United State*	Office of

• Environmental Protection Research and Development
Agency	Washington, DC 20460

April 1994

« EPA Analysis of Real-Time
Vehicle Hydrocarbon
Emissions Data

Prepared by Air and Energy Engineering Research Laboratory


-------
EPA REVIEW NOTICE

This report has been reviewed by the U.S. Environmental Protection Agency, and
approved for publication. Approval does not signify that the contents necessarily
reflect the views and policy of the Agency, nor does mention of trade names or
commercial products constitute endorsement or recommendation for use.

This document is available to the public through the National Technical Informa-
tion Service, Springfield, Virginia 22161.


-------
EPA-600/R-94-059 a

April 1994

ANALYSIS OF REAL-TIME
VEHICLE HYDROCARBON EMISSIONS DATA

by

J. Philip Childress and James H. Wilson, Jr.
E.H. Pechan & Associates, Inc.
Springfield, VA 22151

EPA Contracts No. 68-D1-0146, Work Assignment No. 2/029;
and 68-D9-0168, Work Assignment No. 43

Project Officer

Carl T. Ripberger
Emissions and Modeling Branch
Air and Energy Engineering Research Laboratory
U.S. Environmental Protection Agency "
Research Triangle Park, NC 27711

Prepared for:

U.S. Environmental Protection Agency
Office of Research and Development
Research Triangle Park, NC 27711


-------
ABSTRACT

Analyses using real-time dynamometer test emissions data from 13 passenger cars
were performed in a study to examine variations in emissions during different speeds, or
modes of travel. The resulting data provided a means for separately identifying idle,
cruise, acceleration, and deceleration emissions for examining how emissions differ by
vehicle speed during cruise mode.

To select a set of vehicles for the study, the hydrocarbon-time relationship was
established for several vehicles operating on summer-grade base fuel. Federal Test
Procedure (FTP) results were then produced and examined to identify normal emitters
{clean vehicles). After these vehicles were selected, an intensive analysis of their second-
by-second emission characteristics was conducted.

The FTP runs for cold start, hot start, and hot stabilized emissions (Bags 1, 2, and
3 of the FTP) were performed for each of the four driving cycles — acceleration,
deceleration, idling, and cruise — and the fraction of overall emissions contributed by
each mode was computed for the warmed-up portion of the driving cycle. A protocol was
then developed for review of the FTP real-time data.

The study results showed significant emissions differences related to travel mode;
(1) cruise mode emissions are invariant with speed when expressed on a grams-per-
second basis; (2) emissions resulting from acceleration from a stop to cruise speed are
similar to those resulting from acceleration from cruise speed to a higher speed; (3)
acceleration emissions were the highest of all the modes; and (4) cruise emissions are
very similar to idle emissions.

i


-------
CONTENTS

Page

Abstract 						ii

Figures					iv

Tables 											v

Abbreviations and Symbols 								vi

Acknowledgements							vii

1.	Introduction 			.	1

Background 									1

Objective 									2

Report Organization 								3

2.	Phase 1: Study Methods 				5

3.	Phase 1: Study Results 										8

Federal Test Procedure Results 				8

4.	Phase 2: Methodology							27

Introduction 								.27

Mathematical Relationships			30

5.	Phase 2: Modal Results 											38

Hydrocarbon Emissions by Mode			..38

Speed Versus Emissions 										49

FTP Run Statistical Analysis 											52

Cruise Mode Emissions Analysis 				61

6.	Summary of Findings	.65

References																	66

Appendices

A Source Code for FTPCLC4 Motor Vehicle Emissions Data

Reduction Program 											 A-l

B.	Federal Test Procedure Equations Used to Calculate Grams

Per Mile Emissions From Exhaust Analyzer Emissions Data			B-l

C.	Federal Test Procedure Emissions Results by Bag							C-l

D.	Raw Data ASCII Files and Analysis Methodology

ASCII Files for Runs 30853 - 30999	...Diskl

ASCH Files for Runs 31001 - 31050					Disk2

ASCII Files for Runs 31057 - 31124							Disk3

Spread Sheet and Instructions for Modal Analysis	Disk4

iii


-------
FIGURES

Number	Eag£

3-1 HC Emissions and Speed, Vehicle: S0756B, Run: 31013 					13

3-2 HC Emissions and Speed, Vehicle: S0756B, Run: 31014 				14

3-3 HC Emissions and Speed, Vehicle: S0756B, Run: 31015 				15

34 HC Emissions and Speed, Vehicle: S0756B, Run: 31016				 16

3-5 HC Emissions and Speed, Vehicle: S0756B, Run: 31017 							 17

3-6 HC Emissions and Speed, Vehicle: S0756B, Run: 31018 						.....18

3-7 All HC Runs for Vehicle S0756B						 19

3-8 HC Emissions and Speed, Vehicle: LS612B, Run: 31116 						 20

3-9 HC Emissions and Speed, Vehicle: LS612B, Run: 31117 					 21

3-10 HC Emissions and Speed, Vehicle: LS612B, Run: 31118 			22

3-11 HC Emissions and Speed, Vehicle: LS612B, Run: 31119 			 23

3-12 HC Emissions and Speed, Vehicle: LS612B, Run: 31120 				24

3-13 HC Emissions and Speed, Vehicle: LS612B, Run: 31121 					25

3-14	All HC Runs for Vehicle LS612B 													26

4-1	Federal Test Procedure Test Cycle with Mode Identifications						 28

5-1	HC Emissions and Lagged Acceleration, Bag 2: 506 to 1,006 Seconds 			60

5-2 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle C0322G	62

5-3 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle C0665W 			 63

5-4 Cruise Mode Speed vs. HC Emissions, Bags 2 and 3 only, Vehicle S0756B 	64

iv


-------
TABLES

Number	Page

2-1	Real-Time Data Test Vehicles 										7

3-1	Weighted Bag 1, Bag 2, and Bag 3 Emissions 											9

4-1	Typical Output of FTP Analysis Run 										32

5-1	Hydrocarbon Emissions by Mode -- Cold Start Phase

/n	* a . rAf ft	i \	a a

(Bag 1: 0 to 505 Seconds) 						 39

5-2 Hydrocarbon Emissions by Mode - Hot Stabilized Phase

(Bag 2: 506 to 1372 Seconds) 								43

5-3 Hydrocarbon Emissions by Mode -- Hot Start Phase

(Bag 3:1972 to 2477 Seconds) 					46

5-4 Simple Statistics for Mean Instantaneous HC Emission Rate

for Six Vehicle Types 													50

5-5 Correlation Matrix for Speed and Instantaneous HC

Emission Rate for Six Vehicle Types 	....51

5-6 Simple Correlation Analysis — Hydrocarbon Emissions

Versus Engine Speed and Acceleration 							53

5-7 Vehicle Average Correlation of HOTFID Versus Lagged

Acceleration (Bag 2 of the FTP) 						59

v


-------
CARB

CD

CVS

DF

EPA

FE

ft3

FTP

g/ft3

g/mi
g/sec
HC

mg/sec

mmHg

mph

mph/sec

MSERB

N0X

03

ppm

SG

SCAQS

VIN

VMT

ABBREVIATIONS AND SYMBOLS

California Air Resources Board
carbon monoxide
constant volume sampler
dilution factor

U.S. Environmental Protection Agency
fuel economy
cubic feet

Federal Test Procedure

grams per cubic feet

grams per mile

grams per second

hydrocarbon

milligrams per second

millimeters of mercuiy

miles per hour

miles per hour per second

Mobile Sources Emissions Research Branch

oxides of nitrogen

ozone

parts per million
summer grade (gasoline)

South Coast Air Quality Study
vehicle identification number
vehicle miles traveled

vi


-------
ACKNOWLEDGEMENTS

The authors acknowledge the valuable assistance of the late Ronald L. Bradow,
formerly with EPA, in providing the data set that was analyzed in this study and in
providing advice about how to perform the analysis. We also acknowledge the assistance
of Richard Snow of ManTech, who wrote the computer program used to produce the
Federal Test Procedure (emissions by Bag) results displayed in Section 3 of this report.

The EPA Project Officer acknowledges the support by Richard D, Delay
(currently with D and A Innovative Technology) in testing the source code provided in
Appendix A, providing the data outputs of Appendix C, and providing Appendix D (data
on diskettes).

vii


-------
viii


-------
SECTION 1

INTRODUCTION

BACKGROUND

This report covers analysis performed using real-time dynamometer test emissions
data from 13 passenger cars, A special focus of the analysis was to examine variations in
emissions during different speeds, or modes of travel. The data sets used in this project
were extracted from the oxygenated fuels (Stump, Knapp, and Ray, 1990a and 1990b)
and the high temperature vehicle emission studies (Stump, Knapp, mid Ray, 1992a and
1992b) conducted by the Mobile Sources Emissions Research Branch (MSERB), U.S.
Environmental Protection Agency (EPA). These studies measured emissions on 17 1986
to 1990 model year vehicles with accumulated mileages ranging from 17,000 to 55,000
miles.

A major impetus for this project was to investigate information developed in a
paper written by Leonard Seitz (Seitz, 1989), which examined some of the differences
between methods used by EPA and the California Air Resources Board (CARB) for
estimating motor vehicle emissions. The paper suggests that, by expressing emission
rates in per hour or per minute units rather than per mile, the speed factor issue may be
much simpler than the way it was being handled in EPA models. His graphs even
suggest that average trip emissions may not be a function of speed at all. If this

1


-------
observation by Seitz could be substantiated over a wide range of speeds (e.g., 0 to 60
mph), then that entire range could be handled as one mode in a modal model.

OBJECTIVE

Modal emissions data, such as the data sets examined in this study, provide a
means for separately identifying idle, cruise, acceleration, and deceleration emissions.
These data also provide the opportunity to study how emissions differ by vehicle speed
during cruise mode, which is important when trying to determine ways in which motor
vehicle emissions modeling can be made simpler, such as assuming that cruise emissions
per time unit are constant with speed.

A recommendation was made at two EPA-sponsored highway vehicle workshops
(Wilson and Ripberger, 1991) that, though modal models have historically been viewed
as tools for mieroscale, highway impact, or signalized intersection-type analyses, they
could potentially be used much more broadly. One of the possible reasons why the
Southern California Air Quality Study (SCAQS) Tunnel Study (Ingalls, Smith, and
Kirksey, 1989) measurements were so difficult to correlate with the EMFAC7 (CARB,
1986) model estimates was that it was not possible to simulate the exact operating
conditions on the roadway in question using EMFAC7. A modal model should be able to
more accurately simulate the emissions for link-specific analyses. In addition, as mobile
source emission inventory techniques get more sophisticated, a modal model could
potentially be used to better estimate emissions throughout an urban area using many
separate modal emissions analyses. This could be termed the link prototype approach,
because a number of prototype traffic situations could be modeled and then matched with
links in the modeling network to estimate their emissions.

2


-------
Ripberger and Markey (1991) also discuss the potential of modal testing and
modal simulation models for use as key parts of EPA's research plan for developing a
basic emissions estimation model, based in part on the fact that vehicle emissions are not
constant over a range of operating conditions. Further, modal testing would need to
cover the range of modes experienced by in-use vehicles: idle, cruise (over the entire
speed range), acceleration, and deceleration.

Note that Federal Test Procedure (FTP) measurements are typically made in
phases or Bags, with the results being expressed as averages over the measurement
period. The FTP begins with a cold start, and Bag 1 represents the first 505 seconds of
vehicle operation. Seconds 506 through 1372 of the FTP are known as Bag 2 and
represent the hot stabilized phase of the cycle. Following Bag 2 is a 10-minute engine-
off period. Then, there is a hot start and the vehicle is operated using the same speed-time
trace as in Bag 1. This phase is known as Bag 3.

REPORT ORGANIZATION

The analysis in this report is based on work that was performed in two phases.
Phase 1, covered in Sections 2 and 3 of this report, focused on examining the
hydrocarbon-time relationship for several vehicles operating on summer-grade base fuel.
Overall FTP results were produced and examined to identify four or five vehicles that had
emissions that were considered normal (or clean); these were used for further analysis.
For this subset of clean vehicles, hydrocarbon (HC) time traces were developed for the
long arterial road cruise section, also known as Hill 11, of the FTP.

Phase 2 of this study, covered in Sections 4 and 5 of this report, involved
intensive analysis of the second-by-second emission characteristics of the selected clean

3


-------
vehicle models. First, the reproducibility of emission patterns was examined for particular
acceleration, deceleration, and cruise modes. Second, the fraction of overall emissions
contributed by acceleration, deceleration, idling, and cruise modes was computed for the
warmed-up portion of the driving cycle for these modes. Finally, a protocol was
developed for review of FTP real-time data.

4


-------
SECTION 2

PHASE 1: STUDY METHODS

The data for the analyses in this report came from two prior EPA studies, the
oxygenated fuel studies (Stump, Knapp, and Ray, 1990a and 1990b) and the high
temperature studies (Stump, Knapp, and Ray, 1992a and 1992b). The oxygenated fuel
studies were conducted to determine the effect of fuels containing alcohols and ethers on
vehicle tailpipe and evaporative emissions. The studies also were conducted with
commercial summer grade gasoline as a comparative fuel. The oxygenated fuels were
expected to reduce tailpipe hydrocarbon (HC) and carbon monoxide (CO) emissions by
leaning out the air/fuel mixture. Also, the oxygenates enhance octane rating and
compensate for the elimination of lead, an octane booster.

The high temperature studies (from where the rest of the data for these analyses
were obtained) were conducted to determine the emission contribution of motor vehicles
to the ambient pollution at elevated summer temperatures. The National Ambient Air
Quality Standard for ozone (O3), as established by EPA, of 0.12 ppm (by volume, 1-hour

average) is exceeded most often during the summer months. Motor vehicles make a
significant contribution of HCs and oxides of nitrogen (NOx) emissions, which are the

primary precursors in the atmospheric photochemical processes resulting in the formation

°f O3.

5


-------
During these studies, tailpipe and hot soak emissions were determined at
temperatures of 40,75,90, and 105°F, Diurnal evaporative emissions were determined
at fuel tank temperature ramps of40-64,60-84,72-96, and 84-108°F. The vehicles were
chosen based on sales and not all of the vehicles were tested at all test temperatures or
with all test fuels. The real-time regulated emissions and fuel economy data were
acquired from the data base generated by these vehicle studies.

Table 2-1 lists the vehicles for which emission measurements were used in this
study. The vehicle IDs listed in this table are also used in other tables in this report as a
shorthand way of identifying vehicles. [Note: Because vehicle C0174G only had two
FTP runs, it was not included in the data set that was analyzed for this study.]

6


-------
Table 2-1
Real-Time Data Test Vehicles*

«sl

Vehicle ID

Vehicle

Engine Displacement
(Liters)

VIN

Accumulated
Mileage

Model
Year

CA36SB

GM Chev. Caprice Classic

5.0

1G1BN69H9GY100365

39,970

1986

C0174G

<3M Corsica

N/A

N/A

N/A

1987

C0322Q

QM Corsica

2.0

1Q1LT5116HY102322

34,364

1987

C0665W

GM Corsica

2.0

1G1LT5111JY616865

16,935

1988

CO710B

GM Corsica

2.8

1G1LT51W9HY104710

34,268

1987

CV924W

Ford Crown Victoria

5.0

2FABP73F8HX183924

39,242

1987

ES707R

Ford Escort

1.9

1 FAPP2599HW32870t

44,559

1987

LA127B

Chrysler LeBaron

2.5

1C3CJ41K0JG324127

38,418

1988

LA392W

Chrysler LeBaron

3.0

1C3X J4538LG418392

20,087

1990

LS612B

GM Bulck LeSabre

3J

1G4HP14C6JH482612

54,802

1988

SA333B

Ford Mercury Sable

3.0

1M EBN5048H A615333

44,380

1987

S0756B

GM Bulck Somerset

2.5

1G4NM14V7HM078756

45,136

1987

TA207G

Ford Taurus

3.8

1FABP524X JA148207

20,485

1988

NOTES;

* Includes gasoHrm-fuetod vehicles only. Care Rstwt abwe are those tested with summer-grade gasoline.
N/A » Data not available.


-------
SECTION 3

PHASE 1: STUDY RESULTS

FEDERAL TEST PROCEDURE RESULTS

Vehicles C0322G and C0665W were the only vehicles operated on oxygenated,
as well as the summer-grade, fuel, and only the summer-grade fuel data were used in this
analysis. All of the other vehicles were operated only on the summer-grade fuel. The
first set of tables in this chapter shows the bag-specific results for each of the vehicle/run
combinations. These results were produced using a Lotus 1-2-3 macro that was
originally written by Richard Snow of ManTech.

While these tables are useful by themselves for determining the emission
characteristics of the vehicles tested, in this study they were used primarily to identify
normal emitters, where a normal emitter emits less than twice the applicable standard.
The applicable standards for the model year vehicles tested are; 0.41 g/mi HC; 3.4 g/mi
CO; and 1.0 g/mi NOx.

Table 3-1 lists the weighted Bag 1, Bag 2, and Bag 3 emissions for the 80 FTP
runs performed using summer-grade gasoline. From this data set, 47 runs were identified
as being normal emitters. It is interesting to note that of the 13 vehicles tested, 7 were
always normal emitters, only 1 was never a normal emitter, and the rest were normal
emitters on some runs and not on others. It is likely that some of the variation in
emissions between runs is caused by the temperature differences among tests.

8


-------
Table 3-1

Weighted Bag 1, Bag 2, and Bag 3 Emissions
(grams per mile)

Vohtci* ID

Run Number

HC

NO,

CO

31065

1.47

1.13

15.32

31061

1.47

0.89

15.80

31060

1.33

0.83

13.42

31057

1.28

0.76

12.75

31063

1.69

1.06

19.94

31062

1.39

0.99

15.16

31064

1.77

1.18

25.17

r *

{mm





•*

30936

0.42

0.63

8.23

30974

0.43

1.00

10.30

30978

0.63

2.11

15.90

30972

0.42

0.67

8.74



& if



^ *' Xu~ H

¦i

_ A.

. C« .

30946

0.38

0.57

7.71

fpilll





§! 5*61

30975

0.45

0.90

11.15

30973

0.42

0.69

8.73

30971

0.43

0.73

8.80

j 30935



„n1ti "¦(, 1f in mm



30989

0.26

0.60

7I79

pMp

0.33





30870

0.58

0.47

n.36

30869

0.53

0.52

10.34

**»
IJMm

|m

en

,MV

#»

0« ¦ Of
«« ««*

CA365B

C0174G
C0322G

C0665W

CO710B

30999
31002
30996
30994

fjlpf

0.85
0.99
0.88
0.92

0.41
0.37
0.37
0.36

~ .w.v.v.v-v.svvv.vv.v.sv.v.	Xv.--.\v.v. v. ,v/.\v. ¦¦:¦¦¦¦

6.23
9.45
6.06
6.35

zzzm

mtmmm
(Continued)

9


-------
Table 3-1 (continued)

Vehicle tD

CO710B

CV924W

ES707R

LA127B

LA392W

LS612B

SA333B

Run Number

HC

NO,

CO

30993

1.10

0.47

6.87

31001

0.90

0.42

7.13



V>XJ ;C





30990

1.15

MllliliilM

0.42

8.39

31107

0.91

0.85

2.85

31106

0.86

0.87

2.79

31115

0.95

1.01

3.09

Wlliliilliiiiiiil





HHiiliijiilli

31020

0.52

0.72

11.16

31025

0.46

0.91

12.30

31024

0.51

0.77

13.42

31019

0.58

0.74

12.82

& 11	l

utw* J

|«»»#

ttU0

5M11

,»«a»
rsn

*>o»

- 1

0*
6H



«*»

€17
Ut

4*1

*u

(Continued)


-------
Table 3-1 (continued)

Note: Shaded areas indicate normal emitters.

11


-------
The FTP results were then used to select two of the cleaner cars to examine
further: vehicle S0756B and vehicle LS612B. Initial analyses of the test data from these
two cars are presented in the form of plots of HC emissions in parts per million (ppm)
versus vehicle speed (mph) as shown in Figures 3-1 through 3-14. The plots all begin
767 seconds into the cycle, which means that they are well into the hot stabilized mode
(no cold start effects) and include Hill 11. The second-by-second data for six runs are
displayed for each of the two vehicles. Composite figures for each vehicle, titled All HC
Rims, are presented in Figure 3-7 (for vehicle S0756B) and Figure 3-14 (for vehicle
LS612B).

One observation that can be made from these figures is that the spikes in HC
emissions relate to changes in speed (i.e., accelerations produce the highest emissions,
but cruise did not produce changes). It is also notable that accelerations from a cruise
speed to a higher speed appear to be as important as accelerations from a stop in
producing high HC emission values. Some runs show these phenomena more clearly than
others, however. Vehicle S0756B shows consistent emission traces from ran to run, with
the possible exception of run 31016, which has somewhat lower HC emissions during the
non-spike periods. Emissions from vehicle LS612B appear to be more variable.

12


-------
Figure 3-1
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31013

Tim# (seconds)


-------
40

30

20 -

10

700

800

Figure 3-2
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31014

900

1,000
Time (seconds)

1,100

1,200

1,300


-------
Figure 3-3
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31015

Time (seconds)


-------
Figure 3-4
HC Emissions and Speed

767 (Hill 11} to 1,200 Seconds
Vehicle: S0756B Run: 31016

Time (seconds)


-------
Figure 3-5
HC Emissions and Speed

767 {Hiil 11) to 1,200 Seconds
Vehicle: S0756B Run: 31017

Tim® (seconds)


-------
Figure 3-6
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: S0756B Run: 31018


-------
Figure 3-7
All HC Runs for Vehicle S0756B

750

800

850

900	950

Time (seconds)

1,000

1,050

1,100


-------
M
O

Figure 3-8
HC Emissions and Speed

767 (Hill 11} to 1,200 Seconds
Vehicle: LS612B Run: 31116

700

800

900

1,000

Time (seconds)

1,100

1,200

1,300


-------
700

Figure 3-9

HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31117

800

900

1,000

Time (seconds)

1,100

1,200

1,300


-------
Figure 3-10
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31118

Tim# (seconds)


-------
Figure 3-11
Eti'iissions &nd Speed

to

u>

80

60

1

a

I 40

a.

«

c

0

«

«

1	20

o

700

800

767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31119

900

1,000

Time (seconds)

1,100

1,200

1,300


-------
Figure 3-12
HC Emissions and Speed

767 (Hill 11) to 1,200 Seconds
Vehicle: LS612B Run: 31120

Time (seconds)


-------
Figure 3-13

HC Emissions and Speed

767 (Hill 11} to 1,200 Seconds
Vehicle: LS612B Run: 31121

Tim® (seconds)


-------
Figure 3-14
All HC Runs for Vehicle LS612B

750

800

850

900	950

Tims (seconds)

1,000

1,050

1,100


-------
SECTION 4

PHASE 2; METHODOLOGY

INTRODUCTION

The analyses performed for this effort were divided into three
distinct parts:

1.	Standard FTP analysis for the cold start, hot start,
and hot stabilized phases (Bags 1, 2, and 3) of the
FTP;

2.	Modal analyses of the four driving modes within

Bags 2 and 3; and

3.	Statistical analysis of second-by-second HC

emissions.

The real-time (by second) FTP data were delivered to Pechan in
over 200 ASCII text files, along with the FTP reduction Lotus 1-2-3
macro spreadsheet, which reduced the data into the FTP time phases.
The analyses performed focused on a subset of 12 vehicles, representing
76 FTP runs, selected for data robustness (at least four FTP runs each),
fuel (summer-grade gasoline only), and emissions behavior (showing
average emissions in grams per mile of not more than twice the
applicable Federal emission standard of any regulated pollutant).

27


-------
Figure 4-1

Federal Test Procedure Test Cycle
with Mode Identifications

EPA Urban Driving Schedule - Mode Table

SOURCE: Gabele and Colotta, 1981,

"Reprinted with permission from SAE Paper No. 811185
© 1985 Society of Automotive Engineers, Inc."


-------
One of the first steps performed was to translate the Lotus 1-2-3 spreadsheet
macro into dBASE HI Plus format, to allow ease of program modification, program
documentation, and data base development without the disadvantage of memory
limitations which are often experienced on spreadsheet-type models. The two model
versions — the original spreadsheet and the equivalent dBASE code — were used
interchangeably in the analysis. The dBASE version source code is shown in Appendix
A

Modal analysis by FTP phase for Bags 1,2, and 3 were performed using the
original FTP spreadsheet, augmented with a vector of mode flags added for each mode
(idle, acceleration, cruise, and deceleration) for each of the 2,477 seconds of the FTP, and
separate aggregation calculations were constructed. Modes were taken from the Urban
Dynamometer Driving Schedule Mode Table (Gabele and Colotta, 1981), as shown in
Figure 4-1, and were entered into the spreadsheet using Lotus macros.

Statistical analyses of HC emissions versus independent variables such as speed
and acceleration were performed using standard linear regression and analysis of variance
methods of the Statistical Analysis System (SAS) PC software package. This
investigation included trial regressions of measured and lagged speed and acceleration for
both HC emissions and changes in HC emissions. All of this analysis was performed on
the raw exhaust emissions, without calculating dilution effects or transforming to grams
per mile (the HOTFID variable is the variable on the right in the HC emissions regression
analysis in Section 5).

The following section discusses the mathematical relationships used for each of
these three parts of the analysis.

29


-------
MATHEMATICAL RELATIONSHIPS

Standard Federal Test Procedure Analysis

The spreadsheet model delivered to Pechan contained the FTP equations from 40
CFR §86.144-78 used for calculating grams per mile from exhaust analyzer emissions
data. The relevant equations from that document are provided in Appendix B. While
highly detailed in some of the adjustment formulae, the essential calculations are shown
in equations 1 through 4 below, using HC as an example:

HC

HCmass = Vmix * Densityuc *	= [Hydrocarbon emissions in (1)

In this equation, an HC density of 16.33 grains per cubic feet (g/ft^) is assumed, and
HCconc is diluted hydrocarbon concentration in parts per million, as calculated below.

grams for a volume of Vmix
cubic feet of total measured diluted
mixture.]

HCconc = HQ - HCd * (1 - ^-)

(2)

(3)

Vmix=(V0 * N) * (Pb-P4) * 528/(760 * Tp)

mix

(4)

30


-------
where:

HCe = HC concentration of the diluent exhaust sample as measured
(ppm)

HCd = HC concentration of the diluent (background) air (ppm)

DF = Dilution Factor

C02e = CO2 concentration of diluent exhaust sample (ppm)

COe = CO concentration of dilution corrected for water vapor and
CD 2 extraction (ppm)

VQ = Volume per revolution of constant volume sampler (CVS)
pump (ft3 )

N = Number of revolutions of CVS pump during sample period

P5 = Barometric pressure (mmHg)

P4 = Barometric pressure below atmospheric measured at inlet to
CVS pump during idle (mmHg)

Tp = Average temperature of diluent exhaust entering the CVS

pump during test (in degrees Rankine = degrees F + 460) [The
528 in the numerator of equation (4) is 68°F + 460, or
"standard temperature."]

A typical output for one run of the FTP analysis program is shown in Table 4-1.
The calculations involved follow the equations listed above, except for Vmjx,

31


-------
Table 4-1

Typical Output of FTP Analysis Run

MODAL EMISSIONS REPORT (DTN)

TEST DATA:

RUN §

OIL SUMP TEMP
COLD CELL TEMP (Td)
RELATIVE HUMIDITY
NOx CORRECTION FACTOR
PRESS. BARO

31119
109.188
95.125
48.427
1.272
757.400

VEHICLE

isn iot
r U&u

H/C
O/C
SPC02

LS612B

SG
1.880
0.000
13.389

DILUTION TUNNEL CONCENTRATIONS

MODE;0-124BAG 1BAG 2BAG 3BKG

lC	85.870	32.462	11.985	12.892	6.563

NO,	13.980	4.850	0.596	3.227	-0.074

CO	257.416	99.783	24.177	30.546	3.599

C02	0.538	0.603	0.429	0.564	0.044

DILUTION TUNNEL CONCENTRATIONS-BACKGROUND CORRECTED

MODE:

0-124

BAG 1

BAG 2

BAG 3

tjv/i
JDJvV9

HC

79.587

26.201

5.635

6.608

0.000

NO*

14.050

4.920

0.668

3.298

0.000

CO

253.971

96.349

20.694

27.100

0.000

C02

0.496

0.561

0.387

0.523

0.000

CALCULATED EMISSIONS GRAMS/MILE

MODE:	0-124 BAG 1 BAG 2 BAG 3 WEIGHTED

HC

2.448

0.619

0.212

0.155

0.280

NOx

1 .823

0.490

0.106

0.327

0.246

CO

15.773

4.593

1 .573

1.287

2.118

co2

484.290

420.095

462.304

389.946

433.765

FE, MPG

17.223

20.736

19.124

22.681

20.432

MTT.1R.Ci

0.674

3.573

3.874

3.587





1268.918

5166.496

8932.555

5166.496



DF

23.389

21.745

30.928

8



32


-------
which was calculated using constants calibrated to the equipment and time
of the phase (Bag). For an example of the calculations, consider the 0.212
g/mi value for Bag 2 HC emissions in Table 4-1. This value was calculated
with the FTP equations above using the values that follow.

Tp	=	95.125T

Pb	=	757.4 mmHg

HCe	=	11.985 ppin (measured exhaust gas, the HOTFID

variable)

Miles	=	3.874 (Bag 2)

COe	=	24.17 ppm

C02e =	0.429 ppm

DF	=	13.4 / [0.429 + 0.0001 * (11.985 + 24.17)] =

30.94

Vmix	=	2.3737 * (Pb - 35.5) = 8932.6 ft^

Hconc	=	11.985 - 6.563 * (1-1 / 30.94)

=	5.634 ppm

HCmass =	5.634 * 8932.6 * 16.33 / 1000000

=	0.8218 grams (for entire Bag 2)

HCgPm =	0.8218 / 3.874

= 0.212 g/mi

33


-------
Modal Analysis of the Federal Test Procedure Data

In a separate analysis, HC emissions in grains were calculated for each of the
modes of the FTP runs for the 76 FTP cases selected. In modal analysis, the concept of
grams per mile is meaningless, since speed or miles traveled per second is a denominator;
thus, grams per mile would be infinite in idle mode. To overcome this problem, a
normalized measure of relative emissions across driving modes was developed, as
described below.

Figures 5-1 through 5-3 (Section 5) present a measure of the rate of HC emissions
by driving mode (idle, acceleration, cruise, and deceleration) for Bags 1,2, and 3 of the
FTP dynamometer test. These figures are based on the sample FTP runs.

The numbers underlying the figures represent normalized measures of relative
emissions between the modes and Bags. In this context, normalized means that the
measure is dimensionless, gives no favor to any subset number (e.g., clean versus dirty
vehicles) of FTP runs among the samples, and is intended to serve only as a rough
measure of the relative rate of HC emissions within a Bag among the four driving modes.

The values shown in the tables in Section 5 represent average normalized HC
emission rates identified by mode, within a specified FTP phase (Bag), which are
estimated as follows:

[HC exhaust analyzer data, ppm, Bag B, vehicle v, run r,	(5)

mode m, time t seconds.] (Note: this is the raw data for the
HOTFID monitor of the FTP.)

(6)

[Instantaneous HC emissions in g/sec, mode m. Bag B, vehicle v, run r.]

34


-------
Note that the constant 0.0141795 in equation 6 was calculated from constants
delivered to Pechan in the Lotus 1-2-3 spreadsheet, and is related to the specific CVS
equipment used in the analysis and temperature. The constant 0.0141795 = 7.156803/505
gives an equivalent instantaneous constant for calculating the real-time value.

THP® — VupS	_ [Total HC emissions in grams,	™

v, r, m ~~ JLd v, r, m, t — mode m, for Bag B, vehicle v, run r.]	^ "

teT®

m=4

TTHC® — > THr®	- [Total HC emissions in grams,

v r —	v, r, m — all modes, Bag B, vehicle v, run r.j

m=l

RHC® = THCB * 1QQQ _ [HC rate in mg/sec. Bag B,

v, r, m	v, r, m ™B	vehicle v, run r, mode m.]	'

m

r=Rv

£rhcb

v,r, m

arhc8 m = M 	 = [Average HC rate for vehicle v, mode m, Bag B.J (10)

* j "»	i\y

NARHC

B

ARHC® * 100

v, m	

v, m m=4



[Normalized HC emissions rate,
vehicle v, Bag B, mode m..]

(ID

m=l

v=NV

In-

ARHC

ANARHC

v=l

B

v, m

m

NV

[Average of normalized rates, mode m,

Bag B across all vehicles and runs. ]	' '

35


-------
where:

T8 = Time in seconds for mode m» Bag B. Note that these
m	0

values are fixed at 94, 103,223, and 85 for Bag 1 (cold
start phase) and Bag 3 (hot start phase), for idle,
acceleration, cruise, and deceleration modes respectively,
and 156,223, 303, and 190 seconds for the corresponding
Bag 2 (hot stabilized phase) driving modes.

Rv = Number of runs, vehicle v

NV = Number of vehicles

Statistical Analysis of Hydrocarbon Emissions

The statistical analysis performed for this project was done using the unadjusted
HOTFID speed and mode values in the original raw data files. Thus, the HOTFID output
was used as a surrogate measure of adjusted HC emissions.

Standard analysis of variance and linear regression analysis was performed on the
data in the SAS/PC statistical package. Data transformations were simply lags of 1 to 3
seconds and delta changes between observations. Change in speed between consecutive
observations was defined as acceleration.

36


-------
While several data transformations (models) were attempted (such as log-linear
regression), it was soon found that the underlying data showed relatively weak
dependency; such transformations produced no discernable improvement in R-squared or
other measures of goodness of fit over straightforward, right-hand-side variables such as
actual or lagged speed or acceleration.

37


-------
SECTION 5

PHASE 2: MODAL RESULTS

HYDROCARBON EMISSIONS BY MODE

Using the techniques described in Section 4, HC emissions were analyzed for
each of the vehicle FTP tests for the 12 vehicles studied. Table 5-1 provides an analysis
of the Bag I (cold start phase) HC emissions data; these are separated into 94 seconds of
idle, 103 seconds of acceleration, 223 seconds of cruise, and 85 seconds of deceleration.

The second column in Table 5-1 shows the total grams of HC emitted during Bag
1. This value is expressed as a grams-per-mile emission rate in the third column, based
on the assumption that a vehicle travels the equivalent of 3.6 miles during the Bag 1 test.
Modal emissions (in grams) are shown in columns four through seven of the table, with
second-by-second emission values being sorted among modes according to the schemes
described in the previous section. Columns 8 through 11 show the percentages of total
Bag 1 emissions that were observed in each mode. The last four columns show modal
emissions expressed in the form of mass per unit of time (milligrams per second, or
mg/sec).

38


-------
Table 5-1

Hydrocarbon Emissions by Mode - Cold Start Phase
(Bag 1: 0 to 505 Seconds)

(Mass, Mass Percentage, and Emission Rate In milligrams/second)

OJ
VO

Run ID

total
HC ZMlss.
(grans)

Sag 1
HC Rate
(g/mlle)

Idle Accal.
EraisB. Emlnk.
(grans) (grams)
94 see 103 aae

Cruise Dacal.
Ernies. aulas,
(grams) (grama)
223 sac 65 sac

** Vehicle CA36SB

1986

GM

Chav. Caprica Cljuraic

Disp:

5.0

Liters

3105?

6.040



1.679

1.15

2.12

2.42



0.35

31060

6.820



1.901

0.79

1.71

3.93



0.39

31061

7.039



1 .954

1.16

3.2?

2.28



0.32

31062

6.599



1.835

0.9?

3.07

2.23



0.33

31063

9.544



2.658

1.51

3.78

3.23



1.03

31064

9.692



2.695

1.62

3.91

3.48



0.68

31065

7.361



2.036

1.99

2.00

3.02



0.36

Veh. averaga

7.585



2.108

1.31

2.84

2.94



0.49

** Vehicle C0322G

1987

GM

Corsica





Dispt

2.0

Liters

30934

2.937



0.816

0.27

1.11

1.46



0.09

30935

3.025



0.842

0.31

1.12

1.51



0.09

30936

4.189



1.163

0.32

1.25

2.50



0.12

30945

2.673



0.743

0.34

0.90

1.32



0.12

30946

2.98?



0.830

0.49

0.95

1.44



0.11

30948

2.994



0.830

0.41

1.11

1.35



0.13

30971

2.896



0.805

0.33

1.07

1.38



0.12

30972

3.110



0.865

0.41

1.23

1.37



0.10

30973

2.930



0.816

0.39

1.19

1.27



0.08

30974

3.S81



1.003

0.48

1.15

1.83



0.12

30975

3.814



1.064

0.50

1.29

1.93



0.10

30978

5.036



1.403

0.54

1.54

2.82



0.13

30989

2.17?



0 . 606

0.41

0.78

0.94



0.05

Veh. averaga

3,258



0.90?

0.40

1.13

1.62



0.10

** Vahlola G0665W

1988

GM

Corsica





DiSpf

2.0

Liters

30854

4.177



1.161

0.45

1.29

2.26



0.18

30862

2.969



0,826

0.2?

1.01

1.58



0.11

30869

7.329



2.036

0.45

2.41

4.09



0.38

30870

S.24?



2.289

0.42

2.84

4.61



0.39

Veh. average

5.680



1.578

0.40

1.89

3.14



0.26

Idle Accal. Crulsa Dacal.
HC Mats HC Haas HC Mass HC Kaas
Percent Percent Percent Percent

Idle Accal.

HC	HC

Rate Rata

Crulsa
BC
Rata

Dacal.
MC
Rata

(rag/sac) (rag/sac) (rag/sec) (mg/iac)

19.1

35.0

40.1

5.8

12.28

20.54

10.86

11.6

25.0

5?.?

5.7

8.40

16.55

17.64

16.5

46.5

32.4

4.6

12.36

31.76

10.24

14.?

46.5

33.8

5.0

10.32

29.7?

10.00

15.8

39.6

33.8

10.8

16.0?

36.72

14.46

16.7

40.4

35.9

7.0

17.21

38.00

15.61

27.0

27.2

41.0

4.8

21.12

19.46

13.52

17.3

37.4

38.8

6.5

13.97

27.54

13.19

9.1

38.0

49.B

3.1

2.83

10.83

6.57

10.2

37.1

49.8

2.8

3.30

10.89

6.76

7.6

29.8

59.7

2.9

3.40

12.11

11.22

12.7

33.5

49.2

4.5

3.62

8.70

5.90

16.4

31.8

48.2

3.6

5.21

9.21

6.46

13.*

37.0

45.0

4.2

4.39

10.76

6.04

11.3

37.1

47.5

4.2

3.48

10.42

6.17

13.2

39.5

44.1

3.3

4.35

11.91

6.14

13.4

40.4

43.4

2.7

4.18

11.50

5.70

13.4

32.0

51.2

3.4

5.10

11.13

8.22

13.1

33.7

50.6

2.6

5.33

12.50

8.65

10.7

30.7

56.0

2.7

5.73

14.99

12.65

18.6

35.8

43.2

2.3

4.32

7.56

4.22

12.2

34.7

49.8

3.2

4.24

10.96

7.28

10.7

30.9

54.2

4.2

4.74

12.54

10.15

8.9

33.9

53.3

3.8

2.82

9.77

7.10

6.2

32.8

55.9

5.1

4.80

23.3?

18.36

5.0

34.4

55.9

4.7

4.43

27.53

20.66

7.0

33.2

55.2

4.6

4.20

18.30

14.07

4.11
4.61
3.79
3.91
12.0?
8.00
4.19
5.81

1.08
1.00
1.42
1.42
1.2?
1.48

1.44
1.21
0.94

1.45
1.15
1.58
0.59
1.24

2.0?
1.34
4.42
4.55
3.09

(Continued)


-------
Table 5-1 (continued)

Run ID

Total
HC tolas,
(grama)

Bag 1
HC Rat*
(g/mila)

Idle Accel.
Ernlsa. Bnlsa.
(grants) (grams)
94 BBC 103 SBC

Cruise	Decel.

Ernies.	Bmias.

(grama)	(grains)

223 a«c	85 sec

Idle ACCel,
HC Mass HC Mass
Percmt Percent

Cruiae D«c«l.
HC Mass HC Mass
Percent Percent

Idle	Accel,	Cruiae	Decel,

HC	HC	HC	HC

Sate	Rat*	Rata	Jute

(rag/sac)	(rag/aeo)	(ng/seo)	(ng/aec)

** Vehicle €071OB

1987

GM Corsica



30990

7.444

2.089

0.84

30992

6.216

1.730

0.74

30993

8.527

2.374

1.26

30994

6.226

1.726

0.99

30995

5.746

1.593

0.76

30996

5.539

1.531

0.67

30997

5.217

1.451

0.59

30999

S.273

1.455

0.77

31001

5.169

1.434

0.79

31002

9.486

2.6 2ft

1.21

Vah. average

6.484

1.801

0.86

** Vehicle CV924W

1987

Ford Crown

Victoria

31106

5.810

1.604

1.35

3110?

6.09S

1.684

1.25

31113

5.004

1.391

1.12

31114

4.342

1.207

1.05

31115

5.644

1.555

1.60

Vah. average

5.379

1.488

1.27

** Vehicle E3707B

1987

Ford Escort



31019

5.238

1.472

0.73

31020

4.903

1.374

0.40

31021

5.770

1.607

0.39

31024

4.710

1.314

0.25

31025

4.555

1.270

0.35

31026

2.188

0.622

0.27

Vah, average

4.561

1.277

0.40

** Vahlcla IA127B

1988

Chrysler LeBaron

31041

2.814

0.788

0.49

31042

3.175

0.887

0.47

31043

2.693

0.750

0.41

31044

2.536

0.707

0.42

31045

2.112

0.590

0.57

31046

2.264

0.631

0.42

Vah. avaraga

2.599

0.725

0.46



Disp:

2.8

Litars





2.26

3.66



0.68

11.4

30.4

2.00

2.84



0.64

11.8

32.2

2.26

4.25



0.77

14.7

26.5

1.61

2.84



0,79

15.9

25.8

1.48

2.90



0.61

13.3

25.7

1.52

2.69



0.66

12.1

27.5

1.42

2.62



0.59

11.3

27.2

1.46

2.47



0.57

14.6

27.6

1.40

2.38



0.60

15.2

27.2

2.94

4.56



0.78

12.7

31.0

1.83

3.12



0.67

13.3

28.3



Disp:

S.O til tars





1.96

2.13



0.38

23.2

33.8

2.03

2.44



0.38

20.5

33.4

1.93

1.69



0.26

22.5

38.6

1.40

1.64



0.26

24.2

32,2

2.04

1.79



0.21

28.3

36.2

1.87

1.94



0.30

23.7

34.8



Disp:

1.9

Liters





1.80

2.38



0.34

13.9

34.3

1.68

2.54



0.27

8.2

34.3

1.93

2.86



0.59

6.8

33.4

1.69

2.44



0.34

5.2

35.8

1.73

2.19



0.29

7.7

38.0

0.70

1.15



0.07

12.2

32.1

1.59

2.26



0.32

8.7

34.8



Dispt

2.5 Liters





0.84

1.37



0.11

17.4

29 .8

0.85

1.76



0.10

14.7

26.8

0.60

1.54



0.15

IS.3

22.2

0.70

1.35



0.07

16.4

27.8

0.49

0.97



0.08

27.1

23.2

0.62

1.16



0.06

18.6

27.6

0.68

1.36



0.09

17.8

26.3

49.1

9.1

8,99

21.95

16.40

8.00

45.6

10.3

7.83

19.44

12.72

7.56

49.8

9.0

13.36

21.93

19.04

9.02

45.7

12.6

10.51

15.60

12.75

9.25

50.4

10.6

8.13

14.36

12.98

7.14

48.5

11.9

7.12

14.79

12.04

7.78

50.2

11.3

6.30

13.76

11.75

6.91

46.9

10.8

8.20

14.15

11.09

6.72

46.0

11.6

8.37

13.63

10,67

7.05

48.1

8.2

12.86

28.53

20.44

9.18

48.1

10,3

9.17

17.82

13.99

7.86

36.6

6,5

14.32

19.07

9.53

4.41

40.0

6.2

13.27

19.75

10.93

4.42

33.8

5.2

11.96

18.74

7.58

3.06

37.7

6.0

11.17

13.55

7.33

3.08

31.8

3.7

16.98

19.84

8.04

2.48

36.0

5.5

13.54 '

18.19

8.69

3,49

45.3

6.5

7.72

17.45

10,65

4,01

51.9

5.5

4.29

16.35

11.41

3.20

49.6

10,2

4.18

18.73

12.83

6.92

51.7

7.3

2.63

16.36

10,92

4,04

48,0

6.4

3,71

16.80

9.80

3.41

52.6

3.1

2.83

6.83

5.16

0.80

49.5

7.0

4.22

15.42

10.13

3.73

48.8

4.0

5.22

8.14

6.15

1.32

55.3

3,2

4.96

8.25

7.88

1.21

57.1

5.4

4.37

5.81

6.89

1.72

53.2

2.6

4.43

6.84

6.05

0.78

46.2

3.6

6.09

4.75

4.37

0.89

51,1

2.8

4.47

6.06

5.19

0.74

52.3

3.6

4.93

6.64

6.09

1.11

(Continued)


-------
Table 5-1 (continued)

Total

Bag 1



Idle

Accel.

Cruise

Decel.









HC Bilss.

HC Kate

Bnlss.

Emiss.

Smisa.

Emiss.

Idle

Accel.

Cruise

Decel.

(grama)

(g/ralle)

tgraaa)

(grant)

{grams)

tgrama)

HC Maaa

HC Mass

HC Haas

HC Mass

nun iy





94

sec 103 see

223 aec

85 aec

Percent

Percent

Percent

Percent

** Vehicle LA392H

1990

Chryaler

Le Baron



Diap:

3.0 Liters









31122

6.419

1.80S



0.46

1.71

4.06

0.19

7.2

26.7

63.2

2.9

31123

7.646

2.145



0.91

2.04

4.51

0.19

11.9

26.6

59.0

2.4

31124

5.086

1.421



0.39

1.33

3.23

0.14

7.6

26.2

63.5

2.7

Veh. average

6.384

1.790



0.59

1.69

3.93

0.17

9.2

26.5

61.6

2.7

** Vehicle LS612B

1988

GH Bulck

LeSabre



Dispt

3.8 Liters

*







31116

2.520

0.701



0.35

0.62

1.50

0.06

13.9

24.6

59.3

2.2

31117

2.587

0.720



0.33

0.65

1.55

0.06

12.6

25.0

60.1

2.3

31118

1.555

0.430



0.30

0.46

0.74

0.06

19.2

29.8

47.4

3.7

31119

2.215

0.618



0.29

0.57

1.31

0.05

13.2

25.6

59.0

2.3

31120

2.567

0.717



0.45

0.63

1.44

0.04

17.5

24.5

56.2

1.7

31121

2.562

0.714



0.41

0.59

1.50

0.06

16.0

23.1

58.6

2.3

Veh. .

2.334

0.650



0.35

0.59

1.34

0.05

15.2

25.1

57.4

2.3

«•* Vehicle 8A333B

1987

Ford Mercury

Sable



Dlapi

3.0 Liters









31032

4.384

1.223



0.62

1.21

2.40

0.16

14.2

27.6

54.6

3.6

3103S

4.830

1.349



1.05

1.25

2.40

0.13

21.7

25.9

49.6

2.8

3103?

4.752

1.336



0.92

0.93

2.76

0.15

19.3

19.5

S8.1

3.1

3103S

4*828

1.352



0.99

0.99

2.62

0.23

20.5

20.5

54.2

4.7

31039

4.456

1.250



0.67

0.90

2.76

0.13

14.9

20.2

62.0

2.9

31040

6.327

1.766



0.79

1.00

4.35

0.18

12.5

15.8

68.8

2.9

Veh. average

4.929

1.379



0.84

1.05

2.88

0.16

17,0

21.2

58.4

3.3

** Vehicle S0756B

1987

GH Bulck Somerset



Dlapi

2.5 Liters









31013

2.271

0.635



0.38

0.58

1.14

0.17

16.5

25.7

50.2

7.7

31014

2.299

0.638



0.38

0.63

1.10

0.18

16.7

27.5

- 47.8

8.0

31015

1.938

0.539



0.32

0.54

0.95

0.14

16.5

27.7

48.9

7.0

31016

1.845

0.513



0.26.

0.36

1.02

0.19

14.2

19.7

55.6

10.5

31017

1.976

0.549



0.33

0.59

0.90

0.16

16.5

30.1

45.3

8.1

31018

1 .855

0.518



0.26

0.53

0.88

0.18

14.2

28.7

47.4

9.8

Veh. average

2.031

0.565



0.32

0.54

1.00

0.17

15.9

26.6

49.1

8.5

*~ Vehicle TX207O

19S8

Ford Taurus





Dlsps

3.8 Liters









31047

4.618

1.288



1.95

1.03

1.54

0.10

42.3

22.3

33.3

2.1

31040

3.930

1.093



1.32

1.01

1.52

0.09

33.5

25.7

38.6

2.2

31049

3.29B

0.920



1.11

0.72

1.39

0.09

33.5

21.7

42.0

2.7

31050

5.102

1.421



2.10

0.96

1.91

0.13

41.2

18.8

37.4

2.6

Vah. average

4.237

1.181



1.62

0.93

1.59

0.10

38.2

21.9

37.5

2.4

ldl4

Accel.

Cruise

Decel.

HC

HC

HC

HC

Rate

Date

Sate

Rate

>g/see)

(mg/aec)

(ag/aec)

(mg/aec)

4.91

16.61

18.20

2.21

9.71

19.77

20.22

2.19

4.13

12.95

14.48

1.60

6.26

16.45

17.64

2.00

3.73

6.01

6.70

0.66

3.47

6.29

6.97

0.69

3.17

4.50

3.30

0.67

3.12

5.50

5.88

0.59

4.79

6.12

6.47

0.51

4.35

5.74

6.74

0.71

3.77

5.69

6.01

0.64

6.63

11.73

10.74

1.85

11.17

12.14

10.75

1.56

9.76

9.00

12.38

1.75

10.52

9.63

11.74

2.68

7.07

8.72

12.39

1.54

8.41

9.73

19.52

2.14

8.93

10.16

12.92

1.92

3.99

5.66

S.11

2.06

4.09

6.14

4.92

2.16

3.39

5.20

4.25

1.60

2.79

3.52

4.60

2.28

3.48

5.77

4.01

1.89

2.80

5.17

3.94

2.13

3.43

5.24

4.47

2.02

20.77

9.99

6.90

1.15

14.02

9.80

6.80

1.00

11.77

6.95

6.22

1.06

22.37

9.30

t.SS

1.58

17.23

9.01

7.12

1.20

^		I'll °*°I6 0*04 °*14	0.0<	13.3 47.1 24 9

aV*raS*	°*0'1	0-07 0.03	10.3	Itl 1K0	%-*t	°A* °'2t


-------
Table 5-2 (continued)

Run ID

Total Bag 2 Xdla Accel.

HC tolas. HC Rata Hulas,	Hulas,

{grams} (g/raila) (grama)	(grama)

156 aao	223 sac

CruiM Dacal.
Emias. Eniiaa.
(grams) (gram I
303 sac 190 aoc

111* Aee«l, Cruise Dacal.
HC Mass HC Masa HC Mass DC Haas
Percent Percent Percent Percent

Xdl4	Accel.	Crulaa	Cecal.

HC	HC	HC	HC

Rata	Mat*	Rata	Rata

(ng/aec)	(ng/aec)	(ntg/aec)	(mg/aec)



** Vehicle CO710B

198?

CM Coralea





Dlap:

2

.8 Litars









30990



3.27

0.852

0.56

1.20

0.99



0.52

17.2

36.6

30.1

16.0

30992



2.61

0.682

0.49

0.9?

0.76



0.39

18.9

37.1

29.1

14.9

30993



2.9?

0.747

0.50

0.99

0.93



0.45

17.5

34.6

32.3

15.6

30994



2.29

0.594

0.42

0.84

0.65



0.39

18.4

36.6

28.2

16.8

30995



2.19

0.568

0.43

0.90

0.56



0.29

19.7

41.3

25.6

13.4

30996



2.42

0.627

0.43

0.93

0.65



0.41

17.9

38.2

26.9

17.0

3099?



2.28

0.590

0.42

0.94

0.65



0.26

18.5

41.2

28.7

11,6

30999



2.SO

0.646

0.49

1.10

0.61



0.30

19.7

44.1

24.3

11.9

31001



2,71

0.707

0.48

1.19

0.69



0.36

17.8

43.7

25.2

13.3

31002



1.88

0.487

0.24

0.58

0.67



0.38

13.0

31.0

35.8

20.2

Vah. average



2.SO

0.650

0.45

0.96

0.71



0.38

17.9

38.5

28.6

15.0

** Vehicla CV924*

198?

Ford Crown

Victoria



Dlap:

5

.0 Liters









31106



2.36

0.607

0.21

0.75

0.86



0.54

9.1

31.6

36.5

22.9

3110?



2.65

0.686

0.25

0.73

0.95



0.72

9.3

27.4

36.0

27.3

31113



2.S3

0.6S0

0.15

0.94

0.84



0.60

6.0

37.0

33.3

23,7

31114



2.78

0.716

0.13

1.06

1.01



0.57

4.8

38.2

36.5

20.6

31115



3.17

0.816

0.15

1.35

1.13



0.54

4.8

42.5

35.8

16.9

Vah. average



2.70

0.695

0.18

0.96

0.96



0.59

6.1

35.7

35.6

22.0

»~ Vehicle

*8707*

198?

Ford Escort





Dlspt

1

.9 Liters









31019



1.19

0.308

0.17

0.49

0.38



0.15

14.2

41.4

31.8

12.7

31020



0.83

0.217

0.08

0.40

0.27



0.08

10.1

47.8

32.7

9.2

31021



0.99

0.256

0.10

0.53

0.24



0.12

10.1

53.6

24.2

12.1

31024



1.12

0.290

0.06

0.65

0.26



0.14

5.7

58.5

23,4

12.4

3102S



0.96

0.250

0.04

0.62

0.19



0.11

4.7

64.4

19.6

11.3

31026



0.56

0.148

0.04

0.30

0.1?



0.05

6.8

53.6

30.2

9.6

Vah. average



0.94

0.245

0.08

0.50

0.25



0.11

8.8

53.0

26.8

11.5

** Vahlcla

LX127B

1988

Chrysler LeBaron



Dlspt

2

.5 Lltara









31041



0.34

0.08?

0.05

0.13

0.11



0.06

14.0

37.5

32.1

16.4

31042



0.35

0.091

0.06

0.12

0.09



0.08

17.0

35.2

25.9

21.6

31043



0.21

0.0S5

0.03

0.09

0.06



0.04

14.5

43.0

26.2

16.8

31044



0.14

0.037

0.02

0.08

0.02



0.02

13.8

56.6

13.8

15.9

31045



0.12

0.030

0.04

0.05

0.02



0.01

30.2

40.5

18.1

10.3

31046



0.31

0.081

0.02

0.13

0.10



0.07

7.0

41.5

30.4

20.8

Vah. average



0.2S

0.063

0.04

0.10

0.0?



0.04

14.6

40.7

26.4

18.3

3.62

5.38

3.25

2.76

3.15

4.34

2.50

2.05

3.23

4.46

3.06

2.35

2.70

3.76

2.13

2,03

2.76

4.05

1.85

1.54

2.78

4.15

2.IS

2.It

2.71

4.21

2.16

1.39

3.16

4.95

2.01

1.56

3.10

5.32

2.26

1.90

1.56

2.61

2.22

2.01

2.88

4.32

2.36

1.97

1.37

3.3S

2.85

2.85

1.59

3.26

3.15

3.82

0.97

4.20

2.78

3.15

0.85

4.76

3.35

3.01

0.97

6.04

3.74

2.83

1.15

4 . 32

3.1?

3.13

1.08

2.20

1.24

0.79

0.54

1.79

0.90

0.41

0.C4

2.39

0.79

0.63

0.41

2.93

0.86

0.73

0.29

2.78

0.62

0.57

0.24

1.35

0.16

0.28

0.53

2.24

0.83

0.57

0.30

0.5?

0.36

0.29

0.38

0.56

0.30

0,40

0.20

0.41

0.18

0.19

0.13

0.3?

0.07

0.12

0.22

0.21

0.0?

0.06

0.14

0.58

0.31

0.34

0.23

0.45

0.21

0.24

(Continued)

0
»-»*

m

e

o
£

&

o

CO
ra

a.

O

o
c

m

w

n

%

8"

tr
ts.

H*
<#

s

CJ*


-------
Table 5-2 (continued)

Sun ID

Total Bag 2 Idle Accel.
HC Bniaa. HC Rat* Braiaa. Bniaa.
(grama) (g/ntile) (grama) (grama)
156 aec 223 sac

Cruise Decel.
Bniaa. Emiaa.
(grama) (grams)
303 aec 190 aec

Mia Accel. Cruiaa Decel.
HC Maaa HC Maaa HC Maaa HC Maaa
Percent Percent Parcant Percent

Idle	Accel.	Cruiaa	Decel.

HC '	HC	HC	HC

Rata	Rata	Rata	Rata

(mg/aac)	(ng/aec)	(rag/sac)	(ng/aec)

** Vehicle LA392M

31122

31123

31124

Veh. average

** Vehicle L8612B

31116

31117
31110

31119

31120

31121	•
Veh. average

1990

Chryaler

LeRaron



Diaps

3.0 Mtara







o.as

0.220

0.09

0.40

0.23

0.12

10.9

47.7

27.5

0.76

0.197

0.07

0.38

0.19

0.12

8.8

30.4

24.8

0.79

0.206

0.08

0.43

0.18

0.10

10.5

34.1

22.4

0.80

0.208

0.08

0.41

0.20

0.11

10.1

50.7

24.9

1980

SM Bulck

LeSabre



Diaps

3.8 Litera







0.96

0.252

0.14

0.44

0.26

0.13

14.0

45.7

27.3

0.94

0.243

0.13

0.43

0.22

0.14

16.3

45.1

23.5

0.73

0.189

0.08

0.29

0.20

0.1#

11.3

39.3

27.3

0.82

0.212

0.14

0.38

0.20

0.10

16.6

46.7

24.3

0.81

0.211

0.14

0.40

0.19

0.09

17.3

48.7

23.0

0.79

0.205

0.12

0.37

0*18

0.12

13.6

46.7

22.9

0.84

0.219

0.13

0.38

0.21

0.12

13.3

45.4

24.8

13.9
16.0

13.0
14.3

13.1

15.1

21.8

12.2

10.9
14.a
14.5

0.59

1.81

0.77

0.62

0.43

1.71

0.62

0.64

0.33

1.92

0.58

0.54

0.52

1.82 *

0.66

0.60

0.87

1.97

0.86

0.66

0.99

1.91

0.73

0.75

0.34

1.28

0.66

0.84

0.87

1.72

0.66

0.33

0.90

1.78

0.62

0.47

0.79

1.65

0.60

0.62

0.83

1.72

0.69

0.64

Js.

U1

1

|
0

S&3338

1987

Ford Mercury Sable



Mapi

3

.0 Litera

















31032



0.44

0.115

0.04

0.12

0.20



0.07

10.1

27.7

45.0

16.9

0.29

0.55

0.66

0.39

31035



0.44

0.114

0.10

0.13

0.15



0.06

23.3

29.0

33.8

13.9

0.65

0.57

0.49

0.32

31037



0.57

0.148

0.12

0.14

0.21



0.10

20.6

25.4

37.0

17.1

0.75

0.65

0.69

0.51

31038



0.41

0.106

0.04

0.13

0.16



0.08

9.6

32.1 '

38.5

19.9

0.25

0.59

0.52

0.43

31039



0.66

0.172

0.13

0.20

0.21



0.12

19.7

30.9

31.2

18.0

0.83

0.91

0.68

0.63

31040



0.53

0.136

0.06

0.18

0.21



0.07

11.2

35.2

40.0

13.5

0.38

0.83

0.69

0.37

Vah. average



0.51

0.132

0.08

0.13

0.19



0.08

16.2

30.0

37.3

16.6

0.53

0.68

0.62

0.44"

** Vehicle

80756B

1987

<34 BulcK Soneraet



biapi

2

.5 Liter*

















31013



0.28

0.072

0.02

0.12

0.09



0.04

7.6

44.8

33.6

14.1

0.13

0.56

0.31

0.21

31014



0.37

0.096

0.03

0.13

0.13



0.06

9.1

39.5

35.2

16.1

0.22

0.66

0.43

0.32

31015



0.27

0.070

0.02

0.13

0.09



0.03

5.9

47.6

33.9

12.5

0.10

0.58

0.30

0.18

31016



0.46

0.120

0.05

0.14

0.18



0.09

11.2

30.5

38.7

19.7

0.33

0.63

0.59

0.48

31017



0.41

0.106

0.04

0.16

0.15



0.06

9.0

39.5

37.3

13.9

0.24

0.73

0.50

0.30

31018



0.34

0.089

0.03

0.14

0.12



0.05

8.7

41.4

35.0

14.9

0.19

0.64

0.40

0.27

Vah. average



0.36

0.092

0.03

0.14

0.13



0.06

9.0

39.6

36.0

13.4

0.21

0.63

0.42

0.29

~* Vehicle TA207Q

1988

Ford Taurua





Diapt

3

.8 Liters

















31047



0.80

0.208

0.06

0.33

0.27



0.14

7.3

41.6

33.2

18.0

0.37

1.49

0.87

0.76

31048



0.64

0.168

0.05

0.23

0.22



0.14

8.4

35.4

34.9

21.3

0.33

1.02

0.74

0.72

31049



0.82

0.211

0.07

0.23

0.34



0.15

8.6

31.0

41.3

18.9

0.45

1.13

1.12

0.81

31030



0.78

0.203

0.06

0.27

0.30



0.15

7,7

34.7

38.8

18.7

0.38

1.22

1.00

0.77

Vah. average



0.76

0.198

0.06

0.27

0.28



0.14

7.9

35.7

37.2

19.1

0.38

1.22

0.93

0.76


-------
Table 5-3

Hydrocarbon Emissions by Mode - Hot Start Phase
(Bag 3:1972 to 2477 Seconds)

(Mass, Mass Percentage, and Emission Rate In milligrams/second)

o\

Run ID
** Vehicle CA365B

3105?

31060

31061

31062
310(3

31064

31065

Veh. average ,

30934

30935

30936

30945

30946
3094®

30971

30972

30973

30974

30975
30978
30989

Veh. average

30854
30S62

30869

30870

Veh. average

Total

Sa® 3

Idle

Accel.

Cruise

Decel.







Mae.

HC Kate

Emias.

Ernies.

Ernies.

Emiss.

Idle

Accel,

cruise

grants)

(g/mi)

(grama)

{grama)

(grama)

(grama)

HC Maaa

HC Haas

HC Haas



94 aea

103 aee

223 aea

85 see

Percent

Percent

Percent

1986

SM Oiev. Caprice Claaaic

Dlep:

5.0

Liters







9.95

2.784

0.91

1.80

1.66



0.46

9.2

18.1

16.6

10.57

2.959

0.84

1.52

2.12



0.66

8.0

14.4

20.0

11.69

3.239

1.01

2.14

2.01



O.SO

8.6

18.3

17,2

10.14

2.811

0.82

1.80

1.76



0.42

8.1

17.8

17.4

11.81

3.262

0.94

2.40

1.90



0.43

8.0

20.4

16.0

16.36

4.572

1.39

2.81

3.36



0.47

8.5

17.2

20.5

11.87

3.315

1.21

2.14

1.95



0.47

10.2

18.0

16.4

11.77

3.277

1.02

2.09

2.11



0.48

8.6

17.7

17.9

1987

GM Coralea





Dispt

2.0

Liters







2.42

0.672

0.10

0.55

0.41



0.04

4.1

22.6

16.9

2.21

0.615

0.11

0.48

0.34



0.03

4.9

22.0

15.4

2.51

0.702

0.10

0.49

0.45



0.05

4.2

19.4

17.7

2.60

0.720

0.12

0.58

0.49



0.04

4.7

22.2

18.8

2.48

0.692

0.14

0.55

0.41



0.03

5.5

22.3

16.7

2.45

0.682

0.11

0.52

0.35



0.01

4.6

21.2

14.3

3.34

0.931

0.10

0.67

0.73



0.05

3.0

19.9

21.8

2.97

0.828

0.11

0.65

0.56



0.02

3.6

21.7

19.0

3.25

0.900

0.13

0.73

0.57



0.04

4.0

22.6

17.7

2.96

0.823

0.13

0.62

0.55



0.04

4.3

20.8

18.7

3.24

0.904

0.13

0.65

0.58



0.04

4.1

20.1

17.8

2.96

0.822

0.27

0.59

0.45



0.03

9.2

20.0

15.2

2.92

0.814

0.07

0.39

0.35



0.03

2.3

13.5

12.0

2.79

0.777

0.12

0.57

0.48



0.04

4.5

20.6

17.2

1988

gm Corsica





Diept

2.0

IJLtera







2.16

0.601

0.13

0.42

0.30



0.03

6.1

19.5

13.9

1.64

0.458

0.07

0.36

0.22



0.01

4.4

21.7

13.6

2.24

0.623

0.12

0.44

0.39



0.03

5.4

19.5

17.4

2.18

0.610

0.13

0.38

0.37



0.02

6.1

17.2

17.1

2.06

0.573

0.12

0.40

0.32



0.02

5.6

19.3

15.7

Deceit
HC Mass
Percent

HC
Rate

Accel.
HC
Rate

Cruise
HC
Sate

Decel.
HC
Rata

1.2
0.7
1.4
0.8
1.1

(rag/aec) (ng/aec) (ng/aae) (r»g/aac)

9.72

17.52

7.42

5.35

8.98

14.78

9.49

7.71

10.74

20.78

9.00

5.85

8.70

17.49

7.91

4.91

10.01

23.35

8.50

5.09

!4,B1

27.28

15.05

5.53

12.86

20.75

8.73

5.49

10.83

20,28

9.44

5.71

1.05

5.32

1.84

0.53

1.16

4.71

1.52

0.32

1.12

4.73

2.00

0.59

1.31

5.59

2.19

0.45

1.45

5.38

1.86

0.33

1.20

5.03

1.57

0.09

1.07

6.48

3.26

o.ss

1.15

6.27

2.53

0.28

1.38

7,13

2.57

0.47

1.35

5.98

2.48

0.51

1.43

6.33

2.59

0.45

2.90

5.73

2.01

0.39

0.71

3.82

1.17

0.38

1.33

5.57

2.15

0.41

1.39

4.09

1.35

0.29

0.78

3.46

1.00

0.14

1.30

4.25

1.75

0.38

1.43

3.64

1.(8

0.20

1.22

3.85

1.45

0.26

(Continued)


-------
Table 5-3 (continued)

HC

Total

Bag 3

Idle

Accel,

Crulae

Decel.



Efctiaa.

HC Rate

Emlae.

Bmiaa.

Ernies.

&niaa *

Idle

(grama)

(g/mi)

(grama)

(grama)

(grama)

(grama)

HC Mass

Run J. M



94 aec

103 aec

223 aec

85 see

Percent

** Vehicle CO710B

1987

GM Corsica





Diaps

2.8

Litera



30990

7.35

2.057

0.56

0.99

1.23



0.83

7.6

30992

6.49

1.812

0.46

0.84

1.06



0.74

7.2

30993

5.97

1.668

0.48

0.73

1.12



0.57

8.1

30994

6.87

1.912

0.51

0.65

1.09



1.03

7.4

30995

6.02

1.670

0.46

0.68

0.99



0.70

7.6

30996

6.61

1.843

0.44

0.68

1.16



0.88

6.7

30997

5.30

1.474

0.31

0 . 66

0.89



0.58

5.8

30999

5.74

1.586

0.37

0.88

0.89



0.66

6.4

31001

6.44

1.798

0.47

0.89

1.05



0.73

7.4

31002

5.36

1.493

0.42

0.69

0.97



0.44

7.9

Vah. average

6.21

1.731

0.45

0.77

1.05



0.72

7.2

** Vehicle CV924H

1987

Ford Crown

Victoria



Dlapt

5.0

Altera



31106

5.84

1.618

0.36

0.75

1.45



0.26

6.2

31107

5.89

1.633

0.38

0.84

1.24



0.22

6.4

31113

5.16

1.433

0.26

0.78

1.28



0.15

5.1

31114

5.57

1.547

0.31

0.86

1.24



0.18

5.5

31115

S.83

1.619

0.32

0.88

1.37



0.14

5.5

Veh, average

5.66

1.570

0.33

0.82

1.31



0.19

5.7

** Vehicle BS707R

1987

Ford lacort



Dlapt

1.9

Liters



31019

3.50

0.993

0.22

0.50

0.73



0.12

6.4

31020

3.62

1.016

0.18

0.65

0.67



0.14

5.1

31021

2.26

0.633

0.14

0.34

0.41



0.08

6.0

31024

2.45

0•680

0.10

0.55

0.38



0.09

4.2

31025

2.21

0.617

0.09

0.44

0.33



0.07

4.2

31026

1.53

0.438

0.07

0.21

0.29



0.08

4.7

Veh. average

2.60

0.729

0.14

0.45

0.47



0.10

5.2

** Vehicle 1A127B

1988

Chrysler LeBaron



Diapi

2.5

Liters



31041

1.24

0.348

0.08

0.23

0.29



0.02

6.2

31042

1.03

0.289

0.06

0.19

0.13



0.03

6.1

31043

1.02

0.285

0.13

0.12

0.14



0.04

12.3

31044

1.13

0.316

0.10

0.14

0.12



0.02

8.8

31045

2.25

0.630

0.27

0.25

0.27



0.01

12.2

31046

1.67

0.474

0.16

^5. 26

0.19



0.02

9.3

Veh. average

1.39

0.390

0.13

0.20

0.19



0.02

9.6

Accel.
hc Mam
Percent

13.4
13,0

12.2
9.5

11.3

10.2

12.5

15.3

13.8

12.9

12.4

12.9
14.2
15.2
15.5
15.1
14.5

14.4
17.9

15.2

22.3
19.7
14.1
17.3

18.4
18.1

12.0

12.1
11.3

15.2
14.2

Cruise
HC Hut
Percent

16.7

16.4

18.7

15.8

16.5

17.6
16.8
15.5
16.3
18.1
16.8

24.7
21.0
24.9
22.2
23. 5
23.2

20.9
18.4
18.3
15.3
14.9
18.9
18.0

23.2

12.2
13.9
11.1
11.9

11.3
13.7

Decel.
HC Hasa
Percent

11.3

11.4
9.6

15.1
11.6

13.4
11.0

11.5

11.4
8.2

11.5

4.4

3.7

2.8

3.3

2.5

3.4

3.3
3.8

3.4

3.6
3.1
5.4

3.7

1.9
3.1
3.9

1.6
0.6
1.3

1.7

idle
HC
Rate
(mg/a«c)

5.91
4.94
5.14
5.39

4.88
4.72
3.29

3.89
5.05
4.51
4.78

3.83
4.00
2.80
3.29
3.38
3.46

2.38
1.95
1.45
1.11
0.99
0.77
1.44

0.82
0.67
1.34
1.05
2.91
1.66
1.41

Accel.
HC
Rate

(ng/aac)

9.58
8.18
7.10
6.34
6.60
6.55
6.42
8.50
8.62
6.74
7.47

7.29
8.12
7.59
8.36
8.53
7.98

4.89
6.27
3.33
5.32
4.24
2.09
4.38

2.21
1.82
1.19
1.32

2.47

2.48
1.91

Cruise
HC
Rata
(ag/aec)

5.52
4.77
5.00
4.88
4.44
5.22
4.00
3.99
4.70
4.36
4.69

6.48
5.55
5.76
5.54
6.13
5.89

3.27
2.99
1.85
1.68
1.48
1.30
2.09

1.29
0.57
0.64
0.56
1.20
0.8S
0.8S

Dacel.
HC
Kate
(mg/aac)

9.80
8i71
6.73
12.18
8.20
10.40
6.87
7.78
8.64
5.15
8.45

3.06
2.58
1.73
2.14
1.69
2.24

1.38
1.60
0.92
1.05
0.80
0.96
1.12

0.27
0.38
0.47
0.21
0.15
0.25
0.28

(Continued)


-------
Table 5-3 (continued)

Run ID

Total Bag 3 idla	acobI,

HC Snlaa. HC Rata Ernies.	Balsa,

(grama) 
-------
SPEED VERSUS EMISSIONS

This section investigates the hypothesis that there is only a slight correlation
between instantaneous recorded vehicle speed (in miles per hour) and HC emissions rate
(in grams per mile). The HC emission rate is calculated on a per-second basis for
well-behaved gasoline vehicles operating in the cruise portions of the FTP cycle. Three
FTP runs per vehicle were chosen, resulting in a total of 18 FTP runs.

Only Bag 2 (seconds 506 to 1372) and Bag 3 (seconds 1973 to 2477) were used
for this analysis to eliminate the potential cold start biases of Bag 1. Bag 3 is of interest
because it contains highway speeds in excess of 50 mph. HC emissions in grams per
second were calculated using a number calculated from the data base for each FTP

nm, representing cubic feet of total diluted mix passing per second (e.g., 10.3).

Mathematically, the emissions rate (in grams per mile) for a total FTP run or a
specific time/mode slice (e.g., cruise mode in Bags 2 and 3) is not the average of the per-
second grams-per-mile rates. (The average of several fractions is almost never the
average of the numerators divided by the average of the denominators.) In addition, low
speed seconds in the FTP will tend to augment errors due to their small denominators.
Since the cruise modes in Bag 2 were at slower speeds than in Bag 3, there tended to be
few high HC emission rate outliers in Bag 2, possibly because of the introduction of
random errors or HC monitor lags not otherwise accounted for. (This was probably the
primary cause of the very slight negative correlation that was found between
instantaneous HC rate and speed.)

As Tables 5-4 and 5-5 show, there was no discernable correlation between speed
and the per-second HC grams-per-mile rate. The Pearson correlation coefficients, -0.12
to -0.25 for the six vehicles, are not sufficient to indicate that a more sophisticated model
could be developed to test the hypothesis.

49


-------
Table 5-4

Simple Statistics for
Mean instantaneous HC Emission Rate (g/ml)
for Six Vehicle Types



N

Mean

St Dev

Milt

Max

Speed

HC Emiss Rate C0322G

1552

31.45
0.15

11.27
0.26

14.97
0.00

57.64
3.23

Speed

HC Emiss Rate C0665W

1359

32.27
0.10

11.80
0.18

14.68
0.00

57.39
1.61

Speed

HC Emiss Rate LA127B

1293

31.23
0.08

12.20
0.45

0.10
0.01

57.39
14.08

Speed

HC Emiss Rate LS612B

1548

31.52
0.10

11.31
0.20

14.78
0.00

57.49
2.81

Speed

HC Emiss Rate S0756B

1555

31.31

0.09

11.33
0.09

13.11
0.01

57.59
0.80

Speed

HC Emiss Rate TA207G

1578

31.48
. 0.20

11.15
0.37

12.66
0.00

57 JO
7.11

T

NOTES: N	= Number of observations.

St Dev = Standard deviation.

50


-------
13DI0 5*5

Correlation Matrix for Speed (mph)
and Instantaneous HC Emission Rate (g/mi)
for Six Vehicle Types

Vehicle

Speed Correlation

N

HC Emiss Rale C0322G

-0.25

1552

HC Emiss Rat® C0665W

-0.22

1359

HC Emiss Rate LA127B

-0.16

1293

HC Emiss Rate LS612B

-0.17

1548

HC Emiss Rate S0756B

-0.12

1555

HC Emiss Rate TA207G

-0.22

1578

Note: N = Number of observations.

51


-------
FTP RUN STATISTICAL ANALYSIS

This section describes statistical analysis performed for 76 FTP runs covering 12
gasoline-fueled vehicles. The purpose of the analysis was to see if there appeared to be a
reasonable model to use for estimating HOTFID (the actual HC concentration variable)
using speed, acceleration (taken to be the first difference of speed), or lagged
representations thereof, A delta HOTFID dependent variable was also developed,
although it did not show much improvement in correlation.

The highest simple correlation observed was between the lagged (2-second)
acceleration, the variable L2ACC in the tables, and HOTFID. This correlation is not
consistent across vehicles, however. Table 5-6 shows HOTFID versus L2ACC
correlations of +0.56 for the 1988 Buick LeSabre, but only +0.09 for the 1987 Crown
Victoria. Nevertheless, 8 out of the 12 vehicles have correlation coefficients greater than
0.3, showing that there is a relationship between the variables (though probably a weak
one). Table 5-7 summarizes the average correlation of HOTFID versus L2ACC for each
vehicle.

Figure 5-1 shows the L2ACC and HOTFID variable time series for the best run of
the 1988 Buick LeSabre (LS612B). For this vehicle, as well as for most of the well-
behaved vehicles, the graphs of HOTFID and L2ACC show spikes in the first few
seconds of positive acceleration, though they become more erratic and less prominent
during other times (modes).

52


-------
Table 5-6

Simple Correlation Analysis -
Hydrocarbon Emissions Versus Engine Speed and Acceleration1

PEARSON CORRELATION COEFFICIENTS

Vehicle

FTP Run
10

VAR

SPD*

ACC

L2SPD*

L2ACC*

D12ACC*

CA365B

31057

HOTFID7

-0.030

0.220

-0.090

0.310

0.040





DHFID*

-0,027

0.080

-0.050

0.040

0.160



310%

HOTFID

-0.022

0.260

-0.100

0.3%

0.040





DHFIO

•0.038

0.080

-0.060

0.030

0.130



31061

HOTFID

-0.002

0.230

-0.070

0.330

0.000





DHFJD

-0.034

0.070

-0.050

0.060

0.100



31062

HOTFID

0.013

0.210

-0.050

0.310

0.000





DHFIO

-0.027

0.110

-0.060

0.050

0.080



31063

HOTFID

0.128

0.290

0.050

0.410

-0.030





DHFID

-0.043

0.090

-0.070

0.080

0.150



31064

HOTFID

0.194

0.240

0.120

0.390

-0.030





DHFID

-0.029

0.090

-0.050

0,090

0.150



31065

HOTFID

0.169

0.240

0.090

0.400

-0.010





DHFID

-0.029

0.090

-0.060

0.080

0.1 S3

C0322G

30934

HOTFID

0 094

0.260

0.020

0.370

-0.080





DHFID

-0.040

0.080

-0.060

0.100

0.080



30935

HOTFID

0.112

0.280

0.030

0.390

-0.050





DHFID

-0.043

0.090

-0.060

0.090

0.110



30936

HOTFID

0.022

0.260

*0.050

0.350

¦0.040





DHFID

-0.045

0.090

-0.070

0.080

0.130



30945

HOTFID

0.049

0.310

-0.040

0.420

•0.040





DHFID

-0.054

0.080

-0.080

0.100

0.130



30946

HOTFID

0.060

0.260

-0.020

0.400

•0.090





DHFID

-0.043

0.080

•0.070

0.120

0.100



30948

HOTFID

0.094

0.270

0.010

0.410

-0.040





DHFID

-0.044

0.100

-0.070

0.110

0.140

(Continued)

53


-------
Table 5-6 (continued)

Vehicle

FTP Run

ID

VAR

SPD*

ACC

12SPD4

L2ACC?

DL2ACC*

C0322G

30971

HOTFID

0.059

0.270

-0.030

0.400

•0.040





DHFJD

-0.045

0.090

-0.070

0.100

0.070



30972

HOTFID

0.024

0.270

-0.060

0.400

•0.080





DHFID

-0.042

0.070

-0.060

0.100

0.110



30973

HOTRD

•0.012

0.250

•0.090

0.380

•0.060





DHFID

•0.038

0.080

-0.060

0.090

0.100



30974

HOTFID

0.038

0.290

-0.040

0.380

-0.070





DHFID

*0.041

0.050

-0.050

0.060

0.020



30975

HOTRD

0.034

0.300

-0.050

0.390

-0.070





DHFID

-0.045

0.050

-0.060

0.060 .

0.020



30978

HOTRD

-0.142

0.390

-0.250

0.500

0.000





DHFID

-0.077

0.080

-0.100

0.090

0.200



30989

HOTRD

0.158

0.310

0.070

0.450

-0.060





DHFID

•0.054

0.140

-0.090

0.130

0.130

C06S5W

30854

HOTFID

0.030

0.320

-0.060

0.410

-0.030





DHFID

-0.055

0.060

-0.070

0.080

0.130



30862

HOTFID

0.080

0.290

0.000

0.390

-0.050





DHFID

-0.044

0.070

-0.060

0.080

0.100



30869

HOTFID

0.072

0.250

0.000

• 0.360

-0.020





DHFID

•0.038

0.050

-0.050

0.070

0.070



30370

HOTFID

0.042

0.250

-0.030

0.340

0.000





DHFID

-0.038

0.070

-0.060

0:060

0.130

CO710B

30990

HOTFID

0.001

0.280

-0,070

0.360

0.070





DHFID

-0.034

0.060

-0.050

0.040

0.190



30992

HOTFID

-0.018

0.300

-0.090

0,350

0.080





DHFID

-0.034

0.060

¦0,050

0.010

0.140



30993

HOTFID

0.009

0.250

-0.050

0.330

0.070





DHFID

•0.028

0.070

-0.050

0.040

0.170





HOTFID

•0.046

0.260

•0.120

0.280

0.050





DHFID

•0.047

0.040

•0.060

0.000

0.070

(Continued)

54


-------
Table 5-6 (continued)

Vehicle

FTP Run
ID

VAR

SPD*

ACC*

L2SPD4

L2ACC®

DL2ACC*

CO710B

309%

HOTFID

-0.086

0.280

-0.150

0.300

0.060





DHFID

-0.046

0.040

-0.050

0.000

0.100



30996

HOTFID

-0.112

0.250

-0.160

0.250

0.090





DHFID

•0.035

0.000

-0.040

0.000

0.130



30997

HOTFID

-0.052

0.290

-0.110

0.310

0.060





DHFID

-0.036

0.020

-0.040

0.010

0.110



30999

HOTFID

-0.100

0.330

-0.180

0.380

0.050





DHFID

-0.048

0.060

-0.060

0.020

0.120



31001

HOTFID

-0.036

0.300

-0.100

0.370

0.040





DHFID

-0.038

0.070

-0.060

0.050

0.190



31002

HOTFID

0.027

0.130

0.000

0.130

0.040





DHFID

-0.017

-0.020

-0.020

0.000

0.060

CV924W

31106

HOTFID

0.227

0.030

0.220

0.070

0.000





DHFJD

0.002

0.040

-0.010

0.010

0.010



31107

HOTFID

0.133

•0.080

0.150

-0.040

•0.020





DHFID

0.013

0.010

0.010

0.010

0.000



31113

HOTFID

0.218

0.040

0.200

0.090

-0.020





DHFID

-0.001

0.030

-0.010

0.020

0.000



31114

HOTFID

0.300

0.060

0.270

0.160

-0.030





DHFID

0.000

0.070

-0,020

0.050

0.010



31115

HOTFID

0.270

0.090

0.240

0.170

-0.030





DHFID

¦0.005

0.050

-0.020

0.030

0.000

ES707R

31019

HOTFID

0.181

0.210

0.130

0.340

-0.060





DHFID

-0.021

0.060

•0.030

0.120

0.140



31020

HOTFID

0.166

0.280

0.090

0.350

-0.010





DHFID

-0.045

0.070

-0.060

0.070

0.100



31021

HOTFID

0.170

0.230

0.110

0.330

-0.050





DHFID

-0.035

0.040

-0.040

0.090

0.100



31024

HOTFID

0.255

0.230

0.190

0.340

¦0.030





DHFID

-0.040

0.120

-0.060

0.150

0.210



3102S

HOTFID

0.245

0.230

0.180

0.370

-0.060





DHFID

•0.030

0.100

-0.050

0.120

0.150

55	(Continue


-------
Table 5-6 (continued)

Vehicle

FTP Run
ID

VAR

SPD*

AGO*

L2SPD*

L2ACC*

DL2ACC*

ES707R

31026

HOTFID

0.142

0.230

0.080

0.260

-0.020





DHFID

•0.055

0.040

-0.060

0.040

0.030

LA127B

31041

HOTFID

0.109

0.160

0.060

0.230

-0.030





DHFID

•0.022

0.060

-0.030

0.060

0.040



31042

HOTFID

0.070

0.110

0.040

0,170

-0.010





DHFID

-0.020

0.020

-0.030

0.040

0.070



31043

HOTFID

0.038

0.190

•0.010

0.240

*0.020





DHFID

-0.021

0.060

-0.030

0.050

0.070



31044

HOTFID

-0.010

0.170

-0.050

0.210

-0.050





DHFID

-0.024

0.030

-0.030

0.030 .

0.020



31045

HOTFID

0.076

0.120

0.050

0.130

•0.090





DHFID

-0.015

0.020

-0.020

0.010

•0.090



31046

HOTFID

0.067

0.090

0.040

0.1 SO

-0.030





DHFID

-0.011

0.040

-0.020

0.050

0.050

LA392W

31122

HOTFID

0.185

0.260

0.110

0.390

-0.040





DHFID

-0.033

0.060

-0.050

0.080

0.080



31123

HOTFID

0.139

0.240

0.070

0.350

•0.050





DHFID

¦0.027

0.040

-0.040

0.070

0.080



31124

HOTFID

0.106

0.320

0.020

0.420

-0.060





DHFID

•0.042

0.050

-0.050

0.070

0.090

LS612B

31116

HOTFID

0.140

0.410

0.040

0.560

-0.070





DHFID

•0.069

0.110

-0.090

0.120

0.140



31117

HOTFID

0.025

0.390

-0.080

0.530

•0.020





DHFID

-0.062

0.120

-0.090

0.100

0.150



31118

HOTFID

0.149

0.320

0.050

0.460

-0.030





DHFID

-0.057

0.120

-0.090

0.110

0.090



31119

HOTFID

0.065

0.380

-0.040

0.480

-0.010





DHFID

•0.063

0.090

-0.090

0.070

0.160



31120

HOTFID

0.076

0.400

-0.030

0.560

-0.070





DHFID

-0.062

0.120

-0.090

0.130

0.240



31121

HOTFID

0.040

0.380

-0.070

0.550

-0.020





DHFID

-0.059

0.110

-0.090

0.110

0.250

(Continued)

56


-------
Table 5-6 (continued)

Vehicle

FTP Run
ID

VAR

SPD*

ACC

L2SPD4

L2ACC*

DL2ACC*

SA333B

31032

HOTFID

0.182

0.040

0.170

0.070

0.030





DHFID

-0.002

0.020

-0,010

0.020

0.080



3103S

HOTFID

-0.026

0.070

-0.040

0.030

0.130





DHFID

-0.012

0.010

-0.010

-0.060

0.070



31037

HOTFID

0.031

0.040

0.020

0.040

0.050





DHFID

-0.003

0.030

-0.010

-0.010

0.050



31038

HOTFID

0.181

0.110

0.150

0.150

0.040





DHFID

-0.011

0.040

-0.020

0.020

0,0%



31039

HOTFID

*0.029

0.080

*0.050

0.030

0.080





DHFID

-0.014

-0.010

-0.010

-0.030 .

0.060



31040

HOTFID

0.179

0.180

0.130

0.230

0.040





DHFID

-0.019

0.050

-0.030

0.030

0.130

S0756B

31013

HOTFID

0.416

0.210

0.350

0.390

.-0,100





DHFID

-0.023

0.120

-0.060

0.140

0.130



31014

HOTFID

0.459

0.180

0.400

0.340

-0.070





DHFID

-0.017

0.110

-0.050

0.110

0.050



31015

HOTFID

0.470

0.180

0.410

0.380

-0.160





DHFID

-0.018

0.120

-0.050

0.160

0.120



31016

HOTFID

0.450

0.210

0.400

0.390

-0.1®)





DHFID

-0.021

0.130

-0.050

0.130

0.090



31017

HOTFID

0.419

0.240

0.350

0,420

-0,140





DHFID

-0.026

0.090

-0.050

0.120

0.080



31018

HOTFID

0.433

0.240

0.360

0.390

-0.110





DHFID

-0.029

0.090

-0.060

0.100

0.050

(Continued)

57


-------
Table 5-6 (continued)

Vehicle

FTP Run
ID

VAR

SPD*

ACC*

L2SPD4

L2ACC*

DL2ACC*

TA207G

31047

HOTFID

0.123

0.070

0.100

0.150

0.060





DHFID

-0.006

0.010

-0.010

0.030

0.110



31048

HOTFID

0.222

0.050

0.200

0.190

-0.010





DHFID

-0.001

0.040

-0.010

0.080

0.100



31049

HOTFID

0.267

0.040

0.250

0.180

-0,020





DHFID

-0.001

0.030

-0.010

0.090

0.120



31050

HOTFID

0.182

0.050

0.160

0.120

0.010





DHFID

-0.003

0.020

-0.010

0.030

0.030

NOTES;

Based on 76 FTP runs of 12 vehicles for Bag 2 (506 to 1372 seconds) of Federal Test Procedure
Speed (mph)

Acceleration (mph/s = first dWference of SPD)

Speed, lagged 2 seconds
Acceleration, lagged 2 seconds
Change in tagged (2-second) acceleration
HC emissions, as measured (ppm)

Change in HOTFID

58


-------
Table 5-7

Vehicle Average Correlation of HOTFID Versus Lagged Acceleration

(Bag 2 of the FTP)

Vehicle
10

Vehicle

Engine
Displacement
(Liters)

VIN

Accumulated
Mileage

Model
Year

Number
of FTP
Runt

Average
Correlation
of HOTFID
vs. L2ACC

CA365B

GM Chev. Caprice Classic

5.0

1G1BN69H9GY100365

39,970

1986

7

0.354

C0322G

QM Corsica

2.0

1G1LT5116HY102322

34,364

1987

13

0.403

C0665W

GM Corsica

2.0

1G1LT5111JY616665

16,935

1988

4

0.375

CO7108

QM Corsica

2.8

1G1LT51W9HY104710

34,268

1987

10

0.306

CV924W

Ford Crown Victoria

5.0

2FABP73F8HX183924

39,242

1987

5

0.090

ES707R

Ford Escort

1.9

1FAPP2599HW328701

44,559

1987

6

0.332

LA127B

Chrysler LeBaron

2.5

1C3CJ41K0JG324127

36,418

1988

6

0.188

LA392W

Chrysler LeBaron

3.0

1C3XJ4538LG418392

20,087

1990

3

0.387

LS612B

QM Bulck LeSabre

3.8

1G4HP14C6JH482612

54,803

1988

6

0.523

SA333B

Ford Mercury Sable

3.0

1MEBN5048HA615333

44,360

1987

6

0.092

S0756B

QM Bulck Somerset

2.5

1G4NM14V7HM078756

45,136

1987

6

0.385

TA207Q

Ford Taurus

3.8

1FABP524XJA148207

36,148

1988

4

0.160


-------
Figure 5-1

HC Emissions arid Lagged Acceleration
Bag 2: 506 to 1,006 Seconds

Vehicle: LS612B Run: 31116

Time (seconds)


-------
CRUISE MODE EMISSIONS ANALYSIS

Further investigations of the relationship between speed and HC emissions were
made for the six normal emitters in the data set. This analysis was restricted to cruise
mode emissions to allow full comparison of emission results, which are expressed either
on a grams-per-mile or grams-per-second basis.

Figure 5-2 plots the instantaneous HC emission rate (on a per-mile basis) versus
vehicle speed during cruise mode for vehicle C0322G (a GM Corsica). Most of the
higher emission values were observed at low speeds, though the data seem to support the
hypothesis that cruise mode emissions do not change much as speed increases or
decreases. Figures 5-3 and 5-4 show similar plots for vehicles C0665W and S0756B
respectively. These data tend to support the conclusion that cruise mode emissions are
invariant with speed.

61


-------
Figure 5-2

Cruise RAode Speed vs» Emissions
Bags 2 and 3 only Vehicle: C0322G

as

M

HC Emiss Rate, iig/sec

10,000

8,000

6,000

4,000

2,000

-

* •

• •
• *

• ; i



»

%

•

•

	t#t..« o "3* • i

• ** i

* •* .

• •- ^

'.*• *1 ^ih* * •

1.' » ' £ s

10

20

30

40

50

60

Speed, inph


-------
Figure 5-3

Cruise Mode Speed vs. HC Emissions
Bags 2 and 3 only Vehicle: C0665W

HC Emiss Rate, ^ig/sec

-10,000 	1	.	.	

8,000

6,000

4,000

2,000



0

10

20

30

40

50

60

Speed, mph


-------
Figure 5-4
Cruise Mode Speed vs. HC Emissions
Bags 2 & 3 only Vehicle: S0756B

HC Emiss Rale, tig/sec

6,000
5,000
4,000
3,000
2,000
1,000
0

10	20	30	40	50	60

Speed, mph

-

t





-





«

•
- •

-

•

•





-

•

•

•

*

•



•

•

«

*• •

rnmm •»••••••••••*•#•*•*«*»•«•

• *

• • •
• . .

•

<

* *

~ '

** M. *

• * • • •fT* • ••••••••••••••«•••«•

• « • •
« •*K • •

• • • >.!•* « A •

. 1 . r#f t j

^ #«« • * j •

«

i» • • .

• *

* * •

!«**• . * •
~ !

t* .**. * **%~/«•*

» • .«*i»«

1 •

•	w -

~ i«
~ •*;

•

>

1 *.
•• * . •.

;

• • «

. * • *
U * *

• V • «
• «• •
1 ' . *


-------
SECTION 6
SUMMARY OF FINDINGS

Federal Test Procedure-measured cruise mode emissions are invariant with speed
when expressed on a grams-per-second basis. Accelerations produce the highest
emissions. Accelerations from a cruise speed to a higher speed appear to be as important
as accelerations from a stop in producing high HC emission values. In general, emission
rates for Bag 3 (in g/sec) are highest during acceleration and lowest during deceleration.
Cruise emission rates appear to be nearly the same as those during the idle mode.

65


-------
REFERENCES

CARB, 1986: California Air Resources Board. Methodology to Calculate Emission
Factors for On-Road Motor Vehicles. Technical Support Section, Emission
Inventory Branch, Motor Vehicle Emissions and Projections Section, November
1986.

Code of Federal Regulations, Title 40, Part 86 to 99, U.S. Government Printing Office,
Washington, D. C., My 1,1990.

Gabele and Colotta, 1981: Gabele, P., and J. Colotta. A Computer Controlled, Real-
Time Automobile Emissions Monitoring System. SAE Technical Paper Series
No. 811185, Warrendale, Pennsylvania, October 1981.

Ingalls, Smith, and Kirksey, 1989: Ingalls, M.N., L.R. Smith, and R.E. Kirksey.

Measurement of On-Road Vehicle Emission Factors in the California South Coast
Air Basin, Volume I -Regulated Emissions. Project SCAQS-1, Southwest
Research Institute, San Antonio, Texas. Prepared for the Coordinating Research
Council, Inc., Atlanta, Georgia, June 1989.

Ripberger and Markey, 1991: Ripberger, C.T., and J. Markey. Conceptual Design Issues:
Developing a New Highway Vehicle Emissions Estimation Methodology.
Proceedings, Emission Inventory Issues in the 1990s, Papers from an International
Specialty Conference, Air and Waste Management Association, Durham, North
Carolina, September 1991.

Seitz, 1989: Seitz, L.E. California Methods for Estimating Air Pollutant Emissions from
Motor Vehicles. Paper No. 89-7.4, presented at 82nd meeting of Air and Waste
Management Association, Anaheim, California, June 25-30,1989.

Stump, Knapp, and Ray, 1990a: Stump, F.D., K.T. Knapp, and W.D. Ray. Seasonal
Impact of Blending Oxygenated Organics with Gasoline on Motor Vehicle
Tailpipe and Evaporative Emissions. Journal of the Air and Waste Management
Association, Vol. 40, No. 6, June 1990.

66


-------
REFERENCES (continued)

Stump, Knapp, and Ray, 1990b: Stump, F.D., K.T. Knapp, and W.D. Ray. The Seconal
Impact of Blending Oxygenated Organics with Gasoline on Motor Vehicle
Tailpipe and Evaporative Emissions - Part II. SAE Technical Paper Series No.
902129, Warrendale, Pennsylvania, October 1990.

Stump, Knapp, and Ray, 1992a: Stump, F.D., K.T. Knapp, and W.D. Ray. The

Composition of Motor Vehicle Organic Emissions Under Elevated Temperature
Summer Driving Conditions (75 to 105°F). Journal of the Air and Waste
Management Association, Vol. 42, No. 2, February 1992.

Stump, Knapp, and Ray, 1992b: Stump, F.D., K.T. Knapp, and W.D. Ray. The

Composition of Motor Vehicle Organic Emissions Under Elevated Temperature
Summer Driving Conditions (75 to 105°F) - Part II. Journal of the Air and
Waste Management Association, Vol. 42, No. 10, October 1992.

Wilson and Ripberger, 1991: Wilson, J.H., Jr., and C.T. Ripberger. Proceedings of Two
Highway Vehicle Emissions Workshops. Paper No. 91-180.27, presented at 84th
meeting of Air and Waste Management Association, Vancouver, British
Columbia, June 1991.

67


-------
68


-------
APPENDIX A

FTPCLC4 Motor Vehicle Emissions Data Reduction Program

For: U.S. Environmental Protection Agency
Research Triangle Park, NC
Contract 68-D9-0168 WA 38

By: . Phil Childress

E.H. Pechan & Associates, Inc.

5537 Hempstead Way
Springfield, Virginia 22151

*	PTPCLC4.PRG
close data
clear all
set talk off

~accept "Real time (r) or Bag (b) mode? " to dmy
*rltim=iif(lower(dmy)="r",. t.,.f.)

*	federal test procedure auto emis calc routine

*	e. h. pechan & associates, inc.

*	by p. childress

*	november 21, 1991

*	revisions:

*	12/5/91 jpc add totalling of mode info. bag2 only

*	12/6/91 add bag3 & bagl

*	this program calculates nox, co, cox and he emissions from raw

*	data files organized by test car and temp/press test data file.

*	data is real-time, organized by second into five phases:

*	bagO: 1-124 seconds 124 total

*	bagl: 1-505 seconds (505 total) acc,crz,dec,idl

*	bag2: 506-1377 seconds (872 total) acc,crz,dec,idl

*	bkgd: 1378-1977 seconds (600 total) "background" (engine off)

*	bag3: 1978-2482 seconds (505 total) acc,crz,dec,idl

*	the first six rows of the data bases are labels and coefficients

*	data begins in row seven, so offset record no's for phases are:

*	bagO: 7-130 (124 seconds)

*	bagl: 7-511 seconds (505)
bag2: 512-1383 seconds (872)

*	bkgd: 1384-1983 seconds (600) total background

*	bkusd: 1443-1922 seconds (480) background used

*	bag3: 1984-2488 seconds (505)

*	the files contain odd numbers of rows, like 2488, 2492, or 2493

*	the modes of different time slices are picked up in modesl.dbf

A-l


-------
* the sg standard gasoline driver file of cars and tests in
sgfiles.dbf

public xxx, yyy, xmx,ymx,kx,ky

publie xxrun,xxveh

public xxfuel,xxpbar,xxtemp,xxcgal,xxspco2,xxhqc,xxoqc,xxcct
public xtmp,xavg,zzx,zzpbar,zzl,zztempl,zztemp2,zzpdl,zzpd2
public zzhl,zzh2,zzpv,zznox

public xk6, xj 7,xrh,xavrh,xxost,xavj7,xavk6,xtest
* work cells for bags or modes

public wwhc0,wwhel,wwhc2,wwhc3,wwhek
public wwnxO,wwnxl,wwnx2,wwnx3,wwnxk
public wwcoO,wwcol,wwco2,wwco3,wwcok
public wwc2 0,wwc21,wwc22,wwc23,wwc2k
public wwspO,wwspl,wwsp2,wwsp3
public wvOTiO,wwmil,wvOTi2fwwmi3
public wwvmO , wwvml, wwvm2 , wwvm3 , wwvmps
public wwdfQ,wwdfl,wwdf2,wwdf3 .
public nnO,nnl,nn2,nn3,nnk

public dbhcO, clbhcl»dbhc2, dbhc3
public dbnxO,dbnxl,dbnx2,dbnx3
public dbcoO,dbcol,dbco2»dbco3
public dbc20,dbc21,dbc22,dbc23

public gntfic0,g^cl,gmhc2,gmhc3,gmhcwt
public gmnxO, gmnxl, gmnx2, gmnx3, gxnnxwt
public gmcoO, gmcol, gmco2, gmco3, gmcowt
public gmc20,gmc21,gmc22,gmc23,gmc2wt

public mpgO,mpgl,mpg2,mpg3,mpgwt
public qqconam,qqc2nam,qqhenam

public datfil,datshl,basdat,rptshl,rptout,dtel,fuels,vehruns» secmode
public inprn,calcshl,calcout

public nnli,nnla,nnlc,nnld,blhci,blhca,blhcc,blhcd
public dbhcli,dbhcla,dbhclc,dbhcld
public tgmhel, tgmhcli,tgmhcla, tgrnhclc, tgmhcld
public ttlmode

public nn2i,nn2a,nn2c,nn2d,b2hci,b2hca,b2hcc,b2hcd

JJUijX JL w UUiiwtu Jl g UUllw4u> O. f LUJIIwa L> / UiJllwZ U

public tgmhc2,tgmhc2i,tgmhc2a,tgmhc2c,tgmhc2d

public tt2mode

public nn3i,nn3a,nn3c,nn3d,b3hci,b3hca,b3hcc,b3hcd

public dbhc3i,dbhc3a,dbhc3c,dbhc3d

public tgmhc3,tgmhc3i,tgmhc3a,tgmhc3c,tgmhc3d

public tt3mode

vehruns="c:\jn738\runfil.dbf"
secmode=*c:\jn738\secmode.dbf"
datshl="c:\jn738\xshl.dbf"

A-2


-------
basdat="c:\jn738\basdat.dbf"
rptshl="c:\jn738\rptshl.dbf"
rptout="c:\jn738\rptout.dbf"
rpttmp="c:\jn73 8\rpttmp.dbf"
calcshl="c:\jn738\calcshl.dbf"
calcout="c:\jn738\calcout.dbf"
dtcl="c:\jn738\dtcl.dbf"
fuels="c:\jn738\fuels.dbf"
jnkfill="c:\jn738\jnkfill.dbf"
jnkfil2="c:\jn73 8\jnkfil2.dbf"
jnkndxl="c:\jn738\jnkndxl.ndx"
j nkndx2 ="c:\jn738\jnkndx2.ndx"

*	load data from primary data file into data shell
sele f

use &vehruns
goto top

*	overall run loop here
nruns=0

*do while recno () <3 && test only-
do while .not. eof(}
nruns=nruns+l

xxveh=vehicle
xxrun=run

? "Begin run "+xxrun+" at time "+time()

xxfuel=fuel

xxpbar=pbar

xxtemp=temp

inprn="g:\rcddata\"+trim(xxrun)+".prn"
datfil="c:\jn738\x"+trim(xxrun)+¦.dbf"

sele a

erase &datfil
use &datshl
copy to &datfil
use &datfil

appe from &inprn deli with blan
sele b

use &secmode
sele a

set rela to recno() into b

repl all sec with b->sec,mode with b->mode,tmode with b->tmode

*	fill in pp and qq—transformed data with lags

*	note this is wierd because there were 2-row time offsets in lotus
macro

goto 4

xxa4=k6aft && 250 or 0

xxb4=j7cell && can be 100 or 0.634

goto bott
xxbot=recno()

A-3


-------
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to
store 0 to

goto 7
kkk=0

do while recno{)=7.and.recno()<512
nnl=nnl+l

2ztemp=hotfid/iif(xxb4=100,10,1}
wwhc1=wwhc1+zztemp

wwnxl=wwnxl+nox/iif(xxa4=250,1,2.5)
wwcol=wwcol+qq
wwc21=wwc21+co2
wwspl=wwspl+speed
do case

case mode="i"
blhci=blhci+z2temp

xko,x^ 7,xrh,xxost
wwhcO,wwhcl,wwhc2,wwhc3,wwhck
wwnxO,wwnxl,wwnx2,wwnx3,wwnxk
wwcoO,wwcol,wwco2,wwco3,wwcok
wwc20,wwc21,wwc22,wwc23,wwc2k
wwspO,wwspl,wwsp2,wwsp3
wwmi0,wwmi1,wwmi2,wwmi3
wwvmO, wwvml, wwvm2, wwvm3
wwdf0,wwdfl,wwdf2,wwdf3
nnO,nnl,nn2,nn3,nnk
nnli,nnla,nnlc,nnld
blhci,blhca,blhcc,blhcd
nn2 ^ f nn2 a, z^xi2 c, n.^x2 d
b2hci,b2hca,b2hcc,b2hcd
nn3 i,nn3 a,nn3 c,nn3 d
b3hci,b3hca,b3hcc,b3hcd

A-4


-------
nnli=rmli+l
case mode="a"
blhca =blhca+z z t emp
nnla=nnla+l
case mode="c"
blhcc=blhcc+zztemp
nnlc=nnlc+l
case mode="d"
blhcd=blhcd+zztemp
nnld=nnld+l
endcase

if recno()<131
nn0=nn0+l

wwhcO=wwhcO+hotfid/iif(xxb4=100,10,1)
wwnx0=wwnx0+nox/iif(xxa4=250,1,2.5)
wwco 0 =wwco 0+qq
wwc 20=wwc20+co2
wwsp0=wwsp0+speed
endif

case recno{)>=512.and.recno()<13 84
nn2=nn2+l

zztemp=hotfid/iif(xxb4=100,10,1)
wwhc2=wwhc2+z z temp

wwnx2 =wwnx2 +nox/i i f(xxa4=250,1,2.5)
wwco2=wwco2+qq
wwc22=wwc22+co2
wwsp2=wwsp2+speed
do case

case mode="i"
b2hci=b2hci+zztemp
nn2i=nn2i+l
case mode="a"
b2hca=b2hca+zztemp
nn2a=nn2a+l
case mode="c"
b2hcc=b2hcc+zztemp
nn2c=nn2c+l
case modes"d"
b2hcd=b2hcd+ zztemp
rm2d=rm2d+l
endcase

case recno()>=1984.and.recno{)<2489
nn3=nn3+l

zztemp=hotfid/iif(xxb4=100,10,1)
wwhc3=wwhc3+z z temp

wwhc3=wwhc3+hotfid/iif(xxb4=10Q,10,1)
wwnx3 =wwnx3 +nox/i i f(xxa4=250,1,2.5)
wwco3 =wwco3 +qq
wwc23=wwc23+co2

wwsp3=wwsp3+speed
do case

case mode="i"
b3hci=b3hci+zztemp

A-5


-------
nn3i=nn3i+l
case mode="a"
b3hca=b3hca+zztemp
nn3a=nn3a+l
case mode="c"
b3hcc=b3hcc+zztemp
nn3c=nn3c+l
- case mode="d"

b3hcd=b3 hcd+ zztemp
nn3d=nn3d+1
endcase

case recno()>=1443.and.recno()<1923 &&background 480 sees engine off
nnk=nnk+l

wwhck=wwhck+hot f id/i i f(xxb4=100,10,1)
wwnxk=wwnxk+nox/iif(xxa4=250,1,2.5)
wwcok=wwcok+qq
wwc2k=wwc2k+co2

endcase

skip

enddo && major pass in data base

xxost=(xxost/17)*9/5+32 && c to f
xavj7=xj 7/kkk
xavrh=xrh/kkk
xavk6=xk6/kkk

*	avg he info by bag 1,2,3 and mode i,a,c,d

blhci=blhci/nnli
blhca=blhca/nnla
blhcc=blhcc/nnlc
blhcd=blhcd/nnld

b2hci=b2hci/nn2i
b2hca=b2hca/nn2a
b2hcc=b2hcc/nn2c
b2hcd=b2hcd/nn2d

b3hci=b3hci/nn3i
b3hca=b3hca/nn3a
b3hcc=b3hcc/nn3c
b3hcd=b3hcd/nn3d

*	average speeds
wwsp0=wwsp0/nn0
wwspl=wwspl/nnl
wwsp2=wwsp2/nn2
wwsp3 =wwsp3/nn3

use &fuels

loca for substr(ltrim(upper(fulnam)),1,2)=;
substr(1trim(upper(xxfuel)),1,2)

A-6


-------
xxcgal=cgal
xxspco2=spco2
xxhqc=hqc
xxoqc=oqc

zzx=647.27-xavj 7+273.16

xtest=xavj7*9/5+32

xxcct=iif(xtest>200,75.01,xtest)

zzpbar=760

zzl=760/25.4

zztempl=(zzx/(zzx-647.27))*((3.244+0.00587*zzx+117*10"-10*zzx"3)/;
(1+.002188*zzx))

*zztemp2=exp(zztempl*log(10))
zztemp2=10~zztempi && the same thing easier
zzpdl=29.92*218.167/zztemp2

zzpd2=-.004144+.005766*xxcct-.0000633*xxcetA2+;

2122*10's-9*xxcet'v3-79*l0A-10*xxcct'N4+6.55*10"-ll*xxcct'v5
z zpv=xavrh*z zpd2/10 0

zzhl=43.478*xavrh*zzpdl/(zzpbar-(zzpdl*xavrh/100))
zzh2=4347.8*zzpv/(zzl-zzpv)

zznox=l/(1-.0047*(zzh2-75)) && nox corr factor

* now do this with explicit arithmetic-it's quicker I think

wwhc 0 =wwhc 0/nn0
wwhc1=wwhc1/nn1
wwhc2 =wwhc2/nn2
wwhc3 =wwhc3/nn3
wwhck=wwhck/nnk

wwnx0 =wwnx 0/nn0
wwnxl=wwnxl/nnl
wwnx2=wwnx2/nn2
wwnx3=wwnx3/nn3
wwnxk=wwnxk/nnk

wwco0=wwco0/nn0
wwcol=wwcol/nnl
wwco2 =wwco2/nn2
wwco3 =wwco3/nn3
wwcok =wwcok/nnk

wwc20=wwc20/nnO
wwc21=wwc21/nn1
wwc22=wwc22/nn2
wwc23=wwc23/nn3
wwc2k=wwc2k/nnk

* miles per phase
wwmi0=(wwspO-.05)*nn0/3 600

A-7


-------
I

wwmil=(wwspl-.05)*nnl/3600
wwmi2=(wwsp2-.05)*nn2/3600
wwmi3=(wwsp3-.05)*nn3/3600

*	vmix factors

wwvm0=iif(xxb4=.634,0.634*1.757747*(xxpbar-75.6)/;

0.659,1.757747*(xxpbar-35.5))
wwvml=iif(xxb4=.634,0.634*7.156803*(xxpbar-75.6)/;

0.659,7.156803*(xxpbar-35.5))
wwvm2=iif(xxb4=.634,0.634*12.373673* (xxpbar-75.6)/,-

0.659,12.373673*(xxpbar-35.5))
wwvm3=wwvml

*	vmix per second—like 10.3 cubic feet of total diluted mix

wwvmps=iif(xxb4=.634,0.634*.0141795*(xxpbar-75.6)/;
0.659,.0141759*(xxpbar-35.5))

*	dilution factors

wwdf 0 =xxspco2/(wwc20+.0001*(wwcoO+wwhcO))
wwdfl=xxspco2/(wwc21+.0001*(wwco1+wwhc1))
wwdf2=xxspco2/(wwc22+.0001*(wwco2+wwhc2))
wwdf3=xxspco2/(wwc23+.0001*(wwco3+wwhc3)}

* dilution tunnel - backgrnd corrected

store 0 to	dbhc0,dbhcl,dbhc2,dbhc3

store 0 to	dbnxO,dbnxl,dbnx2,dbnx3

store 0 to	dbcoO,dbcol,dbco2,dbco3

store 0 to	dbc20,dbc21,dbc22,dbc23

dbhc0=wwhc0-wwlick* (1-1/wwdf 0)
dbhcl=wwhcl-wwhck*(1-1/wwdfl)
dbhc2=wwhc2-wwhek*(1-1/wwdf2}
dbhc3 =wwhc3-wwhck *(1-1/wwdf3)

dbnxO =wwnx0-wwnxk *(1-1/wwdfO)
dbnxl=wwnxl-wwnxk *(1-1/wwdf1)
dbnx2=wwnx2-wwnxk*(1-1/wwdf2)
dbnx3 =wwnx3-wwnxk*(1-1/wwdf3)

dbco0=wwco0-wwcok*(1-1/wwdfO)
dbcol=wwcol-wwcok*(1-1/wwdfl)
dbco2=wwco2-wwcok*(1-1/wwdf2)
dbco3=wwco3-wwcok*(1-1/wwdf3)

dbc20=wwc20-wwc2k*(1-1/wwdfO)
dbc21=wwc21-wwc2k*(1-1/wwdfl)
dbc22=wwc22-wwc2k*(1-1/wwdf2)
dbc23=wwc23-wwc2k*(l-l/wwdf3)

A-8


-------
*	bagl,2,&	3 mode-specific info
store 0 to	dbhcli,dbhcla,dbhclc,dbhcld
store 0 to	dbhc2i,dbhc2a,dbhc2c,dbhc2d
store 0 to	dbhc3i,dbhc3a,dbhc3c,dbhc3d

dbhcli=blhci~wwhck*(1-1/wwdfl)
dbhcla =blhca-wwhek *(1 1/wwdf X)
dbh.clc=blhcc-wwhck* (1-1/wwdfl)
dbhcld=blhcd-wwhek*(1-1/wwdfl)

dbhc2i=b2hci-wwhck*(l-l/wwdf2)
dbhc2a=b2hca-wwhck*(l-l/wwdf2)
dbhc2 c=b2hcc-wwhck*(l-l/wwdf2)
dbhc2d=b2hcd-wwhck*(1-1/wwdf2)

dbhc 3 i =b3 he i-wwhek *(1-1/wwdf3)
dbhc3a=b3hca-wwhck*(1-1/wwdf3)
dbhc3c=b3hec-wwhek*(1-1/wwdf3)
dbhc3d=b3hcd-wwhck*(1-1/wwdf3)

*	gm/mi calcs

store 0 to gmhcO, gmhel, gmhc2, gmhc3, gmhewt
store 0 to gmnxO,gmnxl,gmnx2»gmnx3,gmnxwt
store 0 to gmcoO,gmcol, gmco2,gmco3,gmcowt
store 0 to gmc20, gmc21,gmc22,gmc23,gmc2wt

zgmhc=16.33 && coefs
zgmnx=54.16
zgmco=32.97
zgmc2=51.81

gmhcO=wwvmO*dbhcO*zgmhc/ (wwmi0*10A6)
gmhc 1 =wwvml * dbhc 1 * z gmhc / (wwmil*10/s6)
gmhc2 =wwvm2 * dbhc2 * z gmhc/(wwmi2 *10^6)
gmhc3=wwvm3*dbhc3*zgmhc/ (wwmi3*10~6)

gmnxO=zznox*wwvmO*dbnxO*zgmnx/(wwmi0*10~6)
gmnxl = z znox*wwvml* dbnxl* zgmnx/(wwmil*10~6)
gmnx2=zznox*wwvm2*dbnx2*zgmnx/ (wwmi2*10/N6)
gmnx3 = z znox*wwvm3 *dbnx3 * zgmnx/ (wwmi3*10~6)

gmeo0=wwvm0*dbco0*zgmco/ (wwmi0*10/s6)
gmcol=wwvml*dbcol*zgmeo/(wwmil*10~6)
gmco2 =wwvm2 *dbco2 * zgmco/(wwmi2*10A6)
gmco3=wwvm3*dbco3 *zgmco/ (wwmi3*10/N6)

gmc20=wwvm0*dbc20*zgmc2/(wwmi 0*100)
gmc21=wwvml*dbc21* zgmc2/(wwmil*100)
gmc22=wwvm2*dbc22*zgmc2/(wwmi2*100)
gmc2 3 =wwvm3 * dbc2 3 * zgmc2/(wwmi3*100)

*	fuel economy calcs

store 0 to mpgO,mpgl,mpg2,mpg3,mpgwt

A-9


-------
xtemp=12/(12+xxhqc+15.99*xxoqc)

mpgO=xxcgal/ (0.429*gmco0+0.273*gmc20+xtemp*gmhc0)
mpgl=xxcgal/(0.42 9*gmcol+0.273*gmc21+xtemp*gmhcl)
mpg2 =xxcgal/ (0.42 9*gmco2+0.273*gmc22+xtemp*gmhc2}
mpg3=xxcgal/(0.429*gmco3+0.273*gmc23+xtemp*gmhc3)

* weighted avg of emiss & fuel economy

gmhcwt=0.43*(gmhcl*wwmil+gmhc2*wwmi2)/(wwmil+wwmi2)+;
.57* (grnhc2 *wwmi2+gxnhc3*wwmi3) / {wwini2+wwmi3)

gmnxwt=0 .43* (gmiixl*wwmil+gxTurix2*wwmi2) / (wwmil+wwmi2) + ;
.57*(gmnx2*wwmi2+gmnx3*wwmi3)/(wwmi2+wwmi3)

gmcowt=0.43*(gmcol*wwmil+gmco2*wwmi2)/(wwmil+wwmi2)+;
.57*(gmco2 *wwmi2+gmco3*wwmi3)/(wwmi2+wwmi3)

gmc2wt=0 .43* (gmc21*wwmil+gmc22*wwmi2) / (wwmil+wwmi2) + ;
.57*(gmc22*wwmi2+gmc23*wwmi3)/{wwmi2+wwmi3)

mpgwt=0 .43* {mpgl*wwmil+mpg2*wwmi2) / (wwmil+wwmi2) +;
. 57* (mpg2*wwmi2 +mpg3*wwmi3) / (wwmi2+wwmi3)

* total grams and mode info for bag2
store 0 to tgmhel,ttlmode

store 0 to tgmhcli,tgmhcla,tgmhclc,tgmhcld

tgmhcl= dbhcl*wwvmps*zgirhc* (nnli+nnla+nnlc+nnld) 710^6

tgmhcli= dbhcli*wwvmps*zgmhc*nnli/10A6

tgrohcla= dbhcla*wwvmps*zgmhc*nnla/10/v6

tgmhclc= dbhclc*wwvmps*zgmhc*nnlc/10~6

tgmhcld= dbhcld*wwvmps*zgmhc*nnld/10A6

ttlmode=tgjmhcli+tgmhcla+tgmhclc+tgmhcld

store 0 to tgmhc2,tt2mode

store 0 to tgmhc2i,tgmhc2af tgmhc2c,tgmhc2d

tgmhc2= dbhc2*wwvmps*zgmhc*(nn2i+nn2a+nn2c+nn2d)/10A6
tgmhc2i= dbhc2i*wwvmps*zgmhc*nn2i/10'N6
tgmhc2a= dbhc2a*wwvmps*zgmhc*nn2a/10/v6
tgmhc2c= dbhc2c*wwvmps*zgmhc*nn2c/10A6
tgmhc2d= dbhc2d*wwvmps*zgmhc*nn2d/10rt6
tt2mode=tgmhc2i+tgmhc2a+tgmhc2c+tgmhc2d

store 0 to tgmhc3,tt3mode

store 0 to tgmhc3i,tgmhc3a,tgmhc3c,tgmhc3d

tgmhc3= dbhc3*wwvmps*zgmhc*(nn3i+nn3a+nn3c+nn3d)/10A6
tgmhc3i= dbhc3 i *wwvmps * zgmhc*nn3 i/10 A 6
tgmhc3a= dbhc3a*wwvmps*zgmhc*nn3a/10'v6
tgmhc3c= dbhc3c*wwvmps*zgmhc*nn3c/10/v6
tgmhc3d= dbhc3d*wwvmps*zgmhc*nn3d/10A6

A-10


-------
tt3mode=tginhc3i+tginhc3a+tgmhc3c+tginhc3d

* fill calcout with mem vars

if nruns=l

use &calcshl

erase &calcout

copy stru to calcout

endif

use &calcout
appe blan

repl xxrun with m->xxrun
repl xxveh with m->xxveh
repl xxost with m->xxost
repl xxfuel with m->xxfuel
repl gmhcO with m->gmhcO
repl gmhcl with m->ginhcl
repl gmhc2 with m->gmhc2
repl gmhc3 with m->gmhc3
repl gxnhcwt with m->gmhcwt
repl xxcct with m->xxcet
repl xxhqc with m->xxhqc
repl gmnxO with m->gmnxQ
reol crmnvl with in—>crmnvl

•L	Walk uii ill /'MiiUL/VJt

repl gmnx2 with m->gmnx2
repl gmnx3 with m->gmnx3
repl gmnxwt with m->gmnxwt
repl xavrh with m->xavrh
repl xxoqc with m->xxoqc
repl gmcoO with m->gmcoO
repl gmcol with m->gmcol
repl gmco2 with m->gmco2
repl gmco3 with m->gmco3
repl grocowt with m->gmcowt
repl zznox with m->zznox
repl xxspco2 with m->xxspco2
repl gmc20 with m->gmc20
repl gmc21 with m->gmc21
repl gmc22 with m->gmc22
repl gmc23 with m->gmc23
repl gmc2wt with m->gmc2wt
repl xxpbar with m->xxpbar
repl xxcgal with m->xxcgal
repl mpgQ with m->mpgO
repl mpgl with m->mpgl
repl mpg2 with m->mpg2
repl mpg3 with m->mpg3
repl mpgwt with m->xnpgwt
repl wwmiO with m->wwmiO
repl wwir.il with m->wwmil
repl wwmi2 with m->wwmi2
repl wwmi3 with m->wwmi3
repl wwvmO with m->wwvmO
repl wwvml with m->wwvml

A-ll


-------
repl
repl
repl

wwvm2 with m->wwvm2
wwvm3 with m->wwvm3
wwvmps with m->wwvmps

repl wwdfO with m->wwdf0
repl wwdf1 with m->wwdfl
repl wwdf2 with m->wwdf2
repl wwdf3 with m->wwdf3

repl tgmhcl with m->tgmhcl
repl tgmhcli with m->tgmhcli
repl tgmhcla with m->tgmhcla
repl tgmhclc with m->tgmhclc
repl tgmhcld with m->tgmhcld

repl tgmhc2 with m->tgmhc2
repl tgmhc2i with m->tgxnhc2i
repl tgmhc2a with m->tgmhc2a
repl tgmhc2c with m->tgmhc2c
repl tgmhc2d with m->tgmhc2d

repl tgmhc3 with m->tgmhc3
repl tgmhc3i with m->tgmhc3i
repl tgmhc3a with m->tgmhc3a
repl tgmhc3c with m->tgmhc3c
repl tginhc3d with m->tgmhc3d

sele f
skip

enddo &&overall loop
? "End all runs at time "+time()

A-12


-------
CALCOUT. DBF is the database containing the results of the data
COXXV€*3r S JLOXX program. The fieldnames in the database are listed
below with a croswalk to the name used in the report.

FIELD NAME

REPORT NAME



XXRUN

RUN $



XXVEH

VEHICLE



XXOST

OIL SUMP TEMP



XXFUEL

fuel



GMHCO

HC, GRAMS/MILE, BAG 0



GMHC1

HC, GRAMS/MILE, BAG 1



GMHC2

HC, GRAMS/MILE, BAG 2



GMHC3

HC, GRAMS/MILE, BAG 3



GMHCWT

HC, GRAMS/MILE, WEIGHTED



XXCCT

COLD CELL TEMP (Td}



XXHQC

H/C



GMNXO

NOX, GRAMS/MILE, BAG D



GMNX1

NOX, GRAMS/MILE, BAG 1



GMNX2

NOX, GRAMS/MILE, BAG 2



GMNX3

NOX, GRAMS/MILE, BAG 3



GMNXWT

NOX, GRAMS/MILE, BAG WEIGHTED



XAVRH

RELATIVE HUMIDITY



XXOQC

O/C



GMCOO

CO, GRAMS/MILE, BAG 0



GMCOl

CO, GRAMS /MILE, BAG 1



GMC02

CO, GRAMS/MILE, BAG 2



GMC03

CO, GRAMS/MILE, BAG 3



GMCOWT

CO, GRAMS/MILE, BAG WEIGHTED



ZZNOX

NOX CORRECTION FACTOR



XXSPC02

SPC02



GMC20

C02, GRAMS/MILE, BAG 0



GMC21

C02, GRAMS/MILE, BAG 1



GMC22

C02, GRAMS/MILE, BAG 2



GMC23

C02, GRAMS/MILE, BAG 3



GMC2WT

C02, GRAMS/MILE, BAG WEIGHTED



XXPBAR

PRESS. BARO



XXCGAL

CGAL



MPGO

FE, MPG, BAG 0



MPG1

FE, MPG, BAG 1



MPG2

FE, MPG, BAG 2



MPG3

FE, MPG, BAG 3



MPGWT

FE, MPG, BAG WEIGHTED



WWMIO

MILES PER PHASE, BAG 0



WWMIl

MILES PER PHASE, BAG 1



WWMI2

MILES PER PHASE, BAG 2



WWMI3

MILES PER PHASE, BAG 3



WWVMO

VMIX FACTORS, BAG 0



WWVMl

VMIX FACTORS, BAG 1



WWVM2

VMIX FACTORS, BAG 2



WWVM3

VMIX FACTORS, BAG 3



WWVMPS

VMIX PER SECOND



WWDFO

DILUTION FACTOR BY PHASE, BAG

0

WWDFl

DILUTION FACTOR BY PHASE, BAG

1

WWDF2

DILUTION FACTOR BY PHASE, BAG

2

A-13


-------
FIELD NAME

WWDF3

TGMHC1

TGMHC1I

TGMHC1A

TGMHC1C

TGMHC1D

TGMHC2

T©fflC2I

TGMHC2A

TGMHC2C

TGMHC2D

TGMHC3

TGMHC3I

TGMHC3A

TGMHC3C

TGMHC3D

REPORT NAME

DILUTION FACTOR
TOTAL GRAMS HC,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
GRAMS HC, BAG 1,
TOTAL GRAMS HC,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
GRAMS HC, BAG 2,
TOTAL GRAMS HC,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,
GRAMS HC, BAG 3,

BY PHASE, BAG 3
BAG 1
IDLE

ACCELERATION
CRUISE

DECELERATION
BAG 2
IDLE

ACCELERATION
CRUISE

DECELERATION
BAG 3
IDLE

ACCELERATION
CRUISE

DECELERATION

A-14


-------
APPENDIX B

FEDERAL TEST PROCEDURE EQUATIONS
USED TO CALCULATE GRAMS PER MILE EMISSIONS FROM
EXHAUST ANALYZER EMISSIONS DATA

(SOURCE: 40 CFR §86.144-78)

8 MJ44-7S

(lv) V,«Net enclosure volume ft*
(m«>, as determined by subtracting SO
ft* (1.42 m*) (volume of vehicle with
trunk and windows open) from the en-
closure volume. A manufacturer may
use the measured volume of the vehi-
cle (instead of the nominal SO ft1) with
advance approval by the Administra-
tor: Provided, the measured volume is
determined and used for all vehicles
tested by that manufacturer.

(v)	r-PID response factor to metha-
nol.

(vi)	P.-Barometric pressure, in Br
(kPa).

40 CFI Oi.) (7-1-90 MMert)

(vii) T-Enclosure temperature,
•RCK).

(vili) 1-Initial reading.

(I*) f-final reading.

(x) 1-First impinger.

. t

32.042	32.042

(b) The final reported results shall
be computed by summing the individ-
ual evaporative emission results deter-
mined for the diurnal breathing-loss
test, running-loss test and the hot-
soak test.

154 FR 14534, Apr. 11. 1889]

8 86.144-78 Calculation!; exhaust emis-
sions.

The final reported test results shall
be computed by use of the following
formula:

(a) For light duty vehicles and light
duty trucks:

Y„-0.43	<(Y«+Y,»/(D.+D,»+0.5'Jf

«"¥»,+Y,)/(D*+D,))
where:

Y.»«Weighted mini emissions of each pol-
lutant, i.e., HC, CO. NO, or CO.. in
grams per vehicle mile.

Y„-M*as emissions ac calculated from the
"transient" phase oi the cold start test,
in grams per test phase.

Y*«>Mass emissions as calculated from the
•transient" phase of the hot start test,
is grams per test phase.

Y.-Mass emissions as calculated from the
"stabilized" phase of the cold start test,
in grams per test phase.

D„«The measured driving distance from
the "transient" phase of the cold start
test, in miles.

D»,-The measured distance from the "tran-
sient" phase of the hot start test. In
miles.

D.-The measured driving distance from the
"stabilized" phase of the cold start test,
in miles.

(b) The mass of each pollutant for
each phase of both the cold start test
and the hot start test Is determined
from the following:

(1)	Hydrocarbon mass:

HC_ -V_x Density*; x(BC««/l,000.000)

(2)	Oxides of nitrogen mass;

NOx_- V^x Density *» xKhx (NOjw/
1.000,000)

(3)	Carbon monoxide mass:
CC^.-V-IxDensltya.x(CO«1«/l,000,000>

(4)	Carbon dioxide mass:

CO»«-V«. x Densltycw x (CO^/lOO)
(c) Meaning of symbols:

(1) HC...«Hydrocarbon emissions,
In grams per test phase.

Density*-Density of hydrocarbons is 18.33
g/ft" (0.3788 kg/m* >, assuming an aver-
age carbon to hydrogen ratio of 1:1.85,
at <8* F <20* C) and 180 mm He (101.3
kFa) pressure.

B-l


-------
UIIHINIMVIIIIil I IVIVIIIVII ApfnCf

BC»»-Bydrocarbon concentration of the
dilute exhsust sample corrected for
background. is ppm euteo equivalent,
Lt..	equivalent propane x 3.

HC_-HC.-HC.C1-1/DF)

where:

HC,-Hydroc*rbon concentration of the
dilute exhaust sample or. for Dine!, av-
erage hydrocarbon concentration of the
dilute exhaust sample as calculated
from the Integrated BC traces. In ppm
carbon equivalent.

HC«-Hydrocarbon concentration of the di-
lution air as measured, in ppm carbon
equivalent.

(2)	NOx^-Oxldes of nitrogen
emissions, In grams per test phase.

Density «o,-Density of oxides of nitrogen
is M.1I g/ft» (1.913 kg/m»>, assuming
they are in the form of nitrogen diox-
ide. at M* F (30* C) and 7*0 mm Bg
<101.3 kPa) pressure.

NOx^-Oxides of nitrogen concentration
of the dilute exhaust sample corrected
for background, to ppm.

KO*—.-NOx.-NOx« Cl-l/DP)

where:

NOx.-Oxides of nitrogen concentration
of the dilute exhaust sample U IBMf.
ured. to ppm.

NOXa-Oxides of nitrogen concentration
of the dilute air as measured, to ppm.

(3)	COMm Carbon monoxide emis-
sions, in grains per test phase.

Density.-Density of carbon monoxide is
32.87 g/ft» (1.164 kg/m^, at 68*F <20*C)
and 760 mm Bg <101.3 kPa> pressure.
COM> Carbon monoxide concentration of
the dilute exhaust sample corrected for
background, water vapor, and CO« ex-
traction, to ppm.
CO««-CO,-CO.a- CO.,
Where:

CO..-Carbon monoxide concentration of
the dilution air sample as measured, in
ppm.

Note If a CO instrument which meets the
criteria specified In 186.111 is used and the
conditioning column has been deleted, CO„
must be substituted directly for CO, and
CO. must be substituted directly for CO*

8 M. 144-71

(4) CO^,-Carbon dioxide emis-
sions, in grams per test phase.

DensltyCO,-Denslty of carbon dioxide is
B1J1 g/ft» (1.830 kg/m"), at 6i* F <30* C)
and 760 mm Bg <101.3 kPa) pressure.
CO^,-Carbon dioxide concentrations of
the dilute exhaust sample corrected for
background. In percent.
GOwCO^-CO* Cl-l/DF)
where:

COm-Carbon dioxide ooneentrmtlon of the
dilution air as measured, in percent.

C5) DP-13.4/ICO.+(HC.+CO.)
10" <3

Kh-Humidity correction factor.

Kxm 1/[1-0,0047(H-75)1

for SI units -1 /tl-0.0J29(H-10.71 >1
where:

B-Absolute humidity in grains (mat) of
water per pound (kilogram] of dry air.

B-R43.478)R.xFll2/[Fa-(F,xB./100)]

for SI units, H«t<6.211>R,xP«V
tP»-(P«xR./100>J

R,aRelative humidity of the ambient air.
In percent.

Pa-Saturated vapor pressure, to mm Bg
(kPa) at the ambient dry bulb temper-
ature.

P»-Barometric pressure, in mm Bg (kPa).

V„.« Total dilute exhaust volume to cubic
feet per test phase corrected to stand-
ard conditions <228 R) <293 K> and 760
mm Hg <101.3 kPa».

For PDP-CVS. is:

Vm»- V.xMPi-R) B28 Jt/(760 mm Bg) 
where:

V,-Volume of gas pumped by the positive
displacement pump, in cubic feet 
-------
§ <6.144-90

40 CFR Ch. I (7-1.90 Edition)

(1)	For the "transient" phase of the
cold start test assume the following;

V.-0.29344 ft '/revolution; N-10.485;
R-4B.0 percent; R.-48.2 percent; P,«762
mm He; P.-22.225 mm Mr P.-70 mm Kg;
T.-570 R; HC,« 105.8 ppm. carbon equiva-
lent; NO,,•-11.2 ppm; CO..306.6 ppm;
CIa.^1.43 percent; HC.-12.1 ppm;
NO.,-0.8 ppm; CO..-15.3 ppm.

COm-0.032 %; D„«3.S98 miles.

then:

V.,,-(0.29344) (10.485) (762-70) (528)/

< 760K570)—2595.0 It'per test phtae.
H-(43.478) (48.2) (22.225)/[t62
(22.225x48.2/100)} - 82 grains of
water per pound of dry air
Kk-1/[1—0.0047(62-75)1—0.9424
CO.-[1-0.01925 (1.43)—0.000323 (48)1

306.0—293.4 ppm
CO.-II-0.000323 <48)1 15.3-15.1 ppm
DF«13.4/[l,43+(105.8+293.4)x

10-9-9.118
HC-«-105.8-12.l(l —1/9.116)—95.03
ppm.

HCaaa>-(2595)	(16.33)	(95.03/

1,000,000)-4.027 grams per test phase.
11.2-0.8 (1-1/9.116)-10.49 ppm
l*Ox„a>-(2595) (34.16) (10.49/1,000,000)

(0.9424)-1.389 grams per test phase.
CO««-293.4-15.1 (1-1/9.116)—280.0 ppm
CO_-(2595) (32.97) (280/1.000,000)-

23.96 grams per test phase.
CXW-1.43-.032 (1-1/9.116)-1.402%
COW,-(25S5.0) (51.85) (1.402/100) -1886
grams per test phase.

(2)	For the stabilized portion of the
cold start test assume that similar cal-
culations resulted in the following;

HC^.-0.62 grams per test phase
NOx„»= 1.27 grams per test phase
CO„=5.98 grams per lest phase
COia.sc 2346 grams per test phase.
0,-3.902 miles.

(3)	Por the "transient" portion of
the hot start test assume that similar
calculations resulted in the following;

HC_-0.51 grams per test phase
NOx.^,-1.38 grams per test phase
CO.*.-5.01 grams per test phase
COw-1758 grams per test phase.
D„- 3.598 miles.

(4)	Weighted mass emission results:

HC_—0-43 t(4.027 + 0.62)/(3.5B8 + 3.902)1 +
0.57 [(0.51+ 0.62)/(3.598 + 3.902 >1 - 0.352
grams per vehicle mile.
NO.™-0.43	[< 1.389-» 1.27)/

(3.598 -3.902!!+ 0.57 1(1.38-1.27)/
(3.598 -r 3.902)1 - .354 grams per vehicle
mile.

CO..-0.43 1(23.96+ 5.98>/(3.598+3.902)] +
0.57 [(5.01 + 5.98)/(3.S98 + 3.902)3-2.55
grams per vehicle mite.

COta.-0.43	1(1886 + 2346)/

(3.598 + 3.902)14 0.57 [(1758+2346)/
(3.598+ 3.902)1-555 grams per vehicle
mile.

(Approved by the Office of Management
and Budget under control number 2000-
0390)

(Sees. 202, 203. 206, 207, 208, 301a. Clean Air
Act. as amended; 42 U.S.C. 7521, 7522, 7525,
7641. 7542, 7601a)

[42 FR 32954, June 28, 1977, as amended at
42 FR 45655. Sept. 12. 1977; 43 FR 52922,
Nov. 14, 1978; 49 FR 48138. Dec. 10, 1984. 50
FR 10694. Mar. 15.19851

186.144-90 Calculation*; exhaust tmit.
•ions.

The final reported test results shall
be computed by use of the following
formula:

 Dm-The measured distance from
the "transient" phase of the hot start
test, in miles.

(7) D,=The measured driving dis-
tance from the "stabilized"' phase of
the cold start test, in miles.

B-3


-------

-------
APPENDIX C
Federal Test Procedure Emissions by Bag

I7IK EMISSIONS REPORT BY

PHASE







CALCULATED BOSSICHS GRAMS/KIIE





TEST DATA:



ymjTrt |p
VfeltlViiiT.

C0665W

PHASE:

0-124

BAS1

BAG2

1AE3

WEIQITro

RUN 1

30853



FUEL

SG













OIL SIMP TEMP

76.047

H/C



1.880













COLD CELL TEMP CW>

78.610

O/C



0.000

HC

3.578

1.309

0,700

-0,862

0,397

RELATIVE HUMIDITY

51.958

SPC02



13.390

NOx

1.167

0.608

0.237

0.570

0,406

NOX CORRECTION FACTOR

1.003

CGAL

2430.083

CO ¦ '

34.628

14.376

2.103

2.843

4.850

PRESS. BARD

758.000



















-









€02

371.030

337.105

330.134

291.98

321.104

H0TE: Hot FID Flameout







FE, MPG

20.380

24.465

26,519

30,306

27.133

ctk nassiws report by

PHASE







CALCULATED HUSSIONS GRAMS/KILE





TEST DATA:



VEHICLE

00665W

PHASE:

0-124

BAG1

BAG2

BAG3

HEIGHTS)

mm t

3 0854



FIM-

SB













OIL SEW T1MP

76.259

H/C



1.880













COLD ITU, TB1P (M)

76.450

O/C



0.000

HC

4.136

1,161

0.050

0.601

0,431

RELATIVE HUMIDITY

51.300

SPC02



13.390

NQx

1.182

0.5S8

0.225

0.493

0.370

NQx CORRECTION FACTOR

0.974

COAL

2430.083

CO

44,455

16.111

1.943

3,484

5.300

PRESS. BARO

758.000





























C02

352.763

329.686

324.447

287.77

315.471











FE. MPG

20.429

24.817

27.167

30.160

27,501

dto aassions report by

PHA5E







CALmJIAxisu fUTSSItilS ^jitAMS/H ILE





TEST DATA:



VEHICLE

C0665W

PHASE:

0-124

BAG1

BAS2

BAQ3

WEIGHTED

RUN «

30861



FUEL

ss













OIL SDKP HHP

88.435

H/C



1.880













COLD CEIL TEMP (Td)

75.010

O/C



0.000

HC

2.450

0.773

0.041

0.722

0.380

RELATIVE HUMIDITY

25.650

SPC02



13.390

NQX

0.844

0.506

0,149

0.428

0.299

HO* CQRKBCTICK FACTOR

0.834

CGAL

2430.083

CO

37.107

13.534

1.998

3.334

4.755

PRESS. BARO

758.000





























C02

322.061

316,691

326.983

287.58

314.015











FE, MPS

22,934

26.149

26.953

30.163

27.670

MS EMISSIONS REPORT BY

PHASE







CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

C0665W

PHASE:

0-124

BAG1

BAG2

BAG3

WEIGHl'fciJ

RUN «

30862



FUEL

SG













OIL SUMP TEMP

88.012

H/C



1.880













COLD CELL TMP ITd)

95.049

O/C



0.000

HC

2.481

0.826

0.092

0.458

0.34S

RELATIVE HUMIDITY

27.998

SPC02



13.390

NOx

0.991

0.652

0.244

0.520

0.405

HQx CORMETICN FACTOR

0.970

CGAL

2430.083

CO

32.211

12.614

1,759

2.868

4.313

PRESS. BARO

758.000





























C02

307.321

308.916

315,357

280,67

304.495











re, mpg

24.334

26.864

27.955

31.056

28.581

DM EMISSIONS REPORT BY PHASE







CALCULATED EMISSIONS GRAMS/MILE





TEST DATA;



VEHICLE

C066S8

PHASE:

0-124

BAG1

BN22

BAC3

WEIGHTED

RUN *

30869



FUEL

SG













OIL SHIP TEMP

47.247

H/C



1,880













COLD CELL TEMP (W!

44.243

O/C



0,000

HC

6,464

2.036

0.064

0.623

0.626

RELATIVE HUMIDITY*

44.266

SPC02



13.390

NQx

0.997

0.606

0.393

0.670

0.513

NOx CORRECTION FACTOR

0.791

CGAL

2430.083

CO

122.684

40.013

1.860

3.945

10.337

PRESS. BARO

758.000





























C02

399.108

352,097

332.860

300.33

327.914











FE, MPG

14.536

21.122

26.493

28.854

26.029

DUN 1MISSICWS REPORT BY PHASE







CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

C06S5W

PHASE:

0-124

BAG1

BAG2

BAG3

WEIGHTED

mm *

30870



FUEL

SG













OIL SUMS TEMP

45.871

H/C



1.880













COLD CELL TBJP (Ml

32.241

O/C



0.000

HC

7.540

2.289

0.076

0.610

0.682

RELATIVE HUMIDITY

58.786

SPC02



13.390

NQK

0,895

0.568

0.329

0.647

0.466

NQx CORRECTION FACTOR

0.781

COAL

2430.083

CO

128.790

44,365

2.051

3,991

11,362

PRESS • BARO

758.000



















C02	3 94.854 352.257 338,240 303.36 331.56? •

FE, MPG 14.331 20.738 26.050 28.570

am EMISSIONS REPORT BY PHASE

CALCULATED EMISSIONS OiMtS/Mni

TEST 1»TA:

RUN *

OIL SUMP TStP
COLD CELL THffi (M)
RELATIVE HUMIDITY

ndx ctmmcTim factor

PRESS. BARO

3*0934
79.224
75.418
58.720
1.009
758.000

VEHICLE	C0322G

FUEL	EG

H/C	1.880

O/C	0.000

SPC02	13.390

PHASE: 0-124

BAG1

BAQ2

CGAL

2430.083

HC
fjat

CO

C02

FE, MPG

2.647
2.410
26.730

365.889
21.383

0.816
1.086
9.681

333.442
25.343

0.159
0,397
4.308

317.810
27.382

BAG3 WEIGHTED

0.572
Q. 688
4.956

290.82
29.598

0.436
0.620
5.599

313.628
27.569

C- 1


-------
DIN HUSSIONS REPORT BY PHASE

CALCULATED BffSSICNS (SUMS/MILE

TEST DMA:



VEHICLE

C0322G

PHASE: 0-124

BAG1

BW32

BAS3

WEIGHTS

K9I •

30935



FUEL

S3











OIL SUSP TIMP

19.082

H/C



1.880











COLD fFT.T. TEJtP (Td)

71.607

O/C



0.000

HC 2.881

0.842

0.147

0.615

0.419

RHjsnvE humidity

64.817

SPC02



13.390

IKK 2.083

1.108

0.493

0.751

0.691

NOx CORRECTION FACTOR

0.998

COM.

2430.083

CO 31.352

9.440

4.467

4.525

5.511

PRESS. HARO

758.000



























C02 372.993

337.881

322.332

288.24

316.180











FE, MPG 20.635

25.048

26.989

29.941

27.399

E7TN BGSSICHS REPORT BY

PHASE







CALCOLATED EMISSIONS CSAMS/KtLE





TEST MB*:



VEHICLE

C0322G

PHASE: 0-124

BAG1

BAG2

BAG3

WEIGHTED

SUN *

30936



FUEL

SG











OIL SIMP TBSP

47.247

H/C



1.880











CCIJ3 CELL TBC (Td)

42.833

O/C



0.000

H= 4.531

1.163

0.192

0.702

0.532

RELATIVE HUMIDITY

67.081

SPC02



13.390

IKK 1.773

1.006

0.320

0.942

0.632

MOx CORRECTION FACTOR

0.816

com.

2430.083

CO 80.101

20.270

5.287

4.687

8.220

PRESS. BARD

758.000



























C02 429.481

367.556

331.087

302.23

330,731











FE, MPG 15.625

22.083

26.180

28.547

25.981

nm acssicKs report by

PHASE







CALCULATED IM1SSICWS GRAMS/KILE





TEST DATA:



VEHICLE

00322G

PHASE: 0-124

BSG1

BAG2

BAG3

WEIGHTS

RUN t

30945



FUEL

ss











OIL SOUP TOO1

87.906

H/C



1.880











COLD CELL TB© (Td!

94.208

O/C



0.000

HC 2.222

0.743

0.214

0.720

0.463

RELATIVE HUMIDITY

36.968

SSC02



13.390

NCK 1.884

1.110

0.343

0.821

0.633

NQx CORRBCTIC*! FACTOR

1.095

CGAL

2430.083

CO 34.319

10.397

5.076

5.729

6.354

PRESS. BARO

758.000



























C02 326.282

319.263

317.498

283.89

308.643











FE, MPG 22.966

26.339

27.292

30.157

27.881

DTO EMISSIONS REPORT BY PHASE







CALCtHATED EMISSIONS GRAMS/MILE





TEST SWIA:



VEHICLE

C0322G

PHASE: 0-124

BAG1

BAG2

BAG3

WEIGHTS)

RUJ *

30946



FUEL

SG











OIL SUMP vmp 1832.000

H/C



1.880











COLD CELL TQffi> (Td!

95.241

O/C



0.000

HC 2.671

0.830

0.226

0.692

0.479

RELATIVE HUMIDITY

36.327

SFC02



13.390

NCK 1.382

0.907

0.329

0.786

0.574

HQ* CCRW9CTICK FRCTOfi

1.075

CGAL

2430.083

CO 49.013

14.115

5.766

6.581

7.717

PRESS. BARO

758.000



























C02 330.790

318.753

314.203

285.64

307.293











FE, MPG 21.384

25.909

27.47S

29.853

27.805

era EMISSIONS REPORT BY

PHASE







CALCULATED HGSSICWS GRAMS/MILE





TEST DMAs



vehicle

C0322G

PHASE: 0-124

8M31

BAG2

BAGS

WEIGHTED

RON •

30948



FUEL

SG











OIL SUMP TSG>

B7.800

H/C



1.880











COLD CEU. TEMP (Td)

93.531

O/C



0.000

HC 2.656

0.830

0.254

0.682

0.491

SELATTVE H0MXDITY

38.392

SPOT!



13.390

IKK 2.170

1.032

0.285

0.624

0.533

NOx CORRBCTICM FACTOR

1.076

CGAL

2430.083

CO 32.181

9.932

5.507

5.954

6.548

PRESS. BARO

758.000



























C02 336.539

322.680

315.467

284.56

308.451











re, MPG 22.506

26.110

27.395

30.065



BIH EMISSIONS REPORT BY

PHASE







CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

C0322G

PHASE; 0-124

BK31

BAS2

BAG3

MEK3HXED

RUN *

30971



FUEL

SG











OIL SIMP TEMP 1832.000

H/C



1.880











COLD CELL W (Td)

105.553

O/C



0.000

HC 2.481

0.805

0.276

0.931

0.565

RELATIVE HUMIDITY

24.297

SPC02



13.390

NCK 1.681

1.122

0.435

0.991

0.730

NOx CORRECTIM FACTOR

1.033

CGAL

2430.083

CO 40.603

11.585

7.591

8.863

8.767

PRESS. BARO

758.000



























C02 291.156

302.456

308.154

271.44

296.908











FE, MPG 24.534

27.540

27.734

30.873

28.555

Dm BCSSICNS REPORT BY

PHASE







CALCULATED SCtSSICNS GRAMS/MILE





TEST DMA:



VEHICLE

C0322G

PHASE: 0-124

BA0L

BAS2

BAG3

WEIGHTED

RUN •

30972





SG











OIL SUMP TEMP

98.282

H/C



1.880











COLD CELL TEMP (Td!

104.471

O/C



0.000

HC . 2.728

0.865

0.255

0.828

0.539

RELATIVE HUMIDITY

22.484

SPC02



13.390

HQ* 1.476

1.094

0.371

0.922

0.672

NQk CORRECTION FACTOR

0.991

CGAL

2430.083

CO 49.334

13.971

6.522

8.915

8.723

PRESS, BARO

758.000



























C02 290.000

299.938

306.490

275.49

296.619

FE, MFC 23.664 27.420 28.032 30.472 28,575

C-2


-------
DIN BOSSICHS REPORT BY PHASE

CALCULATED BQSSICNS GRAMS/KLLE

TEST DATA:



tniti f v

V JtJXX .MM ¦ M.

C0322G

PHASE; 0-124

BM1

BAG2

SM33

WEIGHTED

RUN •

30973



FUEL

SG













OIL SEHP TEMP

97.224

H/C



1.880













COLD CELL TEMP (Td}

IDS.840

O/C



0.000

HC

2.507

0.816

0.266

0.900

0.554

RSXATXVE HUMIDITY

22.247

SPCQ2



13.390

NOx

1.513

1.183

0.329

0.986

0.687

HCbc CORRSCTICN FACTOR

1.002

CGAL

2430,083

co

44.747

12.753

6.779

9.305

8.710

PRESS. BARO

758.000





























C02

294.546

301.458

307.465

275.70

297.485











FE. KPG

23.877

27.467

27.908

30.363

28.491

smi em ssi oris report by

PHASE







CSLOKATiD MISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

C0322G

PHASE: 0-124

BMB

BA52

BAG3

wsxana;

RUN 1

30974



FUEL

SG













OIL SUHP T3*P

9B.176

H/C



1,680













COLD re**. TEMP (Td)

103.160

O/C



0.000

HC

3.584

1.003

0.233

0.823

0.S55

RELATIVE HUMIDITY

28.463

SPC02



13.390

SOX

1.433

1.298

0.862

1.015

0.995

NOx CORRECTION FACTOR

1.072

CGAL

2430.083

CO

92.014

20.976

6.922

8.592

10.285

PRESS. BARO

75B.000





























002

350.297

379.937

432.531

356.04

400.645











FE, HPG

17.583

21.394

20.042

23.919

21.386

cow emissions report by

PHASE







CALCULATED HUSSIONS GMMS/MILE





1EST DATA:



VEHICLE

C0322G

PHASE:

: 0-124

BAG1

BAG2

BAG3

WEIGHTED

RUN «

30975



FUEL

se













OIL SOU® TEMP

99.129

K/C



1.880













COIiJ CELL TEMP (Td)

107.320

O/C



0.000

HC

3.708

1.064

0.236

0.904

0.591

RELATIVE HUMIDITY

25.345

SPC02



13.390

NOx

1.484

1.438

0.718

0.833

0.899

NOx CORRECTION FACTOR

1.076

CGAL

2430.083

CO

91.188

21.376

7.623

10.024

11.127

PRESS. BARO

758.000





























C02

355.072

379.411

436.601

356.07

402.652

Note; Air Conditioner On







FE, MPG

17.450

21.378

19.811

23.757

21.219

DSSI EMISSIONS REPORT BY PHASE







CALCULATED EMSSICNS SRAMS/KELE





TEST DATA;



VEHICLE

C0322G

PHASE:

0-124

ma

BAG2

1AG3

WEIGHTED

RON #

30978



FUEL

SG













OIL SUMP TEMP

77.741

H/C



1.680













COLD CELL TEMP (Td)

78.914

O/C



0.000

HC

2.914

1.403

0.455

0.822

0.752

RELATIVE HUMIDITY

49.BOO

SPC02



13.390

NOx

2.392

1.724

2.107

2.401

2.106

HQ* CORRECTION FACTOR

0.991

CGAL

2430.083

CO

42.938

31.171

14.349

7,228

15.873

PRESS. BARO

758.000





























C02

356.387

314.320

305.845

279.23

300.283

Note: Oxygen Sensor Disconnected





FE, MPG

20.553

24.205

26.987

30.360



um qsissions report by

PHASE







CALCULATED QHSSICWS GRABS/MILE





TEST DATA;



tJftTTfT t?

C0322G

PHASE:

0-124

BftSl

BSG2

BAG3

WEIGHTED

RUN *

30989



FUEL

SG













OIL SUMS' TEMP 1832.000

H/C



1.880













COLD CELL TEMP (Td}

73.454

O/C



0.000

HC

2.126

0.606

0.141

0.814

0.423

RELATIVE HUMIDITY

17.841

SPC02



13.390

NOx

2.592

1.154

0.257

0.835

0.602

UOx CORRECTION FACTOR

0.799

CGAL

2430.083

CO

33.313

10.364

7.365

6.605

7.778

PRESS. BARO

758.000





























C02

362.867

329.086

309.993

277.43

304.994

Mote: Hot FID not Calibrated







FE, HPG

21.096

25.631

27.643

30.653

28.054

DXH EMISSIONS REPORT BY

PHASE







CALCULATED MISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

CO710B

PHASE:

0-124

BAG1

BAG2

BAG3

WEIGHTED

RUN *

30990



FUEL

SG













OIL SLKP TEMP 1832.000

H/C



1.880













COLD CELL TEMP (Td)

77.426

O/C



0.000

HC

5.792

2.089

0.852

2.057

1.438

RELATIVE HOHIDITY

13.281

SPC02



13.390

NOx

2.503

1.017

0.226

0.333

0.421

NOx CORRECTION FACTOR

0.790

CGAL

2430.083

CO

33.759

13.816

7.389

6.131

8.373

PRESS, BARO

758.000





























C02

432.894

383.459

394.1S5

337.36

376.359











FE, KPG

17.651

21.617

21.792

25.ISO

22.686

DIN SHISSIONS REPORT BY PHASE







CALCULATES EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

CC7108

PHASE:

0-124

RAG1

BAG2

BAG3

WEIGHTED

RUN #

30992



FOEL

EG













OIL SUMP TEMP

76.682

H/C



1.880













COLD CELL TEMP (Td)

80.143

O/C



0.000

HC

5.316

1.730

0.682

1.812

1.212

RELATIVE HUMIDITY

15.572

SPC02



13.390

HQx

2.653

0.975

0.241

0.380

0.432

NOx CORRECTION FACTOR

0.605

CGAL

2430.083

CO

25.863

9.047

6.422

5.188

6.628

PRESS. BARO

758.000





























(302

442.538

393.362

401.190

338.S7

382.291











FE, KPG

17.802

21.550

21.530

25.255

22.562

C- 3


-------
DIM HUSSIONS REPORT S5f PHASE

CALCULATED EWSSICKS GRAMS/MILE

TEST DATA;



VBttCLE CO710B

PHASE

: 0-124

MSI

SAG2

BAG3

WEIGHTED

»

30993



FUEL SQ













OIL BMP TEMP

75.518

H/C

1.880













COLD CELL TEMP (Td)

78.053

o/c

0.000

HC

7.367

2.374

0.747

1.668

1.338

RELATIVE HUMIDITY

27.983

SPC02

13-390

KJ*

2.943'

1.145

0.287

0.307

0.471

NOx CORRECTION FACTOR

0.857

CGAL

2430.083

CO

32.642

11.559

6.060

4.837

6.865

PRESS, BARQ

758.000

























C02

425.882

384.761

399.105

341.46

380.280









FE. HPS

17.785

21.687

21.658

25.121

22.616

oik ihtssjcks report sy i>kass





CALCULATED BCSSICMS OTAMS/MILE





TEST DATA;



VEHICLE CC710B

PHASE:

: 0-124

BAG1

BM32

B*33

WEIGHTED

RUN ft

30994



PlliJlEL SO













OIL SCKP TEMP

92.776

H/C

1.880













COLD CELL TEHP {Tdi

91.541

O/C

0.000

HC

4.912

1.726

0.594

1.912

1,191

RELATIVE HUMIDITY

21.819

SFCQ2

13.390

NQx

2.191

0.821

0.171

0.366

0.360

HOx CORRECTION FACTOR

0.886

CGAL

2430.083

CO

38.661

11.923

5.009

4.651

6.346

PRESS. BARO

758.000

























C02

387.490

362.152

390.738

335.63

369,665









RE, MPG

19,192

23.039

22,226

25.506

23.296

CTN EMISSIONS REPORT BY

PHASE





CALCULATED EMISSIONS GRAMS/KILE





TEST DATA:



VEHICLE CO710B

' PHASE:

0-124

BAG1

BAG2

BAS3

WEIC2HTO

RUN *

30995



FUEL SG













OIL SUMP TOG-

86.635

H/C

1.880













COLD rsrrj, TEHP (Td)

90.449

O/C

0.000

HC

4.710

1.593

0.568

1.670

1.085

RELATIVE HUKxcrrr

20.761

SPOT

13.390

mx

2.256

0.826

0.208

0.372

0.382

NOx CORRECTICK FACTOR

0.872

CGAL

2430.083

CO

33,366

10.364

4.934

4,411

5.919

PRESS. BARO

758.000

























CB2

397.845

368.900

394.618

337,16

373.442









FE, MPG

19,135

22.811

22.024

25.478



CTK HffSSXOHS REPORT BY

HiASE





CALCULATED EMISSIONS (SHAMS/MILE





TEST DATA i



VEHICLE CO710B

PHASE:

0-124

BNS1

BAG2

am

WEIGHTED

RUN 4

30996



FUEL 98













OIL SCHP TEMP

86.212

H/C

1.880













COLD CEII. TEMP 

104.085

O/C

0.000

HC

3.913

1.434

0.707

1.798

1.159

RELATIVE HUMIDITY

13.419

SPC02

13.390

NOx

2.148

0.884

0.123

0.630

0.421

NCfx CORRECTION FACTOR

0.869

CGAL

2430.083

CM

26.436

8.714

7.202

5.744

7.116

PRESS. BARO

758.000

























C02

369.404

350.318

379.793

330.91

360.213









FE, MPG

21.027

24.152

22.630

25.754

23.806

C-4


-------
Dm MISSIONS REPORT BY PHASE

CALCULATED EMISSIONS GRAMS/MILE

TEST DATA: VEHICLE	C0710B

KEN •	31002 FUEL	56

Oil, SUMP TEMP	43.D12	H/C	1.880

COLD CELL TBg CM)	47.664	O/C	0.000

RELATIVE HUMIDITY	40.150	SPC02	13.390

HQx CORRECTION FACTOR	0.793	CGAL 2430.013

PRESS, BARO	758.000

PHASE; 0-124

BAG1

BAG2

HC

HQs

CO

9.397
1.708
33.221

2.628
0.911
23.376

0.487
0.190
6.229

SAG3 WEIGHTED

002	465.209 408.184 398.941

FE, MPG 13.877 19.639 21.696

1.493
0.296
4.959

342.66
25.062

1.207
0.369
9.438

385.417

22.193

am anssioNS report by phase



fwrr JWR ?VTCCIf*IC (Wftut. /wtt IP
UAI/. wwv*EOS m 1 aaxur«a imara/Fi t lir





TEST DATA.:



VBdCLE S0756B

PHASE: 0-124

BAG1

BAG2

BAG3

WEIGHTED

RUN *

31013

ztJJSu











OIL SU4P TEMP

73,612

H/C 1.880











COLD CELL TBO> (Td)

73.784

O/C 0.000

HC 2.141

0.635

0.072

0.448

0.292

RELATIVE HUMIDITY

48.153

SPC02 13.390

NQx 3.032

1.424

0.554

0.932

0.838

Xoc CORRECTION FACTOR

0.932

CGAL 2430.083

CO 12.306

4.373

1.208

2.107

2.109

tWOCCC flign
MrAxCmXSy * Xaftiw

758.000



















C02 393.608

348.443

353.752

303.35

338.807







FE, MPG 21.208

24.911

25.013

28.893

26.058

£*m EMISSIONS REPORT BY PHASE

CALCULATED HUSSIONS GRAMS/MILE

TEST DATA:

HX #	31014

OIL SUMP TEMP	76.259

COLD CELL TEMP {"M)	72.622

RELATIVE HUMIDITY	67.241

NOx CORRECTION FACTOR	1.025

PRESS. BARO	758.000

VEH2CUE S0756B
FUEL SG
H/C	1.880

O/C	0.000

SPC02	13.390

OSAL 2430.083

PHASE: 0-124

BAG1

1AG2

BAG3 WEIGHTED

K

MQx

CO

C02

FE, MPG

2.137
2.596
12.048

3B9.510
21.438

0.S38
1.326
4.553

341.736
25.366

0.096
0.575
1.375

349.479
25.292

0.487
0.882
1.943

302.68
28.969

0.316
0.815
2.190

335.029
26.317

DIM EMISSIONS REPORT BY

PHASE





CALCULATED BUSSICNS GRAMS/MILE





TEST DATA;



VHnai

S0756B

PHASE: 0-124

BAG1

8M32

BAG3

wekwthj

MS) t

31015

FUEL

SG











OIL SUMP TSffi

87.800

H/C

1.880











COLD CELL TXMP (Td)

91.138

o/c

0.000

HC 1.821

0.539

0.070

0.372

0.250

RELATIVE HUMIDITY

37.706

SPC02

13.390

Wx 3.508

1.797

0.716

1.083

1.041

MCk CORRECTION FACTOR

1.034

CGAL 2430.083

CO 8.921

3.901

1.360

1.747

1.993

PRESS. BARO

758.000























002 399.314

352.221

371.256

313,59

351.467









FE, MPG 21.239

24.722

23.825

28.034

25.168

DIN EMISSIONS REPORT BY

PHASE



CALCULATED EMISSIONS GRAMS/MILE





TEST DATA;



VEHICLE S0756B

PHASE:

: 0-124

BAG1

BAG2

BAG3

WEIGHTED

ROM ~

31016

FUEL SG













OIL SIMP TEMP

86.212

H/C 1.880













COLD CELL TEMP (Td!

88.654

O/C 0.000

HC

1.862

0.513

0.120

0.269

0.243

RELATIVE HUMIDITY

31.980

SPC02 13.390

NQx

2.998

1.432

0.706

1.129

0.973

NCK CORRECTION FACTOR

0.951

CGAL 2430.083

CO

10.040

3.228

1.471

1.636

1.881

PRESS. BARO

758.000





















C02

365.155

326.006

350-225

299.22

331.157







FE, MPG

23.011

26.755

25.222

29.413

26.694

UIH EMISSIONS REPORT BY

PHASE



CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE S0756B

PHASE:

: 0-124

BAG1

BAG2

BAG3

VEKatTED

RUN #

31017

FUEL SG













OIL SUMP TEMP

95.212

H/C 1.880













COLD CELL TEMP (Td)

102.148

O/C 0.000

HC

1.725

0.549

0.106

0.399

0.278

RELATIVE HUMIDITY

29.485

SPC02 13.390

NQx

3.496

1.844

0.757

1.047

1.062

NQx CORRECTION FACTOR

1.075

CGAL 2430.083

CO

9.270

3-691

1.700

1.763

2.130

PRESS. BARO

758.000





















C02

365.945

333.946

35B.816

307.65

339.616







FE, MPG

23.062

26.067

24.602

28.559

25.992

dm emissions report by phase

CALCULATED EMISSIONS GRAMS/MILE

TEST DATA:

RUN «	31018

OIL SUMP TEMP	96.800

CCLD CELL THJP iTd!	102.157

RELATIVE HUMIDITY	33.181

Mix CORRECTION FACTOR	1.155

PRESS. BARO	758.000

VEHICI£ S0756B
FUEL SG
H/C	1.880

O/C	0.000

SPC02	13.390

CGAL 2430.083

PHASE; 0*124

BAG1

BAG2

BW33 WEIGHTED

HC
HQx

CO

C02

FE, MPG

1.436
3.261
8.253

344.873
24.563

0.518
1.730
3.678

319.675
27.213

0.089
0.724
1.389

343.795
25.707

0.453
1.075
1.693

294.36
29,825

0.278

1.029
1.946

325,180
27.154

C-5


-------
am sessions report by mase

CALCULATED HUSSIONS GRAMS/MILE

TEST DATA:



VHGCLi ES707R

PHASE: 0-124

BAC1

BAC2

BAG3

WEIGHTED

RUN •

31019



FUEL 93













OIL SMS> T1MP

76.471

H/C

1.380













COLD ran. TEC (W)

73.225

O/C

0.000

IC

3.244

1.472

0.308

0.993

0.737

RELATIVE HUMIDITY

65.700

SPC02

13.390

NQx

1.329

1.223

0.423

0.985

0.742

HCK CORRECTION FACTOR

1.024

COAL

2430.083

CO

44.958

23.322

10.494

9.487

12.866

PRESS. BARO

751.000

























C02

329.258

281.802 .

300.367

258.72

285.103









FE, HSG

21.701

27.549

28.006

32.161



pin aassjdfjs report by

PHASE





CALCULATED EMISSIONS QIAMS/MILE





TEST DATA:



VEHICLE ES707R

PHASE:

; 0-124

BMX

BAG2

BAG3

WEIGHITO

KH *

31020



F%JEL SG













OIL SSMP TBtP

74.459

H/C

1.880













COLD CELL TBIP {Td)

77.146

O/C

0.000

m

3.388

1.374

0.217

1.016

0.675

RELATIVE HUMIDITY

70.424

SSC02

13.390

nox

1.354

1.197

0.445

0.888

0.722

HDx CCRKKTICH FACTOR

1.122

OGAL

2430.083

CO

43.647

21.018

8.378

8.880

11.131

PRESS. BARO

758.000

























C02

322.266

280.687

299.032

252.28

282.419









FE, MFG

22.166

27.986

28.449

33.036

29.611

rnu EMISSIONS REPORT BY PHASE





CALCULATED EMISSIONS CRAMS/MILE





TOST DATA:



VEHICLE ES707S

PHASE:

0-124

BAG1

BAG2

BAG3

WEIGHTED

RUK *

31021



FUEL SG













OIL SUMP TEMP

86.318

H/C

1.880













COLD CELL TEMP (Td)

96.933

O/C

0.000

K

2.509

1.607

0.256

0.633

0.639

seuotve humidity

36.082

spot

13.390

wax

1.627

1.269

0.510

0.997

0.800

NCK correction factor

1.098

OGAL

2430.083

CO

29.913

28.131

8.775

6.842

12.249

PRESS. BARS

758.000

























C02

310.322

261.392

294.088

251.13

275.573









FE, MPG

24.369

28.651

28.836

33.732

30.137

um sessions REPORT BY PHASE





CALCULATES EMISSIONS SUMS/MILE





TEST DATA:



VEHICLE ES707R

PHASE:

0-124

BAG1

BAG2

8A03

WEIGHTED

RUN 1

31024



FUEL SG













OIL Stiff TEMP

98.812

H/C

1.880













COLD CSX TIMP (Mi

105.174

O/C

0.000

HC

1.980

1.314

0.290

0.680

0.610

RELATIVE HUMIDITY

31.679

SPC02

¦ 13.390

mx

1.735

1.394

0.417

0,944

0.765

HOk CORRECTION FACTOR

1.170

COAL

2430.083

oo .

24.236

25.855

11.983

6.689

13.399

PRESS. 1ARQ

758.000

























002

298,476

254.957

290.156

248.53

271.386









FE, MPG

25.964

29.696

28.723

34.080

30.401

dim scissions report by

PHASE





CALCULATED EMISSIONS (SAMS/MILE





TEST DATA:



VEHiai: ES707R

PHASE:

0-124

BAG1

BAG!

BAG3

WEIGHTED

RUN •

31025



FUEL SG













OIL SUMP TEMP

98.600

H/C

1.880













COLD fET.T. tq® (Td}

104.201

O/C

0.000

HC

2.151

1.270

0.250

0.617

0.562

relative humidity

41.408

SPC02

13.390

NOx

2.331

1.527

0.448

1.307

0.908

NOx CORRECTION FACTOR

1.397

CGAL

2430.083

CO

29.160

25.898

10.327

5.691

12.281

PRESS. BARO

758.000

























C02

299.423

260.006

293.883

255.49

276.309









FE. MPG

25.284

29.211

28.631

33.415

30.066

cto aassicNS report by phase





CALCULATED SESSIONS GRAMS/MILE





TEST DATA:



VanCLE ES707R

PHASE:

0-124

BAG1

BAG2

BAG3

WHGHTHJ

BUS #

31026



FUEL SG













OIL StMP HHP

73.400

H/C

1.880













COLD CELL TBfl? (Td)

74.038

O/C

0.000

HC

2.100

0.622

0.148

0.438

0.325

RELATIVE HtMUHTY

22.571

SPC02

13.390

NOx

1.495

0.876

0.456

0.627

0.589

NOx CORRECTION FACTOR

0.819

CGAL

2430.083

CO

23.827

8,013

5.578

3.675

5.562

PRESS. BARO

758.000

























C02

337.887

290.766

278.293

250.30

273.230









re, mpg

23.303

29.154

30.958

34.573

31.572

E7TN EMISSIONS REPORT BY

PHASE





CALCULATED aaSSICWS GRAMS/MILE





TEST DATA:



VEHICLE SA333B

PHASE;

0-124

BAG1

BAG2

BM33

MEIGOTED

RON «

31032



FUE, SG













OH SUOT TSB>

100.188

H/C

1.880













COLD CELL TEffl? {Ttf!

76.610

O/C

0.000

HC

4.810

1.223

0.115

0.610

0.481

RELATIVE HUMIDITY

33.398

SPOQ2

13.390

NQx

1.890

1.479

0.882

1.175

1.086

N3x CORHK3IOH FACTOR

0.877

CGAL

2430.083

CO

34.109

10.462

3.107

4.104

4.906

PRESS. BARO

758.000

























C02

436.877

390.814

433.254

352.69

402.269









FE, MPG

17.602

21.651

20.300

24.653



C-6


-------
rti*] nireetrnie craw ov T*raer?	rtu/TTTJWn VMTCfiTflK OlMC/WTTV

1/131 oussXllna KWJKi Ox nvuISi	UUMfljniW IWm-LUHo «vma/llLut

TEST DATA:



VEHICLE

C0174G

PHASE: 0-124

BAG1

1AS2

BAC3

WEIGHTS)

RUN #

31034



FUEL

SG













OIL SUMP TEMP

1832.000

H/e



1.880













COLD CELL TEMP (Td)

73.633

o/c



0.000

HC

3.330

0.754

0.092

0.211

0.262

RELATIVE HUMIDITY

28.420

SPCQ2



13.390

NOx

0.546

0.324

0.234

0.269

0.262

KOx CORRECTION FACTOR

0.841

CGAL

2430.083

OD

12.024

2.431

0.233

0.232

0.689

PRESS. BARO

769.500





























C02

380.574

344.695

387.601

306.89

356.493











FE,

21.710

25.367

22.926

28.908

25.078

0W SHISSICNS REPORT BV

PHASE







CALCULATED EKISSICNS SIAMS/MILE





TEST OATA;



VEHICLE

SA333B

PHASE;

; 0-124

BMS1

BAG2

BM33

WEIGHTED

RUN 4

31035



FUEL

SG













OIL SUMP TEMP

96.694

H/C



1,880













COLD CSIi HHP CTd)

75.400

O/C



0.000

IC

5.503

1.349

0.114

0.501

0.476

RELATIVE HUMIDITY

48.924

SPC02



13.350

NOx

1.855

1.531

0.920

1.320

1,156

nox coRHScncH factor

0.950

CGAL

2430.083

CO

35.063

11.731

2.309

2.844

4.409

PRESS. BARO

758.000





























C02

452.234

398.370

433.854

356.54

405.207











F£, MPG

16.646

21.140

20.330

24.549

21.660

ETTN EMISSIONS REPORT BY

phase







CALCULATED BGSSIClffi GRAMS/MILE





TEST DATA;



VEHICLE

C0174G

PHASE:

: 0-124

BAG1

BAG2

BAS3

WEIGHTED

RUN •

31036



FUEL

SG













OIL SljKP TEMP

1832.000

H/C



1.880













COLD C3U, TEMP (Td)

74.555

O/C



0.000

HC

4.249

0.897

0.019

0.202

0.251

RELATIVE HUMIDITY

57.344

SPC02



13,390

tiQx

0.296

0.329

0.226

0.337

0.278

NOx CORRECTION FACTOR

0.990

CGAL

2430.0B3

CO

21.512

4.304

0.176

0.280

1,058

PRESS. BARO

763.BOO





























C02

362.438

339.66#

343.370

288.80

327.605











tr** imart

r&i

21.727

25.486

25.898

30.707

27,135

DSN SESSIONS REPORT BY

PHASE







fit frit hfen vuTtnnYftac /"so mubc/mtti?
vAULvLtAlEP Anx&raxUNo KtNAsTa/PUJuii





TEST DATA:



VEHICLE

SA333B

PHASE;

: 0-124

BAS1

BMS2

BAG3

WEXGffiS)

RUN •

31037



fuel

SG













OIL SUMP TEMP

104.000

H/C



1.G80













COLD CELL TEMP (Td)

86.984

O/C



0.000

HC

5.801

1.336

0.148

0.597

0.518

RELATIVE HUMIDITY

49.298

SPC02



13.390

HQx

2.089

1.630

1.023

1.315

1.229

UOx CORRECTION FACTOR

1.100

CGAL

2430.083

CO

34.522

9.648

3.354

4.156

4.878

PRESS. BARO

758.000





























C02

416.570

383.596

435.481

351.16

401.493











FEi HPG

18.196

22.089

20.174

24.755

21.833

um EMISSIONS REPORT BY

PHASE







CALCULATED BaSSICMS GRAMS/KILE





TEST DATA:



VEHICLE

SA333B

CHASE;

0-124

BAG1

BAS2

BASS

WEIGHTED

RUN #

31038



FUEL

SG













ATT GfMB 1'IIUU
wi-Li dUnir i£Rr

107.600

H/C



1.680













COLD CELL TEMP iTd)

85.897

O/C



0.000

HC

5.782

1.352

0.106

0.662

0.516

RELATIVE HUMIDITY

50.017

SPC02



13.390

NOx

1.7B1

1.S99

1.007

1.337

1.220

-NOx CORMSCTICR FACTOR

1.089

CGAL

2430.083

CO

36.386

10.658

2.822

4.051

4.777

PRESS. BARO

758.000





























CQ2

421.490

383.616

425.970

351.08

396,638











FE. HPS

17.911

21.998

20.665

24.758

22.066

DM MISSIONS REPORT B¥

PHASE







CALOJLATED BDSSICNS GRAMS/MILE





TEST DATA:



VEHICLE

SA333B

FrtASE:

0-124

BAG1

SAS2

BAG3

HEXGJfFED

RIM f

31039



FUEL

SG













OIL SUMP THO>

113.847

H/C



1.880













COLO CEU. TEMP !W)

103.615

O/C



0.000

HC

4.993

1.250

0.172

0.556

0.501

RELATIVE MMZBITt

39.544

SPC02



13.390

NOx

2.075

1.825

1.290

1.709

1.516

NOx CORRECTION FACTO?

1.323

CGAL

2430.083

CO

22.233

10.538

5.3S4

4.234

6.119

PRESS. BARO

758.000





























C02

405.533

374.351

425.217

346.69

393.068











FE, MPG

19.509

22.543

20.502

25.067



ETO HUSSIONS REPORT BY

PHASE







CALCULATED MISSIONS GRAHS/HILE





TEST DATA:



VEHICLE

SA333B

PHASE:

0-124

BAG1

BAS2

BAG3

WEIGHTED

RUN #

31040



FUEL

SG













OIL SUMP imp

111.412

H/C



1.880













COLE CELL TEMP (W>

106.912

O/C



0.000

h:

7.409

1.766

0.136

0.610

0.604

RELATIVE HUMIDITY

41.579

SPC02



13.390

MQx

3.045

1.867

1.232

1.660

1.481

SOx CORRECTION FACTOR

1.519

CGAL

2430.083

CO

31.182

13.210

4.165

5.093

6.294

PRESS. BARO

758.000





























C02

421.631

367.515

421.003

351.55

390.817











FE. MPS

18.016

22.600

20.799

24.624

22.224

C-7


-------
tm BCSSICNS REPORT BY PHASE	CALCULATED EMISSIONS CTAKS/KXLE

TEST DATA;



VEHICLE UU.27B

PHASE

: 0-124

BAS1

BAG2

BAG3

WEXGHUB

RUN «

31041



FUEL 9B













OH. SGHP TEMP

88.753

H/C

1.880













COLD CELL T34F (Td)

76.694

o/c

0.000

HC

2.849

0.788

0.087

0.348

0.303

RELATIVE HUMIDITY

50.307

SPC02

13.390

HQx

2.340

1.193

0.384

0.658

0.626

NOx CORRECTION FACTOR

0.971

CGM,

2430.083

CO

18.992

8.154

1.772

4.248

3.765

PRESS. BARD

758.000

























COS

380.925

361.280

362.912

324.18

351.986









FE, HPG

21.204

23.637

24.323

26.815

24.863

ESS IMXSSfCSIS REPORT BY

PHASE





CALCULATED EMISSIONS GRAMS/MTLE





TEST DATA:



VEHXCM LA127B

PHASE

: 0-124

BAG!

SAG2

BAG3

WEIGHTED

ran t

31042



FUEL S5













OIL SUKP TEMP

87.800

H/C

1.880













COLD CELL TD© (Td)

75.262

O/C

0.000

HC

3.335

0.887

0.091

0,289

0.311

RELATIVE HUMIDITY

41.553

SPCQ2

13.390

mx

2.194

1.042

0.360

0.597

0.566

nox amscnm facto

0.909

COAL

2430.083

CO

23.596

8.966

2.078

3.126

3.792

PRESS. BARG

758.000

























C02

362.705

364.796

358.SSI

323.24

350.166









re, hpg

21.692

23.321

24.580

27.051

24.998

0m dcssions report by

PHASE





CALCULATED EMSSICNS GRAMS/H&E





fEST DNIA:



VEHICLE LA127B

PHASE;

; 0-124

BAG1

BAG2

SAS3

WEIGOTED

RUN «

31043



FUEL SG













OIL SUMP TSSP

86.529

H/C

1.880













COLD CELL TB*P {TdJ

94.540

Q/C

0.000

HC

2.526

0.750

0.055

0.285

0.262

RELATIVE HUMIDITY

39.190

SPC02

13.390

Max

2.300

1.096

0.555

0.714

0.710

mx CORRECTION FACTOR

1.104

OIK.

2430.083

CO

20,368

7,745

1.214

3.413

3.164

PRESS. HARD

758.000

























C02

354.994

346.127

406.474

, 350.74

378.767









FS, MPG

22.535

24,680

21.787

24.934

23.245

K» EMISSIONS REPORT BY

PHASE





CALCULATED BCSSICNS SUSMS/MXLE





TEST DATA;



VEHICLE LA127B

FHASE:

0-124

BAG1

B/U32

BAG3

WEIGHTED

RUN #

31044



FUEL SG













OIL SUKP TEMP

87.800

H/C

1.880













COLD CELL TEMP {Td*

88.625

O/C

0.000

BC

2.681

0.707

0.037

0.316

0.252

RELATIVE HUMIDITY

40.612

SBC02

13.390

NOx

2,298

1.189

0.661

0.704

0.782

NOX CDRRECTICTJ FACTOR

1.032

ogkl

2430.083

CO

19.741

7.537

1.404

3.483

3.238

PRESS. SARD

758.000

























C02

349.536

343.044

425,421

352.32

388.434









FE. MPG

22.880

24.92S

20.810

24.809

22.753

tm missims report by phase





CALCULATED SaSSICNS GRAMS/MILE





TEST DATA:



VEHICLE LA127B

PHASE;

0-124

BAG1

BAG2

BAS3

WEIGHTED

RUN #

31045



fu&Li SG













OIL StWP TEHP

108.447

H/C

1.880













COLD CSi TEMP (Td)

107.912

O/C

0.000

HC

1.942

0.590

0.030

0.630

0.311

RELATIVE HUMIDITY

38.038

SFCCB

13.390

NQX

2.437

1.480

0.573

0.732

0.805

HOx CQRSECTICN FACTOR

1.429

COAL

2430.083

CO

18.960

8.626

1.004

6.471

4.086

PRESS. BARO

758,000

























C02

353.295

333.806

369.266

289.53

339.988

Note: Leaking Saiqple Pump





FE. MPG

22.869

25.489

23.997

29.505

25.821

om missims report by

Duacp





CALCULATED EMISSIONS GRAMS/KILE





TEST DATA:



VEHICLE IA127B

PHASE:

0-124

BAG1

SAG2

BAC3

t®IGi?EED

RUN #

31046



FTJEL SG













OIL SUMP TS*P

106.965

H/C

1.880













COLD CELL TEMP (Td)

104.730

O/C

0.000

HC

2.247

0.631

0.081

0.474

0.303

RELATIVE HUMIDITY

28.195

SPC02

13.390

NOx

1.631

0.871

0.325

0,551

0.500

mx CORRECTION FACTOR

1.091

CGAL

2430.083

CO

15.417

6.507

1.896

3.025

3.161

PRESS. BARO

758.000

























C02

285.387

283.271

294.146

251,71

280.238









FE, MPG

28.104

30,124

29.933

34.507

31.228

DTK EMISSIONS REPORT BY

PHASE





CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE TA2C7G

PHASE;

0-124

BAG1

BAS2

BAG3

WEIGHTED

RUN *

31047



FUEL SG













OIL SUMP TEMP

90.129

H/C

1.880













COLD CELL TEMP (Td)

73.862

O/C

0.000

HC

5.943

1.288

0.208

0.905

0.624

RELATIVE HUMIDITY

47.351

SPC02

13.390

NOx

1.923

0.942

0.629

0.834

0,750

NOx CORRECTION FACTOR

0.928

CGAL

2430.083

CO

27.643

6.263

1.244

3.583

2.930

PRESS, BARO

758.000

























C02

537.062

443.433

492.180

399.46

456.539









FE, MPG

14.852

19,463

17.990

21.819

19.350

C- 8


-------
UTS HUSSICKS HEPOUT BY PHASE

CALCULATED EMISSIONS GRAMS/KILE

TEST DATA:



VEHICLE TA207G

PHASE:

0-124

BAGl

BAG2

BAG3

WEIGHTED

mm #

31048



FUEZ. SG













OIL SUMP TBSB

91.294

H/C

1.880













COLD CELL TEMP CM)

S9.228

O/C

0.000

HC

4.771

1.093

0.168

0.924

0.56B

mj&ism HUMIDITY

57.604

SPC02

13.390

NOx

2.053

1.009

0.735

0.916

0.841

NCbc CGRKECTICN FACTOR

0.939

COAL

2430.083

CO

28.688

6.533

0.839

3.828

2.844

FRESS. BARD

758.000

























C02

511.212

439.200

491.468

404.25

456.622









FE, HUG

15.578

19.653

18.044

21.543

19.341

um EKISSJONS REPORT BY

PHASE





CALCULATED BHSSICWS GRAMS/MILE





1EST DATA;



VEHICLE TA207G

PHASE:

0-124

BAGl

BAG2

BAG3

WEIGHTED

RUN •

31049



IUB, SG













OIL S(MP TEMP

96.482

H/C

1.880













COLD T3«P (Td)

88.704

O/C

0.000

HC

3,939

0.920

0.211

0.669

0.483

RELATIVE HUMIDITY

32.762

SPC02

13.390

t»x

1.746

0.818

0.795

0.769

0.793

NQx CORRECTICN FACTOR

0,958

COAL

2430.083

CO

22.181

5.156

0.824

2.829

2.269

PRESS. HARD

758.000

























C02

496.141

422.889

478.239

391.98

443.13S









FE, KPG

16.379

20.515

18.537

22.335

19.988

is

1

I

PHASE





/¦tfcT/TIT R»|!L'I. XPUTCCTCKIC fSBitie /MTTT V
CAiA-viAI »il 1 Mtll>QQi>UKo vtfCAttO / Pi i [ c<





TEST DATA;



VEHICLE TA207G

PHASE:

0-124

BAGl

BAG2

BAG3

WEIGHTS*

REM #

31050



FUEL SG













OIL StJHP THJP

96.800

H/C

1.880













csu chut. thsp ma

87.043

O/C

0.000

HC

6.295

1.421

0.203

0.889

0.644

RELATIVE HUMIDITY

43.109

SPC02

13.390

IKK

1.883

1.043

0.753

0.985

0.877

NOx CORRECTION FACTOR

1.036

CGAL

2430.083

CO

30.701

7.3S3

1.088

3.452

3.038

PRESS. BARO

758.000

























C02

475.730

421.145

484.126

391.95

445.672









FE, KPG

16.366

20.360

18.298

22.243

19.812

DIM BGSSICWS REPORT BY

PHASE





CAUKLATED atlSSIOKS GRAMS/MILE





TEST DATA:



VEHICLE CA36SB

RiASE:

0-124

BAGl

BAG2

BAG3

WEIGHTED

run t

31057



FUEL SG













on. saw th®

84.200

H/C

1.880













COLD €KIJ, TSHP !Td)

75.010

O/C

0.000

HC

4.433

1.679

1.090

2.784

1.677

RELATIVE HUMIDITY

56.615

SPC02

13.390

HQ*

0.497

0.823

0.691

0.845

0.761

tax cmmmcn factor

0.991

CGAL

2430.083

CO

60.227

25.495

6.188

15.560

12.766

PRESS. BARO

758.000

























C02

666.654

516.300

536.969

428.85

502.967









FE, MPG

11.481

15.848

16.180

19.262

16.958

DIM BOSSIOWS REPORT BY

phase





CALCULATED BttSSIONS GRAMS/MILE





TEST DATA:



VEHICLE CA36SB

PHASE:

0-124

BAGl

BAG2

BAG3

WEIGHTED

KM #

31060



FOEL SG













OIL SIMP TEKP

84.306

H/C

1.880













COLD CELL TIMS (Tdl

80.471

O/C

0.000

HC

5.836

1.901

1.052

2.959

1.746

RELATIVE HUMIDITY

60.716

SPC02

13.390

NQx

0.540

0.942

0.764

0.864

0.828

NOx CORRECTION FACTOR

1.099

CGAL

2430.083

co

73.968

27.100

6.195

16.805

13.388

PRESS. BARO

758.600

























C02

649.371

516.184

532.698

430.24

501.398









FE, MPG

11.353

15.761

16.310

19.101

16.957

raw missions report by

PHASE





CALCULATES EMISSIONS GRAMS/HILE





TEST DATA:



VEHICLE CA365B

PHASE:

0-124

BAGl

BAG2

BAG3

WEIGHTED

KM •

31061



*"UfcL SG













OIL SIKP TSC

95.000

H/C

1.880













COLD CELL TEW? 
-------
am missions report by phase

CALCULATE SMISSICMS GRAMS/MILE

TEST DATA:



VEHICLE CA365B

PHASE

0-124

BAG1

BAG2

BAG3

WEIGHTED

KM t

31083



FUEL SO













OIL SU® TEHP

100.812

H/C

1.880













COLD CELL TBJP !M>

107.541

o/c

o.ooo

HC

7.660

2.658

1.361

3.262

2.155

RELATIVE HUKCDITY

41.181

SPC02

13.390

mx

1.207

1.157

0.956

1.143

1.058

no* ccrrbctick ranw

1.534

CGAL

2430.083

CO

40.411

29.927

11.347

28.285

19.880

PRESS. BM®

758.000

























002

525.402

468.058

519.503

418.60

480.963









FE, MSG

14.517

17.004

16.434

18.804

17.207

iwif wurr ccrmfc nwentw ttv nnev
LfLxi flliaMLUBIo iUirVaU bI rnnila





CAI/TULATED QOSSICMS C3*AKS/KILE





TEST DATA:



VEHICLE CA365B

PHASE

0-124

8AG1

BAG2

BAG3

WEIGHT®

mm *

31064



£ U&pLi SO













att icr*ra u
U4X, xCTlir

100.506

H/C

1.880













COLD CELL TEHP 
108.039 O/C 0.000 tc 7.203 2.695 1.149 4.572 2.408 RELATIVE HUMIDITY 40.688 SPOQ2 13.390 wax 1.259 1.455 1.043 1.221 1.177 80x CORRB7TICH FACTOR 1.538 CGAL 2430.083 CO 44.996 33.857 12.247 42.711 25.074 PRESS, BARD 758.000 C02 552.571 469.187 525.627 419.85 484.941 t1 £.. MPG 13.777 16.766 16.228 17.752 16.757 CTO EMISSIONS REPORT B* PHASE CALCULATED B8ISS1CHS GRAMS/MILE test data: VEHICLE CA365B PHASE 0-124 1AG1 BAG2 BAG3 WEIGHT]® RUS # 31065 FUEL SG OIL SUMP THff 91.400 H/C 1.880 COLD ^ "7 iTi TEMP (Td) 108.129 O/C 0.000 HC 7.108 2.036 1.172 3.315 1.939 RELATIVE HCKIDTTY 30.986 SPC02 13.390 HQ* 1.254 1.401 1.012 1.125 1.123 NOx CORRECTION FACTOR 1.219 CGAL 2430.083 CO 15.980 13.761 9.008 28.332 15.296 PRESS. 1ARQ 7S8.000 C02 515.088 456.999 519.281 412.54 477.071 FE, MPG 15.819 18.351 IS.572 19.038 17.618 am oassiws report by PHASE CALCULATED BCSSIOKS QRAHS/MIIE test DATA: VEHICLE CV924W CHASE: 0-124 1AG1 BAS2 BAS3 WEIGHTED RUN • 31106 FUEL se OIL SUMP TQiP 71,706 H/C 1.880 COLD CELL TH4P (Ml 77,819 O/C 0.000 HC 5.280 1.604 0.607 1.618 1.091 RELATIVE HtJHIDIK 61.804 SPC02 13.390 NQx 2.835 1.186 0.670 0.985 0.863 MCK CORRECTICN FACTOR 1,064 CGAL 2430.083 CO 15.126 4.703 1.460 3.821 2.779 PRESS. BARO 758.000 C02 628.199 532.889 556.522 476.53 529.692 FE, KPG 13.312 16.322 15.874 18.254 16.619 DOT MISSIONS RETORT BY PHASE CALCULATED HUSSIONS GRAMS/MILE TEST fiATA: VEHICLE CV924W PHASE: 0-124 BAS1 BAG2 BAG3 WEIGHTED RUN * 31107 FUEL S3 OIL SUMP TMP 78.059 H/C 1.880 COLD CELL TH4P [Tdi 77.393 O/C 0.000 HC 5.284 1.684 0.686 1.633 1.154 RELATIVE HUMIDITY 69.916 SPC02 13.390 NQx 2.566 1.098 0.643 1.033 0.845 JKJx CORW3CTICM FACTOR 1.122 COAL 2430.083 CO 15.631 4.827 1.313 4.215 2.841 PRESS. BARO 758.000 C02 611.325 532.287 556.165 469.61 527.404 FE, MPG 13.639 16.327 15.884 18.491 16.693 BIN EMISSIONS REPORT BY PHASE CALCULATED BHSSICNS CKAMS/KILE TEST DMA: VEHICLE CV924W fmcp. *Vu%o£t. 0-124 BAG1 BAG2 BAG3 WEIGHTED RUN * 31113 fTj&Li SG OIL SISB> TBtP 81,235 H/C 1.880 COLD rm. THjp (
-------
DIM 1MTSSTCMS REPORT BY PHASE	CALCULATED EMISSIONS GRAMS/MILE

TEST DATA:



VEHICLE

CV924W

PHASE

: 0-124

BAS1

BAG2

BAG3

WEIGHTED

RUN *

31115



FUEL

SG













OIL SOtIP TB&

104.741

H/C



1.880













COLD CELL TBff (Td)

103.925

O/C



0.000

HC

4.443

1,555

0.816

1.619

1.189

RELATIVE HUMIDITY

36.100

SPC02



13.390

NQx

3.101

1.346

0.834

1.0B3

1.009

NOx corrbcticn factor

1,243

CGAL

2430,083

CO

9.200

4.247

2.367

3.585

3.091

PRESS. BARO

758.000





























C02

550.£64

498.633

546.565

465.66

514.416











FE, MPG

15.369

17.446

16.100

18.684

17.089

DBI E2CSSICWE REPORT BY

PHASE







CALCULATED QQSSICWS GRAMS/MILE





1EST DATA:



VEHICLE

LS612B

PHASE:

0-124

BAG1

BAS2

BAG3

MEXGHTED

RUN *

31116



FUEL

SG













OIL Stiff TEMP

1832.000

H/C



1.S80













COLD OSUL TEKP (Td}

76,756

O/C



0.000

HC

2.722

0.701

0.252

0.404

0.387

RELATIVE HUMIDITY

65.488

SPC02



13.390

NOx

1.124

0.334

0.088

0.228

0.178

NQx CORRECTICH FACTOR

1.075

CGAL

2430.083

CO

13.544

. 3.965

1.957

1.260

2.184

PRESS. BARO

758.000





























032

503.085

429.946

460.675

381,77

432.563











FE. MPG

16.701

20.304

19.161

23.119

20.488

um SttSSXCNS REPORT BY

PHASE







CALCULATED EMISSIONS GRAMS/MILE





TEST DATA:



VEHICLE

LS612B

PHASE:

0-124

BK31

BAG2

EAG3

WEISHTSD

RUN ft

3111?



FUEL

SG













OIL SOKP TEHP

91.294

H/C



1.880













COLD CELL THSP (Td)

75.537

O/C



0.000

h:

2.821

0.720

0.245

0.334

0.368

RELATIVE HUMIDITY

62.764

SPC02



13.390

NQx

1.401

0.404

0.109

0.249

0.209

NQx CORRECTICK FACTOR

1.037

CGAL

2430.083

CO

17.742

4.632

2,020

0.925

2.261

PRESS. BARO

756.000





























C02

506.485

437.376

472.476

394.54

443.862











FE, HFG

IS.384

19.917

IB.684

22.419

19.962

0m EMISSIONS REPORT BY

PHASE







CALCULATED IMISSICKS GRAMS/MIUS





TEST DATA:



VEHICLE

LS612B

PHASE:

0-124

BAG1

BM32

B&S3

WEIGHTED

RUN •

31118



fUKdj

SG













OIL &MP TEMP

105.800

H/C



1.880













COLD CELL TEHP (Td)

91.166

O/C



0.000

HC

1.473

0.430

0.189

0.419

0.302

RELATIVE HUMIDITY

42.474

SPC02



13.390

NOX

0.641

0.211

0.081

0.335

0.178

NQx CORRECTION FACTOR

1.091

CGAL

2430.083

CO

7.75S

3.010

1.770

1,201

1.872

PRESS, BARO

757.200





























C02

493.974

426.786

465.743

390.81

437.100











FE, MPG

17.425

20.563

18.975

22.591

20.296

£

i
i

phase







CALCULATED 0CSSXCHS GRAMS/MILE









wirrrrj!

LSS12B

PHASE:

0-124

BAG1

BAG2

BAG3

WEIGHTED

RDM #

31119



FT5EL

SG













OIL SUKP TEKP

109.188

H/C



1.880













COLD CELL TEMP {Td)

95.130

O/C



0.000

HC

2.441

0.618

0.212

0.456

0.363

RELATIVE HUMIDITY

48.432

SPCQ2



13.390

NOx

i.sia

0.4B9

0.106

0.324

0.245

NCtx CORRECTION FACTOR

1.270

CGAL

2430,083

CO

15.726

4.590

1.572

1.276

2.114

PRESS. BARO

757.400





























CG2

482.038

419.580

462,107

387.53

432.870











FE, MPG

17.302

20.761

19.133

22.767

20.466

tmi emissions report by

phase







CALCULATED SESSIONS GRAMS/MILE





TEST DATA:



VEHICLE

LS612B

PHASE:

0-124

ESG1

BAG2

BAG3

WEIGHTED

RUN #

31120



FUEL

SG













OIL SIMP TEC

116.600

H/C



1.880













/wri «?! T

vajijj v ¦ r*«j ii t icrur ( ixt]

106.578

O/C



0.000

HC

2.543

0.717

0.211

0.415

0.372

RELATIVE HUMIDITY

36.694

SJC02



13.390

NOx

1.952

0.534

0.117

0.350

0.267

NQX CORRECTION FACTOR

1.336

CGAL

2430.083

CO

17.707

7.019

1.596

1.550

2.707

PRESS. BARO

753.SOD





























C02

454.969

406.256

451.867

384.39

423.910











FE. KPG

18.135

21.216

19.552

22.934

20.829

•cm missims report by

PHASE







CALCOLATU3 HUSSIONS GRAMS/MILE





TEST DATA:



VEHICLE

LS612B

PHASE:

0-124

RAG1

BAG2

BAS3

WEIGHTED

RUN #

31121



FDH»

SG













OIL Stiff TEKP

120.412

H/C



1.880













COLD rgr.T* TEKP (Td)

105.166

O/C



0.000

HC .

2.526

0.714

0.205

0.337

0.347

RELATIVE HUMIDITY

36,699

SPC02



13.390

NOx

1.837

0.504

0.121

0.342

0.261

NQx CORRECTION FACTOR

1.293

COAL

2430.083

CO

14.237

6.208

1.601

1.552

2.542

PRESS. BARO

757.500





























C02

463.631

408.732

463.320

387.41

431.171











FE, MPG

18.019

21.156

19.082

22.771

20.524

C- 11


-------
TO HGSSICNS REPORT BY PHASE	CALCULATED EMISSIONS GRAMS/MILE

TEST DATA:



VEHICLE LA392W

PHASE;

: 0-124

BAG1

BK32

BAG3

HEXSsnSD

RON #

31122



FUEL SS













OIL SIMP TEMP

91.400

H/C

1.8B0













COLD CELL THKP !Td)

81.99?

O/G

0.000

HC

7.063

1.805

0.220

0.824

0.712

relative Kaanm

58.363

SPC02

13.390

NQx

2.126

1.148

0.928

1.178

1.042

mx cokrictich factor

1.105

CGAL

2430.083

03

12.644

5.525

4.744

4.492

4.836

PRESS. BAB0

755.000

























C02

482.718

408.592 .

429.220

369.87

408.689









FE, HPS

16.957

21.044

20.352

23.453

21.345

PTN EMISSIONS REPORT BI

PHASE





CALCULATED EMISSIONS GRAMS/KILE





TEST DATA:



VEHICLE LA392W

PHASE:

; 0-124

8W1

BAG2

1AS3

WEIGHTED

IBM * ¦

31123



FUEL SG













OIL SUMP TtXP

86.000

H/C

1.880













COLD CELL TSMF ITd)

82.517

o/c

0.000

HC

8.853

2.145

0.197

0.790

0.762

rsuhtve hukebot

61.297

SPC02

13.390

NQx

1.889

1.045

0.971

1.224

1.056

NOst CORSBCWCK FACTCR

1.144

CGAL

2430.083

CO

16.328

6.218

4.158

3.589

4.448

PRESS. BMW

752.500

























€02

483.672

411.406

433.248

369.21

411.152









FE, MPG

16.565

20.799

20.209

23.589

21.259

im aassiois report by

PHASE





CALCULATED SCISSIONS SRAMS/MILE





TEST DMA:



VEHICLE LA392W

PHASE:

0-124

BAG1

bag;

BAG3

WEIGHTED

RUN *

31124



FUEL SO













OH. SUMP TBffi

104.212

H/C

1.880













COLD rial. TWP (Wi

95.120

O/C

0,000

HC

5.482

1.421

0.206

1.027

0.684

BHATIVE HUMIDITY

48.278

SFC02

13.390

NQx

2.137

1.281

1.008

1.796

1.282

i*K CORKECriCK EACIOR

1.266

cgal

2430.083

CO

17.652

7.006

3.587

5.442

4.806

MESS. BARO

758.000

























C02

450.794

397.350

434.417

363.17

407.122









FE, MPG

17.950

21.560

20.198

23.738

21.455

C- 12


-------
TECHNICAL REPORT DATA

(Heme read Instructions on the reverse before completing)

1. REPORT NO. 2.

EPA-600/R-94-059a

3. RECIPIENT'S ACCESSION-NO.

4. TITLE AND SUBTITLE

Analysis of Real-time Vehicle Hydrocarbon Emissions
Data

S. REPORT DATE

April 1994

6. PERFORMING ORGANIZATION CODE

?. AUTHORtSI

J. Philip Childress and James H, Wilson, Jr.

8. PERFORMING ORGANIZATION REPORT NO.

93.08.001/1010.029 (738 Rev)

S. PERFORMING ORGANIZATION NAME AND ADDRESS

E. H. Pechan and Associates, Inc.
5537-C Hempstead Way
Springfield, Virginia 22151

10. PROGRAM ELEMENT NO.

11. CONTRACT/GRANT NO.

68-Dl-0146, WA 2/029, and
68-D9-G168, WA 43

12. SPONSORING AGENCY NAME AND ADDRESS

EPA, Office of Research and Development

Air and Energy Engineering Research Laboratory
Research Triangle Park, NC 27711

13. TYPE OF REPORT AND PERIOD COVERED

Task Final; 10/93-1/94

14. SPONSORING AGENCY CODE

EPA/600/13

is. supplementary notes _£EERL project officer is Carl T. Ripberger, Mall Drop 62, 919/
541-2924. There are four related diskettes.

4|> A OCTQApT

The report gives results of analyses using real-time dynamometer test
emissions data from 13 passenger cars to examine variations in emissions during
different speeds or modes of travel. The resulting data provided a way to separately
identify idle, cruise, acceleration, and deceleration emissions for examining how
emissions differ by vehicle speed during the cruise mode. To select a set of vehicles
for the study, the hydrocarbon (HC)/time relationship was established for several
vehicles operating on summer-grade base fuel. Federal Test Procedure (FTP) re-
sults were then produced and examined to identify normal emitters (clean vehicles).
After these vehicles were selected, their second-by-second emission characteris-
tics were analyzed. The FTP runs for cold start, hot start, and hot stabilized emis-
sions (Bags 1, 2, and 3 of the FTP) were performed for each of the four driving cy-
cles— acceleration, deceleration, idling, and cruise—and the fraction of overall
emissions contributed by each mode was computed for the warmed-up portion of the
driving cycle. A protocol was then developed for review of the FTP real-time data.
Study results showed significant emissions differences relating to the travel mode.

17. KEY WORDS AND DOCUMENT ANALYSIS

1. DESCRIPTORS

b. IDENTIFIERS/OPEN ENDED TERMS

c. COSATI Field/Group

Pollution
Hydrocarbons
Emission
Automobiles

Pollution Control
Stationary Sources

13B
07C
14G
13F

18. DISTRIBUTION STATEMENT

Release to Public

19. SECURITY CLASS (ThisReport/

Unclassified

21. NO. OF PAGES

104

20. SECURITY CLASS (This page)

Unclassified

22. PRICE

EPA Form 2220-1 (9-73!	0- J3


-------

-------