EPA-600/R-96-007
February 1996
EXPERIMENTAL INVESTIGATION OF PIC FORMATION
DURING CFC INCINERATION
by
G. Kryder and B. Springsteen
Energy and Environmental Research Corporation
18 Mason
Irvine, California 92718
EPA Contract 68 CO 0094
Work Assignment 3-5
EPA Project Officer: C.W. Lee
National Risk Management Research Laboratory
Research Triangle Park, North Carolina 27711
Prepared for:
U.S. ENVIRONMENTAL PROTECTION AGENCY
OFFICE OF RESEARCH AND DEVELOPMENT
WASHINGTON, DC 20460
-------
FOREWORD
The U. S, Environmental Protection Agency is charged by Congress with pro-
tecting the Nation's land, air, and water resources. Under a mandate of national
environmental laws, the Agency strives to formulate and implement actions lead-
ing to a compatible balance between human activities and the ability of natural
systems to support and nurture life. To meet this mandate, EPA's research
program is providing data and technical support for solving environmental pro-
blems today and building a science knowledge base necessary to manage our eco-
logical resources wisely, understand how pollutants affect our health, and pre-
vent or reduce environmental risks in the future.
The National Risk Management Research Laboratory is the Agency's center for
investigation of technological and management approaches for reducing risks
from threats to human health and the environment. The focus of the Laboratory's
research program is on methods for the prevention and control of pollution to air,
land, water, and subsurface resources; protection of water quality in public water
systems; remediation of contaminated sites and groundwater; and prevention and
control of indoor air pollution. The goal of this research effort is to catalyze
development and implementation of innovative, cost-effective environmental
technologies; develop scientific and engineering information needed by EPA to
support regulatory and policy decisions; and provide technical support and infor-
mation transfer to ensure effective implementation of environmental regulations
and strategies.
This publication has been produced as part of the Laboratory's strategic long-
term research plan. It is published and made available by EPA's Office of Re-
search and Development to assist the user community and to link researchers
with their clients.
E. Timothy Oppelt, Director
National Risk Management Research Laboratory
EPA REVIEW NOTICE
This report has been peer and administratively reviewed by the U.S. Environmental
Protection Agency, and approved for publication. Mention of trade names or
commercial products does not constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Information
Service, Springfield, Virginia 22161,
i i
-------
ABSTRACT
Experiments were conducted to assess: (1) the effect of residual copper retained in an
incineration facility on polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/PCDF)
formation during incineration of non -copper containing c h 1 o rof 1 u oroc ar bom (CFCs) and (2) the
formation of chlorinated and aromatic products of incomplete combustion (PICs), including
PCDD/PCDF, during incineration of CFC recycling residue and hydrochlorofluorocarbons
(HCFCs). This study of the effect of residual copper on PCDD/PCDF formation included
repetition of a test conducted in FY 91 in which high levels of PCDD/PCDF were measured during
incineration of dichlorodifluoromethane (CFC-12).
High concentrations of PCDD/PCDFs (23,800 ng/dscm @7% Oo) measured in a previous
FY 91 study during incineration of CFC-12 in the turbulent flame reactor (TFR) could not be
repeated in the present study. Repetition tests conducted in the same facility under similar
operating conditions resulted in PCDD/PCDF concentrations of 33 - 117 ng/dscm @ 7% Q>.
However, the present study shows that residual copper retained in an bench scale incinerator may
caused elevated levels of PCDD/PCDF emissions during incineration of CFC-12 which does not
contain copper. Tests conducted in the TFR facility resulted in measured PCDD/PCDF
concentrations of 386 - 454 ng/dscm @ 1% Oi during incineration of CFC-12 which followed
incineration of copper-containing compounds. Previous studies had shown evidence of
PCDD/PCDF formation during incineration of chlorinated wastes in the presence of trace copper in
systems with sufficient residence time in the PCDD/PCDF formation temperature window. These
results suggest that CFCs, highly chlorinated chemicals, may best be incinerated in dedicated
incinerators which do not treat copper-containing waste materials in order to eliminate the
possibility that residual copper retained in the incineration systems could promote PCDD/PCDF
formation during CFC incineration.
Incineration can be used to destroy 1,1-dichloro-l-fluoroethane (HCFC-141b) and the oily
residue generated during CFC recycling processes without generating significant emissions of
volatile organic PICs and PCDD/PCDF. Measured PIC and PCDD/PCDF concentrations were
relatively low and consistent with previous studies of trichlorofluoromethane (CFC-11) and
dichlorodifluoroearbon (CFC-12) incineration in bench-scale test facilities.
i i i
-------
TABLE OF CONTENTS
Abstract i i i
Figures v
Tables v
Abbreviations and Symbols vi
Acknowledgment vii
1 Introduction 1
1.1 Background . 1
1.2 Research Objectives 2
2 Experiments . 4
2.1 TFR Test Facility ...... 4
2.2 CTT Test Facility 4
2.3 Tests and Measurements 7
2.4 Sample Analysis 10
3 Results and Discussion 11
3.1 Effects of Residual Copper on PCDD/PCDF Formation ............... 11
3.1.1 Test Conditions 11
3.1.2 Incineration Conditions with Copper-containing Fuel Oil .......... 11
3.1.3 PCDD/PCDF 13
3.2 HCFC and Recycling Residue Incineration 16
3.2.1 Test Conditions 16
3.2.2 CFC Recycling Residue Composition 16
3.2.3 Volatile Products of Incomplete Combustion 16
3.2.4 PCDD/PCDF 22
4 Conclusions 24
References 25
Appendices
A CRMS Data and Calculations 27
B EPA Method 23 (PCDD/PCDF) Data and Calculations 37
C EPA SW896 Method 0030 (Volatile PIC) Data and Calculations 101
D Sample Chain of Custody Records . 143
E Quality Control Evaluation Report 162
iv
-------
FIGURES
1 Turbulent flame reactor (TFR) . 5
2 Controlled temperature tower (CTT) 6
TABLES
1 Test Matrix 8
2 Measurement Parameters and Methods 9
3 Summary of TFR Test Conditions (Tasks 1 & 2) ........ 12
4 Summary of PCDD/PCDF Flue Gas Concentrations, Tasks 1&2 14
5 Summary of CTT Test Conditions (Task 3) 17
6 CFC Recycling Residue Analysis 18
7 Summary of PIC Concentrations, Task 3, Test 4 19
8 Summary of PIC Concentrations, Task 3, Test 5 . 20
9 Summary of PIC Concentrations, Task 3, Test 6 21
10 Summary of PCDD/PCDF Flue Gas Concentrations, Task 3 23
v
-------
LIST OF ABBREVIATIONS AND SYMBOLS
AEERL
APPCD
ASTM
CEM
CFC
CTT
dscm
EER
EPA
FY
GC/MS
HCFC
HRGC/LRMS
NRMRL
PCDD
PCDF
PIC
ppm
ppmv
slpm
QA
QAPjP
TC
TFR
YOST
Air and Energy Engineering Research Laboratory (now APPCD)
Air Pollution Prevention and Control Division (formerly AEERL)
American Society for Testing and Materials
continuous emissions monitoring
chlorofluorocarbon
Controlled Temperature Tower
dry standard cubic meter (at standard conditions of 101.3 kPa and 20°C)
Energy and Environmental Research Corporation
United. States Environmental Protection Agency
fiscal year
gas chromatography/mass spectroscopy
hydrochloro fi uorocarbon
high resolution gas chromatography/low resolution mass spectrometry
National Risk Management. Research Laboratory
polyehlorinated dibenzo-p-dioxins
polychlorinated dibenzofurans
product of incomplete combustion
parts per million on a mass basis
parts per million on a volume basis
standard liter per minute
Quality Assurance
Quality Assurance Project Plan
thermocouple
Turbulent Flame Reactor
volatile organic* sampling train
vi
-------
ACKNOWLEDGMENT
The assistance of Jeff Ryan, Ron Ha iris, Mitchell Howell et al. of Acurex Environmental
Corporation in their preparation of sample train components and analytical sample analyses work is
appreciated.
vi i
-------
SECTION 1
INTRODUCTION
1,1 BACKGROUND
Chlorofluorocarbons (CFCs) are implicated in the depletion of stratospheric ozone and are
also contributors to global warming. As a result of the Montreal Protocol and the subsequent
national policies that require phase-out of the use of CFCs and other ozone depleting substances,
the destruction of considerable quantities of CFCs may be necessary in order to reduce current
inventory levels. Incineration is the only technology available at a commercial scale for CFC
destruction. However, the risks associated with CFC incineration (e.g., its combustion emissions
characteristics) are not well defined.
A tench-scale study of the incineration of CFCs, dichlorodifluoromethane (CFC-12) and
triehlorofluoromethane (CFC-11), was conducted by the Energy and Environmental Research
Corporation (EER) in fiscal year (FY) 91 (Hassel, 1991). For tests performed in a water-cooled
furnace (rated @ 20,500 W) at relatively low flame temperatures (790 °C for the primary flame and
980 °C for the secondary flame), the CFCs were shown to be consistently destroyed at very high
efficiency (greater than 99.999%); however, significant levels of chlorinated and aromatic products
of incomplete combustion (PICs) were detected. Of particular concern, polychlorinated dibenzo-p-
dioxins and dibenzofurans (PCDD/PCDF) were sampled for and detected at high levels in one test
condition.
Subsequently, additional CFC incineration tests were performed at T-Thermal's pilot-scale
incinerator (rated @ 290,000 W) in FY 92 (Ryan et al., 1993). These tests were conducted at a
high flame temperature (1,090 °C) with water injection into the flame zone for temperature control,
PCDD/PCDF were found at moderate levels in only one test with a high input of a CFC (69%
CFC-11 by weight in fuel oil). PCDD/PCDF were not found in other tests with low CFC inputs
(2.5% of CFC-11 by weight in fuel). The avoidance of PCDD/PCDF formation in the T-Thermal
tests is possibly due to the higher temperature and/or water injection. Also, the T-Thermal
incinerator is equipped with a water-quench tank directly downstream of the burner to provide
rapid Hue gas quenching. Flue gases were quenched from 1,090 °C to 120 °C in about 0.5 second.
The high flue gas quenching rate may have limited chemical reactions which lead to the formation
of PICs in the flue gas.
Follow-up tests were conducted by EER in FY 92 to determine the effect of flame zone
temperature on the gas-phase flame formation and destruction of PICs during CFC-12 incineration
(Springsteen et al., 1993). The effect of water injection into the flame zone was also studied.
PCDD/PCDF were not detected at a high flame zone temperature condition (1,200 °C), while
moderate levels of PCDD/PCDF were detected at a lower flame zone temperature (900 °C). Low
levels of PCDD/PCDF were also detected at the lower temperature condition with water injection
into the flame zone. Flame zone water injection may have a reducing effect on PCDD/PCDF
formation during CFC-12 incineration.
1
-------
The effect of metal contamination of CFCs on the incineration emissions was studied at
EER in FY 93. The CFCs evaluated during all of the previous incineration tests were unused,
reagent grade products. Waste and recycled CFCs were not examined. Used CFC refrigerants are
likely to have had long-term contact with heat exchangers made of copper-based alloys. The
possibility exists that some copper may have been leached from copper alloy tubing by acids which
may be formed as the result of a CFCs degradation. The catalytic properties of copper in dioxin
and furan formation are well documented (Hagenmaier et al., 1987; Stieglitz et al., 1989; Gullett et
al., 1990). Test results indicated that incineration of waste CFC-11 produced low levels of dioxins
and furans. Significant levels of dioxins and furans were found when the waste CFC-11 which
was tested was spiked with 300 ppm copper (Springsteen et al., 1994).
In addition to these pilot-scale studies, limited laboratory-scale and bcnch-scale studies by
Naegeli et al. (1992), Pedersen and Kallman (1992), and Tokuhashi et al (1990) have also
demonstrated that CFCs can be efficiently destroyed by incineration; however, PICs (such as
chlorinated hydrocarbons) may also be formed during the incineration of CFCs.
1.2 RESEARCH OBJECTIVES
The purpose of this work was to further evaluate incineration as one of the appropriate
technologies for the safe disposal of CFCs and related materials, including
hydrochlorofluorocarbons (HCFCs ) and CFC recycling residues. The first objective of this study
was to assess the effect of residual copper retained in an incineration facility on PCDD/PCDF
formation during incineration of non-copper containing CFCs, Test results from the FY 93 study
at EER indicated that incineration of waste CFC-11 (containing trace levels of copper) produced
low levels of PCDD/PCDF. Significant levels of PCDD/PCDF were detected when the waste
CFC-11 was spiked with 300 ppm copper prior to incineration. A copper concentration of 300
ppm was chosen since such level is commonly found in municipal solid wastes. The test facility in
which the FY 91 tests were conducted was previously exposed to trace metals including copper
during incineration of metals-containing waste prior to the CFC incineration study. PCDD/PCDF
were sampled for and detected at high levels during a single test condition in this study. The
formation of high levels of PCDD/PCDF could have been the result of the catalytic effect of
residual copper in the test facility remaining after incineration of the metals-containing waste.
Therefore, the first task in the present study (Task 1) was a repetition of the PCDD/PCDF
formation observed in FY 91. This repetition test was performed in the same water-cooled furnace
at relatively low flame temperatures in which the FY 91 tests were conducted. In fact, the bench-
scale test facility was not in use in the interim between the FY 91 and FY 94 tests so any residual
copper which was present in FY 91 may have been present in FY 94, if it was not removed during
the FY 91 tests. The second task in this study to meet this first objective (Task 2) was a test in
which copper-containing fuel was fired in the test facility followed by incineration of non-copper
containing CFC-12 during which the formation of PCDD/PCDF was measured.
The second objective of this study was to measure the formation of chlorinated and
aromatic PICs, including PCDD/PCDF, during incineration of CFC recycling residue and HCFCs.
The production of CFCs is severely restricted under international agreements and federal
regulations. HCFCs have become more popular as CFC substitute refrigerants. Incineration may
be an appropriate disposal technology for HCFCs. Therefore, in the third task of this study (Task
3), the formation of PICs and PCDD/PCDF during incineration of HCFC was investigated. In
addition to substitution of HCFCs for CFCs, recycling of CFCs is becoming more popular.
Significant quantities of residues are generated during this recycling process which require
disposal. Incineration of these residues may be an appropriate disposal mrthod. However,
preliminary analysis of CFC recycling residues has shown that they may contain up to 15 ppm
copper, which has been shown to have a catalytic effect on the formation of dioxins and furans.
2
-------
Therefore, in the third task in this study (Task 3), the formation of PICs and PCDD/PCDF during
incineration of CFC recycling residue was investigated.
To ensure that the research objectives of this Category III study were met, a Quality
Assurance Project Plan (QAPjP) approved by the EPA Air and Energy Engineering Research
Laboratory (AEERL) was implemented. Quality assurance for this program is discussed in
Appendix E.
3
-------
SECTION 2
EXPERIMENTS
All experimental testing was conducted at the EER Test Site in Irvine, California. Two
combustion research facilities were utilized in this study. The experimental tests to assess the
effect of residual copper retained in an incineration facility on PCDD/PCDF formation during
incineration of non-copper containing CFCs, including the repetition of the FY 91 test, were
conducted in the Turbulent Flame Reactor (TFR). The TFR was used for the FY 91 study. The
experimental tests to measure the formation of chlorinated and aromatic products of incomplete
combustion (PICsJ, including PCDD/PCDF, during incineration of CFC recycling residue and a
HCFC were conducted in the Controlled Temperature Tower (CTT). The CTT was used for the
FY 92 and FY 93 studies.
2.1 TFR TEST FACILITY
The TETl, shown schematically in Figure 1, consists of a primary combustion zone and an
afterburner. A swirling air, gas injector burner with a nominal firing rate of 21,000 W fires into a
30 cm diameter water-cooled primary combustion zone. The primary combustion zone is 61 cm in
length and is constructed of 304 stainless steel. A refractory quad extends upwards approximately
45 cm as shown in the figure.
Following the primary combustion zone is the afterburner section of the TFR. The
afterburner section is a refractory-lined chamber with three fuel/oxygen injectors at the inlet. These
fuel/oxygen injectors are spaced 120° radially apart and fire toward the axis of the cylindrical
chamber. Flue gas exits the afterburner through a 10-cm-diameter stainless steel duct. Two water
cooled sections of duct are located approximately 2 meters downstream of the afterburner exit.
Acid gases that were generated during the CFC incineration were removed in a downstream
venturi-type wet scrubber. The scrubber used a water and sodium hydroxide liquor for absoiption
and removal of the acid gases. An induced fan pulled the flue gas through the system; it was also
used to maintain a negative pressure through the system to avoid any fugitive leaks.
2.2 CTT TEST FACILITY
HCFC and CFC recycling residue were incinerated in EER's CTT combustion furnace.
The furnace system is shown in Figure 2, including the HCFC delivery system, oil feed system,
the CTT, and the downstream venturi scrubber, induced draft fan, and stack. The CTT is a down-
fired furnace with a nominal firing rate of 20,500 W. The CTT has an inside diameter of 20 cm
and an overall furnace length of 2.4 m. Furnace walls consist of insulating layers and high
temperature castable refractory. The reactor entry consists of an 38-cm long quail that diverges
from 5 cm at the burner to the full 20-cm inside diameter. The quarl helps to provide a steady
flame. The CTT is equipped with sample ports along its axis to allow insertion of test equipment
such as additive injectors, furnace gas sample probes, and temperature measurement equipment.
4
-------
Figure 1. Turbulent Flame Reactor (TFR).
5
-------
HCFC
CFC Residue
Propane of CFC-12 Primary Air
Swirl
EPA Method 23
(Location #2)
2.4 ra
Controlled
Temperature
Tawer
Induced
Draft Fan
Figure 2. Controlled Temperature Tower (CTT).
-------
The CIT is equipped with a variable swirl diffusion burner with axial air injection. With this
burner, primary air was injected axially while secondary air was injected radially through swirl
vanes to provide for fuel and air mixing and a stable flame. The CTT also has two sets of "back-
fired" burner heating channels; these burners are fired through channels in the refractory wall
counter-current to the main furnace gases. The burners can be used to indirectly heat the furnace
and control the temperature profile of the combustion gases and may help to minimize temperature
decay in the combustion zone. The back-fired burners were not used during any of the testing.
The HCFC delivery system is also shown in Figure 2, IICFC-14 lb, which has a low
boiling point (32 °C), was delivered to the burner as a liquid. Pressurized nitrogen was used to
drive the HCFC to the burner located at the top of the CTT, and a rotameter was used to monitor
the HCFC flow rate. In the burner, the HCFC was atomized in a spray nozzle with a mixture of
propane and nitrogen. Propane, at an equivalent firing rate of 20,500 W, was provided as the fuel
for the combustion, HCFC was incinerated in the facility as 10% (by volume) of the propane feed
rate. Combustion air was provided through variable swirl vanes (at a burner "Swirl Number" of
approximately 2). CFC recycling residue is an oil-like substance with physical properties, from
visual inspection, similar to mineral oil. A gear pump was used to feed the CFC recycling residue
and was atomized in the spray nozzle using compressed nitrogen. During the CFC recycling
residue incineration, no supplemental fuel was utilized.
Acid gases that were generated during the CFC incineration were removed in a downstream
venturi-type wet scrubber. The scrubber used a water and sodium hydroxide liquor for absorption
and removal of the acid gases. An induced draft fan pulled the flue gas through the system; it was
also used to maintain a negative pressure through the system to avoid any fugitive leaks.
2.3 TESTS AND MEASUREMENTS
The experimental tests in this study were divided into three sub-tasks as shown in the test
matrix of Table 1. The primary focus of the experimental sampling is the measurement of
PCDD/PCDF formation during incineration of CFC, HCFC, and CFC recycling residue. During
each test, flue gas samples were collected for analysis of semi-volatile PCDD/PCDF using EPA
Method 23. During incineration of HCFC and CFC recycling residue, flue gas samples were
collected and analyzed for volatile halogenated and non-halogenated organic PICs using EPA SW-
846 Method 0030 (Volatile Organic Sampling Train). Also, the flue gas was monitored for other
combustion products including oxygen (O2), carbon dioxide (CO2), carbon monoxide (CO), and
nitric oxide (NO) using a continuous emission monitoring (CEM) system.
Measurement techniques for all important parameters are shown in Table 2. Flue gas
samples were taken to measure volatile halogenated and non-halogenated organic PICs using EPA
SW 846 Method 0030 (Volatile Organic Sampling Train) and for semi-volatile PCDD/PCDF using
EPA Method 23. The flue gas was continuously monitored for oxygen (O2), carbon dioxide
(CO2), carbon monoxide (CO), and nitric oxide (NO) according to EPA-approved methods.
Flame temperatures in the TFR were measured using K-type thermocouples and in the CTT with a
suction pyrometer. Propane, air, oxygen, and HCFC injection rates were monitored using
rotameters.
Task 1 was a repetition test of the FY 91 high dioxin emission experimental results. The
tests were conducted in the TFR. The TFR facility was not used for experimental testing since
completion of the CFC incineration study in FY 91; however, the refractory quarl in the primary
combustion zone had been replaced. For these tests, the TFR was configured similarly to the
7
-------
TABLE 1. TEST MATRIX
PCDD/F
PCDD/F
Method 23
Method 23
CFCs/PICs
Test
Experimental
Test
Location #1
Location #2
Method 0030 (VOST)
Number
Facility
Material
# Replicates
# Replicates
# Replicates
1
TFR
Facility Blank
0
2
0
Task 1
2
TFR
CFC-12
1
1
0
3
TFR
CFC-12
1
1
0
Task 2
7
TFR
Fuel oil doped with Cu
followed by CFC-12**
1
1
0
8
TFR
Fuel oil doped with Cu
followed by CFC-12**
1
1
0
4
CTT
Facility Blank
0
2
3
Task 3
5
CTT
HCFC-141b
0
2
3
6
CTT
CFC Residue
0
2
3
** Fuel Oil doped with copper was burned in the test facility prior to testing. Immediately following, CFC-12 was incinerated in the
facility. Manual sampling for PCDD/F occurred during CFC-12 incineration.
-------
TABLE 2. MEASUREMENT PARAMETERS AND METHODS
Parameter
Importance
Method
Reference
Propane flowrate
Primary
Rotameter
EPA Method 2
Air flowrate
Secondary
Rotameter
EPA Method 2
Oxygen flowrate
Secondary
Rotameter
EPA Method 2
CFC-12 flowrate
Primary
Rotameter
EPA Method 2
HCFC flowrate
Primary
Rotameter
EPA Method 2
Temperatures
Primary
Suction pyrometer
Thermocouples
EPA Method 2
EPA Method 2
Exhaust gas
composition:
Secondary
o2
Paramagnetic
EPA Method 3A
O
a
Non-dispersive infrared
EPA Method 3A
CO
Non-dispersive infrared
EPA Method 10
NO
Chemil uminescent
EPA Method 7E
PCDD/PCDF
Primary
GC/MS
EPA Method 23
PICs
Primary
GC/MS
EPA SW 846 Method 0030
9
-------
FY 91 configuration. The primary combustion zone was maintained at 760 - 870 °C and the
secondary was maintained at 980 - 1,090°C. These temperatures are in the similar ranges for those
used for the FY 91 test. During the first test, the facility was fired on propane with no CFC
incineration. Two flue gas samples were collected using EPA Method 23 as a facility background
measurement for PCDD/PCDF formation. Two consecutive sampling trains were run at sampling
location #2. To assess repeatability of the data, two tests were conducted to verify the high level of
PCDD/PCDF formation measured in FY 91. In these tests, CFC-12 was incinerated at a 10%
volumetric concentration in propane and two simultaneous EPA Method 23 trains were run (one
each at location #1 and location #2).
Task 2 was conducted in the TFR facility which was operated in the same configuration as
in the Task 1 tests. Fuel oil containing copper (0.533% copper naphthenate) was fired in the
facility and an aqueous solution of copper salt (0.104% copper nitrate trihydrate in water) was
injected into the facility to simulate incineration of copper-containing wastes. Then following this,
CFC-12 (~ 9% by volume in propane) was incinerated and the formation of PCDD/PCDF in the
flue gas was measured at both sampling locations. Additional copper-containing fuel was fired in
the facility and then the CFC-12 incineration test was repeated.
Task 3 was designed to measure formation of chlorinated and aromatic PICs, including
PCDD/PCDF, during incineration of HCFC and CFC recycling residue. A sample of 1,1-
dichloro-1 -fluoroethane (trade name GENETRON 141 b) was obtained from Allied Signal and a
sample of CFC recycling residue was obtained from CFC Recovery Systems, Manteca, CA. The
CTT test facility was utilized for these tests. The flame zone temperature was maintained at 1,425
+/- 50°C. Two simultaneous Method 23 facility blanks and three sequential Method 0030 facility
blanks were collected on the first day of testing. HCFC was incinerated on the second test day at a
volumetric concentration of 7.4 % in a propane flame, CFC recycling residue was incinerated on
the final test day. No supplemental fuel was utilized during incineration of the CFC recycling
residue because it has a high heating value. Two simultaneous Method 23 trains were collected
immediately upstream of the wet scrubber (location #2) and three sets of VOST tubes were
collected immediately downstream of the reactor (location #1) for each of the HCFC and CFC
recycling residue incineration tests.
2.4 SAMPLE ANALYSIS
The CFC recycling residue was analyzed for ultimate analysis (ASTM D-3176), heating
value (ASTM D-3286), % chlorine (ASTM D-4208). % fluorine (modified ASTM D-4208), and
copper concentration (modified SW846 Method 7210) prior to testing. Flue gas sample trains
(Method 23 and SW 846 Method 0030) were analyzed as follows:
* Volatile PICs — Acurex Environmental Corporation in Research Triangle Park,
North Carolina analyzed the samples from the EPA SW 846 Method 0030 (VOST)
sampling trains. The major volatile byproducts of incomplete combustion were
identified and quantified using SW 846 Methods 5040 and 8240.
* PCDD/PCDF - PCDD/PCDF train (EPA Method 23) samples were analyzed by the
Air and Energy Engineering Research Laboratory (AEERL) Dioxin Analytical
Laboratory in Research Triangle Park, North Carolina. Method 23 samples were
analyzed by the hybridized SW 846 Method 8280. The hybridized AEERL method
differs from the strict Method 8280 by utilizing isotopically labelled PCDD/PCDF
homologues for each congener (tetra-octa dioxins and tetra-hepta furans). Also the
hybridized method differs in that specific PCDD/PCDF isomers are not identified;
only the total mass for each congener is reported.
10
-------
SECTION 3
RESULTS AND DISCUSSION
3.1 EFFECTS OF RESIDUAL COPPER ON PCDD/PCDF FORMATION
3.1.1 Test Conditions
Individual test conditions, including primary combustion zone firing rate, afterburner firing
rate, CFC-12-to-propane molar injection ratio, flame stoichiometry, flame temperature, and flue
gas composition (O2, CO2, CO, and NO) for the test conducted in the TFR are summarized in
Table 3. Excellent combustion conditions were achieved for all test conditions In all cases, less
than 50 ppmv of CO were detected in the combustion flue gas, corrected to 7% O2.
Test 1 was a facility blank test to measure the background PCDD/PCDF concentrations in
the TFR when firing propane only. Two Method 23 sampling trains were run consecutively at the
downstream low temperature sampling location (location #2) and are identified as Tests 1A and
IB. The flue gas temperature at this sampling location was approximately 120°C. Tests 2 and 3
were replication tests of the high PCDD/PCDF concentrations detected in the FY 91 tests. The
TFR was operated under conditions simulating the FY 91 tests for both Tests 2 and 3. Two
Method 23 samples were simultaneously collected during each test. One sample train collected a
flue gas sample just downstream of the afterburner outlet (~ 600°C) to measure the PCDD/PCDF
formation near the combustion /one. The second train collected flue gas at the downstream, low
temperature (~120°C) location to measure PCDD/PCDF formation in the post combustion, flue gas
cooling zone.
The effect of residual copper in the test facility on PCDD/PCDF formation during CFC-12
incineration was evaluated in Tests 7 and 8. Copper-containing fuel was fired and copper-
containing solution was in jected into the TFR to simulate incineration of a copper-containing waste
which could deposit residual copper in the incinerator. Following copper injection, the TFR was
once again operated under conditions simulating the FY 91 tests and two Method 23 samples were
simultaneously collected during each test (one at the high temperature sample location and one at
the low temperature sample location). The major difference between Test 7 and Test 8 was the
elapsed time and temperature of the afterburner between the end of copper injection and the
beginning of CFC-12 incineration and PCDD/PCDF sampling.
3.1.2 Incineration Conditions with Copper-containing Fuel Oil
Prior to Test 7 and Test 8, the TFR facility was conditioned by firing a copper-containing
fuel oil and by injecting a copper-containing aqueous solution. The copper-containing fuel oil was
fired in the TFR primary combustor and the copper-containing solution was injected into the
primary zone during natural gas combustion. During combustion of the copper-containing fuel oil
and injection of the copper-containing solution, the primary combustion zone of the TFR was fired
11
-------
TABLE 3. SUMMARY OF TFR TEST CONDITIONS (TASKS I & 2)
Primary Combustion Zone
Afterburner
Flue Gas Composition @ AB Outlet
Primary
Propane
CFC-12
Burner
Firing
Feed
Feed
Stoichio-
Outlet
Firing
Outlet
Test
Rate
Rate
Rate
CFC
metric
Temp
Rate
Temp
0 2
CO 2
NO
CO2
No.
(W)
(slpm)
(slpm)
Concentration1
Ratio
(°C)
(W)
(°C)
(vol. %)
(vol. %)
(ppmv)
(ppmv)
1
21,400
13.3
n/a
n/a
1.3
750
23,150
1,080
6.9
18.4
1100
36
2
21,400
13.3
1.27
8.7%
1.1
780
16,700
1,000
7.0
19.7
510
47
3
21,400
13.3
1.27
8.7%
1.1
780
16.700
1,000
7.0
18.9
720
51
7
25,325
15.1
1.27
7.8%
0.97
840
15.525
1,000
6.8
19.9
620
43
8
21,400
13.3
1.27
8.7%
1.1
850
18,450
1.040
6.9
19.7
1090
46 ,
Notes:
*= (moles CFC-12) / [(moles propane) + (moles CFC-12)]
2= @ 7% oxygen in dry gas at standard conditions
n/a = not applicable
-------
at approximately 30,000 W and the afterburner was not fired.
The copper-containing fuel oil was prepared by mixing a solution of copper (II)
naphthenate (8% copper by weight) with No. 2 fuel oil at a concentration of 0.533%, resulting in a
fuel oil that was 0.043% copper by weight. Copper-containing fuel oil was fired in the TPR at a
rate of 2.35 kg/hr, the corresponding copper injection rate was 1 g/hr. An aqueous solution
containing a copper salt was prepared by mixing a solution of 0.104% copper (II) nitrate trihydrate
(26 .3% copper) in water. When this aqueous solution was injected into the TFR, the copper
injection rate was 1 g/hr.
Although Test 7 was performed at a slighly lower stoichiometric ratio (0.97) compared to
that for Test 8 (1.1), similar flue gas composition measured for the two tests (shown in Table 3)
indicates that it has very little effect on emissions. The major difference between Test 7 and Test 8
was the elapsed time between the end of copper addition and the beginning of CFC-12 incineration
for Test 8 as compared to Test 7. For Test 7, a total of 20 grams of copper was injected in the
TFR over a 20-hour period. Following this copper injection, three houis elapsed prior to CFC-12
incineration and PCDD/PCDF sampling. During this time between the copper injection and CFC-
12 incineration, the TFR facility was fired at the same operating conditions as the Test 7 test
conditions (i.e., propane fired in primary and secondary burners). After Test 7, an additional 15
grams of copper were injected in the TFR facility. Following the copper injection, 54 hours
elapsed prior to the CFC-12 incineration and PCDD/PCDF sampling. These 54 hours included 5
hours during which the TFR facility primary and secondary combustion zones were fired at the
same operating conditions as the Test 8 test conditions, (i.e., high afterburner firing rate).
3.1.3 PCDD/PCDF
The measured PCDD/PCDF concentrations for the Task 1 and Task 2 tests (TFR tests) are
presented in Table 4. PCDD/PCDF were not detected in either Test 1A or IB (the TFR system
blanks), indicating no background contamination in the propane fuel, sampling train, recovery
agents, or resulting from the analytical procedure. CFC-12 incineration tests 2 and 3 were
conducted under similar conditions as the FY 91 test in which high levels of PCDD/PCDF were
detected. The two tests were conducted on consecutive days under similar facility operating
conditions in order to measure the repeatability of the experiment. The high temperature sample
(afterburner outlet) for Test 3 was not analyzed due to loss of the sample prior to laboratory
analysis. Low levels of PCDD/PCDF (6.1 ng/dscm) were detected at the high temperature
sampling location (location #1) sample collected during Test 2. The PCDD/PCDF concentrations
measured at the downstream sampling location were higher (118 ng/dscm for Test 3). However,
these measured PCDD/PCDF concentrations were much lower than the high levels measured in FY
91 (23,830 ng/dscm) (Hassel, 1991).
Note that with sampling at the afterburner outlet, the flue gas had an approximate 5-second
residence time from the burner to the sampling location, during which time the flue gas cooled
from about 1,035 °C to approximately 600 °C. After entering the Method 23 sampling train, the
sample was quickly cooled to the required XAD 2 resin module temperature of less than'20 °C.
For sampling at the downstream low temperature location, the flue gas had a residence time of
about 7.5 seconds from the primary burner during which the flue gas cooled to about 120 °C.
Tests 7 and 8 were CFC-12 incineration tests after copper had been added into the test
facility. The measured PCDD/PCDF concentrations are also presented in Table 4. Results show
that elevated levels of PCDD/PCDF were observed under these conditions relative to the Test 2 and
3 results. In Test 7, the PCDD/PCDF concentrations at the afterburner outlet and at the low
temperature sample location were 118 and 454 ng/dscm, respectively. During Test 8, measured
13
-------
TABLE 4. SUMMARY OF PCDD/PCDF FLUE GAS CONCENTRATIONS, TASKS 1 & 2
PCDD/PCDF Concentration in Flue Gas (ng/dscm at 7% 02)
Congener
Task 1
Task 2
Test 1A
Test IB
Test 2
Test 3
Test 7
Test 8
Low
Low
AB
Low
AB
Low
AB
Low
AB
Low
Tempa
Tempa
Outletb
Tempa
Outletb
Temp3
Outlet*3
Tempa
Outletb
r-p
Temp
PCDD
TCDD
n/d
n/r
n/r
n/r*
n/a
n/r
n/d
4.9
n/d
1.2
PeCDD
n/d
Sfllll!
¦ -3
n/d
n/d
mi
Piiiiii
n/d
HxCDD
n/d
n/r
n/d
n/r*
n/a
n/d
n/d
16.0
n/d
1.9
HpCDD
n/d
: n/d:;
n/a
4.1
OCDD
n/d
n/d
0.9
n/r*
n/a
6.9
4.3
56.7
4.9
11.6
Total PCDD
111:11111
!lli§
13:!®;':';:':-
lillllli
6.5
lllllllll:
iiiiiii
22,6
PCDF
TCDF
iiiiiiii
n/d
iill!
iiali
liiili!
7.4
n/r*
n/r*
iiiiii!!
106.8
PeCDF
n/d
n/d
0.3
n/r*
n/a
9.3
8.6
99 8
1.3
7.5
MxCDF
n/r
n/d
llllill
n/r-5-'
n/a
16.6
5.5
100 6
n/r*
23.9
HpCDF
n/r
n/d
1.9
n/r*
n/a
46.0
46.4
1142
n/r*
73 2
OCDF
n/d
n/d
lllllllll
n/r"
iiiliiiii
27.5
50.9
31.5
45.3
152.0
Total PCDF
n/d
n/d
__
n/r*
n/a
10618
111.4
346.1
46.6
363 4
Total PCDD/PCDF
n/d
iiiiiiii
llllill
lillllli
117.X
117.9
454.2
53.8
386.0
Notes:
a: Method 23 sampling downstream after flue gas cooled to ~120°C b: Method 23 "sampling @ afterburner outlet
n/a: not applicable, sample lost n/d: not detected
n/r: conger not detected but internal standard recoveries failed, not reported
n/r*: conger detected but internal standard recoveries failed, not reported
-------
PCDD/PCDF concentrations were not quite as high as those observed from Test 7. The major
difference between Test 7 and Test 8 was the elapsed time between copper incineration and CFC-
12 incineration which allowed residual copper to be purged from the TFR. As discussed
previously, Test 7 commenced three hours after the end of copper injection in the TFR while for
Test 8, fifty-lour hours elapsed following copper injection prior to CFC-12 incineration.
These results suggest that residual copper in an incineration facility resulting from
incineration of copper-containing waste possibly promotes the formation of PCDD/PCDF during
subsequent CFC-12 incineration. Note that with sampling at the high temperature sampling
location immediately downstream of the TFR afterburner, the flue gas had a residence time of
approximately 5 seconds during which time it cooled from a peak temperature of approximately
1,000°C to approximately 600°C. When comparing the high temperature sampling location
PCDD/PCDF results of Tests 7 and 8 with those from Test 2, elevated levels of PCDD/PCDF were
found in the high temperature region of the incinerator in which copper-containing fuel had been
fired. Residual copper possibly pay an important role to promote their formation. While sampling
at the low temperature sampling location, the flue gas had an additional residence time of
approximately 5 seconds during which time it cooled further from 600°C to approximately 120°C.
The combination of the additional gas residence time and exposure to residual copper in a
temperature range which is conducive to PCDD/PCDF formation provided conditions at which
significantly more PCDD/PCDF are formed. The flue gas at the low temperature sampling location
was at a temperature of approximately 120°C, most of the cooling (600 to 120 °C) occurred is
within the PCDD/PCDF formation "temperature window" of about 200 to 450°C (Vogg and
Stieglitz, 1986; Gullett et aL, 1993). Residual copper in the incinerator facility appears to have a
stronger effect to promote PCDD/PCDF formation in the region which is within the traditional
PCDD/PCDF formation temperature window than that in the high temperature region of the
incinerator.
The results reported in this study appeal* to sugrest a significant effect of residual copper in
the incinerator on PCDD/PCDF formation during CFC-12's incineration. However, the elevated
PCDD/PCDF concentrations detected in the present study were lower than those measured in FY
91 (Hasscl, 1991) under similar CFC-12 incineration conditions. Prior to the FY 91 CFC-12
incineration tests, a solid waste which contained copper and other metals was incinerated in the
TFR facility resulting in deposition of significant ash and solid residue in the ducting downstream
of the TFR afterburner. There was a strong possibility that these deposited ash and solid residue
did not remain after the FY 91 tests. After the one test which PCDD/PCDF were sampled for and
detected at high levels, subsequently more incineration tests were conducted at much higher CFC
concentrations (14 vol.% CFC-12 in fuel and 13 vol.% CFC-11 in fuel) for the same test program
(FY 91 tests). The extremely corrosive HF and HC1, estimated to be about 10,000 ppmv each
produced from CFC incineration tests (Hassel, 1991), may have the effect of removing ash and
residue previously deposited when they passed through the incineration system. The strong
possibility of reaction between HF and HC1 with the incinerator surfaces during CFC incineration,
such as corrosive attack, was evidenced by the low fluorine and chlorine concentrations measured
in the emissions during the FY 93 tests. As little as 20% of the theoretical fluorine and chlorine
concentrations (assuming that all halogens in CFCs are converted into hydogen halides and
halogen gases) were measured at the incinerator outlet form CFC incineration (Sprinsteen et al.,
1994). The replication tests (Tests 2 and 3) in the present study may be conducted in the TFR with
much less particulate copper and other metal deposit than those for the one FY 91 test which found
high PCDD/PCDF levels, as a result of corrosive attack on the particulate desposit occurred during
the FY 91 tests.
The particulate deposit in the TFR ducting resulting from incineration of the fuel oil and an
aqueous solution containing copper in the present study were likely significantly lower than the
15
-------
paniculate deposit in the one FY 91 test which found high PCDD/PCDF levels. Therefore, the
relatively higher deposit of residue (copper and other metals) in the FY 91 study than the copper
residue deposited from the present study may have contributed to the much higher measured
PCDD/PCDF concentrations than those observed in the present study.
It should be noted that analytical difficulties were encountered that prevents reporting
PCDD/PCDF concentrations for some congeners. As a result, valid total PCDD/PCDF
concentrations cannot be reported for tests encountering these difficulties. However, the
quantitative limitations do not prohibit comparisions of the current results to the FY 91 data as
several order of magnitude differences were observed. Valid quantitative comparisions can also be
made for the copper addition tests as weel. Significantly higher PCDD/PCDF concentrations
(greater than 50%) were observed for the copper injection tests (Tests 7 and 8) although, fewer
PCDD/PCDF congener concentrations were validly reported. The analytical difficulties concerning
CFC incineration emission samples are belived caused by the large quantity of the extremely
coiTosive HF and HQ contained in the emissions. Such difficulties were also experienced in the
previous CFC incineration tests (Ryan, 1993; Springsteen et al., 1994).
3.2 HOC-141b AND RHCYCL1NG RESIDUE INCINERATION
3.2.1 Test Conditions
Three tests were conducted in the CTT during Task 3. The first test (Test 4) was a facility
system blank in which only propane was fired in the facility. During the second test (Test 5),
IICFC-141 b was incinerated in the facility at a HCFC/propane concentration of 7.4%. Finally,
during the third test (Test 6), CFC recycling residue was incinerated without any auxiliary fuel.
Individual test conditions, including HCFC-to-propane molar injection ratio, furnace firing
rate, flame stoichiometry, flame temperature, and flue gas composition ((>, CCb, CO, and NO)
are summarized in Table 5. Excellent combustion conditions were achieved for all test conditions,
including incineration of CFC recycling residue with no auxiliary fuel. In all cases, less than 35
ppinv of CO were detected in the combustion flue gas, corrected to 7% Oi.
3.2.2 CFC Recycling Residue Composition
The composition of the CFC recycling residue that was used in the Task 3 incineration tests
is shown in Table 6. The residue contained 3 ppm copper, 0.65% (6,500 ppm) chlorine, and
0.45% (4,500 ppm) fluorine. The calorific value of the residue was 44.673 kJ/kg (19.250 Btu/lb).
3.2.3 Volatile Products of Incomplete Combustion
Volatile PICs, determined from the EPA SW 846 Method 0030 sampling trains, were
measured for Tests 4, 5, and 6. During each of these tests, three sets of Method 0030 Volatile
Organics Sampling Train (VOST) tubes were collected. To measure the repeatability of the
sampling and analysis techniques, each set of VOST tubes was analyzed individually for the 72
Method 0030 volatile organics. The concentrations of volatile organics measured in the flue gas
for each set of VOST tubes for Tests 4, 5, and 6 are shown in Tables 7. 8, and 9. respectively
(given in jig/dscm @7% Oi). These tables present the calculated concentrations for only 28
individual compounds as all other compounds were not detected in any of the VOST tubes for
Tests 4, 5, and 6 and the Field Blanks. Each table presents the measured concentrations for each
VOST tube set, the blank ratio (defined as the ratio of sample divided by the field blank).
16
-------
TABLE 5. SUMMARY OF CTT TEST CONDITIONS (TASK 3)
Test Condition
b
Flue Gas Composition @ AB Outlet
Propane
Propane
HCFC
Residue
Flame
Firing
Feed
Feed
HCFC-141b
Feed
Stoichio-
Zone
Test
Rate
Rate
Rate
Concentration a
Rate
metric
Temp
°2
CO 2
NO
CO
No.
(W)
(slpm)
(slpm)
(vol. %)
(kg/hr)
Ratio
(°C)
(vol. %)
(vol. %)
(ppmv)
(ppmv)
4
20,500
12.7
0.0
0.0%
n/a
1.45
1,340
7.3
8
104
26
5
20,500
12.7
1.01
7.4%
n/a
1.47
1,350
6.7
8.4
37
32
6
20,500
12.7
0.0
0.0%
1.65
n/a
1,400
6.9
9.5
105
27
Notes:
a = (moles HCFC-141b) / [(moles propane) + (mole HCFC-141b)]
b = @ 7% oxygen in dry gas at standard conditions (101.3 Pa and 293 K)
n/a = Not applicable
-------
TABLE 6. CFC RECYCLING RESIDUE ANALYSIS
Component
Composition
(wt, %)
Water
0.06
Ash
< 0.001
Sulfur
0.09
Carbon
85.28
Hydrogen
12.43
Nitrogen
0.06
Oxygen
2.08 a
Chlorine
0.65
Fluorine
0.45
Copper
3 b
Heating Value (Low), kJ/kg
44665
Notes:
: By difference
b : M-g/g
18
-------
TABLE 7. SUMMARY OF PIC CONCENTRATIONS, TASK 3, TEST 4
EPA CFC Incineration FY 94, Task 3 FACILITY BLANK: Test 4, August 18, 1994
Flue Gas Concentration @1% 02
Test 4
- Set 1
Test 4
- Set 2
Test 4
- Set 3
C = W* 1000*13.95/(20.95-Co2)/VmStd
Concentration
Blank Ratio
Concentration
Blank Ratio
Concentration
Blank Ratio
(|Ag/dscm)
(Sample/FB)
(^.g/dscm)
(Sample/FB)
(|i.g/dscm)
(Sample/FB)
Dichlorodifluoromethane
69.5
2.7
7.3
0.3
2.5
0.1
Chlorome thane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
2-Methylpropene
1.5
nb
3.9
<
0.4
n/a
<
0.4
n/a
Bromomethane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Trichlorofluoromethane
2.7
1.3
1.1
0.6
<
0.4
n/a
Carbon Disulfide
<
0.4
n/a
1.3
nb
3.6
<
0.4
n/a
Acetone
116.7
5.3
<
0.4
n/a
5.9
0.3
Methylene Chloride
41.9
0.2
11.4
0.1
1.6
0.0
Hexane
1.1
0.1
<
0.4
n/a
<
0.4
n/a
2-Butanone
2.2
1.3
0.8
0.5
1.5
1.0
Chloroform
<
0.4
i/a
<
0.4
n/a
<
0.4
n/a
1,1,1 -Trichloroethane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Carbon Tetrachloride
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Benzene
0.5
nb
1.2
<
0.4
n/a
<
0.4
n/a
Heptane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Bromodichloromethane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Toluene
6.1
0.3
0.4
0.0
<
0.4
n/a
T etrachloroethene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Nonane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Ethyl Benzene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
m,p-xylene
0.4
0.5
<
0.4
n/a
<
0.4
n/a
o-xylene
<
0.4
n/a
<
0.4
a/a
<
0.4
n/a
Pinene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Decane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
4-Ethyltoluene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Limonene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Undecane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Dodecane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
-------
TABLE 8. SUMMARY OF PIC CONCENTRATIONS, TASK 3, TEST 5
EPA CFC Incineration FY 94, Task 3 HCFC-141b: Test 5, August 18, 1994
Flue Gas Concentration @ 1% 02
Test 5
- Set 1
Test 5
- Set 2
Test 5
- Set 3
C = W* 1000*13.95/(20.95-Co2)/VmStd
Concentration
Blank Ratio
Concentration
Blank Ratio
Concentration
Blank Ratio
Qag/dscm)
(Sample/FB)
(|i,g/dscm)
(Sample/FB)
(|jg/dscm)
(Sample/FB)
Dichlorodifluoromethane
31.7
0.5
23.3
0.4
77.9
1.2
Chloromethane
<
0.4
n/a
7.8
4.4
6.8
3.4
2-Methylpropene
0.9
nb
2.5
0.7
nb
1.9
0.4
nb
1.1
Bromomethane
0.4
nb
1.1
0.4
nb
1.1
<
0.4
n/a
Trichlorofluoromethane
0.5
0.8
<
0.4
n/a
11.7
16.7
Carbon Disulfide
<
0.4
n/a
<
0.4
n/a
0.7
nb
1.8
Acetone
48.8
3.3
71.3
5.2
83.8
5.3
Methylene Chloride
72.6
0.7
15.2
0.2
299.3
2.7
Hexane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
2-Butanone
1.5
1.2
1.1
0.8
1.9
1.3
Chloroform
26.9
nb
72.1
1.6
nb
4.4
15.0
nb
37.1
1,1,1 -T richloroethane
<
0.4
i/a
<
0.4
n/a
<
0.4
l/a
Carbon Tetrachloride
0.7
nb
1.8
<
0.4
n/a
<
0.4
n/a
Benzene
1.0
nb
2.7
<
0.4
n/a
<
0.4
n/a
Heptane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Bromodichloromethane
0.4
nb
1.1
<
0.4
n/a
<
0.4
n/a
Toluene
7.3
6.5
0.6
0.5
0.5
0.4
T etrachloroethene
<
0.4
n/a
<
0.4
n/a
<
0.4
;l/a
Nonane
0.4
nb
1.0
<
0.4
n/a
<
0.4
n/a
Ethyl Benzene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
m,p-xylene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
o-xylene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Pinene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Decane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
4-Ethyltoluene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Limonene
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
Undecane
<
0.4
i/a
<
0.4
n/a
<
0.4
n/a
Dodecane
<
0.4
n/a
<
0.4
n/a
<
0.4
n/a
-------
TABLE 9. SUMMARY OF PIC CONCENTRATIONS, TASK 3, TEST 6
EPA CFC Incineration FY 94, Task 3 CFC RECYLING RESIDUE: Test 6, August 23, 1994
PIC
Test 6
- Set 1
Test 6
- Set 2
Test 6
- Set 3
Test 6
Concentration
Blank Ratio
Concentration
Blank Ratio
Concentration
Blank Ratio
Avg. Cone.
Deviation
(Mg/dscm)
(Sample/FB)
(jig/dscm)
(Sample/FB)
(ug/dscm)
(Sample/FB)
(ug/dscm)
(%)
Dichlorodifluoromethane
5.5
0.3
NS
n/a
1.6
0.1
3.5
107.5
Chloromethane
2.6
0.0
NS
n/a
1.6
0.0
2.1
45.0
2-Methylpropene
0.7
0.5
NS
n/a
<
0.4
n/a
0.5
67.6
Bromomethane
<
0.4
n/a
NS
n/a
<
0.4
n/a
0.4
4.1
Trichlorofluoromethane
1.6
1.1
NS
n/a
<
0.4
n/a
1.0
125.1
Carbon Disulfide
<
0.4
i/a
NS
i/a
<
0.4
i/a
0.4
4.1
Acetone
15.4
2.1
NS
n/a
22.2
3.1
18.8
36.4
Methylene Chloride
12.6
0.9
NS
n/a
1.3
0.1
7.0
161.4
Hexane
1.3
nb
3.6
NS
n/a
<
0.4
n/a
0.9
114.8
2-Butanone
1.0
1.1
NS
i/a
2.9
3.4
2.0
96.7
Chloroform
<
0.4
i/a
NS
n/a
<
0.4
n/a
0.4
4.1
1,1,1 -Trichloroethane
1.4
nb
3.7
NS
n/a
<
0.4
n/a
0.9
117.4
Carbon Tetrachloride
0.5
nb
1.4
NS
n/a
<
0.4
:l/a
0.4
37.3
Benzene
1.9
nb
5.1
NS
n/a
<
0.4
n/a
1.1
136.3
Heptane
0.5
nb
1.3
NS
n/a
<
0.4
n/a
0.4
26.2
Bromodichloromethane
<
0.4
n/a
NS
n/a
<
0.4
n/a
0.4
4.1
Toluene
31.8
23.0
NS
n/a
1.5
1.1
16.6
182.2
T etrachloroethene
1.4
nb
3.7
NS
n/a
<
0.4
n/a
0.9
117.2
Nonane
0.6
nb
1.6
NS
n/a
<
0.4
n/a
0.5
51.7
Ethyl Benzene
0.7
nb
1.9
NS
n/a
<
0.4
n/a
0.5
64.3
m,p-xylene
1.5
nb
4.0
NS
n/a
<
0.4
n/a
0.9
121.8
o-xylene
0.7
nb
1.7
NS
n/a
<
0.4
n/a
0.5
57.2
Pinene
0.7
nb
1.9
NS
n/a
<
0.4
n/a
0.5
64.8
Decane
0.6
nb
1.7
NS
n/a
<
0.4
n/a
0.5
54.5
4-Ethyltoluene
0.6
nb
1.5
NS
n/a
<
0.4
n/a
0.5
41.3
Limonene
0.4
nb
1.1
NS
n/a
<
0.4
n/a
0.4
15.4
Undecane
1.1
nb
3.0
NS
n/a
<
0.4
n/a
0.7
102.0
Dodecane
1.7
nb
4.5
NS
n/a
<
0.4
n/a
1.0
129.1
-------
The concentrations of volatile organics in the flue gas for all three tests were very low, at or
near the method detection limits. During Test 4 (facility system blank), no volatile organic
compounds were measured at levels significantly higher than the background levels measured in
the field blank, i.e. more than 5 times field blank levels. During Test 5 (HCFC-141b incineration),
chloroform was measured at an average concentration of 14.5 jig/dscm. The concentrations of
acetone and methylene chloride were 67.9 and 129 jig/dscm, respectively, however, the
concentrations of these compounds in the associated field blank were nearly at these same levels.
As these two compounds are used in the recovery of the Method 23 PCDD/PCDF sampling train,
the concentrations in the Test 5 samples and associated field blank are likely due to sample
contamination during storage and shipping. During Test 6 (CFC Recycling Residue incineration),
no compounds were measured at significant concentrations. For the analysis in all cases, surrogate
recoveries were within acceptable limits. The measured low levels of volatile PICs from
incineration of the HCFC and the CFC recycling residue are similar to those observed from
incineration of pure CFCs in previous studies (Hassel, 1991; Springsteen and Hassel, 1993)
3.2.4 PCDD/PCDF
The measured PCDD/PCDF concentrations for the Task 3 tests (CTT tests), shown in
ng/dscm @ 7% O2, arc presented in Table 10. Test 4 was a facility blank test to measure the
background contamination of PCDD/PCDF during propane combustion in the CTT. A moderate
concentration of PCDD/PCDF was detected (~ 3 ng/dscm) in the facility blank test. Recoveries for
some internal furnan standards were failed during the PCDD/PCDF analysis. Duplicate analysis
was performed to confirm these facility blank results.
HCFC-141b was incinerated in the CTT at a volumetric concentration of 7.4% in propane
fuel during Test 5. During this test, two Method 23 sampling trains collected samples
simultaneously at the downstream (location #2) sampling location. Results of the analysis of these
samples indicate PCDD/PCDF concentrations of 2 and 10.8 ng/dscm for the two samples. The
low PCDD/PCDF levels are closed to those for the facility blank test.
CFC recycling residue was incinerated in Test 6. Two simultaneous Method 23 samples
were collected at the downstream (location #2) sampling location. As shown in Table 10, the
concentrations of PCDD/PCDF during these tests were 52 and 61 ng/dscm. Higher PCDD/PCDF
emissions from incineration of the CFC recycle residue than those from facility blank may be
caused by the presence of trace level of copper contaminant in the recycling residue. Copper is a
well known catalyst to promote PCDD/PCDF formation.
Note that the flue gas temperature for all three tests at the Method 23 sampling location
(location #2) was approximately 225°C, which is within the PCDD/PCDF formation "temperature
window" of about 200 to 450°C (Vogg and Stieglitz, 1986; Gullett et al., 1993). The residence
time between the 1,45Q°C flame zone temperature and this sampling location was approximately
6.2 seconds, more than sufficient time for the De Novo synthesis of dioxins and furans.
However, results from the present study indicate that incineration of the HCFC and the CFC
recycling residue generated very low levels of PCDD/PCDF emissions during this temperature
window. The lack of sufficient level of copper contaminant presented in the HCFC and the CFC
recycling residue to promote PCDD/PCDF formation may be the reason for the observed low
PCDD/PCDF emissions. Comparable levels of PCDD/PCDF emissions were also observed from
incineration of pure CFC-12 in the FY 92 study (Springsteen and Hassel, 1993).
22
-------
TABLE 10. SUMMARY OF PCDD/PCDF FLUE GAS CONCENTRATIONS, TASK 3
Congener
PCDD/PCDF Concentration in Flue Gas (ng/dscm @7% 02)
Test 4: Facility Blank
Test 5: HCFC-141b
Test 6: CFC Recycling Residue
#la
#2a
#la
#2a
#la
#2a
PCDD
TCDD
n/d
n/r
n/d
n/d
n/d
n/d
PeCDD
n/d
i;; iliiliilii
iiiiiiiiiiiii
III;
n/d
n/d
HxCDD
0.2
n/r
n/d
n/d
n/d
n/d
HpCDD
n/d
n/d
n/d
n/d
0.3
n/d
OCDD
n/d
n/d
n/d
n/d
n/d
n/d
Total PCDD
0.2
n/d
n/d
PCDF
TCDF
n/r*
n/r*
¦¦til
n/r
PeCDF
n/d
n/d
n/d
n/d
n/d
n/d
HxCDF
n/r
HBglllE
Kuliilliiil
IIIIIIIIIIIII
n/d
HpCDF
n/r
n/r*
n/r*
29.1
6TT™
OCDF
3.3
WS9M
2
0.9
0.5
n/d
Total PCDF
3.3
'2.7'
2
10.8
52
61.1
Total
3.5
illllllll
2
10.8
52.3
61.1
Notes: a = All gas samples collected at ~230°C
n/d = not detected
n/r = congener not detected but internal standard recoveries failed, not reported
n/r* = congener detected but internal standard recoveries failed, not reported
-------
SECTION 4
CONCLUSIONS
A series of tests conducted in two bench-scale combustion facilities demonstrated that:
~ High concentrations of PCDD/PCDF (23,800 ng/dscm) measured in a previous FY
91 study during incineration of CFC-12 in the turbulent flame reactor could not be
repreated in the present study. Replication tests conducted in the same facility
under similar operating conditions resulted in PCDD/PCDF concentrations of 118
ng/dscm @ 7% O2.
• Residual copper retained in an incineration facility appears to promote the formation
of PCDD/PCDF during incineration of CFC-12 which does not contain copper.
Tests conducted in the TFR facility resulted in measured PCDD/PCDF
concentrations of 386 - 454 ng/dscm @ 7% O2 during incineration of CFC-12
which followed incineration of copper-containing compounds. Previous studies
have shown evidence of PCDD/PCDF formation during incineration of chlorinated
wastes in the presence of trace copper concentrations in systems with sufficient
residence time in the PCDD/PCDF temperature formation window. This
promotional effect of copper may limit the types of waste materials which can be
incinerated prior to incineration of the highly chlorinated CFCs. The present results
suggest that CFC incineration may best be performed in incinerators which do not
treat any copper-containing wastes, in order to eliminate the possibility that residual
copper retained in the incinerators could promote PCDD/PCDF emissions during
subsequent CFC incineration.
~ Incineration can be used to destroy HCFC-141 b without generating significant
quantities of volatile organic PICs and PCDD/PCDF.
* Incineration can be used to destroy the oily residue generated during CFC recycling
without generating significant quantities of volatile organic PICs or PCDD/PCDF.
The CFC recycling residue which was tested contained 3 ppm copper.
24
-------
REFERENCES
EPA Method 2, "Determination of Stack Gas Velocity and Volumetric Flow Rate," Code of
Federal Regulations, Title 40, Part 60, Appendix A, U.S. Government Printing Office,
Washington, DC (1991).
EPA Method 3A, "Determination of Oxygen and Carbon Dioxide Concentrations in Emissions
From Stationary Sources (Instrumental Analyzer Procedure)," Code of Federal
Regulations, Title 40, Part 60, Appendix A, U.S. Government Printing Office,
Washington, DC (1991).
EPA Method 7E, "Determination of Nitrogen Oxides Emissions From Stationary Sources
(Instrumental Analyzer Procedure)," Code of Federal Regulations, Title 40, Part 60,
Appendix A, U.S. Government Printing Office, Washington, DC (1991).
EPA Method 10, "Determination of Carbon Monoxide Emissions From Stationary Sources," Code
of Federal Regulations, Title 40, Part 60, Appendix A, U.S. Government Printing Office,
Washington, DC (1991).
EPA Method 23, "Determination of Polychlorinated Dibenzo-p-dioxins and Polychlorinated
Dibenzofurans from Stationary Sources," Code of Federal Regulations, Title 40, Part 60,
Appendix A, U.S. Government Printing Office, Washington, DC (1991).
EPA SW 846 Method 0030, "Volatile Organic Sampling Train," Test Methods for Evaluating Solid
Wastes, Volume II, EPA SW 846 (NTIS PB88-239223), Environmental Protection
Agency, Office of Solid Waste, Washington, DC, September (1986).
EPA SW 846 Method 5040, "Protocol for Analysis of Sorbent Cartridges from Volatile Organic
Sampling Train," Test Methods for Evaluating Solid Wastes, Volume /, EPA SW 846
(NTIS PB88-239223), Environmental Protection Agency, Office of Solid Waste,
Washington, DC, September (1986).
EPA SW 846 Method 8240, "Gas Chromatography/Mass Spectrometry for Volatile Organics,"
Test Methods for Evaluating Solid Wastes, Volume /, HP A SW 846 (NTIS PB88-
239223), Environmental Protection Agency, Office of Solid Waste, Washington, DC,
September (1986).
EPA SW 846 Method 8280, "The Analysis of Polychlorinated Dibenzo-p-dioxins and
Polychlorinated Dibenzofurans," Test Methods for Evaluating Solid Wastes, Volume I,
EPA SW 846 (NTIS PB88-239223). Environmental Protection Agency, Office of Solid
Waste, Washington, DC, September (1986).
Gullett, B., K. Bruce, and L. Beach, "The Effect of Metal Catalysts on the Formation of
Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Precursors,"
Chemosphere, Vol. 20, pp. 1945-1952 (1990).
25
-------
Gullett, B., P. Lemieux, J, Kilgroe, and J. Dunn, "Formation and Prevention of Polychlorinated
Dibenzo-p-dioxin and Polychlorinated Dibenzofuran During Waste Combustion: The Role
of Combustion and Sorbent Parameters," Proceedings of an International Specialty
Conference on Municipal Waste Combustion» Air and Waste Management Association,
VIP-32, pp. 171-193, Williamsburg, VA, March (1993),
Hagenmaier, H., M. Kraft, H. Brunner, and R. Hagg, "Catalytic Effects of Fly Ash from Waste
Incineration Facilities on the Formation and Decomposition of Polychlorinated Dibenzo-p-
dioxins and Polychlorinated Dibenzofurans," Environmental Science and Technology, Vol
21, pp. 1080 1084 (1987).
Hassel, G., "Experimental Investigation of PIC Formation in CFC Incineration," EPA-600/7-91-
010 (NTIS PB92-126952), Environmental Protection Agency, Air and Energy Engineering
Research Laboratory, Research Triangle Park, NC, December (1991).
Naegeli, D,, R. Robledo, and J. Erwin. "Pyrolytic Disposal of Chlorofluorohydrocarbons," 1992
Fall Meeting of the Western States Section of the Combustion Institute, Berkeley, CA,
paper 91-60, October (1992).
Pedersen, J. and B. Kallman, "Investigation of the Thermal Destruction of Chlorofluoromethanes
in a Turbulent Flame," Chemosphere, Vol. 24, No, 2, pp. 117-126 (1992).
Ryan, J., "Characterization of the Organic Emissions from the Thermal Destruction of CFCs,"
EPA/600/R-93/103 (NTIS PB93-205 557), Environmental Protection Agency, Air and
Energy Engineering Research Laboratory, Research Triangle Park, NC, June (1993).
Ryan, J,, C,W. Lee, and S, Kora, "Organic Emissions from Pilot-Scale Incineration of CFCs,"
Proceedings of the 1993 Incineration Conference, Knoxville, TN, pp. 165-171, May
(1993).
Springsteen, B. and G. Hassel, "Experimental Investigation of PIC Formation in CFC-12
Incineration," EPA/600/R-93/078 (NTIS PB93-191294), Environmental Protection
Agency, Air and Energy Engineering Research Laboratory, Research Triangle Park, NC,
May (1993).
Springsteen, B„ L, Ho, and G. Kryder, "Experimental Investigation of PIC Formation During the
Incineration of Recovered CFC 11," EPA/600/R-94/163 (NTIS PB94-214772),
Environmental Protection Agency, Air and Energy Engineering Research Laboratory,
Research Triangle Park, NC, September (1994).
Stieglitz, L., G, Zwick, J. Beck, W. Roth, and H, Vogg, "On the De-Novo Synthesis of
PCDD/PCDF's on Fly Ash of Municipal Waste Incinerators," Chemosphere, Vol. 18, pp.
1219-1226 (1989).
Tokuhashi, K., Y. Urano, S. Iloriguchi, and S. Kondo, "Incineration of CFC-12 by Burner
Methods," Combustion Science and Technology, Vol. 72, pp. 117-129 (1990).
Vogg, H. and L. Stieglitz, "Thermal Behavior of PCDD/PCDF in Fly Ash from Incinerators,"
Chemosphere, Vol. 15, pp. 9-12 (1986).
26
-------
APPENDIX A
CEMS DATA AND CALCULATIONS
27
-------
Date: 8/2/94 *Te$~f ( Facility: TFR
Test Number. 08/02/01 Operator: B J.
Time Started: 14:16
Time Ended: 16:30
02
@ positive
(%)
02
@ HT
(%)
02
#LT
(%)
C02
(%)
NOx
(ppm)
CO
(ppm)
Span Gas Concentration, Gs
20.90
25.0
2040
180
Initial Zero Response, Zi
0.00
0.0
0
0
Initial Span Response, Si
20.90
25.0
2040
180
Final Zero Response, Zf
0.00
0.0
0
0
final Span Response, Sf
20.90
25.0
2040
180
Avg. Zero Response, Zavg
0.00
0.0
0
0
Avg. Span Response, Savg
20.90
25.0
2040
180
Zero Drift, Zd = Zf Zi
0.00
0.0
0
0
Span Drift, Sd = Sf-Si
0.00
0.0
0
0
Gas Response, Davg
a/a
6.65
11.00
13.0
800
28
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
n/a
n/a
11.00
13.0
800
28
Gas Concentration @ HT 02
GC = GA*(21-HTO2%)/(21-%02)
n/a
6.65
n/a
18.7
1148
40
Gas Concentration €> 7% 02
GC = GA*14/<21-%02)
n/a
n/a
n/a
18.2
1120
39
28
-------
Date: 8/2/94 I Facility: TFR
Test Number 08/02/02 Operator. B J.
Time Started: 18:04
Time Ended: 20:18
02
@ positive
(%)
02
% HT
<%)
02
@LT
(%)
C02
(%)
NOx
(ppm)
CO.
(ppm)
Spaa Gas Concentration, Gs
20.90
25.0
2040
180
Initial Zero Response, Zi
0.00
0.0
0
0
Initial Span Response, Si
20.90
25.0
2040
180
Final Zero Response, Zf
0.00
0.0
0
0
Final Span Response, Sf
20.75
24.8
2025
188
Avg. Zero Response, Zavg
0.00
0.0
* 0
0
Avg. Span Response, Savg
20.83
24.9
2033
184
Zero Drift, Zd = Zf-Zi
0.00
0.0
0
0
Span Drift, Sd = Sf-Si
-0.15
-0.2
-15
8
Gas Response, Davg
n/a
6,80
8.50
16.4
950
31
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
n/a
n/a
8.53
16.5
954
30
Gas Concentration @ HT 02
GC = GA*(21 -HT02%)/(21 -%02)
n/a
6.82
n/a
18.7
1084
34
Gas Concentration @ 7% 02
GC = GA*14/(21-%02)
n/a
n/a
n/a
18.5
1071
34
29
-------
Date: 8/3/94 1>»t 2 Facility: TFR
Test Number. 08/03/01 Operator BJ.
Time Started: 17:12
Time Ended: 19:30
02
02
02
C02
NOx
CO
@ positive
(%)
@ HT
{%)
@LT
(%)
(%>
(ppm)
(ppm)
Span Gas Concentration, Gs
4.05
25.0
2040 "
180
Initial Zero Response, Zi
0.00
0.0
0
0
Initial Span Response, Si
4.05
25.0
2040
180
Final Zero Response, Zf
0.00
0.0
0
5
Final Span Response, Sf
3.95
25.1
1943
183
Avg. Zero Response, Zavg
0.00
0.0
0
3
Avg. Span Response, Savg
4.00
25.1
1992
182
Zero Drift, Zd = Zf-Zi
0.00
0.0
0
5
Span Drift, Sd - Sf-Si
-0.10
0.1
-97
3
Gas Response, Davg
7.25
7.45
8.50
17.5
438
44
Actual Gas Concentration
Ga = (Davg-Zavg) »Gs/(Savg-Zavg
7.34
n/a
8.61
17.5
449
42
Gas Concentration # HT 02
n/a
7.54
n/a
19.0
487
45
GC = GA*(21-HT02%)/(21-%G2)
Gas Concentration @ 7% 02
n/a
n/a
n/a
19.7
507
47
GC = GA*14/(21-%02)
30
-------
Date: 8/4/94 TH"f 3 Facility: TFR
Test Number 08/04/01 Operator. B.J.
Time Started: 16:10
Time Ended: 18:16
02
@ positive
(%)
02
@ HT
(%)
02
@LT
(%)
C02
(%)
NOx
(ppm)
CO
(ppm)
Span Gas Concentration, Gs
4.05
25.0
2040
180
Initial Zero Response, 71
0.00
0.0
0
0
Initial Span Response, Si
4.05
25.0
2040
180 -
Final Zero Response. Zf
0.20
0.0
0
3
Final Span Response, Sf
4.22
24.8
2075
182
Avg. Zero Response, Zavg
0.10
0.0
0
2
Avg. Span Response, Savg
4.14
24.9
2058
181
Zero Drift, Zd = Zf-Zi
0.20
0.0
0
3
Span Drift, Sd = Sf-Si
0.17
-0.2
35
2
Gas Response, Davg
6.95
7.20
9.00
16.2
625
45
Actual Gas Concentration
Ga = (Davg-Zavg) *GsJ(S avg-Zavg
6.88
n/a
8.93
16.3
620
44
Gas Concentration @ HT 02
GC = GA*(21 -HT02%)/(21 -%02)
n/a
7.13
n/a
18.7
712
50
Gas Concentration @7% 02
GC = GA*14/(21-%02)
n/a
n/a
n/a
18.9
719
51
31
-------
Date: 8/17/94 ~J>*f Y Facility: CTT
Test Number 08/17/01 Operator: B.J.
Time Started: 17:57
Time Ended: 19:57
02
@ positive
(%)
02
<§>HT
(%)
02
<§ LT
(%)
C02
(%)
NO*
(ppm)
CO
(ppm)
Span Gas Concentration, Gs
4.05
25.0
80.5
180
Initial Zero Response, Zi
0.00
0.0
0.0
0
Initial Span Response, Si
4.05
25.0
80.5
180
Final Zero Response, Zf
-0.13
0.0
-3.8
0
Final Span Response, Sf
3.98
24.8
72.0
180
Avg. Zero Response, Zavg
-0.07
0.0
-1.9
0
Avg. Span Response, Savg
4.02
24.9
76,3
180
Zero Drift, Zd = 71-71
-0.13
0.0
-3.8
0
Span Drift, Sd = Sf-Si
-0.07
-0.2
-8.5
0
Gas Response, Davg
6.94
7.25
8.40
7,2
89.0
23
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
n/a
n/a
8.40
7.2
93.6
23
Gas Concentration @ HT 02
GC = GA*(2 l-HTO2%)/(21-%02)
n/a
7.26
n/a
7.9
102.1
25
Gas Concentration @7% 02
GC = GA* 14/(21-%02)
n/a
n/a
n/a
8.0
104.1
26
32
-------
Date: 8/18/94 ~J>,t Facility: CTT
Test Number. 08/18/01 Operator BJ.
Time Started: 16:57
Tune Ended: 19:05
02
@ positive
(%)
02
©HT
(%)
02
@ LT
(%)
C02
(%)
NOx
(ppra)
CO
(ppm)
Span Gas Concentration, Gs
4.05
25.0
80.5
180
Initial Zero Response, Zi
0.00
0.0
0.0
0
Initial Span Response, Si
4.05
25.0
80.5
180 ¦
Final Zero Response, Zf
0.11
0.0
-2.5
0
Final Span Response, Sf
4.18
24.7
75.0
180
Avg. Zero Response, Zavg
0.06
0.0
-1.3
0
Avg. Span Response, Savg
4.12
24.9
77.8
180
Zero Drift, Zd = Zf-Zi
0.11
0.0
-2.5
0
Span Drift, Sd = Sf-Si
0.13
-0.3
-5.5
0
Gas Response, Davg
n/a
6.80
7.10
8.3
35.0
32
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
n/a
n/a
7,03
8.4
36.9
32
Gas Concentration @ HT02
GC = G A * (21 -HT02%y(21 - %02)
n/a
6.73
n/a
8.5
37.7
33
Gas Concentration @ 7% 02
GC = GA*14/(21-%02)
n/a
n/a
n/a
8.4
37.0
32
33
-------
Date: 8/23/94 -6 Facility: CTT
Test Number: 08/23/01 Operator: BJ.
Time Started: 14:10
Time Ended: 16:10
02
@ positive
(%)
02
@ HT
(%)
02
@LT
(%)
C02
(%)
NOx
(ppm)'
CO
(ppm)
Span Gas Concentration, Gs
4.05
25.0
80.5
180
Initial Zero Response, Zi
0.00
0.0
0.0
0
Initial Span Response, Si
4.05
25.0
80.5
180
Final Zero Response, Zf
-0.05
0.0
3.0
0
Final Span Response, Sf
4.01
25.0
85.0
175
Avg. Zero Response, Zavg
4X03
0.0
1.5
0
Avg. Span Response, Savg
4.03
25.0
82.8
178
Zero Drift, Zd = Zf-Zi
-0.05
0.0
3.0
0
Span Drift, Sd = Sf-Si
-0.04
0.0
4.5
-5
Gas Response, Davg
n/a
6.90
7.25
9.3
105.0
26
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
n/a
n/a
7.27
9.3
102.5
26
Gas Concentration @ HT 02
GC = GA*f21-HTO2%)/(21-%02)
n/a
6.92
n/a
9.5
105.2
27
Gas Concentration @7% 02
GC = GA*14/(21-%02)
n/a
n/a
n/a
9.5
104.5
27
34
-------
Date: 8/26/94 ~T<">4 ? Facility: TFR
Test Number. 08/26/01 Operator: B.J.
Time Started: 13:30
Time Ended: 15:30
1
<
02
g> positive
(%)
02
@ HT
(%}
02
@ LT
(%)
C02
(%)
NO
(ppm)
CO
(Ppm)
Span Gas Concentration, Gs
4.05
25.0
81
180
Initial Zero Response, Zi
0.00
0.0
0
0
Initial Span Response, Si
4.05
25.0
81
180
Final Zero Response, Zf
0.15
0.0
1
0
Final Span Response, Sf
4.18
25.1
85
180
Avg, Zero Response, Zavg
0.08
0.0
1
0
Avg. Span Response, Savg
4,12
25.1
83
180
Zero Drift, Zd = Zf-Zi
0.15
0.0
1
0
Span Drift, Sd = Sf-Si
0.13
0.1
5
0
Gas Response, Davg
6.90
7.15
9.40
16.6
530
36
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
6.84
n/a
9,35
16.6
518
36
Gas Concentration @ HT 02
GC = GA*(21-HT02%)/(21-%Q2)
n/a
7.09
n/a
19.8
619
43
Gas Concentration @7% 02
GC = G A * 14/(21 -%02)
n/a
n/a
n/a
19.9
623
43
35
-------
Date: 8/29/94 TWf d Facility: TFR
Test Number: 08/29/01 Operator BJ.
Time Started: 13:35
Time Ended: 15:35
02
@ positive
(%)
02
@ HT
(%)
02
@ LT
(%)
C02
(%)
NO
(ppm)
CO
(ppm)
Span Gas Concentration, Gs
4.05
25.0
80.5
180
Initial Zero Response, Zi
0.00
0.0
0.0
0
Initial Span Response, Si
4.05
25.0
80.5
180
Final Zero Response, Zf
0.14
0.0
3.0
5
Final Span Response, Sf
4.20
24.9
86.0
184
Avg. Zero Response, Zavg
0.07
0.0
1.5
3
Avg. Span Response, Savg
4.13
24.9
83.3
182
Zero Drift, Zd = Zf-Zi
0.14
0.0
3.0
5
Span Drift, Sd = Sf-Si
0.15
-0.1
5.5
4
Gas Response, Davg
7,00
7.50
9.70
16.0
900.0
40
Actual Gas Concentration
Ga = (Davg-Zavg)*Gs/(Savg-Zavg
6.92
n/a
9.62
16.0
884.8
38
Gas Concentration @ HT 02
GC = GA*(21-HTO2%)/(21-%02)
n/a
7.42
n/a
19.1
1055.6
45 ¦
Gas Concentration @ 7% 02
GC = GA*14/(21-%02)
n/a
n/a
n/a
19.7
1088.3
46
36
-------
APPENDIX B
EPA METHOD 23 (PCDD/PCDF) DATA AND CALCULATIONS
37
-------
T<«U I
CLIENT / TEST PROGRAM: EPA/CFCs, TaslrrT* DATE: 8/2/94 8/2/94 8/3/94 8/3/94 8/4/94 8/4/94 8/4/94
TEST SITE FACILITY: TFR OPERATOR: D.L. D.L. DL DL DL DL DL
DATA ENTERED BY: G.K.
DATA ENTRY FOR STACK CONDITIONS
SYMBOL
UNITS
TEST 1
TEST 2
TEST 3
TEST 4
TEST 5
TEST 6
TEST 7
TFR
TFR
TFR
TFR
TFR
, TFR
TFR
080201-SB#1
080201-SB#2
080301-HT
080301-LT
080401 -HT
080401-LT
080401-FB
ROUND DUCT DIAMETER
ds
inches
3.75
3.75
3.75
3.75
3.75
3.76
NOZZLE DIAMETER
dn
inches
0.75
0.75
0.75
0.75
0.75
0.75
AVERAGE FLUE GAS TEMPERATURE
Ts
0 F
252
244
1140
223
1130
220
AVERAGE METER TEMPERATURE
Tm
•F
108
101
109
109
114
113
BAROMETRIC PRESSURE
Pbar
in. Hg
29.84
29.84
29.88
29.89
29.85
29.85
FLUE STATIC PRESSURE
Pg
in. H20
-8
-2
-1
-1
-1
-1
AVG. DELTA H
AH
In. H20
2
2
2
2
2
2
PITOT COEFFICIENT
Cp
-
n/a
n/a
n/a
n/a
n/a
n/a
GAS SAMPLE VOLUME
Vm
cubic tt.
102.69
99.049
98.83
100.195
91.06
91.36
METER CALIBRATION FACTOR
Y
-
0.975
0.975
0.997
1.0027
0.997
1.0027
TOTAL SAMPLING TIME
mln
minutes
134
134
138
138
126
126
FLUE GAS OXYGEN
Co2
%
11
8.53
7.54
8.61
7.13
8.93
FLUE GAS CARBON DIOXIDE
Cco2
%
13
16.5
19
17.5
18.7
16.3
TOTAL IMPINGER GAIN (WATER)
Ww
grams
356.8
407
516.5
490.4
508.9
417.4
calculated stack coNDmoNs
Symbol
UNITS
TEST \
TEST 2
TEST 3
TEST 4
TESTS
TEST 6
" TEST 1
TFR
TFR
TFR
TFR
TFR
TFR
TFR
080201-SB#1
080201 -SB#2
080301-HT
080301-LT
080401-HT
080401-LT
080401-FB
RozZLE AREA, An « [x(dn)"2y4
An
sq. in.
0.44
0.44
0.44
0.44
0.44
0.44
STACK AREA, As - [x"(ds)"2}/576 (ROUND)
As
sq.leet
0.08
0.08
0.08
0.08
0.08
0.08
AVG. STACK TEMPERATURE, Ts . Fs + 460
Ts
• R
712
704
1600
683
1590
680
AVG. METER TEMPERATURE, Tm » Fm + 460
Tm
0 R
568
561
569
569
574
573
GAS SAMPLE VOLUME AT STD CONDITIONS,
VmStd - 17.647 Y (Vm/Tm) (Pbar + AH/13.6) 0 68 °F
VmStd
cubic tt.
93.28
91.10
91.76
93.59
83.73
84.63
VOLUME OF WATER VAPOR, VwStd « 0.04718*Ww
VwStd
cubic tt.
16.83
19.20
24.37
23.14
24.01
19.69
MOISTURE FRACTION, Bws «VwStd/(VmStd + VwStd)
Bws
--
0.15
0.17
0.21
0.20
0.22
0.19
DRY STACK GAS MOL. WEIGHT, Md - 0.32(Co2)+
0.44(Cco2)+0.28{100-(Co2)-(Cco2)]
Md
g/g-mote
30.52
30.98
31.34
31.14
31.28
30.97
WET STACK GAS MOLECULAR WEIGHT,
28.52
Mw » Md(1-Bws)+18.0(Bw8)
Mw
g/g-moie
28.61
28.72
28.54
28.54
28.32
ABSOLUTE STACK PRESSURE, Ps - Pbar + Pg/13.6
Ps
In. Hg
29.25
29.69
29.81
29.82
29.78
29.78
DRY FLUE GAS FLOWRATE
Qfgd
dsct/min
22.52
18.04
14.33
15.56
14.08
16.19
WET FLUE GAS FLOWRATE, Qfgw - Qfgd/(1-Bws)
Qwfg
wsd/min
26.58
21.84
18.14
19.41
18.12
19.96
ACTUAL FLUE GAS FLOWRATE, Qfga - Qfgw*Ts/540
Qfga
ad/rnin
35.71
29.01
54.75
25.01
54.35
25.61
GAS VELOCITY, v - Qfgw/(As*60)
V
ft/s
7.76
6.30
11.90
5.43
11.81
5.56
ISOKINETIC RATE,
95.36
116*97
109.84
119.09
104.69
I» la.eiTi'VmStdHPiVAn'mln'M-Bw#)!
1
%
79.40
-------
— —1
"TOT
V£sf 2"
TEST 3
TEST 4
TEST 5
TEST 6
TEST 7
TFR
TFR
TFR
TFR
TFR
TFR
TFR
080201-SB#1
080201-SB#2
080301-HT
080301-LT
080401-HT
080401-LT
080401-FB
i
Total TCDO
Wl
ng
NC
ND
ND
ND
n/a
ND
ND
ToUl P*CDD
Wl
ng
NC
ND
ND
0.793
n/a
ND 1
ND
ToUl HxCDD
Wi
ng
NC
ND
ND
1.016
n/a
ND
ND
ToUl HpCDD
Wi
ng
NC
ND
ND
3.712
n/a
8.35b
ND
OCDD
Wi
ng
ND
ND
2.174
5.065
n/a
14.31
ND
TOTAL PCDD«
Wpcdd
ng
2.174
10.586
22.669
Total TCDF .
Wl
ng
NC
ND
1.95
9.654
n/a
15.18
ND
Total PaCDF
WI
ng
NC
ND
0.646
8.88
n/a
19.1
ND
Total HxCDF
Wl
ng
NC
ND
2.369
10.76
n/a
34.28
ND
Total HpCDF
Wl
ng
NC
ND
4.794
25.13
n/a
94.98
ND
OCDF
Wl
ng
NC
ND
3.323
12.68
n/a
56.7
ND
TOTAL PCDF*
Wpcdl
ng
13.082
67.104
220.24
TOTAL PCDD/PCDFs
Wt
ng
ND
ND
15.256
77.69
n/a
242.909
ND
FLUE OAfi CONCENTRATION ft 7% 02
SYMBOL
UNITS
TEST 1
TEST 2
TESTS
TEST 4
TEST 5
TEST 6
TEST 7
C « 35.32*13.95*Wl/JVmSmpl*(20.95-Co2)]
TFR
TFR
TFR
TFR
TFR
TFR
TFR
080201-SB#1
080201-SB#2
080301-HT
080301-LT
080401-HT
080401-LT
080401-FB
Total TCDO
CI
ng/dscm
<
<
<
<
n/a
<
<
Total PaCDD
Ct
ng/dscm
<
<
<
0.34
n/a
<
<
Total HxCDO
Ct
ng/dscm
<
<
<
0.43
n/a
<
<
Total HpCDD
Ct
ng/dscm
<
<
<
1.58
n/a
4.05
<
OCDD
Ct
ng/dscm
<
<
0.87
2.16
n/a
6.93
<
TOTAL PCDD*
Ctpcdd
ng/dscm
0.87
4.52
10.98
Total TCDF
Ct
ng/dscm
<
<
0.78
4.12
n/a
7.35
<
Total P*CDF
Ct
ng/dscm
<
<
0.26
3.79
n/a
9.25
<
Total HxCDF
Ct
ng/dscm
<
<
0.95
4.59
n/a
16.60
<
Total HpCDF
Ct
ng/dscm
<
<
1.92
10.72
n/a
46.00
<
OCDF
Ct
ng/dscm
<
<
1.33
5.41
n/a
27.46
<
TOTAL PCDF*
Ctpafl
ng/dscm
5.24
28.63
106.68
TOTAL PCDD/PCDF*
Ctpcddrt
no/dscm
ND
NO
6.11
33.14
n/a
117.66
ND
-------
p™ .-am* ..;jt$7.£tTZ
lOC*.*&**<£./&*>*;&* iJo
2±L£~j£'.£***£ J.
ftun Numb* \
•«•<* Dm*. (m.) ,_«£.* '
A*»U¦)
M.M Do. Nun,** ^ _ fiU#( ^ ^
*•* CMta.Uo* Ck-vsfc. cm.*-*
¦t>
o
-------
IMPINGER WEIGHT SHEET
Train Set No.
Impinger Solution
No, Used
1
Solution
(ml)
See
Configuration
Total Weight of Impingcrs (grains)
2
or
v^oo
3
WPLC_
too
WvJOO
4
MaoW-
\*so
6?-1>
5
2oo
CtlOD
6
Bask
—
Location:
P/tssf>'9sr*
Run No.:
/
Operator.
^7>M-V£
-------
ISOKINETIC RUNSHEET
ft** HIIWii ~r*&TS / T^*
IOC**** Ti'tC
°p*»tor'
D«*: Ct + f I
Aun NumUc Qft/ny^r
fc** 0«m., InohM: Z. *
Auumd moatur*. *:
8fcmpi^ Box Nom6«r ^—
M«»* Bo* Number A-> T
Noiri* No. ^ ^
Fill#* Num6*f
(>n.)
M.* C.lk>,.*y, (Y) _ , /m
Profc* Unw MtlarM
P«6« Hmm Satttng (f) tub
(in. H20)
(in. Hg)
6h««l 0I
l*oluf>«iic factor. K
B«ioa»Uie Ptittui* (Pb) 7**?. JY
Amt»nl TtmpMtiuia (*F) A "=h
U»k fl«U^c5; ckn « I T (in. Hg)
Pom T»U Lwk FWM elm « (m. Hg)
Pilot Ch»di; Pml*»< >im i...
-fc~
ISJ
-------
1MRNGEH WEIGHT SHEET
Train Set No.
Plant/city: i"£ST S rrg
Location; —
Run No,: *5-
Operator:
Run Time:
Qo,
Impinger Solution
No. Used
• i ..HPCC
Solution
(ml)
«5oO
IS.
Configuration
y^OO
WvQP
4 VOtJ -fee) b "£) ¦
Flask
Weight
(grama)
Final (88o.3
Initial
^MaUMnHyhnadKMi
Wt. gain
*-
Ftnal
Initial
Wt. gam
Final
Initial (otft.t
Wt. gain
QZt-(,
Final QZ3r Z-
lniti41 W-5
Wt. gain
S '-yi /«^<4 QjB, & oO fwoP RnaJ S""
Initial •*?
Wt. gain
TOTAL WEIGHT GAIN OF IMPINGERS (grama) M-D^-O
Train set up;
Final
Initial
Wt. gain
Ftnal
Initial
Wt. gain
Inspection
Comments
32?- 3
Date; "Z
Signature:
S->
"ZS.C, y*6ferri
$ ul
Train recovery: Date;
Signature:
43
-------
r^-rs,-^r
—
PMmt
C^.
locanoa
Ofxoloc
(talc
fluA Number:
£t*ck CWn., mcftti; ^ ^
A*M#m<} moulu/*, *.•
ISOKINETIC RUNSHEET
S*mpl« Bo* Numto«t Ru e di
M«t*i Bo* Numtxw AJ y
t*(r* ¦ Di»m«m • *) S"~
u5$^_
Mttei C«ktw«Uoo (Y) r f J
Mcti dH O I • 'f'Cciy
Pilol Tub* No. Cp N
NoitJ* No.
f«lu# Number _____
SI.UC Pl.Mu(. (P.) — ;..V» (,a Hq)
¦ ¦ -*¦ • ¦¦¦ Ambt«nl Ttmptitiuit CFI Oo
Pi ob« L«ngih TC No. P,.M„ L..k fUi. ^ CmTj^T^)
Ptobo Lin.. MaiwiaI £KlAfcr2_.. Poll T.»| L..k ft»i. c,m « U't* |ta|
Pict>* tUaMi S«lling (-F) _CXV3u. P.K>. Chc*; P,.lt„
Sh6«l _ o
liokjf>«lic Facioi, K
4S
-O
\
-------
ISOKINETIC RUNSHEET
7V£,t St-rC
Puot
C4fY.
loc.uoo. -re*tP - r^>>2.
d»i«: —sa—
Bun Numb«r; OA**/- tJ-
Suck Ouurv , nchti: J ^
A4*um»d moakxt, %: ?>x
tnvtot
Ml
S*mpU Boa Numt>«(
M*u< Don Numtw
¦at**
Noult So. ft- £>trn»Uf ^"*7
filUr Numt>«f
Shoal
SiAbc Pr«Mu<*
C*hbi»uon (Y)
M«t*i dH * , ^—/' f ? _ 6*iom*uic Ptftuw* (Pb) _
P»»ot Tub* No. t^UoL Cp jC±Ji£i Amt>i*nt (»F)
^ (ta Hq)
Pro6« Ungih 2Slt~ TC No. »— Pnwil LmK FUlt O J£, (,n. tig)
Piob. Lm*i MftltnAj Po»i 1..I L.«k fUi. . oo> cim a If: |,n Hy,
PlOtM H«*m S.lung (-f) . p„oi Ch«ck: Pr.u.l p„,i 1„»i
->
U1
TC
-------
IMP1NGER WBGHT SHEET
Train Set No.
£ke
Plant/city: T45S7- 6 rr r*
Location:
Run No.: Q5oSQ t — CTT~,
Operator: C-£k£L3
Run Time:
Impinger Solution
No. Used
1
•2
Hm
Solution
(mf)
3oo
<3
100
Configuration
KUo# ^_oo
0Qp
<«*?
f£(_ 30"0 jM'OO
Weight
(grams)
Inspection
Comments
Final {QzSL? -"S
Initial tSHZ-g
Wt. gain *a,t6 . 5
final
W>3
Initial
QMR.f*
Wt. gain
/S2.9-
Final
G^z-.O-
Initial
itZ\ - 0»
Wt. gain
(¦o
Ftnal
k"2V**-
Initial
UZS-6
Wt. gain
o
Ftnal
O0^-o
Initial
Wt. gain
zu2i»J5
Pff
P f
2_
ph
Pk~ 8
»w*-lW Sf±+rr.
Final
Initial
Wt. gain
Flask
TOTAL WBGHT GAIN OF IMPING ERS (grama) ^90 - *f$
Ftnal
Initial
Wt. gain
Train set up: Dale: 3>f"
Signature:
Train recovery: Date:
Signature:
46
-------
IMPLNGER WEIGHT SHEET
Train Set No. -3
Plant/city:
~£T? Tg'Sr SlK£_
Location: ¦~7~~7--f2-
Run No-;
Operator
Run Time:
Impinger Solution
No. Used
i
2
3
4 AJAZ>&~
Solution
(ml)
3
Configuration
Weight
(grams)
Inspection
Comments
6- 3-/1/^7 Frnai \1 S7.Z.
Initial
Wl gain
Mc>
4ZL
foc>
Flask
Total Weight of Impingers (grams)
D
&.-S-
Final W-3
Initial £j+ff< U t(4 f. V
Wl gain
Final (s» Q? •
Initial ~
Wt gain
O.f
Final Ml-0
Wl gain
5 S'l3=v2> //— Rnal {pi 2.. |
Initial M q
Wl gain
-f" !• 0
Train set up:
Rnal
Initial
Wl gain
Final
Initial
Wl gain
Date:
Signature:
Train recovery: Dais:
Signature:"*-!?'' C *\ tv*
o
0-8
0,2_
a-
R
47
-------
48
-------
IMPINGhR WEIGHT SHEET
Train Set No.
Plant/city: ££.£_ YES7~
Location: -rfie
Run No.: <*Cx>40/ - »4T
Operator; Laoj>
Run Time:
Impinger Solution
No. Used
1
tfPUL
Wl£-
5 fyhc*r 6fe*-
Flask
Solution Configuration
(ml)
(£Qd
l°Q
~3oO
Total Weighnpf Irnpingers (grams)
(j'S
M^oH-
|(WOP
Jj&l
Train set up:
Weight
(grams)
Inspection
Comments
Final
XU-if- Q'
Initial -
Wt. gain
Final
5wi
Initial
Wt gain
Final
C?$o.z,
Initial
Wt-
Wt gain
Final
Initial
Wt gain
<*• *
Final
12/ 3
Initial
Wt gain
a-t.v
Final
Initial
Wt gain
Final
Initial
Wt gain
3k^<~
(.feoH
C-lC^tc unf^
9of»
Date:
Signature
Train recovery: Date;
Signature: [
49
-------
if
it
£ £
* £ 1
J Z
!iv
.Jh I
lillilii
3-f
4«ei"
liiSlfil
mini
50
-------
lmpjnghr weight sheet
Traiii Set No
Vhie.- Lr
Lmpinger Solution
No. Used
1
\U?Lei.
4 \ • 0%j ^Ao rt
Flask
Solution
(ml)
kco
5 &t€L 3oe»
Total Weight of Impingers (grams)
oVo/- ct
Operator: LaPsE*
Run Time.
Configuration
fe-S •
?****>
l^o>>
Weight
(grams)
Train set up:
Inspection
Comments
Final
Initial
TUO.lr
Wt gain
Final
S'VS-S
Initial
U<5"
Wl gain
/?. 0
Final
Initial
Wl gain
-/.1
Final ^31.S
Initial
"aift.
-------
DATA FILE: ER831LT
I ! I
| ;
{
ACQ ON: 08-16-94
;
SAMPLE: FPR-CFC 01 03-ai dLow.I#mpflratur«
MISC:2ul injected/xad,rinses,filters all analyzed together
I
TARGET COMPOUNDS
TOTAL MASS(ngs)
i i
i i
1 i i
I
I
1.) Tetr
achlorodloxln
I nd
• : I
s [
2.) Tetracchlorodibenzofuran
9.654
3.) Pentachiofodlejdr*
0.793 j
¦ i
4.) Pentachlorodlbenzofuran
8.88
j
j
|
5.) Hexachlorodioxln
1.016
I .
6.) Hexachlorodibenzofuran
10.76
i 1
7.) Heptachlorodioxin
... - .
3.712
i
8.) Heptachlorodibenzofuran
25.13
i i i
!
i J
I
9.) Octachlorodloxln |
5.066
!
I
10.) Octachlorodibenzofuran : 12.68
52
-------
DATA FILE: ER831HT
\
\
1
!
ACQ ON; 08-18-94
i 1 1
SAMPLE: EER-CFC-08-03-01 -Hig hTemperatur©
MISC:2ui injected/xad, rinses,filters all analyzed together
i I
i
i 1
i
TARGET COMPOUNDS
TOTAL MASS(ngs)
i
i
1.) Tetrachlorodioxin
1 nd
T
i '
i i
...
2.) Tetrachlorodibenzofuran
US
I
i
3.) Pentachlorodioxin
nd
i i
i
4.) Pentachiorodibenzofuran
0.646
i
6.) Hexachlorodioxin
nd
i
6.) Hexachlorodibenzofuran
2.369
l
7.) Heptachlorodloxin
nd
i
i
8.) Hepl
1
:
1
achlorodlbenzofuran
4.794
I
2.174
9.) Octachlorodioxin
! 1 1
10.) Octachlorodlbenzofuran
3.323
53
-------
DATA FILE: ERSYSBK1
i
i
ACQ ON: 08-16-94 |
I
CAMDI C.CCD C5VCTCIJ Ell A IUI|/i|4
OAfflr LC«tcK^rw~i)Yd I cM BLApitvri
MISC:2ul injected
! i
i i
! I !
TARGET COMPOUNDS i TOTAL MASS(ngs)
! j |
!
1.) Tetrachlorodioxin 1
nd
i
i i i
2.) Tetrachlorodlbenzofuran
nd
i
1 1
3.) Pentachlorodioxin
nd
*""*!
i
i
4.) Pentachlorodibenzofuran
nd
i !
5.) Hexachlorodioxin
nd
6.) Hexachlorodibenzofuran
nd
7.) Heptachlorodioxin
nd
i
8.) Heptachlorodibtnzofuran
nd
9.)Octachlorodioxin |
nd
i
i
10.) Octachlorodltrenzofuran j nd
1
54
-------
DATA FILE: gwb94810 j |
ACQ ON: 08-16-94 | ! |
SAMPLE:giass ward blank ( J
MlSC:2ul injected
I |
"T
i
i !
TARGET COMPOUNDS
TOTAL MASS(ngs)
' ! • " I " ' !
1.) Tetrachlorodioxin j nd
T J
2.) Tetrachlorodibenzofuran
nd
j
3.) Pentachlorodloxin 1
nd
™ "" 1
' 1 1
4.) Pentachlorodibenzofuran
nd
I ! !
5.) Hexachlorodioxin J
nd
|
6.) Hexachlorodibenzofuran
nd
1 ! 1
I , j
7.) Heptachlorodloxin j
nd
j
8.) Heptachlorodlbenzofuran
nd
- i
9.) Octachlorodioxin j
nd
i •
i l
10.) Octachlorodibanzofuran
nd
i
55
-------
DATA FILBER841FB i
i
ACQ ON: 08-16-94
i
1
SAMPLE:EER-CFC-08-04-01-Field Blank
j
Mt$C:2ul injected/xad,rinses,filters all analyzed together
|
! ! j
TARGET COMPOUNDS
TOTAL
MASS(ngs)
i i l
t t
1.) Tetrachlorodioxin
nd
|
i
2.) Tetracchlorodibenzofuran
nd
¦ • ¦ ' i
i
3.) Pentachlorodioxin
nd
t j
I |
4.) Pentachlorodibenzofuran
nd
| |
5.) Hexachlorodloxln
nd
| |
6.) Hexachlorodibenzofuran
nd
.
7.) Heptachlorodioxin
nd
i
f
8.) Heptachlorodibenzofuran
nd
j
!
I
9.) Octachlorodioxin
nd
10.) Octachlorodibenzofuran
nd
56
-------
DATA FILE: ER841LT | I I
ACQ ON; 08-16-94 III
SAMPLE:EER-CFC-08-04-01-Low Temperature
'
MiSC:2u( injected/xad,rinses,filters all analyzed together
! i
1 I
!
i
TARGET COMPOUNDS
TOTAL MASS(ngs)
i
i ;
t !
1.) Tetrachlorodloxln
nd
i i
I I
! i
i
I
2.) Tetracehlorodtbenzofuran 15,18 ! j
<
' ' !
s
3.) Pentachlorodloxin
nd
|
I
4.) Pentachlorodibenzofuran 19.1
|.
I
5.) Hexachlorodioxin
j nd
I
!
6.) Hexachlorodibenzofuran | 34.28
i |
i
7.) Heptachlorodioxin I 8.359
|
: ' •
t
8.) Heptachlorodibenzofuran I 94.98
|
I
9.) Octachlorodioxin
14.31
|
i
I
10.) Octachlorodibenzofuran 56.7 j j
57
-------
CLIENT / TEST PROGRAM: EPA/CFCs, Task 2.2
DATE:
8/17/94
8/17/94
8/18/94
8/18/94
8/4/94
8/23/94
8/23/94
TEST SITE FACILITY: CTT
OPERATOR:
J.K.
J.K
J.K
J.K
D.L.
D.L.
D.L.
DATA ENTERED BY: G.K.
DATA ENTRY FOR STACK CONDITIONS
i i
SYMBOL
UNITS
TEST 1A
TEST 1B
TEST 2A
TEST 2B
TEST 2C
TEST 3A
TEST 3B
CTT
CTT
CTT
CTT
CTT
CTT
CTT
081701-SB#1
081701-SB#2
081802A
081802B
0818-FB
082301A
082301B
ROUND DUCT DIAMETER
ds
Inches
8
8
8
8
8
8
NOZZLE DIAMETER
dn
inches
1.75
1.75
1.75
1.75
1.75
1.75
AVERAGE FLUE GAS TEMPERATURE
Ts
•F
465
465
448
448
450
450
AVERAGE METER TEMPERATURE
Tm
° F
99
100
109
109
100
99
BAROMETRIC PRESSURE
Pbar
in. Hg
29.84
29.84
29.84
29.84
29.96
29.96
FLUE STATIC PRESSURE
Pg
in. H20
-1
-1
-1
-1
-1
-1
AVG. DELTA H
AH
In. H20
2
2
2
2
2
2
PITOT COEFFICIENT
Cp
-
n/a
n/a
n/a
n/a
n/a
n/a
GAS SAMPLE VOLUME
Vm
cubic tt.
92.105
89.27
91.377
88.24
92.495
87.905
METER CALIBRATION FACTOR
Y
-
0.997
1.0027
0.997
1.0027
0.997
1.0027
TOTAL SAMPLING TIME
min
minutes
120
120
120
120
120
120
FLUE GAS OXYGEN
Co2
%
8.4
8.4
7.03
7.03
7.27
7.27
FLUE GAS CARBON DIOXIDE
Cco2
%
7.2
7.2
8.4
8.4
9.3
9.3
TOTAL IMPINGER GAIN (WATER)
Ww
grams
211.3
204.8
233
231.2
181.5
166
SYMBOL
UNITS
TESTTX
TEST 1H
Test 2A
TEST 3A
' tEST3B
CTT
CTT
CTT
CTT
CTT
CTT
CTT
081701-SB#1
081701-SB#2
081802A
081802B
0818-FB
082301A
082301B
NOZZLE AREA, An - (jc(dn)*'2y4
An
sq.In.
2.41
2.41
2.41
2.41
2.41
2,41
STACK AREA, As - [*'(ds)"2)/576 (ROUND)
As
sq.teet
0.35
0.35
0.35
0.35
0.35
0.35
AVG. STACK TEMPERATURE, Ts - Fs + 460
Ts
°R
925
925
908
908
910
910
AVG. METER TEMPERATURE, Tm « Fm + 460
Tm
0 R
559
560
569
569
560
559
GAS SAMPLE VOLUME AT STD CONDITIONS,
VmStd - 17.647 Y (Vm/Tm) (Pbar + AH/13.6) O 68 "F
VmStd
cubic tt.
86.93
84.58
84.73
82.29
87.49
83.77
VOLUME OF WATER VAPOR, VwStd - 0.04718*Ww
VwStd
cubic tt.
9.97
9.66
10.99
10.91
8.56
7.83
MOISTURE FRACTION,.Bws «VwStd/(VmStd + VwStd)
Bws
-
0.10
0.10
0.11
0.12
0.09
0.09
DRY STACK GAS MOL. WEIGHT, Md - 0.32(Co2>+
0.44(Cco2)+0.28{100-(Co2)-(Cco2)]
Md
g/g-mole
29.49
29.49
29.63
29.63
29.78
29.78
WET STACK GAS MOLECULAR WEIGHT,
Mw » Md(1-Bwa)+1B.0(Bw8)
Mw
g/g-mola
28.31
28.31
28.29
28.26
28.73
28.77
ABSOLUTE STACK PRESSURE, P# - Pbar + Pg/13.6
Ps
In. Hg
29.77
29.77
29.77
29.77
29.89
29.89
DRY FLUE GAS FLOW RATE
Qfgd
dscf/mln
15.69
15.69
16.02
16.02
16.25
16.25
WET FLUE GAS FLOWRATE, Qfgw - Qfgd/(1-Bws)
Qwfg
wsct/min
17.49
17.48
18.10
18.14
17.84
17.77
ACTUAL FLUE GAS FLOWRATE, Qfga « Qfgw*Ts/540
Qfga
act/min
30.52
30.51
31.01
31.08
30.63
30.51
GAS VELOCITY, v - Qfgw/(As*60)
V
rt/s
1.46
1.46
1.48
1.48
1.46
1.46
ISOKINETIC RATE,
90.32
94.29
90.29
I
%
97.42
94.80
93.00
-------
wtivtiXitt'aiTai
mm
UWITi
t£st 1A
tESTlB
tEST 2C
VEST3A
TEST 3B
CTT
CTT
CTT
CTT
CTT
CTT
CTT
081701-SB*1
081701-SB#2
081802A
081802B
0818-FB
082301A
082301B
Total TCDD '
WI
ng
NC
ND
ND
24.22
NC
ND
ND
ToUl PaCDD
Wi
ng
ND
ND
ND
ND
NC
ND
ND
Total HxCDD
Wi
ng
0.396
0.325
ND
ND
ND
ND
ND
Total HpCDD
Wi
ng
0.335
0.265
ND
20.89
ND
0.642
ND
OCDO
Wi
ng
ND
ND
ND
ND
ND
ND
ND
TOTAL PCDDa
Wpcdd
ng
0.731
0.59
45.11
0.642
Total TCDF
Wi
ng
25.91
20.25
ND
ND
ND
ND
ND
ToUl PaCDF
Wi
ng
ND
ND
ND
ND
ND
ND
ND
ToUl HxCDF
Wi
ng
ND
ND
6.04
1.22
ND
53.11
ND
Total HpCDF
Wi
ng
106.1
96.98
4.63
ND
11.1
69.63
137.1
OCDF
Wi
ng
5.7
4.85
4.18
1.87
ND
1.09
ND
TOTAL PCDFa
Wpcdf
ng
137.71
122.08
14.85
3.09
11.1
123.83
137.1
TOTAL PCDD/PCDFa
Wt
ng
138.441
122.67
14.85
48.2
11.1
124.472
137.1
FLUE QA8 CONCENTRATION O 7% 02
SYMBOL
UNITS
TEST 1A
TEST 18
TEST 2A
TEST 2B
TEST 2C
TEST 3A
TEST 3B
C « 35.32*13.95*Wi/[VmSmpr(20.95-Co2)]
CTT
CTT
CTT
CTT
CTT
CTT
CTT
081701-SB#1
081701-SB#2
081802A
081802B
0818-FB
082301A
082301B
ToUl TCDD
a
ng/dscm
<
<
<
10.42
<
<
<
ToUl PaCDD
Ct
ng/dacm
<
<
<
<
<
<
<
ToUl HxCDD
ct
ng/dscm
0.18
0.15
<
<
<
<
<
ToUl HpCDD
ct
ng/dscm
0.15
0.12
<
8.99
<
0.26
<
OCDO
ct
ng/dscm
<
<
<
<
<
<
<
TOTAL PCDOa
Ctpcdd
ng/dscm
0.33
0.27
19.40
0.26
ToUl TCDF
Ct
ng/dscm
11.70
9.40
<
<
<
<
<
ToUl PaCDF
a
ng/dscm
<
<
<
<
<
<
<
ToUl HxCDF
ct
ng/dscm
<
<
2.52
0.52
<
21.86
<
ToUl HpCDF
Ct
ng/dscm
47.92
45.01
1.93
<
28.66
56.94
OCDF
a
ng/dscm
2.57
2.25
1.75
0.80
<
0.45
<
TOTAL PCDFa
Ctpcdl
ng/dscm
62.19
56.66
6.20
1.33
50.98
58.94
tdfAL KbDJMbF*
Ctpcdd/f
62.52
56.94
6.20
20.73
51.24
58.94
-------
Uik ^
CLIENT / TEST PROGRAM: EPA/CFCs, Ta>krrt
TEST SITE FACILITY: TFR
DATA ENTERED BY: G.K.
DATE:
OPERATOR:
8/26/94
D.L.
8/26/94
D.L.
8/26/94
D.L.
8/29794
D.L.
8/29/94
D.L.
CTn
O
DATA ENTRY FOR STACK CONDITIONS
SYMBOL
UNITS
TEST 1
TEST 2
TEST 3
TEST 4
TEST 5
' 1
TFR
TFR
TFR
TFR
TFR
Cu-1-HT
Cu-1-LT
Cu-1-FB
Cu-2-HT
Cu-2-LT
ROUND DUCT DIAMETER
ds
inches
3.75
3.75
3 75
3.75
0 75
NOZZLE DIAMETER
dn
inches
0.75
0.75
0.75
AVERAGE FLUE GAS TEMPERATURE
Ts
0 F
1128
211
1162
228
AVERAGE METER TEMPERATURE
Tm
° F
96
97
103
107
29
BAROMETRIC PRESSURE
Pbar
In. Hg
29.84
29.84
29
FLUE STATIC PRESSURE
Pg
in. H20
-1
-1
• 1
-1
2
AVG. DELTA H
AH
in. H20
2
2
2
PITOT COEFFICIENT
Cp
.
n/a
n/a
n/a
n/a
GAS SAMPLE VOLUME
Vm
cubic tt.
85.8
87.495
86.525
92.1
METER CALIBRATION FACTOR
Y
-
0.997
1.0027
0.997
1.0027
TOTAL SAMPLING TIME
mln
minutes
120
120
120
120
FLUE GAS OXYGEN
Co2
%
7.1
9.4
7.42
9.62
FLUE GAS CARBON DIOXIDE
Cco2
%
19.8
16.6
19.1
16
TOTAL IMPINGER GAIN (WATER)
Ww
grams
497.4
316.3
509
325.4
CALCULATES BUCK CCMBITKWI
mm
UNITS
TESTi
TESTi
TE5T&
"""TESTT
TEST 5
TFR
TFR
TFR
TFR
TFR
Cu-1-HT
Cu-1-LT
Cu-1-FB
Cu-2-HT
Cu-2-LT
klAHU AftEA, An - (*(dn)"2]/4
An
sq. in.
0.44
0.44
0.44
0.44
STACK AREA, As = [x*(d8)"2]/576 (ROUND)
As
sq.feet
0.08
0.08
0.08
o.os
AVG. STACK TEMPERATURE, Ta - Fa + 460
Ts
°R
1588
671
1622
688
AVG. METER TEMPERATURE, Tm « Fm + 460
Tm
'R
556
557
563
567
OAS SAMPLE VOLUME AT STD CONDITIONS,
VmStd - 17.647 Y (Vm/Tm) (Pbar + AH/13.6) O 68 °F
VmStd
cubic tt.
81.42
83.35
78.81
83.77
VOLUME OF WATER VAPOR, VwStd «= 0.04718*Ww
VwStd
cubic ft.
23.47
14.92
24.01
15.35
MOISTURE FRACTION, Bws «VwStd/(VmStd + VwStd)
Bws
-
0.22
0.15
0.23
0.15
DRY STACK GAS MOL. WEIGHT, Md - 0.32(Co2)+
0.44(Cco2)+0.28{100-(Co2)-(Cco2)]
Md
g/g-mole
31.45
31.03
31.35
30.94
WET STACK GAS MOLECULAR WEIGHT,
Mw - Md(1 -Bws)+18.0(Bw8)
Mw
g/g-mote
28.44
29.05
28.23
28.94
ABSOLUTE STACK PRESSURE, Pa - Pbar + Pg/13.6
Ps
In. Hg
29.77
29.77
28.93
28.93
DRY FLUE GAS FLOWRATE
Qtgd
dscf/mln
14.38
17.17
14.71
17.75
WET FLUE GAS FLOWRATE, Qfgw - Qlgd/(1-Bws)
Owtg
wscf/min
18.52
20.24
19.19
21.00
ACTUAL FLUE GAS FLOWRATE, Qfga - QfgwTs/540
Qfga
ad/min
55.50
25.63
58.74
27.26
OAS VELOCITY, v - CXgw/(A«'60)
V
It/a
12.06
5.57
12.76
5.92
ISOKINETIC RATE,
115.98
102.16
I» 13.61 MVVmStctfPsVAn'min'O-Bws)]
I
%
119.10
102.11
f SAMPLE TRAIN CATCH
SYMBOL
UNITS
TEST 1
TEST 2
TEST 3
TEST 4
TEST 5
TFR
TFR
TFR
TFR
TFR
1
Cu-1-HT
Cu-1-LT
Cu-1-FB
Cu-2-HT
Cu-2-LT
-------
ToUl TCDD
W1
ng
NC
12.2
ND
ND
6.62
Total PaCDD ' |
W1
ng
NC
14.87
ND
ND
ND
Total HxCDO
Wi
ng
NC
19.36
ND
ND
2.26
ToUl HpCDD
Wi
ng
8.8B
87.68
ND
3.1
13.08
OCDO
Wi
ng
11.36
108.5
ND
9.87
22.31
TOTAL PC 00a
Wpcdd
ng
20.24
242.61
12.97
44.27
ToUl TCDF
Wi
ng
406.6
828.5
ND
7.66
96.24
Total PaCDF
Wi
ng
25.99
195.2
ND
ND
ND
ToUl HxCDF
Wi
ng
17.59
106
ND
24.06
35.99
ToUl HpCOF
Wi
ng
114.5
354.8
ND
221.1
147.5
OCDF
Wi
ng
114.3
344.8
ND
103.8
252.4
TOTAL PCDFa
Wpcdf
ng
678.98
1829.3
356.62
532.13
TOTAL PCDD/PCDFa
Wt
ng
699.22
2071.91
ND
369.59
576.4
FLUE QAS CONCENTRATION • 7% 02
SYMBOL
UNITS
TEST 1
TEST 2
TEST 3
TEST 4
TESTS
C - 35.32*13.95*WI^VmSmpT(20.95-Co2)]
TFR
TFR
TFR
TFR
TFR
Cu-1-HT
Cu-1-LT
Cu-1-FB
Cu-2-HT
Cu-2-LT
ToUl TCDO
Ct
ng/dscm
<
6.2
<
<
3.4
TotaJ PaCDD
Ct
ng/dscm
<
7.6
<
<
<
ToUl HxCDO
Ct
ng/dscm
<
9.9
<
<
1.2
ToUl HpCDD
Ct
ng/dscm
3.9
44.9
<
1.4
6.8
OCDO
Ct
ng/dscm
5.0
55.5
<
4.6
11.6
TOTAL PCDOa
Ctpcdd
ng/dscm
8.8
124.2
6.0
23.0
ToUl TCDF
Ct
ng/dscm
177.7
424.0
<
3.5
50.0
ToUl PaCDF
Ct
ng/dscm
11.4
99.9
<
<
<
ToUl HxCDF
Ct
ng/dscm
7.7
64.3
<
11.1
18.7
ToUl HpCDF
Ct
ng/dscm
50.0
181.6
<
102.2
76.6
OCDF
Ct
ng/dscm
49.9
176.5
<
48.0
131.0
TOTAL PCDFa
Ctpcdl
ng/dscm
296.7
936.3
164.8
276.2
TOTAL PCDD/PCDFa
305.5
1060.4
170.8
299.2
-------
CLIENT / TEST PROGRAM: EPA/CFCs, Task 2.3
TEST SITE FACILITY: TFR
DATA ENTERED BY: G.K.
DATE:
OPERATOR:
to
DATA ENTRY FOR STACK CONDITIONS
SYMBOL
UNITS
ROUND DUCT blAMETER
ds
inches
NOZZLE DIAMETER
dn
inches
AVERAGE FLUE GAS TEMPERATURE
Ts
•F
AVERAGE METER TEMPERATURE
Tm
•F
BAROMETRIC PRESSURE
Pbar
in. Hg
FLUE STATIC PRESSURE
Pg
in. H20
AVG. DELTA H
AH
in. H20
PITOT COEFFICIENT
Cp
-
GAS SAMPLE VOLUME
Vm
cubic ft.
METER CALIBRATION FACTOR
Y
.
TOTAL SAMPLING TIME
min
minutes
FLUE GAS OXYGEN
Co2
%
FLUE GAS CARBON DIOXIDE
Cco2
%
TOTAL IMPINGER GAIN (WATER)
Ww
grams
SYMBOL
units
NOZZLE AREA, An - [*(dn)"2V4
An
sq. in.
8TACK AREA, As » [**(ds)"2]/576 (ROUND)
As
sq.feet
AVG. STACK TEMPERATURE, Ts - Fs + 460
Ts
•R
AVG. METER TEMPERATURE, Tm = Fm + 460
Tm
•R
GAS SAMPLE VOLUME AT STD CONDITIONS,
VmStd - 17.647 Y (Vm/Tm) (Pbar + AH/13.6) O 68 °F
VmStd
cubic ft.
VOLUME OF WATER VAPOR, VwStd = 0.04718*Ww
VwStd
cubic ft.
MOISTURE FRACTION, Bws «VwStd/(VmStd + VwStd)
Bws
-
DRY STACK GAS MOL WEIGHT, Md « 0.32(Co2)+
0.44(Cco2)+0.28{100-(Co2)-(Cco2))
Md
g/g-mole
WET STACK GAS MOLECULAR WEIGHT,
Mw « Md(1-Bws)+18.0(Bw8)
Mw
g/g-mole
ABSOLUTE STACK PRESSURE, Ps - Pbar + Pg/13.6
Ps
In. Hg
DRY FLUE GAS FLOWRATE
Qfgd
dscf/min
WET FLUE GAS FLOWRATE, Qfgw = 01gd/(1-Bws)
Qwfg
wscf/min
ACTUAL FLUE GAS FLOWRATE, Qfga » QfgwTs/540
Qfga
acf/min
GAS VELOCITY, v - Qfgw/(As*60)
V
ft/s
ISOKINETIC RATE,
1 - 13.61 TVVmStd/IPsVAn'mln'O-Bws)]
1
%
SAMPLE TRAIN CATCH
SYMBOL
UNITS
8/26/94
8/26/94
8/29/94
8/29/94
D.L.
D.L.
D.L.
D.L.
TEST 1
TEST 2
TEST 4
TEST 5 1
REV
REV
REV
REV
Cu-1-HT
Cu-1-LT
Cu-2-HT
Cu-2-LT
3.75
3.75
3.75
3.75
0.75
0.75
0.75
0.75
1128
211
1162
228
96
97
103
107
29.84
29.84
29
29
-1
-1
-1
-1
2
2
2
2
n/a
n/a
n/a
n/a
85.8
87.495
86.525
92.1
0.997
1.0027
0.997
1.0027
120
120
120
120
7.1
; 9.4
7.42
9.62
19.8
16.6
19.1
16
497.4
316.3
509
325.4
fEST 1 '
TEST 4
TEST 5
REV
REV
REV
REV
Cu-1-HT
Cu-1-LT
Cu-2-HT
Cu-2-LT
0.44
0.44
0.44
0.44
0.08
0.08
0.08
0.08
1588
671
1622
688
556
557
563
567
81.42
83.35
78.81
83.77
23.47
14.92
24.01
15.35
0.22
0.15
0.23
0.15
31.45
31.03
31.35
30.94
28.44
29.05
28.23
28.94
29.77
29.77
28.93
28.93
14.38
17.17
14.71
17.75
18.52
20.24
19.19
21.00
55.50
25.63
58.74
27.26
12.06
5.57
12.76
5.92
119.10
102.11
115.90
102.16
TEST 1
TEST 2
TEST 4
TEST5I
REV
REV
REV
REV I
Cu-1-HT
Cu-1-LT
Cu-2-HT
Cu-2-LTJ
-------
Total TCDD
Wi
ng
NC
9.5
ND
2.3
Tout PaCDD
Wi
ng
NC
12.6
ND
ND
ToUl HxCQD
Wi
ng
NC
31.2
ND
3.7
ToUl HpCDD
Wi
"8
5
47
5
15.2
OCDD
WI
ng
9.8
110.7
10.6
22.3
TOTAL PC DO*
Wpcdd
ng
14.8
211
15.6
43.5
Total TCDF
Wi
ng
395.6
826.8
11.8
205.7
ToUl PaCDF
Wi
ng
19.7
195
2.8
NC 14.5
Total HxCDF
Wi
ng
12.5
196.6
59.7
46
ToUl HpCDF
Wi
ng
106.2
223.2
198.7
141
OCDF
Wi
ng
116.6
61.6
98.1
292.8
TOTAL PCDFa
Wpcdf
ng
650.6
1503.2
371.1
700
TOTAL PCDD/PCDFa
Wt
ng
665.4
1714.2
386.7
743.5
FLUE OAS CONCENTRATION O 7* 02
SYMBOL
UNITS
TEST 1
TEST 2
TEST 4
TEST 5
C » 35.32* 13.95*Wl^VmSmpl*(20.95-Co2)]
REV
REV
REV
REV
Cu-1-HT
Cu-1-LT
Cu-2-HT
Cu-2-LT
ToUl TCDO
Ct
ng/dscm
<
4.9
<
1.2
ToUl P«CDD
Ct
ng/dscm
<
6.4
<
<
ToUl HxCDD
a
ng/dscm
<
16.0
<
1.9
ToUl HpCDO
a
ng/dscm
2.2
24.1
2.3
7.9
OCOO
Ct
ng/dscm
4.3
56.7
4.9
11.6
TOTAL PCDOa
Ctpcdd
ng/dscm
6.5
108.0
7.2
22.6
ToUl TCDF
a
ng/dscm
172.9
423.2
5.5
106.8
ToUl P«CDF
Ct
ng/dscm
8.6
99.8
1.3
< 7.5
ToUl HxCDF
ct
ng/dscm
5.5
100.6
27.6
23.9
ToUl HpCDF
ct
ng/dscm
46.4
114.2
91.8
73.2
OCDF
a
ng/dscm
50.9
31.5
45.3
152.0
TOTAL PCDf»
Ctpccff
ng/dscm
284.3
769.4
171.5
363.4
TOTAL PCDCVPCDFa
Ctpcdd/f
no/dacm
290.7
877.3
178.7
386.0
-------
ISOKINETIC RUNSHEET
££R-
PUnt
cur
Lociuon:
Opwwon C'
' ^ ffrfif fv*
S«mpt« Bon Number
M«ter Box Numb*r _
-2252L
,'M 5~
Noitlt No.
Fill## Number
. DUffttUH ...~ 7T (ut.)
Run Numb*:
Slack Oiam., inch**
AMurmd moth**, %:
M«t»f C«kbraton (Y) - -
M«t*r • . It frVA
PinX Tub* No. Cp _
Piob# Lcngti ^ C No.
Prob* Llo*f Malwltl
Piob# Hmmt Selling (*F)
99 90. Bute Pr*»ui« (Pa)
(Ufomoiflc Pt«Mu(• (Pb) _
Amblohl Twnpwaluft (*f) ^Q#
. (m. H20)
. (m- Hg)
Isokinetic F*clof, K
PrctoM LmK Rim T elm • I U (in. Hg|
Pod Tot LMk n*U elm • /& (in. Ho)
Check: PfOtotl ' Poll Ttti
Pilot
Tnvtn*
NMM
Tim*.
JT-
J£L
1£l_
&
m in
#«. HI)
Ul
Li
U-
12,
fPoy
Aq •*•<>»«»
.mitwi
z,o
ZifL
t>
Z^2_
Ota tout*
VMim. Vm
, I, (III.
?5fre*o
aajBL
v?^7^r
ZS&TSD
bij om
McMf
T««#; Tn
&
Dry 041
MMti Ovum
T#**. Tm
TT
ft
tapligtt
Owlt*l
rr.i....
sr
22
£x
Picb*
Ttmp.
-OJ-
•zlo
a*>
73 >>
f«ni
T«rp(>
-iXI..
2a
2W
^5"
DrMnOM
Timp.
CEL.
¦=,T-
S3
5?
Comrocnis
22l
SEC
13
%
Z'O
L°_L
W
ML
34.
as:
2*Q
Jia
?tt>
qa.ios
2fE
/S5
M:
~g-°
34
>f H
•9?
i
6®
CTN
-O
tS'-p •
«L-0
J£L
m
Fa
VW?Ifn
re-'/ r>i^K
3[
£
l
t^Vvc^O
U-i/ £fa$t*>c.6p
IV TP ...<» ll^UT'
¦P^0S<£- S-H
KJ
ipdl
9;
— pCtf
^>L3 Au1
S£fc
f^7 /,A^ '
fW«inO«t t*mp 4 90 Mg>*«• f
K*«p ln«r tMDpMtlwi* »1 24A ~/• 2S 'f
-------
IMPINGER WEIGHT SHEET
Plant/city:
Train Set No. ^ Location: -Tf^g.
Filter No. Run No.: £(J -j -
Impinger Solution
No. Used
Flask.
Solution Configuration
(mi)
Weight
(grams)
Inspection
Comments
Initial
Wt. gain
0
f*uo
Final
S4*|
Initial
Wt. gain
tjya. 2-
tWU~
loO
&&> ¦ Mop
Final
60s, i
Initial
Wt gain
.. ..teakjj-z
- • *
too
£7-6' fioO
Final
Initial
Wt gain
{,0*Tv^
fa-v.
(f
-------
ISOKINETIC RUNSHEET
1E5ZE3E3]
mt
1A>E
fUnt
Or-
lOCfttkMV
Op«ftior.
OaM: _ _
flUO Number Cf
^OUnv.hehM;
Aitumtd motalur*, %:
ft«mpte 601 Number
M«Mf Boh Numt>«f _
BSE
. Otairotw
("V>
tCcX"
¦f/Wt
M*M« Cakbollon (Y)
"•••' OH • t.fUM
Ptol Tub# No. * Cp ~
Proto* longti *iL TC No.
Probo Unw M«lwM .
Ptebt Hmim Selling (*F)
. (in. IttO)
- (<" Hg)
*) JSttil
NOIXfe No.
FNIm Numb«r ...1
Sum Pmuit 06
. PrMMl L*«k aim • (In. IKi)
PoM Tmi L*«k BewSbelm •"MiL (m. Itg>
Pilot Clwck: PrMMl — Po»l Tur
Isokinetic Factor. K
TnvtrM
NN M*.
i -
T
Ttat*.
\ 5
i5"
Ctoflk
tfelM
J2UL
tt'3a
V(
^ Htf
1
AONI (MM
» i t
Z..0
Omtmpf
VotUHM. VM
HI)
121
4^
TaTpT
to.s-V-
ft)dM
TM9. Tm
., ,rifi
n
OryOM
Md+< OmIW
T**e. tm
ca.
<10
Imping*
Outlet
Timp.
_££L_
1
ft
w
Pnt«
T»«p.
MX.
Mi
Fn«>
Temp
m
Cond
Intel
T*mp
,,m,
RennCta
Temp.
„.m.
Commenis
3^:
iaisa
i$im
2^7.
5
¥
2tJ
m
M
&
1
m.
w
%
&
&
MS
2K
&
CN
\0Q
m
l&to
aa
IF *3
as
AIL
¦3*0
•A3
was
&L
PS
J>0
P
1
r1
125-
is'-y>
an
;• us
®S_
2^0
2SI
r=>
TTW
j KMp fWih Qua 7tmp < to d*0>M« f
K«ap M« i*np»4itw4 »| ?<» w- 2) 'I
-------
impinger weight sheet
Train Set No.
filser No.
Plant/city: Z££_ot£
Location: 7~P=-z_
Run No.: Qp H - LX
Impinger Solution
No. Used
1
\\Pix~
Fiask
Solution
(ml)
Sow
f -Ot/i hi
C,.''-cc
I no
[00
\oo
Configuration
Gz). S'
frVAjQQ
(b>^'
£-S-
Weight
(grams)
Inspection
Comments
Final
Wt. gain
Final 5/ O.S
Initial
Wt gain
Final
Initial
Wt gain
blCt.O
Final
Initial ,U
Wt gain 7,,}
Final S
Initial fay?, 3
Wt gain 7< "L.
Final
Initial
Wt gain
Final
Initial
Wt. gain
TOTAL WEIGHT GAIN OF IMPINGERS farams\ *h\{01 3
Train set up:
^7;
Date:
Signature
Train recovery: Date:
Signature:
67
-------
ISOKINETIC RUNSHEET
Ptem:
c,'*: *PQut
Loctbon: -nP/Z-
°V>«<* TXHSCL. I
^**7 *iV
Sample Ho* Number __C<6Q
Meier Bo* Numbor N
Noixlo No.
Filler Number
. Oameler
On)
Metal Cokbiabon (Y) _l55.'2e (p«) — • -f
flun Number *.?-
Suck Oem. mchti:
A* wined mouture, %:
7 2 °/i
Maiat an a i.?q>w
Pilol Tube No. Cp — ¦"
Pioba Length TC No. •—
Plob« Linei Malaiial
. . (in. H20)
Batomaulc Piauuia (Pb) P*». MA (,n. Hg)
Ambient Tamparalura ("F)
Shoot __________ o
Isokinetic Factor. K
Pielail Leak n»l^iiZia. elm O 11 (m. Hg)
Poll T«»l Laak Rata ¦c*( elm O (in. Hg)
Pilot Check: Plalail Poll Tail
Trtv«*e
Me.
j
Umpang
Time.
'"a1'
Ctock
Tune
m m
Vecwum
(WV H»)
(Meek Te**>
Ti
rf»..
Velocity
H«e*.<#
, I* Wl...
PmiMi
OMeuniiel
Attooe OrtfK*
*! I"1 M?°l
0«8«rpe
Volume. V*
i«fl
Ory Gaa
M«*M in*!
Tomp. Tm
Pf»
fry Got
Motor OwiM
Temp. 1m
Impmpw
Owtl*l
T««f.
rn
Prat>e
Teffifk.
r^i
fn*i
Cood.
inlet
Twnp
fWiiriG*
T«mp.
» Comments
13:3<
r
¦ Q ¦ YiVi'iV
3f3.c6
^*1? s
J. ..rfi...
IQ.
~3^
f
?
*7-a
95
9)1
«=30
20
\o
s
7.0
loO
I
J—1 f
V>
2&b
n
;
/
?-o
^ ->3D
7 2-
7f^
IK
/
¦?-c>
tt.tvr
«o5
h*y
?<=, 2.
fa'Z'
^7 .
v
?' o
/of
55"
Pf
553
S-t>
1-2.
/
r,.£>
^.ioo
to?
$£=>
If
7ST
5^
(OP
W
/
\
tr'Q
\
2^7
no
\f5\BT
ZO
«k«r-W
nt
?vz-
^3
1
, ^
^—""
*
. to
>
X
—9 A*«ln 0*i T«*p 4 AO dtgrM* f
'
(•
' l
Avtrtpe/leui
s V-
fLMi
-
" 1":
'J
CTn
CO
-------
Train Set No. €eo - HT
Plant/city: <£&.g-
Location: —r~ F-C2_
Run No.: C.U - z-HT
Operator T>h;£_
Run Time:
topinger Solution
No. Used
I
(qp^c-
Rask
Solution Configuration
(ml)
<, A ¦.C*~£n.i£.
?iCO
0
1QQ-
loo
csco
Total Weight of ImpLngers (grains)
twng*>
v^oO
Weight
(grams)
Final *ZoefX»\
Initial iu2S-€>
Wt gain 1£0 3
Rnal
Initial qt|l, ~a.
Wt gain fftO-3
Final S^j ^
InitM
Wt gain - a. I
Initial -sGf p. (>
Wt gain 7. f
Final "Jo^c
Initial
Wt gain 3*.7
Final
Initial
Wt. gain
Final
Initial
Wt gain
Inspection
Comments
Final
Xta
f0\.O
Train set up: Date: QJZ*\ Sy
Signature: LA ^n*-•
"* ~ ~ " / >
Train recovery: Date:
Signature:
R
69
-------
ISOKINETIC RUNSHEET
Plant:
City:
Location:
Oparatoc
Data:
-JBaj *y*Pt.
Samplo Oo* Numbar
Ma tor Do* Numbar -MZZT
Matar Calibration (Y)
Malar dH • l-lVW
Pttol Tuba No."-— Cp~ —
Dta malar
Slack Dura. inchat:
Aaaumad mowlura, V
ILO.
i %
Proba lanoih XL. TC NO. * -
Proba Linar Malarial &MKTg..
Proba ItoAior Salting (*f)
Travaraa
PaW Na.
Notiia No. * —
Pillar Numbar ____
8ta*c Praaaura (Pa)
B*romatrie Prauur* (Pb)
Ambianl Tamparalura (*FJ
. PiaMil Laak Rala^O^ elm • l\»" (in. Ho)
Po»l Tail Laak Rata dm • to (in. H(i)
Pilol Chack: Prelaal Po»l Ta»l
P®- (m. H20)
?1».— (in- Hj)
MT
Sliotl . o
Isokinetic Factor, K
•***«*
Tim*.
JJL
zo
"35"
Ciocfc
tana
a« m
IV1*
Trr&
VKviua
<* HQ)
<
Li
^2.
Mac* iMDp.
T#
_f0-
i
V«tacty
HaadLdP
J&J3SL
tt—m**
OMafamiai
Aoim Oiittea
2j£l
Om S«rpt»
VaiwiM, Via
iilL.
EV
Hit . is
SI*
Dry Q*«
Mux Intel
T«n*. T«
.....rf.)..
51
;o2-
IM
Dry Oat
IfMar Orttof
Taa*. tM
rfi.
t*pfriQ«
OwttM
Tan*.
fraaa
Tamp.
2S0
riMi
Tama.
Cond
Intel
Tarn*
Orxn Om
T#mp.
.m.
^11
Command
)M*.
W1
&
i
&0.
I
IS. 40
iPto .*3
s
223
41
go
n
a
3L
2E
itl
SO
IH-'2.S
&
a/O
M
J3S
M
H
LS
~5ZR
2.6
3^"
M
SI
39]
aM
2$
jit
352.
f
H=sa
r.e.
WS£
EUs
ft
2^L
HfeS
i
iaS_
&Z
2S&
ASM
O
U..0
are"
tor
106
ts'i 5.
w
El
H
Si
pi
Ss
1
1LD.
^.s
.0 2.
(JS
12&
SIS
22^
IK
SJL
5il
^va»a#a/T#
-------
IMPINGER WEIGHT SHEET
Train Set No.
¦yot-u-
Plant/city:
Location:
Run No.: Cjj -z.~ ltt
Operator
Run Time:
tapinger Solution
No, Used
1
Flask
fJMP l, CC-
4 U-^/Vw
Solution
(ml)
2sjZ
0
loo
IfZ?
btf yjQ
Configuration
Total Weight of Impingers (grams) W.v
Train set up:
Weight
(grams)
Final vaa-yg
Initial _l6svtL__
Wtgaiii_yiL2_
Date:
Signature^
In$jpcc*£jiOQ
Comments
ys*\-0 0
Final
^SUe-lo
"
Initial
Wt gaia
H44«>
,71-1
f-y-h'
Final
Initial
WL gain
fo/nS' M
\- °
Final
Initial
Wt gain
Final
ISo.S'
Initial
Wt gain
^OT-.Z-
2-r?
Final
Initial
Wt gain
Final
Initial
Wt gain
Train recovery: Dale:
Signature:
R
71
-------
DATA FILE: EER-CFC-REAGENT BLANK | j
ACQ ON; 09-08-94 •
| j
SAMPLE:EER-CFC-REAGENT BLANK
• —
MISC:2ul injected/ACETONElTOLUENE,MECL2
: I I
| |
TARGET COMPOUNDS
| TOTAL MASS(ngs)
| j j
j. . -i
1.) Tetrachlorodibenzodioxin
; nd |
]
2.) Tetrachlorodibenzofuran
nd |
! i
! I
j
3.) Pentachlorodibenzodioxin;
nd
1 I
j ! i
4.) Pentachlorodibenzofuran
nd
I
-
I
5.) Hexachlorodibenzodioxin
j nd
i !
6.) Hexachlorodlbenzofuran
nd
7.) Heptachlorodibenzodioxin
nd
i : i
8.) Heptachforodibenzofuran
nd
t
9.) Octachlorodibenzodloxin
nd
i
t
10.) Octachlorodlbenzofuran
nd
72
-------
DATA-FILE: EER-CFC-CTT-TRiP BLANK
, —
ACQ ON: 09-02-94
! j !
I
)
SAMPLE:EER-CFC-CTT-TRIP BLANK
I
MISC:2ul injected/xad only |
i
: i i
« « '
TARGET COMPOUNDS ]
TOTAL MASS(ngs)
i
! j ! I
1.) Tetrachlorodibenzodioxin !
nd
f
i : i
2.) Tetrachlorodibenzofuran
nd
i
3.) Pentachlorodibenzodioxln
rid
" « ! !
4.) Pentachlorodibcnzofuran
nd
I
5.) Hexachlorodibenzodioxin
nd
i _L_
6.) Hexachlorodibenzofuran
nd
|
7.) Heptachlorodibenzodioxin
nd
t
j
i i !
8.) Hdptachiorodibenzofuran
nd
' |
9.) Octachlorodibenzodloxin
nd
|
10.) Octachiorodibenzofuran |
nd l
1
73
-------
DATA FILE: EER-CFC«Cu2-H!GH TEMPERATURE
ACQ ON: 09-08-94 | | j
SAMPLE :EER-CFC-Cu2-HIGH TEMPERATURE
MISC:2ul injected/xad, filters and rinses
!
I i
'
TARGET COMPOUNDS |
TOTAL MASS(iiga)
" ' !
| I '
• ' I ;
1.) Tetrachlorodibenzodioxin
nd
,
i i
; [
2.) Tetrachlorodibanzofuran
7.88 |
3.) Pentachforodibenzodioxin!
nd
I i
4.) Pentachlorodibenzofuran
nd
|
I '
5,) Hexachlorodibenzodioxin |
nd
i I I
: ! !
6.) Hexachlorodibenzofuran
24.08
I !
I i
7.) Heptachlorodib«nzodioxln
3.1
I
i i i
|
8.) Heptachlorodibenzofuran
i 221.1
i r ! i
|
I
9.) Octachlorodibenzodioxin
i 9.87 | I
I !
i '
10.) Octachlorodibenzofuran
103.8
i
i
74
-------
DATA FILE: EER-CFC-Cu2-L0W TEMPERATURE
ACQ ON: 09-08-04
I ! I
|
SAMPLE:SER-CFC-Cu2-LOW TEMPERATURE
•
MISC:2ul injacted/xad,filters and rime* |
I ! '
TARGET COMPOUNDS
i TOTAL MASS(ngs)
i
I i
|
1.) Tetrachlorodibenzodioxin
6.62
'
i
2.) Tetrachlorodibenzofuran
96.24
I
3.) Pentachlorodibenzodloxin
nd
I I
4.) Pentachlorodibenzofuran
nd
|
!
5.) Hexachlorodibenzodioxin i
2.26
|
6.) Hexachlorodlbenzofuran
35.99
! i
7.) Heptachlorodibenzodioxin
13.08
i|||
8.) Heptachlorodibenzofuran
147.5
i -
I
9.) Octachlorodib«nzodioxin
22.31
\
10.) Octachlorodibenzofuran
252.4 I
75
-------
DATA FILE: EER-CFC-Cu1-HIGH TEMPERATURE
i
ACQ ON: 09-08-94
SAMPLE:EER-CFC-Cu1-HIGH TEMPE
—1
C
*
in
MISC:2u> injected/xad.filters and rinses !
! -
^ .,
TARGET COMPOUNDS,
TOTAL MASS(ngs)
! I
I I
I
1.) Tetrachlorodibenzodioxin
nd
i
I
j
J
.
i
2.) Totrachlorodibenzofuran
406.6 ;
i
i !'
i ; ¦
I
3.) Pentachlorodibenzodioxin
nd
*
|
4.) Pentachlorodibenzofuran
25.99 !
!
, 5 1 |
! i | !
5.) Hexachlorodibenzodioxin
nd
,
i
6.) Hexac h1 orod i benzofuran
17.69
I
1
1 ! !
7.) Heptachlorodibenzodioxin
8.88
,
t |
8.) Heptachlorodibenzofuran
114.5
I i
9.) Octachiorodibenzodfoxin
11.36
j
10.) Octachlorodibenzofuran |
114.3
I
•76
-------
DATA FILE: EER-CFC-Cu1-L0W TEMPERATURE
ACQ ON: 09-08-94
I
SAMPLE :EER-CFC-Cu1-LOW TEMPERATURE
MISC:2ul injected/xad,filters and rinses \
i
i
i t
t
i , t
I
i
TARGET COMPOUNDS |
TOTAL MASS(ngs)
|
!
1.) Tetrachlorodibsnzodioxin
12.2
I I
2.) Tetrachlorodibenzofuran !
828.5
'
!
i
3.) Pentachlorodibenzodfoxin
14.87
I i I
4.) Pantachlorodlbenzofuran
195.2 |
: ! i
5.) Hexachlorodibenzodioxin
19.36
I i i
6.) Hexachlorodlbenzofuran
108
i i !
7.) Heptachlorodibenzodioxln
87.88
1 I I
8.) Heptachlorodlbenzofuran
354.8
)
9.) Octachiorodibenzodioxin
108.5
!
I
I
10.) Octachlorodlbenzofuran
344.8
i
i ¦
77
-------
DATA FILE: EER-CFC-CU-FIELD BUNK
ACQ ON: 09-12-94 | ]
SAMPLE:EER-CFC-CU-FtELD BLANK
MISC:2uI injected/xad.rinses,filters all analyzed together
1 1 '
! 1 ! i
TARGET COMPOUNDS
TOTAL MASS(ngs)
I i i
i
1.) Tetrachiorodibenzodioxin
nd
j
I )
2.) Tetrachlorodibenzofuran
nd
1
i « l
i i . . I-
3.) Pentachlorodibenzodioxln
nd
i
4») Pentachlorodibenzofuran
nd
I
6.) Hexachforodibenzodioxln
nd
|
6.) Hexachlorodibenzofuran
nd
i i
I ¦ I
7.) Heptachlorodlbenzodioxin
nd
i i
I ! i
8.) Heptachlorodibenzofuran
nd
r !
9.) Octachlorodibenzodioxin
nd
! i i
i
10.) Octachlorodibenzofuran j
nd
78
-------
CLIENT /TEST PROGRAM: EPA/CFCs, TfrstrtT? DATE: 8/17/94 8/17/94 8/18/94 8/18/94 8/23/94 8/23/94
TEST SITE FACILITY: CTT OPERATOR: J.K. J.K J,K J K D L D L
DATA ENTERED BY: G.K.
DATA ENTRY FOR STACK CONDITIONS
SYMBOL
UNITS
TEST 1A
TEST 1B| TEST 2AI TEST 2BI TEST 3Al TEST3BI
' 1
Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysl:
081701-SB#1
081701-SB#2
081802A
081802B
082301A
082301B
ROUND DUCT DIAMETER
ds
inches
8
8
8
8
8
8
NOZZLE DIAMETER
dn
inches
1.75
1.75
1.75
1.75
1.75
1.75
AVERAGE FLUE GAS TEMPERATURE
Ts
•F
465
465
448
448
450
450
AVERAGE METER TEMPERATURE
Tm
•F
99
100
109
109
100
99
BAROMETRIC PRESSURE
Pbar
in. Hg
29.84
29.84
29.84
29.84
29.96
29.96
FLUE STATIC PRESSURE
Pg
In. H20
-1
-1
-1
-1
-1
-1
AVG. DELTA H
AH
in. H20
2
2
2
2
2
2
PITOT COEFFICIENT
Cp
-
n/a
n/a
n/a
n/a
n/a
n/a
GAS SAMPLE VOLUME
Vm
cubic It.
92 105
89.27
91.377
88.24
92.495
87.905
METER CALIBRATION FACTOR
Y
-
0.997
1.0027
0.997
1.0027
0.997
1.0027
TOTAL SAMPLING TIME
min
minutes
120
120
120
120
120
120
FLUE GAS OXYGEN
Co2
%
8.4
8.4
7.03
7.03
7.27
7.27
FLUE GAS CARBON DIOXIDE
Cco2
%
7.2
7.2
8.4
8.4
9.3
9.3
TOTAL IMPINGER GAIN (WATER)
Ww
grams
211.3
204.8
233
231.2
181.5
166
Calculated stack condctions
¦stors:
"POTTS"
TEST
l¥Sf dA| Ttst
Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysi.
081701-SB#1
081701-SB#2
081802A
081802B
082301A
082301B
NOZZLE AREA, An - (x(dn)"2y4
An
sq. In.
2.41
2.41
2.41
2.41
2.41
2.41
STACK AREA. As - [**(da)"2y576 (ROUND)
As
sq.feet
0.35
0.35
0.35
0.35
0.35
0.35
AVG. STACK TEMPERATURE, Ts « Fs + 460
Ts
•R
925
925
908
908
910
910
AVG. METER TEMPERATURE, Tm - Fm + 460
Tm
•R
559
560
569
569
560
559
GAS SAMPLE VOLUME AT STD CONDITIONS,
VmStd - 17.647 Y (VrrvTm) (Pbar + AH/13.6) O 68 °F
VmStd
cubic ft.
86.93
84.58
84.73
82.29
87.49
83.77
VOLUME OF WATER VAPOR, VwStd - 0.04718'Ww
VwStd
cubic (t.
9.97
9.66
10.99
10.91
8.56
7.83
MOISTURE FRACTION, Bws -VwStd/(VmStd + VwStd)
Bws
-
0.10
0.10
0.11
0.12
0.09
0.09
DRY STACK GAS MOL. WEIGHT, Md - 0.32(Co2)+
0.44(Cco2)+0.2&(100-(Co2)-(Cco2)]
Md
g/g-mole
29.49
29.49
29.63
29.63
29.78
29.78
WET STACK GAS MOLECULAR WEIGHT,
28.77
Mw - Md(1-Bws)+18.0(Bw8)
Mw
g/g-mole
28.31
28.31
28.29
28.26
28.73
ABSOLUTE STACK PRESSURE, Ps - Pbar + Pg/13.6
Ps
in. Hg
29.77
29.77
29.77
29.77
29.89
29.89
DRY FLUE GAS FLOWRATE
Qfgd
dscf/min
15.69
15.69
16.02
16.02
16.25
16.25
WET FLUE GAS FLOWRATE, Ofgw - Qfgd/(1-Bwa)
Owfg
wscf/mln
17.49
17.48
18.10
18.14
17.84
17.771
ACTUAL FLL(E GAS FLOWRATE, Qfga » Qfgw*Ts/540
Qtga
acl/min
30.52
30.51
31.01
31.08
30.63
30.51
GAS VELOCITY, v - Qfgw/(As*60)
V
ft/s
1.46
1.46
1.48
1.48
1.46
1.461
ISOKINETIC RATE,
93.00
90.32
94.29
90.294
1 - 13.61*Ts*VmStd4PsVAn*mln*(1-Bws)]
I
%
97.42
94.80
-------
SAMPLE TRAIfJ 6A1M
^KtSST
UNITS
TESTlA
T£st 1B
TEST 2A
test 2B| Test 3A
TEST 3B||
Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analyst
081701-SB#1
081701-SB#2
081802A
081802B
082301A
082301B
Total JCDD ' 1
Wi
ng
NC
ND
ND
ND
ND
ND
Total P.CDD
Wi
ng
ND
ND
ND
ND
ND
ND
ToUl HxCDO
Wi
ng
0.541
ND
ND
ND
ND
ND
ToUl HpCOO
Wi
nfl
ND
ND
ND
ND
0.618
ND
OCDD
Wi
ng
ND
ND
ND
ND
ND
ND
TOTAL PCDD*
Wpcdd
ng
0.541
0.618
ToUlTCDF
WI
ng
26.46
26.11
ND >
24.92
ND
ND
Total f>*CDF
Wi
ng
ND
ND
ND
ND
ND
ND
ToUl HxCDF
Wi
ng
ND
ND
.5.54
1.52
54.47
ND
ToUl HpCDF
Wi
ng
98.92
108.37
5.37
ND 21.39
70.58
142
OCDF
WI
ng
7.32
5.83
4.68
2.12
1.17
ND
TOTAL PCDFa
Wpcdf
ng
132.7
140.31
15.59
49.95
126.22
142
TOTAL PCDD/PCDFa
Wt
ng
133.241
140.31
15.59
49.95
126.838
142
FLUE OAS CONCENTRATION • 7% 02
SYMBOL
UNITS
TEST 1A
TEST 1B| TEST 2A| TEST 2BI TEST 3A
TEST 3B1I
C - 35.32M3.95*Wi/[VmSmpl*(20.95-Co2)]
Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysis Re-Analysi:
081701-SB#1
081701-SB#2
081802A
081802B
082301A
082301B
ToUl TCDD
Ct
ng/dscm
<
<
<
<
<
<
ToUl P«CDD
CI
ng/dscm
<
<
<
<
<
<
ToUl HxCDO
Ct
ng/dscm
0.24
<
<
<
<
<
ToUl HpCDD
Ct
ng/dscm
<
<
<
<
0.25
<
OCOO
a
ng/dscm
<
<
<
<
<
<
TOTAL PCDOa
Ctpcdd
ng/dscm
0.24
0.25
ToUl TCDF
Ct
ng/dscm
11.95
12.12
<
10.72
<
<
ToUl PaCDF
Ct
ng/dscm
<
<
<
<
<
<
ToUl HxCDF
Ct
ng/dscm
<
<
2.31
0.65
22.42
<
ToUl HpCDF
Ct
ng/dscm
44.67
50.30
2.24
< 9.20
29.06
61.05
OCDF
Ct
ng/dscm
3.31
2.71
.1.96
0.91
0.48
<
TOTAL PCDFt
Ctpcdf
ng/dscm
59.93
65.12
6.51
21.49
51.96
61.05
T6TALW6M^6P.
Ctpcdd/f
na/dscm
60.18
65.12
6.51
21.49
52.21
61.05
-------
ISOKINETIC RUNSHEET
-------
EMPINGER WEIGHT SHEET
Plant/city: "TXs-6 /itki
Train Set No. Location: CT7
Filter No.
Run No.: }
Impinger Solution
No. Used
1
D-L
&L
fji It
F iask
Solution
(ml)
ik.
/&C
4 /.QM A/^dU- /£0
3<
Configuration
&s
f~1a-c{
TOTAL WEIGHT GAIN OF IMPiNGERS (grams)
ub%i
Weight
(grams)
1437,5
Inspection
Comments
Final
Initial fgrrn tdtl-9'
Wt gain—m l
Final w.o
Initial
Wt. gain
EI
551, 7.
Finai
Initial "gSZ*?-
Wt gain ~\S
Final SMj.3
Initial *>W$s\
Wt gain l-H
Final uto
Initial
Wt. gain
Final
Initial
Wt gain
Final
Initial
Wt. gain
Train sat up:
Date:
Signature:
Train recovery: Data: *&(
Signature:
82
-------
Tit _
Locaikm:
Optniot —)
Oata: 1
Ron Number:
fi/JLc.
P
ISOKJNEDC RUNSHEET
Sampt* Boa Numbw
Utw; Box Numtw
Notito No.
33T
¦ - (Ml.)
SEE
11
Matt Cakbiakon (Y)
Malar dH •
P«o( Tub* No.
Plot* (.cogti
Fillaf Number
Suite Pituma (Pa)
Batomatoc Pi«*»ula (Pt>) .
bliool
i&okinatic Factor,
rr^TZtTT
Cp
(in. H20)
_ (in. Hfl)
Slack Oiam., ncha*
Aaaumad moiakwa, V
TC No.
Piofc* Llnw Malaiial
PicU HmM Sailing ("F)
Ambianl Tampwalura (*f)
Ptalail Laak nala DQj%. elm • / S" (in. iiq)
Po»l Toil Laak Hala ftlD elm • ( ( (m I Hi)
Pilol Clwck: Pialatl Potl Tosi
TlH*
-»r-
-SL
to
151
ix>
Ctoc*
TkM
Q< ^
nm.
1IM7
M T Mp,
tt
1.*
V«to«ty
V '
Pi
OM«r*AM
Aciom Oflfte*
fie ty?i
Z-0
¦ lift
t.o
Q«6«np*
Volwm*. V«
1
t—r4»»^cg
<• HPS
Ory Om
UMM MM
T«mp. T«
rn
3Z
'ol
Ory Oft*
Umt OulM
T«np. Tm
t
it
3t=
J*fc_
*rv*Sf«
Ovum
T»mp.
., ,,m...
SO.
4iL
PfO(>«
T«mp
...HI...
2S.
ttff
F**l
T*mp
. rn
-*o
&0
RasinGM
1»mp
„rfi
SI
Communis
7J$
TTFT
3
«K
W.oo
igMfc-
wr
s
Vrtr
VT
W
3d
35L
JUL
.451
1M1
US
i7T- n
ifcl
Id.L
»61.
32.
2^L
WTT
51
5t
st
54.
00
OJ
<5©
£5"
11 w?
i&3-
22S
SSL
W
US
^£.
MI
M.
M
ifiX
SE
iS-
m
TE
W)
hlL
WJT
zar
31
LA-i*S_
SDSL
J5*
_£1
HiElI5
JUL
i rXT
SZ3t
3E
HZ
3Z3H
JK-^-
41
m
a. <5
H~1T
IAL
¦naibiKBi!
HI.
^'0
/Z-6
ikL
ESEE
TOT
LP ^
HL
131^0
£
lil
jaa
£T
M
SI
E
S£-
S1
SI
S4,
SI.
W.
SI
iu«p Mmc lempwiiure
Om T*«iip 4 M top— f
M 24* W- » *'
-------
IMPINGER WEIGHT SHEET
Plant/c.
Train Set No, Location:
Filter Ho. ___ Run No.:
Impiriger Solution
No. Used
1
Pi-
Solution
(ml)
21
' C M /J* tti
' 4 \
IdO
/at}
Y
Flask.
Configuration
H*et
Heel
TOTAL WEIGHT GAIN OF 1MPINGERS (grams)2(L?
Train set up:
Weigh!
(grams)
Final
initial <{-4t1.
If
WL gain ttd*
Final S°fS. 3
Initial ^
WL gain £3.7
1UHQ
Final 518 (g
Initial 5~*nP« \
Wt gain ~f S
Final S*5t'8
Initial
WL gain ?~ i
Final
Initial
wl gain _
Final
Initial
Wt. gain _
Final
Initial
Wt. gain
101. 0
ifS
Date: _
Signature^
Train recovery: Oate:
Signature:
84
-------
ISOKINETIC RUNSHEET
Plate
Cily: ___
Locaton:
Opatalor
Data:
Run Numbar. i
Slack Ottm., incftaa:
Auumad moMun. V
3E
E
Semple Bo i Number
Mam Bok Numbat /J /
Mam Caktn«kon |Y)
Malar dH • /. ^
P*ot Tub* No. Cp
Ptoba Length TC No.
Pioba Linw Mataiiai
Proba Hhw Sailing (f)
Noula No.
Fillaf Numtoar
Sialic Piiuun (P»)
Baiomauic Prauuta (Pb) .
Oamam JLl3^-.
- (in.)
Shoal ' t Ol
Isokinetic Factor, K
(in. H20)
_ (in. Hfl)
Ambttnl Temperetixe (*F)
Prttati Leak • /S" (in. H9)
Post To&l Leek Retefl, PO^clm O Hg)
Pitoi Check; PieieW Poll Tesl
Tmm.
QtW*l
TMM
Q4 M
Velecty
Heed,*
Pi
ACfeeeOrttce
VotUflM. V*
lcl>
OryQee
Temp. Tm
m .
Dry Qe*
OwIM
Temp. Tm
m „,
twptiQef
Oultet
Temp.
, rf).
PRM
Temp
-CEL.
Faut
Temp.
....i-fi
T«np
¦ \:f.L
Awn Qm
Ttrnp
tu
Comments
CO
/4>Q
left
.M.
_£2_
_2\,
"&b
SXS
.n
rz--'
«rS~
24*
2^
ML
1££
S"
v<53
3b-
m.
$TS
31
JU_
i£2_
51=:
3:
_£L
w
is*
L66>t*C
3E
3ZI
£3.
£2l
W
WF
x%S
244-
I
m:
a.
If
It 13 fttrlAf-t 16^,.
m
-1^-
Z3I
iS£
VS
w
w
l±b-
M-
HM-
^d,\UA
£
S
SL
3
IE
12^L
-55L
S
.2
_^X
_ Ke«p Aeetn Oee Tenip < 10 '
-------
IMPINGER WEIGHT SHEET
Train Set No. KWg,
V 1 *
Filter No.
Plant/city71&.5J Sij^L nJg
1 nmtinn- CL I" I '
Location:
Run No.:
~$=&r 2~P)_
Impinger Solution
No. Used
€^P"Kj
5 ^ iticA. GCL
Flask
Solution
(ml)
1 HPlc HiQ ZQ&
05
I.Om KkOrt ISO
Configuration
GS
Mat)
moD
maD
TOTAL WEIGHT GAIN OF IMPINGERS {grams}_
ami
Weight
(grams)
Final ISSS.^
Inspection
Comments
Initial
Wt. gain
Final
Initial
Wt. gain
Stq.Q
HH14
&*>
Final SBQ-1
Initial
Wt. gain M
Final
Initial 6U.M
Wt. gain «%t,X
Final 1 HS. ?
Initial
-------
ISOKINETIC RUNSHEET
Gampla Doi Numtoar
Maiaf Bon Numbar
Hun Numbar.
Slack dam.. nctiw
Aatuoad weak**, %:
Malar Cakbraaon (Y)
M«i»r dH • / ^
PHot Tuba No. Cp
Pioba Langih TC No.
Pioba Linw Malarial
Prate Haattf Sailing (f)
~^F
(in.)
Noixla No. Olamalar
Filial Numbar
Slake Pratauia (Pa) (m. H20)
Batomauic Praaaura (Pb) (in. Hg)
Sltoel J. ol
Uokiotthc Facioc, K
Ambtenl Tamp*f*iu« (#F)
. Pialail LaaX Rala elm • (m. Hs)
Po»l Tan Laak Rala ^S* elm • I (in. Hg)
Pitol Chack: Praia*! Po»l Tail
00
-------
Train Set No
PvlPINGER WEIGHT SHEET
Plant/city^ ks+Stf*-fajLv^E
.%2& Location: CIT
Filter NO; Run No.:
Impinger Solution
No. Used
1
Flask
Solution Configuration
(ml)
HAlc fen 2^
IwsD
\
HPLC H-lD j oo
6..0
initial 10%1~
Wt. gain H*1
Final
Initial
Wt. gain,
Final
Initial
Wt. gain
Date:
Signature: & L /h^P"
»» adpq^^Haaaaaaa^HaaaAiaAaaaaaaa^&aamaaa
Train recovery: Date:
Signature:
88
-------
IMPINGER WEIGHT SHEET
Train Set No.
Filter No.
\jt [IjrpJ
Plant/city: -5
Location: CTT
Run No.: gM
Impinger Solution
No. Used
1
J2X
I
i i-A.
Solution Configuration
(ml)
JS-^O
/j h tAty ld0
3co,
-------
IMPINGER WEIGHT SHEET
Plant/cityrHsf^k
Train Set No, Location: C— f f~"
Filter No. Run No.: 3A
Impinger Solution Solution Configuration Weight Inspection
No, Used (ml) (grams) Comments
1
' ' '
-------
EPA Method 26 - .._l
W1
£JJsL
Ram:
Cllf
lOCAfcOA.
Op*«K*:
DaW:
ftoA Numoar
Si*ck CWtv. mcnai: ^*Q
Sa/npJa Boi Numtxr
Maw Box Numfcai as.
._7S_
(in)
w
s&E*
Matw Cakbiauon (V) Q Q
Uatar OH O A15^LI_
PtkcA Tub* No. Cp
Piofca lanQift TC No
ProtM Lm Maianal OuAft-YL
PiotM Hm* Selling (*F)
Noula No. Otamator
FMia' Numfcar
Suite Praiiuia (Pa)
Baromai/ic Piatiufa (Pb) _
Ambiant Tarnpaiaiuta (*F)
. Prann lath Aaia&*>$Sctm O >5 ^0)
PoU Tail Laak R*ldC^fi82-clm 0 JJ (n. Hg)
Pttoi Ch^ck; Piaiatl Pon Tail .
~x
Sheet ( ol
liokir>«i< Factor. K
±:
(m. H20)
(in. Mq)
-------
impinger weight sheet
Train Set No
Filter No,
Plant/city: 1e^/"S>i"g.- /^X^V^r/r
Location: £' ) 1
Run No.: 3 B
Impinger Solution
No. Used
t
2
tiz.0
Flask.
Solution Configuration
(ml)
Weight
(grams)
inspection
Comments
6.5\
loO
"2-.
Final If
Initial
Wt. gain TZ{ A
4-
moo
Fina> 1
Initial H5Q.1
Wt. gain ZT.^
G.S.
t ^
Initial ffbS-*!
w^. gain fU ,
Final "
Initial
Wt. gain
TOTAL WEIGHT GAIN OF IMPINGERS (grams)
Final
Initial
Wt: gain
S/ika Gei 3003. r^oi) Final _
Initial (o j5 - I '
Train set up: Date: S/1^ 1^4
Signature: Be
Train recovery: Date
Signature
92
-------
EPA Method 26 - ..-J
Ran*; 'C
c»r- Wtf
locAUort p rr
Ope/*tor. rw £.
d«i« r»i *H
Run Numbtr.
Such Oum.. ncfMi.
AiUinvd moaii/i. X:
-2^-
S*mpt« Box Number
M«t*< 80* Numb*/ A4 i
M«t*i Cftkbution (Y) 1
M«t«f cJH 0 Vv ^^-4^
Pilol Tub« No. - Cp —
ProtM tangih *N, " TC No -
Pfob* Lin* ^ 12-
Ptob* HmIm S«IMnfl CF) "Z'T^
Noul* No.
friiw Number |
SuK Pi«uui« (Pi)
CUiomtUic Prei»u<»s(Pb) .
Dtaax !•< \ 1
(»o J
Sheei ol
l&oluneic Facior. K _
bs. 0" H20)
. Jin. Hfl)
Amtxeni T*mpeftiui« (*f) 63^— -
. Pi«teii L*ftk Rait, CyJ elm 0 f (in. HgJ
Poll T«il L«*h FUt*^ ft*3 c,m ® A
Chtck: Pf«i«H T^Toit
-------
DATA FILE: EER-CFC-CTT-FIELD BLANK
1
i
ACQ ON: 09-07-04
| |
j
i
SAMPLE: EER-CFC-CTT-FIELD BLANK i
MiSC:2ui Injacted/xad,rinses,filters all analyzed together
i
' i |
i
TARGET COMPOUNDS
TOTAL MASS(ngs)
1.) Tetrachlorodibenzodioxin
nd
I ! -|
2.) T«trachlorodibenzofuran
nd
i i
t ;
j
3.) Pentachlorodibenzodioxln! I nd
4.) Pentachlorodibenzofuran
nd
I I
5.) Hexachlorodib€nzodioxln
i nd
i ! i
6.) Hexachlorodlbenzofuran
nd
l I
!
|
7.) Heptachlorodibenzodioxin
nd
j
! I
1 1
8.) Heptachlorodib«nzofuran
11.1
;
I j
9.) Octachlorodibenzodloxln
nd
i
1
i
10.) Octachlorodlbenzofuran |
nd |
i
94
-------
DATA FILE: EER-CFC-CTT-3B
ACQ ON: 09-02-94
SAMPLE: EER-CFC-CTT-3B
!
MISC:2ul injected/xad,rinses,filters a)
analyzed together
|
1
TARGET COMPOUNDS
TOTAL MASS(ngs)
i
I i
1.) Tetrachforodibenzodioxin
nd
i
I
I
i
2.) Tetrachlorodibenzofuran >
nd
! I |
ill!
3.) Pentachlorodibenzodioxin
nd
¦I ' i
4.) Pentachlorodibenzofuran
nd
-
1
5.) Hexachlorodibenzodioxln
- nd I "
1
I |
I
8.) Hexachlorodibonzofuran
nd I
i
: 1
1
i
7.) Heptachlorodibenzodioxin
nd
i ; i
i l
I ; i
8.) Heptachlorodibenzofuran
137.1
s
9.) Octachlorodibenzodioxin |
nd
r \ ) 1 ¦ ¦ ¦
; i j *
: 1 1
10.) Octachlorodibenzofuran
nd
1
95
-------
~ATA FILE* EPR-CPC-CTT-3A
1 i ¦ '
ACQ ON: 09-02-94
¦ i i
i ! 1
SAMPLE:EER-CFC-CTT-3A
• 1 1
. « . : - i ¦ :
MlSC:2u! injected/xad,rinses,filters all analyzed together
II!!!
TARGET COMPOUNDS j jTOTAL MASS(ngs)
-
- j. ... i .. ! , .
1.) Tetrachlorodibenzodioxin
¦nd'
I :
I i !
'
2.) Tetrachlorodibenzofuran
nd
I i
—...
3.) Pentachlorodibenzodioxin
nd
. . t
|
4.) Pentachiorodibenzofuran
nd
I
i
!
¦
5.) Hexachlorodibenzodioxin
r. ...nd j ..
|
6.) Hexachlorodibenzofuran
53.11
! I i
I
t
i
7.) Heptachlorodibenzodioxin
0.842
I I i
8.) Heptachlorodibenzofuran
69.63
i
1
9.) Octachlorodlbonzodioxln
| nd
i ! !
10.) Octachtorodibenzofuran
1.09
96
-------
DATA FILE: EER-CFC-CTT-2B
ACQ ON: 09-02-94
I
I
SAMPLE:EER-CFC-CTT«2B
MISC:2ui injected/xad,rinses,filters al
analyzed together
i
i
TARGET COMPOUNDS
TOTAL MASS(nga) |
¦ I :
1.) Tetrachlorodibenzodioxin
i 24.22: ;
!
i ; I
I
2.) Tetrachlorodibenzofuran 1 nd !
i
1
1
i
3.) Pentachlorodibenzodioxin
nd
i
! J
i ( ;
¦*
4.) Pentachlorodibenzofuran
nd
-
1 1 :
5.) Hexachlorodibenzodioxin
nd
1
»
6.) Hexachlorodibenzofuran
1,22
i |
7.) Heptachlorodibenzodioxin
, 20.89
i i
i j i
8.) Heptachlorodibenzofuran
nd
- i !
9.) Octachlorodibenzodioxin
nd
i
I
i
10.) Octachlorodlbenzofuran i 1.87
I
97
-------
DATA FILE: EER-CFC-CTT-2Aj
j
ACQ ON; 09-01-94
! | J
SAMPLE: EER-CFC-CTT-2A
'1
- _ ¦ ,l
MISC:2ul injected/xad,rinses,filters all analyzed together
|
!
J
i
TARGET COMPOUNDS
TOTAL MASS(ngs)
! - ¦
1.) Tetrachlorodihenzodioxin
nd 1¦
j
. i
i
2.) Tetrachlorodibenzofuran
L n<* i ¦
\
i
I
i
3.) Pentachlorodibenzodioxin
nd
' ' '
! | | | j
-
4.) Pentachlorodibenzofuran
nd
-
I
; j
5.) Hexachlorodibenzodioxin
nd
i . |
! i
6.) Hexach lorodiberizofuran
6.04
7.) Heptachiorodibenzodloxin
nd
| |
8.) Heptachlorodibenzofuran
4.63
I
9.) Octachlorodibenzodioxin
nd
•
|
10.) Octachlorodibenzofuran
4.18
98
-------
DATA FILE: EER-CFC-CTT-1B
I
ACQ ON: 09-01-94 i
SAMPLE:EER-CFC-CTM B
I
M!SC:2ul injected/xadtrinses,filters al
analyzed together
I ! !
TARGET COMPOUNDS
TOTAL
MASS
-------
DATA FILE; 6ER-CFC-CTT-1A
—
i
ACQ ON: 09-01-94 |
SAMPLE:EER-CFC-CTT-1A
i
MISC:2ul injected/xad.rinses.filters all analyzed together
ill!
I ;
TARGET COMPOUNDS
TOTAL MASS(ngs)
i !
I I
1.) Tetrachlorodibenzodioxin
nd | !
2.) Tetrachlorodibenzofuran
25.91 I
t
l
I
3.) Pentachlorodlbenzodioxin
nd
-
.
4.) Pentachlorodibenzofuran
nd
I |
5.) Hexachlorodibenzodloxln
0.396
I i
6.) Hexachlorodibenzofuran
nd
j I i
7.) Heptachlorodibenzodioxin
0.336
! I I
8.) Heptachlorodibenzofuran
106.1
ir !
9.) Octachlorodibenzodioxin
nd
I
i
1
i
10.) Octachlorodibenzofuran
5.7
i
100
-------
APPENDIX C
EPA SW 846 METHOD 0030 (VOLATILE PIC) DATA AND CALCULATIONS
101
-------
EPA CFC Incineration FY 94, Task 2.2 FACILITY BLANK: Test 4. August 18, 1994
[Da& Entry for .Stack Conditions
Symbol
Units
rest 4
Test 4
'rest 4
~ 1ST-
Set I
Set 2
Set 3
FB
IjAverage Meier Temperature
1 nj
97
ii ir - -g-;
VI
n/a
JBarotnetric Pressure
Pbar
in. Hg
29.59
29.59
2939
n/a
|Measured Sample Volume
Vm
L
28.42
29.81
29.62
. n/a
UMeter Calibration Factor
Y
none
0.9910
0.9910
0.9910
n/a
|Toli1 Sampling Time
tmn
minutes
30
30
30
a/a
JFlue Gas Oxygen Content
Col
%
7.26
7.26
7,26
n/a
|Dty Flue Gas Flowratc @ 68° F
ICHJ Flowrate
Qfgd
dscm/br
27.31
27.31
27.31
n/a
Qcfc
g/hr
n/a
n/a
n/a
n/a
Calculated Uata
Symbol
Units
1'est 4
Set 1
Test 4
Set 2
lest 4 | 'rest
-------
EPA CFC Incineration FY 94. Task 2.2 FACILITY BLANK: Test 4, August 18, 1994
| VO^ 'i'otai Tenei IWt.
Symbol
Units
Test 4
Set 1
Test 4
Set 2
Test 4
Set 3
'1 'est 4
FB
lest 4
Set 1
Blk Ratio
l est 4
Set 2
Blk Ratio
lest 4
Set 3
Blk Ratio
Dichiorodiiluorome thane
W
ng
1HU2
iyy
67
675
2.1
0.3
U.l
Chloromethane
W
ng
nd
10
nd
10
nd
10
32
/a
/a
/a
2-Methylpropene , |
W
ng
39
nd
10
nd
10
nd
10
nb
3.9
/a
/a
Vinyl Chloride
W
ng
nd
10
nd
10
nd
10
nd
. 10
/a
/a
/a
1,3 Butadiene
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Bromome thane
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Chloroe thane
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Trichlorofluorome thane
W
ng
69
29
nd
10
:¦ 53
1.3
0.6
/a
1,1-Dichloroethene
Carbon Disulflde
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
W
ng
nd
10
36
nd
10
nd
10
/a
nb
3.6
/a
Iodome thane
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Acetone
W
ng
3025
nd
10
159
571
5.3
/a
0.3
Methylene Chloride
W
ng
1086
309
42
6125
0.2
0.1
0.0
2-Methyl-2-Propanol'
W
ng
nd
10
nd
10
nd
10
nd
. 10
/a
/a
/a
trans-1,2-Dichloroethene
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Hexane
w
ng
28
nd
10
nd
10
273
0.1
/a
/a
1,1-Dichloroethane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Vinyl Acetate
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
2-Butanone
w
ng
56
21
42
42
1.3
0.5
1.0
Ethyl Acetate
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Chloroform
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,1,1 -Trichloroethane
w
ng
nd
10
nd
10
nd
10
: io
/a
/a
/a
Cartoon Tetrachloride
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Benzene
w
ng
12
nd
10
nd
10
nd
10
nb
1.2
/a
/a
1,2-Dichloroethane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
2,5-Dimethyl-3-Hexene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
2-Chloro-2-Methy lpropane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Heptane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Flouro benzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2,4-Trifluorobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Trichloroethene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2- Dichloropropane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,4-Dioxane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Dlbromo me thane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Broraodichlorome thane
w
ng
~d
10
nd
10
nd
10
nd
10
/a
/a
/a
cis-1 -3-Dichloropropene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
4-Methyl-2-Pentanone
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Octane
w
ng
nd
10
nd
10
nd
10
nd
: io
/a
/a
/a
Toluene
w
ng
158
11
nd
10
,581
/a
0.3
/a
0.0
/a
trans-1,3-Dichloropropene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
1,1,2-Trichloroe thane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Tetrachloroethene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
2-Hexanone
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Dibromochlororaethane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2-Dibromoethane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Chlorobenzene
w
ng
nd
10
nd
10
nd
10
nd
, 10
/a
/a
/a
Nonane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Ethyl Benzene
1,1,1,2-Tetrachlororethane
m,p-xylene
o-xylene
w
w
w
w
ng
ng
ng
ng
nd
nd
nd
10
10
10
10
nd
nd
nd
nd
10
10
, 10
10
nd
nd
nd
nd
10
10
10
10
nd
nd
nd
10
10
20
10
/a
/a
/a
0.5
/a
/a
/a
/a
/a
/a
/a
/a
-------
EPA CFC Incineration FY 94, Task 2.2 FACILITY BLANK: Test 4, August 18, 1994
Styrene
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Bromoform
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Pinene , ,
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Cumene
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2,3-Trichloropropane
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,1,2,2-Tetrachloroeihane
W
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,4-Dlchloro-2-Butene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Decanc
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
4-Ethyltoluene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Pentachloroe thane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Llmonene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,3-Dichlorobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,4-Dlchlorobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Benzyl Chloride
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Undecane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2-Dichlorobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2-Dibroroo-3-chloropropanc
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Dodecane
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
1,2,4-Trichlorobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
/a
Hexachlorobutadiene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
i/a
4-Phenvlcvclohexene
w
ng
nd
10
nd
10
nd
10
nd
10
/a
/a
|/a
Surrogate Recoveries
d4-1,2-
-------
EPA CFC Incineration FY 94, Task 2.2 FACILITY BLANK: Test 4, August 18, 1994
-------
EPA CFC Incineration FY 94, Task 2.2
Styrene
Bromoform
Pincne
Cumene
1.2.3-Trichloropropane
1,1,2,2-Tetrachloroethane
l,4-Dichloro-2-Butene
Decane
4-Ethyltoluene
Pentachloroe thane
Umonene
1.3-Dichlorobenzene
1.4-Dichlorobcnzene
Benzyl Chloride
Undecane
1,2-Dichlorobenzene
1,2-Dibromo-3-chloropropane
Dodecane
1.2.4-Trichlorobenzene
Hexachlorobutadiene
4-Phenylcvclobexene
FACILITY BLANK: Test 4, August 18, 1994
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,, g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,.g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
„g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,.g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
..g/dscra
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
, .g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
g/dscm
<
0.4
<
0.4
0.4
0.4
2.6
g/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
..B/dscm
<
0.4
<
0.4
<
0.4
0.4
2.6
-------
VOLATILE ORGANICS SAMPLE TRAJN
FIELD DATA SHEET
SAMPLE LOCATION: CTT
SET* 1 EERID
TENAX
TENAX/CHAR
RUN f. 1
t 1
LAB ID - S 2.*?
LAB 10 -tifa
RUN DATE/TIME:
2 1
LA8 10 - 3^ S
LAB tD- (*t$
OPERATOR: -J {£- PROJECT:
FLOWRATE {LPM): / • 6 LEAK RATES: pre: O* 00 0 LPM 91 in. Hg
AMBIENT PRESS Cm. Hg): post: 00 LPM 9 *2-— in. Hg
AMBIENTTEMPERATURE* ' METER CALIBRATION FACTOR:
SET # 1
Tim#
frnin. S
TEMPERATURES PCS
Sampie
Vacuum
fin. Hq)
OTM Reading
(Ut«rs>
OTM Vacuum
(inch## W.C.I
Rowmiuf
Reading
(Glass/SSI
Fki«
Gas
Tenax
Tana*/
Charcoal
OGM
Inlet
0
\"2M
/S"f 7. <30
0.
f£» It*
-MrVf | SO
qj.
0
I (cOi, g«V
\x~Ls
lo
5
¥ m \ W f J | «¦ I,#
1
%
0
lW, <32-
U (f
1^ 1
IS
| S*/
$7-
0
KmI.OS"
i>4
xo
i J ^
wr
5>
0
1 l*i
t~
j&ir
Is4
17*
0
HfU. a
h 5"
1-Y
3d
J / "i 0~7
49-
6
tt,U5-.4l~
¦ (, 5~
T-Y
l"S5? 0
1 MIL
Wr (/q
d
iV&. 4*
, o.oOU^
\ 2~
. s-
4af I
6
1^31. ) 6
f-(~
j*
to OMri S*
t ?
0
i-r
IS
| Lb
??
6
UAb .fcr
'<(*
tt
7-0
<(0
0
KAS <5?
hU
n
sv
i ¥
6
J ££&«S"0
3t>
AVG.
m-
S3>
-
^9-
I USST, ZS"
TOT.. 1*.i\
w
atoo <_Pn 3^ "r
107
-------
VOLATILE ORGANICS SAMPLE TRAIN
FIELD DATA SHEET
SAMPLE LOCATION:
Cr-T
SET* ! EERID
TENAX
TEN AX/CHAfl
RUN r
1
1 i
LAB ID - S"f?~
LAB 10
RUN DATE/TIME:
vfiT-hct
2 1
LAB ID-
LAB 10 • Wtfl
OPERATOR:
J ic_
PROJECT:
FLOWRATE (LPM):
L6
LEAK RATES; prt:
6.0O lpm e
2. in. Hg
AMBIENT PRESS fln. Hg}: post <9-06 LPM « 2>0 in. Hg
AMBIENT TEMPERATURE: 1a ^ METER CALIBRATION FACTOR: '
SET #1
Time
(mm.)
TEMPERATURES CO
Sample
Vacuum
(in. Hg)
OTM Reading
(Littrs)
DTM Vacuum
finchas W.C.)
Flowm«t#r
R«adng
Flu#
Gas
T«rsax
Tan ax/
Charcoal
DGM
lni«t
I$l4*
6
1100
HTSAZ
i
't
¦kk-
sf
17-
0
(?
¦¥)
2-5"
df
-------
EPA CFC Incinemioo FY 94, Task 2.2 ' HCPC-1410 Test 5, August 18.1994
lata Eaixy lor Conditions
Symbol
Units
lest 5
Set 1
lest 5
Set 2
lest 5
Set 3
lest 3
FB
Avaage Mete lenapcratoe
Barometric Pnsswe
Measured Sample Volume
Meier Calibration Factor
Total Sampling Time
Flue G*i Oxygen Content
Dry Flue Gu Flowrale 9 68°F
CR.' Flowrate
hn
PtXtt
Vm
Y
ml«
Co2
"h
in. Hg
L
none
minutes
%
dscm/hr
gflir
2939
28.20
0.9910
40
6.73
26.68
291.5
29J9
29.76
0.9910
30
6.73
26.68
291.5
29J9
26.00
0.9910
30
6.73
26.68
291.5
all
a/a
b/m
o/a
a/a
all
a/a
o/a
Calcntated Data
Symdot
UmU
l est 5
Set 1
Tea 5
Set 2
Tei3
Set 3
'Vest 5
FB
Sample volume w staodart CoodiUoos
VraStd* 17.647* Y*Fbar*VmrtTin+46U) IVraStd
dsl.
26.25
27.65
24.24
a/a
109
-------
EPA CFC lncinemioo FY 94, Task 2.2
HCFC-14lb: Test 5, August 18, 1994
i—1
I—1
O
11
umu
Tetl!
Set 1
Ted;
Sei 2
Tcsl i
Set 3
Te«B
FB
Tesi r
Set 1
rest !>
Sei 2
Tcsl 3
Set 3
Blk Ratio
Blk Ralio
l^lk Ratio
utcnKvoauiuorometiune
W
ng
WH
MU
1924
TRST
U.5
U.4
CMoronwhaoe
w
ng
nd
10
219
169
50
/a
4.4
3^4
1.1
2-Metbylpcopene
Vinyl Chloride
w
w
ng
ng
nd
25
10
nd
19
10
nd
11
10
nd
nd
10
10
nb
It
2.5
nb
It
1.9
nb
/a
1,3 Butadiene
w
ng
nd
10
od
10
nd
10
nd
10
It
fa
/a
Btoroomrthanf
w
ng
11
11
nd
10
nd
10
nb
1.1
nb
1.1
/a
CMoroethaae
w
ng
nd
10
od
10
nd
10
nd
10
It
fa
/a
TridUoroAuorofnetluoe
w
ng
13
od
10
288
17
0.8
fa
16.7
l,l-DichJoroe
-------
EPA CBC Incineration FY 94, Tuk 2.2 HCFC-14lb: Test 5, August 18, 1994
styrtod
W
no
IU
Ad
1U
rid"
TO
na
10
It
/a
/a
Bromoform
W
ng
nd
10
nd
10
nd
10
nd
10.
It
/a
/a
Pineoe
W
»S
nd
10
nd
10
nd
10
nd
10
It
/a
/a
Curaene ' 1
W
ng
ltd
10
nd
10
nd
10
nd
10
it
/a
/a
1,2,3-Trtchlocopropane
W
ng
nd
10
nd
10
Mi-
10
nd
10
it
/a
/a
1,1,2,2-Tetr»chlon)ethane
W
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
1,4-Dichloro-2-Buieae
W
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
Decane
W
»«
nd
10
nd
10
nd
10
nd
10
it
/a
/a
4-Ethyltoluene
W
ng
nd
10
nd
10
nd
10
nd
10
it
f&
/a
Penuchloroethane
W
¦>(
nd
10
nd
10
nd
10
nd
10
it
/a
/a
L.lmonene
W
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
1,3-Dtchlorobenzcne
w
ng
nd
10
nd
10
nd-
10
nd
10
it
/a
/a
1,4-Dichlotobenzene
w
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
Benzyl Chloride
w
ng
nd
10
nd
10
nd
10
nd
10.
it
/a
/a
Undecane
w
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
1,2-Dichlofobenzene
w
ng
nd
10
nd
10
nd
10
nd
10.
it
/a
/a
1,2-DU*omo-3-chiocDpropane
w
"I
nd
10
nd
10
nd:
10
nd
10
it
/a
/a
Dodecane
w
n*
nd
10
nd
10
nd
10
nd
10
it
b
/a
1,2,4-Trichlorobenzeoe
w
ng
nd
10
nd
10
nd
10
nd
10
it
/a
/a
HexacblorotxiUdJene
w
D|
nd
10
nd
10
nd
10
nd
10
it
/a
fa
4-Pheavlcvclobexene
w
ni
nd
10
nd
10
nd
10
nd
10
it
/a
!>urrog»le ktcovenei
-------
EPA GFC Inclncratloo FY 94, Task 2.2 HCFC-141b: Test 5, August 18,1994
C « W* JOOO*13.95/(20.9S-Co2yVaiSul
bymix>l
units
~tsr
Set 1
Cone
Test 3
Set 2
Cone
Toti
Sct3
Cooc
Tsrr
Mean
Cone
TSrr
RSD
(%>
utcnjonxtuiuorocaetlvane
C
..g/dscra
31.7
23.3
443
66.J
aUorooKMMoe
C
<
0.4
7.8
6.8
5.0
80.7
2-Metbytpropeae
C
..g/dscm
0.9
0.7
0.4
0.7
36.3
Vinyl CUoride
€
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
1,3 Butadiene
C
, .g/dscm
<
0.4
<
04
<
0.4
0.4
6.7
Bromomnhane
C
,,g/dscm
04
0.4
<
0.4
0.4
3.1
ChkxoeUune
C
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Tttddorofluofomeliiane
C
..g/dscm
0.S
<
0.4
11.7
4.2
151.7
1,1-OichioroetiKae
C
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Qgfrflq Disulfide
C
..g/dscm
<
0.4
<
0.4
0.7
03
41.5
Iodomcthsnc
C
.,g/djcm
<
0.4
<
0.4
<
0.4
0.4
6.7
Acetone
C
,,g/djcm
48.8
71.3
83J
67.9
26.1
Methylene Chloride
C
t< g/dscm
72.6
15.2
299.3
129.0
116.4
2-Methyl-2-Prop4noJ
c
.^g/dicm
<
0.4
<
0.4
<
0.4
0.4
6.7
tnos-1,2-DicbloH5eUieae
c
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Hcxxac
c
g/dscm
<
0,4
<
0.4
<
0.4
0.4
6.7
1,1-Dichloroethaoe
c
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Vinyl Acetate
c
„g/dsctn
<
0.4
<
0.4
<
0.4
0.4
6.7
2-Butaooae
c
,,g/dscm
1.5
1.1
1.9
1.5
26.6.
BBqrl Accuse
c
,,g/djem
<
0.4
<
0.4
<
0.4
0.4
6.7
Cbioroftxm
c
.^g/dscm
26.9
1.6
15.0
14J
87.5
l.U-TrictiloroeTrtchloroeth*ne
c
,4/chcm
<
0.4
<
0.4
<
0.4
0,4
6.7
TetradUaroetbece
c
..gAtactn
<
0.4
<
0.4
<
0.4
0.4
6.7
2-Hexiaooe
c
.^/dsctn
<
0.4
<
0.4
<
0.4
0.4
6.7
OibnxnodlioraiieihtDe
c
<
0,4
<
0.4
<
0.4
0.4
6.7
1.2-EHbromoetliine
€
1Lg/dicm
<
0.4
<
0.4
<
0.4
0,4
6.7
CUarobaaeoe
€
,4/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Nootoe
C
g/dscm
0.4
<
0.4
<
0.4
0.4
6.6
Ethyl Beazeoe
C
..gAhcm
<
0.4
<
0.4
<
0.4
0.4
6.7
t, i. lJJ-TctracbioraraliMK
C
„$Mscm
<
0.4
<
0.4
<
0.4
0.4
6.7
m.p-xylene
C
,.g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
o-jeyIcoc
C
..¦Mian
<
0.4
<
0.4
<
0.4
0,4
112
-------
EPA CFC InctoentkM FY 94, Task 2.2
HCFC-14lh
Test 3, August 18.1994
Styieae
C
„gmscm
<.
0.4
<. •
0.4
<
trr
0.4'
8:7"
Brunofonn
C
•..«e •'
0.4
OA
•<
0.4
0.4
•• -rmr
Ptaeoe
C
,,gMscm
< •
0.4
< '
0.4
< ..
0.4
0.4
"" 6.7
Curaene
C
..g/dscm
<
0.4
<'
0.4
<
0.4
0.4
6.7
Ii3-TWcWoroprop«iie
C
,,g/dscm
<
0.4
<
0.4
«
0.4
0.4
6,7
1,1.2^-TcmcMoroeiiune
C
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
' 6.7
l,4-Dlclilon>>2-Buteae
C
..g/djem
<
0.4
<
0.4
<
0.4
0,4
6.7
Decaae
C
..g/dsan
<
0.4
<
0.4
<
0.4
0.4
«.?
+-Eiliy1ioiuene
C
..g/dsan
<
04
<
0.4
<
0.4
0.4
6.7
RwilirhlnnWhw
C
,, g/djem
<
0.4
<
0.4
<
0.4
0.4
6.7
1 JmfWM
C
..gMscm
<
0.4
<
0,4
<
0.4
0.4
6.7
l>Dfchlorobeiizene
C
..g/dsan
<
0.4
<
0.4
<
0.4
0.4
6.7
1,4-Dichlorobaueoe
C
,,g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Benzyl Chloride
C
..g/dicm
<
0.4
<
0.4
<
0.4
0.4
6.7
Undone
C
..gAUcm
< •
0.4
< '
0.4
< '
0.4
0.4
6.7
U-Dkfclorobeozcoe
C
..g/dscm
<
04
<
0.4
<
0.4
0.4
6.7
l_2-Dtbromo-3enxiioe
c
..g/dscm
<
0.4
<
0.4
<
0.4
0.4
6.7
Hexadiioratotadieiie
c
..g/dSCIQ
<
0,4
<
0.4
<
0.4
0.4
6.7
4-PtM»yknrclobexeoe
c
.z/dicm
<
0.4
<
0.4
<
0.4
0.4
6.7
113
-------
3U*Je_T Ic.
t *-34-1
VOLATILE ORGANiCS-SAMPLE TRAIN
P1ELD DATA SHEET
SAMPLE LOCATION: C.TT"
RUN* 1_A
RUN OATEiTIME:
OPERATOR;
FLOWRATE (LPM): L 6
AMBIENT PRESS (in. Hg):
AMBIENT TEMPERATURE: 11
SET » 1
SET » i EER 10
TENAX
T6N AX/CHAR
1 1
LAB 10 - SZ.*>"
LA8I0-
a (
LAB 10-
LAB 10 -
PROJECT:
LEAK RATES: pirn d.Oft LPM Q 3 ia Hg
post &LPM O 21— in. Hg
METER CALIBRATION FACTOR: __
^2-
Tim#
(mirU
TEMPERATURES CQ
Sampl#
Vacuum
{in. Hq)
DTM R«ding
(Ut«rs)
OTM Vacuum
(inches W.C.J
Flowm«tw
R«adng
(Glass/SSI
Ru«
Gas
T«nax
T«nax/
Charcoal
OGM
Inlet
MeGt
(ISb
&4€>4Lf»j
<5
4(,
u
d
'6%. Ofl
*°ij>
^3
io
u
0
/610-44
tr i.o
to
IS"
0:7-
0
U>'\l~st
-o- u
26
u
6
/t 1444-
&d
2-
/A
ffc *"
3d
fsv?
%e
•
3d
AVG.
TOT.-
U\ $*** Wit -t&
114
-------
VOLATILE ORQANICS SAMPLE TRAIN
FIELD DATA SHEET
SAMPLE LOCATION: d— T"T
SET # ! EER 10 1 TENAX
TENAXCHAfi
RUN* ZJ% +-2-C
t ! LA8I0- 3l~3-
LAS 10- %!t\
RUN OATWTIME: - •
2 1 ILA810 -
LAS 10 -
OPERATOR: O IC
PROJECT:
FLQWRATE (LPM): 1 «.d
LEAK RATES: p«: 0.t>& LPM 8
'n- H t
Tim«
fmin.V
TEMPERATURES PO
Safflpl*
Vacuum
Cm. Ha)
DTM Reading
(Lil*rs5
DTM Vacuum
finchM W.C.I
Flowrt«t»r
Raading
(GJasVSS!
Flu#
Ca«
T«nax
Ttnax/
Charcoal
OGM
lnl#t
0
¦j." ;
1 "3It J v
f / V» rC
s~
H5?>
6*2^
0
/o
53
4?-
6
}?2.3. fu
/¦T
-
£S-
1?-
6
17-2^, &~
t *¦ c*
ZjO
HSZ-
*=>c~
'JD
1.7-.
6
1*33 , S$
.-, f * 6?v -....
"§*>.....
Z ^©iU*
: "2. tK
i5T
5T5
1
0
1 ?6V. 13
t-4-
TO
3*
AVQ.
sY
•
1r
6
~}0. O-o
fs
6* ,K
- 115
-------
EPA CFC Incineration FY 94, Task 2,2 CFC RECYLING RESIDUE: Test 6, August 23,1994
msByiSFsssreaaasB
Symbol
Units
TSTT"
Set I
Set 2
tests
Set 3
lest 6
FB
Average Meter temperature
Barometric Pressure
Measured Sample Volume
Meier Calibration Factor
Total Sampling Time
Rue Gas Oxygen Coateni
Dry Flue Gas Flowraie 0 68°F
CFC Flowralc
in
Pbar
Va
Y
min
Col
Qfgd
Qcfc
1 T
to, Hg
L
Done
minutes
%
dsco^hf
0br
29.96
27.77
0.9910
30
6.92
26.98
o/a
29.96
29.51
0.9910
30
6.92
26.98
o/a
29.96
29.13
0.9910
30
6.92
26.98
a/a
o/a
a/a
o/a
s/a
o/a
a/a
a/a
rVa
Calculated Data
Symbol
Units
Teao 1
Se» 1
Tests
Se»2
Terfr
Set3
Tea 6
FB
Sample volume W Sstandaid Coodlttoal
VmSld = ll.647*Y*Pb»r*VlfflmiH4
-------
EPA CFC Incineration FY 94. Tuk 2.2
vusi toui read (!ilcL ""
CFC RECYLiNO RESIDUE: Tetl 6, August 23, 1994
LkcMoroalfTuofom3EEe^
Chlaroraethane
2-Methylpropene
Vinyl Chloride
1.3 Butadiene
Bromomethane
Chlocoethane
Ttlchlorofluoromethane
I, I -Dlchloroethene
Caftan Disulfide
kxtomrthane
Acdooc
Methylene Chloride
2-Methyl-2-Propanol
tnuu-1,2-Dichloroethene
Hexioe
1.1-DicMoroethaoe
Vinyl Acetate
2-Buuoone
Ethyl Acetate
Chloroform
1.1.1-Trlchk>rocthane
Carbon Tetrachloride
1.2-Dichloroetluac
2,5-DtmMhyl-3-Hciene
2-Chloro-2-Methylprop«ne
Heptane
Flourobenzeae
1,2,4-Trtfluorobea2eoe
Trichloroetheoe
1,2-DtcUoropropaDe
1,4-Dtoiaoe
Dibromotnethaoe
Bromodlcliloromrthanf
d»-IJ-D4chloropropene
4-Methyl-2-Peatanooc
Octane
Totueoe
mn»-13-Dtchloropropeoe
1.1.2-Trichloroethane
Tetracblamtheae
2-Hexaoooe
Dibromochloromethane
l>DUranoethane
Chkxobenzene
Nonane
Ethyl Benzene
1.1,1,2-Tetrachlocorethane
m,p-iyW»e
o-iylcae
SymEoT
¦tr
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
w
Units
Dg
ng
ag
ng
ng
»g
ng
ng
ng
ng
ng
ng
»g
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
ng
»g
ng
ng
ng
ng
ng
ng
JL
ysrr-
Set I
lest 6
Set 2
rest 6
Set 3
rest 6
FB
rest o
Set 1
Blk Ratio
I'eslfc
Sel 2
Blk Ratio
—rar
Set 3
Blk Ratio
144
Nit
45
471)
U.3
NS
u.
69
NS
45
4069
0.0
NS
0.
nd
19
NS
nd
10
35
0.5
NS
/a
10
NS
nd
10
nd
10
'a
NS
ft
nd
10
NS
nd
10
nd
10
'a
NS
/a
nd
10
NS
nd
10
70
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
/a
42
NS
nd
10
36
1.1
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
/a
od
10
NS
nd
10
nd
10
'a
NS
/a
406
NS
611
198
2.1
NS
3.
333
NS
37
391
0.9
NS
0.
nd
10
NS
nd
10
nd
10
NS
/a
nd
10
NS
nd
10
od
10
'a
NS
/a
36
NS
nd
10
nd
10
nb
3.6
NS
/a
nd
10
NS
nd
10
nd
10
'»
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
/a
27
NS
80
24
1.1
NS
3.
nd
10
NS
nd
10
nd
10
'a
NS
/a
od
10
NS
nd
10
nd
10
'a
NS
/a
37
NS
nd
10
nd
10
nb
3.7
NS
/a
14
NS
nd
10
nd
10
nb
1.4
NS
/a
SI
NS
od
10
nd
10
nb
5.1
NS
/a
nd
10
NS
od
10
nd
10
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
It
nd
10
NS
nd
10
od
10
'a
NS
It
13
NS
nd
10
od
10
nb
1.3
NS
/a
nd
10
NS
od
10
od
10
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
It
nd
10
NS
nd
10
od
10
'a
NS
It
nd
10
NS
nd
10
od
10
'a
NS
It
nd
10
NS
od
10
od
10
'a
NS
It
nd
10
NS
nd
10
nd
10
NS
It
nd
10
NS
nd
10
nd
10
'a
NS
It
od
10
NS
nd
10
od
10
'a
NS
It
od
10
NS
od
10
od
10
'a
NS
It
839
NS
41
37
23.0
NS
1.
od
10
NS
nd
10
nd
10
'a
NS
It
Dd
10
NS
nd
10
nd
10
'a
NS
It
37
NS
nd
10
nd
10
nb
3.7
NS
/a
nd
10
NS
od
10
od
10
'a
NS
/a
nd
10
NS
od
10
od
10
'a
NS
/a
nd
10
NS
nd
10
nd
10
'a
NS
It
nd
10
NS
od
10
nd
10
'a
NS
It
16
NS
od
10
nd
10
nb
1.6
NS
It
19
NS
nd
10
nd
10
nb
1.9
NS
It
nd
10
NS
od
10
nd
10
'a
NS
Jt
40
NS
od
10
od
10
nb
4.0
NS
Jt
17
NS
od
10
ad.
10
nb
1.7
NS
It
-------
EPA CFC Incineration FY 94, Taak 2.2 CFC RECYLING RESIDUE: Test 6, Augusl 23.1994
Styrcne
W
ng
nd
10
NS
nd
10
nd
10
fa
NS
/a
Bromoform
W
»(
nd
10
NS
nd
10
nd
10
'a
NS
/a
Plnene
W
nf
19
NS
nd
10
nd
10
nb
1.9
NS
/a
Cumene
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
/a
1,2,3-Trtchloropropane
W
ng
nd
10
NS
nd
10
nd
10
NS
lit
1,1,2,2-Tetnchloroethane
W
ng
nd
10
NS
nd
10
nd
10
't
NS
It
1.4-Dlchloro-2-Bulene
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
Decane
W
ng
17
NS
nd
10
nd
10
nb
1.7
NS
It
4-Eibyllolueae
W
ng
1$
NS
nd
10
nd
10
nb
1.5
NS
It
Penuchlocotthane
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
1 Jmnocnr.
W
ng
11
NS
nd
10
nd
10
nb
1.1
NS
It
1,3-Dtchlorobeiuene
W
ng
nd
10
NS
nd
10
nd
10
'»
NS
It
1,4-Dtchkxobenzene
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
Benzyl Chloride
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
Undecane
W
nf
30
NS
nd
10
nd
10
nb
3.0
NS
It
1,2-DicMorobeaieoe
W
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
1,2-Dibroc»-3-c!ikjroprop«oe
w
ng
nd
10
NS
nd
10
nd
10
'a
NS
It
Dodecaoe
w
nf
45
NS
nd
10
nd
10
nb
4.5
NS
It 1
1,2,4-Trtchlocobenzene
w
ng
nd
10
NS
nd
10
nd
10
'a
NS
It I
Hexachlorobuudlcne
w
ng
nd
10
NS
nd
10
nd
10
'a
NS
It I
w
nd
10
NS
nd
10
nd
10
NS
It 1
.
surrogate kecovenea
d4-1,2-dlchloroethaoe
48-iolueae
80
105
102
NS
NS
NS
101
no
104
95
100
96
-------
EPA CFC Incineration FY 94. T«sk 22 CFC RECYUNG RESIDUE: Tc« 6. Augu« 23.1994
fiyabot
Uoiii
-T3T-
7M
TesU
Test 1
C - W*iO0O* l3,95/{20.93-Co2yVmS«i3
Setl
Cooc
Set2
Cooc
Set 3
Unc
Mean
Cooc
Deviation
{%>
rm
,,g/dscm
5J
Bit
IWJP
CbtocoBKtimat
c
24
NS
1.6
2.1
45.0
j6**BnKSfcli*3' ••STEwE^^SuC
Vinyl Chloride
c
c
.,g/d*cm
..g/dicm
<
0.7
04
NS
NS
<
<
0.4
0.4
0.5
0.4
67.6
4.1
OBotadfeae
c
..gAbcm
. <
0.4
NS
<
0.4
0.4
4.1
Bnometac
¦ c
..fMicm
: < "
0.4
NS
<
0.4
0.4
4.1
CUocoetlMae ¦ .•
. C ••
.4/dJcm
<
0.4
NS
<
0.4
0.4
4.1
IWcMotoflaowinistfanf
c
..gMiaa
1.6
NS
<
04
IX)
125.1
t.MMcbkmxtitcae
c
,.g/d»cm
<
0.4
NS
<
0.4
0.4
. 4.1
Cirtwo Dimifide
c
..j/djem
<
0.4
NS
<
0.4
0,4
4.1
IflrtPffiHhW
c
<
0.4
NS
<
0.4
0.4
4.1
Acdooe
€
..g/dicm
15.4
NS
72J.
18.8
36.4
Ma&ytaeOilodde
c
..g/dscm
12.6
NS
13
7.0
161.4
2-Metiiyl-2-Prop«nol
c
..gAUcin
<
0.4
NS
<
0,4
0.4
4.1
trau-lJ-DWiloroethrae
c
..gfdseni
<
0.4
NS
<
0.4
0.4
4.1
Kexaae
c
..g/djem
1.3
NS
<
0.4
0.9
114 J
M-Dfc&loroettaae
c
..g/djcm
<
0.4
NS
<
0.4
0.4
4.1
Vtoyl Acetate
c
„g/dacm
<
0.4
NS
<
0.4
0.4
4.1
2-Buttixue
€
..gMjcm
1.0
NS
Z9
2.0
96.7
EtHyl AreUie
C
,,g/d*an
<
0.4
NS
<
0.4
0.4
4.1
Chloroform
c
..g/dscm
<
0.4
NS
<
0.4
0.4
4d
l.l.l-TridikxocthiDe
c
1.4
NS
<
0.4
0.9
117,4
Ciiboo Tcmcblodde
c
„g/il»an
0.5
NS
<
0.4
0.4
37.3
Beaiax
c
1.9
NS
<
04
1.1
136,3
IJ-DteMarocmmc
c
.4/dias
<
0.4
NS
<
0.4
04
4.1
1 <.n*nwhyLVH^TW
c
..g/dicm
<
0.4
NS
<
0.4
0.4
4.1
2-CUoco-2-Me(bylpro{Mae
c
..g/dicm
<
0.4
NS
<
0.4
0.4
4.1
Hepmc -
c
..g/dicm
0.5
NS
<
0.4
0.4
26.2
Hoarefceiiwie
c
..g/dian
<
0.4
NS
<
0.4
0.4
4.1
1.2.4-Trifluorobcniene
c
..gAUctn
<
0.4
NS
<
0.4
0.4
4.1
c
..j/djem
<
0.4
NS
«
0.4
0.4
4.1
l^-Dfcilkvopraptne
c
.^g/cUcm
<
0.4
NS
<
04
04
4.1
1,4-Diasane
c
<
0.4
NS
<
0.4
0.4
4.1
DOxoocNBeiuiK
c
g/djcm
<
0.4
NS
<
0.4
0.4
4.1
BfaraodfehlorQcncthioe
c
..gAban
<
0.4
NS
<
0.4
0.4
4,1
eto- l-3-Dtchloropiopcae
c
..g/tbem
<
0.4
NS
<
0.4
0.4
4.1
+-Methyl-2-PenUnooc
c
..ft/dlCM
<
0.4
NS
<
0.4
0.4
4.1
c
„$M»cn«
<
0.4
NS
<
0.4
0.4
4.1
Toluene
c
.4/djcm
31.8
NS
1.5
16.6
1821
tn«^l>Dk±lixoprupaie
c
,4^CBt
<
0.4
NS
<
0.4
0.4
4.1
1, 1.2-THdWaoeauae
c
.jAtem
<
0.4
NS
<
0.4
0.4
4.1
Tctzacttwoetbeac
c
,4/
-------
EPA CBC tnoacraiioa FY 94, Ttsk 2.2
CFC RECYLWG RESIDUE; Ten 6, Augutt 23.1994
Stymie
"~C
..gAlvrni
<
0.4
NS
<
0.4
6.4
4.1
Broraoform
c
..gAlscm
<
0.4
NS
<
0.4
0.4
4.1
Ptoene
c
..g/dscra
0,7
NS
<
0.4
0.5
64.8
Cumene
c
..gAiscm
<
0.4
NS
<
0.4
0.4
4.1
1,2,3-"Wctiloropropaae
c
„g/dsan
<
0,4
NS
<
0.4
0.4
4.1
U,2£-T«raclilonxdi»ae
c
,.g/
-------
volatile organics sample train
FIELD DATA SHEET
VQ3T TUBE ID£NTinCA"noH
FflOJECT^JU iCTWgOWe C"rr Siros-otv
SET#
EERD
TENAX
TENAJOCHAR
SAMPUE LOCATION: CTT PORT#: 1
1
LAO It) • 3 Mo
LAtl 10 •
RUN #: "J
2
LAB 10 * 2_
LAB 10 -1 56
RUN DATE/TIME: ttf
3
LAB 10 - I !•">
LAB
OPERATOR: ~X>AV£ L*>aD LEAK CHECK RATES
FLOWRATE (LPM); 'SLOW VOSF-
APPROXIMATELY iflLPM
- SET#
PRETEST
POST TEST
AMBIENT PRESS (m. Ha):
1
©«*1PM «lO in. HLPM
o
in.
Hf
AMBIENT TEMPERATURE:
A'Z-*
2
'0>LPMO*.in. Hq
b.
3
00 LPM 8 1 Oin. Hq
mblpm
• S"
in.
"9
SET ft
TEMPERATURES fF} or fC)
Sampl#
Vacuum
fln Ha)
dfcffii
Tim#
(min.)
SampI#
"' Lin# •
T#nax
T #nax/
Charcoal
DGM
Into
0
TC#
TC#' /•'
TC#'--- -
TC#
S
10
if*}
Vt
f
/. z
-1 fl -
/
m4
n-b
6
i«
•79 SJ
20
k
25
So
so
O
I *
7k ss
30
4©
rm.20
7**3
35
40
Ava
TOT.-2 5.7 ?
SET #2
TEMPERATURES f"R or <*C)
Sampl#
Vacuum
On. Ho»
0TM Rs
10
*bl,
&
f
/AAf. 32.
h ss
1S
20
'nt*
?&
o
m/9,?o
/- "t~
~?Sr
25
30
«5 >
?s
#
fAl^.CO
/ 5"
35
40
AVQ.
TOT.-H.fl
SET *3
TEMPERATURES CR or CO
Sampf#
Vacuum
On. Ha)
OTM R##rfng
•3C7
z.
fgs9.e^
8o s*
15
vr
t£
tMi.v*
20
25
<*1
w
H
z
I^ u
30
%x
uis
4*
?
iikiM*
f (a
5o
3S
40
Ava
TOT.-M.ll
121
-------
282, 342
327, 08
383, 60
512, 374
341, 150
525, 771
317, 310
444, 346
311, 313
340, 34
272, 136
310, 312
410, 52
Teat Cpafli.tiog
CTT-1
CTT-1
CTT-1
CTT-1
Run 2
Run 2
Run 2
Run 2
Run 3
Run 3
Run 3
Run 3
field blank
run 1, sat 1
run 1, set 2
run 1, set 3
€ ^ ^311
set 1
set 2
set 3
field blank
set 1
set 2
set 3
Trip blank
Smvf it 8ft t#
Aug 17, 1994
Aug 18. 1994
Aug 23, 1994
f
122
-------
E£E vast,
Aeurex-RTF • Xab&rfctery -Jteiulte •»
EPA M*ehod TO14/8240 Compound*
Hewlett faekard 5890 OC / S971 KSO; lOSm x 0.53c*n 08
Takraar LSC-200G w/Carbotrap/Carboeieve SIII.
SQL ¦ Practical Quantitation Limit •
N/O - Not Datacted
J » Detected €< PQL
N/A ¦ Mot Applicable . £tt'i
Sample Type
VOST
" M"
Mast«r Index
30S3
3064
Sample lo
BLANK
201688
Collection Oat*
___
08/17/94
Analysis Data
09/07/94
09/07/94
, «« • :
¦: h9 ,
2<\ dicftlorodifiuoronathane
<10 ' "
; 67 S
lS chlorooethane
<10
31.9
to 2-Methyiprop«ne
<10
<10
It vinyl chloride
<10
<10
\1 1,3-Butadiene
<10
<10
«* browometftane
<10
<10
1o chloroefchane
<10
<10
K trichlorofluorowethane
<10 .
S3.4
t1,l-dichloroethene
•<10
<10
1 Carbon Disulfide
<10
<10
Siodomethane
<10
<10
f Acetone
60.1
871
4 methylene chloride
<10
6125
i 2-Mathyl-2-Propanol
<10
<10
i .«r«M*l»2-dichloreethene
'<10 , -
<10
, Hexane
<10
273
Ht1,1-dichloroethane
<10
<10
iVinyl Acetate
<10
<10
i2-iutanone
30. 8
42.1
JEthyl Acetate
<10
<10
1 chloroform
<10
<10
("1,1, 1-trichloroethane
<10
: 10.1
£carbon tetrachloride
<10
<10
•j benzene
<10
<10
|1,2-dichloroethan#
<10
<10
• 2, S-Dinethyl-3-Hexene
<10
<10
2 -ch loro- 2 -Hathyipropane
<10
<10
'Heptane __
<10
<10
If luorobenaene
<10
<10
51,2,4-Trifiuorobenxene
<10
<10
^crichloroethene
<10
<10
f1,2-dichloropropane
<10
<10
^1,4-Oioxan#
<10
<10
7 dibroaxmetllene
<10
<10
I broaodichloroaathane
<10
<10
^cif-1,3-dichloropropene
<10
<10
*0 4-Kethyi-2-Fentanoa«
<10
<10
«Octane
<10
<10
^toluene
<10
sai
624 fused silica capillary
CVX- \
VOST
VOST
3065
3068
201689
BLANK
08/17/94
09/07/94
09/08/94
• *9
n<5 .
1802
<10 *
<10
<10
39.2
, <10
<10
<10
<10
<10
<10
<10
<10
<10
<9.1
<10
<10
<10
<10
<10
<10
<10
302S
<10
1086
<10
<10
<10
<10
<10
28.1
<10
<10
<10
<10
<10
56.0
10.7S
<10
<10
<10
<10
<10
<10
<10
<10
12.4
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
<10
1SS
<10
123
-------
£% tran*-l,3-dichlorofsrop«n« <10 <10 <10 dibroaochloccaMthane <10 <10 <10., <10
f 1,2-dibramcethan* <10' <10 ' <1Q" <10
^ chlarob#nz«ne <10 <10 <10 <10
14 Kenan* <10 <10 <10 <10
i athyl b«nxaiw <10 <10 <10 <10
il,l,l,2-T#trachloro«than« <10 <10 <10 <10
7»,p-xyl«n« <10 19.5 10,4 <10
o-xyl«n« <10 <10 <10 , <10
f Styww• <10. <10 ... .. <10.-, . .<10' •
i, bsoraafom <10 <10 <10 <10
1 Fintn* <10 <10 <10 <10
I Caamam <10 <10 <10 <10
^ l,2,3-Trichloroprop*n« <10 <10 <10 <1(3
fo 1/l,2,2-t*traehloro«than« <10 <10 <10 <10
i l,4-Dichlora-2-bu't«M <10 <10 <10 <10
t D«c»ne <10 <10 <10 <10
7 4-lfchyltolaen« <10 <10 <10 <10
-------
ESR VOST
Acurex-RT? Laboratory Reeulte
EPA Method TO14/8240 Compounds
Hewlett Packard 5890 GC / 5171 MSD; 105m x 0.53nsa 0S-S24 fused silica capillary
fekmar LSC-20Q0 u/Carbotrap/Carbo«ieve Sill.
PQL = Practical Quantitation Limit
M/D « Not Detected
J ¦ Detectad S< PQL a
N/A - Nat Applicable
CTT't
N5 - Not Spiked
CfB *->
£_~
__
Sample Type
VOST
VOST
VOST
VOST
Index
3069
3070
3074
307 S
Sample ID
201650
201691
B&AKK
201700
Coltaction Date
08/17/94
08/17/94
—
—~
Analysis Oat*
09/08/94
09/08/94
09/09/94
09/09/94
ng
n«
ng
ng
dichlorodifluoromathane
195
67.4
<10
S7.S
chlorowethane
<10
<10
<10
<10
2-K«thyIpropene
<10
<10
<10
<10
vinyl chloride
<10
<10
<10
<10
1,3-Butadi«ne
<10
<10
<10
<10
bro«oawithan«
<10
<10
<10
<10
rhloroethane
<10
<10
<10
<10
trichloroflucroowthana
29.4
<10
<10
<10
I, 1-dicnloroethene
<10
<10
<10
<10
Carbon Disulfide
3fi.4
<10
<10
<10
iodooetban*
<10
<10
<10
<10
Acetone
<10
159
10«7
12.0
methylene chloride
J 09
42.3
<10
69.0
2-Methyl-2-Propanol
<10
<10
<10
<10
trana-l,2-diehioreethen#
<10
<10
<10
' <10
Hexane
<10
<10
<10
<10
1,l-dichloroethane
<10
<10
<10
<10
Vinyl Acetate
<10
<10
<10
<10
2-Sutanone
20.8
41. S
38.6
34.0
Ethyl Acetate
<10
<10
<10
<10
chloroform
<10
<10
<10
<10
1,1,l-trichloro«thane
<10
<10
<10
<10
carbon tetrachloride
<10
<10
<10
<10
benzene
<10
<10
<10
<10
1,2-dichlcroethane
<10
<10
<10
<10
2,5-OImethyl-3-S«x«ne
<10
<10
<10
<10
2-chloi:o-2-MetHylprop«n«
<10
<10
<10
<10
Heptane _
<10
<10
<10
<10
Fluoroberizene
<10
<10
<10
<10
1,2,4-Trifiuorcbenzene
<10
<10
<10
<10
trieftloreethene
<10
<10
<10
<10
1,2-dichloropropane
<10
<10
<10
<10
1,4-Dioxane
<10
<10
<10
<10
d ibromomethane
<10
<10
<10
<10
brwoodichloroaethane
<10
<10
<10
<10
ci«-l,3-dichloropropane
<10
<10
<10
<10
4-Methy1-2-Pentanone
<10
<10
<10
<10
Octane
<10
<10
<10
<10
125'
-------
tolu«n« 10,6 <10 <10 <10
trana-1,-dichlore prep*n« <10 <10 <10 <10
1.1.2-trlchloccMthuwi <10 <10 <10 <10
tatrachloro«th«n« <10 <10 <10 <10
2-H«caxiona <10 . -<10. , , <10 ..<10
dibromochloram#th«,rt« <10 <10 <10 <10
1.2-dibroroo«t;han« <10 <10 <10 <10
chlorabonx«n« <10 <10 <10 <10
Noiuumi <10 <10 <10 <10
«thyl bmnzmna <10 ut«n« <10 <10 <10 <10
0«ean« <10 <10 <10 ' <10
4-sthyltolu«n« <10 <10 <10 <10
F«nfcachlora*than« <10 <10 <10 <10
timon«Mi <10 <10 <10 <10
1.3-Dichlorob«nisn« <10 <10 <10 <10
1.4-0iehlorob«axan« <10 <10 <10 <10
Benzyl Chlorid* <10 <10 <10 <10
tJnd*e«M <10
-------
sm vost
Acurax-RTP Laboratory Raaultt
EPA Method TO14/S240 Compound#
Havlatt Packard S890 cc / S971 MSB; 105a * 0.53aw DB--S24 fuiad silica capillary
Takaar LSC-2000 w/Carboerap/Carbooieve ST1X.
FQL - Practical Quantitation Limit
N/D ¦ Hot Dataeted A
„ M, ejfi fL**-
iSU i 'w-n U*?
J ¦ Datectad i< PQL
H/A » Hot Applicable
Sample Type
vos™
vast
VOST
VOST
Master lade*
3077
3073
3079
3082
Simpla 20
201693
201694
201695
err MtfW '
BWwA
Collection fcate
08/18/94
Ot/ia/34
08/18/94
Analysis Data
09/09/94
09/09/94
09/09/94
09/12/94
ag
ng
n9
• m ¦ ¦ ¦
dichlo rod i f luorocnathane
848
$38
1924
<10
chlorataethir.s
<10
219
169
<10
2-Hethylpropena
25.4
19.0
11.1
<10
vinyl chloride
<10
<10
<10
<10
I,3-Butadiene
<10
<10
<10
<10
broaomathane
10.8
10.8
<10
<10
chloroethane
<10
<10
<10
<10
triehlorofluoroa»than«
13.0
<10
288
<10
1, l-dichloroeth«n«
<10
<10
<10
<10
carbon Diauifide
<10
<10
17. S
<10
iodometftane
<10
<10
<10
<10
Acetone
1305
2009
2070
256
methylene chloride
1943
428
7395
<10
2-Kathyl-2-Propanol
<10
<10
<10
<10
trana-1,2-dichloroethane
<10
<10
<10
<10
Hexane
<10
<10
<10
<10
2,1-dichloroethana
<10
<10
<10
<10
Vinyl Acatata
<10
<10
<10
<10
2-Butanone
41.4
30.2
46.0
33.3
Ethyl Acatata
<10
<10
<10
<10
chloroform
721
44.0
371
<10
1,1,l-trichloro«thana
<10
<10
<10
<10
carbon tetrachloride
17,5
<10
<10
<10
benzene
27.0
<10
<10
<10
1,2-dichloroethane
<10
<10
<10
<10
2,S-0iffethyl-3-fe*a«e
<10
<10
<10
<10
2~Chloro-2-Hethylpropa»*
<10
<10
<10
<10
Heptane
<10
<10
<10
<10
Flucrobenxene
<10
<10
<10
<10
1,2,4-Trifluerobea*ane
<10
<10
<10
<10
^richlcroethene
<10
<10
<10
<10
1,2-dichloropropana
<10
<10
<10
<10
1,4-Oiaxane
<10
<10
<10
<10
d Lbrewooativtna
<10
<10
<10
<10
bretBodicilaroa*«thane
10.9
<10
<10
<10
cla-l,3-dichloropropen#
<10
<10
<10
<10
4-Hathy1-2-Pant anono
<10
<10
<10
<10
Oct ana
<10
<10
<10
<10
toluene
19$
16.1
12.3
<10
127
-------
tr*n«-l, 3-dichloroyros«»n«
<10
<10
<10
<10
1,1,2-fcrichloro«t.hana
<10
<10
<10
<10
t*tr*chioro*t:h«n«
<10
<10
<10
<10
2-U«xanon«
<10
<10
<10
<10
dibrewiochlorow^than*
<10
¦0 <10
<10
<10
1,2-dibroao®thtn«
<10
<10
<10
' <10 "
chlorofe«n*«JW
<10
<10
<10
<10
Honana
10.3
<10
<10
<10
ethyl b«nj:»ne
<10
<10
<10
<10
1,1,1,2-Tatraehlore«thitn«
<10
<10
<10
<10
m,p-xylann
<10
<10
<10
<10
o»*icyl«M' -
.-<10 -
¦n ' • \XXCSL\RPT\CrC«H9. XL*
128
-------
ssm vost'
Aeurax-RTP Laboratory Raaulta
f?A-tiathod 1014/8240 compound®
Havlatt Packard S890 CC / 5971 KSO; 105m x 0.
Tekmac- LSC-2000 w/Caxbotrap/Car&o*i«va SIII.
p<2L » Practical Quantitation Limit
n/D - Not Datactad /
J - Catectad €< PQL . ,
Ws
tf/A * Not Applicabla
tCl flU
S3ma BS-S24 fused silica eapilliry
~ / /
o*l jU?1 CLS&-
..M* --J£3. -
Saapla Type -
VOST- ¦
VOST
VOW -•
VOST
Master Inda*
3083
3084
3085
3076
Sample XS
201696
201697
201699
201692
collection Oat*
08/23/94
08/23/94
08/23/94
08/18/94
Analysis! Data
09/12/94
09/12/94
09/12/94
09/09/94
«9
n?
ng
ng
dichlorodifluorontathana
470
144
45.1
ISSfi' - -
ehlorooathana
4069
68.6
45.2' '
4*-; 9 ¦
2-Hathylpropana
35.4
19.4
<10
<10
vinyl ehlorida
<10
<10
<10
<10
1»3-Butadian«
<10
<10
<10
<10
bronooat hana
69.7
<10
<10
<10
chloroathana
<10
<10
<10
<10
tricfalorofluoramathana
36.4
41.7
<10
17.2
1, i -d ichloroethana
<10
<10
<10
<10
Carbon oi»ulfids
<10
<10
<10
<10
iodooathana
<10
<10
<10
<10
Aeatona
198
406
611
390
mathylana ehlorida
391
333
31
27SG
2-Maehy1-2 ¦-Propanol
<10
<10
<10
<10
tram-l* 2-dichloroathana
<10
<10
<10
<10
Hexana,
<10
3S.S
<10
<10
1,1-dichloroathana
<10
<10
<10
<10
Vinyl Acetata
<10
<10
<10
<10
2-Butanona
23. S
26.1
79,f
3«.0
Ethyl Aeatate
<10
<10
<10
<10
chlorafocffl
<10
<10
<10
<10
1,1,1-trichloroathana
<10
36-9
<10
<10
carbon tatrachlorida
<10
14.0
<10
<10
banxana
<10
SO.7
<10
<10
l, 2-dic!tlojro«tb«jMi
<10
<10
<10
<10
2,5-CiaatHyl-3—B*jwn«
<10
<10
<10
<10
2 -Chloro-2-H«tl»ylpropana
<10
<10
<10
<10
Haptana
<10
12.5
<10
<10
Fluorobanxana
<10
<10
<10
<10
1,2,4-Tr£fluoroban*an«
<10
<10
<10
<10
triehloroathana
<10
<10
<10
<10
1,2-<3ichlaroprop*n«
<10
<10
<10
<10
1,4-Dioxana
<10
<10
<10
<10
dibro<»oia*thana
<10
<10
<10
<10
eroasodichloronothaaa
<10
<10
<10
<10
cis-l, 3 -dichloropropana
<10
<10
<10
<10
4-Mathy1-2-Pant anona
<10
<10
<10
<10
Octana
<10
<10
<10
<10
toluana
36.S
839
40. 8
30.0
129
-------
trana-1,3-dicftioropropen«
<10
<10
<10
<10
1,1,2-triehloro«th*n«
<10
<10
<10
<10
t»tr*chlore«th«iJ«
<10
36.8
<10
<10
2-H«xanon« ' •
<10 ¦ ¦
' <10
•<10..
<10
dibrocBOchloroauzthanc
<10
<10
<10
<10
1,S-dibrotr.oetharse
<10
<10
<10
f>jsk4v kamr 1 fi Wf%je%'1" kanici
•*> $ 4» # «¦» * **
<10
<10
<10
<10
n,p-xyletM»
<10 -T-
39.5
' <10 •
<10
o-xyl«««
' <10
17.3
<10
<10
Styran®
<10
<10
<10
<10
bromofortn
<10
- <10
<10
<10
Pin«n*
<10
18.8
<10
<10
Cui
-------
Tentatively Indantifiad Compound*
Sample Nusbsrs 203,688
Rantontion TltM
11. €4
16.83
28. SS
28.80
29.09
30.SI '
Sample Numban 201683
Rantantion tixm
20.04
38.55
28.82
29.09
30.39
30.SO
31.71
Sampl* N«jnb*r: 201691
Rantantian Tiraa
29.52
30.06
30.84
31.60
32.94
33.63
35.99
Smaplm NuaD*r: 201692
Ranttntion TLmm
16.90
24.06
26.79
30.72
34.29
Compound ng
Unknown Compound 5.3
Unknown Hydrocarbon 5.3
Substituted Trimathyldacana 9.?
0 imathy lhaptaa* 4.1
Unknown Hydrocarbon -6.3
Kexaehloro«thase 13
Coapound ng
Unknown Hydrocarbon 7.9
subatitutad Tri»athyld«cana 15
Dimathylhaptano 5.9
Unknown Hydrocarbon 29
Unknown Hydrocarbon 6.S
Haxachloroathana 12
Substituted Trissathyidodacana 7.6
Coaspound ng
Unknown Hydrocarbon 3.3
Unknown siloxta* 41
Unknown Hydrocarbon 3.6
Unknown Hydrocarbon 2.9
Unknown Hydrocarbon 3.0
Unknown Siioxana 284
Subatitutad Triaathyldaeana 8.V
Compound ng
Di*athylpropanol 22
unknown Hydrocarbon 2.4
Unknown Hydrocarbon 3.0
Unknown alloxan* 20
Unknown Siioxana CO
131
-------
Sanpla Numbari 201693
Raatantion Ti«a Compound ng
6.13 Dlfluorodiaathylailana 167
7.90 Fluorotrlmathylailana 92
16.34 Unknown Compound 27
17.70 Unknown alloxan® 3.7
20.04 Unknown Hydrocarbon 24
23.46 Unknown Compound 19
23.62 Unknown Siloxan* 9.1
26.50 Bieyclo(4.2.G.Joc-l-ana S.S
27.20 Unknown alloxan* 132
27.77 Unknown Slloxana 6.1
28.16 Unknown Sllexana 1.1
30.73 Unknown slloxaaa 622
31.13 unknown Siloxana 95 '
31.49- Unknown Hydrocarbon 6.S
31.74 Unknown Hydrocarbon S.S
32.32 Unknown Acid Compound 27
33.61 Unknown Hydrocarbon 4.3
34.31 Unkown Slloxana 1332
Sample Humbars 201694
Rant ention Tiam Coopotind ng
6.13 Dl£luorodi»atiiylatlan® 144
7.97 Fluocotr JjMtfcylaiian* 330
12.27 Unknown Hydrocarbon 9.2
13.80 Subatltutad Chloropropaaa . S.S
17.23 unknown Slloxan* 10
17.76 Unknown Siloxan* 19
20.07 Substituted fiaathylpmtan* 10
23.45 Unknown alloxan* S.6
30.72 Unknown Siloxan* 217
Sauspla Munbari 201695
Rentantion Tioa Compound ng
6.13 DifluorodlaafchylsilAO* 18
_7« 91 FluocotriasthylsilMt
IT.73 Unknown Siloxan* 2.9
20.04 Substituted TiMthylpaatan* 5.2
20.69 Unknown Siloxan* 12
23.46 Unknown Siloxan* 7.3
23.82 unknown Slloxana 8.4
27.20 unknown Slloxana 122
28.13 Unknown Siloxan* 4.2
30.73 Unknown SlloxaiMi 121
34.30 Unknown Alloxan* 219
132
-------
Sampla Humheri 201696
Kant ant ion Tito* Compound nq
¦ 7.91 . .fluoroiirimathyla liana 13
11.78 ' Subatitutad Dihydrofurtndiono 4.8
16.90 unknown Hydractrbon 8.1
27.20 Unknown Siloxan# 4.2
3C.72 Unknown Silox&na S.l
34.29 Unknown Slloxana 17
sample tlwnbar: 20169? ""
Rantantlon Ti«« Compound ng •
6.13 Hathyipropana 6
7.91 FLuoCotrijWthylsilana 41
9.45 Mathylbutana 34
11.62 Difluorodimathylailana 89
13.92 2-Msthylpan*ana 43
14.62 3-Hathylpantana 23
16.86 Kat hyIcyclopantana 24
18.S3 Unknown Hydrocarbon 36
27.78 unknown Siloxana 10
29.23 Unknown Hydrocarbon 8
31.48 Unknown Hydrocarbon . 28
33.60 Unknown Hydrocarbon 15
saapla Kuabart 201699
Rantantioa Tiaa Compound a*®
6.80 Unknown Hydrocarbon 11
9.43 Unknown Hydrocarbon 7.0
11.61 Oifluorodlawthylallana 24
24.06 Unknown Hydrocarbon 3.3
26.79 unknown Hydrocarbon 4.8
27.20 unknown Siloxana 34
29.25 Unknown Hydrocarbon 3.8
30.73 Unknown Siloxana il
31.49 Unknown Hydrocarbon 8.3
33.61 Unknown Hydrocarbon 4.7
MOTS: Ho TIC* dat«ct«4 in tha following saaplaai 2016*0, 201700
133
-------
\ Fnergy and
Environmental
j^esGarch Corporation
16 Mason. Irvine, CA 92718
tat: (714J859 MSI
lax: (714) 659-3194
Laboratory Report Oue by
EER Contact: 6>j(aa tUvsatj
fit (p/^-gy^-Zj-C'S
lax: (?/-*/) m
. to:
Bill to:
P.O. No.:
Addtass: 6oey JLt^Juo
a-lev/^e.
u
°Uj
ZlLMI
Q4-.V, t-
tor t
ZoJL&JL
L.
-*+¦r
«¦ AS/
M. /*?Q
Tettji 5
reut* fa,**, -rn
tet-T/
2°- *>t>
ZWT
4*7:
g-
rt^«k * **»=)•
an>
-rcr^Ta WV
>V6
i\
OJ
t-4
rtof 3
¦MT >
-rtf-* »»- 3//
3/ ^
^3-^/
To? 69k"
3
w ?•
T*"/Cht*.*
-»40
rw
^3"
2_
Ttrw # *V*-
TtH/frW 43fe_
-TtM
3n
£©|"9eo
t t»j *7i®
T^/TOua 1*r
IOLn*a* CZ*t-~.
0^; yfoytrfc
After analysis: Q Ate hive samples
(Hold lot 1 months. the« dispose.)
[~1 Return aamptoa to: EEfl Corpototiofl
•001 Irvine DW,, Irvine, CA 9270S
-------
ui
Fnergy and
hnvironmenlal
f^esearch Corporation
Laboratory Raport Dua by.
. to:
Bill to: P.O. No.:
UMiton, Iryina.CA 9271S
lak (714)859 8851
lax: (714)859-3184
ttn uoniaci:
1.1: OY) -552
AMOS*. Wo/ dA
hue (7/V) *S-?>/tri
HER Corporation
10 Mason
Irvlria.CA 92718
Sample Chain of Custody Record
paga
.12»!. 9r.
EER Propel No:
Sampfa) System Ptaparad by:
iT' /*
Analyses ///'// / /
Required/ // j / / / /
/ $/ V( / / / /AOOUIONAt
/ vf Vv / / / /INFonMAT,a,,
/ /? / / / / / / {•-Q. Vohirtm.
/ Y/ / / / / / Tt,Holang Timet;
/ ' / / / / / / Samola Pt*oaial«wv.
Profact Nama: ,
Tatl Op«Btor(«):
—^ ^
SKa Name:
(ZTrr-
Samplss Racovstadty:
LabotMcxy
1.0. No.
EER
label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No.ol
Cantainaii
Taal ID /Location
Physical Oascriplion
Data
Tima
/ Aden Inikucliana, att.
/c
/
?c/fa&v
CI
£> A*!*
u
/
<1
A4trC?C 2
K
S
I
?*/<>-* 9
ji
/P' A/
J2r«t SA
»v
I
?a/£> v1
5- n' • s+ccr*>~£- •*-
rncc*±
>i
'1
r
~Zo/Ci 2-
N
U
"1
/
zo/tjr
\jozr
Art-- I
F 8 -
Z.fri-«- >V2-
6'/9-fr'
/V 3o
2~
Vb*r
trr - /
***¦ 1 .
T€m*. X9 *v-/ aS
H
»*-
£_
(^V~
S-rr - )
M 2. /
-re*. 4L T»>>M V £*J
H
w_
1
Zc/6#/
Voir
s -rT— /
6*7- 3
-c^n-sn- W!ft/JW
H
k
2_
MaAodol Shi(
pmant
Ramatkl
(RUSH!, unto: mg/L. ppm; ale.):
Rallivjtjlihad;by:l/frlm)
Dalo/Time:
S-f8r
RiK^ved^
13^
: iSigit & Prim)
4-.--...
Data / Tinrva':
zkt/.u-::
Shfemanl 10.: Data Shppod:
/&V&1
Altar analytis: O A/chlva aomplaa
(Hold kx nionlha. than dltpoaa.)
f~l Return aamplaa to: ECU Corporation
•OOt Mna Blvd., Irvina. CA 02705
AMo^O j
i
-
u_ .
-------
£ER VOST
fccujjex-RTF Laboratory Reaulta
EPA Method TO14/8240 Coarpoundc
Hewlett: Packard 5390 CC / S971 USD; 105m x 0„53ssn OS-624 fused silica capillary
Tekmar LSC-2000 w / Carbot r a.p/Car bo* iev« $111.
PQL - fractical Quantitation
Limit
N/D » Mot Detected
J « Detected @< PQL
H/X - Not Applicable
c-rr-f
, • (to
HS ™ Hot Spiked
fTT'i
—
Sample Type
VOST
VOST
VOST
vast
Maeter Index
3069
3070
3074
307 S
Simple 10
201690
2 01691
SUUi*.
201700
Collection Date
08/11/94
08/17/94
.
Analysis Data
09/08/94
09/08/94
09/09/94
09/09/94
ng
ng
ng
ng
dichlorodi£luororoathane
199
67.4
<10
S7.S
chlorowethane
<10
<10
<10
<10
2-Hethylpropene
<10
<10
<10
<10
vinyl chloride
<10
<10
<10
<10
1,3-Butadlen«
<10
<10
<10
<10
broa«MMth
-------
toluene
XO-6
<10
<10
<10
cran«-X, 3-dlchXaroproi»«fl«
<10
<10
<10
<10
1, X,2-trichXoro«th*n«
<10
<10
<10
<10
tetrachloro«th«ne
<10
<10
<10
<10
2-Hexanona
<10 .
¦ <10
<10
<10
dibromQchloroaMthan*
en«
-------
Tentatively Indentiflad Compound»
Sample Numbarj 201688
Rantantion Tin*
Coapoand
ng
11.64
Unknown Compound
5.3
16.83
Unknown Hydrocarbon
5.3
28.55
Substituted triaathyidaeana
9.7
28.80
D iaathylhaptana
4.1
29.09
Unknown Hydrocarbon
6,3 * ¦
30.91
Hexac hloroathane
13
Su^pla Number: 2Q16S9
Rentantian tisaa
Compound
ng
20.04
Unknown Hydrocarbon
7.9
28.SS
Subatitutad TriMthy 1 dacana
15
28.82
Diaathylhaptana
5.9
29.09
Unknown Hydrocarbon
29
30.39
Unknown Hydrocarbon
6.S
30.90
H«xachloroathan«
12
31.71
Substituted Trioathyldodacana
7.S
Sampla Number: 201691
RantantIon Timm
compound
ng
29.52
Unknown Hydrocarbon
3.3
30.06
Unknown Siloxana
41
30.84
Unknown Hydrocarbon
3.6
31.60
Unknown Hydrocarbon
2.9
32.94
Unknown Hydrocarbon
3,0
33.63
Unknown Siloxan*
28«
35.99
Substituted Triaathyidaeana
a.t
Sanpla HumBar: 201692
Rantantion TiaM
ng
16.90
Btawthylpcopaael
22
24.06
unknown Hydrocarbon
2.4
26.79
Unknown Hydrocarbon
3.0
30.72
Unknown Siloxana
20
34.29
Unknown siloxan#
to
138
-------
Sainpla Nu«fe*rs 201693
Rantantlon TLtm
6.13
7,to
16•34
17.70
20.04
2 3.46
23.$2
26.30
27.20
27. 77
28.16
30.73
31.13
31.49
31.74
32.32
33.61
34.31
SMaple Muab«r; 2016S4
Rmtentior. Tima
6.13
7.97
12.27
13,80
17.23
17.76
20.07
23.45
30.72
saaple Nunb*n 201693
Rentantion Tiam
6.13
7,91
17.73
20.0*
20.69
23.46
23.82
27.20
28. IS
30.73
34.30
Compound
Difluorodiiaathylailan* 167
fluorotrimathylailana 92
Unknown Compound 27
Unknown Silaxana 3.7
Unknown Hydrocarbon 24
Unknown Compound 19
Unknown Siloxana f.l
Blcyclot4.2.0.]oc-l-*n« 5.S
Unknown Slloxan* 132
Unknown Siioxan* 6.1
;ahkaowta''£&dxgifi* ' i.l
•Unknown''alloxan*; 622
unknown Slloxan* 55 .
Unknown Hydrocarbon 6.S
Unknown Hydrocarbon ft.5
Unknown Acid compound 27
Unknown Hydrocarbon 4,3
Unkown Slloxan* 1332
Compound ng
Qlfluorodla*thylailan* 144
Fluorotria*thylailan* 330
Unknown Hydrocarbon 9-2
Substitutad Chloropropana S.9
Unknown Siloxan* 10
Unknown Slloxan* If
Sub«titut*d Ti»*thylp*ntan* 10
Unknown Slloxan* S.6
Unknown SiloxaxM 217
compound ag
DifluorOdi**fchyl*ilatt* 18
FluorofcsiasthylailwM 65
Unknown Siloxan* 2.9
Substituted Tl»*thyl$*nt*n* S.2
Unknown alloxan* 12
Unknown Slloxan* 7 • 3
unknown Slloxan* 8.4
Unknown Slloxan* ^ 122
unknown
-------
Sample timber? 201696
UntMtien Tim*
compound
ng
7.91
/luorotrioathylaliana
13
n.7a
Subatitutad Di.hydrofur*ndion«
4.8
16.90
Unknown Hydrocarbon
8.S
27.20
Unknown Siloxana
4.2
3C.72
unknown siloxana
8.1
34.29
Unknown siloxana
17
Ssopla lluatbar: 201697
Rant«ntion Tim*
Compound
™3
6.13
Hat: hy Ipropana
6
7-91
Pluorotris»athyl»ilana
41
9.4S
Kaehylbueana
34
11.82
Q if luorodioatftylailana
89
13.92
2-Mathylpaneana
43
14.62
3-MathyIpantana
23
16.86
Hathyleyclopantana
24
18.53
Unknown Hydrocarbon
36
27.78
Unknown alloxan*
10
29.2S
Unknown Hydroaaxban
8
31.48
Unknown Hydrocarbon
28
33.60
unknown Hydrocarbon
IS
5*aplB Nu«b«xi 201699
Rentantioc Tim*
Compound
ng
6.80
Unknown Hydrocarbon
11
9.43
Unknown Hydrocarbon"
7.0
11.61
Dlfluornri 1—tHylallaa#
24
24.06
Unknown Hydrocarbon
3.3
26.79
unknown Hydrocarbon
4.8
27.20
unknown alloxan*
34
29.25
Unknown Hydrocarbon
3.8
JO. 73
Unknown iiloxana
«s
"31.49
unknown Hydrocarbon
8.3
33.61
unknown Hydrocarbon
4.7
NOTZt So T2C8 d«t«ct*d in tha fallowing MnplMt 201690 , 201700
140
-------
* Fnergy and
Environmental
|F^esearch Corporation
ta Mason. Irvine, CA 82711
Mi: (714teS»-MSl
lac (714) 859 3194
Laboratory Report Oua by
EER Contact: /tUvjaaf
Js*
lax: (?/-y) m -rtvj
to:
Bill to:
P.O. No.:
Addiass: 6cxy (£.c/-/(Jai
Laboratory
1.0. No.
EER
Label No.
FIELD SAMPLE ©ENTIFCATKX AND SAMPLING NFOflMATlON
No. of
Containers
Tact ID/Location
Physical Description
Oate
Tima
/ / / Addl Insbuclwnt, ek.
2o/6?2-
^llN t* 1,
si*r M Hut*rr
H as/
M. <«5 Q
2L.
1
(k,.~ 1_
'vr /
r*vc;C 5*.y
-r?/
V
2-
L--'
-
*
Zcitft/
^4"" l~
•wr
4i
Vt-^^rAneM. 0 ais
•A.
'V
"2_
t
zo/4*<-
/ZK" i
-ro-v tk. fW
Tl* 3V«
It
v
iL-
1
Toll>
to-
» 3//
T*<-er/t<<*4M 3/ %
*-* 3 -~*/
KOcJ
2.
«—
w~ ¦
*
rt*** 3
-«a^r 1
T*s**+ * <3MO
Tc*/rt.M a rw
» V
'i
C
r
Tort?*
3
<>u- 2.
T«^ # ¦***•
it
i/
Zo/G9?
ar,5
Ttw' — °
T4A»/ri>»«*- ~ 31
*V
£
e
?0|"9cx3
rtf/»/•*«-
WO
1
>/ .
Mattiod d Shi|
>rf*nl
Rerruuts (RUSH!, units: wgA., ppm, ate.):
Oslo /Tima:
^2ry / A
Dalo / Tima:
M
«*jro»rft.O Data SWppad:
CTflU-
A/tar analysis: Q Aichlva< samples
(Hold lor rrOnthi. than dispose.)
f~l Return aamploa lo: EEfl Corporation
>001 trvina DM., Irvina, CA 92705
T7h/ytrf^
"
,, ¦..
rr.
-------
. to:
* Laboratory Raport Due by.
' Environmental EER Contact: <7^ ,Addr««: jrCo/ My>
Research Corporation ——-'**>>
<»x: b/V) tr? /fr-j fz?/y
14 Mason, Irvirw, CA »27l» i'
Bill to:
P.O. No.:
EER Corporation
16 Mason
13
q
Irvlni, CA 92718
tot <714)850 8651
la*: (7M)8S9-31B4
Sample Chain of Custody Record
paga
-2.01 _2r. 1
EER Propel No:
Projacl Nam*:
Sil* Name:
Laboratory
1.0. Mo.
EER
Label No.
Sampling System Prepared by.
C-
l«C«
Ten Op««slor(t):
±X-
Analysaa
Raqulrad
Samples Flee over nd
ib£
FIELD SAMPLE IDENTIFICATION A NO SAMPLING INFORMATION
Teal 10 / Location
323
Ptiysfcal Description
0a<*
Tim#
No. 01
Container*
V
f/
//»>
ADDITIONAL
INFORMATION
{•.a. Vahinwi.
TT. HoMing Tnei,
Sample Pirpeieton.
Addl tnikuctana, Mc.
to*#*
Xti> /yycj>i//e-
//*/• -*¦ /&as*y*4.
M
V < 7»e/K <>•«.
Zr^ jA
4>
N3
Y1
ff, , ffcero~£- +-
To/CfZ-
0' n •: 7cA«<'
TO/LP
\JoST~
Cm.-1
F 3 -
r*wii_t»i.
Br~r
5V2-
6-/9fv
/V Jo
?7
Crr - /
/I
£VWKrt^
Remarks (RUSH!, unila: mg/L. ppm, ale.):
After analysis: G A/chlva inrnple*
(Hold k* months. thon di&poee.)
H Return eampl** l°: EEfl Corporation
6001 IMne Blvd., Irvine. CA 02705
-------
APPENDIX D
SAMPLE CHAIN OF CUSTODY RECORDS
143
-------
Fnergy and
Environmental
Hesearch Corporation
Laboratory Report Dim by
EERContact:
.to:
t«l:
-ft**—: ioat
("7^ .rp,/i...- ^n.<=>?9/e
, Bill to:
~
P.O: No.:
EER Corporation
16 Mason, Irvine, CA 02718
lei: (714)859-8851
tax: (714)850-3104
!l
tax: (-7h) A *> 3 ' *7^*)
Sample Chain of Custody Record
1# Mason
Irvine. CA 92718
pfa*
9
Ul
C
X
EER Project No:
f_ ? r ,1- O? O
Sampling System Prepared by:
Analyses ///////
Required/ / / / / /
/ / V / / / / / ADDITIONAL
/ y / / / / / information
/«y / / / / / (•-0- Volume*,
/ /f/ / / / / / TT, Holding Timet,
/ i V/ / / / / / Sample Preparation,
/v7 / / / / / Adrft Instiucboni, etc.
Project Name:
> ' 1 fl/v. / o ^'
Test Operator(s):
Sit* Nama:
Samples Recovered by.
Laboratory
1.0. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ot
Containers
Test ID / Location
Physical Description
Date
Time
^ 3 $ n
c> v 4*4 -* *^r f i
f / . _• >
^ ¦\1rC.L-%
w
n& >**>>>-it
^ 1 1 , t/v^- *.<,
1/
?c 5ftJ3
OHcjiC' I-'*
^ a* C<» ~**-»
*-
/
—
7o-ZSJS
0%OlO' ±r
t/r>r • ¦eA. f-' »
*
/
M*«>od of SI*
7 >'
T r>
Remarks (RUSH!, unit*: mg/L, ppm, ate.):
Ra*nqyi»h^y^(S^
p£Pnnt)
Data / Time:
Received by: (Sign & Print)
Date / Time:
Shipment I.D.: Date Shipped
> /> > >U
T
L
«»>J» Phnwl la:
i
After analysis: ~ Archlva aamptaa
(Hotd lot montha. than diapoee.)
~ Raturn aamplaa to: EER Corporation
•001 kvtna Blvd.. Irvine, CA 82706
Attention:
4>
-------
Fnergy and
environmental
f^esearch Corporation
16 Mason, lrvin«, CA 92716
Isl: (714)859-6851
lax: (714) 859-3194
Laboratory R sport Dim by
EER Contact:
J51;
lax: '9^
. to:
Bill to:
P.O. No.:
Address: f-' f v > / T EER Corporation
< !•} T «-> s<_
it u
\v."
1
^ V "J * ~ ' *' t *¦ I
• ~ J* **! «S.
? > A Kr
, .<¦.1 -lT
.. u., i
J v
1
. • .
- . <7
. , ijy- >--J
i=* • I r ^
, ¦» ,v •> c-l
I
¦ ¦
?<•S /o
chc 3' '• ^
*r> 5> " /"<- >^'c—
Olf.*,4?*
z-
Method ol Shipment
¦i y
Remarks (RUSH!, units, m®t, ppm, ate.):
ReUn^itstytt by^^^Jtjrrff
(. «*«? "¦ /
Date / Time:
Received by: (Sign & Print)
Date / Time;
•
Shipment I.O.: Qate Shipped:
••
Samples Shippad to:
.A y
Altar analytic ~ Archlva aamplee
(Hold for months, than dispoaa.)
~ Ratum aamptaa to: EER Corporation
•001 Mna BWd., kvlna. CA 92705
i
Attention:
-A^ •ev~ X wAAl ——
-------
CT>
Energy ancf
Environmental
(Research Corporation
IS Mason, Irvine, CA 02718
lei: (714) 859-8851
lax: (714) 859-3194
Laboratory Report Dua by
EER Contact: |/Bll
-i®li ) ">">2-lent
l55i (ill) frft-
to:
***««« Ull
Bill to: P.O. No.:
T EER Corporation
jt ¦£**„/*•
Sample Chain of Custody Record
It Mason
Irvine. CA 9271»
X
page
of
3
EER Project No:
Sampling System Prepared by:
? /.»->£>
Analyses / / / / / / / '
Required/ 0y / / / / /
/ iT / / / / / AOOTDONAL
/ £/ / / / / /MF<>flWATK>N
/ / / / / / / (e.g. Volumes,
/ fl*/ / / / / / TT, Hotting Times,
/ (<,/ / II I / Sample Preparation,
/ / / / / / J Instructions, etc.
Projact Nama:
f *'£¦ 'a
Test Operators):
/ ViP/AtJ —Jyi'oft
Sita Nama:
- . •» • ' rz
Samples Recovered'by:
Laboratory
I D. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. of
Containers
Test ID /Location
Physical Description
Data
Time
2yjiff* 9A**t.
¦ft
r-/TF*-
A
¦
*At> • t
« *1
/
* *
» ' '
1
..
¦ 1 *•
/
<
\
f.h>-
. » '»
/
•» .*i
c . . illNt ¦>
N ' /
/
1« tt
?l ~> •»
1
.
.
Tyceso
,i *i
*A.» /nooO'c
1* * 1
1
*• '
,}
TvobH
/< •'
^rn/vfA/t
v • ;
*—
Method ot Shipment:
tfeJ t y
Remarks (RUSH!, units: m^/l, ppm, rfc.):
Rolin«UMhi
« by: (Si$n-4 Print)
Data / Time:
Received by: (Sign & Print)
Dale / Time:
Shipment I D.: Off Shipped:
¦
Samples Shipped to: '
Altar anatysls: ; ~ Arehlva eamplee
(Hold for j_ month*, than ditpoee.)
O Return aamplaa to: EER Corporation
•001 Irvine Blvd., Irvine, CA 82705
.
/mention . <
v.'w
»
-------
Energy ancf H
hnvironmental
[Research Corporation
18 Mason, levin#, CA 92716
(•I: (714) 859-8851
(714)1
Laboratory Report Dim by to:
EERContact: £}?((-> 2 Address: f-y, ,/
J2t (7>V ) J ,7^,^ C* *>> ?//>
lax: (->)
Bill to: P.O. N*.:
fax
} 859*3194
Sample Chain of Custody Record
EER Corporation
It Mason
Irvine, CA 92718
9
U1
c
page
-i-o'}
z
2
EER Project No:
t SiJ-02L>
Sampling System Prepared by:
' TZ7>^',cf
Analyses ///////
Required/ - / / / / / /
'/,////// ADOmOHAL
/ V / / / / / ^FORMATION
I \ / / // / / (e.g. \tokime»,
/./ / / / / / TT, Holding Timet,
/ ir / / / / / / Sample Preparation.
/ ' / / / / / / Instructon*, etc.
Project Name:
Cfc ,*/cfAjf J
Test Operators):
_.WVF Lr>?}> / „ /xv"^ •:<
Sit* Nama:
Samples Recovered by:
Zr> ->> 3A.lv
Laboratory
1.0. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. of
Containers
Test ID / Location
Physical Description
Data
Time
7uc&/Z
tt i~
SM Afu^r-/rt/-/, ?a
*¦
t
/
7^t ft* ¦*>
>%
M- ,"*£
(
7-Sft-W
« »
f
M »
<¦' ^ • AtfXxf* kfrcij
(
rtkj&ii
Sysre*' •8/'***
n. 1
¦ t#^,o ^-*.0 -4. /w oC
et
Ta>»^V
I
1/
7cvbS2
7 « T-
,£ z
I
/ >
-------
4>
GO
Fnergy and
Environmental
^^esearch Corporation
Laboratory Raport Qua by.
.to:
EER Contact: Address: *r f ( ;f ~l r\. >n() i
t?^ '71
Site Nam*
""T L .-¦*" f !r+.-~C_
Laboratory
I D. No.
EER
Label No.
7>i
7V.3V5"*
( ^
3*V«
'o31r(«o
r^zitct
?Q-bbU?
Sampling System Prepared by:
r '' < i . > -> ¦>
Test Operator(s):
v..
Samples Recovered by: J
•>o/Vu^1ft
y».f
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
Test ID / Location
Method o)
Shipment I D :
Dale Shipped:
Sample* Shipped to:
f-r
Physical Description
W •> "-*•«>*• c
-e t'y ^
xW" >. ~-6" w
>¦. /.'
J-s-e
• *S€ >c*r~C
s»/-t * r £?.,
3- *>
—• / ¦">
< [«•/•! c <"v/ /
ADOmONAL
' *4 FORMATION
(e.g. Votumst,
TT, Holding Timet,
SampW Preparation,
' Adtfl Instruction*, etc.
Ur
'.'•J'1.'.
Ra^qu^had
Date / Time:
Received by: (Sign & Print)
Date / Time:
¦¦
'• 1
8 •
£
m
i
-------
FnetgV and
hnvironmental
[Research Corporation
1B Mason, Irvine, CA 02716
Ul: (714) 859-885)
lax: (714)859-3194
Laboratory Report Dim by to:
EER Contact: Ackfress: ( kTjTj/ ^ ?/luAJ
Test Operators): /
^ / r' ~> 0 />*S,yir\ i *T
Site Name:
< (,x '.lt-
Samples Recovered by: .
Laboratory
I D. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. oT
Containers
Test ID / Location
Physical Description
Date
Time
^3A?i
\/Atr> 'f?
* i
/
i '»
0 /Uul* *•
v'
/
Zo1&3&
'.A "
*/\
•^'i v
/
•*
1
v'
/
.
j ; \ A *>
f\3*3?
/ V
it
\
\ -
/
\
\ 1
/
\
V
A
\
\ t 1 A
i>oh>"yy
/. \ /
s.-'
, \ / ••
' V
\
\
/
\
0
?c*Aut
M *•
<• #••.' /* r£i¦+¦ ;
• tP.^.1
t
?oH«2
•t "
r.
P "^< <»
* ~ * •
t
?<> it*''/
? '-'.j r^rf **•£
>W / ¦>
•
7
¦ ¦
?olSVf
t * '
.
—* I
MetiodolSN|
1.
4 ¦ t- X
Remarks (RUSH!, units: mg/L, ppm, etc.):
R*Knqu|sh*dtiy: (ffgn A'Pri^)
0
at* / Time:
Received by: (Sign & Print)
Date / Time:
Shipment I.D.: ; CM* Shipped:
v./ V / Gl/
j.
1 uV fl 1 "».¦
Sample* Shipped to:
.
After analysis: ~ Archive sample*
(Hold lor months, then dispoee.)
~ Return sample* to: EER Corporation
6001 Irvine BM1. Irvine, CA 82706
Attention:
-fc~
-------
\~n
O
^Phergy and1
hnvironmental
[Research Corporation
.to:
Laboratory Report Dim by
EER Contact: /"'¦.).£ r^: ? Addrags: f*
Bill to: P.O. No.:
' j.Q.-. EER Corporation
tsl:
, '/A
It Mason
18 Mason, Irvinsi CA 92718
tel: (714)859-8851
lax: (714) 859-3194
lax: ( 7"' ) *'-¦ > >7
Irvine, CA 92718
9
Ul
C.
Sample Chain of Custody Record
page
i-°<4
EER Project No:
/ •
(- <; o
Project Name:
fj.
¦ p* ?tQrJ
Sit* Name:
'f/r-
roe. ¦
Laboratory
1.0. No.
EER
Label No.
vW7
7f 3S^t>
r.-iV*
7( p*
?<}J>65±
7t>
?> 'S^J
c 3
Sampling System Prepared by:
, >.. 1 > >
Test Operators):
(/> ">1
'^",w V,.i<
Samples Recovered by. '
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
Tact ID / Location
5
ISAM
ocatio
iMc/ *rr
Mstiodot
)*T* aX
SNpment I.O.:
Scripts* Shipped to:
I TiTTh,
"-3SV
Physical Description
*• ,
i .f.Vft
(777V
¦v
y "
;¦'! a,
t ^4-C.
• • '¦C i t
¦¦ - * >
' ' '[ Cf ' v
Ilia-
Remarks (RUSH!, units: mpT. ppm, etc.):
After analysis: ~ Archive samples
(Hold lor months, then dispose.)
~ Return sample* to: EER Corporation
•001 Irvine Bkd.. hvtne. CA B270S
Data
v 'i
Time
No. of
Containers
Z_
7?
/,
z.
Analyses
Required
l.
ADDITIONAL
' H FORMATION
(e.g. Votum»»,
TT, Holding Times,
Sample Prapsmlion,
' Adtfl Instiuctonk, sic.
L-
iz
Date / Time:
Received by: (Sign & Print)
Date / Time:
-------
Pnergy and
Environmental
l^esearch Corporation
18 Mason. Irvine. CA 92718
lei: (714)859-8851
lax: (714) 859-319-
! I
Laboratory Report Due by ;
EER Contacl:
lei:
lax: (?/'/)
. to:
Bill to:
P.O. No.:
Address: 600/ ^y- if
2_
J
U~ - 2-
*>*r /
rettl
T7/
>v.
»»
2_
J
i.
vT
T-eX«* A "*/=»¦
ntvs ++/&**.# i^io
•A.
• V
"2_
J
Zo/4>?<*
/Zw" i
«.r 3
-tcr-** t*- WV
* 5*6
1»
2_
I
7ottr96
$
t=• a-
-rtr-"^x 3''
/cA*4m 3i i
/t&c/
2_
J
zo/e#?-
ft3
¦*«-T )
T«v~«/c * *940
* V
• i
3
Tt~
TeN/frW /?*
v*
V
*o/G9?
3
-7-e.fj :—. »j®
T3't.
*v
fc_
J
?Cl^oc
C*a^«-
t€.^j1 3-
Metiodol Shipment
Remarks (RUSH!, units: mgA., ppm, etc.):
Relinquished by: (Sign & Print)
Date / Time:
Received by: (Sign & Print)
Date / Time:
Sfopment I.O.: 0«t Shipped:
S*mpt»» Shipped lo:
Alter analysis: ~ Archive samples
(Hold lor months, then disoose.)
~ Return samp let to: EER Corporation
6001 Irvine Blvd., Irvine, CA 02705
1 '
Attention:
-------
Fnergy and
Environmental
Research Corporation
.to:
Laboratory Report Due by
EER Contact: l£o*-lb2-rp ^
Bill to:
tel
18 Mason, l-vine, CA 92718
lei: (714) 853-8851
lax: (714) 6:5-3194
lax. (">*!) <3*7 y "
Sample Chain of Custody Record
P.O. No.:
EER Corporation
18 Mason
Irvine, CA 92718
page
of
i-»
ui
to
EER Project f>::
£$^7-C-'ZO
Sampling System Prepared by:
/ -Jo/£.
Analyses / / I I / / /
Required^ / / / / / /
/6 -HV / / / / / additional:
/ Vy / / / / /information
V / / / / / (e.fl. Volumes,
/V 1/ / / / / / TT, Holding Times;
/ /J7 / / / / / So"*1* Preparation,
/ / / / / / /Adc" 'nstruchbn*. etc.
Project Name:
Test Operator(s): '
Sile Name:
d.T-r- '
Samples Recovered by:
7>->4i£. C, / —tc-S
Laboratory 1 EER
I D. No. 1 Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION .
No. ot
Containers
Test ID / Location
Physical Description
Date
Time
To/6 SK
<27-7-
*-v/ra
&-/S-9V
M'Ap
/
Tote,)')
/ v
O ftrfj* * /fcero^C
K K
U s
;
To/OW
H
»*. 1
1 «
«* H
/
?c/l-"/
U h
/C.M. *e£rt*v£. r
tA »«
H 41
1
7c/ 6 V 2-
u i
H H.
•*. *1
t
te/tY 3
L< S
0. /J. 4
s»ecx. * Si***.
*\ »l
1
ZCfi^S
U. '¦
, 7-x»/l»c*/w-
7Z,„S*.
u •*
a
tolU<
V V,
Jf-4o >7S$>GAS
r- 1-
• ^ H
Zo/t* ^
7?>/*
X/**
VV m.
u •*
Method ol Smxrent
Remarks (RUSH!, units: mg/L, ppm, etc.):
Relinquished by: (Sign & Print)
Date / Time:
Received by: (Sign 4 Print)
Date / Time:
Shipment I.O.: Date Shipped:
Samples Shipped to:
Altar analysts: (ZD Archive • ample*
(Hold lor months, then disoose.)
CD Return sample* to: EER Corporation
8001 Irvine Blvd., Irvine, CA 92705
Attonkon:
-------
Fnergy and
HF-nvironmental
[Research Corporation
IS Mason, Irvine, OA 92718
lei: (714)859-8851
lax: (714)859-3194
Laboratory Report Due by to:
EER Contact: Address: X
1*1: (&I&
lax: (?/4)
Bill to: P.O. No.:
EER Corporation
??/*
Sample Chain of Custody Record
18 Mason
Irvlns, CA 9271B
p«g«
of
EER Project No:
Btio/ ~ 02o
Sampling System Prepared by:
/ /r-4-
Analyses ////// /
Required/ //////
/ ,V / / / / / ADDITIONAL
//////// INFORMATION
/ !// / - / / / / (e.g. Volumes,
/ /ly / / / / / TT, Holding Tvnes,
/ y / / / / / Sample Preparation,
III / / / / Addt Instruction*, etc.
Project Name:
C-ft- //V C6 ~^~UL*-Tl v »>»
Test Operators): .
Site Name:
£.tt-
Samples Recovefed by:
Laboratoiy
1.0. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. of
Containers
Test ID / Location
Physical Description
Date
Time
TC/ 6V ^
*r-r-
y/9
<0-7?-9V
?b;3o
/
To/6//
H
/&+/*>
i V
/
/» Vm' g» ¦ H.
y^_
|\ • ^s'*;
\
Te.L-c-i
tv
•t
I
-e~/L>cS
K »»
^ /*, f~
JZ-~VL
i
e# C/-9-
*¦ V
wV
*
w. f
3. H . ¦»•
M«ai.«_
M
-\
t
^ *
J}. hS ~ Tt*/,-£. ^e.
«2«W_
¦V«fc
(
Z°t(,>v
Crr-
t3
F./7-6.X
V
(
rot [tft-
•V
YAZ>
s
(
MeViod of Shipment
Remarks (RUSH!, units: mg/L, ppm, etc.):
Relinquished by: (Sign & Print)
Data / Time:
Received by: (Sign & Print)
Date / Time:
Shipment I.O.: Dale Shipped:
Sample* Ship)
sedto:
\rX£if. 4/»Olf-*rf7
/?•£.£>
Alter analysis: Q Archive aamplea
(Hold lor months, then dispose.)
I~1 Return aamplee to: EER Corporation
6001 Irvine Blvd., Irvine, CA 92705
, '
Altortlort _
. 7%<6lSOS....
9
Ui
u.
x
z
¦2.
Ui
CC
>
a
8
a
ui
ui
UI
u>
-------
Fnergy and
[Environmental
^^esearch Corporation
Laboratory Report Due by.
to:
Bill to:
P.O. No.:
EER Contact: Address:
(7//) Ca 929t& _
EER Corporation
tel
18 Mason, Irvine. CA 92718
tel. (714) 853-6351
lax 714) 8:9-2:94
Jm; - /*>» 3
Sample Chain of Custody Record
18 Mason
Irvine, CA 92718
page
of
EER Project No.
£?;£!- CZO
Sampling System Prepared by:
IP^fcL L .
Analyses ///////
Require^/ / / / / / /
fit if f f f f f ADDITIONAL
f \f f f f f /,NFORM^T10N
/R / / ~ / I I / (* 0 Volumes,
/i* / / / / / / TT. Holding Times,
/" / ' / / / / / Sample Preparation.
/ / / / / / / Adrfl Instructions, etc.
Proiecl Name:
/At'/At .64
Test Operator(s):
Site Name:
Samples Recovered by/
Laboratory
I D. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ot
Containers
Test ID / Localion
Physical Description
Date
Time
/523e ^
C 0-~2-~ l~T~
p If.
ua £ d£--*_
)5BO
/
1 \
/T/->*. r7Z>/i/£*s£L
< \
M.
/
-
/5P
l-V
0.4. :
/<
w
/
3' a/ -7z>/v<^£~
«I
/•
&C£.x>jC-
'V
•N .
)
w it
\
Tol
\v n
T_ "BWJN1-
w
•A
\
,
Method ol Shipment
Remarks (RUSH!, units: mg/L, ppm, etc.):
Relinquished by: (Sign & Print)
Date / Time:
Received by: (Sign & Print)
Data / Time:
Shipment I D.: Date Shipped:
Samples Shipped to:
II
o:
Alter analysis: CD Archive eamplei
(Hold lor months, then dispose.)
Q Return tamp lee to: EER Corporation
0001 Irvine Blvd., Irvine. CA 02705
MncHonr—^*
ir '"ft 'jinrrfZi. .
e
o
5
2 -
<\
H:
Ui
GC
.V
a.
O
o
(T ¦¦
UI.
Ul
-O
-------
Friergy arid
environmental
[Research Corporation
18 Mason. Irvine, CA 92718
lei: (714i 859-8851 ,.
lax I7U $59 3194
Laboratory Report Due by to:
EER Contact: Address: §C0/
tel: (7/f ) 552-//«T>3 J=^W,r-'z
lax: (7/V)ir5y-/?/-*
Bill to: P.O. No.:
EER Corporation
18 Mason
Irvine. CA 9271 a
Sample Chain of Custody Record
page
of
EER PfO|e:t No:
brci - c
Sampling System Prepared by:
—JC-
Analyses / / / / / /
Require^r^ / / / / /
//ill ADDITIONAL
/*/£/ II II !INFORMATK)N
/////// (e.g. Volumes,
/ / / / / / TT. Holding Times.
, / / / / / / Sample Preparation,
Project Name:
( I^J C13^ rJ
Test Operator(s):
-—I7=3«*s. / 3aJ*rt! J
Sue Name:
Samples Recovered by/
Laboratory
I D. No
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ol
Containers
Test ID / Location
Physical Description
Date
Time
1/11/ Adrfl Instructions, etc.
/S8295
CV--Z~^7~
<*? /r£s£.
/5TOO
/
U
\ s.
'I
\
/ve>29S~
<\
0/+vr £.
K.
K.
/
fttZSA,
'I
P.//.
/*r»r
p. rt ¦ ~Tv/ is£s~"£~
M.
*-
/
K
3. /V. /^"^7EV~«C
V
N
i
Ci
2> /-/
/
/fbZot)
Cu-z-u-
Ahe -Z—
A
/
/*?&¦*> 0/
i i
*/*¦£> STtPvAsL.
lA.
A.
/
.
/5e>y>'2-
dtsi - i-T
t*
V
/
Metrad ol Stapment
Remarks (RUSH!', unit£: mg/L, ppm, etc.):
Relinquished by: (Sign & Print)
Data / Time:
Received by: (Sign & Print)
Dato / Time:
Shipment I.O.: Oat* Shipped:
Samples Shipped to:
After analysis: Q Archive samp let
(Hold lor months, then disooae.1
f~l Return lamp let to: EER Corporation
8001 Irvine Blvd., Irvine, CA 9270S
i"
o
O
o
•J
Ul
*
2-
Ul
a.
> "
o.
O
o
£t .
Ui
ui
2 .
o
t
o
ffi
Ul
Ul
-------
Fnergy and
Environmental
p^esearch Corporation
Laboratory Report Dim by.
to:
Bill to:
P.O. No.:
EER Contact: k.3» / / / / / / Sample Preparation.
f I f / / / / Addl Instructions, etc.
Project Name: ^
CfC -i-tJc(ivjeiLAT\
sl
1/
1 ^
l*J(.TS
CUI dT
-Fi L.TE4
Vu4<{u
l^-oo
|
Si
' _
(SWtJ
I
XAfr (A0Dui_e
1
I
1 '
tS4Cn
sl
0 ^DaP/a»6£/^
4
*
1 -
Sl
Method ol Shipment '
Remarks (RUSH!, units: mg/L, ppm, etc.):
Relio
iQuishpd by:/^igp^^rint) I
L ^
>
)ato /1
Ime:
Received by: (Sign & Print)
Date / Time:
StMpment I.O.: Date Shipped:
t
Sample* Shipped lo:
Alter applysis: (_J Archive eamplee
(Hold for months, then disoose.) '
f~l Return aamplAP to: EER Corporation
8001 Irvine Blvd., Irvine, CA 92705
*— WM THo-wa ¦;
, ,
o
Q-
o
Ul
2 ;
5-.;
LU •
CE
>V
Q. •
O
o .
It'.v
Ul
UJ-
o
t
o
CO
8:*
5K
3 -
CL
<•
If
Ul
On
-------
Energy and
Environmental
Research Corporation
Laboratory Report Dim by .
. to:
Bill to:
P.O. No.:
18 Mason. Irvine, CA 92718
lei. (714> 359-8851
lax: (714* 959-3194
EER Contact: Address:
t r»tS5l~ii03 fool -Tfliime Revo
CM 857- tit* -z£pi,«le.c{\.(r
lax:
Sample Chain of Custody Record
EER Corporation
18 Mason
Irvine. CA 92718
page
of
EER Proje:: No:
S&0I-ZO
Sampling System Prepared by:
T* LADO
Analyses / / / / / / /
Required / / / / / / / .
Toil,/ / / / / / ADDITIONAL
Project Name.
CFd 'X-M^\KCftATIO»0
Test Operator(s):
PfCT 7V. U 00
Site Name: _____ >
Samples Recovered by: '
r>. ladd
»>7 / / / / / INFORMATION
Mr / / / / / (a.g. Volumes.
/ / I I / Molding Timas,
l7 ///if Samplt PrvMfiboni
Laboratory
I D. No.
EER
Lab«l No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ol
Containers
Ztc
Test ID / Location
Physical Description
Data
Time
7 / / / / / Instructions, a»c.
ISMU4
Ckl?6
B-H ToIw!h«_
872AM
Ik'.00
| N
NJ
•
*
,
Mttiodol Shipment
Remarks (RUSH!, units: mg/L, ppm. etc.):
Rejfnquishe
{Mr. fawftYtM) t
- - - - «
)ate /'
Ime:
Received by: (Sign & Print)
Date / Time:
Shipment 10.: I Data Shipped.
^*2
*>
Samples SNp|
-Ui\M
ledto:
6/r
*4r
Attar analyst: CD Archly* aampka
(Hold lor months, than disDOse.1
~ Batum samp las to: EER Corporation
•001 Irvine Blvd.. Irvtrva, CA 92705
,
—KMT*o«As
o
3
b
UJ
- d
.f
f
,'-z
UJ
a,
t
8
ff
UJ
UJ
;a
o
t
-
-------
Fnergy and
Environmental
Research Corporation
18 Mason. Irvine, CA 92718
lei: (714)859-8851
lax: (714) 859-3194
Laboratory Report Dim by 1o:
EER Contact: 6#fig, /{lufP9. Address: ftODt &U3>
tel. (7n)s^-iao'3> ^r:^ro£_ £a
tax:
Bill to:
Sample Chain of Custody Record
P.O. No.:
EER Corporation
18 Mason
Irvine, CA 92718
page
of
9
UJ
LL
X
z
Z
EER Project No:
Protect Name:
rec.
e^o i- o?o
Site Name:
l^qM ejVgnONJ
Laboratory
10. No
EER
Label No.
Sampling System Prepared by:
"ZD-
Test Operator(s): .
irtdby
Samples Recovered by:
"X>
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
Test ID / Location
Physical Description
Ac.ttoo't'
Dale
Time
No. ot
Containers
ADOTTIONAL
' INFORMATION
(e.g. Volumes,
TT, Holding Times,
Sample Praps rebon.
' Addl Instructions, etc.
f.U-^ MT
y^ccL-
b- H • Tt3(o£^<-
/SM^
11
\A
3, VA- ^cSSof»E^b'
H$£CLJ
\b\vQo
m&L
t«
\A . ~To) u£-<*>*«—¦
Cv-l- /=i3
/ r£A-
)Qq^ - jy_
M
I5H&7Q
jr. H +
Nv
TP'
is^i
F H- to|u€>j£-
¦», +4. At£T*D0'd.IP~
v
Method ol Shipment
Shipment I.O.:
Dale Shipped:
Semptss Shipped to:
"QCU/Mx.. —
Adsnlon:
n,
Remarks (RUSH!, units: mgfl., ppm, etc.):
Alter analysis: Q Archive sample*
(Hold lor ^ months, then dispose.)
~ Return samples to: EER Corporation
S001 Irvine Blvd., Irvine, CA 8270S
Received by: (Sign & Print)
Date /.Time:
-------
Energy and
Environmental
^Research Corporation
Laboratory Report Due by;
.to:
1 fi Mason, Irvine, CA 92718
tel: (714)859-8851
lax: (714) 859-3194
EER Contact: /tQjn?&> Address: fi&DI 332VJ
I^IM) ; :
Bill to: P.O. No.:
ESR Corporation
lei
fax
Sample Chain of Custody Record
18 Mason
Irvine. CA 92718
page
of
£
I '
h-
t
z.
<
EER Project No:
8*ni- O2o
Sampling System Prepared by:
Analyses • l/h /'/.// / /
Required/'u/ / / / / /
/jf Jp/ / / / / / AOOtTIONAL
IXu/ /III /'NfORMATlON
/ ill / (*9 Volumes,
l\r / / / / / / TT. Holding TimM.
J\k' / ¦ / / / / / Samol* Prabarabon.
Project Name:
Test Operator(s): .
.LftDS> /s>. ^
Site Name: . ¦
Samples Recovered by:
LfO&
Laboratory
I D No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ol
Containers
Test ID /Location
Physical Description
Date
Time
/ / / / *tkfl Instruction*, ate.
£b-l-MT
'v" • y^CCL-i-
ZWAatf*
16*£>
/
i \
t-* H •
v<»
\
\s\\&o
\A
-3.VA. *»«*£,-».-j
l »
-v.
•V
\
OiUAf
1 •
*2>. VA. "TolueAK-
*
\&UA
CV-i- fA
fr£A-
n.
"I
u-^
K ^
Xa& - fw>r>JV_
M
V
1
¦•V
K. "H
1
%
i
o
Nv.
1
^ s
•H.
1
'5^2-
F |4. To»u€>>^-
iA
T
1
-H
2.
u
»»
1
'
Method otSTq
poMnt
Remarks (RUSHI, unit: mj/L, ppm, etc.):
Relinquished by: (Sign & Print)
Date / Time:
Received by: (Sign & Print)
Date / Time:
ShipmtM I.D.: Data Shipped
SarnptM Shipped to:
•
Alter analyala: ~ Archive eamplee
(Mold lor months. then discos*.)
(~l Return eamplee to: EER Corporation
•001 trvioe Bk«l., hvlne, CA 92705
l*T^
U1
U
-------
o
Energy arid
Environmental
l^esearch Corporation
Laboratory Report Due by.
to:
Bill to: P.O. No
IB Mason, Irvine, CA 92718
tsl: (714) 859-8051
lax: (714) 859-3194
ttH contact: V»R.E<» Address:
... tlMSSZ-IX03 Rum
EER Corporation
18 Mason
fi*/)8si-im T«.rte m mi?
Irvine, CA 92718
Sample Chain of Custody Record
page
of
•i
i H
5
'Z
' <¦
EER Project No: ^ ^
S80I-2C
Sampling System Prepared hy,
TX tAOD
Analyses //v-n/ /////:
Required// / / / /
/j^/ / / / / /iDoimoNAL
/ ©"/ / / / / / INFORMATION
/ / / / ¦ / / /
/ I 'l l / / (e.g. Volumes,'
/-ST / / / / / / TT. Holding Times,
/A«./ II II 1 Sample Preparation,
! \/ y / / I I / Adrfl ln»tfuc»on», etc;
Project Name: -
Cfc -UlCiriELfiTwv
Test Operator(s): —* _ _
D. aoJ)
Site Name: -,— —
'¦FR
Samples Recovered by: _
I). LA.DO
Laboratory
I D. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPLING INFORMATION
No. ol
Containers
Test ID / Location
Physical Description
Date
Time
-
ISH&2.
CM 1 CT
VtuTF*
IfctOO
1 '
Nl
nr
XA£> /YVOD^CC
»" .•
Vl
rstctH
Cui or
s,
Cut cf
'PH //*«£(
CU4 LT
|
iSH
\|
1 ^
K
CUI tfT
-flLTEP
S/zJe/lq
16. *60
| '
v
tZHbJCcJ
^ooul.€-
1
1 *
WLll
V
&az*P,»c>£/L
4
; >
1
1 "
s-:
Mettod ol Shipment
Remarks (RUSH!, units: mg/L, ppm, etc.):
Relinquished by: (Sign & Print) C
>at»/Tkne:
Received by: (Sign & Print)
Date '/ Time:/
Shipment LO.: Dale Slipped:
t
•
Samples SNpped to:
. '
. .,
Alter agplysis: ~ Archive samples
(Hold lor months, then depose.)
~ Return tamplflP to: EER Corporation
•001 Irvine Blvd., Irvine, CA 9270S
'
' ;
¦'
-------
Energy and
hnvironmental
Hesearch Corporation
Will I .
Address:
18 Mason. Irvine. CA 92718
let: (714) 859-8&S1
lax: (714) 859-3194
EER Corporation
EER Conlacl:
Jfi!; OH55*^*03 -Ouime ftorp
(7^ £57" CW3 OPffV IHJEjC A. 9,27/^ Irvine. CA 92718
18 Mason
page
of
EER Projecl No: »>.
§&0(-^O
Sampling System Prepared by:
T* ladD
Analyses./ / / / / / /
Required/ //////
7§U / / / / / ADDITIONAL
fX-lrt / / / / / INFORMATION
/ / / / / (* 9' Vo)um«»,
/X Clf. I I j / / TT. Holding Tme*.
LX*tj / / / / / Sample Preparation.
/Qt ¦/¦'••/ / / / / Adcfl lnitr\Ktidn»,«tc.
Projecl Name: .
CttL Xfi^iNjertATioio
Test Operators):
Fter 7v. Uon
Site Name: | .
• T IS
Samples Recovered by: '
TV LADD
Laboratory
I D. No.
EER
Label No.
FIELD SAMPLE IDENTIFICATION AND SAMPUNG INFORMATION
No. of
Container*
Test ID / Location
Physical Description
Date
Time
ISlttl
cm?B
8!v>M
) V
M
. j •
y,
' V.'v*"
¦
'
¦; V.
Metod of Shipment
Remark* (RUSHI, uniU: mg/L. ppm, etc.):
Relinquished by: (Sign & Print)
Data / Time:
Received by: (Sign & Print)
Date / Time:
Shipment I.O.: Dale Shipped:
Sempie* Shipped to:
.t .
After analyslr ~ Archive sample*
(Hold for months, then dbpoae.)
Q Return eamplee to: EER Corporation
•001 Irvine Bfcd., bvtne, CA 02705
¦
- :
RAY Trtcx^As
t
5
Z
3
S'
It
O
o
(C
Ui.
UJ
i.
o
K.
o
n
-------
APPENDIX E
QUALITY CONTROL EVALUATION REPORT
The Data Quality Objectives (DQOs) of this project were both qualitative and quantitative in
nature. One objective of this study was to repeat the CFC 12 incineration experiment conducted in
FY 91 and determine if high PCDD/PCDF emissions will again be observed. A second objective
was to determine the effect of residual copper in the combustion system on PCDD/PCDF
emissions. A third objective was to characterize the emissions (VOCs and PCDD/PCDF) from the
incineration of a HCFC (-141b) and a CFC recycling residue. All work was performed in
accordance with an EPA-approved Quality Assurance Project Plan (AEERL QA Category III).
QA/QC requirements are applicable to this project. Data are supported by
QA/QC documentation; however, the quality of data produced did not
satisfy all project-level Data Quality Objectives (DQOs). Therefore, there
are limitations on the possible end uses of data.
This Quality Control Evaluation Report (QCER) serves to describe the quality of data collected and
discuss any data reporting limitations (if any). The following sections discuss each measurement
parameter. In general, the quality of data generated were sufficient to meet overall qualitative
DQOs. However, the PCDD/PCDF measurements reported are of insufficient quality to meet
quantitative DQOs. As a result, the PCDD/PCDF concentrations presented in this report may not
be comparable to other PCDD/PCDF emission data. A futher discussion of PCDD/PCDF data
limitations is contained in this Appendix.
GENERAL MEASUREMENTS
General measurements are those that are important but not critical to the project goals. For
this project, general measurements included:
* Combustion fuel, air, and oxygen flowrates
* Furnace temperatures
* Flue gas composition of O2, CO2, CO, and NO using continuous emissions
monitoring analyzers.
Combustion air, fuel (propane), and supplemental oxygen flowrates were measured using
calibrated rotameters. Rotameters were calibrated using reference dry test meters; calibration
curves were made and utilized. Flowrates were verified by theoretical calculation of the O2 content
in the flue gas based upon fuel and air flowrates, and comparison with the actual measured flue gas
O2 level. The comparison was within 10% and considered acceptable.
162
-------
Flue gas temperatures were measured during testing using K-type thermocouples (TC),
which are accurate to +2 °F. However, at furnace temperatures, radiation heat losses can cause
thermocouples to read lower than the true value. For this reason, suction pyrometers were used
before and after each test in the CTT's upper two ports. Suction pyrometers are designed to avoid
radiative heat losses and are capable of accurate high temperature readings. The relation between
the simultaneous suction pyrometer and K-type TC readings were used to determine actual test K
type TC readings. The suction pyrometer was not used in the TFR.
Flue gas composition was monitored for 02, CO2, CO, and NO with a continuous
emissions monitoring system (CEMS). The system was leak-checked before and after each test.
Each of the CEMS analyzers was calibrated before each test with vendor-certified calibration gases
(±2% of the stated composition). Calibrations (zero and full span) were performed periodically
throughout the tests to ensure that each of the instruments was not drifting.
CRITICAL MEASUREMENTS
Critical measurements are those that are required to meet the project objectives. These
included:
* PCDD/PCDF and volatile PICs from EPA Method 23 and EPA SW 846 Method
0030 sampling trains, respectively.
Volatile PICs (EPA SW 846 Method 0030)
Sampling of the flue gas for volatile PICs was performed using strict EPA SW 846 Method
0030 sampling procedures and Method 5040/820 analytical procedures except for the following
noted exceptions. Previous studies (Springsteen et al., 1994) have indicated that the high
concentrations of chlorine- and fluorine-based acid gases in the combustion flue gas during
incineration of CFCs causes difficulty during analysis of the Method 0030 Tenex tubes.
Therefore, an impinger of water was placed immediately upstream of the Tenex tubes to remove
the acid gases. The impinger solutions were not recovered nor analyzed for volatile PICs as
previous studies have indicated that few species, at low levels, are captured in the impinger
solution. As seen in Table E-l, the analytical method surrogate spiked sample recoveries (for 1,2-
dichloroethane, toluene, and bromofluorobenzene) are within the method guidelines (40-120%
range) for all tests except bromofluorobenzene for Test 4, Run 3, Since 1,2-diehloroethane and
toluene for this run are within method guidelines, the low surrogate spike recovery for
bromofluorobenzene is not considered to impact data quality. All Method 0030 test data have
acceptable analytical accuracy. Tenex trip blanks were analyzed all three tests. They were clean.
Analytical system blanks were clean for all tests.
PCDD/PCDF (EPA Method 23)
Some standard operating procedures for the sampling of the flue gas for PCDD/PCDF
using EPA Method 23 had to be modified. These included:
* Pitot tube measurements - Due to low flue gas velocities at the sampling locations,
pitot tube measurements could not be made to determine gas velocity and isokinetic
sampling rates. Instead, velocities were calculated using fuel and air firing rates,
gas temperature, and duct geometry. This deviation will have no effect on method
results.
* Isokinetic sampling rate — Isokinetic sampling rates for all tests were from 79 to
163
-------
119%, which are all outside of the acceptable range of 100 ± 10%. The isokinetic
rate ensures that a representative particle size distribution is captured in the sampling
nozzle probe and sampling train. For this program, because relatively ash-free
propane gas and CFC-12, HCFC, and CFC recycling residue were burned, the flue
gas contained negligible particulate matter. Therefore, isokinetic rates outside of the
acceptable range should not affect the composition of the collected flue gas and, in
turn, the validity of the tests.
~ Addition of water impinger upstream of XAD resin — Because of analytical
problems which were encountered in a previous study (Springsteen et al., 1994)
due to high acid concentrations in the sampling train components, a water impinger
was placed upstream of the XAD resin during all tests. The impinger water was
combined for analysis with the XAD and rinse PCDD/PCDF measurements.
As mentioned in the text of the report, analytical difficulties were encountered that prevents
reporting PCDD/PCDF concentrations for some congeners. As a result, valid total PCDD/PCDF
concentrations cannot be reported for tests encountering these difficulties. Only data meeting
analytical performance criteria are presented. In many samples, congener-specific internal standard
recoveries did not meet method performance requirements. In several samples where analytical
performance criteria were not met, targeted congers were detected at measurable concentrations.
These samples are identified in the appropriate tables. It should be noted that for these samples,
the total PCDD/PCDF concentrations reported are less than the concentrations actually present.
The analytical difficulties are likely linked to the high HF and HC1 concentrations present in
the sampled incineration emissions. These acids, HF in particular, are extremely corrosive. The
sampling and analytical method employed (Method 23) was not intended for such high,
uncontrolled acid gas concentrations. The placement of water impingers upstream of the XAD-2
did little to improve analytical performance.
Method recoveries for tests 1 to 8 are shown in Table E-2. Aside from the
tetrachlorodibenzofuran congeners (and to a lesser degree hexachlorodibenzofuran and
heptachlorodibenzofuran), method recovery values of the internal standards were generally within
the method limits (40 - 120%). Acceptable recoveries of all congeners were achieved for the
method blank. Therefore, it appears that the low recoveries are a result of the presence of the acid
in the samples rather than the sample recovery/extraction method employed.
Field blanks were collected for tests at the TFR facility (Tasks 1 and 2) and for tests at the
CTT facility. The field blank for the TFR facility were all non-detect values indicating no
contamination sources in the sampling train operation or analytical procedure. Analysis of the field
blank for the CTT facility resulted in non-detect values for all congeners except the
heptachlorodibenzofurnns which were detected at low levels.
System blanks (burning propane only) were collected for both the TFR (Tasks 1 and 2) and
CTT (Task 3) facilities. The system blank analytical results for the TFR (Test 1A and IB) were all
non-detect indicating no contamination sources in the test facility or background fuel combustion.
The system blank analytical results for the CTT (Test 4) were suspiciously high. Two
simultaneous sampling trains were run during propane combustion and resulted in measurable
PCDD/PCDF concentrations of 60 and 65 ng/dscm @7% O2). These concentrations are relatively
low; however, they are on the same order or slightly higher than the PCDD/PCDF concentrations
measured during incineration of 11 CFC and CFC recycling residue. Therefore, it is difficult to
quantify the PCDD/PCDF formation during incineration of HCFC (Test 5) and CFC recycling
residue (Test 6) except to place an upper bound on the level of formation.
164
-------
STATISTICAL ANALYSIS
All measurements were taken with the required completeness. All precision and accuracy
goals for the CEMS was achieved. As discussed above, a few of the laboratory accuracy checks,
represented by the recovery percentage of the spiked samples, were out of the acceptable method
range; however these are not believed to affect the conclusions of this study. Spike duplicate
samples were not analyzed; therefore, it was not possible to determine method precision.
165
-------
TABLE E-1. METHOD 0030 VOLATILE PIC
ANALYTICAL SPIKE RECOVERIES
Pair
Eecovery(%)
1,2-dichloroethane
Toluene
Bromofluorobenzene
Test 4
1
103
96
104
2
ns
ns
ns
3
100
92
<10
FB
100
86
81
TcstS
1
91
99
95
2
40
102
81
3
90
105
99
FB
104
98
92
Test 6
1
80
105
102
2
n/a
n/a
n/a
3
101
110
104
FB
95
100
96
Trip Blank
1
98
93
81
2
80
103
96
3 ~
98
88
87
ns: Not spiked
n/a: Not Available (broken tube)
166
-------
TABLE E-2. PCDD/PCDF ANALYTICAL METHOD SPIKE RECOVERIES
Congener Spike Recovery (%)
Test
1A
IB
2 #1
2 #2
3 #1
3 #2
TFR
4 #1
4 #2
5 #1
5 #2
CT
FB
FB
TCDD
54
63
37
28
n/a
36
47
89
39
88
98
83
PeCDD
53
62
41
31
n/a
42
68
112
59
101
105
67
HxCDD
60
71
52
38
n/a
48
91
89
26
87
86
49
HpCDD
66
76
54
38
n/a
48
91
95
70
82
94
51
OCDD
52
61
41
29
n/a
40
78
95
76
103
94
50
TCDF
48
59
36
22
n/a
41
45
3.1
1.7
6
13
62
PeCDF
60
70
44
35
n/a
45
63
120
77
99
96
55
HeCDF
58
69
48
36
n/a
46
79
24
2.5
21
41
50
HpCDF
58
70
51
34
n/a
44
82
34
4.1
27
40
56
Test
6 #1
6 #2
7 Hi
7 Lo
8 Hi
8 Lo
Glassware
TCDD
48
58
105
82
92
98
79
PeCDD
69
53
97
102
100
100
81
HxCDD
61
71
111
99
86
98
99
HpCDD
116
57
101
79
116
86
106
OCDD
76
75
100
79
64
65
89
TCDF
9
8
21
18
4.3
26
55
PeCDF
96
60
109
97
101
94
93
HeCDF
17
47
83
79
12
79
84
HpCDF
13
45
88
89
14
77
86
n/a: sample lost, not applicable
-------
Energy and
Environmental Research Corporation
Interoffice Correspondence
ce:
To:
Greg Kryder
Jerry Cole (QA Manager)
From: Neil Widtner
Date: August 10, 1994
Subject: Systems Audit of the "Investigation of PIC Formation in CFC Incineration."
On Wednesday, August 3rd 19941 visited the test site to conduct a systems audit on the hybrid
fluidized bed test program, the "Investigation of PIC Formation in CFC Incineration," The test
plan for Wednesday involved conducting two simultaneous Method 23 sample trains for the
detection of dioxins and furans. The samples were taken at an upstream and downstream location.
When I arrived at around 1:30 pra, the baseline furnace operation was already set and the sample
trains were in place and ready to be leak checked.
The system audit was done on select critical procedures. The result of the system audit suggested
that the testing procedures were acceptable. The specific areas investigated are categorized below
and a brief description of the audit process is presented in the later paragraphs.
Organization: The project leader was Greg Kryder. He was supported in furnace operation by
Brian Jacobs, Senior Technician and in EPA Method 23 testing by Dave Ladd, field crew
technician.
Furnace Operation: A review of the furnace operation indicated that appropriate set-up awl
operation procedures had been used The furnace operation was set by setting the air flow rate
from calibrated Brooke's flow meters and dialing in the propane input until furnace flue gas
oxygen content was at the specified set point for the desired stoichiometry. A furnace leak check
of the furnace is then conducted by dialing back the air flow to the theoretical air requirement and
confirming that the flue gas oxygen concentration drops to zero. The furnace operation over time
was recorded by continuous emission monitoring (CEM) and plotting to a chart recorder.
CEMs: Confirmation of the CEM zero and span procedures were made. A demonstration of the
zero ancfcspan procedure was conducted on the oxygen analyzer. This confirmed that the analyzer
was property calibrated. The zero and span procedures were conducted at the start of the day.
This allowed accurate setting of the baseline furnace firing rate. Additional zero and span
procedures were conducted during testing to increase the accuracy of the drift corrections outlined
in the CEM calculation procedure, Figure 5-2 of the QAPP.
Sample Train: The method 23 sample trains were assembled by Dave Ladd earlier that day. Dave
Ladd answered questions regarding the assembly of the train which indicated thai he had followed
the procedure outlined in Table 3-2 of the QAPP. One important aspect of the train is that no
sealant grease could be applied to connections. This procedure was followed by Dave Ladd,
which increases the difficulty in leak checking the system. The leak checks followed the procedure
Procedural Areas
Organization
Furnace Operation
CEMs
Acceptable
Acceptable
Acceptable
Acceptable
Acceptable
Results of Audit
Sample Train
CFC Firing
1-68
-------
outlined in Figure 3-2 of the QAPP, The first train to be leak cheeked exceeded the minimum leak
rate. The vacuum was released and the pump turned off. Then the fittings were systematically
checked and water was applied to help vacuum seal the fittings. The repeated leak check met the
leak rate criteria. The second train followed the same leak check procedure. The leak rates were
recorded on the standard EER sample logs of each train. Dave Ladd answered question regarding
the remaining procedures for sampling.
CFC Firing: The CFC was turned on. No significant change in oxygen concentration was
detected. This agreed with chemical reaction predictions which indicated that the chloride and
fluoride would take hydrogen from the propane freeing the required oxygen for reaction with the
CFC bound carbon. The only effect on oxygen concentration would be a dilution proportional to
the volume of CFC added to volume of flue gas. This analysis suggests that the system of adding
CFC to the furnace was performing as expected.
169
-------
The AT&T FAX Family Option* fo*
Acurex
Environmental
rO«rO*ATtON
* Gsf'sfAf)' <£. MiiUr Company
INTEROFFICE MEMORANDUM
TO:
CW Lee
FROMJ Jeff Ryan
DATE: November 21, 1994
SUBJECT; EER CFC Incineration Samples
O
As we discussed, I had Ron analyze the remaining extracts
iron the EER CTT and TFR CFC incineration tests. The remaining
extracts were analyzed as a result of poor surrogate standard
recoveries as veil as the unlikely presence of PCDDs/PCDFs in
several samples. These extracts are "the fraction archived from
the original sample extractions. The extracts vere prepped for
analysis using the FMS multi-column clean-up system that was just
recently repaired and verified to be in good working condition.
The enclosed results are virtually identical to the analyses
performed and reported in early September. In several cases,
surrogate recoveries improved but in many of the samples where
poor recoveries were reported earlier, poor recoveries were again
observed. The poor recoveries were primarily associated with the
PCDFs and not the PCODs.
I suspect that this is a reactivity problem of some sort not
associated with the sample cleanup. The field blank sample
demonstrated valid recoveries for all PCOD/FCDF congeners
supporting this tenet. The reactivity problem appears to be
associated with the extraction procedure as is evidenced by the
consistent recoveries from relicate cleanup attempts.
The reactivity problem is likely associated with the high
acid cofttent of the samples. During extraction, associated
glassware frosting was again observed. In addition, the X&D-2,
following extraction, was significantly discolored (black) and
disfigured. It appears that, at least for these tests, the use
of acid scrubbing impingers did little to minimize the acid
problem.;
As far as data reporting, data are validated primarily
through acceptable congener recoveries. Those recoveries outside
method limits (40-120%) are considered invalid and should be
handled accord in^jl^^.
170
-------
1w
DATA FILE:EER-CU-2-HT RE-FMS
I
i ;
ACQ ON:11-16-94 ( |
i '
i
SAMPLE:XAD,FILTERS,PARTICULATES ANO RINSES
MISC:2UL INJiCTiD !
;
¦ ' . i . :
• i
TARGET COMPOUNDS ;TOTAL MASS{ntf»)
LABEL RECOVERIES*
%} m
|
" T |
1.) Tstrmchlorodibcnzodloxin
ND
C12TCD0
92
p
1 1
i
i
3.) PwrtacHlorodibcnzodioxin 1
ND
C12PCDD
100
p
! i |
S.) H«xachlorodib«nzodloxln !
up. - I :
C12HxCDD
88
p
i
I 1 1
7.) H*ptachlorodib«nzodloxln
1 j« 1
C12HpCDD
116
p
i
t
1 . (
9.) Oct*ch)orodib«nzodioxln
110.88 |
C12OCTCD0
84
p
" ' ,,m ' "
• ' ? ' 1
i
I
I
f :
j f
I
1
i
/"
2.) T«tracHlorodit>«nzofuran !
iui
C12TCOF
I
4.3 r-y
'""1
1
i '
4.) Parrtachlorodibcnzofuran
2.78
C12PCDF
101
p
i
j
s
64 H«xachlorodib«nzoftiran
; 09.79
C12HxCDF ( <12
j I
y
; j
j |
!
8.) H«ptachlorodlb«nzofuran j 1198.80
C12HpCDF {14
F
;
I N
I
10.) Octachlorodibanzofuran
98.08
! i
171
-------
DATA FILE.EER-CU-2-LT RE-FMS
I . ¦ 1. 7
ACQ ON:11-18-84
i
SAMPLEiXAD,FILTERS,PARTICULATES AND RINSES
!
MiSC;2ULINJECTED •-= ¦ r • . I,.-
I. . .
i : I
i
TARGET COMPOUNDS
TOTAL MASS(ng's)
i LABEL RECOVERIES*
%» P/1F
|
,
I
I I i
1.) T«trachlorodlb«nzodiaxin
2,34 i
C12TCDOI .98
P
! I '
34 PvntachiorodlMnzodioxIn
^ - |ND • ¦ ^ ; -¦ -
C12PCODI
100
P
... . -.,-.,1 '-"-v. 1;,^.; >-r: :•
'
5.) Hexach!orodfb«rixodioxin
3.71
C12HXCOO
98
P
: !
i
I
7.) K«ptachlorodib*nzodioxin
15.2
C12HpCDD
W
P
.. . ...., - .„.... | -
....
9.) Oetachlorodfbenzodioxin
22.29
C12OCTC0D
49
P
|
:
-
-
i ; ! !
:
r
>
2.) Tetr*c
hlorodib«nxofuran | 205.68
C12TCDF
28
F
I
i
I
i
i
... ¦.
4.) P«nt*chlorodibtnzofur*n
14.83 i :C12PCDF
94
p
i | I
i
i
i I I
6.) H«xachlorodib«nzofu r»n
46
|C12HxCOF
T9
p
i
-
... i i
8.) H«ptschlorodib«nzofuran 140.95
C12HpCDF
77
p
I i
i
f t
i
10.) Octachlorodlbenzofunn
1292.84
172
-------
? ("fcfh ?Y
DATA FILE:EER-CU-1-HT RE-FMS '
I
! : |
ACQ ON: 11 -18-94
,
; i i :
3AMPLE:XAD,FILT6R3tPARTICULATES AND RINSES
I' I ; i •- ....
MISC.-2UL INJECTED
| | | -• • 'j
I :
; I I I I
TARGET COMPOUNDS ! TOTAL MASS(ntf»>
LABEL RECOVERIES
PIT
ill!
! I '
I
1.) T«tr»chlorodib«rtrodioxln
[NO
C12TCOD
109
P
I
1
t
' t
I
i
3.) P«nt»chlorodlbenzodlaxln
NO
jC12PCOO-'
87 P
'•
5.) H«xtchlorodlb«nzodioxln
NO
C12HXCDD
1^1
P
i i
-- ' I :
7.) H«ptachlorodlb«nxodioxin
5.04 ,
C12HpCDD |101
P
- I
j
l
S.) Octachlorodlbtnzodioxfn
8.78
C12OCTCD0
100
P
I I
i
i
t
i 1
I [
.
-
' ' 1
I I
Kl
2.) T«trachloradib«nzofuran
C12TCOF | f
21
i
I |
/
I'll
I
i :
4.) Pwitachlorodlbanzofuran
19.72
C12PCDF
109
p
I
i
i
!
i.) H«xtchlorodfb«nzofuf*n
12#4S
C12H*CDF [83
p
i !
I I
.
I [
8.) Heptachlorodfbenzofuran
104.1 S
;C12KpCOf 188
p
1
|
}
i
10.) Octtchlorcsdib«n*ofur»n
I
;
173
-------
T'A7
DATA FILE:EER-CU-1-LT RE-FMS |
i i ¦
ACQ 0N:11-18-94
j
SAMPLEXAD,FILTERS,PARTICULATES AND RINSES
.
1
MISC.2UL INJECTED |
'
i i
! I i
TARGET COMPOUNDS TOTAL MASS(ng't)
LABEL RECOVER! ES<%) P/F
: ! • i i
i i ! I
1.) Tetrtchlorodltanzodioxin ! 9.45
C12TCDD! 82 !P
... '.j... ;
. . I I
3.) P«ntachtorodlb«nzodlojdn '
- i12.87
C12PCDDI • •• • ' !;102-|p
t
I
I ! .
5.) H«xachlorodib«nzodioxJn
31.17
C12HxCDD 99
P
> | '
r
I j
7.) H»ptachlorodlbonxodloxln j
,47
C12HpCDO !79
P
i ;
I
I . !
9.) Octachlorodlb«nxodioxin
j 110,74
C120CTCD0 j79
P
- • • ¦
¦ ¦
...... ,.j... .. r . .
- ... r- ....
• 4 ' '
. -1
i
i
I
i
-
I
2.) T«tmchlorodib»nzofur«n j
626,79
C12TCDP
( 18
F
I
i
\
¦v
~J
.... | - ! .
;
I
I l
4.) ptntachio rodibenzofuran
1198.04
JC12PCDF
97
P
i
; |
i " |
i I
I ¦ !
I
8.) H«xad
ilorodibanzofunm
1198.81
C12HxCOF
79 iP
,
)
i
!
|
1
8.) H*ptachlorodib«fizofuraii
223.21
C12HpCDF
89 |P
: <
I
i
!
|
' 1 [
i
! I
!
10.) Octachlorodib«nzofunn i 181.8
I I
!
I
174
-------
DATA FILE:GLASS WARE BLANK 09-10-94 I ! j
ACQ ON:12-9-94 ¦ : |
'. ' • : - ' •
SAMPLE:GLASS WOOL/THIMBLE |
i
MISC:2UL INJECTED j
I '
f
! • I !
I i I
TARGET COMPOUNDS
TOTAL MA8S{ng'a)
LA8EL RECOVERIES(%) |P/F
i j
I
4
1.}T«t™chtoroaib«flio
M IP
i i 1
i
I
7.) HeptachlorodltKrtzoloxIn
ND
C12HpCOD
10«
P
! 1
'
I
9.} Octachiarodlbcnzodioxin
NO
C12QCTCOO
99
P
t '
s
: i
1
1 1 1
j
i
' j
2.) T#tr*ctilorodib#nzofur»n
I NO ! C12TCDF
55
P
» ¦ 1
I i
; | ' i
i
i t
I
4.) P«nttchlorodlb«nzofur«n
iND
C12PCDF
•3 |P
i
; ' I i
I
8.) H«xachlorodlb«nzofuran
ND
•CUHxCOF
84
P
| j
1
\
8.) Hept«chlorodlb«nzofuran
NO
CUKpCOl
88
P
j
j
{
10.) Oct«chlofodib«nzofuran ' |ND ' I
i
i
175
-------
DATA FILE: EER-CTT-2B-RE-FMS
1 ! ) •
!
ACQ QN:11«15-84
i i !
SAMPLE:XAD,FILTERS,PARTICULATES AND RINSES
MISC;2UL INJECTED
.. -
TARGET COMPOUNDS
TOTAL MASS(ng's)
LABEL RECOVERlE9{%) |P/F
I
I
1.) T •traehlorodtb«nzodloxin
ND
C12TCDO
98 ,P
I !
i
1
3.) P«ntachlorodlb«nzodioxiri
« ¦ ¦
NO
;C12PCDDt
101 P
1 - -
• I '""i1 ¦
- \ • •• '
S.) Haxaehlofodlbtnzodioxlri
ND
C12HXCOO
86
P
I
i
I
7.} H«pt>ehtorodlb«nzodloxin
ND.
C12HpCOO
94.,
P
I
9.) Oct«chlorodlb»nxodtoxin
ND
C12OCTCD0 !94
P
i
!
i 1
- t ,
i i >
i
: 1 !
I
A
2.) T»tr*chlorodib«nzofur«n
<24.92
[C12TCOF| (
13 IF ,
! 1
: 1
i
I ! ^
^ \J
; i
i
i
i
4.J PantachtorodltMnzofuran
ND
1C12PCDF
94
P
j
8.) H#xachlorx>dlbenzofiJrBn
1.52
C12HxCDF
41
P
I
i
i.) H»ptachlorodlb«nzofunn
21.39 |
C12HpCDF
40
P
I
'
[ \
i
i
_ i
> i
I I
10.)Oct*chtorodib#nzofUr*n i
2.12
I I
176
-------
DATA F1LE:EER-CTT-2A-RE-FMS II
ACQ ON:11-18-S4 i I |
SAMPLE:XAD,FILTERS,PARTICULATES AND RINSES !
MISC:2UL INJECTED I
I
i f
i :
\
TARGET COMPOUNDS
TOTAL MASS(ntf«) I
LABEL RECOVERIES^
%)
P/F
' t ;
\
1
i
1.) Tatrtchlorodib«nzodioxin
i
ND C12TCDD!
sa p
" J "
•I
•I ' I i
t
i
34 P«ntachlorodib#nzodloxin
ND i C12PCOD!
101 ip
I
! ! !
¦ i
S.) Hcxaehlorodflwrizodkudn
ND !
C12HxCDO
87
P
! !
i
t
i
1
7.) H«ptaehlorodib«nzodioxin
ND !
C12HpCDD
82
P
I -
I i
i
9.) Octachlorodlbenzodloxln
ND
C120CTCDD
103
P
I
i
1
i
-
i
i
t
2.) T«trachlarodib«nzofur»n j ND
C12TCDF
At
F >
i ' I '
j. ^
¦ ; i ¦- : : . ¦ !
j
: : i I
I
4.) P*n£achiorodlb#fixofurari
ND
C12PCDF
99 |P
:
1
! /
6.) H«xaehloroditMinzoftiran
8.84
CUHxCDF f
21
f)
t
| -
I
I
i
I ~
A
8.) H«ptacblorodlb«nxafuran
8.37 ;
C12HpCDF {
27
p )
j j
I i
10.) Octsehlorodiiwnzofuran
4,88
177
-------
^ **¦ (
DATA Fl LE: E ER-CTT-3 A-RE-FMS
! •
ACQ 0N:11-16-94 |
j
SAMPLE:XAD,FILTERS,PARTICULATES AND RINSES
. -.. i . . : ; ; :
v.
MISC:2UL INJECTED j
, ;
TARGET COMPOUNDS
TOTAL MAS3{ng'«) ;
LABEL RECOVERIES*
%>
«F
I
I
¦ !
14 Tatrachiorodibenzodioxin
NO
C12TCDO
48
P
I- t
i
3.) Pent«chlorodlb*nxodloidn
.NO:,-;- 1
C12PCDD
89
P
I ' I
I
5.) He*ichlorodib#nzodio*in
NO | C12KXCOD
61 P
| ; ¦ -|
¦. ... j j "¦
7.) Htptachlorodlbenzodlaxin
i
0.81 • j |ci2HpCDO
116
P
I
! I
1
9.) Octachlorodibtnzodloxln
NO i IC120CTCDD
78
P
i
1 1 1
j
1 1 i
!
2.) Tetrtehlorodttanxofuran
!ND
C12TCOF| {
9
F /
t
i
I !
i i
I ;
I
4,} Pentach(orodlb«nzofurari
NO
C12PC0F
98
P
6,} H«xachlorodib«nzofur»n
54.47
C12HxCOF i
17
* /
!
t
> \
i
j
^—
8.) H«ptachlorodib«nzofurtn
70.88
lC12HpCOF /
13 JFJ
i
l
1
I '
!
10.) Octtchlorodib»nxofur*n
1.17
i 1
r
i-
178
-------
DATA FILE:EER-CTT-3B-RE-FMS
i
j
ACQ ON;11-16-84 (
i
i
!
SAMPLErXAD,FILTERS,PARTICULATES AND RINSES
MISC:2UL INJECTED
!
i
I
i
i
i
TARGET COMPOUNDS
TOTAL MASSing'*)
LABEL RECOVERIES^)
Pff
!
I
1.) T«tr*chiorodfb«nzodtoxin
ND C12TCDD
58
P
t ;
•
' |
3.) PwitacHlaradibenzodloxin
ND 1C12PCDO
53
P
. I
i
' i '
i
5.) H«xachlorodibenzodloxln !
ND j C12HXCDD
71 jP
\
: 1 !
I ! I
I
7.) Hftptachlorodtbenzodtoxin j
ND I C12HpCDD
57 ;P
i
I I !
i
8.) Octachlorodibenzodloxln
i
NO | C12OCTCD0
78 P
!
1
'"I 1 !
\ • i
j-
i
i i
i
1 i
1 i
i
1
! !
j^T-
2.) T#tr*chlorodib«nzofur*n j NO
C12TCDF
? '/F
i
I
f
;
.. i
4.) P«ntachlorodib«nzofuran ;
ND
C12PCDF
60
P
' i i
' 1
i
• | !
i
6.) Hex*chlorodib«nzofur»n
[NO
C12HxCDF
47
P
i 1 .
I
1 r 1
j
8.) Heptachlorodibflnzofur»n |
1142
C12MpCOF
4S
P
|
|
1 ! 1 1 i
10,} Octachlorodlbenzofurwi i ! I NO | i
!
179
-------
DATA FiLE.'SER-CTT-FIELD BLANK RE-FMS
! i
t
ACQ ON:10-30-94 , |
t
SAMPLI:XAO,FILTERS,PARTICULATES AND RINSES
%
M!SC:2UL INJECTED ( f •,
. J - , .
I j I |
TARGET COMPOUNDS ?TOTAL MASS(na'*)
LABEL RECOVERIES^)
PIF
i I ' I !
I
1.) Tetrachlorodib«nzodloxin I NO
C12TCDO
,83 P
i i
I
3.) P«ntac)i!orodlb«flzodfoxin > .NO
C12PCDD
67 'iP' • :
| ' "I ¦ |" '¦ " "
. -j •• , -
'i
$.) H«xachl orodlbenzodtoxln
NO
C12HxCDO
49 P
I
! i
' .-"I-,
i
NO
j Ci 2HpCOD
51 ,P
i
i ' i
' ¦ ¦
9.) Oct»chlorodlb«nzod!oxin
I
NO
C120CTCDD
SO
P
;
. v.-;
i. i
2.) T«fficWorodJb»nzofur*r» I NO
C12TCDF
142
f
lii'
I
I ! i :
! '
1
4.) Pentachlorodibsnzofurmn NO
C12PCDF
(85 :p
1 ' ! !
i
; i t :
i ' i
¦
£.) H«xccnlarodlb*nzofuran !
NO
C12HXC0I
s
SO P
! i '
I
i
! ' 1
! !
I
!$,) Htptaehtorodibenxofurtn j
8.07
C12HpCOF
56 jP
i i i
I !
s
: l i
I
10.) Octachlorodibenzofurin
NO
180
-------
DATA FILE:EER-CTT-1A«RE-FMS
(
ACQ 0N:11-13-fl4 j ,
•
SAMPLE.XAD,FILTERS,PARTICULATES AND RINSES
| ! I
MtSC:2UL INJECTED
i
TARGET COMPOUNDS f
TOTAL MASS{ng'»S | LABEL RECOVERIES(%)
PfF
t
! 1 ! 1 !
1.) T«trachlorodib«nzod1oxln : ,ND j >C12TCDD! <89 ;P
i ;
1 ! !
34 Ptntachlorodibenzodloxln ;
ND jC12PCOOI 112 IP
i ! i
{
' • |
5.) HcxacHlorodlbanzodioxtn I | 0.541
C12HxCDO 88 IP
j I
\
\
7.) H«pt*chlorodib«retoioxin
NO
C12HpCDO
99
P
i
\
I
S.) Octachlorodlbenzodloxln
ND j
C120CTCDO
95
P
!
i
I I
T
-
I
.
i ¦'
|
"N
2.) T«trachlorodib*nzofuran
29.46
C12TCDF
( 3.1
r)
I
I
!
1
i
i
i
i
4-.) Pent»chiofX3dlb«nxofumn
ND
C12PCDF
120 ',P
. i '
! I
t
6,} H«xseh
-------
DATA FILE:EER-CTT-1B-RE-FM3
,
1
)
ACQ 0N:11-15-94
i
i
8AMPLE.XAD,FILTERS,PARTICULATES ANO RINSES
^ |
i
MISC:2UL INJECTED j :
:
l
i
. . j,.. ...j..
i.
TARGET COMPOUNDS
TOTAL MASS(nfl'a)
LABEL RECOVERIES
%) \m
i
j :
! y
1.) Tatrachtorodibonzodloxin
NO !
C12TCOO
39
V
] j
3.) Pwttac hlorodibenzodtoxln
!ND I
C12PCDD
S9
p
.•;'
• A""'
*> A
5.) H#x«chlorodlb«niodloxln j
NO
C12HxCOO / I28
i I
S.,1
y
7.) H»pUchlorodib«nzodioxln
NO
C12HpCOD (70
pi
I
I
\
9.) Oetachlorodlb«nzodloxln
ND
C120CTCD0 7«
p-.
j !
i
i
i
i
I
I
j
|
2.} Tttrachl orodl b#nzofur*n
28.11
C12TCOF
( .1.7
F
i
I
r
i
1
I
I
i
1
1
4.1 P«ntachlofodib«nzofur»n j
ND
C12PCOF
177
P
I 1 ' 1
i
\
! 1 i
6.) H*xJchlorodlb«nzofur»n !
NO
C12HxCDF (
2.5
F
}
i
t
I
I
S
!
j
!
I ^
8.} H«ptachlorodlb«nzofur*n i
108.37
C12HpCDF f
41
F
i
I
/
I
i
(
10.) Oetaehlorodibvnzofumn
5.83
J
182
-------
TECHNICAL REPORT DATA
(Please read Instructions on the reverse before comp
1. REPORT NO.
EPA-600/R-96-007
IIIIJIIIIIIIIJIII
PB96-152186
4. TITLE AND SUBTITLE
Experimental Investigation of PIC Formation During
CFC Incineration
S. REPORT DATE
February 1996
6. PERFORMING ORGANIZATION CODE
7. AUTHOFMS)
G. Kryder and B. Springsteen
8. PERFORMING ORGANIZATION REPORT NO,
9. PERFORMING ORGANIZATION NAME AND ADDRESS
Energy and Environmental Research Corporation
18 Mason
Irvine, California 92718
10, PROGRAM ELEMENT NO.
11. CON TRACT/GRANT NO.
68-CO-0094, Task 3-5
12. SPONSORING AGENCY NAME ANO ADDRESS
EPA, Office of Research and Development
Air Pollution Prevention and Control Division
Research Triangle Park, NC 27711
13. TYPE OF REPORT RIOD COVERED
Task Final; 1-
14. SPONSORING AGENCY CODE
EPA/600/13
1B. supplementary NOTES APPCD proJ-ect officer i3 a j ,eo> MailDrop 65, 919/541-7663.
is. abstract rep0r(; giveg results of experiments to assess: (l) the effect of residual
copper retained in an incineration facility on poly chlorinated dibenzo- p- dioxin and
dibenzofuran (PCDD/PCDF) formation during incineration of non-copper-containing
chlorofluorocarbons (CFCs); and (2) the formation of chlorinated and aromatic pro-
ducts of incomplete combustion (PICs), including PCDD/PCDFs. during incineration
of CFC recycling residue and hydro chlorofluorocarbons (HCFCs). High concentra-
tions of PCDD/PCDFs (23, 800 ng/dscm at 7% C2) measured in FY 91 during incinera-
tion of CFC-12 in a turbulent flame reactor (TFR) could not be repeated in the present
study. Repetition tests conducted in the same facility under similar operating condi-
tions resulted in PCDD/PCDF concentrations of 118 ng/dscm at 7% 02. However, re-
sults of the present study suggest that residual copper retained in an incineration fa-
cility possibly promotes the formation of PCDD/PCDFs during incineration of CFC-12
which does not contain copper. Tests conducted in the TFR resulted in measured
PCDD/PCDF concentrations of 386-454 ng/dscm at 7% G2 during incineration of
CFC-12 which followed incineration of copper-containing compounds. These results
suggest that CFCs may best be incinerated in incinerators which do not treat any
copper-containing waste prior to CFC incineration.
17.
KEY WORDS AND DOCUMENT ANALYSIS
DESCRIPTORS
b.IDENTIRERS/OPEN ENDED TERMS
c, COSATI Field/Group
Pollution
Halohydrocarbons
Incinerators
Combustion
Copper
Furans
Pollution
Stationary Sources
Chlorofluorocarbons
Products of Incomplete
Combustion (PICs)
Dioxin
13 B
07 C
21B
07B
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport)
Unclassified
21, NO. OF PAGES
189
20. SECURITY CLASS (Thispage)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73)
------- |