.000 3.740E+6 1.000 0.0
4.000 3.740E+6 1.000 0.0
10.94 1.929E+6 1.939 -0.497
14.30 1.472E+6 2.540 -0.585
21.15 988111.0 3.785 -0.763
28.20 733621.0 5.098 -0.940
38.91 519516.6 7.199 -1.202
52.78 364415.9 10.26 -1.539
63.65 283591.1 13.19 -1.848
76.78 206140.1 18.14 -2.365
87.81 163240.4 22.91 -2.776
104.8 125663.6 29.76 -3.270

131.6	99789.2 37.48 -3.747

164.7	79160.1 47.25 -4.268
218.5 62651.8 59.70 -4.873
351.2 49337.1 75.81 -5.704
947.0 43327.2 86.32 -6.744

4/3 Power Law. Farfield dispersion based on wastefield width of 83.49 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif
(col/dl)	(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

43327.2 86.32 83.51 6.851 2.78E-4 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5
2.76E+6 138.1 183.2 100.0 1.522 0.0 8.000 1.700 225.0 3.00E-4 5.5441E-5

y-posn

(s)
0.0
0.0
0.285
0.334
0.432
0.527
0.662
0.825
0.963
1.164
1.297
1.419
1.497
1.537
1.525
1.423
1.206

Time Iso dia
(m)
0.0 0.1014;
0.0 0.1016;

11.44 T-90hr,
11.44 T-90hr,

0.320

0.385

0.566

0.820

1.331

2.240

3.349

5.764

8.271

12.28

17.53

24.48

33.78

48.38

68.20

11.43 T-90hr,
11.43 T-90hr,
11.42 T-90hr,
11.41 T-90hr,
11.38 T-90hr,

11.32	T-90hr,
merging; 11.24T-90hr,

11.01 T-90hr,
10.75 T-90hr,

10.33	T-90hr,
9.805 T-90hr,

4.1811; 9.113 T-90hr,
5.5450; 8.222 T-90hr,
8.9048; 7.033 T-90hr,
24.008; 6.180 T-90hr,

0.2780;
0.3632;
0.5372;
0.7162;
0.9883;
1.3405
1.6165
1.9498
2.2298
2.6616
3.3416;

83


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

46877.1	236.4	315.8	200.0 3.156	0.0	8.000	1.700

17411.5	352.0	470.5	300.0 4.790	0.0	8.000	1.700

13591.4	360.5	481.8	306.9 4.902	0.0	8.000	1.700
count: 3

225.0 3.00E-4 5.5441E-5
225.0 3.00E-4 5.5441E-5
225.0 3.00E-4 5.5441E-5

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 86.32
Estimated initial width (B) of plume after initial 83.49
dilution (meters)

Travel distance of plume after initial dilution	6.851

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

244

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

1.31E-
03







4. Horizontal current speed (m/sec)



0.017

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

4.33E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

1.0947E-01
9.2555E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce(m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

3.87E+00

237.149

244.00

2.27E+02

1.65E+04

227

84


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

Skagwav (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Skagway" memo

Model configuration items checked: Brooks far-field solution;

Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 0.61
Light absorption coefficient 0.16
Farfield increment (m) 200
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ UM3. 6/23/2021 5:51:09 AM

Case 1; ambient file C:\Plumes20\Skagway_l_Jun05.005.db; Diffuser table record 2:	

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.014	350.0	7.100

I.523	0.014	350.0 14.16
3.047	0.014	350.0 23.30
4.570	0.014	350.0 23.25
6.090	0.014	350.0 25.20
7.617	0.014	350.0 26.37
9.140	0.014	350.0 26.74
10.45	0.014	350.0 27.46

II.75	0.014	350.0 28.24
13.06	0.014	350.0 28.92
14.37	0.014	350.0 29.08
15.68	0.014	350.0 29.29
16.98	0.014	350.0 30.42
20.00	0.014	350.0 33.05

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1

m/s

11.12	0.0 0.000194

10.08	0.0 0.000197
8.650 0.0 0.000197
8.670 0.0 0.000196
8.220 0.0 0.000196
8.020 0.0 0.000196
7.980 0.0 0.000195
7.570 0.0 0.000195
7.100 0.0 0.000195
6.920 0.0 0.000195
6.880 0.0 0.000195
6.790 0.0 0.000195
6.260 0.0 0.000195
5.029

0.0
0.0

0.0 0.000195

deg
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014

m0.67/s2 sigma-
350.0 0.0003 5
0.0003

350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

26.14924

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

85


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

(in) (deg) (deg) (m) (m)
3.0000 0.0 350.00 0.0 0.0
2.59E+6

() (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
5.0000 3.5000 18.300 200.00 18.150 0.6300 0.0 17.300

Simulation:

FroudeNo: 10.06; StratNo: 2.47E-3; Spcg No: 17.93;k: 88.59; eff den (sigmaT)-1.214163; eff vel
1.240(m/s);

Depth Amb-cur

Step
0

100
200
267

(m)
18.15
18.07
17.61
16.05
8.615 T-90hr.
300 15.34
318 15.20
T-90hr,
400 14.95
480 14.90

P-dia Polutnt

(cm/s)	(in) (col/dl)

1.400	2.343 2.590E+6

1.400	12.32 471750.7

1.400	21.87 219905.3

1.400	42.65 85238.4

1.400	63.27 67833.1

1.400	71.39 65187.4

Dilutn x-posn

y-posn	Time	Iso dia

0 (m) (m)	(s)	(m)

I.000	0.0	0.0 0.0 0.0594; 9.458 T-90hr,
5.490 0.639	-0.113	1.673	0.3130; 9.424 T-90hr,

II.77	1.318	-0.232	6.056	0.5554; 9.240 T-90hr,
30.34 2.296	-0.405	19.44	1.0826; trap level, merging;

38.10 2.732	-0.482	28.58	1.6057; 8.339 T-90hr,

39.64 2.853	-0.503	31.31	1.8117; begin overlap; 8.285

1.400 94.95 62151.2 41.55 3.192 -0.563 39.26
1.400 102.6 61721.1 41.83 3.409 -0.601 44.43
fall; 8.170 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.0000; CL(m): 3.4620
Lmz(m): 3.4620

forced entrain 1 14.06 3.247 2.606 1.000

Rate sec-1 0.00019534 dy-1 16.8772 kt: 0.000078146 Amb Sal 29.1654
4/3 Power Law. Farfield dispersion based on wastefield width of 10.07 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

2.4091; 8.187 T-90hr,
2.6036; local maximum rise or

(col/dl)
61721.1
55457.0
38485.5
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

41.83
59.02
66.05

10.08
19.36
21.80

3.462 2.78E-4

18.30
21.76

0.295
0.363

0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5

5:51:09 AM. amb fills: 4

86


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The

initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

	INPUT	

Linear Eddy
Diffusivity
Eo=(alpha)(width)

(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing



Flux-average dilution factor after initial dilution

41.83

(e.g. dilution at end of computations with UDKHDEN)

Estimated initial width (B) of plume after initial

10.07

(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length

dilution (meters)



and plume diameter)

Travel distance of plume after initial dilution

3.462

(e.g. "Y" from UDKHDEN or horizontal distance from

(meters)



PLUMES output)

2. Distance from outfall to mixing zone boundary

18.3

(e.g. distance to the chronic mixing zone boundary)

(meters)





3. Diffusion parameter "alpha" per equations 7-62

6.48E-



of Grace, where Eo=(alpha)(width) m2/sec

04



4. Horizontal current speed (m/sec)

0.014

(e.g. same value specified for UDKHDEN or





PLUMES)

5. Pollutant initial concentration and decay	(these inputs do not affect calculated farfield dilution

(optional)	factors)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

6.17E+
04
1.95E-
04

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.5237E-03
5.5529E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone

2.94E-01

14.838

18.30

5.61 E+01

4.60E+04

56

boundary:

87


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

/ UM3. 6/23/2021 5:51:23 AM

Case 1; ambient file C:\Plumes20\Skagway_l_Jun05.005.db; Diffuser table record 2:

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.014	350.0	7.100

I.523	0.014	350.0 14.16
3.047	0.014	350.0 23.30
4.570	0.014	350.0 23.25
6.090	0.014	350.0 25.20
7.617	0.014	350.0 26.37
9.140	0.014	350.0 26.74
10.45	0.014	350.0 27.46

II.75	0.014	350.0 28.24
13.06	0.014	350.0 28.92
14.37	0.014	350.0 29.08
15.68	0.014	350.0 29.29
16.98	0.014	350.0 30.42
20.00	0.014	350.0 33.05

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1 m/s
11.12 0.0 0.000194

10.08	0.0 0.000197

8.650	0.0 0.000197

8.670	0.0 0.000196

8.220	0.0 0.000196

8.020	0.0 0.000196

7.980	0.0 0.000196

7.570	0.0 0.000195

7.100	0.0 0.000195

6.920	0.0 0.000195

6.880	0.0 0.000195

6.790	0.0 0.000195

6.260	0.0 0.000195

5.029	0.0 0.000195

deg
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014

m0.67/s2 sigma-
350.0 0.0003 5
0.0003

350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

26.14924

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m)(concent) (m)

3.0000 0.0
2.59E+6

350.00 0.0 0.0 8.0000 3.5000 36.600 200.00

(MGD) (psu)
18.150 0.6300

(C)(col/dl)
0.0 17.300

Simulation:

FroudeNo: 10.06; StratNo: 2.47E-3; Spcg No: 17.93;k: 88.59; eff den (sigmaT) -1.214163; eff vel
1.240(m/s);

Depth Amb-cur

Step
0

100
200
267

(m)
18.15
18.07
17.61
16.05
8.615 T-90hr.
300 15.34
318 15.20
T-90hr,
400 14.95
480 14.90

(cm/s)
1.400
1.400
1.400
1.400

1.400
1.400

P-dia Polutnt
(in) (col/dl)
2.343 2.590E+6
12.32 471750.7
21.87 219905.3
42.65 85238.4

Dilutn x-posn

0 (m)

I.000
5.490

II.77
30.34

63.27
71.39

67833.1
65187.4

38.10
39.64

(m)
0.0
0.639
1.318
2.296

2.732
2.853

1.400 94.95 62151.2 41.55 3.192
1.400 102.6 61721.1 41.83 3.409
fall; 8.170 T-90hr,

Horiz plane projections in effluent direction: radius(m):
Lmz(m): 3.4620

y-posn

(s)
0.0 0
-0.113
-0.232
-0.405

-0.482
-0.503

-0.563
-0.601

Time Iso dia
(m)

.0 0.05945; 9.458 T-90hr,
1.673 0.3130; 9.424 T-90hr,
6.056 0.5554; 9.240 T-90hr,
19.44 1.0826; trap level, merging;

28.58	1.6057; 8.339 T-90hr,

31.31	1.8117; begin overlap; 8.285

39.26	2.4091; 8.187 T-90hr,

44.43	2.6036; local maximum rise or

0.0000; CL(m): 3.4620

88


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

forced entrain 1 14.06 3.247 2.606 1.000

Rate sec-1 0.00019534 dy-1 16.8772 kt: 0.000078146 Amb Sal 29.1654
4/3 Power Law. Farfield dispersion based on wastefield width of 10.07 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
61721.1
50071.9
23499.3
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

41.83 10.08 3.462 2.78E-4 0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
100.1 33.29 36.60 0.658 0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
108.8 36.19 40.06 0.726 0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5

5:51:23 AM. amb fills: 4

89


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 41.83
Estimated initial width (B) of plume after initial 10.07
dilution (meters)

Travel distance of plume after initial dilution	3.462

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

36.6

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.48E-
04







4. Horizontal current speed (m/sec)



0.014

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

6.17E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.5237E-03
5.5529E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

6.58E-01

33.138

36.60

8.58E+01

3.01 E+04

86

90


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 6/23/2021 5:51:35 AM

Case 1; ambient file C:\Plumes20\Skagway_l_Jun05.005.db; Diffuser table record 2:

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.014	350.0	7.100

I.523	0.014	350.0 14.16
3.047	0.014	350.0 23.30
4.570	0.014	350.0 23.25
6.090	0.014	350.0 25.20
7.617	0.014	350.0 26.37
9.140	0.014	350.0 26.74
10.45	0.014	350.0 27.46

II.75	0.014	350.0 28.24
13.06	0.014	350.0 28.92
14.37	0.014	350.0 29.08
15.68	0.014	350.0 29.29
16.98	0.014	350.0 30.42
20.00	0.014	350.0 33.05

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1

m/s

11.12
10.08
8.650
8.670
8.220
8.020
7.980
7.570
7.100
6.920
6.880
6.790
6.260
5.029

0.0 0.000194

0.0	0.000197

0.0	0.000197

0.0	0.000196

0.0	0.000196

0.0	0.000196

0.0	0.000196

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

deg
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014

m0.67/s2 sigma-
350.0 0.0003 5
0.0003

350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

26.14924

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m) (concent) (m)

3.0000 0.0 350.00
2.59E+6

0.0 0.0 8.0000 3.5000 91.500 200.00

(MGD) (psu)
18.150 0.6300

(C)(col/dl)
0.0 17.300

Simulation:

FroudeNo: 10.06; StratNo: 2.47E-3; Spcg No: 17.93;k: 88.59; eff den (sigmaT) -1.214163; eff vel
1.240(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn

Step
0

100
200
267

(m)
18.15
18.07
17.61
16.05
8.615 T-90hr.
300 15.34
318 15.20
T-90hr,
400 14.95
480 14.90

P-dia Polutnt

(cm/s)	(in) (col/dl) () (m) (m)

1.400	2.343 2.590E+6	1.000	0.0

1.400	12.32 471750.7	5.490	0.639

1.400	21.87 219905.3	11.77	1.318

1.400	42.65 85238.4	30.34	2.296

1.400	63.27 67833.1	38.10	2.732

1.400	71.39 65187.4	39.64	2.853

y-posn

(s)
0.0

-0.113
-0.232
-0.405

-0.482
-0.503

Iso dia

Time
(m)
0.0 0.05945;

9.458 T-90hr,

1.673	0.3130; 9.424 T-90hr,

6.056	0.5554; 9.240 T-90hr,

19.44	1.0826; trap level, merging;

28.58	1.6057; 8.339 T-90hr,

31.31	1.8117; begin overlap; 8.285

1.400 94.95 62151.2 41.55 3.192 -0.563 39.26
1.400 102.6 61721.1 41.83 3.409 -0.601 44.43
fall; 8.170 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.0000; CL(m): 3.4620
Lmz(m): 3.4620

forced entrain 1 14.06 3.247 2.606 1.000

Rate sec-1 0.00019534 dy-1 16.8772 kt: 0.000078146 Amb Sal 29.1654
4/3 Power Law. Farfield dispersion based on wastefield width of 10.07 m

2.4091; 8.187 T-90hr,
2.6036; local maximum rise or

91


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

cone dilutn
(col/dl)
61721.1
36855.9
9323.75
count: 1

width distnee time bckgrnd decay current cur-dir eddydif
(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

41.83
263.9
275.8

10.08
87.83
91.82

3.462 2.78E-4

91.50
94.96

1.747
1.816

0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5

5:51:35 AM. amb fills: 4

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 41.83
Estimated initial width (B) of plume after initial 10.07
dilution (meters)

Travel distance of plume after initial dilution	3.462

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

91.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.48E-
04







4. Horizontal current speed (m/sec)



0.014

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

6.17E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.5237E-03
5.5529E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

1.75E+00

88.038

91.50

1.77E+02

1.46E+04

178

92


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 6/23/2021 5:51:47 AM

Case 1; ambient file C:\Plumes20\Skagway_l_Jun05.005.db; Diffuser table record 2:

Ambient Table:

Depth	Amb-cur
Density

m	m/s	deg	psu

0.0	0.014	350.0	7.100

I.523	0.014	350.0 14.16
3.047	0.014	350.0 23.30
4.570	0.014	350.0 23.25
6.090	0.014	350.0 25.20
7.617	0.014	350.0 26.37
9.140	0.014	350.0 26.74
10.45	0.014	350.0 27.46

II.75	0.014	350.0 28.24
13.06	0.014	350.0 28.92
14.37	0.014	350.0 29.08
15.68	0.014	350.0 29.29
16.98	0.014	350.0 30.42
20.00	0.014	350.0 33.05

Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

C kg/kg s-1

m/s

11.12
10.08
8.650
8.670
8.220
8.020
7.980
7.570
7.100
6.920
6.880
6.790
6.260
5.029

0.0 0.000194

0.0	0.000197

0.0	0.000197

0.0	0.000196

0.0	0.000196

0.0	0.000196

0.0	0.000196

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

0.0	0.000195

deg
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014
0.014

m0.67/s2 sigma-
350.0 0.0003 5
0.0003

350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0
350.0

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.180276

10.78304

18.06627

18.02474

19.60292

20.54204

20.83621

21.45192

22.12180

22.67724

22.80770

22.98359

23.93584

26.14924

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft)

Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal

(m)(concent) (m)

3.0000 0.0 350.00
2.59E+6

0.0 0.0 8.0000 3.5000 183.00 200.00

(MGD) (psu)
18.150 0.6300

(C)(col/dl)
0.0 17.300

Simulation:

FroudeNo: 10.06; StratNo: 2.47E-3; Spcg No: 17.93;k: 88.59; eff den (sigmaT) -1.214163; eff vel
1.240(m/s);

Depth Amb-cur P-dia Polutnt Dilutn x-posn

Step
0

100
200
267

P-dia Polutnt
(m) (cm/s) (in) (col/dl)
18.15 1.400 2.343 2.590E+6
1.400 12.32 471750.7
1.400 21.87 219905.3
1.400 42.65 85238.4

18.07
17.61
16.05
8.615 T-90hr,
300 15.34
318 15.20
T-90hr,
400 14.95
480 14.90

1.400
1.400

63.27
71.39

67833.1
65187.4

0 (m)

I.000
5.490

II.77
30.34

38.10
39.64

(m)
0.0
0.639
1.318
2.296

2.732
2.853

y-posn

(s)
0.0

-0.113
-0.232
-0.405

-0.482
-0.503

Iso dia

Time
(m)
0.0 0.05945;

9.458 T-90hr,

1.673	0.3130; 9.424 T-90hr,

6.056	0.5554; 9.240 T-90hr,

19.44	1.0826; trap level, merging;

28.58	1.6057; 8.339 T-90hr,

31.31	1.8117; begin overlap; 8.285

1.400 94.95 62151.2 41.55 3.192 -0.563 39.26
1.400 102.6 61721.1 41.83 3.409 -0.601 44.43
fall; 8.170 T-90hr,

Horiz plane projections in effluent direction: radius(m): 0.0000; CL(m): 3.4620
Lmz(m): 3.4620

forced entrain 1 14.06 3.247 2.606 1.000

Rate sec-1 0.00019534 dy-1 16.8772 kt: 0.000078146 Amb Sal 29.1654
4/3 Power Law. Farfield dispersion based on wastefield width of 10.07 m

2.4091; 8.187 T-90hr,
2.6036; local maximum rise or

93


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

cone dilutn
(col/dl)
61721.1
22115.3
3965.60
count: 1

width distnee time bckgrnd decay current cur-dir eddydif
(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

41.83
634.0
649.9

10.08
211.0
216.3

3.462 2.78E-4

183.0
186.5

3.563
3.631

0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5
0.0 16.30 1.400 350.0 3.00E-4 7.8146E-5

5:51:47 AM. amb fills: 4

Brook's Linear
Diffusivity

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the linear diffusivity Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This sheet differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm. The
initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width).	

INPUT

Linear Eddy
Diffusivity

Eo=(alpha)(width)
(Grace/Brooks equation 7-
	65)	

1. Plume and diffuser characteristics at start of far-field mixing
Flux-average dilution factor after initial dilution 41.83
Estimated initial width (B) of plume after initial 10.07
dilution (meters)

Travel distance of plume after initial dilution	3.462

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from

2. Distance from outfall to mixing zone boundary
(meters)

183

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width) m2/sec

6.48E-
04







4. Horizontal current speed (m/sec)



0.014

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

6.17E+
04
1.95E-
04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

6.5237E-03
5.5529E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

3.56E+00

179.538

183.00

3.30E+02

7.82E+03

331

94


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

Wrangell (model output for l*depth, 2*depth, 5*depth and 10*depth)

Contents of the memo box (may not be current and must be updated manually)

Project "C:\Plumes20\Wrangell" memoQ=

Model configuration items checked: Brooks far-field solution; Report effective dilution;

Channel width (m) 100
Start case for graphs 1

Max detailed graphs 10 (limits plots that can overflow memory)

Elevation Projection Plane (deg) 0
Shore vector (m,deg) not checked
Bacteria model : Mancini (1978) coliform model
PDS sfc. model heat transfer : Medium
Equation of State : S, T
Similarity Profile : Default profile (k=2.0, ...)

Diffuser port contraction coefficient 0.61
Light absorption coefficient 0.16
Farfield increment (m) 200
UM3 aspiration coefficient 0.1
Output file: text output tab
Output each ?? steps 100
Maximum dilution reported 100000
Text output format: Standard
Max vertical reversals : to max rise or fall

/ UM3. 8/3/2021 9:23:16 AM

Case 1; ambient file C:\Plumes20\Wrangell_4_Augl6.004.db; Diffuser table record 2:	

Ambient Table:

Depth Amb-cur Amb
Density

m	m/s	deg

0.0	0.040	90.00

3.000	0.040	90.00

6.000	0.040	90.00

9.000	0.040	90.00

12.00	0.040	90.00

15.00	0.040	90.00

18.00	0.040	90.00

21.00	0.040	90.00

24.00	0.040	90.00

27.00	0.040	90.00

30.00	0.040	90.00

31.00	0.040	90.00

-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn

psu	C kg/kg	s-1 m/s deg

11.00	11.30	0.0	0.000194	0.040

11.00 11.30	0.0 0.000194	0.040

11.20 12.70	0.0 0.000194	0.040

12.10 12.80	0.0 0.000194	0.040

12.80 11.90	0.0 0.000194	0.040

14.00 11.10	0.0 0.000194	0.040

14.90 11.10	0.0 0.000194	0.040

15.80 11.20	0.0 0.000194	0.040

16.20 11.00	0.0 0.000194	0.040

16.80 11.00	0.0 0.000194	0.040

16.90 10.90	0.0 0.000194	0.040

16.93	10.87	0.0 0.000194	0.040

m0.67/s2 sigma-
90.00 0.0003 8
0.0003

90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00
90.00

0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003
0.0003

T

.178952

8.178952

8.137535

8.815796

9.487716

10.52628

11.22223

11.90396

12.24129

12.70520

12.79661

12.82707

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)

95


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

3.9500 0.0 90.000
1.91E+5

0.0 0.0 8.0000 32.000 30.500 200.00 30.350 3.0000 0.0 18.400

Simulation:
Froude No:
3.407(m/s);

32.56; StratNo: 8.40E-4; Spcg No: 124.5; k: 85.17; eff den (sigmaT) -1.415928; eff vel

Depth Amb-cur

P-dia Polutnt netDil x-posn

y-posn

Time

Iso dia

Step

(m)

(cm/s)

(in) (col/dl)

0 (m)

(m)

(s)

(m)



0

30.35

4.000

3.085 191000.0

1.000

0.0

0.0

0.0 0.0; 14.06 T-90hr,

100

30.32

4.000

21.88

25869.1

7.383

0.000

1.223

1.461

0.5546; 14.05 T-90hr,

200

29.23

4.000

75.55

6306.8

30.29

0.000

5.127

18.85

1.9038; 13.64 T-90hr,

265

25.85

4.000

147.1

2462.3

77.57

0.000

9.228

57.16

3.6599; trap level; 12.34 T-

90hr,



















300

24.85

4.000

191.4

1914.4

99.77

0.000

10.45

72.89

4.7344; 11.95 T-90hr,

301

24.84

4.000

192.3

1907.0

100.2

0.000

10.47

73.16

4.7551; begin overlap; 11.95 T-

90hr,



















400

24.32

4.000

227.5

1702.3

112.2

0.000

11.88

93.03

5.6075; 11.75 T-90hr,

415

24.32

4.000

228.3

1697.3

112.5

0.000

12.05

95.47

5.6269; local maximum rise or

fall;

11.75 T-90hr,















Horiz plane projections in effluent direction: radius(m):

0.0;

CL(m):

12.046

Lmz(m): 12.046

forced entrain 1 143.3 6.034 5.800 1.000

Rate sec-1 0.00019572 dy-1 16.9100 kt: 0.000054521 Amb Sal 16.2632
Plumes not merged, Brooks method may be overly conservative.

4/3 Power Law. Farfield dispersion based on wastefield width of 74.08 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

(col/dl)
1697.28
1632.35
1668.65
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

112.0
112.0
112.4

74.09
81.17
85.91

12.05 2.78E-4

30.50
42.55

0.128
0.212

0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5
0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5
0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

9:23:18 AM. amb fills: 4

96


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.
The initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width)4/3.	

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 112
Estimated initial width (B) of plume after initial 74.08
dilution (meters)

Travel distance of plume after initial dilution 12.05
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

30.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.04

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

1.70E+

03
1.96E-

04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.3337E-02
3.7799E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

0.128125

18.45

30.5

1.12E+02

1697

113

97


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 8/3/2021 9:24:14 AM

Case 1; ambient file C:\Plumes20\Wrangell_4_Augl6.004.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m

m/s

deg

psu

C kg/kg

s-1 m/s

deg m0.67/s2 sigma-

-T

0.0

0.040

90.00

11.00

11.30

0.0 0.000195

0.040

90.00

0.0003 8

1.178952

3.000

0.040

90.00

11.00

11.30

0.0

0.000196

0.040

90.00

0.0003

8.178952

6.000

0.040

90.00

11.20

12.70

0.0

0.000196

0.040

90.00

0.0003

8.137535

9.000

0.040

90.00

12.10

12.80

0.0

0.000196

0.040

90.00

0.0003

8.815796

12.00

0.040

90.00

12.80

11.90

0.0

0.000196

0.040

90.00

0.0003

9.487716

15.00

0.040

90.00

14.00

11.10

0.0

0.000196

0.040

90.00

0.0003

10.52628

18.00

0.040

90.00

14.90

11.10

0.0

0.000196

0.040

90.00

0.0003

11.22223

21.00

0.040

90.00

15.80

11.20

0.0

0.000196

0.040

90.00

0.0003

11.90396

24.00

0.040

90.00

16.20

11.00

0.0

0.000196

0.040

90.00

0.0003

12.24129

27.00

0.040

90.00

16.80

11.00

0.0

0.000196

0.040

90.00

0.0003

12.70520

30.00

0.040

90.00

16.90

10.90

0.0

0.000196

0.040

90.00

0.0003

12.79661

31.00

0.040

90.00

16.93

10.87

0.0

0.000196

0.040

90.00

0.0003

12.82707

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.9500 0.0 90.000 0.0 0.0 8.0000 32.000 61.000 200.00 30.350 3.0000 0.0 18.400
1.91E+5

Simulation:

FroudeNo: 32.56; StratNo: 8.40E-4; Spcg No: 124.5;k: 85.17; eff den (sigmaT) -1.415928; eff vel
3.407(m/s);

Depth Amb-cur

P-dia Polutnt net Dil x-posn

y-posn

Time

Iso dia

Step

(m)

(cm/s)

(in) (col/dl)

0 (m)

(m)

(s)

(m)



0

30.35

4.000

3.085 191000.0

1.000

0.0

0.0

0.0 0.07603; 14.06 T-90hr,

100

30.32

4.000

21.88

25869.1

7.383

0.000

1.223

1.461

0.5546; 14.05 T-90hr,

200

29.23

4.000

75.55

6306.8

30.29

0.000

5.127

18.85

1.9038; 13.64 T-90hr,

265

25.85

4.000

147.1

2462.3

77.57

0.000

9.228

57.16

3.6599; trap level; 12.34 T-

90hr,



















300

24.85

4.000

191.4

1914.4

99.77

0.000

10.45

72.89

4.7344; 11.95 T-90hr,

301

24.84

4.000

192.3

1907.0

100.2

0.000

10.47

73.16

4.7551; begin overlap; 11.95 T-

90hr,



















400

24.32

4.000

227.5

1702.3

112.2

0.000

11.88

93.03

5.6075; 11.75 T-90hr,

415

24.32

4.000

228.3

1697.3

112.5

0.000

12.05

95.47

5.6269; local maximum rise or

fall;

11.75 T-90hr,















Horiz plane projections in effluent direction: radius(m):

0.0;

CL(m):

12.046

Lmz(m): 12.046

forced entrain 1 143.3 6.034 5.800 1.000

Rate sec-1 0.00019572 dy-1 16.9100 kt: 0.000054521 Amb Sal 16.2632

Plumes not merged, Brooks method may be overly conservative.

4/3 Power Law. Farfield dispersion based on wastefield width of 74.08 m

98


-------
Great Lakes Environmental Center, Inc (GLEC)

Mixing Zone Dilution Modeling for Six Alaska POTWs	August 5,2021

cone dilutn width distnee time bckgrnd	decay current cur-dir eddydif
(col/dl) (m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

1697.28 112.0 74.09 12.05 2.78E-4 0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

1565.88 114.7 93.35 61.00 0.340 0.0	16.34 4.000 90.00 3.00E-4 5.4521E-5

1596.09 117.5 98.31 73.05 0.424 0.0	16.34 4.000 90.00 3.00E-4 5.4521E-5
count: 1

9:24:14 AM. amb fills: 4

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.
The initial diffusion coefficient (Eo in m2/sec) is calculated as Eo = (alpha)(width)4/3.	

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 112
Estimated initial width (B) of plume after initial 74.08
dilution (meters)

Travel distance of plume after initial dilution 12.05
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

61

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.04

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

1.70E+

03
1.96E-

04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.3337E-02
3.7799E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

0.339930
556

48.95

61

1.15E+02

1657

115

99


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 8/3/2021 9:24:33 AM

Case 1; ambient file C:\Plumes20\Wrangell_4_Augl6.004.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m

m/s

deg

psu

C kg/kg

s-1 m/s

deg m0.67/s2 sigma-

-T

0.0

0.040

90.00

11.00

11.30

0.0 0.000195

0.040

90.00

0.0003 8

1.178952

3.000

0.040

90.00

11.00

11.30

0.0

0.000196

0.040

90.00

0.0003

8.178952

6.000

0.040

90.00

11.20

12.70

0.0

0.000196

0.040

90.00

0.0003

8.137535

9.000

0.040

90.00

12.10

12.80

0.0

0.000196

0.040

90.00

0.0003

8.815796

12.00

0.040

90.00

12.80

11.90

0.0

0.000196

0.040

90.00

0.0003

9.487716

15.00

0.040

90.00

14.00

11.10

0.0

0.000196

0.040

90.00

0.0003

10.52628

18.00

0.040

90.00

14.90

11.10

0.0

0.000196

0.040

90.00

0.0003

11.22223

21.00

0.040

90.00

15.80

11.20

0.0

0.000196

0.040

90.00

0.0003

11.90396

24.00

0.040

90.00

16.20

11.00

0.0

0.000196

0.040

90.00

0.0003

12.24129

27.00

0.040

90.00

16.80

11.00

0.0

0.000196

0.040

90.00

0.0003

12.70520

30.00

0.040

90.00

16.90

10.90

0.0

0.000196

0.040

90.00

0.0003

12.79661

31.00

0.040

90.00

16.93

10.87

0.0

0.000196

0.040

90.00

0.0003

12.82707

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.9500 0.0 90.000 0.0 0.0 8.0000 32.000 152.50 200.00 30.350 3.0000 0.0 18.400
1.91E+5

Simulation:

FroudeNo: 32.56; StratNo: 8.40E-4; Spcg No: 124.5;k: 85.17; eff den (sigmaT) -1.415928; eff vel
3.407(m/s);

Depth Amb-cur

P-dia Polutnt net Dil x-posn

y-posn

Time

Iso dia

Step

(m)

(cm/s)

(in) (col/dl)

0 (m)

(m)

(s)

(m)



0

30.35

4.000

3.085 191000.0

1.000

0.0

0.0

0.0 0.07603; 14.06 T-90hr,

100

30.32

4.000

21.88

25869.1

7.383

0.000

1.223

1.461

0.5546; 14.05 T-90hr,

200

29.23

4.000

75.55

6306.8

30.29

0.000

5.127

18.85

1.9038; 13.64 T-90hr,

265

25.85

4.000

147.1

2462.3

77.57

0.000

9.228

57.16

3.6599; trap level; 12.34 T-

90hr,



















300

24.85

4.000

191.4

1914.4

99.77

0.000

10.45

72.89

4.7344; 11.95 T-90hr,

301

24.84

4.000

192.3

1907.0

100.2

0.000

10.47

73.16

4.7551; begin overlap; 11.95 T-

90hr,



















400

24.32

4.000

227.5

1702.3

112.2

0.000

11.88

93.03

5.6075; 11.75 T-90hr,

415

24.32

4.000

228.3

1697.3

112.5

0.000

12.05

95.47

5.6269; local maximum rise or

fall;

11.75 T-90hr,















Horiz plane projections in effluent direction: radius(m):

0.0;

CL(m):

12.046

Lmz(m): 12.046

forced entrain 1 143.3 6.034 5.800 1.000

Rate sec-1 0.00019572 dy-1 16.9100 kt: 0.000054521 Amb Sal 16.2632
Plumes not merged, Brooks method may be overly conservative.

4/3 Power Law. Farfield dispersion based on wastefield width of 74.08 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

100


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

(col/dl)

1697.28 112.0 74.09
1382.28 148.5 133.1
1220.33 154.2 138.7
count: 1

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

12.05 2.78E-4 0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5
152.5 0.976 0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5
164.5 1.059 0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

9:24:33 AM. amb fills: 4

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 112
Estimated initial width (B) of plume after initial 74.08
dilution (meters)

Travel distance of plume after initial dilution 12.05
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

152.5

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.04

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day1)

1.70E+

03
1.96E-

04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.3337E-02
3 7799E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e (m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

0.975347

ooo
zzz

140.45

152.5

1.49E+02

1280

149

101


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

/ UM3. 8/3/2021 9:24:50 AM

Case 1; ambient file C:\Plumes20\Wrangell_4_Augl6.004.db; Diffuser table record 2:

Ambient Table:

Depth Amb-cur Amb-dir Amb-sal Amb-tem Amb-pol Solar rad Far-spd Far-dir Disprsn
Density

m

m/s

deg

psu

C kg/kg

s-1 m/s

deg m0.67/s2 sigma-

-T

0.0

0.040

90.00

11.00

11.30

0.0 0.000195

0.040

90.00

0.0003 8

1.178952

3.000

0.040

90.00

11.00

11.30

0.0

0.000196

0.040

90.00

0.0003

8.178952

6.000

0.040

90.00

11.20

12.70

0.0

0.000196

0.040

90.00

0.0003

8.137535

9.000

0.040

90.00

12.10

12.80

0.0

0.000196

0.040

90.00

0.0003

8.815796

12.00

0.040

90.00

12.80

11.90

0.0

0.000196

0.040

90.00

0.0003

9.487716

15.00

0.040

90.00

14.00

11.10

0.0

0.000196

0.040

90.00

0.0003

10.52628

18.00

0.040

90.00

14.90

11.10

0.0

0.000196

0.040

90.00

0.0003

11.22223

21.00

0.040

90.00

15.80

11.20

0.0

0.000196

0.040

90.00

0.0003

11.90396

24.00

0.040

90.00

16.20

11.00

0.0

0.000196

0.040

90.00

0.0003

12.24129

27.00

0.040

90.00

16.80

11.00

0.0

0.000196

0.040

90.00

0.0003

12.70520

30.00

0.040

90.00

16.90

10.90

0.0

0.000196

0.040

90.00

0.0003

12.79661

31.00

0.040

90.00

16.93

10.87

0.0

0.000196

0.040

90.00

0.0003

12.82707

Diffuser table:

P-dia VertAng H-Angle SourceX SourceY Ports Spacing MZ-dis Isoplth P-depth Ttl-flo Eff-sal
Temp Polutnt

(in) (deg) (deg) (m) (m) () (ft) (m)(concent) (m) (MGD) (psu) (C)(col/dl)
3.9500 0.0 90.000 0.0 0.0 8.0000 32.000 305.00 200.00 30.350 3.0000 0.0 18.400
1.91E+5

Simulation:

FroudeNo: 32.56; StratNo: 8.40E-4; Spcg No: 124.5;k: 85.17; eff den (sigmaT) -1.415928; eff vel
3.407(m/s);

Depth Amb-cur

P-dia Polutnt net Dil x-posn

y-posn

Time

Iso dia

Step

(m)

(cm/s)

(in) (col/dl)

0 (m)

(m)

(s)

(m)



0

30.35

4.000

3.085 191000.0

1.000

0.0

0.0

0.0 0.07603; 14.06 T-90hr,

100

30.32

4.000

21.88

25869.1

7.383

0.000

1.223

1.461

0.5546; 14.05 T-90hr,

200

29.23

4.000

75.55

6306.8

30.29

0.000

5.127

18.85

1.9038; 13.64 T-90hr,

265

25.85

4.000

147.1

2462.3

77.57

0.000

9.228

57.16

3.6599; trap level; 12.34 T-

90hr,



















300

24.85

4.000

191.4

1914.4

99.77

0.000

10.45

72.89

4.7344; 11.95 T-90hr,

301

24.84

4.000

192.3

1907.0

100.2

0.000

10.47

73.16

4.7551; begin overlap; 11.95 T-

90hr,



















400

24.32

4.000

227.5

1702.3

112.2

0.000

11.88

93.03

5.6075; 11.75 T-90hr,

415

24.32

4.000

228.3

1697.3

112.5

0.000

12.05

95.47

5.6269; local maximum rise or

fall;

11.75 T-90hr,















Horiz plane projections in effluent direction: radius(m):

0.0;

CL(m):

12.046

Lmz(m): 12.046

forced entrain 1 143.3 6.034 5.800 1.000

Rate sec-1 0.00019572 dy-1 16.9100 kt: 0.000054521 Amb Sal 16.2632
Plumes not merged, Brooks method may be overly conservative.

4/3 Power Law. Farfield dispersion based on wastefield width of 74.08 m
cone dilutn width distnee time bckgrnd decay current cur-dir eddydif

102


-------
Great Lakes Environmental Center, Inc (GLEC)
Mixing Zone Dilution Modeling for Six Alaska POTWs

August 5,2021

(col/dl)
1697.28
1295.62
819.357
642.616
count: 2

(m) (m) (hrs)(col/dl) (ly/hr) (cm/s) angle(m0.67/s2)

112.0
171.8
286.6
294.2

74.09
155.5
261.7
268.7

12.05 2.78E-4	0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

200.0 1.306	0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

400.0 2.694	0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

412.0 2.778	0.0 16.34 4.000 90.00 3.00E-4 5.4521E-5

9:24:50 AM. amb fills: 4

Brook's four-third Power Law

FARFIELD.XLS: Far-field dilution of initially diluted effluent plumes using the 4/3 power law Brooks model as presented by
Grace (R.A. Grace. Marine outfall systems: planning, design, and construction. Prentice-Hall, Inc.)

This apporach differs from the PLUMES approach by assuming different units for alpha depending on the far-field algorithm.

INPUT

4/3 Power Law

Eo=(alpha)*(width)4/3
(Grace/Brooks equation 7-66)

1. Plume and diffuser characteristics at start of far-field
mixing

Flux-average dilution factor after initial dilution 112
Estimated initial width (B) of plume after initial 74.08
dilution (meters)

Travel distance of plume after initial dilution 12.05
(meters)

(e.g. dilution at end of computations with UDKHDEN)
(e.g. eqn 70 of EPA/600/R-94/086 for diffuser length
and plume diameter)

(e.g. "Y" from UDKHDEN or horizontal distance from
PLUMES output)

2. Distance from outfall to mixing zone boundary
(meters)

305

(e.g. distance to the chronic mixing zone boundary)

3. Diffusion parameter "alpha" per equations 7-62
of Grace, where Eo=(alpha)(width)4/3 m2/sec

0.0003







4. Horizontal current speed (m/sec)



0.04

(e.g. same value specified for UDKHDEN or
PLUMES)

5. Pollutant initial concentration and decay
(optional)

Pollutant concentration after initial dilution (any
units)

Pollutant first-order decay rate constant (day-1)

1.70E+

03
1.96E-

04

(these inputs do not affect calculated farfield dilution
factors)

(e.g. effluent volume fraction = 1/initial dilution)
(e.g. enter 0 for conservative pollutants)

OUTPUT







Eo =
Beta =

9.3337E-02
3.7799E-01

m2/s
unitless





Far-field
Travel
Time
(hours)

Far-field
Travel
Distanc
e(m)

Total
Travel
Distan
ce (m)

Effluent
Dilution

Pollutant
Concentration

Dilution at mixing zone
boundary:

2.034375

292.95

305

2.29E+02

829

230

103


-------