United State* Office of
• Environmental Protection Research and Development
Agency Washington, DC 20460
April 1994
« EPA Analysis of Real-Time
Vehicle Hydrocarbon
Emissions Data
Prepared by Air and Energy Engineering Research Laboratory
-------
EPA REVIEW NOTICE
This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.
This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.
-------
EPA-600/R-94-059 a
April 1994
ANALYSIS OF REAL-TIME
VEHICLE HYDROCARBON EMISSIONS DATA
by
J. Philip Childress and James H. Wilson, Jr.
E.H. Pechan & Associates, Inc.
Springfield, VA 22151
EPA Contracts No. 68-D1-0146, Work Assignment No. 2/029;
and 68-D9-0168, Work Assignment No. 43
Project Officer
Carl T. Ripberger
Emissions and Modeling Branch
Air and Energy Engineering Research Laboratory
U.S. Environmental Protection Agency "
Research Triangle Park, NC 27711
Prepared for:
U.S. Environmental Protection Agency
Office of Research and Development
Research Triangle Park, NC 27711
-------
ABSTRACT
Analyses using real-time dynamometer test emissions data from 13 passenger cars
were performed in a study to examine variations in emissions during different speeds, or
modes of travel. The resulting data provided a means for separately identifying idle,
cruise, acceleration, and deceleration emissions for examining how emissions differ by
vehicle speed during cruise mode.
To select a set of vehicles for the study, the hydrocarbon-time relationship was
established for several vehicles operating on summer-grade base fuel. Federal Test
Procedure (FTP) results were then produced and examined to identify normal emitters
{clean vehicles). After these vehicles were selected, an intensive analysis of their second-
by-second emission characteristics was conducted.
The FTP runs for cold start, hot start, and hot stabilized emissions (Bags 1, 2, and
3 of the FTP) were performed for each of the four driving cycles — acceleration,
deceleration, idling, and cruise — and the fraction of overall emissions contributed by
each mode was computed for the warmed-up portion of the driving cycle. A protocol was
then developed for review of the FTP real-time data.
The study results showed significant emissions differences related to travel mode;
(1) cruise mode emissions are invariant with speed when expressed on a grams-per-
second basis; (2) emissions resulting from acceleration from a stop to cruise speed are
similar to those resulting from acceleration from cruise speed to a higher speed; (3)
acceleration emissions were the highest of all the modes; and (4) cruise emissions are
very similar to idle emissions.
i
-------
CONTENTS
Page
Abstract ii
Figures iv
Tables v
Abbreviations and Symbols vi
Acknowledgements vii
1. Introduction . 1
Background 1
Objective 2
Report Organization 3
2. Phase 1: Study Methods 5
3. Phase 1: Study Results 8
Federal Test Procedure Results 8
4. Phase 2: Methodology 27
Introduction .27
Mathematical Relationships 30
5. Phase 2: Modal Results 38
Hydrocarbon Emissions by Mode ..38
Speed Versus Emissions 49
FTP Run Statistical Analysis 52
Cruise Mode Emissions Analysis 61
6. Summary of Findings .65
References 66
Appendices
A Source Code for FTPCLC4 Motor Vehicle Emissions Data
Reduction Program A-l
B. Federal Test Procedure Equations Used to Calculate Grams
Per Mile Emissions From Exhaust Analyzer Emissions Data B-l
C. Federal Test Procedure Emissions Results by Bag C-l
D. Raw Data ASCII Files and Analysis Methodology
ASCII Files for Runs 30853 - 30999 ...Diskl
ASCH Files for Runs 31001 - 31050 Disk2
ASCII Files for Runs 31057 - 31124 Disk3
Spread Sheet and Instructions for Modal Analysis Disk4
iii
-------
FIGURES
Number Eag£
3-1 HC Emissions and Speed, Vehicle: S0756B, Run: 31013 13
3-2 HC Emissions and Speed, Vehicle: S0756B, Run: 31014 14
3-3 HC Emissions and Speed, Vehicle: S0756B, Run: 31015 15
34 HC Emissions and Speed, Vehicle: S0756B, Run: 31016 16
3-5 HC Emissions and Speed, Vehicle: S0756B, Run: 31017 17
3-6 HC Emissions and Speed, Vehicle: S0756B, Run: 31018 .....18
3-7 All HC Runs for Vehicle S0756B 19
3-8 HC Emissions and Speed, Vehicle: LS612B, Run: 31116 20
3-9 HC Emissions and Speed, Vehicle: LS612B, Run: 31117 21
3-10 HC Emissions and Speed, Vehicle: LS612B, Run: 31118 22
3-11 HC Emissions and Speed, Vehicle: LS612B, Run: 31119 23
3-12 HC Emissions and Speed, Vehicle: LS612B, Run: 31120 24
3-13 HC Emissions and Speed, Vehicle: LS612B, Run: 31121 25
3-14 All HC Runs for Vehicle LS612B 26
4-1 Federal Test Procedure Test Cycle with Mode Identifications 28
5-1 HC Emissions and Lagged Acceleration, Bag 2: 506 to 1,006 Seconds 60
5-2 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle C0322G 62
5-3 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle C0665W 63
5-4 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle S0756B 64
iv
-------
TABLES
Number Page
2-1 Real-Time Data Test Vehicles 7
3-1 Weighted Bag 1, Bag 2, and Bag 3 Emissions 9
4-1 Typical Output of FTP Analysis Run 32
5-1 Hydrocarbon Emissions by Mode -- Cold Start Phase
/n * a . rAf ft i \ a a
(Bag 1: 0 to 505 Seconds) 39
5-2 Hydrocarbon Emissions by Mode - Hot Stabilized Phase
(Bag 2: 506 to 1372 Seconds) 43
5-3 Hydrocarbon Emissions by Mode -- Hot Start Phase
(Bag 3:1972 to 2477 Seconds) 46
5-4 Simple Statistics for Mean Instantaneous HC Emission Rate
for Six Vehicle Types 50
5-5 Correlation Matrix for Speed and Instantaneous HC
Emission Rate for Six Vehicle Types ....51
5-6 Simple Correlation Analysis — Hydrocarbon Emissions
Versus Engine Speed and Acceleration 53
5-7 Vehicle Average Correlation of HOTFID Versus Lagged
Acceleration (Bag 2 of the FTP) 59
v
-------
CARB
CD
CVS
DF
EPA
FE
ft3
FTP
g/ft3
g/mi
g/sec
HC
mg/sec
mmHg
mph
mph/sec
MSERB
N0X
03
ppm
SG
SCAQS
VIN
VMT
ABBREVIATIONS AND SYMBOLS
California Air Resources Board
carbon monoxide
constant volume sampler
dilution factor
U.S. Environmental Protection Agency
fuel economy
cubic feet
Federal Test Procedure
grams per cubic feet
grams per mile
grams per second
hydrocarbon
milligrams per second
millimeters of mercuiy
miles per hour
miles per hour per second
Mobile Sources Emissions Research Branch
oxides of nitrogen
ozone
parts per million
summer grade (gasoline)
South Coast Air Quality Study
vehicle identification number
vehicle miles traveled
vi
-------
ACKNOWLEDGEMENTS
The authors acknowledge the valuable assistance of the late Ronald L. Bradow,
formerly with EPA, in providing the data set that was analyzed in this study and in
providing advice about how to perform the analysis. We also acknowledge the assistance
of Richard Snow of ManTech, who wrote the computer program used to produce the
Federal Test Procedure (emissions by Bag) results displayed in Section 3 of this report.
The EPA Project Officer acknowledges the support by Richard D, Delay
(currently with D and A Innovative Technology) in testing the source code provided in
Appendix A, providing the data outputs of Appendix C, and providing Appendix D (data
on diskettes).
vii
-------
viii
-------
SECTION 1
INTRODUCTION
BACKGROUND
This report covers analysis performed using real-time dynamometer test emissions
data from 13 passenger cars, A special focus of the analysis was to examine variations in
emissions during different speeds, or modes of travel. The data sets used in this project
were extracted from the oxygenated fuels (Stump, Knapp, and Ray, 1990a and 1990b)
and the high temperature vehicle emission studies (Stump, Knapp, mid Ray, 1992a and
1992b) conducted by the Mobile Sources Emissions Research Branch (MSERB), U.S.
Environmental Protection Agency (EPA). These studies measured emissions on 17 1986
to 1990 model year vehicles with accumulated mileages ranging from 17,000 to 55,000
miles.
A major impetus for this project was to investigate information developed in a
paper written by Leonard Seitz (Seitz, 1989), which examined some of the differences
between methods used by EPA and the California Air Resources Board (CARB) for
estimating motor vehicle emissions. The paper suggests that, by expressing emission
rates in per hour or per minute units rather than per mile, the speed factor issue may be
much simpler than the way it was being handled in EPA models. His graphs even
suggest that average trip emissions may not be a function of speed at all. If this
1
-------
observation by Seitz could be substantiated over a wide range of speeds (e.g., 0 to 60
mph), then that entire range could be handled as one mode in a modal model.
OBJECTIVE
Modal emissions data, such as the data sets examined in this study, provide a
means for separately identifying idle, cruise, acceleration, and deceleration emissions.
These data also provide the opportunity to study how emissions differ by vehicle speed
during cruise mode, which is important when trying to determine ways in which motor
vehicle emissions modeling can be made simpler, such as assuming that cruise emissions
per time unit are constant with speed.
A recommendation was made at two EPA-sponsored highway vehicle workshops
(Wilson and Ripberger, 1991) that, though modal models have historically been viewed
as tools for mieroscale, highway impact, or signalized intersection-type analyses, they
could potentially be used much more broadly. One of the possible reasons why the
Southern California Air Quality Study (SCAQS) Tunnel Study (Ingalls, Smith, and
Kirksey, 1989) measurements were so difficult to correlate with the EMFAC7 (CARB,
1986) model estimates was that it was not possible to simulate the exact operating
conditions on the roadway in question using EMFAC7. A modal model should be able to
more accurately simulate the emissions for link-specific analyses. In addition, as mobile
source emission inventory techniques get more sophisticated, a modal model could
potentially be used to better estimate emissions throughout an urban area using many
separate modal emissions analyses. This could be termed the link prototype approach,
because a number of prototype traffic situations could be modeled and then matched with
links in the modeling network to estimate their emissions.
2
-------
Ripberger and Markey (1991) also discuss the potential of modal testing and
modal simulation models for use as key parts of EPA's research plan for developing a
basic emissions estimation model, based in part on the fact that vehicle emissions are not
constant over a range of operating conditions. Further, modal testing would need to
cover the range of modes experienced by in-use vehicles: idle, cruise (over the entire
speed range), acceleration, and deceleration.
Note that Federal Test Procedure (FTP) measurements are typically made in
phases or Bags, with the results being expressed as averages over the measurement
period. The FTP begins with a cold start, and Bag 1 represents the first 505 seconds of
vehicle operation. Seconds 506 through 1372 of the FTP are known as Bag 2 and
represent the hot stabilized phase of the cycle. Following Bag 2 is a 10-minute engine-
off period. Then, there is a hot start and the vehicle is operated using the same speed-time
trace as in Bag 1. This phase is known as Bag 3.
REPORT ORGANIZATION
The analysis in this report is based on work that was performed in two phases.
Phase 1, covered in Sections 2 and 3 of this report, focused on examining the
hydrocarbon-time relationship for several vehicles operating on summer-grade base fuel.
Overall FTP results were produced and examined to identify four or five vehicles that had
emissions that were considered normal (or clean); these were used for further analysis.
For this subset of clean vehicles, hydrocarbon (HC) time traces were developed for the
long arterial road cruise section, also known as Hill 11, of the FTP.
Phase 2 of this study, covered in Sections 4 and 5 of this report, involved
intensive analysis of the second-by-second emission characteristics of the selected clean
3
-------
vehicle models. First, the reproducibility of emission patterns was examined for particular
acceleration, deceleration, and cruise modes. Second, the fraction of overall emissions
contributed by acceleration, deceleration, idling, and cruise modes was computed for the
warmed-up portion of the driving cycle for these modes. Finally, a protocol was
developed for review of FTP real-time data.
4
-------
SECTION 2
PHASE 1: STUDY METHODS
The data for the analyses in this report came from two prior EPA studies, the
oxygenated fuel studies (Stump, Knapp, and Ray, 1990a and 1990b) and the high
temperature studies (Stump, Knapp, and Ray, 1992a and 1992b). The oxygenated fuel
studies were conducted to determine the effect of fuels containing alcohols and ethers on
vehicle tailpipe and evaporative emissions. The studies also were conducted with
commercial summer grade gasoline as a comparative fuel. The oxygenated fuels were
expected to reduce tailpipe hydrocarbon (HC) and carbon monoxide (CO) emissions by
leaning out the air/fuel mixture. Also, the oxygenates enhance octane rating and
compensate for the elimination of lead, an octane booster.
The high temperature studies (from where the rest of the data for these analyses
were obtained) were conducted to determine the emission contribution of motor vehicles
to the ambient pollution at elevated summer temperatures. The National Ambient Air
Quality Standard for ozone (O3), as established by EPA, of 0.12 ppm (by volume, 1-hour
average) is exceeded most often during the summer months. Motor vehicles make a
significant contribution of HCs and oxides of nitrogen (NOx) emissions, which are the
primary precursors in the atmospheric photochemical processes resulting in the formation
°f O3.
5
-------
During these studies, tailpipe and hot soak emissions were determined at
temperatures of 40,75,90, and 105°F, Diurnal evaporative emissions were determined
at fuel tank temperature ramps of40-64,60-84,72-96, and 84-108°F. The vehicles were
chosen based on sales and not all of the vehicles were tested at all test temperatures or
with all test fuels. The real-time regulated emissions and fuel economy data were
acquired from the data base generated by these vehicle studies.
Table 2-1 lists the vehicles for which emission measurements were used in this
study. The vehicle IDs listed in this table are also used in other tables in this report as a
shorthand way of identifying vehicles. [Note: Because vehicle C0174G only had two
FTP runs, it was not included in the data set that was analyzed for this study.]
6
-------
Table 2-1
Real-Time Data Test Vehicles*
«sl
Vehicle ID
Vehicle
Engine Displacement
(Liters)
VIN
Accumulated
Mileage
Model
Year
CA36SB
GM Chev. Caprice Classic
5.0
1G1BN69H9GY100365
39,970
1986
C0174G
<3M Corsica
N/A
N/A
N/A
1987
C0322Q
QM Corsica
2.0
1Q1LT5116HY102322
34,364
1987
C0665W
GM Corsica
2.0
1G1LT5111JY616865
16,935
1988
CO710B
GM Corsica
2.8
1G1LT51W9HY104710
34,268
1987
CV924W
Ford Crown Victoria
5.0
2FABP73F8HX183924
39,242
1987
ES707R
Ford Escort
1.9
1 FAPP2599HW32870t
44,559
1987
LA127B
Chrysler LeBaron
2.5
1C3CJ41K0JG324127
38,418
1988
LA392W
Chrysler LeBaron
3.0
1C3X J4538LG418392
20,087
1990
LS612B
GM Bulck LeSabre
3J
1G4HP14C6JH482612
54,802
1988
SA333B
Ford Mercury Sable
3.0
1M EBN5048H A615333
44,380
1987
S0756B
GM Bulck Somerset
2.5
1G4NM14V7HM078756
45,136
1987
TA207G
Ford Taurus
3.8
1FABP524X JA148207
20,485
1988
NOTES;
* Includes gasoHrm-fuetod vehicles only. Care Rstwt abwe are those tested with summer-grade gasoline.
N/A » Data not available.
-------
SECTION 3
PHASE 1: STUDY RESULTS
FEDERAL TEST PROCEDURE RESULTS
Vehicles C0322G and C0665W were the only vehicles operated on oxygenated,
as well as the summer-grade, fuel, and only the summer-grade fuel data were used in this
analysis. All of the other vehicles were operated only on the summer-grade fuel. The
first set of tables in this chapter shows the bag-specific results for each of the vehicle/run
combinations. These results were produced using a Lotus 1-2-3 macro that was
originally written by Richard Snow of ManTech.
While these tables are useful by themselves for determining the emission
characteristics of the vehicles tested, in this study they were used primarily to identify
normal emitters, where a normal emitter emits less than twice the applicable standard.
The applicable standards for the model year vehicles tested are; 0.41 g/mi HC; 3.4 g/mi
CO; and 1.0 g/mi NOx.
Table 3-1 lists the weighted Bag 1, Bag 2, and Bag 3 emissions for the 80 FTP
runs performed using summer-grade gasoline. From this data set, 47 runs were identified
as being normal emitters. It is interesting to note that of the 13 vehicles tested, 7 were
always normal emitters, only 1 was never a normal emitter, and the rest were normal
emitters on some runs and not on others. It is likely that some of the variation in
emissions between runs is caused by the temperature differences among tests.
8
-------
Table 3-1
Weighted Bag 1, Bag 2, and Bag 3 Emissions
(grams per mile)
Vohtci* ID
Run Number
HC
NO,
CO
31065
1.47
1.13
15.32
31061
1.47
0.89
15.80
31060
1.33
0.83
13.42
31057
1.28
0.76
12.75
31063
1.69
1.06
19.94
31062
1.39
0.99
15.16
31064
1.77
1.18
25.17
r *
{mm
•*
30936
0.42
0.63
8.23
30974
0.43
1.00
10.30
30978
0.63
2.11
15.90
30972
0.42
0.67
8.74
& if
^ *' Xu~ H
¦i
_ A.
. C« .
30946
0.38
0.57
7.71
fpilll
§! 5*61
30975
0.45
0.90
11.15
30973
0.42
0.69
8.73
30971
0.43
0.73
8.80
j 30935
„n1ti "¦(, 1f in mm
30989
0.26
0.60
7I79
pMp
0.33
30870
0.58
0.47
n.36
30869
0.53
0.52
10.34
**»
IJMm
|m
en
,MV
#»
0« ¦ Of
«« ««*
CA365B
C0174G
C0322G
C0665W
CO710B
30999
31002
30996
30994
fjlpf
0.85
0.99
0.88
0.92
0.41
0.37
0.37
0.36
~ .w.v.v.v-v.svvv.vv.v.sv.v. Xv.--.\v.v. v. ,v/.\v. ¦¦:¦¦¦¦
6.23
9.45
6.06
6.35
zzzm
mtmmm
(Continued)
9
-------
Table 3-1 (continued)
Vehicle tD
CO710B
CV924W
ES707R
LA127B
LA392W
LS612B
SA333B
Run Number
HC
NO,
CO
30993
1.10
0.47
6.87
31001
0.90
0.42
7.13
V>XJ ;C
30990
1.15
MllliliilM
0.42
8.39
31107
0.91
0.85
2.85
31106
0.86
0.87
2.79
31115
0.95
1.01
3.09
Wlliliilliiiiiiil
HHiiliijiilli
31020
0.52
0.72
11.16
31025
0.46
0.91
12.30
31024
0.51
0.77
13.42
31019
0.58
0.74
12.82
& 11 l
utw* J
|«»»#
ttU0
5M11
,»«a»
rsn
*>o»
- 1
0*
6H
«*»
€17
Ut
4*1
*u
(Continued)
-------
Table 3-1 (continued)
Note: Shaded areas indicate normal emitters.
11
-------
The FTP results were then used to select two of the cleaner cars to examine
further: vehicle S0756B and vehicle LS612B. Initial analyses of the test data from these
two cars are presented in the form of plots of HC emissions in parts per million (ppm)
versus vehicle speed (mph) as shown in Figures 3-1 through 3-14. The plots all begin
767 seconds into the cycle, which means that they are well into the hot stabilized mode
(no cold start effects) and include Hill 11. The second-by-second data for six runs are
displayed for each of the two vehicles. Composite figures for each vehicle, titled All HC
Rims, are presented in Figure 3-7 (for vehicle S0756B) and Figure 3-14 (for vehicle
LS612B).
One observation that can be made from these figures is that the spikes in HC
emissions relate to changes in speed (i.e., accelerations produce the highest emissions,
but cruise did not produce changes). It is also notable that accelerations from a cruise
speed to a higher speed appear to be as important as accelerations from a stop in
producing high HC emission values. Some runs show these phenomena more clearly than
others, however. Vehicle S0756B shows consistent emission traces from ran to run, with
the possible exception of run 31016, which has somewhat lower HC emissions during the
non-spike periods. Emissions from vehicle LS612B appear to be more variable.
12
-------
Figure 3-1
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31013
Tim# (seconds)
-------
40
30
20 -
10
700
800
Figure 3-2
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31014
900
1,000
Time (seconds)
1,100
1,200
1,300
-------
Figure 3-3
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31015
Time (seconds)
-------
Figure 3-4
HC Emissions and Speed
767 (Hill 11} to 1,200 Seconds
Vehicle: S0756B Run: 31016
Time (seconds)
-------
Figure 3-5
HC Emissions and Speed
767 {Hiil 11) to 1,200 Seconds
Vehicle: S0756B Run: 31017
Tim® (seconds)
-------
Figure 3-6
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31018
-------
Figure 3-7
All HC Runs for Vehicle S0756B
750
800
850
900 950
Time (seconds)
1,000
1,050
1,100
-------
M
O
Figure 3-8
HC Emissions and Speed
767 (Hill 11} to 1,200 Seconds
Vehicle: LS612B Run: 31116
700
800
900
1,000
Time (seconds)
1,100
1,200
1,300
-------
700
Figure 3-9
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31117
800
900
1,000
Time (seconds)
1,100
1,200
1,300
-------
Figure 3-10
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31118
Tim# (seconds)
-------
Figure 3-11
Eti'iissions &nd Speed
to
u>
80
60
1
a
I 40
a.
«
c
0
«
«
1 20
o
700
800
767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31119
900
1,000
Time (seconds)
1,100
1,200
1,300
-------
Figure 3-12
HC Emissions and Speed
767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31120
Time (seconds)
-------
Figure 3-13
HC Emissions and Speed
767 (Hill 11} to 1,200 Seconds
Vehicle: LS612B Run: 31121
Tim® (seconds)
-------
Figure 3-14
All HC Runs for Vehicle LS612B
750
800
850
900 950
Tims (seconds)
1,000
1,050
1,100
-------
SECTION 4
PHASE 2; METHODOLOGY
INTRODUCTION
The analyses performed for this effort were divided into three
distinct parts:
1. Standard FTP analysis for the cold start, hot start,
and hot stabilized phases (Bags 1, 2, and 3) of the
FTP;
2. Modal analyses of the four driving modes within
Bags 2 and 3; and
3. Statistical analysis of second-by-second HC
emissions.
The real-time (by second) FTP data were delivered to Pechan in
over 200 ASCII text files, along with the FTP reduction Lotus 1-2-3
macro spreadsheet, which reduced the data into the FTP time phases.
The analyses performed focused on a subset of 12 vehicles, representing
76 FTP runs, selected for data robustness (at least four FTP runs each),
fuel (summer-grade gasoline only), and emissions behavior (showing
average emissions in grams per mile of not more than twice the
applicable Federal emission standard of any regulated pollutant).
27
-------
Figure 4-1
Federal Test Procedure Test Cycle
with Mode Identifications
EPA Urban Driving Schedule - Mode Table
SOURCE: Gabele and Colotta, 1981,
"Reprinted with permission from SAE Paper No. 811185
© 1985 Society of Automotive Engineers, Inc."
-------
One of the first steps performed was to translate the Lotus 1-2-3 spreadsheet
macro into dBASE HI Plus format, to allow ease of program modification, program
documentation, and data base development without the disadvantage of memory
limitations which are often experienced on spreadsheet-type models. The two model
versions — the original spreadsheet and the equivalent dBASE code — were used
interchangeably in the analysis. The dBASE version source code is shown in Appendix
A
Modal analysis by FTP phase for Bags 1,2, and 3 were performed using the
original FTP spreadsheet, augmented with a vector of mode flags added for each mode
(idle, acceleration, cruise, and deceleration) for each of the 2,477 seconds of the FTP, and
separate aggregation calculations were constructed. Modes were taken from the Urban
Dynamometer Driving Schedule Mode Table (Gabele and Colotta, 1981), as shown in
Figure 4-1, and were entered into the spreadsheet using Lotus macros.
Statistical analyses of HC emissions versus independent variables such as speed
and acceleration were performed using standard linear regression and analysis of variance
methods of the Statistical Analysis System (SAS) PC software package. This
investigation included trial regressions of measured and lagged speed and acceleration for
both HC emissions and changes in HC emissions. All of this analysis was performed on
the raw exhaust emissions, without calculating dilution effects or transforming to grams
per mile (the HOTFID variable is the variable on the right in the HC emissions regression
analysis in Section 5).
The following section discusses the mathematical relationships used for each of
these three parts of the analysis.
29
-------
MATHEMATICAL RELATIONSHIPS
Standard Federal Test Procedure Analysis
The spreadsheet model delivered to Pechan contained the FTP equations from 40
CFR §86.144-78 used for calculating grams per mile from exhaust analyzer emissions
data. The relevant equations from that document are provided in Appendix B. While
highly detailed in some of the adjustment formulae, the essential calculations are shown
in equations 1 through 4 below, using HC as an example:
HC
HCmass = Vmix * Densityuc * = [Hydrocarbon emissions in (1)
In this equation, an HC density of 16.33 grains per cubic feet (g/ft^) is assumed, and
HCconc is diluted hydrocarbon concentration in parts per million, as calculated below.
grams for a volume of Vmix
cubic feet of total measured diluted
mixture.]
HCconc = HQ - HCd * (1 - ^-)
(2)
(3)
Vmix=(V0 * N) * (Pb-P4) * 528/(760 * Tp)
mix
(4)
30
-------
where:
HCe = HC concentration of the diluent exhaust sample as measured
(ppm)
HCd = HC concentration of the diluent (background) air (ppm)
DF = Dilution Factor
C02e = CO2 concentration of diluent exhaust sample (ppm)
COe = CO concentration of dilution corrected for water vapor and
CD 2 extraction (ppm)
VQ = Volume per revolution of constant volume sampler (CVS)
pump (ft3 )
N = Number of revolutions of CVS pump during sample period
P5 = Barometric pressure (mmHg)
P4 = Barometric pressure below atmospheric measured at inlet to
CVS pump during idle (mmHg)
Tp = Average temperature of diluent exhaust entering the CVS
pump during test (in degrees Rankine = degrees F + 460) [The
528 in the numerator of equation (4) is 68°F + 460, or
"standard temperature."]
A typical output for one run of the FTP analysis program is shown in Table 4-1.
The calculations involved follow the equations listed above, except for Vmjx,
31
-------
Table 4-1
Typical Output of FTP Analysis Run
MODAL EMISSIONS REPORT (DTN)
TEST DATA:
RUN §
OIL SUMP TEMP
COLD CELL TEMP (Td)
RELATIVE HUMIDITY
NOx CORRECTION FACTOR
PRESS. BARO
31119
109.188
95.125
48.427
1.272
757.400
VEHICLE
isn iot
r U&u
H/C
O/C
SPC02
LS612B
SG
1.880
0.000
13.389
DILUTION TUNNEL CONCENTRATIONS
MODE;0-124BAG 1BAG 2BAG 3BKG
lC 85.870 32.462 11.985 12.892 6.563
NO, 13.980 4.850 0.596 3.227 -0.074
CO 257.416 99.783 24.177 30.546 3.599
C02 0.538 0.603 0.429 0.564 0.044
DILUTION TUNNEL CONCENTRATIONS-BACKGROUND CORRECTED
MODE:
0-124
BAG 1
BAG 2
BAG 3
tjv/i
JDJvV9
HC
79.587
26.201
5.635
6.608
0.000
NO*
14.050
4.920
0.668
3.298
0.000
CO
253.971
96.349
20.694
27.100
0.000
C02
0.496
0.561
0.387
0.523
0.000
CALCULATED EMISSIONS GRAMS/MILE
MODE: 0-124 BAG 1 BAG 2 BAG 3 WEIGHTED
HC
2.448
0.619
0.212
0.155
0.280
NOx
1 .823
0.490
0.106
0.327
0.246
CO
15.773
4.593
1 .573
1.287
2.118
co2
484.290
420.095
462.304
389.946
433.765
FE, MPG
17.223
20.736
19.124
22.681
20.432
MTT.1R.Ci
0.674
3.573
3.874
3.587
1268.918
5166.496
8932.555
5166.496
DF
23.389
21.745
30.928
8
32
-------
which was calculated using constants calibrated to the equipment and time
of the phase (Bag). For an example of the calculations, consider the 0.212
g/mi value for Bag 2 HC emissions in Table 4-1. This value was calculated
with the FTP equations above using the values that follow.
Tp = 95.125T
Pb = 757.4 mmHg
HCe = 11.985 ppin (measured exhaust gas, the HOTFID
variable)
Miles = 3.874 (Bag 2)
COe = 24.17 ppm
C02e = 0.429 ppm
DF = 13.4 / [0.429 + 0.0001 * (11.985 + 24.17)] =
30.94
Vmix = 2.3737 * (Pb - 35.5) = 8932.6 ft^
Hconc = 11.985 - 6.563 * (1-1 / 30.94)
= 5.634 ppm
HCmass = 5.634 * 8932.6 * 16.33 / 1000000
= 0.8218 grams (for entire Bag 2)
HCgPm = 0.8218 / 3.874
= 0.212 g/mi
33
-------
Modal Analysis of the Federal Test Procedure Data
In a separate analysis, HC emissions in grains were calculated for each of the
modes of the FTP runs for the 76 FTP cases selected. In modal analysis, the concept of
grams per mile is meaningless, since speed or miles traveled per second is a denominator;
thus, grams per mile would be infinite in idle mode. To overcome this problem, a
normalized measure of relative emissions across driving modes was developed, as
described below.
Figures 5-1 through 5-3 (Section 5) present a measure of the rate of HC emissions
by driving mode (idle, acceleration, cruise, and deceleration) for Bags 1,2, and 3 of the
FTP dynamometer test. These figures are based on the sample FTP runs.
The numbers underlying the figures represent normalized measures of relative
emissions between the modes and Bags. In this context, normalized means that the
measure is dimensionless, gives no favor to any subset number (e.g., clean versus dirty
vehicles) of FTP runs among the samples, and is intended to serve only as a rough
measure of the relative rate of HC emissions within a Bag among the four driving modes.
The values shown in the tables in Section 5 represent average normalized HC
emission rates identified by mode, within a specified FTP phase (Bag), which are
estimated as follows:
[HC exhaust analyzer data, ppm, Bag B, vehicle v, run r, (5)
mode m, time t seconds.] (Note: this is the raw data for the
HOTFID monitor of the FTP.)
(6)
[Instantaneous HC emissions in g/sec, mode m. Bag B, vehicle v, run r.]
34
-------
Note that the constant 0.0141795 in equation 6 was calculated from constants
delivered to Pechan in the Lotus 1-2-3 spreadsheet, and is related to the specific CVS
equipment used in the analysis and temperature. The constant 0.0141795 = 7.156803/505
gives an equivalent instantaneous constant for calculating the real-time value.
THP® — VupS _ [Total HC emissions in grams, ™
v, r, m ~~ JLd v, r, m, t — mode m, for Bag B, vehicle v, run r.] ^ "
teT®
m=4
TTHC® — > THr® - [Total HC emissions in grams,
v r — v, r, m — all modes, Bag B, vehicle v, run r.j
m=l
RHC® = THCB * 1QQQ _ [HC rate in mg/sec. Bag B,
v, r, m v, r, m ™B vehicle v, run r, mode m.] '
m
r=Rv
£rhcb
v,r, m
arhc8 m = M = [Average HC rate for vehicle v, mode m, Bag B.J (10)
* j "» i\y
NARHC
B
ARHC® * 100
v, m
v, m m=4
[Normalized HC emissions rate,
vehicle v, Bag B, mode m..]
(ID
m=l
v=NV
In-
ARHC
ANARHC
v=l
B
v, m
m
NV
[Average of normalized rates, mode m,
Bag B across all vehicles and runs. ] ' '
35
-------
where:
T8 = Time in seconds for mode m» Bag B. Note that these
m 0
values are fixed at 94, 103,223, and 85 for Bag 1 (cold
start phase) and Bag 3 (hot start phase), for idle,
acceleration, cruise, and deceleration modes respectively,
and 156,223, 303, and 190 seconds for the corresponding
Bag 2 (hot stabilized phase) driving modes.
Rv = Number of runs, vehicle v
NV = Number of vehicles
Statistical Analysis of Hydrocarbon Emissions
The statistical analysis performed for this project was done using the unadjusted
HOTFID speed and mode values in the original raw data files. Thus, the HOTFID output
was used as a surrogate measure of adjusted HC emissions.
Standard analysis of variance and linear regression analysis was performed on the
data in the SAS/PC statistical package. Data transformations were simply lags of 1 to 3
seconds and delta changes between observations. Change in speed between consecutive
observations was defined as acceleration.
36
-------
While several data transformations (models) were attempted (such as log-linear
regression), it was soon found that the underlying data showed relatively weak
dependency; such transformations produced no discernable improvement in R-squared or
other measures of goodness of fit over straightforward, right-hand-side variables such as
actual or lagged speed or acceleration.
37
-------
SECTION 5
PHASE 2: MODAL RESULTS
HYDROCARBON EMISSIONS BY MODE
Using the techniques described in Section 4, HC emissions were analyzed for
each of the vehicle FTP tests for the 12 vehicles studied. Table 5-1 provides an analysis
of the Bag I (cold start phase) HC emissions data; these are separated into 94 seconds of
idle, 103 seconds of acceleration, 223 seconds of cruise, and 85 seconds of deceleration.
The second column in Table 5-1 shows the total grams of HC emitted during Bag
1. This value is expressed as a grams-per-mile emission rate in the third column, based
on the assumption that a vehicle travels the equivalent of 3.6 miles during the Bag 1 test.
Modal emissions (in grams) are shown in columns four through seven of the table, with
second-by-second emission values being sorted among modes according to the schemes
described in the previous section. Columns 8 through 11 show the percentages of total
Bag 1 emissions that were observed in each mode. The last four columns show modal
emissions expressed in the form of mass per unit of time (milligrams per second, or
mg/sec).
38
-------
Table 5-1
Hydrocarbon Emissions by Mode - Cold Start Phase
(Bag 1: 0 to 505 Seconds)
(Mass, Mass Percentage, and Emission Rate In milligrams/second)
OJ
VO
Run ID
total
HC ZMlss.
(grans)
Sag 1
HC Rate
(g/mlle)
Idle Accal.
EraisB. Emlnk.
(grans) (grams)
94 see 103 aae
Cruise Dacal.
Ernies. aulas,
(grams) (grama)
223 sac 65 sac
** Vehicle CA36SB
1986
GM
Chav. Caprica Cljuraic
Disp:
5.0
Liters
3105?
6.040
1.679
1.15
2.12
2.42
0.35
31060
6.820
1.901
0.79
1.71
3.93
0.39
31061
7.039
1 .954
1.16
3.2?
2.28
0.32
31062
6.599
1.835
0.9?
3.07
2.23
0.33
31063
9.544
2.658
1.51
3.78
3.23
1.03
31064
9.692
2.695
1.62
3.91
3.48
0.68
31065
7.361
2.036
1.99
2.00
3.02
0.36
Veh. averaga
7.585
2.108
1.31
2.84
2.94
0.49
** Vehicle C0322G
1987
GM
Corsica
Dispt
2.0
Liters
30934
2.937
0.816
0.27
1.11
1.46
0.09
30935
3.025
0.842
0.31
1.12
1.51
0.09
30936
4.189
1.163
0.32
1.25
2.50
0.12
30945
2.673
0.743
0.34
0.90
1.32
0.12
30946
2.98?
0.830
0.49
0.95
1.44
0.11
30948
2.994
0.830
0.41
1.11
1.35
0.13
30971
2.896
0.805
0.33
1.07
1.38
0.12
30972
3.110
0.865
0.41
1.23
1.37
0.10
30973
2.930
0.816
0.39
1.19
1.27
0.08
30974
3.S81
1.003
0.48
1.15
1.83
0.12
30975
3.814
1.064
0.50
1.29
1.93
0.10
30978
5.036
1.403
0.54
1.54
2.82
0.13
30989
2.17?
0 . 606
0.41
0.78
0.94
0.05
Veh. averaga
3,258
0.90?
0.40
1.13
1.62
0.10
** Vahlola G0665W
1988
GM
Corsica
DiSpf
2.0
Liters
30854
4.177
1.161
0.45
1.29
2.26
0.18
30862
2.969
0,826
0.2?
1.01
1.58
0.11
30869
7.329
2.036
0.45
2.41
4.09
0.38
30870
S.24?
2.289
0.42
2.84
4.61
0.39
Veh. average
5.680
1.578
0.40
1.89
3.14
0.26
Idle Accal. Crulsa Dacal.
HC Mats HC Haas HC Mass HC Kaas
Percent Percent Percent Percent
Idle Accal.
HC HC
Rate Rata
Crulsa
BC
Rata
Dacal.
MC
Rata
(rag/sac) (rag/sac) (rag/sec) (mg/iac)
19.1
35.0
40.1
5.8
12.28
20.54
10.86
11.6
25.0
5?.?
5.7
8.40
16.55
17.64
16.5
46.5
32.4
4.6
12.36
31.76
10.24
14.?
46.5
33.8
5.0
10.32
29.7?
10.00
15.8
39.6
33.8
10.8
16.0?
36.72
14.46
16.7
40.4
35.9
7.0
17.21
38.00
15.61
27.0
27.2
41.0
4.8
21.12
19.46
13.52
17.3
37.4
38.8
6.5
13.97
27.54
13.19
9.1
38.0
49.B
3.1
2.83
10.83
6.57
10.2
37.1
49.8
2.8
3.30
10.89
6.76
7.6
29.8
59.7
2.9
3.40
12.11
11.22
12.7
33.5
49.2
4.5
3.62
8.70
5.90
16.4
31.8
48.2
3.6
5.21
9.21
6.46
13.*
37.0
45.0
4.2
4.39
10.76
6.04
11.3
37.1
47.5
4.2
3.48
10.42
6.17
13.2
39.5
44.1
3.3
4.35
11.91
6.14
13.4
40.4
43.4
2.7
4.18
11.50
5.70
13.4
32.0
51.2
3.4
5.10
11.13
8.22
13.1
33.7
50.6
2.6
5.33
12.50
8.65
10.7
30.7
56.0
2.7
5.73
14.99
12.65
18.6
35.8
43.2
2.3
4.32
7.56
4.22
12.2
34.7
49.8
3.2
4.24
10.96
7.28
10.7
30.9
54.2
4.2
4.74
12.54
10.15
8.9
33.9
53.3
3.8
2.82
9.77
7.10
6.2
32.8
55.9
5.1
4.80
23.3?
18.36
5.0
34.4
55.9
4.7
4.43
27.53
20.66
7.0
33.2
55.2
4.6
4.20
18.30
14.07
4.11
4.61
3.79
3.91
12.0?
8.00
4.19
5.81
1.08
1.00
1.42
1.42
1.2?
1.48
1.44
1.21
0.94
1.45
1.15
1.58
0.59
1.24
2.0?
1.34
4.42
4.55
3.09
(Continued)
-------
Table 5-1 (continued)
Run ID
Total
HC tolas,
(grama)
Bag 1
HC Rat*
(g/mila)
Idle Accel.
Ernlsa. Bnlsa.
(grants) (grams)
94 BBC 103 SBC
Cruise Decel.
Ernies. Bmias.
(grama) (grains)
223 a«c 85 sec
Idle ACCel,
HC Mass HC Mass
Percmt Percent
Cruiae D«c«l.
HC Mass HC Mass
Percent Percent
Idle Accel, Cruiae Decel,
HC HC HC HC
Sate Rat* Rata Jute
(rag/sac) (rag/aeo) (ng/seo) (ng/aec)
** Vehicle €071OB
1987
GM Corsica
30990
7.444
2.089
0.84
30992
6.216
1.730
0.74
30993
8.527
2.374
1.26
30994
6.226
1.726
0.99
30995
5.746
1.593
0.76
30996
5.539
1.531
0.67
30997
5.217
1.451
0.59
30999
S.273
1.455
0.77
31001
5.169
1.434
0.79
31002
9.486
2.6 2ft
1.21
Vah. average
6.484
1.801
0.86
** Vehicle CV924W
1987
Ford Crown
Victoria
31106
5.810
1.604
1.35
3110?
6.09S
1.684
1.25
31113
5.004
1.391
1.12
31114
4.342
1.207
1.05
31115
5.644
1.555
1.60
Vah. average
5.379
1.488
1.27
** Vehicle E3707B
1987
Ford Escort
31019
5.238
1.472
0.73
31020
4.903
1.374
0.40
31021
5.770
1.607
0.39
31024
4.710
1.314
0.25
31025
4.555
1.270
0.35
31026
2.188
0.622
0.27
Vah, average
4.561
1.277
0.40
** Vahlcla IA127B
1988
Chrysler LeBaron
31041
2.814
0.788
0.49
31042
3.175
0.887
0.47
31043
2.693
0.750
0.41
31044
2.536
0.707
0.42
31045
2.112
0.590
0.57
31046
2.264
0.631
0.42
Vah. avaraga
2.599
0.725
0.46
Disp:
2.8
Litars
2.26
3.66
0.68
11.4
30.4
2.00
2.84
0.64
11.8
32.2
2.26
4.25
0.77
14.7
26.5
1.61
2.84
0,79
15.9
25.8
1.48
2.90
0.61
13.3
25.7
1.52
2.69
0.66
12.1
27.5
1.42
2.62
0.59
11.3
27.2
1.46
2.47
0.57
14.6
27.6
1.40
2.38
0.60
15.2
27.2
2.94
4.56
0.78
12.7
31.0
1.83
3.12
0.67
13.3
28.3
Disp:
S.O til tars
1.96
2.13
0.38
23.2
33.8
2.03
2.44
0.38
20.5
33.4
1.93
1.69
0.26
22.5
38.6
1.40
1.64
0.26
24.2
32,2
2.04
1.79
0.21
28.3
36.2
1.87
1.94
0.30
23.7
34.8
Disp:
1.9
Liters
1.80
2.38
0.34
13.9
34.3
1.68
2.54
0.27
8.2
34.3
1.93
2.86
0.59
6.8
33.4
1.69
2.44
0.34
5.2
35.8
1.73
2.19
0.29
7.7
38.0
0.70
1.15
0.07
12.2
32.1
1.59
2.26
0.32
8.7
34.8
Dispt
2.5 Liters
0.84
1.37
0.11
17.4
29 .8
0.85
1.76
0.10
14.7
26.8
0.60
1.54
0.15
IS.3
22.2
0.70
1.35
0.07
16.4
27.8
0.49
0.97
0.08
27.1
23.2
0.62
1.16
0.06
18.6
27.6
0.68
1.36
0.09
17.8
26.3
49.1
9.1
8,99
21.95
16.40
8.00
45.6
10.3
7.83
19.44
12.72
7.56
49.8
9.0
13.36
21.93
19.04
9.02
45.7
12.6
10.51
15.60
12.75
9.25
50.4
10.6
8.13
14.36
12.98
7.14
48.5
11.9
7.12
14.79
12.04
7.78
50.2
11.3
6.30
13.76
11.75
6.91
46.9
10.8
8.20
14.15
11.09
6.72
46.0
11.6
8.37
13.63
10,67
7.05
48.1
8.2
12.86
28.53
20.44
9.18
48.1
10,3
9.17
17.82
13.99
7.86
36.6
6,5
14.32
19.07
9.53
4.41
40.0
6.2
13.27
19.75
10.93
4.42
33.8
5.2
11.96
18.74
7.58
3.06
37.7
6.0
11.17
13.55
7.33
3.08
31.8
3.7
16.98
19.84
8.04
2.48
36.0
5.5
13.54 '
18.19
8.69
3,49
45.3
6.5
7.72
17.45
10,65
4,01
51.9
5.5
4.29
16.35
11.41
3.20
49.6
10,2
4.18
18.73
12.83
6.92
51.7
7.3
2.63
16.36
10,92
4,04
48,0
6.4
3,71
16.80
9.80
3.41
52.6
3.1
2.83
6.83
5.16
0.80
49.5
7.0
4.22
15.42
10.13
3.73
48.8
4.0
5.22
8.14
6.15
1.32
55.3
3,2
4.96
8.25
7.88
1.21
57.1
5.4
4.37
5.81
6.89
1.72
53.2
2.6
4.43
6.84
6.05
0.78
46.2
3.6
6.09
4.75
4.37
0.89
51,1
2.8
4.47
6.06
5.19
0.74
52.3
3.6
4.93
6.64
6.09
1.11
(Continued)
-------
Table 5-1 (continued)
Total
Bag 1
Idle
Accel.
Cruise
Decel.
HC Bilss.
HC Kate
Bnlss.
Emiss.
Smisa.
Emiss.
Idle
Accel.
Cruise
Decel.
(grama)
(g/ralle)
tgraaa)
(grant)
{grams)
tgrama)
HC Maaa
HC Mass
HC Haas
HC Mass
nun iy
94
sec 103 see
223 aec
85 aec
Percent
Percent
Percent
Percent
** Vehicle LA392H
1990
Chryaler
Le Baron
Diap:
3.0 Liters
31122
6.419
1.80S
0.46
1.71
4.06
0.19
7.2
26.7
63.2
2.9
31123
7.646
2.145
0.91
2.04
4.51
0.19
11.9
26.6
59.0
2.4
31124
5.086
1.421
0.39
1.33
3.23
0.14
7.6
26.2
63.5
2.7
Veh. average
6.384
1.790
0.59
1.69
3.93
0.17
9.2
26.5
61.6
2.7
** Vehicle LS612B
1988
GH Bulck
LeSabre
Dispt
3.8 Liters
*
31116
2.520
0.701
0.35
0.62
1.50
0.06
13.9
24.6
59.3
2.2
31117
2.587
0.720
0.33
0.65
1.55
0.06
12.6
25.0
60.1
2.3
31118
1.555
0.430
0.30
0.46
0.74
0.06
19.2
29.8
47.4
3.7
31119
2.215
0.618
0.29
0.57
1.31
0.05
13.2
25.6
59.0
2.3
31120
2.567
0.717
0.45
0.63
1.44
0.04
17.5
24.5
56.2
1.7
31121
2.562
0.714
0.41
0.59
1.50
0.06
16.0
23.1
58.6
2.3
Veh. .
2.334
0.650
0.35
0.59
1.34
0.05
15.2
25.1
57.4
2.3
«•* Vehicle 8A333B
1987
Ford Mercury
Sable
Dlapi
3.0 Liters
31032
4.384
1.223
0.62
1.21
2.40
0.16
14.2
27.6
54.6
3.6
3103S
4.830
1.349
1.05
1.25
2.40
0.13
21.7
25.9
49.6
2.8
3103?
4.752
1.336
0.92
0.93
2.76
0.15
19.3
19.5
S8.1
3.1
3103S
4*828
1.352
0.99
0.99
2.62
0.23
20.5
20.5
54.2
4.7
31039
4.456
1.250
0.67
0.90
2.76
0.13
14.9
20.2
62.0
2.9
31040
6.327
1.766
0.79
1.00
4.35
0.18
12.5
15.8
68.8
2.9
Veh. average
4.929
1.379
0.84
1.05
2.88
0.16
17,0
21.2
58.4
3.3
** Vehicle S0756B
1987
GH Bulck Somerset
Dlapi
2.5 Liters
31013
2.271
0.635
0.38
0.58
1.14
0.17
16.5
25.7
50.2
7.7
31014
2.299
0.638
0.38
0.63
1.10
0.18
16.7
27.5
- 47.8
8.0
31015
1.938
0.539
0.32
0.54
0.95
0.14
16.5
27.7
48.9
7.0
31016
1.845
0.513
0.26.
0.36
1.02
0.19
14.2
19.7
55.6
10.5
31017
1.976
0.549
0.33
0.59
0.90
0.16
16.5
30.1
45.3
8.1
31018
1 .855
0.518
0.26
0.53
0.88
0.18
14.2
28.7
47.4
9.8
Veh. average
2.031
0.565
0.32
0.54
1.00
0.17
15.9
26.6
49.1
8.5
*~ Vehicle TX207O
19S8
Ford Taurus
Dlsps
3.8 Liters
31047
4.618
1.288
1.95
1.03
1.54
0.10
42.3
22.3
33.3
2.1
31040
3.930
1.093
1.32
1.01
1.52
0.09
33.5
25.7
38.6
2.2
31049
3.29B
0.920
1.11
0.72
1.39
0.09
33.5
21.7
42.0
2.7
31050
5.102
1.421
2.10
0.96
1.91
0.13
41.2
18.8
37.4
2.6
Vah. average
4.237
1.181
1.62
0.93
1.59
0.10
38.2
21.9
37.5
2.4
ldl4
Accel.
Cruise
Decel.
HC
HC
HC
HC
Rate
Date
Sate
Rate
>g/see)
(mg/aec)
(ag/aec)
(mg/aec)
4.91
16.61
18.20
2.21
9.71
19.77
20.22
2.19
4.13
12.95
14.48
1.60
6.26
16.45
17.64
2.00
3.73
6.01
6.70
0.66
3.47
6.29
6.97
0.69
3.17
4.50
3.30
0.67
3.12
5.50
5.88
0.59
4.79
6.12
6.47
0.51
4.35
5.74
6.74
0.71
3.77
5.69
6.01
0.64
6.63
11.73
10.74
1.85
11.17
12.14
10.75
1.56
9.76
9.00
12.38
1.75
10.52
9.63
11.74
2.68
7.07
8.72
12.39
1.54
8.41
9.73
19.52
2.14
8.93
10.16
12.92
1.92
3.99
5.66
S.11
2.06
4.09
6.14
4.92
2.16
3.39
5.20
4.25
1.60
2.79
3.52
4.60
2.28
3.48
5.77
4.01
1.89
2.80
5.17
3.94
2.13
3.43
5.24
4.47
2.02
20.77
9.99
6.90
1.15
14.02
9.80
6.80
1.00
11.77
6.95
6.22
1.06
22.37
9.30
t.SS
1.58
17.23
9.01
7.12
1.20
^ I'll °*°I6 0*04 °*14 0.0< 13.3 47.1 24 9
aV*raS* °*0'1 0-07 0.03 10.3 Itl 1K0 %-*t °A* °'2t
-------
Table 5-2 (continued)
Run ID
Total Bag 2 Xdla Accel.
HC tolas. HC Rata Hulas, Hulas,
{grams} (g/raila) (grama) (grama)
156 aao 223 sac
CruiM Dacal.
Emias. Eniiaa.
(grams) (gram I
303 sac 190 aoc
111* Aee«l, Cruise Dacal.
HC Mass HC Masa HC Mass DC Haas
Percent Percent Percent Percent
Xdl4 Accel. Crulaa Cecal.
HC HC HC HC
Rata Mat* Rata Rata
(ng/aec) (ng/aec) (ntg/aec) (mg/aec)
** Vehicle CO710B
198?
CM Coralea
Dlap:
2
.8 Litars
30990
3.27
0.852
0.56
1.20
0.99
0.52
17.2
36.6
30.1
16.0
30992
2.61
0.682
0.49
0.9?
0.76
0.39
18.9
37.1
29.1
14.9
30993
2.9?
0.747
0.50
0.99
0.93
0.45
17.5
34.6
32.3
15.6
30994
2.29
0.594
0.42
0.84
0.65
0.39
18.4
36.6
28.2
16.8
30995
2.19
0.568
0.43
0.90
0.56
0.29
19.7
41.3
25.6
13.4
30996
2.42
0.627
0.43
0.93
0.65
0.41
17.9
38.2
26.9
17.0
3099?
2.28
0.590
0.42
0.94
0.65
0.26
18.5
41.2
28.7
11,6
30999
2.SO
0.646
0.49
1.10
0.61
0.30
19.7
44.1
24.3
11.9
31001
2,71
0.707
0.48
1.19
0.69
0.36
17.8
43.7
25.2
13.3
31002
1.88
0.487
0.24
0.58
0.67
0.38
13.0
31.0
35.8
20.2
Vah. average
2.SO
0.650
0.45
0.96
0.71
0.38
17.9
38.5
28.6
15.0
** Vehicla CV924*
198?
Ford Crown
Victoria
Dlap:
5
.0 Liters
31106
2.36
0.607
0.21
0.75
0.86
0.54
9.1
31.6
36.5
22.9
3110?
2.65
0.686
0.25
0.73
0.95
0.72
9.3
27.4
36.0
27.3
31113
2.S3
0.6S0
0.15
0.94
0.84
0.60
6.0
37.0
33.3
23,7
31114
2.78
0.716
0.13
1.06
1.01
0.57
4.8
38.2
36.5
20.6
31115
3.17
0.816
0.15
1.35
1.13
0.54
4.8
42.5
35.8
16.9
Vah. average
2.70
0.695
0.18
0.96
0.96
0.59
6.1
35.7
35.6
22.0
»~ Vehicle
*8707*
198?
Ford Escort
Dlspt
1
.9 Liters
31019
1.19
0.308
0.17
0.49
0.38
0.15
14.2
41.4
31.8
12.7
31020
0.83
0.217
0.08
0.40
0.27
0.08
10.1
47.8
32.7
9.2
31021
0.99
0.256
0.10
0.53
0.24
0.12
10.1
53.6
24.2
12.1
31024
1.12
0.290
0.06
0.65
0.26
0.14
5.7
58.5
23,4
12.4
3102S
0.96
0.250
0.04
0.62
0.19
0.11
4.7
64.4
19.6
11.3
31026
0.56
0.148
0.04
0.30
0.1?
0.05
6.8
53.6
30.2
9.6
Vah. average
0.94
0.245
0.08
0.50
0.25
0.11
8.8
53.0
26.8
11.5
** Vahlcla
LX127B
1988
Chrysler LeBaron
Dlspt
2
.5 Lltara
31041
0.34
0.08?
0.05
0.13
0.11
0.06
14.0
37.5
32.1
16.4
31042
0.35
0.091
0.06
0.12
0.09
0.08
17.0
35.2
25.9
21.6
31043
0.21
0.0S5
0.03
0.09
0.06
0.04
14.5
43.0
26.2
16.8
31044
0.14
0.037
0.02
0.08
0.02
0.02
13.8
56.6
13.8
15.9
31045
0.12
0.030
0.04
0.05
0.02
0.01
30.2
40.5
18.1
10.3
31046
0.31
0.081
0.02
0.13
0.10
0.07
7.0
41.5
30.4
20.8
Vah. average
0.2S
0.063
0.04
0.10
0.0?
0.04
14.6
40.7
26.4
18.3
3.62
5.38
3.25
2.76
3.15
4.34
2.50
2.05
3.23
4.46
3.06
2.35
2.70
3.76
2.13
2,03
2.76
4.05
1.85
1.54
2.78
4.15
2.IS
2.It
2.71
4.21
2.16
1.39
3.16
4.95
2.01
1.56
3.10
5.32
2.26
1.90
1.56
2.61
2.22
2.01
2.88
4.32
2.36
1.97
1.37
3.3S
2.85
2.85
1.59
3.26
3.15
3.82
0.97
4.20
2.78
3.15
0.85
4.76
3.35
3.01
0.97
6.04
3.74
2.83
1.15
4 . 32
3.1?
3.13
1.08
2.20
1.24
0.79
0.54
1.79
0.90
0.41
0.C4
2.39
0.79
0.63
0.41
2.93
0.86
0.73
0.29
2.78
0.62
0.57
0.24
1.35
0.16
0.28
0.53
2.24
0.83
0.57
0.30
0.5?
0.36
0.29
0.38
0.56
0.30
0,40
0.20
0.41
0.18
0.19
0.13
0.3?
0.07
0.12
0.22
0.21
0.0?
0.06
0.14
0.58
0.31
0.34
0.23
0.45
0.21
0.24
(Continued)
0
»-»*
m
e
o
£
&
o
CO
ra
a.
O
o
c
m
w
n
%
8"
tr
ts.
H*
<#
s
CJ*
-------
Table 5-2 (continued)
Sun ID
Total Bag 2 Idle Accel.
HC Bniaa. HC Rat* Braiaa. Bniaa.
(grama) (g/ntile) (grama) (grama)
156 aec 223 sac
Cruise Decel.
Bniaa. Emiaa.
(grama) (grams)
303 aec 190 aec
Mia Accel. Cruiaa Decel.
HC Maaa HC Maaa HC Maaa HC Maaa
Percent Percent Parcant Percent
Idle Accel. Cruiaa Decel.
HC ' HC HC HC
Rata Rata Rata Rata
(mg/aac) (ng/aec) (rag/sac) (ng/aec)
** Vehicle LA392M
31122
31123
31124
Veh. average
** Vehicle L8612B
31116
31117
31110
31119
31120
31121 •
Veh. average
1990
Chryaler
LeRaron
Diaps
3.0 Mtara
o.as
0.220
0.09
0.40
0.23
0.12
10.9
47.7
27.5
0.76
0.197
0.07
0.38
0.19
0.12
8.8
30.4
24.8
0.79
0.206
0.08
0.43
0.18
0.10
10.5
34.1
22.4
0.80
0.208
0.08
0.41
0.20
0.11
10.1
50.7
24.9
1980
SM Bulck
LeSabre
Diaps
3.8 Litera
0.96
0.252
0.14
0.44
0.26
0.13
14.0
45.7
27.3
0.94
0.243
0.13
0.43
0.22
0.14
16.3
45.1
23.5
0.73
0.189
0.08
0.29
0.20
0.1#
11.3
39.3
27.3
0.82
0.212
0.14
0.38
0.20
0.10
16.6
46.7
24.3
0.81
0.211
0.14
0.40
0.19
0.09
17.3
48.7
23.0
0.79
0.205
0.12
0.37
0*18
0.12
13.6
46.7
22.9
0.84
0.219
0.13
0.38
0.21
0.12
13.3
45.4
24.8
13.9
16.0
13.0
14.3
13.1
15.1
21.8
12.2
10.9
14.a
14.5
0.59
1.81
0.77
0.62
0.43
1.71
0.62
0.64
0.33
1.92
0.58
0.54
0.52
1.82 *
0.66
0.60
0.87
1.97
0.86
0.66
0.99
1.91
0.73
0.75
0.34
1.28
0.66
0.84
0.87
1.72
0.66
0.33
0.90
1.78
0.62
0.47
0.79
1.65
0.60
0.62
0.83
1.72
0.69
0.64
Js.
U1
1
|
0
S&3338
1987
Ford Mercury Sable
Mapi
3
.0 Litera
31032
0.44
0.115
0.04
0.12
0.20
0.07
10.1
27.7
45.0
16.9
0.29
0.55
0.66
0.39
31035
0.44
0.114
0.10
0.13
0.15
0.06
23.3
29.0
33.8
13.9
0.65
0.57
0.49
0.32
31037
0.57
0.148
0.12
0.14
0.21
0.10
20.6
25.4
37.0
17.1
0.75
0.65
0.69
0.51
31038
0.41
0.106
0.04
0.13
0.16
0.08
9.6
32.1 '
38.5
19.9
0.25
0.59
0.52
0.43
31039
0.66
0.172
0.13
0.20
0.21
0.12
19.7
30.9
31.2
18.0
0.83
0.91
0.68
0.63
31040
0.53
0.136
0.06
0.18
0.21
0.07
11.2
35.2
40.0
13.5
0.38
0.83
0.69
0.37
Vah. average
0.51
0.132
0.08
0.13
0.19
0.08
16.2
30.0
37.3
16.6
0.53
0.68
0.62
0.44"
** Vehicle
80756B
1987
<34 BulcK Soneraet
biapi
2
.5 Liter*
31013
0.28
0.072
0.02
0.12
0.09
0.04
7.6
44.8
33.6
14.1
0.13
0.56
0.31
0.21
31014
0.37
0.096
0.03
0.13
0.13
0.06
9.1
39.5
35.2
16.1
0.22
0.66
0.43
0.32
31015
0.27
0.070
0.02
0.13
0.09
0.03
5.9
47.6
33.9
12.5
0.10
0.58
0.30
0.18
31016
0.46
0.120
0.05
0.14
0.18
0.09
11.2
30.5
38.7
19.7
0.33
0.63
0.59
0.48
31017
0.41
0.106
0.04
0.16
0.15
0.06
9.0
39.5
37.3
13.9
0.24
0.73
0.50
0.30
31018
0.34
0.089
0.03
0.14
0.12
0.05
8.7
41.4
35.0
14.9
0.19
0.64
0.40
0.27
Vah. average
0.36
0.092
0.03
0.14
0.13
0.06
9.0
39.6
36.0
13.4
0.21
0.63
0.42
0.29
~* Vehicle TA207Q
1988
Ford Taurua
Diapt
3
.8 Liters
31047
0.80
0.208
0.06
0.33
0.27
0.14
7.3
41.6
33.2
18.0
0.37
1.49
0.87
0.76
31048
0.64
0.168
0.05
0.23
0.22
0.14
8.4
35.4
34.9
21.3
0.33
1.02
0.74
0.72
31049
0.82
0.211
0.07
0.23
0.34
0.15
8.6
31.0
41.3
18.9
0.45
1.13
1.12
0.81
31030
0.78
0.203
0.06
0.27
0.30
0.15
7,7
34.7
38.8
18.7
0.38
1.22
1.00
0.77
Vah. average
0.76
0.198
0.06
0.27
0.28
0.14
7.9
35.7
37.2
19.1
0.38
1.22
0.93
0.76
-------
Table 5-3
Hydrocarbon Emissions by Mode - Hot Start Phase
(Bag 3:1972 to 2477 Seconds)
(Mass, Mass Percentage, and Emission Rate In milligrams/second)
o\
Run ID
** Vehicle CA365B
3105?
31060
31061
31062
310(3
31064
31065
Veh. average ,
30934
30935
30936
30945
30946
3094®
30971
30972
30973
30974
30975
30978
30989
Veh. average
30854
30S62
30869
30870
Veh. average
Total
Sa® 3
Idle
Accel.
Cruise
Decel.
Mae.
HC Kate
Emias.
Ernies.
Ernies.
Emiss.
Idle
Accel,
cruise
grants)
(g/mi)
(grama)
{grama)
(grama)
(grama)
HC Maaa
HC Haas
HC Haas
94 aea
103 aee
223 aea
85 see
Percent
Percent
Percent
1986
SM Oiev. Caprice Claaaic
Dlep:
5.0
Liters
9.95
2.784
0.91
1.80
1.66
0.46
9.2
18.1
16.6
10.57
2.959
0.84
1.52
2.12
0.66
8.0
14.4
20.0
11.69
3.239
1.01
2.14
2.01
O.SO
8.6
18.3
17,2
10.14
2.811
0.82
1.80
1.76
0.42
8.1
17.8
17.4
11.81
3.262
0.94
2.40
1.90
0.43
8.0
20.4
16.0
16.36
4.572
1.39
2.81
3.36
0.47
8.5
17.2
20.5
11.87
3.315
1.21
2.14
1.95
0.47
10.2
18.0
16.4
11.77
3.277
1.02
2.09
2.11
0.48
8.6
17.7
17.9
1987
GM Coralea
Dispt
2.0
Liters
2.42
0.672
0.10
0.55
0.41
0.04
4.1
22.6
16.9
2.21
0.615
0.11
0.48
0.34
0.03
4.9
22.0
15.4
2.51
0.702
0.10
0.49
0.45
0.05
4.2
19.4
17.7
2.60
0.720
0.12
0.58
0.49
0.04
4.7
22.2
18.8
2.48
0.692
0.14
0.55
0.41
0.03
5.5
22.3
16.7
2.45
0.682
0.11
0.52
0.35
0.01
4.6
21.2
14.3
3.34
0.931
0.10
0.67
0.73
0.05
3.0
19.9
21.8
2.97
0.828
0.11
0.65
0.56
0.02
3.6
21.7
19.0
3.25
0.900
0.13
0.73
0.57
0.04
4.0
22.6
17.7
2.96
0.823
0.13
0.62
0.55
0.04
4.3
20.8
18.7
3.24
0.904
0.13
0.65
0.58
0.04
4.1
20.1
17.8
2.96
0.822
0.27
0.59
0.45
0.03
9.2
20.0
15.2
2.92
0.814
0.07
0.39
0.35
0.03
2.3
13.5
12.0
2.79
0.777
0.12
0.57
0.48
0.04
4.5
20.6
17.2
1988
gm Corsica
Diept
2.0
IJLtera
2.16
0.601
0.13
0.42
0.30
0.03
6.1
19.5
13.9
1.64
0.458
0.07
0.36
0.22
0.01
4.4
21.7
13.6
2.24
0.623
0.12
0.44
0.39
0.03
5.4
19.5
17.4
2.18
0.610
0.13
0.38
0.37
0.02
6.1
17.2
17.1
2.06
0.573
0.12
0.40
0.32
0.02
5.6
19.3
15.7
Deceit
HC Mass
Percent
HC
Rate
Accel.
HC
Rate
Cruise
HC
Sate
Decel.
HC
Rata
1.2
0.7
1.4
0.8
1.1
(rag/aec) (ng/aec) (ng/aae) (r»g/aac)
9.72
17.52
7.42
5.35
8.98
14.78
9.49
7.71
10.74
20.78
9.00
5.85
8.70
17.49
7.91
4.91
10.01
23.35
8.50
5.09
!4,B1
27.28
15.05
5.53
12.86
20.75
8.73
5.49
10.83
20,28
9.44
5.71
1.05
5.32
1.84
0.53
1.16
4.71
1.52
0.32
1.12
4.73
2.00
0.59
1.31
5.59
2.19
0.45
1.45
5.38
1.86
0.33
1.20
5.03
1.57
0.09
1.07
6.48
3.26
o.ss
1.15
6.27
2.53
0.28
1.38
7,13
2.57
0.47
1.35
5.98
2.48
0.51
1.43
6.33
2.59
0.45
2.90
5.73
2.01
0.39
0.71
3.82
1.17
0.38
1.33
5.57
2.15
0.41
1.39
4.09
1.35
0.29
0.78
3.46
1.00
0.14
1.30
4.25
1.75
0.38
1.43
3.64
1.(8
0.20
1.22
3.85
1.45
0.26
(Continued)
-------
Table 5-3 (continued)
HC
Total
Bag 3
Idle
Accel,
Crulae
Decel.
Efctiaa.
HC Rate
Emlae.
Bmiaa.
Ernies.
&niaa *
Idle
(grama)
(g/mi)
(grama)
(grama)
(grama)
(grama)
HC Mass
Run J. M
94 aec
103 aec
223 aec
85 see
Percent
** Vehicle CO710B
1987
GM Corsica
Diaps
2.8
Litera
30990
7.35
2.057
0.56
0.99
1.23
0.83
7.6
30992
6.49
1.812
0.46
0.84
1.06
0.74
7.2
30993
5.97
1.668
0.48
0.73
1.12
0.57
8.1
30994
6.87
1.912
0.51
0.65
1.09
1.03
7.4
30995
6.02
1.670
0.46
0.68
0.99
0.70
7.6
30996
6.61
1.843
0.44
0.68
1.16
0.88
6.7
30997
5.30
1.474
0.31
0 . 66
0.89
0.58
5.8
30999
5.74
1.586
0.37
0.88
0.89
0.66
6.4
31001
6.44
1.798
0.47
0.89
1.05
0.73
7.4
31002
5.36
1.493
0.42
0.69
0.97
0.44
7.9
Vah. average
6.21
1.731
0.45
0.77
1.05
0.72
7.2
** Vehicle CV924H
1987
Ford Crown
Victoria
Dlapt
5.0
Altera
31106
5.84
1.618
0.36
0.75
1.45
0.26
6.2
31107
5.89
1.633
0.38
0.84
1.24
0.22
6.4
31113
5.16
1.433
0.26
0.78
1.28
0.15
5.1
31114
5.57
1.547
0.31
0.86
1.24
0.18
5.5
31115
S.83
1.619
0.32
0.88
1.37
0.14
5.5
Veh, average
5.66
1.570
0.33
0.82
1.31
0.19
5.7
** Vehicle BS707R
1987
Ford lacort
Dlapt
1.9
Liters
31019
3.50
0.993
0.22
0.50
0.73
0.12
6.4
31020
3.62
1.016
0.18
0.65
0.67
0.14
5.1
31021
2.26
0.633
0.14
0.34
0.41
0.08
6.0
31024
2.45
0•680
0.10
0.55
0.38
0.09
4.2
31025
2.21
0.617
0.09
0.44
0.33
0.07
4.2
31026
1.53
0.438
0.07
0.21
0.29
0.08
4.7
Veh. average
2.60
0.729
0.14
0.45
0.47
0.10
5.2
** Vehicle 1A127B
1988
Chrysler LeBaron
Diapi
2.5
Liters
31041
1.24
0.348
0.08
0.23
0.29
0.02
6.2
31042
1.03
0.289
0.06
0.19
0.13
0.03
6.1
31043
1.02
0.285
0.13
0.12
0.14
0.04
12.3
31044
1.13
0.316
0.10
0.14
0.12
0.02
8.8
31045
2.25
0.630
0.27
0.25
0.27
0.01
12.2
31046
1.67
0.474
0.16
^5. 26
0.19
0.02
9.3
Veh. average
1.39
0.390
0.13
0.20
0.19
0.02
9.6
Accel.
hc Mam
Percent
13.4
13,0
12.2
9.5
11.3
10.2
12.5
15.3
13.8
12.9
12.4
12.9
14.2
15.2
15.5
15.1
14.5
14.4
17.9
15.2
22.3
19.7
14.1
17.3
18.4
18.1
12.0
12.1
11.3
15.2
14.2
Cruise
HC Hut
Percent
16.7
16.4
18.7
15.8
16.5
17.6
16.8
15.5
16.3
18.1
16.8
24.7
21.0
24.9
22.2
23. 5
23.2
20.9
18.4
18.3
15.3
14.9
18.9
18.0
23.2
12.2
13.9
11.1
11.9
11.3
13.7
Decel.
HC Hasa
Percent
11.3
11.4
9.6
15.1
11.6
13.4
11.0
11.5
11.4
8.2
11.5
4.4
3.7
2.8
3.3
2.5
3.4
3.3
3.8
3.4
3.6
3.1
5.4
3.7
1.9
3.1
3.9
1.6
0.6
1.3
1.7
idle
HC
Rate
(mg/a«c)
5.91
4.94
5.14
5.39
4.88
4.72
3.29
3.89
5.05
4.51
4.78
3.83
4.00
2.80
3.29
3.38
3.46
2.38
1.95
1.45
1.11
0.99
0.77
1.44
0.82
0.67
1.34
1.05
2.91
1.66
1.41
Accel.
HC
Rate
(ng/aac)
9.58
8.18
7.10
6.34
6.60
6.55
6.42
8.50
8.62
6.74
7.47
7.29
8.12
7.59
8.36
8.53
7.98
4.89
6.27
3.33
5.32
4.24
2.09
4.38
2.21
1.82
1.19
1.32
2.47
2.48
1.91
Cruise
HC
Rata
(ag/aec)
5.52
4.77
5.00
4.88
4.44
5.22
4.00
3.99
4.70
4.36
4.69
6.48
5.55
5.76
5.54
6.13
5.89
3.27
2.99
1.85
1.68
1.48
1.30
2.09
1.29
0.57
0.64
0.56
1.20
0.8S
0.8S
Dacel.
HC
Kate
(mg/aac)
9.80
8i71
6.73
12.18
8.20
10.40
6.87
7.78
8.64
5.15
8.45
3.06
2.58
1.73
2.14
1.69
2.24
1.38
1.60
0.92
1.05
0.80
0.96
1.12
0.27
0.38
0.47
0.21
0.15
0.25
0.28
(Continued)
-------
Table 5-3 (continued)
Run ID
Total Bag 3 idla acobI,
HC Snlaa. HC Rata Ernies. Balsa,
(grama)
-------
SPEED VERSUS EMISSIONS
This section investigates the hypothesis that there is only a slight correlation
between instantaneous recorded vehicle speed (in miles per hour) and HC emissions rate
(in grams per mile). The HC emission rate is calculated on a per-second basis for
well-behaved gasoline vehicles operating in the cruise portions of the FTP cycle. Three
FTP runs per vehicle were chosen, resulting in a total of 18 FTP runs.
Only Bag 2 (seconds 506 to 1372) and Bag 3 (seconds 1973 to 2477) were used
for this analysis to eliminate the potential cold start biases of Bag 1. Bag 3 is of interest
because it contains highway speeds in excess of 50 mph. HC emissions in grams per
second were calculated using a number calculated from the data base for each FTP
nm, representing cubic feet of total diluted mix passing per second (e.g., 10.3).
Mathematically, the emissions rate (in grams per mile) for a total FTP run or a
specific time/mode slice (e.g., cruise mode in Bags 2 and 3) is not the average of the per-
second grams-per-mile rates. (The average of several fractions is almost never the
average of the numerators divided by the average of the denominators.) In addition, low
speed seconds in the FTP will tend to augment errors due to their small denominators.
Since the cruise modes in Bag 2 were at slower speeds than in Bag 3, there tended to be
few high HC emission rate outliers in Bag 2, possibly because of the introduction of
random errors or HC monitor lags not otherwise accounted for. (This was probably the
primary cause of the very slight negative correlation that was found between
instantaneous HC rate and speed.)
As Tables 5-4 and 5-5 show, there was no discernable correlation between speed
and the per-second HC grams-per-mile rate. The Pearson correlation coefficients, -0.12
to -0.25 for the six vehicles, are not sufficient to indicate that a more sophisticated model
could be developed to test the hypothesis.
49
-------
Table 5-4
Simple Statistics for
Mean instantaneous HC Emission Rate (g/ml)
for Six Vehicle Types
N
Mean
St Dev
Milt
Max
Speed
HC Emiss Rate C0322G
1552
31.45
0.15
11.27
0.26
14.97
0.00
57.64
3.23
Speed
HC Emiss Rate C0665W
1359
32.27
0.10
11.80
0.18
14.68
0.00
57.39
1.61
Speed
HC Emiss Rate LA127B
1293
31.23
0.08
12.20
0.45
0.10
0.01
57.39
14.08
Speed
HC Emiss Rate LS612B
1548
31.52
0.10
11.31
0.20
14.78
0.00
57.49
2.81
Speed
HC Emiss Rate S0756B
1555
31.31
0.09
11.33
0.09
13.11
0.01
57.59
0.80
Speed
HC Emiss Rate TA207G
1578
31.48
. 0.20
11.15
0.37
12.66
0.00
57 JO
7.11
T
NOTES: N = Number of observations.
St Dev = Standard deviation.
50
-------
13DI0 5*5
Correlation Matrix for Speed (mph)
and Instantaneous HC Emission Rate (g/mi)
for Six Vehicle Types
Vehicle
Speed Correlation
N
HC Emiss Rale C0322G
-0.25
1552
HC Emiss Rat® C0665W
-0.22
1359
HC Emiss Rate LA127B
-0.16
1293
HC Emiss Rate LS612B
-0.17
1548
HC Emiss Rate S0756B
-0.12
1555
HC Emiss Rate TA207G
-0.22
1578
Note: N = Number of observations.
51
-------
FTP RUN STATISTICAL ANALYSIS
This section describes statistical analysis performed for 76 FTP runs covering 12
gasoline-fueled vehicles. The purpose of the analysis was to see if there appeared to be a
reasonable model to use for estimating HOTFID (the actual HC concentration variable)
using speed, acceleration (taken to be the first difference of speed), or lagged
representations thereof, A delta HOTFID dependent variable was also developed,
although it did not show much improvement in correlation.
The highest simple correlation observed was between the lagged (2-second)
acceleration, the variable L2ACC in the tables, and HOTFID. This correlation is not
consistent across vehicles, however. Table 5-6 shows HOTFID versus L2ACC
correlations of +0.56 for the 1988 Buick LeSabre, but only +0.09 for the 1987 Crown
Victoria. Nevertheless, 8 out of the 12 vehicles have correlation coefficients greater than
0.3, showing that there is a relationship between the variables (though probably a weak
one). Table 5-7 summarizes the average correlation of HOTFID versus L2ACC for each
vehicle.
Figure 5-1 shows the L2ACC and HOTFID variable time series for the best run of
the 1988 Buick LeSabre (LS612B). For this vehicle, as well as for most of the well-
behaved vehicles, the graphs of HOTFID and L2ACC show spikes in the first few
seconds of positive acceleration, though they become more erratic and less prominent
during other times (modes).
52
-------
Table 5-6
Simple Correlation Analysis -
Hydrocarbon Emissions Versus Engine Speed and Acceleration1
PEARSON CORRELATION COEFFICIENTS
Vehicle
FTP Run
10
VAR
SPD*
ACC
L2SPD*
L2ACC*
D12ACC*
CA365B
31057
HOTFID7
-0.030
0.220
-0.090
0.310
0.040
DHFID*
-0,027
0.080
-0.050
0.040
0.160
310%
HOTFID
-0.022
0.260
-0.100
0.3%
0.040
DHFIO
•0.038
0.080
-0.060
0.030
0.130
31061
HOTFID
-0.002
0.230
-0.070
0.330
0.000
DHFJD
-0.034
0.070
-0.050
0.060
0.100
31062
HOTFID
0.013
0.210
-0.050
0.310
0.000
DHFIO
-0.027
0.110
-0.060
0.050
0.080
31063
HOTFID
0.128
0.290
0.050
0.410
-0.030
DHFID
-0.043
0.090
-0.070
0.080
0.150
31064
HOTFID
0.194
0.240
0.120
0.390
-0.030
DHFID
-0.029
0.090
-0.050
0,090
0.150
31065
HOTFID
0.169
0.240
0.090
0.400
-0.010
DHFID
-0.029
0.090
-0.060
0.080
0.1 S3
C0322G
30934
HOTFID
0 094
0.260
0.020
0.370
-0.080
DHFID
-0.040
0.080
-0.060
0.100
0.080
30935
HOTFID
0.112
0.280
0.030
0.390
-0.050
DHFID
-0.043
0.090
-0.060
0.090
0.110
30936
HOTFID
0.022
0.260
*0.050
0.350
¦0.040
DHFID
-0.045
0.090
-0.070
0.080
0.130
30945
HOTFID
0.049
0.310
-0.040
0.420
•0.040
DHFID
-0.054
0.080
-0.080
0.100
0.130
30946
HOTFID
0.060
0.260
-0.020
0.400
•0.090
DHFID
-0.043
0.080
•0.070
0.120
0.100
30948
HOTFID
0.094
0.270
0.010
0.410
-0.040
DHFID
-0.044
0.100
-0.070
0.110
0.140
(Continued)
53
-------
Table 5-6 (continued)
Vehicle
FTP Run
ID
VAR
SPD*
ACC
12SPD4
L2ACC?
DL2ACC*
C0322G
30971
HOTFID
0.059
0.270
-0.030
0.400
•0.040
DHFJD
-0.045
0.090
-0.070
0.100
0.070
30972
HOTFID
0.024
0.270
-0.060
0.400
•0.080
DHFID
-0.042
0.070
-0.060
0.100
0.110
30973
HOTRD
•0.012
0.250
•0.090
0.380
•0.060
DHFID
•0.038
0.080
-0.060
0.090
0.100
30974
HOTFID
0.038
0.290
-0.040
0.380
-0.070
DHFID
*0.041
0.050
-0.050
0.060
0.020
30975
HOTRD
0.034
0.300
-0.050
0.390
-0.070
DHFID
-0.045
0.050
-0.060
0.060 .
0.020
30978
HOTRD
-0.142
0.390
-0.250
0.500
0.000
DHFID
-0.077
0.080
-0.100
0.090
0.200
30989
HOTRD
0.158
0.310
0.070
0.450
-0.060
DHFID
•0.054
0.140
-0.090
0.130
0.130
C06S5W
30854
HOTFID
0.030
0.320
-0.060
0.410
-0.030
DHFID
-0.055
0.060
-0.070
0.080
0.130
30862
HOTFID
0.080
0.290
0.000
0.390
-0.050
DHFID
-0.044
0.070
-0.060
0.080
0.100
30869
HOTFID
0.072
0.250
0.000
• 0.360
-0.020
DHFID
•0.038
0.050
-0.050
0.070
0.070
30370
HOTFID
0.042
0.250
-0.030
0.340
0.000
DHFID
-0.038
0.070
-0.060
0:060
0.130
CO710B
30990
HOTFID
0.001
0.280
-0,070
0.360
0.070
DHFID
-0.034
0.060
-0.050
0.040
0.190
30992
HOTFID
-0.018
0.300
-0.090
0,350
0.080
DHFID
-0.034
0.060
¦0,050
0.010
0.140
30993
HOTFID
0.009
0.250
-0.050
0.330
0.070
DHFID
•0.028
0.070
-0.050
0.040
0.170
HOTFID
•0.046
0.260
•0.120
0.280
0.050
DHFID
•0.047
0.040
•0.060
0.000
0.070
(Continued)
54
-------
Table 5-6 (continued)
Vehicle
FTP Run
ID
VAR
SPD*
ACC*
L2SPD4
L2ACC®
DL2ACC*
CO710B
309%
HOTFID
-0.086
0.280
-0.150
0.300
0.060
DHFID
-0.046
0.040
-0.050
0.000
0.100
30996
HOTFID
-0.112
0.250
-0.160
0.250
0.090
DHFID
•0.035
0.000
-0.040
0.000
0.130
30997
HOTFID
-0.052
0.290
-0.110
0.310
0.060
DHFID
-0.036
0.020
-0.040
0.010
0.110
30999
HOTFID
-0.100
0.330
-0.180
0.380
0.050
DHFID
-0.048
0.060
-0.060
0.020
0.120
31001
HOTFID
-0.036
0.300
-0.100
0.370
0.040
DHFID
-0.038
0.070
-0.060
0.050
0.190
31002
HOTFID
0.027
0.130
0.000
0.130
0.040
DHFID
-0.017
-0.020
-0.020
0.000
0.060
CV924W
31106
HOTFID
0.227
0.030
0.220
0.070
0.000
DHFJD
0.002
0.040
-0.010
0.010
0.010
31107
HOTFID
0.133
•0.080
0.150
-0.040
•0.020
DHFID
0.013
0.010
0.010
0.010
0.000
31113
HOTFID
0.218
0.040
0.200
0.090
-0.020
DHFID
-0.001
0.030
-0.010
0.020
0.000
31114
HOTFID
0.300
0.060
0.270
0.160
-0.030
DHFID
0.000
0.070
-0,020
0.050
0.010
31115
HOTFID
0.270
0.090
0.240
0.170
-0.030
DHFID
¦0.005
0.050
-0.020
0.030
0.000
ES707R
31019
HOTFID
0.181
0.210
0.130
0.340
-0.060
DHFID
-0.021
0.060
•0.030
0.120
0.140
31020
HOTFID
0.166
0.280
0.090
0.350
-0.010
DHFID
-0.045
0.070
-0.060
0.070
0.100
31021
HOTFID
0.170
0.230
0.110
0.330
-0.050
DHFID
-0.035
0.040
-0.040
0.090
0.100
31024
HOTFID
0.255
0.230
0.190
0.340
¦0.030
DHFID
-0.040
0.120
-0.060
0.150
0.210
3102S
HOTFID
0.245
0.230
0.180
0.370
-0.060
DHFID
•0.030
0.100
-0.050
0.120
0.150
55 (Continue
-------
Table 5-6 (continued)
Vehicle
FTP Run
ID
VAR
SPD*
AGO*
L2SPD*
L2ACC*
DL2ACC*
ES707R
31026
HOTFID
0.142
0.230
0.080
0.260
-0.020
DHFID
•0.055
0.040
-0.060
0.040
0.030
LA127B
31041
HOTFID
0.109
0.160
0.060
0.230
-0.030
DHFID
•0.022
0.060
-0.030
0.060
0.040
31042
HOTFID
0.070
0.110
0.040
0,170
-0.010
DHFID
-0.020
0.020
-0.030
0.040
0.070
31043
HOTFID
0.038
0.190
•0.010
0.240
*0.020
DHFID
-0.021
0.060
-0.030
0.050
0.070
31044
HOTFID
-0.010
0.170
-0.050
0.210
-0.050
DHFID
-0.024
0.030
-0.030
0.030 .
0.020
31045
HOTFID
0.076
0.120
0.050
0.130
•0.090
DHFID
-0.015
0.020
-0.020
0.010
•0.090
31046
HOTFID
0.067
0.090
0.040
0.1 SO
-0.030
DHFID
-0.011
0.040
-0.020
0.050
0.050
LA392W
31122
HOTFID
0.185
0.260
0.110
0.390
-0.040
DHFID
-0.033
0.060
-0.050
0.080
0.080
31123
HOTFID
0.139
0.240
0.070
0.350
•0.050
DHFID
¦0.027
0.040
-0.040
0.070
0.080
31124
HOTFID
0.106
0.320
0.020
0.420
-0.060
DHFID
•0.042
0.050
-0.050
0.070
0.090
LS612B
31116
HOTFID
0.140
0.410
0.040
0.560
-0.070
DHFID
•0.069
0.110
-0.090
0.120
0.140
31117
HOTFID
0.025
0.390
-0.080
0.530
•0.020
DHFID
-0.062
0.120
-0.090
0.100
0.150
31118
HOTFID
0.149
0.320
0.050
0.460
-0.030
DHFID
-0.057
0.120
-0.090
0.110
0.090
31119
HOTFID
0.065
0.380
-0.040
0.480
-0.010
DHFID
•0.063
0.090
-0.090
0.070
0.160
31120
HOTFID
0.076
0.400
-0.030
0.560
-0.070
DHFID
-0.062
0.120
-0.090
0.130
0.240
31121
HOTFID
0.040
0.380
-0.070
0.550
-0.020
DHFID
-0.059
0.110
-0.090
0.110
0.250
(Continued)
56
-------
Table 5-6 (continued)
Vehicle
FTP Run
ID
VAR
SPD*
ACC
L2SPD4
L2ACC*
DL2ACC*
SA333B
31032
HOTFID
0.182
0.040
0.170
0.070
0.030
DHFID
-0.002
0.020
-0,010
0.020
0.080
3103S
HOTFID
-0.026
0.070
-0.040
0.030
0.130
DHFID
-0.012
0.010
-0.010
-0.060
0.070
31037
HOTFID
0.031
0.040
0.020
0.040
0.050
DHFID
-0.003
0.030
-0.010
-0.010
0.050
31038
HOTFID
0.181
0.110
0.150
0.150
0.040
DHFID
-0.011
0.040
-0.020
0.020
0,0%
31039
HOTFID
*0.029
0.080
*0.050
0.030
0.080
DHFID
-0.014
-0.010
-0.010
-0.030 .
0.060
31040
HOTFID
0.179
0.180
0.130
0.230
0.040
DHFID
-0.019
0.050
-0.030
0.030
0.130
S0756B
31013
HOTFID
0.416
0.210
0.350
0.390
.-0,100
DHFID
-0.023
0.120
-0.060
0.140
0.130
31014
HOTFID
0.459
0.180
0.400
0.340
-0.070
DHFID
-0.017
0.110
-0.050
0.110
0.050
31015
HOTFID
0.470
0.180
0.410
0.380
-0.160
DHFID
-0.018
0.120
-0.050
0.160
0.120
31016
HOTFID
0.450
0.210
0.400
0.390
-0.1®)
DHFID
-0.021
0.130
-0.050
0.130
0.090
31017
HOTFID
0.419
0.240
0.350
0,420
-0,140
DHFID
-0.026
0.090
-0.050
0.120
0.080
31018
HOTFID
0.433
0.240
0.360
0.390
-0.110
DHFID
-0.029
0.090
-0.060
0.100
0.050
(Continued)
57
-------
Table 5-6 (continued)
Vehicle
FTP Run
ID
VAR
SPD*
ACC*
L2SPD4
L2ACC*
DL2ACC*
TA207G
31047
HOTFID
0.123
0.070
0.100
0.150
0.060
DHFID
-0.006
0.010
-0.010
0.030
0.110
31048
HOTFID
0.222
0.050
0.200
0.190
-0.010
DHFID
-0.001
0.040
-0.010
0.080
0.100
31049
HOTFID
0.267
0.040
0.250
0.180
-0,020
DHFID
-0.001
0.030
-0.010
0.090
0.120
31050
HOTFID
0.182
0.050
0.160
0.120
0.010
DHFID
-0.003
0.020
-0.010
0.030
0.030
NOTES;
Based on 76 FTP runs of 12 vehicles for Bag 2 (506 to 1372 seconds) of Federal Test Procedure
Speed (mph)
Acceleration (mph/s = first dWference of SPD)
Speed, lagged 2 seconds
Acceleration, lagged 2 seconds
Change in tagged (2-second) acceleration
HC emissions, as measured (ppm)
Change in HOTFID
58
-------
Table 5-7
Vehicle Average Correlation of HOTFID Versus Lagged Acceleration
(Bag 2 of the FTP)
Vehicle
10
Vehicle
Engine
Displacement
(Liters)
VIN
Accumulated
Mileage
Model
Year
Number
of FTP
Runt
Average
Correlation
of HOTFID
vs. L2ACC
CA365B
GM Chev. Caprice Classic
5.0
1G1BN69H9GY100365
39,970
1986
7
0.354
C0322G
QM Corsica
2.0
1G1LT5116HY102322
34,364
1987
13
0.403
C0665W
GM Corsica
2.0
1G1LT5111JY616665
16,935
1988
4
0.375
CO7108
QM Corsica
2.8
1G1LT51W9HY104710
34,268
1987
10
0.306
CV924W
Ford Crown Victoria
5.0
2FABP73F8HX183924
39,242
1987
5
0.090
ES707R
Ford Escort
1.9
1FAPP2599HW328701
44,559
1987
6
0.332
LA127B
Chrysler LeBaron
2.5
1C3CJ41K0JG324127
36,418
1988
6
0.188
LA392W
Chrysler LeBaron
3.0
1C3XJ4538LG418392
20,087
1990
3
0.387
LS612B
QM Bulck LeSabre
3.8
1G4HP14C6JH482612
54,803
1988
6
0.523
SA333B
Ford Mercury Sable
3.0
1MEBN5048HA615333
44,360
1987
6
0.092
S0756B
QM Bulck Somerset
2.5
1G4NM14V7HM078756
45,136
1987
6
0.385
TA207Q
Ford Taurus
3.8
1FABP524XJA148207
36,148
1988
4
0.160
-------
Figure 5-1
HC Emissions arid Lagged Acceleration
Bag 2: 506 to 1,006 Seconds
Vehicle: LS612B Run: 31116
Time (seconds)
-------
CRUISE MODE EMISSIONS ANALYSIS
Further investigations of the relationship between speed and HC emissions were
made for the six normal emitters in the data set. This analysis was restricted to cruise
mode emissions to allow full comparison of emission results, which are expressed either
on a grams-per-mile or grams-per-second basis.
Figure 5-2 plots the instantaneous HC emission rate (on a per-mile basis) versus
vehicle speed during cruise mode for vehicle C0322G (a GM Corsica). Most of the
higher emission values were observed at low speeds, though the data seem to support the
hypothesis that cruise mode emissions do not change much as speed increases or
decreases. Figures 5-3 and 5-4 show similar plots for vehicles C0665W and S0756B
respectively. These data tend to support the conclusion that cruise mode emissions are
invariant with speed.
61
-------
Figure 5-2
Cruise RAode Speed vs» Emissions
Bags 2 and 3 only Vehicle: C0322G
as
M
HC Emiss Rate, iig/sec
10,000
8,000
6,000
4,000
2,000
-
* •
• •
• *
• ; i
»
%
•
•
t#t..« o "3* • i
• ** i
* •* .
• •- ^
'.*• *1 ^ih* * •
1.' » ' £ s
10
20
30
40
50
60
Speed, inph
-------
Figure 5-3
Cruise Mode Speed vs. HC Emissions
Bags 2 and 3 only Vehicle: C0665W
HC Emiss Rate, ^ig/sec
-10,000 1 . .
8,000
6,000
4,000
2,000
0
10
20
30
40
50
60
Speed, mph
-------
Figure 5-4
Cruise Mode Speed vs. HC Emissions
Bags 2 & 3 only Vehicle: S0756B
HC Emiss Rale, tig/sec
6,000
5,000
4,000
3,000
2,000
1,000
0
10 20 30 40 50 60
Speed, mph
-
t
-
«
•
- •
-
•
•
-
•
•
•
*
•
•
•
«
*• •
rnmm •»••••••••••*•#•*•*«*»•«•
• *
• • •
• . .
•
<
* *
~ '
** M. *
• * • • •fT* • ••••••••••••••«•••«•
• « • •
« •*K • •
• • • >.!•* « A •
. 1 . r#f t j
^ #«« • * j •
«
i» • • .
• *
* * •
!«**• . * •
~ !
t* .**. * **%~/«•*
» • .«*i»«
1 •
• w -
~ i«
~ •*;
•
>
1 *.
•• * . •.
;
• • «
. * • *
U * *
• V • «
• «• •
1 ' . *
-------
SECTION 6
SUMMARY OF FINDINGS
Federal Test Procedure-measured cruise mode emissions are invariant with speed
when expressed on a grams-per-second basis. Accelerations produce the highest
emissions. Accelerations from a cruise speed to a higher speed appear to be as important
as accelerations from a stop in producing high HC emission values. In general, emission
rates for Bag 3 (in g/sec) are highest during acceleration and lowest during deceleration.
Cruise emission rates appear to be nearly the same as those during the idle mode.
65
-------
REFERENCES
CARB, 1986: California Air Resources Board. Methodology to Calculate Emission
Factors for On-Road Motor Vehicles. Technical Support Section, Emission
Inventory Branch, Motor Vehicle Emissions and Projections Section, November
1986.
Code of Federal Regulations, Title 40, Part 86 to 99, U.S. Government Printing Office,
Washington, D. C., My 1,1990.
Gabele and Colotta, 1981: Gabele, P., and J. Colotta. A Computer Controlled, Real-
Time Automobile Emissions Monitoring System. SAE Technical Paper Series
No. 811185, Warrendale, Pennsylvania, October 1981.
Ingalls, Smith, and Kirksey, 1989: Ingalls, M.N., L.R. Smith, and R.E. Kirksey.
Measurement of On-Road Vehicle Emission Factors in the California South Coast
Air Basin, Volume I -Regulated Emissions. Project SCAQS-1, Southwest
Research Institute, San Antonio, Texas. Prepared for the Coordinating Research
Council, Inc., Atlanta, Georgia, June 1989.
Ripberger and Markey, 1991: Ripberger, C.T., and J. Markey. Conceptual Design Issues:
Developing a New Highway Vehicle Emissions Estimation Methodology.
Proceedings, Emission Inventory Issues in the 1990s, Papers from an International
Specialty Conference, Air and Waste Management Association, Durham, North
Carolina, September 1991.
Seitz, 1989: Seitz, L.E. California Methods for Estimating Air Pollutant Emissions from
Motor Vehicles. Paper No. 89-7.4, presented at 82nd meeting of Air and Waste
Management Association, Anaheim, California, June 25-30,1989.
Stump, Knapp, and Ray, 1990a: Stump, F.D., K.T. Knapp, and W.D. Ray. Seasonal
Impact of Blending Oxygenated Organics with Gasoline on Motor Vehicle
Tailpipe and Evaporative Emissions. Journal of the Air and Waste Management
Association, Vol. 40, No. 6, June 1990.
66
-------
REFERENCES (continued)
Stump, Knapp, and Ray, 1990b: Stump, F.D., K.T. Knapp, and W.D. Ray. The Seconal
Impact of Blending Oxygenated Organics with Gasoline on Motor Vehicle
Tailpipe and Evaporative Emissions - Part II. SAE Technical Paper Series No.
902129, Warrendale, Pennsylvania, October 1990.
Stump, Knapp, and Ray, 1992a: Stump, F.D., K.T. Knapp, and W.D. Ray. The
Composition of Motor Vehicle Organic Emissions Under Elevated Temperature
Summer Driving Conditions (75 to 105°F). Journal of the Air and Waste
Management Association, Vol. 42, No. 2, February 1992.
Stump, Knapp, and Ray, 1992b: Stump, F.D., K.T. Knapp, and W.D. Ray. The
Composition of Motor Vehicle Organic Emissions Under Elevated Temperature
Summer Driving Conditions (75 to 105°F) - Part II. Journal of the Air and
Waste Management Association, Vol. 42, No. 10, October 1992.
Wilson and Ripberger, 1991: Wilson, J.H., Jr., and C.T. Ripberger. Proceedings of Two
Highway Vehicle Emissions Workshops. Paper No. 91-180.27, presented at 84th
meeting of Air and Waste Management Association, Vancouver, British
Columbia, June 1991.
67
-------
68
-------
APPENDIX A
FTPCLC4 Motor Vehicle Emissions Data Reduction Program
For: U.S. Environmental Protection Agency
Research Triangle Park, NC
Contract 68-D9-0168 WA 38
By: . Phil Childress
E.H. Pechan & Associates, Inc.
5537 Hempstead Way
Springfield, Virginia 22151
* PTPCLC4.PRG
close data
clear all
set talk off
~accept "Real time (r) or Bag (b) mode? " to dmy
*rltim=iif(lower(dmy)="r",. t.,.f.)
* federal test procedure auto emis calc routine
* e. h. pechan & associates, inc.
* by p. childress
* november 21, 1991
* revisions:
* 12/5/91 jpc add totalling of mode info. bag2 only
* 12/6/91 add bag3 & bagl
* this program calculates nox, co, cox and he emissions from raw
* data files organized by test car and temp/press test data file.
* data is real-time, organized by second into five phases:
* bagO: 1-124 seconds 124 total
* bagl: 1-505 seconds (505 total) acc,crz,dec,idl
* bag2: 506-1377 seconds (872 total) acc,crz,dec,idl
* bkgd: 1378-1977 seconds (600 total) "background" (engine off)
* bag3: 1978-2482 seconds (505 total) acc,crz,dec,idl
* the first six rows of the data bases are labels and coefficients
* data begins in row seven, so offset record no's for phases are:
* bagO: 7-130 (124 seconds)
* bagl: 7-511 seconds (505)
bag2: 512-1383 seconds (872)
* bkgd: 1384-1983 seconds (600) total background
* bkusd: 1443-1922 seconds (480) background used
* bag3: 1984-2488 seconds (505)
* the files contain odd numbers of rows, like 2488, 2492, or 2493
* the modes of different time slices are picked up in modesl.dbf
A-l
-------
* the sg standard gasoline driver file of cars and tests in
sgfiles.dbf
public xxx, yyy, xmx,ymx,kx,ky
publie xxrun,xxveh
public xxfuel,xxpbar,xxtemp,xxcgal,xxspco2,xxhqc,xxoqc,xxcct
public xtmp,xavg,zzx,zzpbar,zzl,zztempl,zztemp2,zzpdl,zzpd2
public zzhl,zzh2,zzpv,zznox
public xk6, xj 7,xrh,xavrh,xxost,xavj7,xavk6,xtest
* work cells for bags or modes
public wwhc0,wwhel,wwhc2,wwhc3,wwhek
public wwnxO,wwnxl,wwnx2,wwnx3,wwnxk
public wwcoO,wwcol,wwco2,wwco3,wwcok
public wwc2 0,wwc21,wwc22,wwc23,wwc2k
public wwspO,wwspl,wwsp2,wwsp3
public wvOTiO,wwmil,wvOTi2fwwmi3
public wwvmO , wwvml, wwvm2 , wwvm3 , wwvmps
public wwdfQ,wwdfl,wwdf2,wwdf3 .
public nnO,nnl,nn2,nn3,nnk
public dbhcO, clbhcl»dbhc2, dbhc3
public dbnxO,dbnxl,dbnx2,dbnx3
public dbcoO,dbcol,dbco2»dbco3
public dbc20,dbc21,dbc22,dbc23
public gntfic0,g^cl,gmhc2,gmhc3,gmhcwt
public gmnxO, gmnxl, gmnx2, gmnx3, gxnnxwt
public gmcoO, gmcol, gmco2, gmco3, gmcowt
public gmc20,gmc21,gmc22,gmc23,gmc2wt
public mpgO,mpgl,mpg2,mpg3,mpgwt
public qqconam,qqc2nam,qqhenam
public datfil,datshl,basdat,rptshl,rptout,dtel,fuels,vehruns» secmode
public inprn,calcshl,calcout
public nnli,nnla,nnlc,nnld,blhci,blhca,blhcc,blhcd
public dbhcli,dbhcla,dbhclc,dbhcld
public tgmhel, tgmhcli,tgmhcla, tgrnhclc, tgmhcld
public ttlmode
public nn2i,nn2a,nn2c,nn2d,b2hci,b2hca,b2hcc,b2hcd
JJUijX JL w UUiiwtu Jl g UUllw4u> O. f LUJIIwa L> / UiJllwZ U
public tgmhc2,tgmhc2i,tgmhc2a,tgmhc2c,tgmhc2d
public tt2mode
public nn3i,nn3a,nn3c,nn3d,b3hci,b3hca,b3hcc,b3hcd
public dbhc3i,dbhc3a,dbhc3c,dbhc3d
public tgmhc3,tgmhc3i,tgmhc3a,tgmhc3c,tgmhc3d
public tt3mode
vehruns="c:\jn738\runfil.dbf"
secmode=*c:\jn738\secmode.dbf"
datshl="c:\jn738\xshl.dbf"
A-2
-------
basdat="c:\jn738\basdat.dbf"
rptshl="c:\jn738\rptshl.dbf"
rptout="c:\jn738\rptout.dbf"
rpttmp="c:\jn73 8\rpttmp.dbf"
calcshl="c:\jn738\calcshl.dbf"
calcout="c:\jn738\calcout.dbf"
dtcl="c:\jn738\dtcl.dbf"
fuels="c:\jn738\fuels.dbf"
jnkfill="c:\jn738\jnkfill.dbf"
jnkfil2="c:\jn73 8\jnkfil2.dbf"
jnkndxl="c:\jn738\jnkndxl.ndx"
j nkndx2 ="c:\jn738\jnkndx2.ndx"
* load data from primary data file into data shell
sele f
use &vehruns
goto top
* overall run loop here
nruns=0
*do while recno () <3 && test only-
do while .not. eof(}
nruns=nruns+l
xxveh=vehicle
xxrun=run
? "Begin run "+xxrun+" at time "+time()
xxfuel=fuel
xxpbar=pbar
xxtemp=temp
inprn="g:\rcddata\"+trim(xxrun)+".prn"
datfil="c:\jn738\x"+trim(xxrun)+¦.dbf"
sele a
erase &datfil
use &datshl
copy to &datfil
use &datfil
appe from &inprn deli with blan
sele b
use &secmode
sele a
set rela to recno() into b
repl all sec with b->sec,mode with b->mode,tmode with b->tmode
* fill in pp and qq—transformed data with lags
* note this is wierd because there were 2-row time offsets in lotus
macro
goto 4
xxa4=k6aft && 250 or 0
xxb4=j7cell && can be 100 or 0.634
goto bott
xxbot=recno()
A-3
-------
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
goto 7
kkk=0
do while recno{)=7.and.recno()<512
nnl=nnl+l
2ztemp=hotfid/iif(xxb4=100,10,1}
wwhc1=wwhc1+zztemp
wwnxl=wwnxl+nox/iif(xxa4=250,1,2.5)
wwcol=wwcol+qq
wwc21=wwc21+co2
wwspl=wwspl+speed
do case
case mode="i"
blhci=blhci+z2temp
xko,x^ 7,xrh,xxost
wwhcO,wwhcl,wwhc2,wwhc3,wwhck
wwnxO,wwnxl,wwnx2,wwnx3,wwnxk
wwcoO,wwcol,wwco2,wwco3,wwcok
wwc20,wwc21,wwc22,wwc23,wwc2k
wwspO,wwspl,wwsp2,wwsp3
wwmi0,wwmi1,wwmi2,wwmi3
wwvmO, wwvml, wwvm2, wwvm3
wwdf0,wwdfl,wwdf2,wwdf3
nnO,nnl,nn2,nn3,nnk
nnli,nnla,nnlc,nnld
blhci,blhca,blhcc,blhcd
nn2 ^ f nn2 a, z^xi2 c, n.^x2 d
b2hci,b2hca,b2hcc,b2hcd
nn3 i,nn3 a,nn3 c,nn3 d
b3hci,b3hca,b3hcc,b3hcd
A-4
-------
nnli=rmli+l
case mode="a"
blhca =blhca+z z t emp
nnla=nnla+l
case mode="c"
blhcc=blhcc+zztemp
nnlc=nnlc+l
case mode="d"
blhcd=blhcd+zztemp
nnld=nnld+l
endcase
if recno()<131
nn0=nn0+l
wwhcO=wwhcO+hotfid/iif(xxb4=100,10,1)
wwnx0=wwnx0+nox/iif(xxa4=250,1,2.5)
wwco 0 =wwco 0+qq
wwc 20=wwc20+co2
wwsp0=wwsp0+speed
endif
case recno{)>=512.and.recno()<13 84
nn2=nn2+l
zztemp=hotfid/iif(xxb4=100,10,1)
wwhc2=wwhc2+z z temp
wwnx2 =wwnx2 +nox/i i f(xxa4=250,1,2.5)
wwco2=wwco2+qq
wwc22=wwc22+co2
wwsp2=wwsp2+speed
do case
case mode="i"
b2hci=b2hci+zztemp
nn2i=nn2i+l
case mode="a"
b2hca=b2hca+zztemp
nn2a=nn2a+l
case mode="c"
b2hcc=b2hcc+zztemp
nn2c=nn2c+l
case modes"d"
b2hcd=b2hcd+ zztemp
rm2d=rm2d+l
endcase
case recno()>=1984.and.recno{)<2489
nn3=nn3+l
zztemp=hotfid/iif(xxb4=100,10,1)
wwhc3=wwhc3+z z temp
wwhc3=wwhc3+hotfid/iif(xxb4=10Q,10,1)
wwnx3 =wwnx3 +nox/i i f(xxa4=250,1,2.5)
wwco3 =wwco3 +qq
wwc23=wwc23+co2
wwsp3=wwsp3+speed
do case
case mode="i"
b3hci=b3hci+zztemp
A-5
-------
nn3i=nn3i+l
case mode="a"
b3hca=b3hca+zztemp
nn3a=nn3a+l
case mode="c"
b3hcc=b3hcc+zztemp
nn3c=nn3c+l
- case mode="d"
b3hcd=b3 hcd+ zztemp
nn3d=nn3d+1
endcase
case recno()>=1443.and.recno()<1923 &&background 480 sees engine off
nnk=nnk+l
wwhck=wwhck+hot f id/i i f(xxb4=100,10,1)
wwnxk=wwnxk+nox/iif(xxa4=250,1,2.5)
wwcok=wwcok+qq
wwc2k=wwc2k+co2
endcase
skip
enddo && major pass in data base
xxost=(xxost/17)*9/5+32 && c to f
xavj7=xj 7/kkk
xavrh=xrh/kkk
xavk6=xk6/kkk
* avg he info by bag 1,2,3 and mode i,a,c,d
blhci=blhci/nnli
blhca=blhca/nnla
blhcc=blhcc/nnlc
blhcd=blhcd/nnld
b2hci=b2hci/nn2i
b2hca=b2hca/nn2a
b2hcc=b2hcc/nn2c
b2hcd=b2hcd/nn2d
b3hci=b3hci/nn3i
b3hca=b3hca/nn3a
b3hcc=b3hcc/nn3c
b3hcd=b3hcd/nn3d
* average speeds
wwsp0=wwsp0/nn0
wwspl=wwspl/nnl
wwsp2=wwsp2/nn2
wwsp3 =wwsp3/nn3
use &fuels
loca for substr(ltrim(upper(fulnam)),1,2)=;
substr(1trim(upper(xxfuel)),1,2)
A-6
-------
xxcgal=cgal
xxspco2=spco2
xxhqc=hqc
xxoqc=oqc
zzx=647.27-xavj 7+273.16
xtest=xavj7*9/5+32
xxcct=iif(xtest>200,75.01,xtest)
zzpbar=760
zzl=760/25.4
zztempl=(zzx/(zzx-647.27))*((3.244+0.00587*zzx+117*10"-10*zzx"3)/;
(1+.002188*zzx))
*zztemp2=exp(zztempl*log(10))
zztemp2=10~zztempi && the same thing easier
zzpdl=29.92*218.167/zztemp2
zzpd2=-.004144+.005766*xxcct-.0000633*xxcetA2+;
2122*10's-9*xxcet'v3-79*l0A-10*xxcct'N4+6.55*10"-ll*xxcct'v5
z zpv=xavrh*z zpd2/10 0
zzhl=43.478*xavrh*zzpdl/(zzpbar-(zzpdl*xavrh/100))
zzh2=4347.8*zzpv/(zzl-zzpv)
zznox=l/(1-.0047*(zzh2-75)) && nox corr factor
* now do this with explicit arithmetic-it's quicker I think
wwhc 0 =wwhc 0/nn0
wwhc1=wwhc1/nn1
wwhc2 =wwhc2/nn2
wwhc3 =wwhc3/nn3
wwhck=wwhck/nnk
wwnx0 =wwnx 0/nn0
wwnxl=wwnxl/nnl
wwnx2=wwnx2/nn2
wwnx3=wwnx3/nn3
wwnxk=wwnxk/nnk
wwco0=wwco0/nn0
wwcol=wwcol/nnl
wwco2 =wwco2/nn2
wwco3 =wwco3/nn3
wwcok =wwcok/nnk
wwc20=wwc20/nnO
wwc21=wwc21/nn1
wwc22=wwc22/nn2
wwc23=wwc23/nn3
wwc2k=wwc2k/nnk
* miles per phase
wwmi0=(wwspO-.05)*nn0/3 600
A-7
-------
I
wwmil=(wwspl-.05)*nnl/3600
wwmi2=(wwsp2-.05)*nn2/3600
wwmi3=(wwsp3-.05)*nn3/3600
* vmix factors
wwvm0=iif(xxb4=.634,0.634*1.757747*(xxpbar-75.6)/;
0.659,1.757747*(xxpbar-35.5))
wwvml=iif(xxb4=.634,0.634*7.156803*(xxpbar-75.6)/;
0.659,7.156803*(xxpbar-35.5))
wwvm2=iif(xxb4=.634,0.634*12.373673* (xxpbar-75.6)/,-
0.659,12.373673*(xxpbar-35.5))
wwvm3=wwvml
* vmix per second—like 10.3 cubic feet of total diluted mix
wwvmps=iif(xxb4=.634,0.634*.0141795*(xxpbar-75.6)/;
0.659,.0141759*(xxpbar-35.5))
* dilution factors
wwdf 0 =xxspco2/(wwc20+.0001*(wwcoO+wwhcO))
wwdfl=xxspco2/(wwc21+.0001*(wwco1+wwhc1))
wwdf2=xxspco2/(wwc22+.0001*(wwco2+wwhc2))
wwdf3=xxspco2/(wwc23+.0001*(wwco3+wwhc3)}
* dilution tunnel - backgrnd corrected
store 0 to dbhc0,dbhcl,dbhc2,dbhc3
store 0 to dbnxO,dbnxl,dbnx2,dbnx3
store 0 to dbcoO,dbcol,dbco2,dbco3
store 0 to dbc20,dbc21,dbc22,dbc23
dbhc0=wwhc0-wwlick* (1-1/wwdf 0)
dbhcl=wwhcl-wwhck*(1-1/wwdfl)
dbhc2=wwhc2-wwhek*(1-1/wwdf2}
dbhc3 =wwhc3-wwhck *(1-1/wwdf3)
dbnxO =wwnx0-wwnxk *(1-1/wwdfO)
dbnxl=wwnxl-wwnxk *(1-1/wwdf1)
dbnx2=wwnx2-wwnxk*(1-1/wwdf2)
dbnx3 =wwnx3-wwnxk*(1-1/wwdf3)
dbco0=wwco0-wwcok*(1-1/wwdfO)
dbcol=wwcol-wwcok*(1-1/wwdfl)
dbco2=wwco2-wwcok*(1-1/wwdf2)
dbco3=wwco3-wwcok*(1-1/wwdf3)
dbc20=wwc20-wwc2k*(1-1/wwdfO)
dbc21=wwc21-wwc2k*(1-1/wwdfl)
dbc22=wwc22-wwc2k*(1-1/wwdf2)
dbc23=wwc23-wwc2k*(l-l/wwdf3)
A-8
-------
* bagl,2,& 3 mode-specific info
store 0 to dbhcli,dbhcla,dbhclc,dbhcld
store 0 to dbhc2i,dbhc2a,dbhc2c,dbhc2d
store 0 to dbhc3i,dbhc3a,dbhc3c,dbhc3d
dbhcli=blhci~wwhck*(1-1/wwdfl)
dbhcla =blhca-wwhek *(1 1/wwdf X)
dbh.clc=blhcc-wwhck* (1-1/wwdfl)
dbhcld=blhcd-wwhek*(1-1/wwdfl)
dbhc2i=b2hci-wwhck*(l-l/wwdf2)
dbhc2a=b2hca-wwhck*(l-l/wwdf2)
dbhc2 c=b2hcc-wwhck*(l-l/wwdf2)
dbhc2d=b2hcd-wwhck*(1-1/wwdf2)
dbhc 3 i =b3 he i-wwhek *(1-1/wwdf3)
dbhc3a=b3hca-wwhck*(1-1/wwdf3)
dbhc3c=b3hec-wwhek*(1-1/wwdf3)
dbhc3d=b3hcd-wwhck*(1-1/wwdf3)
* gm/mi calcs
store 0 to gmhcO, gmhel, gmhc2, gmhc3, gmhewt
store 0 to gmnxO,gmnxl,gmnx2»gmnx3,gmnxwt
store 0 to gmcoO,gmcol, gmco2,gmco3,gmcowt
store 0 to gmc20, gmc21,gmc22,gmc23,gmc2wt
zgmhc=16.33 && coefs
zgmnx=54.16
zgmco=32.97
zgmc2=51.81
gmhcO=wwvmO*dbhcO*zgmhc/ (wwmi0*10A6)
gmhc 1 =wwvml * dbhc 1 * z gmhc / (wwmil*10/s6)
gmhc2 =wwvm2 * dbhc2 * z gmhc/(wwmi2 *10^6)
gmhc3=wwvm3*dbhc3*zgmhc/ (wwmi3*10~6)
gmnxO=zznox*wwvmO*dbnxO*zgmnx/(wwmi0*10~6)
gmnxl = z znox*wwvml* dbnxl* zgmnx/(wwmil*10~6)
gmnx2=zznox*wwvm2*dbnx2*zgmnx/ (wwmi2*10/N6)
gmnx3 = z znox*wwvm3 *dbnx3 * zgmnx/ (wwmi3*10~6)
gmeo0=wwvm0*dbco0*zgmco/ (wwmi0*10/s6)
gmcol=wwvml*dbcol*zgmeo/(wwmil*10~6)
gmco2 =wwvm2 *dbco2 * zgmco/(wwmi2*10A6)
gmco3=wwvm3*dbco3 *zgmco/ (wwmi3*10/N6)
gmc20=wwvm0*dbc20*zgmc2/(wwmi 0*100)
gmc21=wwvml*dbc21* zgmc2/(wwmil*100)
gmc22=wwvm2*dbc22*zgmc2/(wwmi2*100)
gmc2 3 =wwvm3 * dbc2 3 * zgmc2/(wwmi3*100)
* fuel economy calcs
store 0 to mpgO,mpgl,mpg2,mpg3,mpgwt
A-9
-------
xtemp=12/(12+xxhqc+15.99*xxoqc)
mpgO=xxcgal/ (0.429*gmco0+0.273*gmc20+xtemp*gmhc0)
mpgl=xxcgal/(0.42 9*gmcol+0.273*gmc21+xtemp*gmhcl)
mpg2 =xxcgal/ (0.42 9*gmco2+0.273*gmc22+xtemp*gmhc2}
mpg3=xxcgal/(0.429*gmco3+0.273*gmc23+xtemp*gmhc3)
* weighted avg of emiss & fuel economy
gmhcwt=0.43*(gmhcl*wwmil+gmhc2*wwmi2)/(wwmil+wwmi2)+;
.57* (grnhc2 *wwmi2+gxnhc3*wwmi3) / {wwini2+wwmi3)
gmnxwt=0 .43* (gmiixl*wwmil+gxTurix2*wwmi2) / (wwmil+wwmi2) + ;
.57*(gmnx2*wwmi2+gmnx3*wwmi3)/(wwmi2+wwmi3)
gmcowt=0.43*(gmcol*wwmil+gmco2*wwmi2)/(wwmil+wwmi2)+;
.57*(gmco2 *wwmi2+gmco3*wwmi3)/(wwmi2+wwmi3)
gmc2wt=0 .43* (gmc21*wwmil+gmc22*wwmi2) / (wwmil+wwmi2) + ;
.57*(gmc22*wwmi2+gmc23*wwmi3)/{wwmi2+wwmi3)
mpgwt=0 .43* {mpgl*wwmil+mpg2*wwmi2) / (wwmil+wwmi2) +;
. 57* (mpg2*wwmi2 +mpg3*wwmi3) / (wwmi2+wwmi3)
* total grams and mode info for bag2
store 0 to tgmhel,ttlmode
store 0 to tgmhcli,tgmhcla,tgmhclc,tgmhcld
tgmhcl= dbhcl*wwvmps*zgirhc* (nnli+nnla+nnlc+nnld) 710^6
tgmhcli= dbhcli*wwvmps*zgmhc*nnli/10A6
tgrohcla= dbhcla*wwvmps*zgmhc*nnla/10/v6
tgmhclc= dbhclc*wwvmps*zgmhc*nnlc/10~6
tgmhcld= dbhcld*wwvmps*zgmhc*nnld/10A6
ttlmode=tgjmhcli+tgmhcla+tgmhclc+tgmhcld
store 0 to tgmhc2,tt2mode
store 0 to tgmhc2i,tgmhc2af tgmhc2c,tgmhc2d
tgmhc2= dbhc2*wwvmps*zgmhc*(nn2i+nn2a+nn2c+nn2d)/10A6
tgmhc2i= dbhc2i*wwvmps*zgmhc*nn2i/10'N6
tgmhc2a= dbhc2a*wwvmps*zgmhc*nn2a/10/v6
tgmhc2c= dbhc2c*wwvmps*zgmhc*nn2c/10A6
tgmhc2d= dbhc2d*wwvmps*zgmhc*nn2d/10rt6
tt2mode=tgmhc2i+tgmhc2a+tgmhc2c+tgmhc2d
store 0 to tgmhc3,tt3mode
store 0 to tgmhc3i,tgmhc3a,tgmhc3c,tgmhc3d
tgmhc3= dbhc3*wwvmps*zgmhc*(nn3i+nn3a+nn3c+nn3d)/10A6
tgmhc3i= dbhc3 i *wwvmps * zgmhc*nn3 i/10 A 6
tgmhc3a= dbhc3a*wwvmps*zgmhc*nn3a/10'v6
tgmhc3c= dbhc3c*wwvmps*zgmhc*nn3c/10/v6
tgmhc3d= dbhc3d*wwvmps*zgmhc*nn3d/10A6
A-10
-------
tt3mode=tginhc3i+tginhc3a+tgmhc3c+tginhc3d
* fill calcout with mem vars
if nruns=l
use &calcshl
erase &calcout
copy stru to calcout
endif
use &calcout
appe blan
repl xxrun with m->xxrun
repl xxveh with m->xxveh
repl xxost with m->xxost
repl xxfuel with m->xxfuel
repl gmhcO with m->gmhcO
repl gmhcl with m->ginhcl
repl gmhc2 with m->gmhc2
repl gmhc3 with m->gmhc3
repl gxnhcwt with m->gmhcwt
repl xxcct with m->xxcet
repl xxhqc with m->xxhqc
repl gmnxO with m->gmnxQ
reol crmnvl with in—>crmnvl
•L Walk uii ill /'MiiUL/VJt
repl gmnx2 with m->gmnx2
repl gmnx3 with m->gmnx3
repl gmnxwt with m->gmnxwt
repl xavrh with m->xavrh
repl xxoqc with m->xxoqc
repl gmcoO with m->gmcoO
repl gmcol with m->gmcol
repl gmco2 with m->gmco2
repl gmco3 with m->gmco3
repl grocowt with m->gmcowt
repl zznox with m->zznox
repl xxspco2 with m->xxspco2
repl gmc20 with m->gmc20
repl gmc21 with m->gmc21
repl gmc22 with m->gmc22
repl gmc23 with m->gmc23
repl gmc2wt with m->gmc2wt
repl xxpbar with m->xxpbar
repl xxcgal with m->xxcgal
repl mpgQ with m->mpgO
repl mpgl with m->mpgl
repl mpg2 with m->mpg2
repl mpg3 with m->mpg3
repl mpgwt with m->xnpgwt
repl wwmiO with m->wwmiO
repl wwir.il with m->wwmil
repl wwmi2 with m->wwmi2
repl wwmi3 with m->wwmi3
repl wwvmO with m->wwvmO
repl wwvml with m->wwvml
A-ll
-------
repl
repl
repl
wwvm2 with m->wwvm2
wwvm3 with m->wwvm3
wwvmps with m->wwvmps
repl wwdfO with m->wwdf0
repl wwdf1 with m->wwdfl
repl wwdf2 with m->wwdf2
repl wwdf3 with m->wwdf3
repl tgmhcl with m->tgmhcl
repl tgmhcli with m->tgmhcli
repl tgmhcla with m->tgmhcla
repl tgmhclc with m->tgmhclc
repl tgmhcld with m->tgmhcld
repl tgmhc2 with m->tgmhc2
repl tgmhc2i with m->tgxnhc2i
repl tgmhc2a with m->tgmhc2a
repl tgmhc2c with m->tgmhc2c
repl tgmhc2d with m->tgmhc2d
repl tgmhc3 with m->tgmhc3
repl tgmhc3i with m->tgmhc3i
repl tgmhc3a with m->tgmhc3a
repl tgmhc3c with m->tgmhc3c
repl tginhc3d with m->tgmhc3d
sele f
skip
enddo &&overall loop
? "End all runs at time "+time()
A-12
-------
CALCOUT. DBF is the database containing the results of the data
COXXV€*3r S JLOXX program. The fieldnames in the database are listed
below with a croswalk to the name used in the report.
FIELD NAME
REPORT NAME
XXRUN
RUN $
XXVEH
VEHICLE
XXOST
OIL SUMP TEMP
XXFUEL
fuel
GMHCO
HC, GRAMS/MILE, BAG 0
GMHC1
HC, GRAMS/MILE, BAG 1
GMHC2
HC, GRAMS/MILE, BAG 2
GMHC3
HC, GRAMS/MILE, BAG 3
GMHCWT
HC, GRAMS/MILE, WEIGHTED
XXCCT
COLD CELL TEMP (Td}
XXHQC
H/C
GMNXO
NOX, GRAMS/MILE, BAG D
GMNX1
NOX, GRAMS/MILE, BAG 1
GMNX2
NOX, GRAMS/MILE, BAG 2
GMNX3
NOX, GRAMS/MILE, BAG 3
GMNXWT
NOX, GRAMS/MILE, BAG WEIGHTED
XAVRH
RELATIVE HUMIDITY
XXOQC
O/C
GMCOO
CO, GRAMS/MILE, BAG 0
GMCOl
CO, GRAMS /MILE, BAG 1
GMC02
CO, GRAMS/MILE, BAG 2
GMC03
CO, GRAMS/MILE, BAG 3
GMCOWT
CO, GRAMS/MILE, BAG WEIGHTED
ZZNOX
NOX CORRECTION FACTOR
XXSPC02
SPC02
GMC20
C02, GRAMS/MILE, BAG 0
GMC21
C02, GRAMS/MILE, BAG 1
GMC22
C02, GRAMS/MILE, BAG 2
GMC23
C02, GRAMS/MILE, BAG 3
GMC2WT
C02, GRAMS/MILE, BAG WEIGHTED
XXPBAR
PRESS. BARO
XXCGAL
CGAL
MPGO
FE, MPG, BAG 0
MPG1
FE, MPG, BAG 1
MPG2
FE, MPG, BAG 2
MPG3
FE, MPG, BAG 3
MPGWT
FE, MPG, BAG WEIGHTED
WWMIO
MILES PER PHASE, BAG 0
WWMIl
MILES PER PHASE, BAG 1
WWMI2
MILES PER PHASE, BAG 2
WWMI3
MILES PER PHASE, BAG 3
WWVMO
VMIX FACTORS, BAG 0
WWVMl
VMIX FACTORS, BAG 1
WWVM2
VMIX FACTORS, BAG 2
WWVM3
VMIX FACTORS, BAG 3
WWVMPS
VMIX PER SECOND
WWDFO
DILUTION FACTOR BY PHASE, BAG
0
WWDFl
DILUTION FACTOR BY PHASE, BAG
1
WWDF2
DILUTION FACTOR BY PHASE, BAG
2
A-13
-------
FIELD NAME
WWDF3
TGMHC1
TGMHC1I
TGMHC1A
TGMHC1C
TGMHC1D
TGMHC2
T©fflC2I
TGMHC2A
TGMHC2C
TGMHC2D
TGMHC3
TGMHC3I
TGMHC3A
TGMHC3C
TGMHC3D
REPORT NAME
DILUTION FACTOR
TOTAL GRAMS HC,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
TOTAL GRAMS HC,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
TOTAL GRAMS HC,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,
BY PHASE, BAG 3
BAG 1
IDLE
ACCELERATION
CRUISE
DECELERATION
BAG 2
IDLE
ACCELERATION
CRUISE
DECELERATION
BAG 3
IDLE
ACCELERATION
CRUISE
DECELERATION
A-14
-------
APPENDIX B
FEDERAL TEST PROCEDURE EQUATIONS
USED TO CALCULATE GRAMS PER MILE EMISSIONS FROM
EXHAUST ANALYZER EMISSIONS DATA
(SOURCE: 40 CFR §86.144-78)
8 MJ44-7S
(lv) V,«Net enclosure volume ft*
(m«>, as determined by subtracting SO
ft* (1.42 m*) (volume of vehicle with
trunk and windows open) from the en-
closure volume. A manufacturer may
use the measured volume of the vehi-
cle (instead of the nominal SO ft1) with
advance approval by the Administra-
tor: Provided, the measured volume is
determined and used for all vehicles
tested by that manufacturer.
(v) r-PID response factor to metha-
nol.
(vi) P.-Barometric pressure, in Br
(kPa).
40 CFI Oi.) (7-1-90 MMert)
(vii) T-Enclosure temperature,
•RCK).
(vili) 1-Initial reading.
(I*) f-final reading.
(x) 1-First impinger.
. t
32.042 32.042
(b) The final reported results shall
be computed by summing the individ-
ual evaporative emission results deter-
mined for the diurnal breathing-loss
test, running-loss test and the hot-
soak test.
154 FR 14534, Apr. 11. 1889]
8 86.144-78 Calculation!; exhaust emis-
sions.
The final reported test results shall
be computed by use of the following
formula:
(a) For light duty vehicles and light
duty trucks:
Y„-0.43 <(Y«+Y,»/(D.+D,»+0.5'Jf
«"¥»,+Y,)/(D*+D,))
where:
Y.»«Weighted mini emissions of each pol-
lutant, i.e., HC, CO. NO, or CO.. in
grams per vehicle mile.
Y„-M*as emissions ac calculated from the
"transient" phase oi the cold start test,
in grams per test phase.
Y*«>Mass emissions as calculated from the
•transient" phase of the hot start test,
is grams per test phase.
Y.-Mass emissions as calculated from the
"stabilized" phase of the cold start test,
in grams per test phase.
D„«The measured driving distance from
the "transient" phase of the cold start
test, in miles.
D»,-The measured distance from the "tran-
sient" phase of the hot start test. In
miles.
D.-The measured driving distance from the
"stabilized" phase of the cold start test,
in miles.
(b) The mass of each pollutant for
each phase of both the cold start test
and the hot start test Is determined
from the following:
(1) Hydrocarbon mass:
HC_ -V_x Density*; x(BC««/l,000.000)
(2) Oxides of nitrogen mass;
NOx_- V^x Density *» xKhx (NOjw/
1.000,000)
(3) Carbon monoxide mass:
CC^.-V-IxDensltya.x(CO«1«/l,000,000>
(4) Carbon dioxide mass:
CO»«-V«. x Densltycw x (CO^/lOO)
(c) Meaning of symbols:
(1) HC...«Hydrocarbon emissions,
In grams per test phase.
Density*-Density of hydrocarbons is 18.33
g/ft" (0.3788 kg/m* >, assuming an aver-
age carbon to hydrogen ratio of 1:1.85,
at <8* F <20* C) and 180 mm He (101.3
kFa) pressure.
B-l
-------
UIIHINIMVIIIIil I IVIVIIIVII ApfnCf
BC»»-Bydrocarbon concentration of the
dilute exhsust sample corrected for
background. is ppm euteo equivalent,
Lt.. equivalent propane x 3.
HC_-HC.-HC.C1-1/DF)
where:
HC,-Hydroc*rbon concentration of the
dilute exhaust sample or. for Dine!, av-
erage hydrocarbon concentration of the
dilute exhaust sample as calculated
from the Integrated BC traces. In ppm
carbon equivalent.
HC«-Hydrocarbon concentration of the di-
lution air as measured, in ppm carbon
equivalent.
(2) NOx^-Oxldes of nitrogen
emissions, In grams per test phase.
Density «o,-Density of oxides of nitrogen
is M.1I g/ft» (1.913 kg/m»>, assuming
they are in the form of nitrogen diox-
ide. at M* F (30* C) and 7*0 mm Bg
<101.3 kPa) pressure.
NOx^-Oxides of nitrogen concentration
of the dilute exhaust sample corrected
for background, to ppm.
KO*—.-NOx.-NOx« Cl-l/DP)
where:
NOx.-Oxides of nitrogen concentration
of the dilute exhaust sample U IBMf.
ured. to ppm.
NOXa-Oxides of nitrogen concentration
of the dilute air as measured, to ppm.
(3) COMm Carbon monoxide emis-
sions, in grains per test phase.
Density.-Density of carbon monoxide is
32.87 g/ft» (1.164 kg/m^, at 68*F <20*C)
and 760 mm Bg <101.3 kPa> pressure.
COM> Carbon monoxide concentration of
the dilute exhaust sample corrected for
background, water vapor, and CO« ex-
traction, to ppm.
CO««-CO,-CO.a- CO.,
Where:
CO..-Carbon monoxide concentration of
the dilution air sample as measured, in
ppm.
Note If a CO instrument which meets the
criteria specified In 186.111 is used and the
conditioning column has been deleted, CO„
must be substituted directly for CO, and
CO. must be substituted directly for CO*
8 M. 144-71
(4) CO^,-Carbon dioxide emis-
sions, in grams per test phase.
DensltyCO,-Denslty of carbon dioxide is
B1J1 g/ft» (1.830 kg/m"), at 6i* F <30* C)
and 760 mm Bg <101.3 kPa) pressure.
CO^,-Carbon dioxide concentrations of
the dilute exhaust sample corrected for
background. In percent.
GOwCO^-CO* Cl-l/DF)
where:
COm-Carbon dioxide ooneentrmtlon of the
dilution air as measured, in percent.
C5) DP-13.4/ICO.+(HC.+CO.)
10" <3
Kh-Humidity correction factor.
Kxm 1/[1-0,0047(H-75)1
for SI units -1 /tl-0.0J29(H-10.71 >1
where:
B-Absolute humidity in grains (mat) of
water per pound (kilogram] of dry air.
B-R43.478)R.xFll2/[Fa-(F,xB./100)]
for SI units, H«t<6.211>R,xP«V
tP»-(P«xR./100>J
R,aRelative humidity of the ambient air.
In percent.
Pa-Saturated vapor pressure, to mm Bg
(kPa) at the ambient dry bulb temper-
ature.
P»-Barometric pressure, in mm Bg (kPa).
V„.« Total dilute exhaust volume to cubic
feet per test phase corrected to stand-
ard conditions <228 R) <293 K> and 760
mm Hg <101.3 kPa».
For PDP-CVS. is:
Vm»- V.xMPi-R) B28 Jt/(760 mm Bg)
where:
V,-Volume of gas pumped by the positive
displacement pump, in cubic feet
-------
§ <6.144-90
40 CFR Ch. I (7-1.90 Edition)
(1) For the "transient" phase of the
cold start test assume the following;
V.-0.29344 ft '/revolution; N-10.485;
R-4B.0 percent; R.-48.2 percent; P,«762
mm He; P.-22.225 mm Mr P.-70 mm Kg;
T.-570 R; HC,« 105.8 ppm. carbon equiva-
lent; NO,,•-11.2 ppm; CO..306.6 ppm;
CIa.^1.43 percent; HC.-12.1 ppm;
NO.,-0.8 ppm; CO..-15.3 ppm.
COm-0.032 %; D„«3.S98 miles.
then:
V.,,-(0.29344) (10.485) (762-70) (528)/
< 760K570)—2595.0 It'per test phtae.
H-(43.478) (48.2) (22.225)/[t62
(22.225x48.2/100)} - 82 grains of
water per pound of dry air
Kk-1/[1—0.0047(62-75)1—0.9424
CO.-[1-0.01925 (1.43)—0.000323 (48)1
306.0—293.4 ppm
CO.-II-0.000323 <48)1 15.3-15.1 ppm
DF«13.4/[l,43+(105.8+293.4)x
10-9-9.118
HC-«-105.8-12.l(l —1/9.116)—95.03
ppm.
HCaaa>-(2595) (16.33) (95.03/
1,000,000)-4.027 grams per test phase.
11.2-0.8 (1-1/9.116)-10.49 ppm
l*Ox„a>-(2595) (34.16) (10.49/1,000,000)
(0.9424)-1.389 grams per test phase.
CO««-293.4-15.1 (1-1/9.116)—280.0 ppm
CO_-(2595) (32.97) (280/1.000,000)-
23.96 grams per test phase.
CXW-1.43-.032 (1-1/9.116)-1.402%
COW,-(25S5.0) (51.85) (1.402/100) -1886
grams per test phase.
(2) For the stabilized portion of the
cold start test assume that similar cal-
culations resulted in the following;
HC^.-0.62 grams per test phase
NOx„»= 1.27 grams per test phase
CO„=5.98 grams per lest phase
COia.sc 2346 grams per test phase.
0,-3.902 miles.
(3) Por the "transient" portion of
the hot start test assume that similar
calculations resulted in the following;
HC_-0.51 grams per test phase
NOx.^,-1.38 grams per test phase
CO.*.-5.01 grams per test phase
COw-1758 grams per test phase.
D„- 3.598 miles.
(4) Weighted mass emission results:
HC_—0-43 t(4.027 + 0.62)/(3.5B8 + 3.902)1 +
0.57 [(0.51+ 0.62)/(3.598 + 3.902 >1 - 0.352
grams per vehicle mile.
NO.™-0.43 [< 1.389-» 1.27)/
(3.598 -3.902!!+ 0.57 1(1.38-1.27)/
(3.598 -r 3.902)1 - .354 grams per vehicle
mile.
CO..-0.43 1(23.96+ 5.98>/(3.598+3.902)] +
0.57 [(5.01 + 5.98)/(3.S98 + 3.902)3-2.55
grams per vehicle mite.
COta.-0.43 1(1886 + 2346)/
(3.598 + 3.902)14 0.57 [(1758+2346)/
(3.598+ 3.902)1-555 grams per vehicle
mile.
(Approved by the Office of Management
and Budget under control number 2000-
0390)
(Sees. 202, 203. 206, 207, 208, 301a. Clean Air
Act. as amended; 42 U.S.C. 7521, 7522, 7525,
7641. 7542, 7601a)
[42 FR 32954, June 28, 1977, as amended at
42 FR 45655. Sept. 12. 1977; 43 FR 52922,
Nov. 14, 1978; 49 FR 48138. Dec. 10, 1984. 50
FR 10694. Mar. 15.19851
186.144-90 Calculation*; exhaust tmit.
•ions.
The final reported test results shall
be computed by use of the following
formula:
Dm-The measured distance from
the "transient" phase of the hot start
test, in miles.
(7) D,=The measured driving dis-
tance from the "stabilized"' phase of
the cold start test, in miles.
B-3
-------
-------
APPENDIX C
Federal Test Procedure Emissions by Bag
I7IK EMISSIONS REPORT BY
PHASE
CALCULATED BOSSICHS GRAMS/KIIE
TEST DATA:
ymjTrt |p
VfeltlViiiT.
C0665W
PHASE:
0-124
BAS1
BAG2
1AE3
WEIQITro
RUN 1
30853
FUEL
SG
OIL SIMP TEMP
76.047
H/C
1.880
COLD CELL TEMP CW>
78.610
O/C
0.000
HC
3.578
1.309
0,700
-0,862
0,397
RELATIVE HUMIDITY
51.958
SPC02
13.390
NOx
1.167
0.608
0.237
0.570
0,406
NOX CORRECTION FACTOR
1.003
CGAL
2430.083
CO ¦ '
34.628
14.376
2.103
2.843
4.850
PRESS. BARD
758.000
-
€02
371.030
337.105
330.134
291.98
321.104
H0TE: Hot FID Flameout
FE, MPG
20.380
24.465
26,519
30,306
27.133
ctk nassiws report by
PHASE
CALCULATED HUSSIONS GRAMS/KILE
TEST DATA:
VEHICLE
00665W
PHASE:
0-124
BAG1
BAG2
BAG3
HEIGHTS)
mm t
3 0854
FIM-
SB
OIL SEW T1MP
76.259
H/C
1.880
COLD ITU, TB1P (M)
76.450
O/C
0.000
HC
4.136
1,161
0.050
0.601
0,431
RELATIVE HUMIDITY
51.300
SPC02
13.390
NQx
1.182
0.5S8
0.225
0.493
0.370
NQx CORRECTION FACTOR
0.974
COAL
2430.083
CO
44,455
16.111
1.943
3,484
5.300
PRESS. BARO
758.000
C02
352.763
329.686
324.447
287.77
315.471
FE. MPG
20.429
24.817
27.167
30.160
27,501
dto aassions report by
PHA5E
CALmJIAxisu fUTSSItilS ^jitAMS/H ILE
TEST DATA:
VEHICLE
C0665W
PHASE:
0-124
BAG1
BAS2
BAQ3
WEIGHTED
RUN «
30861
FUEL
ss
OIL SDKP HHP
88.435
H/C
1.880
COLD CEIL TEMP (Td)
75.010
O/C
0.000
HC
2.450
0.773
0.041
0.722
0.380
RELATIVE HUMIDITY
25.650
SPC02
13.390
NQX
0.844
0.506
0,149
0.428
0.299
HO* CQRKBCTICK FACTOR
0.834
CGAL
2430.083
CO
37.107
13.534
1.998
3.334
4.755
PRESS. BARO
758.000
C02
322.061
316,691
326.983
287.58
314.015
FE, MPS
22,934
26.149
26.953
30.163
27.670
MS EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
C0665W
PHASE:
0-124
BAG1
BAG2
BAG3
WEIGHl'fciJ
RUN «
30862
FUEL
SG
OIL SUMP TEMP
88.012
H/C
1.880
COLD CELL TMP ITd)
95.049
O/C
0.000
HC
2.481
0.826
0.092
0.458
0.34S
RELATIVE HUMIDITY
27.998
SPC02
13.390
NOx
0.991
0.652
0.244
0.520
0.405
HQx CORMETICN FACTOR
0.970
CGAL
2430.083
CO
32.211
12.614
1,759
2.868
4.313
PRESS. BARO
758.000
C02
307.321
308.916
315,357
280,67
304.495
re, mpg
24.334
26.864
27.955
31.056
28.581
DM EMISSIONS REPORT BY PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA;
VEHICLE
C066S8
PHASE:
0-124
BAG1
BN22
BAC3
WEIGHTED
RUN *
30869
FUEL
SG
OIL SHIP TEMP
47.247
H/C
1,880
COLD CELL TEMP (W!
44.243
O/C
0,000
HC
6,464
2.036
0.064
0.623
0.626
RELATIVE HUMIDITY*
44.266
SPC02
13.390
NQx
0.997
0.606
0.393
0.670
0.513
NOx CORRECTION FACTOR
0.791
CGAL
2430.083
CO
122.684
40.013
1.860
3.945
10.337
PRESS. BARO
758.000
C02
399.108
352,097
332.860
300.33
327.914
FE, MPG
14.536
21.122
26.493
28.854
26.029
DUN 1MISSICWS REPORT BY PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
C06S5W
PHASE:
0-124
BAG1
BAG2
BAG3
WEIGHTED
mm *
30870
FUEL
SG
OIL SUMS TEMP
45.871
H/C
1.880
COLD CELL TBJP (Ml
32.241
O/C
0.000
HC
7.540
2.289
0.076
0.610
0.682
RELATIVE HUMIDITY
58.786
SPC02
13.390
NQK
0,895
0.568
0.329
0.647
0.466
NQx CORRECTION FACTOR
0.781
COAL
2430.083
CO
128.790
44,365
2.051
3,991
11,362
PRESS • BARO
758.000
C02 3 94.854 352.257 338,240 303.36 331.56? •
FE, MPG 14.331 20.738 26.050 28.570
am EMISSIONS REPORT BY PHASE
CALCULATED EMISSIONS OiMtS/Mni
TEST 1»TA:
RUN *
OIL SUMP TStP
COLD CELL THffi (M)
RELATIVE HUMIDITY
ndx ctmmcTim factor
PRESS. BARO
3*0934
79.224
75.418
58.720
1.009
758.000
VEHICLE C0322G
FUEL EG
H/C 1.880
O/C 0.000
SPC02 13.390
PHASE: 0-124
BAG1
BAQ2
CGAL
2430.083
HC
fjat
CO
C02
FE, MPG
2.647
2.410
26.730
365.889
21.383
0.816
1.086
9.681
333.442
25.343
0.159
0,397
4.308
317.810
27.382
BAG3 WEIGHTED
0.572
Q. 688
4.956
290.82
29.598
0.436
0.620
5.599
313.628
27.569
C- 1
-------
DIN HUSSIONS REPORT BY PHASE
CALCULATED BffSSICNS (SUMS/MILE
TEST DMA:
VEHICLE
C0322G
PHASE: 0-124
BAG1
BW32
BAS3
WEIGHTS
K9I •
30935
FUEL
S3
OIL SUSP TIMP
19.082
H/C
1.880
COLD fFT.T. TEJtP (Td)
71.607
O/C
0.000
HC 2.881
0.842
0.147
0.615
0.419
RHjsnvE humidity
64.817
SPC02
13.390
IKK 2.083
1.108
0.493
0.751
0.691
NOx CORRECTION FACTOR
0.998
COM.
2430.083
CO 31.352
9.440
4.467
4.525
5.511
PRESS. HARO
758.000
C02 372.993
337.881
322.332
288.24
316.180
FE, MPG 20.635
25.048
26.989
29.941
27.399
E7TN BGSSICHS REPORT BY
PHASE
CALCOLATED EMISSIONS CSAMS/KtLE
TEST MB*:
VEHICLE
C0322G
PHASE: 0-124
BAG1
BAG2
BAG3
WEIGHTED
SUN *
30936
FUEL
SG
OIL SIMP TBSP
47.247
H/C
1.880
CCIJ3 CELL TBC (Td)
42.833
O/C
0.000
H= 4.531
1.163
0.192
0.702
0.532
RELATIVE HUMIDITY
67.081
SPC02
13.390
IKK 1.773
1.006
0.320
0.942
0.632
MOx CORRECTION FACTOR
0.816
com.
2430.083
CO 80.101
20.270
5.287
4.687
8.220
PRESS. BARD
758.000
C02 429.481
367.556
331.087
302.23
330,731
FE, MPG 15.625
22.083
26.180
28.547
25.981
nm acssicKs report by
PHASE
CALCULATED IM1SSICWS GRAMS/KILE
TEST DATA:
VEHICLE
00322G
PHASE: 0-124
BSG1
BAG2
BAG3
WEIGHTS
RUN t
30945
FUEL
ss
OIL SOUP TOO1
87.906
H/C
1.880
COLD CELL TB© (Td!
94.208
O/C
0.000
HC 2.222
0.743
0.214
0.720
0.463
RELATIVE HUMIDITY
36.968
SSC02
13.390
NCK 1.884
1.110
0.343
0.821
0.633
NQx CORRBCTIC*! FACTOR
1.095
CGAL
2430.083
CO 34.319
10.397
5.076
5.729
6.354
PRESS. BARO
758.000
C02 326.282
319.263
317.498
283.89
308.643
FE, MPG 22.966
26.339
27.292
30.157
27.881
DTO EMISSIONS REPORT BY PHASE
CALCtHATED EMISSIONS GRAMS/MILE
TEST SWIA:
VEHICLE
C0322G
PHASE: 0-124
BAG1
BAG2
BAG3
WEIGHTS)
RUJ *
30946
FUEL
SG
OIL SUMP vmp 1832.000
H/C
1.880
COLD CELL TQffi> (Td!
95.241
O/C
0.000
HC 2.671
0.830
0.226
0.692
0.479
RELATIVE HUMIDITY
36.327
SFC02
13.390
NCK 1.382
0.907
0.329
0.786
0.574
HQ* CCRW9CTICK FRCTOfi
1.075
CGAL
2430.083
CO 49.013
14.115
5.766
6.581
7.717
PRESS. BARO
758.000
C02 330.790
318.753
314.203
285.64
307.293
FE, MPG 21.384
25.909
27.47S
29.853
27.805
era EMISSIONS REPORT BY
PHASE
CALCULATED HGSSICWS GRAMS/MILE
TEST DMAs
vehicle
C0322G
PHASE: 0-124
8M31
BAG2
BAGS
WEIGHTED
RON •
30948
FUEL
SG
OIL SUMP TSG>
B7.800
H/C
1.880
COLD CEU. TEMP (Td)
93.531
O/C
0.000
HC 2.656
0.830
0.254
0.682
0.491
SELATTVE H0MXDITY
38.392
SPOT!
13.390
IKK 2.170
1.032
0.285
0.624
0.533
NOx CORRBCTICM FACTOR
1.076
CGAL
2430.083
CO 32.181
9.932
5.507
5.954
6.548
PRESS. BARO
758.000
C02 336.539
322.680
315.467
284.56
308.451
re, MPG 22.506
26.110
27.395
30.065
BIH EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
C0322G
PHASE; 0-124
BK31
BAS2
BAG3
MEK3HXED
RUN *
30971
FUEL
SG
OIL SIMP TEMP 1832.000
H/C
1.880
COLD CELL W (Td)
105.553
O/C
0.000
HC 2.481
0.805
0.276
0.931
0.565
RELATIVE HUMIDITY
24.297
SPC02
13.390
NCK 1.681
1.122
0.435
0.991
0.730
NOx CORRECTIM FACTOR
1.033
CGAL
2430.083
CO 40.603
11.585
7.591
8.863
8.767
PRESS. BARO
758.000
C02 291.156
302.456
308.154
271.44
296.908
FE, MPG 24.534
27.540
27.734
30.873
28.555
Dm BCSSICNS REPORT BY
PHASE
CALCULATED SCtSSICNS GRAMS/MILE
TEST DMA:
VEHICLE
C0322G
PHASE: 0-124
BA0L
BAS2
BAG3
WEIGHTED
RUN •
30972
SG
OIL SUMP TEMP
98.282
H/C
1.880
COLD CELL TEMP (Td!
104.471
O/C
0.000
HC . 2.728
0.865
0.255
0.828
0.539
RELATIVE HUMIDITY
22.484
SPC02
13.390
HQ* 1.476
1.094
0.371
0.922
0.672
NQk CORRECTION FACTOR
0.991
CGAL
2430.083
CO 49.334
13.971
6.522
8.915
8.723
PRESS, BARO
758.000
C02 290.000
299.938
306.490
275.49
296.619
FE, MFC 23.664 27.420 28.032 30.472 28,575
C-2
-------
DIN BOSSICHS REPORT BY PHASE
CALCULATED BQSSICNS GRAMS/KLLE
TEST DATA:
tniti f v
V JtJXX .MM ¦ M.
C0322G
PHASE; 0-124
BM1
BAG2
SM33
WEIGHTED
RUN •
30973
FUEL
SG
OIL SEHP TEMP
97.224
H/C
1.880
COLD CELL TEMP (Td}
IDS.840
O/C
0.000
HC
2.507
0.816
0.266
0.900
0.554
RSXATXVE HUMIDITY
22.247
SPCQ2
13.390
NOx
1.513
1.183
0.329
0.986
0.687
HCbc CORRSCTICN FACTOR
1.002
CGAL
2430,083
co
44.747
12.753
6.779
9.305
8.710
PRESS. BARO
758.000
C02
294.546
301.458
307.465
275.70
297.485
FE. KPG
23.877
27.467
27.908
30.363
28.491
smi em ssi oris report by
PHASE
CSLOKATiD MISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
C0322G
PHASE: 0-124
BMB
BA52
BAG3
wsxana;
RUN 1
30974
FUEL
SG
OIL SUHP T3*P
9B.176
H/C
1,680
COLD re**. TEMP (Td)
103.160
O/C
0.000
HC
3.584
1.003
0.233
0.823
0.S55
RELATIVE HUMIDITY
28.463
SPC02
13.390
SOX
1.433
1.298
0.862
1.015
0.995
NOx CORRECTION FACTOR
1.072
CGAL
2430.083
CO
92.014
20.976
6.922
8.592
10.285
PRESS. BARO
75B.000
002
350.297
379.937
432.531
356.04
400.645
FE, HPG
17.583
21.394
20.042
23.919
21.386
cow emissions report by
PHASE
CALCULATED HUSSIONS GMMS/MILE
1EST DATA:
VEHICLE
C0322G
PHASE:
: 0-124
BAG1
BAG2
BAG3
WEIGHTED
RUN «
30975
FUEL
se
OIL SOU® TEMP
99.129
K/C
1.880
COIiJ CELL TEMP (Td)
107.320
O/C
0.000
HC
3.708
1.064
0.236
0.904
0.591
RELATIVE HUMIDITY
25.345
SPC02
13.390
NOx
1.484
1.438
0.718
0.833
0.899
NOx CORRECTION FACTOR
1.076
CGAL
2430.083
CO
91.188
21.376
7.623
10.024
11.127
PRESS. BARO
758.000
C02
355.072
379.411
436.601
356.07
402.652
Note; Air Conditioner On
FE, MPG
17.450
21.378
19.811
23.757
21.219
DSSI EMISSIONS REPORT BY PHASE
CALCULATED EMSSICNS SRAMS/KELE
TEST DATA;
VEHICLE
C0322G
PHASE:
0-124
ma
BAG2
1AG3
WEIGHTED
RON #
30978
FUEL
SG
OIL SUMP TEMP
77.741
H/C
1.680
COLD CELL TEMP (Td)
78.914
O/C
0.000
HC
2.914
1.403
0.455
0.822
0.752
RELATIVE HUMIDITY
49.BOO
SPC02
13.390
NOx
2.392
1.724
2.107
2.401
2.106
HQ* CORRECTION FACTOR
0.991
CGAL
2430.083
CO
42.938
31.171
14.349
7,228
15.873
PRESS. BARO
758.000
C02
356.387
314.320
305.845
279.23
300.283
Note: Oxygen Sensor Disconnected
FE, MPG
20.553
24.205
26.987
30.360
um qsissions report by
PHASE
CALCULATED QHSSICWS GRABS/MILE
TEST DATA;
tJftTTfT t?
C0322G
PHASE:
0-124
BftSl
BSG2
BAG3
WEIGHTED
RUN *
30989
FUEL
SG
OIL SUMS' TEMP 1832.000
H/C
1.880
COLD CELL TEMP (Td}
73.454
O/C
0.000
HC
2.126
0.606
0.141
0.814
0.423
RELATIVE HUMIDITY
17.841
SPC02
13.390
NOx
2.592
1.154
0.257
0.835
0.602
UOx CORRECTION FACTOR
0.799
CGAL
2430.083
CO
33.313
10.364
7.365
6.605
7.778
PRESS. BARO
758.000
C02
362.867
329.086
309.993
277.43
304.994
Mote: Hot FID not Calibrated
FE, HPG
21.096
25.631
27.643
30.653
28.054
DXH EMISSIONS REPORT BY
PHASE
CALCULATED MISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
CO710B
PHASE:
0-124
BAG1
BAG2
BAG3
WEIGHTED
RUN *
30990
FUEL
SG
OIL SLKP TEMP 1832.000
H/C
1.880
COLD CELL TEMP (Td)
77.426
O/C
0.000
HC
5.792
2.089
0.852
2.057
1.438
RELATIVE HOHIDITY
13.281
SPC02
13.390
NOx
2.503
1.017
0.226
0.333
0.421
NOx CORRECTION FACTOR
0.790
CGAL
2430.083
CO
33.759
13.816
7.389
6.131
8.373
PRESS, BARO
758.000
C02
432.894
383.459
394.1S5
337.36
376.359
FE, KPG
17.651
21.617
21.792
25.ISO
22.686
DIN SHISSIONS REPORT BY PHASE
CALCULATES EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
CC7108
PHASE:
0-124
RAG1
BAG2
BAG3
WEIGHTED
RUN #
30992
FOEL
EG
OIL SUMP TEMP
76.682
H/C
1.880
COLD CELL TEMP (Td)
80.143
O/C
0.000
HC
5.316
1.730
0.682
1.812
1.212
RELATIVE HUMIDITY
15.572
SPC02
13.390
HQx
2.653
0.975
0.241
0.380
0.432
NOx CORRECTION FACTOR
0.605
CGAL
2430.083
CO
25.863
9.047
6.422
5.188
6.628
PRESS. BARO
758.000
(302
442.538
393.362
401.190
338.S7
382.291
FE, KPG
17.802
21.550
21.530
25.255
22.562
C- 3
-------
DIM HUSSIONS REPORT S5f PHASE
CALCULATED EWSSICKS GRAMS/MILE
TEST DATA;
VBttCLE CO710B
PHASE
: 0-124
MSI
SAG2
BAG3
WEIGHTED
»
30993
FUEL SQ
OIL BMP TEMP
75.518
H/C
1.880
COLD CELL TEMP (Td)
78.053
o/c
0.000
HC
7.367
2.374
0.747
1.668
1.338
RELATIVE HUMIDITY
27.983
SPC02
13-390
KJ*
2.943'
1.145
0.287
0.307
0.471
NOx CORRECTION FACTOR
0.857
CGAL
2430.083
CO
32.642
11.559
6.060
4.837
6.865
PRESS, BARQ
758.000
C02
425.882
384.761
399.105
341.46
380.280
FE. HPS
17.785
21.687
21.658
25.121
22.616
oik ihtssjcks report sy i>kass
CALCULATED BCSSICMS OTAMS/MILE
TEST DATA;
VEHICLE CC710B
PHASE:
: 0-124
BAG1
BM32
B*33
WEIGHTED
RUN ft
30994
PlliJlEL SO
OIL SCKP TEMP
92.776
H/C
1.880
COLD CELL TEHP {Tdi
91.541
O/C
0.000
HC
4.912
1.726
0.594
1.912
1,191
RELATIVE HUMIDITY
21.819
SFCQ2
13.390
NQx
2.191
0.821
0.171
0.366
0.360
HOx CORRECTION FACTOR
0.886
CGAL
2430.083
CO
38.661
11.923
5.009
4.651
6.346
PRESS. BARO
758.000
C02
387.490
362.152
390.738
335.63
369,665
RE, MPG
19,192
23.039
22,226
25.506
23.296
CTN EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/KILE
TEST DATA:
VEHICLE CO710B
' PHASE:
0-124
BAG1
BAG2
BAS3
WEIC2HTO
RUN *
30995
FUEL SG
OIL SUMP TOG-
86.635
H/C
1.880
COLD rsrrj, TEHP (Td)
90.449
O/C
0.000
HC
4.710
1.593
0.568
1.670
1.085
RELATIVE HUKxcrrr
20.761
SPOT
13.390
mx
2.256
0.826
0.208
0.372
0.382
NOx CORRECTICK FACTOR
0.872
CGAL
2430.083
CO
33,366
10.364
4.934
4,411
5.919
PRESS. BARO
758.000
CB2
397.845
368.900
394.618
337,16
373.442
FE, MPG
19,135
22.811
22.024
25.478
CTK HffSSXOHS REPORT BY
HiASE
CALCULATED EMISSIONS (SHAMS/MILE
TEST DATA i
VEHICLE CO710B
PHASE:
0-124
BNS1
BAG2
am
WEIGHTED
RUN 4
30996
FUEL 98
OIL SCHP TEMP
86.212
H/C
1.880
COLD CEII. TEMP
104.085
O/C
0.000
HC
3.913
1.434
0.707
1.798
1.159
RELATIVE HUMIDITY
13.419
SPC02
13.390
NOx
2.148
0.884
0.123
0.630
0.421
NCfx CORRECTION FACTOR
0.869
CGAL
2430.083
CM
26.436
8.714
7.202
5.744
7.116
PRESS. BARO
758.000
C02
369.404
350.318
379.793
330.91
360.213
FE, MPG
21.027
24.152
22.630
25.754
23.806
C-4
-------
Dm MISSIONS REPORT BY PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA: VEHICLE C0710B
KEN • 31002 FUEL 56
Oil, SUMP TEMP 43.D12 H/C 1.880
COLD CELL TBg CM) 47.664 O/C 0.000
RELATIVE HUMIDITY 40.150 SPC02 13.390
HQx CORRECTION FACTOR 0.793 CGAL 2430.013
PRESS, BARO 758.000
PHASE; 0-124
BAG1
BAG2
HC
HQs
CO
9.397
1.708
33.221
2.628
0.911
23.376
0.487
0.190
6.229
SAG3 WEIGHTED
002 465.209 408.184 398.941
FE, MPG 13.877 19.639 21.696
1.493
0.296
4.959
342.66
25.062
1.207
0.369
9.438
385.417
22.193
am anssioNS report by phase
fwrr JWR ?VTCCIf*IC (Wftut. /wtt IP
UAI/. wwv*EOS m 1 aaxur«a imara/Fi t lir
TEST DATA.:
VBdCLE S0756B
PHASE: 0-124
BAG1
BAG2
BAG3
WEIGHTED
RUN *
31013
ztJJSu
OIL SU4P TEMP
73,612
H/C 1.880
COLD CELL TBO> (Td)
73.784
O/C 0.000
HC 2.141
0.635
0.072
0.448
0.292
RELATIVE HUMIDITY
48.153
SPC02 13.390
NQx 3.032
1.424
0.554
0.932
0.838
Xoc CORRECTION FACTOR
0.932
CGAL 2430.083
CO 12.306
4.373
1.208
2.107
2.109
tWOCCC flign
MrAxCmXSy * Xaftiw
758.000
C02 393.608
348.443
353.752
303.35
338.807
FE, MPG 21.208
24.911
25.013
28.893
26.058
£*m EMISSIONS REPORT BY PHASE
CALCULATED HUSSIONS GRAMS/MILE
TEST DATA:
HX # 31014
OIL SUMP TEMP 76.259
COLD CELL TEMP {"M) 72.622
RELATIVE HUMIDITY 67.241
NOx CORRECTION FACTOR 1.025
PRESS. BARO 758.000
VEH2CUE S0756B
FUEL SG
H/C 1.880
O/C 0.000
SPC02 13.390
OSAL 2430.083
PHASE: 0-124
BAG1
1AG2
BAG3 WEIGHTED
K
MQx
CO
C02
FE, MPG
2.137
2.596
12.048
3B9.510
21.438
0.S38
1.326
4.553
341.736
25.366
0.096
0.575
1.375
349.479
25.292
0.487
0.882
1.943
302.68
28.969
0.316
0.815
2.190
335.029
26.317
DIM EMISSIONS REPORT BY
PHASE
CALCULATED BUSSICNS GRAMS/MILE
TEST DATA;
VHnai
S0756B
PHASE: 0-124
BAG1
8M32
BAG3
wekwthj
MS) t
31015
FUEL
SG
OIL SUMP TSffi
87.800
H/C
1.880
COLD CELL TXMP (Td)
91.138
o/c
0.000
HC 1.821
0.539
0.070
0.372
0.250
RELATIVE HUMIDITY
37.706
SPC02
13.390
Wx 3.508
1.797
0.716
1.083
1.041
MCk CORRECTION FACTOR
1.034
CGAL 2430.083
CO 8.921
3.901
1.360
1.747
1.993
PRESS. BARO
758.000
002 399.314
352.221
371.256
313,59
351.467
FE, MPG 21.239
24.722
23.825
28.034
25.168
DIN EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA;
VEHICLE S0756B
PHASE:
: 0-124
BAG1
BAG2
BAG3
WEIGHTED
ROM ~
31016
FUEL SG
OIL SIMP TEMP
86.212
H/C 1.880
COLD CELL TEMP (Td!
88.654
O/C 0.000
HC
1.862
0.513
0.120
0.269
0.243
RELATIVE HUMIDITY
31.980
SPC02 13.390
NQx
2.998
1.432
0.706
1.129
0.973
NCK CORRECTION FACTOR
0.951
CGAL 2430.083
CO
10.040
3.228
1.471
1.636
1.881
PRESS. BARO
758.000
C02
365.155
326.006
350-225
299.22
331.157
FE, MPG
23.011
26.755
25.222
29.413
26.694
UIH EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE S0756B
PHASE:
: 0-124
BAG1
BAG2
BAG3
VEKatTED
RUN #
31017
FUEL SG
OIL SUMP TEMP
95.212
H/C 1.880
COLD CELL TEMP (Td)
102.148
O/C 0.000
HC
1.725
0.549
0.106
0.399
0.278
RELATIVE HUMIDITY
29.485
SPC02 13.390
NQx
3.496
1.844
0.757
1.047
1.062
NQx CORRECTION FACTOR
1.075
CGAL 2430.083
CO
9.270
3-691
1.700
1.763
2.130
PRESS. BARO
758.000
C02
365.945
333.946
35B.816
307.65
339.616
FE, MPG
23.062
26.067
24.602
28.559
25.992
dm emissions report by phase
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
RUN « 31018
OIL SUMP TEMP 96.800
CCLD CELL THJP iTd! 102.157
RELATIVE HUMIDITY 33.181
Mix CORRECTION FACTOR 1.155
PRESS. BARO 758.000
VEHICI£ S0756B
FUEL SG
H/C 1.880
O/C 0.000
SPC02 13.390
CGAL 2430.083
PHASE; 0*124
BAG1
BAG2
BW33 WEIGHTED
HC
HQx
CO
C02
FE, MPG
1.436
3.261
8.253
344.873
24.563
0.518
1.730
3.678
319.675
27.213
0.089
0.724
1.389
343.795
25.707
0.453
1.075
1.693
294.36
29,825
0.278
1.029
1.946
325,180
27.154
C-5
-------
am sessions report by mase
CALCULATED HUSSIONS GRAMS/MILE
TEST DATA:
VHGCLi ES707R
PHASE: 0-124
BAC1
BAC2
BAG3
WEIGHTED
RUN •
31019
FUEL 93
OIL SMS> T1MP
76.471
H/C
1.380
COLD ran. TEC (W)
73.225
O/C
0.000
IC
3.244
1.472
0.308
0.993
0.737
RELATIVE HUMIDITY
65.700
SPC02
13.390
NQx
1.329
1.223
0.423
0.985
0.742
HCK CORRECTION FACTOR
1.024
COAL
2430.083
CO
44.958
23.322
10.494
9.487
12.866
PRESS. BARO
751.000
C02
329.258
281.802 .
300.367
258.72
285.103
FE, HSG
21.701
27.549
28.006
32.161
pin aassjdfjs report by
PHASE
CALCULATED EMISSIONS QIAMS/MILE
TEST DATA:
VEHICLE ES707R
PHASE:
; 0-124
BMX
BAG2
BAG3
WEIGHITO
KH *
31020
F%JEL SG
OIL SSMP TBtP
74.459
H/C
1.880
COLD CELL TBIP {Td)
77.146
O/C
0.000
m
3.388
1.374
0.217
1.016
0.675
RELATIVE HUMIDITY
70.424
SSC02
13.390
nox
1.354
1.197
0.445
0.888
0.722
HDx CCRKKTICH FACTOR
1.122
OGAL
2430.083
CO
43.647
21.018
8.378
8.880
11.131
PRESS. BARO
758.000
C02
322.266
280.687
299.032
252.28
282.419
FE, MFG
22.166
27.986
28.449
33.036
29.611
rnu EMISSIONS REPORT BY PHASE
CALCULATED EMISSIONS CRAMS/MILE
TOST DATA:
VEHICLE ES707S
PHASE:
0-124
BAG1
BAG2
BAG3
WEIGHTED
RUK *
31021
FUEL SG
OIL SUMP TEMP
86.318
H/C
1.880
COLD CELL TEMP (Td)
96.933
O/C
0.000
K
2.509
1.607
0.256
0.633
0.639
seuotve humidity
36.082
spot
13.390
wax
1.627
1.269
0.510
0.997
0.800
NCK correction factor
1.098
OGAL
2430.083
CO
29.913
28.131
8.775
6.842
12.249
PRESS. BARS
758.000
C02
310.322
261.392
294.088
251.13
275.573
FE, MPG
24.369
28.651
28.836
33.732
30.137
um sessions REPORT BY PHASE
CALCULATES EMISSIONS SUMS/MILE
TEST DATA:
VEHICLE ES707R
PHASE:
0-124
BAG1
BAG2
8A03
WEIGHTED
RUN 1
31024
FUEL SG
OIL Stiff TEMP
98.812
H/C
1.880
COLD CSX TIMP (Mi
105.174
O/C
0.000
HC
1.980
1.314
0.290
0.680
0.610
RELATIVE HUMIDITY
31.679
SPC02
¦ 13.390
mx
1.735
1.394
0.417
0,944
0.765
HOk CORRECTION FACTOR
1.170
COAL
2430.083
oo .
24.236
25.855
11.983
6.689
13.399
PRESS. 1ARQ
758.000
002
298,476
254.957
290.156
248.53
271.386
FE, MPG
25.964
29.696
28.723
34.080
30.401
dim scissions report by
PHASE
CALCULATED EMISSIONS (SAMS/MILE
TEST DATA:
VEHiai: ES707R
PHASE:
0-124
BAG1
BAG!
BAG3
WEIGHTED
RUN •
31025
FUEL SG
OIL SUMP TEMP
98.600
H/C
1.880
COLD fET.T. tq® (Td}
104.201
O/C
0.000
HC
2.151
1.270
0.250
0.617
0.562
relative humidity
41.408
SPC02
13.390
NOx
2.331
1.527
0.448
1.307
0.908
NOx CORRECTION FACTOR
1.397
CGAL
2430.083
CO
29.160
25.898
10.327
5.691
12.281
PRESS. BARO
758.000
C02
299.423
260.006
293.883
255.49
276.309
FE. MPG
25.284
29.211
28.631
33.415
30.066
cto aassicNS report by phase
CALCULATED SESSIONS GRAMS/MILE
TEST DATA:
VanCLE ES707R
PHASE:
0-124
BAG1
BAG2
BAG3
WHGHTHJ
BUS #
31026
FUEL SG
OIL StMP HHP
73.400
H/C
1.880
COLD CELL TBfl? (Td)
74.038
O/C
0.000
HC
2.100
0.622
0.148
0.438
0.325
RELATIVE HtMUHTY
22.571
SPC02
13.390
NOx
1.495
0.876
0.456
0.627
0.589
NOx CORRECTION FACTOR
0.819
CGAL
2430.083
CO
23.827
8,013
5.578
3.675
5.562
PRESS. BARO
758.000
C02
337.887
290.766
278.293
250.30
273.230
re, mpg
23.303
29.154
30.958
34.573
31.572
E7TN EMISSIONS REPORT BY
PHASE
CALCULATED aaSSICWS GRAMS/MILE
TEST DATA:
VEHICLE SA333B
PHASE;
0-124
BAG1
BAG2
BM33
MEIGOTED
RON «
31032
FUE, SG
OH SUOT TSB>
100.188
H/C
1.880
COLD CELL TEffl? {Ttf!
76.610
O/C
0.000
HC
4.810
1.223
0.115
0.610
0.481
RELATIVE HUMIDITY
33.398
SPOQ2
13.390
NQx
1.890
1.479
0.882
1.175
1.086
N3x CORHK3IOH FACTOR
0.877
CGAL
2430.083
CO
34.109
10.462
3.107
4.104
4.906
PRESS. BARO
758.000
C02
436.877
390.814
433.254
352.69
402.269
FE, MPG
17.602
21.651
20.300
24.653
C-6
-------
rti*] nireetrnie craw ov T*raer? rtu/TTTJWn VMTCfiTflK OlMC/WTTV
1/131 oussXllna KWJKi Ox nvuISi UUMfljniW IWm-LUHo «vma/llLut
TEST DATA:
VEHICLE
C0174G
PHASE: 0-124
BAG1
1AS2
BAC3
WEIGHTS)
RUN #
31034
FUEL
SG
OIL SUMP TEMP
1832.000
H/e
1.880
COLD CELL TEMP (Td)
73.633
o/c
0.000
HC
3.330
0.754
0.092
0.211
0.262
RELATIVE HUMIDITY
28.420
SPCQ2
13.390
NOx
0.546
0.324
0.234
0.269
0.262
KOx CORRECTION FACTOR
0.841
CGAL
2430.083
OD
12.024
2.431
0.233
0.232
0.689
PRESS. BARO
769.500
C02
380.574
344.695
387.601
306.89
356.493
FE,
21.710
25.367
22.926
28.908
25.078
0W SHISSICNS REPORT BV
PHASE
CALCULATED EKISSICNS SIAMS/MILE
TEST OATA;
VEHICLE
SA333B
PHASE;
; 0-124
BMS1
BAG2
BM33
WEIGHTED
RUN 4
31035
FUEL
SG
OIL SUMP TEMP
96.694
H/C
1,880
COLD CSIi HHP CTd)
75.400
O/C
0.000
IC
5.503
1.349
0.114
0.501
0.476
RELATIVE HUMIDITY
48.924
SPC02
13.350
NOx
1.855
1.531
0.920
1.320
1,156
nox coRHScncH factor
0.950
CGAL
2430.083
CO
35.063
11.731
2.309
2.844
4.409
PRESS. BARO
758.000
C02
452.234
398.370
433.854
356.54
405.207
F£, MPG
16.646
21.140
20.330
24.549
21.660
ETTN EMISSIONS REPORT BY
phase
CALCULATED BGSSIClffi GRAMS/MILE
TEST DATA;
VEHICLE
C0174G
PHASE:
: 0-124
BAG1
BAG2
BAS3
WEIGHTED
RUN •
31036
FUEL
SG
OIL SljKP TEMP
1832.000
H/C
1.880
COLD C3U, TEMP (Td)
74.555
O/C
0.000
HC
4.249
0.897
0.019
0.202
0.251
RELATIVE HUMIDITY
57.344
SPC02
13,390
tiQx
0.296
0.329
0.226
0.337
0.278
NOx CORRECTION FACTOR
0.990
CGAL
2430.0B3
CO
21.512
4.304
0.176
0.280
1,058
PRESS. BARO
763.BOO
C02
362.438
339.66#
343.370
288.80
327.605
tr** imart
r&i
21.727
25.486
25.898
30.707
27,135
DSN SESSIONS REPORT BY
PHASE
fit frit hfen vuTtnnYftac /"so mubc/mtti?
vAULvLtAlEP Anx&raxUNo KtNAsTa/PUJuii
TEST DATA:
VEHICLE
SA333B
PHASE;
: 0-124
BAS1
BMS2
BAG3
WEXGffiS)
RUN •
31037
fuel
SG
OIL SUMP TEMP
104.000
H/C
1.G80
COLD CELL TEMP (Td)
86.984
O/C
0.000
HC
5.801
1.336
0.148
0.597
0.518
RELATIVE HUMIDITY
49.298
SPC02
13.390
HQx
2.089
1.630
1.023
1.315
1.229
UOx CORRECTION FACTOR
1.100
CGAL
2430.083
CO
34.522
9.648
3.354
4.156
4.878
PRESS. BARO
758.000
C02
416.570
383.596
435.481
351.16
401.493
FEi HPG
18.196
22.089
20.174
24.755
21.833
um EMISSIONS REPORT BY
PHASE
CALCULATED BaSSICMS GRAMS/KILE
TEST DATA:
VEHICLE
SA333B
CHASE;
0-124
BAG1
BAS2
BASS
WEIGHTED
RUN #
31038
FUEL
SG
ATT GfMB 1'IIUU
wi-Li dUnir i£Rr
107.600
H/C
1.680
COLD CELL TEMP iTd)
85.897
O/C
0.000
HC
5.782
1.352
0.106
0.662
0.516
RELATIVE HUMIDITY
50.017
SPC02
13.390
NOx
1.7B1
1.S99
1.007
1.337
1.220
-NOx CORMSCTICR FACTOR
1.089
CGAL
2430.083
CO
36.386
10.658
2.822
4.051
4.777
PRESS. BARO
758.000
CQ2
421.490
383.616
425.970
351.08
396,638
FE. HPS
17.911
21.998
20.665
24.758
22.066
DM MISSIONS REPORT B¥
PHASE
CALOJLATED BDSSICNS GRAMS/MILE
TEST DATA:
VEHICLE
SA333B
FrtASE:
0-124
BAG1
SAS2
BAG3
HEXGJfFED
RIM f
31039
FUEL
SG
OIL SUMP THO>
113.847
H/C
1.880
COLO CEU. TEMP !W)
103.615
O/C
0.000
HC
4.993
1.250
0.172
0.556
0.501
RELATIVE MMZBITt
39.544
SPC02
13.390
NOx
2.075
1.825
1.290
1.709
1.516
NOx CORRECTION FACTO?
1.323
CGAL
2430.083
CO
22.233
10.538
5.3S4
4.234
6.119
PRESS. BARO
758.000
C02
405.533
374.351
425.217
346.69
393.068
FE, MPG
19.509
22.543
20.502
25.067
ETO HUSSIONS REPORT BY
PHASE
CALCULATED MISSIONS GRAHS/HILE
TEST DATA:
VEHICLE
SA333B
PHASE:
0-124
BAG1
BAS2
BAG3
WEIGHTED
RUN #
31040
FUEL
SG
OIL SUMP imp
111.412
H/C
1.880
COLE CELL TEMP (W>
106.912
O/C
0.000
h:
7.409
1.766
0.136
0.610
0.604
RELATIVE HUMIDITY
41.579
SPC02
13.390
MQx
3.045
1.867
1.232
1.660
1.481
SOx CORRECTION FACTOR
1.519
CGAL
2430.083
CO
31.182
13.210
4.165
5.093
6.294
PRESS. BARO
758.000
C02
421.631
367.515
421.003
351.55
390.817
FE. MPS
18.016
22.600
20.799
24.624
22.224
C-7
-------
tm BCSSICNS REPORT BY PHASE CALCULATED EMISSIONS CTAKS/KXLE
TEST DATA;
VEHICLE UU.27B
PHASE
: 0-124
BAS1
BAG2
BAG3
WEXGHUB
RUN «
31041
FUEL 9B
OH. SGHP TEMP
88.753
H/C
1.880
COLD CELL T34F (Td)
76.694
o/c
0.000
HC
2.849
0.788
0.087
0.348
0.303
RELATIVE HUMIDITY
50.307
SPC02
13.390
HQx
2.340
1.193
0.384
0.658
0.626
NOx CORRECTION FACTOR
0.971
CGM,
2430.083
CO
18.992
8.154
1.772
4.248
3.765
PRESS. BARD
758.000
COS
380.925
361.280
362.912
324.18
351.986
FE, HPG
21.204
23.637
24.323
26.815
24.863
ESS IMXSSfCSIS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MTLE
TEST DATA:
VEHXCM LA127B
PHASE
: 0-124
BAG!
SAG2
BAG3
WEIGHTED
ran t
31042
FUEL S5
OIL SUKP TEMP
87.800
H/C
1.880
COLD CELL TD© (Td)
75.262
O/C
0.000
HC
3.335
0.887
0.091
0,289
0.311
RELATIVE HUMIDITY
41.553
SPCQ2
13.390
mx
2.194
1.042
0.360
0.597
0.566
nox amscnm facto
0.909
COAL
2430.083
CO
23.596
8.966
2.078
3.126
3.792
PRESS. BARG
758.000
C02
362.705
364.796
358.SSI
323.24
350.166
re, hpg
21.692
23.321
24.580
27.051
24.998
0m dcssions report by
PHASE
CALCULATED EMSSICNS GRAMS/H&E
fEST DNIA:
VEHICLE LA127B
PHASE;
; 0-124
BAG1
BAG2
SAS3
WEIGOTED
RUN «
31043
FUEL SG
OIL SUMP TSSP
86.529
H/C
1.880
COLD CELL TB*P {TdJ
94.540
Q/C
0.000
HC
2.526
0.750
0.055
0.285
0.262
RELATIVE HUMIDITY
39.190
SPC02
13.390
Max
2.300
1.096
0.555
0.714
0.710
mx CORRECTION FACTOR
1.104
OIK.
2430.083
CO
20,368
7,745
1.214
3.413
3.164
PRESS. HARD
758.000
C02
354.994
346.127
406.474
, 350.74
378.767
FS, MPG
22.535
24,680
21.787
24.934
23.245
K» EMISSIONS REPORT BY
PHASE
CALCULATED BCSSICNS SUSMS/MXLE
TEST DATA;
VEHICLE LA127B
FHASE:
0-124
BAG1
B/U32
BAG3
WEIGHTED
RUN #
31044
FUEL SG
OIL SUKP TEMP
87.800
H/C
1.880
COLD CELL TEMP {Td*
88.625
O/C
0.000
BC
2.681
0.707
0.037
0.316
0.252
RELATIVE HUMIDITY
40.612
SBC02
13.390
NOx
2,298
1.189
0.661
0.704
0.782
NOX CDRRECTICTJ FACTOR
1.032
ogkl
2430.083
CO
19.741
7.537
1.404
3.483
3.238
PRESS. SARD
758.000
C02
349.536
343.044
425,421
352.32
388.434
FE. MPG
22.880
24.92S
20.810
24.809
22.753
tm missims report by phase
CALCULATED SaSSICNS GRAMS/MILE
TEST DATA:
VEHICLE LA127B
PHASE;
0-124
BAG1
BAG2
BAS3
WEIGHTED
RUN #
31045
fu&Li SG
OIL StWP TEHP
108.447
H/C
1.880
COLD CSi TEMP (Td)
107.912
O/C
0.000
HC
1.942
0.590
0.030
0.630
0.311
RELATIVE HUMIDITY
38.038
SFCCB
13.390
NQX
2.437
1.480
0.573
0.732
0.805
HOx CQRSECTICN FACTOR
1.429
COAL
2430.083
CO
18.960
8.626
1.004
6.471
4.086
PRESS. BARO
758,000
C02
353.295
333.806
369.266
289.53
339.988
Note: Leaking Saiqple Pump
FE. MPG
22.869
25.489
23.997
29.505
25.821
om missims report by
Duacp
CALCULATED EMISSIONS GRAMS/KILE
TEST DATA:
VEHICLE IA127B
PHASE:
0-124
BAG1
SAG2
BAC3
t®IGi?EED
RUN #
31046
FTJEL SG
OIL SUMP TS*P
106.965
H/C
1.880
COLD CELL TEMP (Td)
104.730
O/C
0.000
HC
2.247
0.631
0.081
0.474
0.303
RELATIVE HUMIDITY
28.195
SPC02
13.390
NOx
1.631
0.871
0.325
0,551
0.500
mx CORRECTION FACTOR
1.091
CGAL
2430.083
CO
15.417
6.507
1.896
3.025
3.161
PRESS. BARO
758.000
C02
285.387
283.271
294.146
251,71
280.238
FE, MPG
28.104
30,124
29.933
34.507
31.228
DTK EMISSIONS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE TA2C7G
PHASE;
0-124
BAG1
BAS2
BAG3
WEIGHTED
RUN *
31047
FUEL SG
OIL SUMP TEMP
90.129
H/C
1.880
COLD CELL TEMP (Td)
73.862
O/C
0.000
HC
5.943
1.288
0.208
0.905
0.624
RELATIVE HUMIDITY
47.351
SPC02
13.390
NOx
1.923
0.942
0.629
0.834
0,750
NOx CORRECTION FACTOR
0.928
CGAL
2430.083
CO
27.643
6.263
1.244
3.583
2.930
PRESS, BARO
758.000
C02
537.062
443.433
492.180
399.46
456.539
FE, MPG
14.852
19,463
17.990
21.819
19.350
C- 8
-------
UTS HUSSICKS HEPOUT BY PHASE
CALCULATED EMISSIONS GRAMS/KILE
TEST DATA:
VEHICLE TA207G
PHASE:
0-124
BAGl
BAG2
BAG3
WEIGHTED
mm #
31048
FUEZ. SG
OIL SUMP TBSB
91.294
H/C
1.880
COLD CELL TEMP CM)
S9.228
O/C
0.000
HC
4.771
1.093
0.168
0.924
0.56B
mj&ism HUMIDITY
57.604
SPC02
13.390
NOx
2.053
1.009
0.735
0.916
0.841
NCbc CGRKECTICN FACTOR
0.939
COAL
2430.083
CO
28.688
6.533
0.839
3.828
2.844
FRESS. BARD
758.000
C02
511.212
439.200
491.468
404.25
456.622
FE, HUG
15.578
19.653
18.044
21.543
19.341
um EKISSJONS REPORT BY
PHASE
CALCULATED BHSSICWS GRAMS/MILE
1EST DATA;
VEHICLE TA207G
PHASE:
0-124
BAGl
BAG2
BAG3
WEIGHTED
RUN •
31049
IUB, SG
OIL S(MP TEMP
96.482
H/C
1.880
COLD T3«P (Td)
88.704
O/C
0.000
HC
3,939
0.920
0.211
0.669
0.483
RELATIVE HUMIDITY
32.762
SPC02
13.390
t»x
1.746
0.818
0.795
0.769
0.793
NQx CORRECTICN FACTOR
0,958
COAL
2430.083
CO
22.181
5.156
0.824
2.829
2.269
PRESS. HARD
758.000
C02
496.141
422.889
478.239
391.98
443.13S
FE, KPG
16.379
20.515
18.537
22.335
19.988
is
1
I
PHASE
/¦tfcT/TIT R»|!L'I. XPUTCCTCKIC fSBitie /MTTT V
CAiA-viAI »il 1 Mtll>QQi>UKo vtfCAttO / Pi i [ c<
TEST DATA;
VEHICLE TA207G
PHASE:
0-124
BAGl
BAG2
BAG3
WEIGHTS*
REM #
31050
FUEL SG
OIL StJHP THJP
96.800
H/C
1.880
csu chut. thsp ma
87.043
O/C
0.000
HC
6.295
1.421
0.203
0.889
0.644
RELATIVE HUMIDITY
43.109
SPC02
13.390
IKK
1.883
1.043
0.753
0.985
0.877
NOx CORRECTION FACTOR
1.036
CGAL
2430.083
CO
30.701
7.3S3
1.088
3.452
3.038
PRESS. BARO
758.000
C02
475.730
421.145
484.126
391.95
445.672
FE, KPG
16.366
20.360
18.298
22.243
19.812
DIM BGSSICWS REPORT BY
PHASE
CAUKLATED atlSSIOKS GRAMS/MILE
TEST DATA:
VEHICLE CA36SB
RiASE:
0-124
BAGl
BAG2
BAG3
WEIGHTED
run t
31057
FUEL SG
on. saw th®
84.200
H/C
1.880
COLD €KIJ, TSHP !Td)
75.010
O/C
0.000
HC
4.433
1.679
1.090
2.784
1.677
RELATIVE HUMIDITY
56.615
SPC02
13.390
HQ*
0.497
0.823
0.691
0.845
0.761
tax cmmmcn factor
0.991
CGAL
2430.083
CO
60.227
25.495
6.188
15.560
12.766
PRESS. BARO
758.000
C02
666.654
516.300
536.969
428.85
502.967
FE, MPG
11.481
15.848
16.180
19.262
16.958
DIM BOSSIOWS REPORT BY
phase
CALCULATED BttSSIONS GRAMS/MILE
TEST DATA:
VEHICLE CA36SB
PHASE:
0-124
BAGl
BAG2
BAG3
WEIGHTED
KM #
31060
FOEL SG
OIL SIMP TEKP
84.306
H/C
1.880
COLD CELL TIMS (Tdl
80.471
O/C
0.000
HC
5.836
1.901
1.052
2.959
1.746
RELATIVE HUMIDITY
60.716
SPC02
13.390
NQx
0.540
0.942
0.764
0.864
0.828
NOx CORRECTION FACTOR
1.099
CGAL
2430.083
co
73.968
27.100
6.195
16.805
13.388
PRESS. BARO
758.600
C02
649.371
516.184
532.698
430.24
501.398
FE, MPG
11.353
15.761
16.310
19.101
16.957
raw missions report by
PHASE
CALCULATES EMISSIONS GRAMS/HILE
TEST DATA:
VEHICLE CA365B
PHASE:
0-124
BAGl
BAG2
BAG3
WEIGHTED
KM •
31061
*"UfcL SG
OIL SIKP TSC
95.000
H/C
1.880
COLD CELL TEW?
-------
am missions report by phase
CALCULATE SMISSICMS GRAMS/MILE
TEST DATA:
VEHICLE CA365B
PHASE
0-124
BAG1
BAG2
BAG3
WEIGHTED
KM t
31083
FUEL SO
OIL SU® TEHP
100.812
H/C
1.880
COLD CELL TBJP !M>
107.541
o/c
o.ooo
HC
7.660
2.658
1.361
3.262
2.155
RELATIVE HUKCDITY
41.181
SPC02
13.390
mx
1.207
1.157
0.956
1.143
1.058
no* ccrrbctick ranw
1.534
CGAL
2430.083
CO
40.411
29.927
11.347
28.285
19.880
PRESS. BM®
758.000
002
525.402
468.058
519.503
418.60
480.963
FE, MSG
14.517
17.004
16.434
18.804
17.207
iwif wurr ccrmfc nwentw ttv nnev
LfLxi flliaMLUBIo iUirVaU bI rnnila
CAI/TULATED QOSSICMS C3*AKS/KILE
TEST DATA:
VEHICLE CA365B
PHASE
0-124
8AG1
BAG2
BAG3
WEIGHT®
mm *
31064
£ U&pLi SO
att icr*ra u
U4X, xCTlir
100.506
H/C
1.880
COLD CELL TEHP
108.039
O/C
0.000
tc
7.203
2.695
1.149
4.572
2.408
RELATIVE HUMIDITY
40.688
SPOQ2
13.390
wax
1.259
1.455
1.043
1.221
1.177
80x CORRB7TICH FACTOR
1.538
CGAL
2430.083
CO
44.996
33.857
12.247
42.711
25.074
PRESS, BARD
758.000
C02
552.571
469.187
525.627
419.85
484.941
t1 £.. MPG
13.777
16.766
16.228
17.752
16.757
CTO EMISSIONS REPORT B* PHASE
CALCULATED B8ISS1CHS GRAMS/MILE
test data:
VEHICLE CA365B
PHASE
0-124
1AG1
BAG2
BAG3
WEIGHT]®
RUS #
31065
FUEL SG
OIL SUMP THff
91.400
H/C
1.880
COLD ^ "7 iTi TEMP (Td)
108.129
O/C
0.000
HC
7.108
2.036
1.172
3.315
1.939
RELATIVE HCKIDTTY
30.986
SPC02
13.390
HQ*
1.254
1.401
1.012
1.125
1.123
NOx CORRECTION FACTOR
1.219
CGAL
2430.083
CO
15.980
13.761
9.008
28.332
15.296
PRESS. 1ARQ
7S8.000
C02
515.088
456.999
519.281
412.54
477.071
FE, MPG
15.819
18.351
IS.572
19.038
17.618
am oassiws report by
PHASE
CALCULATED BCSSIOKS QRAHS/MIIE
test DATA:
VEHICLE CV924W
CHASE:
0-124
1AG1
BAS2
BAS3
WEIGHTED
RUN •
31106
FUEL se
OIL SUMP TQiP
71,706
H/C
1.880
COLD CELL TH4P (Ml
77,819
O/C
0.000
HC
5.280
1.604
0.607
1.618
1.091
RELATIVE HtJHIDIK
61.804
SPC02
13.390
NQx
2.835
1.186
0.670
0.985
0.863
MCK CORRECTICN FACTOR
1,064
CGAL
2430.083
CO
15.126
4.703
1.460
3.821
2.779
PRESS. BARO
758.000
C02
628.199
532.889
556.522
476.53
529.692
FE, KPG
13.312
16.322
15.874
18.254
16.619
DOT MISSIONS RETORT BY
PHASE
CALCULATED HUSSIONS GRAMS/MILE
TEST fiATA:
VEHICLE CV924W
PHASE:
0-124
BAS1
BAG2
BAG3
WEIGHTED
RUN *
31107
FUEL S3
OIL SUMP TMP
78.059
H/C
1.880
COLD CELL TH4P [Tdi
77.393
O/C
0.000
HC
5.284
1.684
0.686
1.633
1.154
RELATIVE HUMIDITY
69.916
SPC02
13.390
NQx
2.566
1.098
0.643
1.033
0.845
JKJx CORW3CTICM FACTOR
1.122
COAL
2430.083
CO
15.631
4.827
1.313
4.215
2.841
PRESS. BARO
758.000
C02
611.325
532.287
556.165
469.61
527.404
FE, MPG
13.639
16.327
15.884
18.491
16.693
BIN EMISSIONS REPORT BY
PHASE
CALCULATED BHSSICNS CKAMS/KILE
TEST DMA:
VEHICLE CV924W
fmcp.
*Vu%o£t.
0-124
BAG1
BAG2
BAG3
WEIGHTED
RUN *
31113
fTj&Li SG
OIL SISB> TBtP
81,235
H/C
1.880
COLD rm. THjp (
-------
DIM 1MTSSTCMS REPORT BY PHASE CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
CV924W
PHASE
: 0-124
BAS1
BAG2
BAG3
WEIGHTED
RUN *
31115
FUEL
SG
OIL SOtIP TB&
104.741
H/C
1.880
COLD CELL TBff (Td)
103.925
O/C
0.000
HC
4.443
1,555
0.816
1.619
1.189
RELATIVE HUMIDITY
36.100
SPC02
13.390
NQx
3.101
1.346
0.834
1.0B3
1.009
NOx corrbcticn factor
1,243
CGAL
2430,083
CO
9.200
4.247
2.367
3.585
3.091
PRESS. BARO
758.000
C02
550.£64
498.633
546.565
465.66
514.416
FE, MPG
15.369
17.446
16.100
18.684
17.089
DBI E2CSSICWE REPORT BY
PHASE
CALCULATED QQSSICWS GRAMS/MILE
1EST DATA:
VEHICLE
LS612B
PHASE:
0-124
BAG1
BAS2
BAG3
MEXGHTED
RUN *
31116
FUEL
SG
OIL Stiff TEMP
1832.000
H/C
1.S80
COLD OSUL TEKP (Td}
76,756
O/C
0.000
HC
2.722
0.701
0.252
0.404
0.387
RELATIVE HUMIDITY
65.488
SPC02
13.390
NOx
1.124
0.334
0.088
0.228
0.178
NQx CORRECTICH FACTOR
1.075
CGAL
2430.083
CO
13.544
. 3.965
1.957
1.260
2.184
PRESS. BARO
758.000
032
503.085
429.946
460.675
381,77
432.563
FE. MPG
16.701
20.304
19.161
23.119
20.488
um SttSSXCNS REPORT BY
PHASE
CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE
LS612B
PHASE:
0-124
BK31
BAG2
EAG3
WEISHTSD
RUN ft
3111?
FUEL
SG
OIL SOKP TEHP
91.294
H/C
1.880
COLD CELL THSP (Td)
75.537
O/C
0.000
h:
2.821
0.720
0.245
0.334
0.368
RELATIVE HUMIDITY
62.764
SPC02
13.390
NQx
1.401
0.404
0.109
0.249
0.209
NQx CORRECTICK FACTOR
1.037
CGAL
2430.083
CO
17.742
4.632
2,020
0.925
2.261
PRESS. BARO
756.000
C02
506.485
437.376
472.476
394.54
443.862
FE, HFG
IS.384
19.917
IB.684
22.419
19.962
0m EMISSIONS REPORT BY
PHASE
CALCULATED IMISSICKS GRAMS/MIUS
TEST DATA:
VEHICLE
LS612B
PHASE:
0-124
BAG1
BM32
B&S3
WEIGHTED
RUN •
31118
fUKdj
SG
OIL &MP TEMP
105.800
H/C
1.880
COLD CELL TEHP (Td)
91.166
O/C
0.000
HC
1.473
0.430
0.189
0.419
0.302
RELATIVE HUMIDITY
42.474
SPC02
13.390
NOX
0.641
0.211
0.081
0.335
0.178
NQx CORRECTION FACTOR
1.091
CGAL
2430.083
CO
7.75S
3.010
1.770
1,201
1.872
PRESS, BARO
757.200
C02
493.974
426.786
465.743
390.81
437.100
FE, MPG
17.425
20.563
18.975
22.591
20.296
£
i
i
phase
CALCULATED 0CSSXCHS GRAMS/MILE
wirrrrj!
LSS12B
PHASE:
0-124
BAG1
BAG2
BAG3
WEIGHTED
RDM #
31119
FT5EL
SG
OIL SUKP TEKP
109.188
H/C
1.880
COLD CELL TEMP {Td)
95.130
O/C
0.000
HC
2.441
0.618
0.212
0.456
0.363
RELATIVE HUMIDITY
48.432
SPCQ2
13.390
NOx
i.sia
0.4B9
0.106
0.324
0.245
NCtx CORRECTION FACTOR
1.270
CGAL
2430,083
CO
15.726
4.590
1.572
1.276
2.114
PRESS. BARO
757.400
CG2
482.038
419.580
462,107
387.53
432.870
FE, MPG
17.302
20.761
19.133
22.767
20.466
tmi emissions report by
phase
CALCULATED SESSIONS GRAMS/MILE
TEST DATA:
VEHICLE
LS612B
PHASE:
0-124
ESG1
BAG2
BAG3
WEIGHTED
RUN #
31120
FUEL
SG
OIL SIMP TEC
116.600
H/C
1.880
/wri «?! T
vajijj v ¦ r*«j ii t icrur ( ixt]
106.578
O/C
0.000
HC
2.543
0.717
0.211
0.415
0.372
RELATIVE HUMIDITY
36.694
SJC02
13.390
NOx
1.952
0.534
0.117
0.350
0.267
NQX CORRECTION FACTOR
1.336
CGAL
2430.083
CO
17.707
7.019
1.596
1.550
2.707
PRESS. BARO
753.SOD
C02
454.969
406.256
451.867
384.39
423.910
FE. KPG
18.135
21.216
19.552
22.934
20.829
•cm missims report by
PHASE
CALCOLATU3 HUSSIONS GRAMS/MILE
TEST DATA:
VEHICLE
LS612B
PHASE:
0-124
RAG1
BAG2
BAS3
WEIGHTED
RUN #
31121
FDH»
SG
OIL Stiff TEKP
120.412
H/C
1.880
COLD rgr.T* TEKP (Td)
105.166
O/C
0.000
HC .
2.526
0.714
0.205
0.337
0.347
RELATIVE HUMIDITY
36,699
SPC02
13.390
NOx
1.837
0.504
0.121
0.342
0.261
NQx CORRECTION FACTOR
1.293
COAL
2430.083
CO
14.237
6.208
1.601
1.552
2.542
PRESS. BARO
757.500
C02
463.631
408.732
463.320
387.41
431.171
FE, MPG
18.019
21.156
19.082
22.771
20.524
C- 11
-------
TO HGSSICNS REPORT BY PHASE CALCULATED EMISSIONS GRAMS/MILE
TEST DATA:
VEHICLE LA392W
PHASE;
: 0-124
BAG1
BK32
BAG3
HEXSsnSD
RON #
31122
FUEL SS
OIL SIMP TEMP
91.400
H/C
1.8B0
COLD CELL THKP !Td)
81.99?
O/G
0.000
HC
7.063
1.805
0.220
0.824
0.712
relative Kaanm
58.363
SPC02
13.390
NQx
2.126
1.148
0.928
1.178
1.042
mx cokrictich factor
1.105
CGAL
2430.083
03
12.644
5.525
4.744
4.492
4.836
PRESS. BAB0
755.000
C02
482.718
408.592 .
429.220
369.87
408.689
FE, HPS
16.957
21.044
20.352
23.453
21.345
PTN EMISSIONS REPORT BI
PHASE
CALCULATED EMISSIONS GRAMS/KILE
TEST DATA:
VEHICLE LA392W
PHASE:
; 0-124
8W1
BAG2
1AS3
WEIGHTED
IBM * ¦
31123
FUEL SG
OIL SUMP TtXP
86.000
H/C
1.880
COLD CELL TSMF ITd)
82.517
o/c
0.000
HC
8.853
2.145
0.197
0.790
0.762
rsuhtve hukebot
61.297
SPC02
13.390
NQx
1.889
1.045
0.971
1.224
1.056
NOst CORSBCWCK FACTCR
1.144
CGAL
2430.083
CO
16.328
6.218
4.158
3.589
4.448
PRESS. BMW
752.500
€02
483.672
411.406
433.248
369.21
411.152
FE, MPG
16.565
20.799
20.209
23.589
21.259
im aassiois report by
PHASE
CALCULATED SCISSIONS SRAMS/MILE
TEST DMA:
VEHICLE LA392W
PHASE:
0-124
BAG1
bag;
BAG3
WEIGHTED
RUN *
31124
FUEL SO
OH. SUMP TBffi
104.212
H/C
1.880
COLD rial. TWP (Wi
95.120
O/C
0,000
HC
5.482
1.421
0.206
1.027
0.684
BHATIVE HUMIDITY
48.278
SFC02
13.390
NQx
2.137
1.281
1.008
1.796
1.282
i*K CORKECriCK EACIOR
1.266
cgal
2430.083
CO
17.652
7.006
3.587
5.442
4.806
MESS. BARO
758.000
C02
450.794
397.350
434.417
363.17
407.122
FE, MPG
17.950
21.560
20.198
23.738
21.455
C- 12
-------
TECHNICAL REPORT DATA
(Heme read Instructions on the reverse before completing)
1. REPORT NO. 2.
EPA-600/R-94-059a
3. RECIPIENT'S ACCESSION-NO.
4. TITLE AND SUBTITLE
Analysis of Real-time Vehicle Hydrocarbon Emissions
Data
S. REPORT DATE
April 1994
6. PERFORMING ORGANIZATION CODE
?. AUTHORtSI
J. Philip Childress and James H, Wilson, Jr.
8. PERFORMING ORGANIZATION REPORT NO.
93.08.001/1010.029 (738 Rev)
S. PERFORMING ORGANIZATION NAME AND ADDRESS
E. H. Pechan and Associates, Inc.
5537-C Hempstead Way
Springfield, Virginia 22151
10. PROGRAM ELEMENT NO.
11. CONTRACT/GRANT NO.
68-Dl-0146, WA 2/029, and
68-D9-G168, WA 43
12. SPONSORING AGENCY NAME AND ADDRESS
EPA, Office of Research and Development
Air and Energy Engineering Research Laboratory
Research Triangle Park, NC 27711
13. TYPE OF REPORT AND PERIOD COVERED
Task Final; 10/93-1/94
14. SPONSORING AGENCY CODE
EPA/600/13
is. supplementary notes _£EERL project officer is Carl T. Ripberger, Mall Drop 62, 919/
541-2924. There are four related diskettes.
4|> A OCTQApT
The report gives results of analyses using real-time dynamometer test
emissions data from 13 passenger cars to examine variations in emissions during
different speeds or modes of travel. The resulting data provided a way to separately
identify idle, cruise, acceleration, and deceleration emissions for examining how
emissions differ by vehicle speed during the cruise mode. To select a set of vehicles
for the study, the hydrocarbon (HC)/time relationship was established for several
vehicles operating on summer-grade base fuel. Federal Test Procedure (FTP) re-
sults were then produced and examined to identify normal emitters (clean vehicles).
After these vehicles were selected, their second-by-second emission characteris-
tics were analyzed. The FTP runs for cold start, hot start, and hot stabilized emis-
sions (Bags 1, 2, and 3 of the FTP) were performed for each of the four driving cy-
cles— acceleration, deceleration, idling, and cruise—and the fraction of overall
emissions contributed by each mode was computed for the warmed-up portion of the
driving cycle. A protocol was then developed for review of the FTP real-time data.
Study results showed significant emissions differences relating to the travel mode.
17. KEY WORDS AND DOCUMENT ANALYSIS
1. DESCRIPTORS
b. IDENTIFIERS/OPEN ENDED TERMS
c. COSATI Field/Group
Pollution
Hydrocarbons
Emission
Automobiles
Pollution Control
Stationary Sources
13B
07C
14G
13F
18. DISTRIBUTION STATEMENT
Release to Public
19. SECURITY CLASS (ThisReport/
Unclassified
21. NO. OF PAGES
104
20. SECURITY CLASS (This page)
Unclassified
22. PRICE
EPA Form 2220-1 (9-73! 0- J3
-------
------- | | |