Diffuse-Layer Sorption Reactions
for use in MINTEQA2 for
HWIR Metals and Metalloids

prepared for

U.S. Environmental Protection Agency
National Exposure Research Laboratory
Ecosytems Research Division
Athens, Georgia

by

HydroGeoLogic, Inc.
Herndon, Virginia

June 1998
(revised September 1999)


-------
TABLE OF CONTENTS

SUMMARY	iii

1.0 BACKGROUND 	1

2.0 DATA SOURCES AND METHODOLOGY	1

2.1 HFO SORPTION REACTIONS 	2

2.1.1	HFO Surface Reactions for Cations 	2

Reactions for Ba, Mg, and Ca 	3

Reactions for Divalent Be, Cd, Co, Cu, Hg, Ni, Pb, Mn,

Sn, Zn, and Monovalent Ag	3

Reaction for the Trivalent Cr	3

2.1.2	Intrinsic Constants for Cations	3

2.1.3	HFO Surface Reactions for Anions 	5

Reactions for phosphate, arsenate, and vanadate	5

Reactions for arsenite and borate	6

Reactions for sulfate, selenate, selenite, chromate,
molybdate, antimonate, and cyanide 	6

2.1.4	Intrinsic Constants for Anions 	6

3.0 REVISED DATABASE FOR DIFFUSE-LAYER SORPTION ON HFO	7

4.0 REFERENCES 	8

APPENDIX A LISTING OF THE HFO DATABASE FOR MINTEQA2	9

li


-------
SUMMARY

This report outlines the development of the database of diffuse-layer sorption reactions for hydrous ferric
oxide (HFO) to be used in equilibrium speciation calculations for the Hazardous Waste Identification Rule
(HWIR). The sorption of contaminant metals and metalloids is important in that it retards contaminant
transport in the subsurface. In HWIR, the results of the speciation modeling are used to compute the
contaminant sorption distribution coefficient, Kd, a transport model parameter that must be included to
account for this retardation. The contaminant metals and metalloids of interest in HWIR are: arsenic (As),
antimony (Sb), barium (Ba), beryllium (Be), cadmium (Cd), chromium (Cr), cobalt (Co), copper (Cu), lead
(Pb), mercury (Hg), molybdenum (Mo), nickel (Ni), selenium (Se), silver (Ag), thallium (Tl), tin (Sn),
vanadium (V), and zinc (Zn). Although not a metal, cyanide (CN) is also of interest as a transportable
contaminant. A consistent set of sorption reactions are presented for all HWIR contaminants of interest.
The corresponding MINTEQA2 database is also presented.

111


-------
1.0 BACKGROUND

The U. S. Environmental Protection Agency has used the MINTEQA2/PRODEFA2 equilibrium speciation
model (Allison el al, 1991) to evaluate metal speciation and to estimate metal sorption for previous
modeling in the Hazardous Waste Identification Rule (US EPA, 1996). In particular, the model has been
used to estimate^ as a function of metal concentration for a number of metal contaminants. Public and
EPA peer reviews of the HWIR methodology have resulted in numerous comments, some of which pertain
to the role of the MINTEQA2/PRODEFA2 model (hereafter referred to simply as "MINTEQA2"). Two
specific areas of weakness in the application of the model in HWIR were identified:

1)	The general thermodynamic database used by MINTEQA2 needs to be updated. This
database contains thermodynamic data for dissolved (aqueous) phase and solid phase
reactions and reactions used to represent oxidation-reduction and gas phase species at
constant partial pressure. The database was originally compiled more than ten years ago and
has been supplemented over the years with data that may not always have been consistent with
earlier entries. The database requires a thorough review of all entries impacting the HWIR
calculations. Also, certain metals of interest in HWIR are not currently represented in the
general thermodynamic database.

2)	The specialized thermodynamic database of reactions between metals and the hydrous ferric
oxide (HFO) sorbentused in the diffuse-layer model (DLM) needs to be supplemented with
reactions for those metals that form oxoanions in aqueous solution (e.g., arsenic, chromium
(VI), and selenium). These metals have been included in the HWIR methodology, but have
not been included in previous MINTEQA2 modeling. Hydrous ferric oxide reactions for
cationic metals also need to be reviewed and updated if necessary. In addition, the database
needs to be supplemented with reactions for new HWIR species not included in the original
HWIR modeling and not currently represented in the MINTEQA2 HFO database.

The first of these concerns has been addressed in a separate task (Task 2) under this same work
assignment. Concern (2) is the focus of this study. The objective has been to provide the MINTEQA2
model with the latest available data for all HWIR contaminant metals pertinent to diffuse-layer model
sorption reactions on hydrous ferric oxide.

2.0 DATA SOURCES AND METHODOLOGY

The previous database used in earlier HWIR modeling was developed from data presented in a Ph.D
dissertation by David Dzombak (1986). It included species representing sorption reactions for the cations:
hydrogen (protons), barium, cadmium, copper, lead, nickel, and zinc; and the anions: arsenite and arsenate.
The arsenic reactions have not previously been used in HWIR modeling. Reactions for chromium(m) and
mercury(II), although not included in the previous MINTEQA2 (version 3.11) database, are given in the

1


-------
Dzombak dissertation and have been used in HWIR modeling. The objective of this task was to provided
HFO diffuse-layer model reactions to represent sorbed species for all HWIR metals, metalloids, and
cyanide. Reactions for those metals that were previously represented have been checked for completeness
and accuracy. Reactions to represent HWIR sorbed metal species not in the previous database have been
added. The HWIR metals not represented in the version 3.11 database include: chromium, mercury,
silver, vanadium, selenium, thallium, antimony, molybdenum, tin, and cobalt. If experimentally derived
sorption reactions with equilibrium constants were not found, estimates using linear free energy relationships
relating the magnitude of sorption constants to hydrolysis or acidity constants have been employed

The primary source of data for updating the diffuse-layer sorption database was a compilation of reactions
representing a unified and consistent database for HFO by Dzombak and Morel (1990). This work
presents many of the same reactions given in the compilation of Dzombak (1986) with some revised
constants. It also presents data not included in the earlier compilation.

2.1 HFO SORPTION REACTIONS

The diffuse-layer sorption reactions for the contaminant metals of interest were obtained from Dzombak
and Morel (1990). The presentation follows theirs in presenting the results for metals grouped according
to similar surface reactions. The log equilibrium constants are referenced by a subscript 1 or 2 (log
log K""'") to indicate the specific sorption reaction. The "intr" superscript indicates that these are the
values of the intrinsic constants (exclusive of electrostatic effects). For certain transition and post-transition
cations, Dzombak and Morel derived constants for both low-affinity (weak) and high-affinity (strong) sites.
These are identified with a superscript in the site names as in: FewOH" and FesOH' for the (neutral) weak
and strong sites, respectively. The superscript"//" appearing in the reactions below refers to charge on the
metal M.

2.1.1 HFO Surface Reactions for Cations

The HFO surface reactions for cations as given by (Dzombak and Morel, 1990) differ somewhat among
the various groups of metals. In particular, the alkaline earth metals (with the exception of beryllium)
behave similarly and the transition and post-transition metals behave similarly. They present data for a
single trivalent cation, Cr3+, with a surface reaction that differs from the other two groups. Beryllium,
although it belongs the alkaline earths, behaves somewhat anomalously for its group. The hydroxide of
beryllium is amphoteric, whereas the hydroxides of calcium, strontium, and barium are strong bases. Its
behavior as regards surface reactions is more similar to the transition metals; it will be listed with those
metals forthe purposes of defining its HFO reactions. Also, note that although magnesium, calcium, and
manganese are not contaminant metals in HWIR, their relevant surface constants are provided below
because their concentration levels in natural systems can result in effective competition for trace metal
sorption sites.

2


-------
Reactions for Ba. Mg. and Ca

=Fe S0H° + M2+ * =FesOHM2+	Kl	(1)

=FewOH° + M2+ * =FewOM+ + H+ K2	(2)

Reactions for Divalent Be. Cd. Co. Cu. Hg. Ni. Pb. Mn. Sn. Zn. and Monovalent Ag

=Fe sOH° + Mn * =FesOMn l + H+ Kx	(3)

=FewOH° + Mn * =FewOMn l + H+ K2	(4)

Reaction for the Trivalent Cr

=FesOH° + Cr3+ + Hfi * =FesOCrOH+ +2 H+ Kx	(5)

2.1.2 Intrinsic Constants for Cations

Table 2.1 presents values for the intrinsic constants as given by Dzombak and Morel (1990). They used
linear free energy relationships (LFER) between the cations and their first hydrolysis constants to
extrapolate some values for metals whose intrinsic constants were not derivable from experimental data.
The use of LFER is predicated on the assumption that the relative affinity among various cations for the
hydroxyl sites on HFO reflect their relative affinities for OH" complexation in solution. Values estimated
from LFER (as opposed to those derived from experimental results) are indicated in Table 2.1 with an
asterisk. A dash entry means no constant could be determined.

3


-------
Table 2.1 Intrinsic Sorption Constants for some Cations on HFO.

Melal

log K,intr

log K2in,r

Ba2+

5.46

-7.2*

Ca2+

4.97

-5.85

Mg2+

—

-4.6*

Tl+

-3.5*

-6.9*

Ag+

-1.72

-5.3*

Mn2+

-0.4*

-3.5*

Co2+

-4.6

-3.01

Ni2+

0.37

-2.5*

Cd2+

0.47

-2.90

Zn2+

0.99

-1.99

Cu2+

2.89

0.6*

Pb2+

4.65

0.3*

Be2+

5.7*

3.3*

Hg2+

7.76

6.45

Sn2+

8.0*

5.9*

Cr3+

2.06

—

The constants shown in Table 2.1 are given by Dzombak and Morel (1990) with the exception of the
values for Tl+. In most natural freshwater systems, the +1 oxidation state of thallium is expected to
dominate (World Health Organization, 1996). Using the LFER expressions from Dzombak and Morel
(determined by regression of the first hydrolysis constant with experimentally derived log K,""r and log
K2""'\ respectively) gives:

log K[nj! = 1.166 log KTlOH - 4.374	(6)

4


-------
log K™ji = 1.299 log KTlOH - 7.893

(7)

The National Institute of Standards and Technology database Critical Stability Constants of Metal
Complexes, Version 4.0 gives a value of 0.79 for the first hydrolysis constant for Tl+ and the resulting
estimates of log K/ntr and log K""r are -3.5 and -6.9, respectively. These values correspond to surface
reactions (3) and (4) above, respectively.

2.1.3 HFO Surface Reactions for Anions

The HFO surface reactions for anions as given by (Dzombak and Morel, 1990) are also grouped by similar
behavior. In particular, certain trivalent (deprotonated) anions behave similarly, the fully protonated
(neutral) species of arsenite and borate behave similarly, and the divalent (deprotonated) anions behave
similarly. The pertinent surface reactions are somewhat different for these groups, so they are presented
separately below. Antimony (as SbO(OH)4") and cyanide are grouped with the divalent anions for the
purposes of describing their surface reactions. Also, note that although the anionic species of sulfate,
phosphate, and borate are not contaminant species in HWIR, their concentration levels relative to trace
metals in natural water can be such as to influence competition for sorption sites, so their constants are
included below. The generic anion is represented by "A" with the charge indicated in the reaction. Where
appropriate, represents the unsigned charge of the anion.

Reactions for phosphate, arsenate, and vanadate

FeOH° + A3 + 3 H - =FeH2A" + H20 K

(8)

FeOH° + A3' + 2H+ * =FeHA ~ + H20 K2

(9)

FeOH° + A3' + H+ * =FeA2~ + H20 K3

(10)

FeOH° + A3

* =FeOHA 3

(11)

5


-------
Reactions for arsenite and borate

=FeOH" + H3AsO° - =FeH2AsO° + Hfi	K}	(12)

=FeOH° + H^BO° - =FeH2BO° + H20	K}	(13)

Reactions for sulfate, selenate. selenite. chromate. molvbdate. antimonate. and cyanide

=FeOH° + An~ + H+ * ^FeA^' + H20 K2	(14)

=FeOH° + A"-	* =FeOHA n~	K3	(15)

2.1.4 Intrinsic Constants for Anions

Table 2.2 presents values for the intrinsic constants as given by Dzombak and Morel (1990). They used
linear free energy relationships (LFER) between the anions and their acidity constants (pKa's) to
extrapolate some values for metals whose intrinsic constants were not derivable from experimental data.
The use of LFER is predicated on the assumption that the relative site affinity among various anions reflects
their relative affinities for protonation in solution. Values estimated from LFER (as opposed to those
derived from experimental results) are indicated in Table 2.2 with an asterisk. The number of surface
species needed to represent sorption on the HFO surface depends on the number of deprotonation
reactions the anion undergoes within the range of relevant pH. Phosphate undergoes three deprotonations,
so four surface reactions are required. An entry box crossed out in the table means that the surface
constant is not applicable for that anion. A dash entry means that the constant is relevant, but its value
could not be determined.

6


-------
Table 2.2 Intrinsic Sorption Constants for some Anions on HFO.

Metal

log A'/""'

log K""r

log Kj",r

log Kj"tr

H3As030

5.41

x

x

x

H3B03°

0.62







P043"

31.29

25.39

17.72

—

As043"

29.31

23.51

—

10.58

V043"

—

—

—

13.57

S042"



7.78

0.79



Se042"



7.73

0.80



Se032"



12.69

5.17



Cr042"



10.85

3.9*



Mo042"



9.5*

2.4*



SbO(OH)4"



8.4*

1.3*



CN"



13.0*

5.7*



The data in Table 5.2 represent a reasonably complete compilation for modeling the HWIR anions. The
presence of only one constant for vanadate is the most detrimental omission. Dzombak and Morel (1990)
note that this one constant is sufficient to describe the existing experimental data for vanadate sorption on
HFO, but that this data corresponds to high pH and low sorption density only. Constants for other
reactions are likely to be needed to describe vanadate sorption across the entire pH range of interest in
HWIR. However, omission of the other constants will result in less sorption in the model, implying an
environmentally conservative outcome. A LFER could, in principle, be used to estimate the missing
constants, but the database of trivalent anions whose sorption constants are known is too small to develop
a statistically sound relationship.

3.0 REVISED DATABASE FOR DIFFUSE-LAYER SORPTION ON HFO

The HFO diffuse-layer database is stored in the file FEO-DLM.DBS on the MINTEQA2 distribution
diskettes. This file is not a part of the general thermodynamic database and is not directly used by
MDS1TEQA2. Rather, the user invokes an option in PRODEFA2 to append the reactions in this file to the
MINTEQA2 input file to be treated as added reactions for a particular model run. A revised FEO-

7


-------
DLM.DBS file containing reactions that may be useful in the HWIR modeling is reproduced in Appendix
A. This database has the reactions listed in Tables 2.1 and 2.2 with their associated constants and

electrostatic terms. Reactions for protonation and deprotonation, as given in Dzombak and Morel (1990)
are necessary to describe the complete set of surface species and to account for competition for binding
sites.

4.0 REFERENCES

Allison, J.D., D.S. Brown, and K.J. Novo-Gradac (1991) MINTEQA2/PRODEFA2, A Geochemical
Assessment Model for Environmental Systems: Version 3.0 User's Manual. United States
Environmental Protection Agency, Office of Research and Development, Washington, DC,
EPA/600/3-91/021, 106p.

Dzombak, D.A., 1986. Toward aUniform Model for the Sorption of Inorganic Ions on Hydrous Oxides,
Ph.D. Dissertation, Massachusetts Institute of Technology, Cambridge, MA.

Dzombak, D.A. andF.M.M. Morel, 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John
Wiley and Sons, New York.

US EPA (1996) EPA's composite model for leachate migration with transformation products
(EPACMTP): Background document for metals. United States Environmental Protection Agency
unpublished report, Office of Solid Waste, Washington, DC, 77p.

World Health Organization, 1996. Thallium: Environmental Health Criteria 182. World Health
Organization, Geneva.

8


-------
APPENDIX A

LISTING OF THE HFO DATABASE
FOR MINTEQA2

9


-------
The following reactions presented for use in MINTEQA2. The HFO sorption reactions are as described
by Dzombak and Morel (1990). In this compilation, the high affinity site is represented by MINTEQA2
component 811 and the low affinity site by component 812. Although there is no site affinity distinction for
anions or for protons, separate reactions using components 811 and 812 are present (but using the same
log K value for both sites) to correctly represent competition among all components.

2 78
8113302 =
0.00 3
0.000
0 0.000
8113301 =
0.00 3
0.000
0 0.000
8123302 =
0.00 3
0.000
0 0.000
8123301 =
0.00 3
0.000
0 0.000
8111000 =
0.00 3
0.000
0 0.000
8121000 =
0.00 4
0.000
0 0.000
8111500 =
0.00 3
0.000
0 0.000
8121500 =
0.00 4
0.000
0 0.000
8124600 =
0.00 4
0.000
0 0.000
8118700 =
0.00 3
0.000
0 0.000
8128700 =
0.00 3
0.000
0 0.000
8110200 =

FeOH2+
1.000 811
0 0.000
0 0.000
FeO-
1.000 811
0 0.000
0 0.000
FeOH2+
1.000 812
0 0.000
0 0.000
FeO-
1.000 812
0 0.000
0 0.000
FeOHBa+2
1.000 811
0 0.000
0 0.000
FeOBa+
1.000 812
0 0.000
0 0.000
FeOHCa+2
1.000 811
0 0.000
0 0.000
FeOCa+
1.000 812
0 0.000
0 0.000
FeOMg+
1.000 812
0 0.000
0 0.000
FeOTl
1.000 811
0 0.000
0 0.000
FeOTl
1.000 812
0 0.000
0 0.000
FeOAg

0.0000
1.000 330
0 0.000
0 0.000
0.0000
-1.000 330
0 0.000
0 0.000
0.0000
1.000 330
0 0.000
0 0.000
0.0000
-1.000 330
0 0.000
0 0.000
0.0000
1.000 100
0 0.000
0 0.000
0.0000
1.000 100
0 0.000
0 0.000
0.0000
1.000 150
0 0.000
0 0.000
0.0000
1.000 150
0 0.000
0 0.000
0.0000
1.000 460
0 0.000
0 0.000
0.0000
1.000 870
0 0.000
0 0.000
0.0000
1.000 870
0 0.000
0 0.000
0.0000

7.2900 0.
1.000 813
0 0.000
0

-8.9300 0.

-1.000 813
0 0.000
0

7.2900 0.
1.000 813
0 0.000
0

-8.9300 0.

-1.000 813
0 0.000
0

5.4600 0.
2.000 813
0 0.000
0

-7.2000 0.

-1.000 330
0 0.000
0

4.9700 0.
2.000 813
0 0.000
0

-5.8500 0.

-1.000 330
0 0.000
0

-4.6000 0.

-1.000 330
0 0.000
0

-3.5000 0.

-1.000 330
0 0.000
0

-6.9000 0.

-1.000 330
0 0.000
0

-1.7200 0.

000 0.000	1.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	2.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	2.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000

0.000 0.00 0.00 0.00

0.0000

10


-------
0.00 3
0.000
0 0.000

1.000 811
0 0.000
0 0.000

1.000 020
0 0.000
0 0.000

-1.000 330
0 0.000
0

0.000 0
0 0.000

0.000 0
0 0.000

0.000
0

8120200 =
0.00 3
0.000
0 0.000
8115400 =
0.00 4
0.000
0 0.000
8125400 =
0.00 4
0.000
0 0.000
8112000 =
0.00 4
0.000
0 0.000
8122000 =
0.00 4
0.000
0 0.000
8111600 =
0.00 4
0.000
0 0.000
8121600 =
0.00 4
0.000
0 0.000
8119500 =
0.00 4
0.000
0 0.000
8129500 =
0.00 4
0.000
0 0.000
8112310 =
0.00 4
0.000
0 0.000
8123100 =
0.00 4
0.000
0 0.000
8116000 =
0.00 4
0.000
0 0.000
8126000 =

FeOAg
1.000
0 0
0

FeONi+
1.000
0 0
0

FeONi+
1.000
0 0
0

FeOCo+
1.000
0 0
0

FeOCo+
1.000
0 0
0

FeOCd+
1.000
0 0
0

FeOCd+
1.000
0 0
0

FeOZn+
1.000
0 0
0

FeOZn+
1.000
0 0
0

FeOCu+
1.000
0 0
0

FeOCu+
1.000
0 0
0

FeOPb+
1.000
0 0
0

FeOPb+

812
.000
0. 000

811
.000
0. 000

812
.000
0. 000

811
.000
0. 000

812
.000
0. 000

811
.000
0. 000

812
.000
0. 000

811
.000
0. 000

812
.000
0. 000

811
.000
0. 000

812
.000
0. 000

811
.000
0. 000

0.0000
1.000 020
0 0.000
0 0.000
0.0000
1.000 540
0 0.000
0 0.000
0.0000
1.000 540
0 0.000
0 0.000
0.0000
1.000 200
0 0.000
0 0.000
0.0000
1.000 200
0 0.000
0 0.000
0.0000
1.000 160
0 0.000
0 0.000
0.0000
1.000 160
0 0.000
0 0.000
0.0000
1.000 950
0 0.000
0 0.000
0.0000
1.000 950
0 0.000
0 0.000
0.0000
1.000 231
0 0.000
0 0.000
0.0000
1.000 231
0 0.000
0 0.000
0.0000
1.000 600
0 0.000
0 0.000
0.0000

-5.3000 0
-1.000 330
0 0.000
0

0.3700 0
-1.000 330
0 0.000
0

-2.5000 0
-1.000 330
0 0.000
0

-0.4600 0
-1.000 330
0 0.000
0

-3.0100 0
-1.000 330
0 0.000
0

0.4700 0
-1.000 330
0 0.000
0

-2.9000 0
-1.000 330
0 0.000
0

0.9900 0
-1.000 330
0 0.000
0

-1.9900 0
-1.000 330
0 0.000
0

2.8900 0
-1.000 330
0 0.000
0

0.6000 0
-1.000 330
0 0.000
0

4.6500 0
-1.000 330
0 0.000
0

0.3000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

. 000

0.000 1.00 0.00 0.00

0.0000

11


-------
0.00 4
0.000
0 0.000
8111100 =
0.00 4
0.000
0 0.000
8121100 =
0.00 4
0.000
0 0.000
8113610 =
0.00 5
0.000
0 0.000
8123610 =
0.00 5
0.000
0 0.000
8117900 =
0.00 5
0.000
0 0.000
8127900 =
0.00 5
0.000
0 0.000
8112110 =
0.00 4
0.000
0 0.000
8110600 =
0.00 3
0.000
0 0.000
8120600 =
0.00 3
0.000
0 0.000
8110900 =
0.00 3
0.000
0 0.000
8120900 =
0.00 3
0.000
0 0.000
8115800 =
0.00 4
0.000
0 0.000
8125800 =
0.00 4
0.000
0 0.000

1.000 812
0 0.000
0 0.000
FeOBe+
1.000 811
0 0.000
0 0.000
FeOBe+
1.000 812
0 0.000
0 0.000
FeOHg+
1.000 811
0 0.000
0 0.000
FeOHg+
1.000 812
0 0.000
0 0.000
FeOSn+
1.000 811
0 0.000
0 0.000
FeOSn+
1.000 812
0 0.000
0 0.000
FeOCrOH+
1.000 811
0 0.000
0 0.000
FeH2As03
1.000 811
0 0.000
0 0.000
FeH2As03
1.000 812
0 0.000
0 0.000
FeH2B03
1.000 811
0 0.000
0 0.000
FeH2B03
1.000 812
0 0.000
0 0.000
FeH2P04
1.000 811
0 0.000
0 0.000
FeH2P04
1.000 812
0 0.000
0 0.000

1.000 600
0 0.000
0 0.000
0.0000
1.000 110
0 0.000
0 0.000
0.0000
1.000 110
0 0.000
0 0.000
0.0000
1.000 361
0 0.000
0 0.000
0.0000
1.000 361
0 0.000
0 0.000
0.0000
1.000 790
0 0.000
0 0.000
0.0000
1.000 790
0 0.000
0 0.000
0.0000
1.000 211
0 0.000
0 0.000
0.0000
1.000 60
0 0.000
0 0.000
0.0000
1.000 60
0 0.000
0 0.000
0.0000
1.000 90
0 0.000
0 0.000
0.0000
1.000 90
0 0.000
0 0.000
0.0000
1.000 580
0 0.000
0 0.000
0.0000
1.000 580
0 0.000
0 0.000

-1.000 330
0 0.000
0

5.7000 0.

-1.000 330
0 0.000
0

3.3000 0.

-1.000 330
0 0.000
0

13.9500 0.

-2.000 2
0 0.000
0

12.6400 0.

-2.000 2
0 0.000
0

15.1000 0.

-2.000 2
0 0.000
0

13.0000 0.

-2.000 2
0 0.000
0

11.6300 0.

-1.000 002
0 0.000
0

5.4100 0.

-1.000 2
0 0.000
0

5.4100 0.

-1.000 2
0 0.000
0

0.6200 0.

-1.000 2
0 0.000
0

0.6200 0.

-1.000 2
0 0.000
0

31.2900 0.
3.000 330
0 0.000
0

31.2900 0.
3.000 330
0 0.000
0

1.000 813
0 0.000

0.000 0
0 0.000

0.000
0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 330	1.000 813 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 330	1.000 813 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 330	1.000 813 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 330	1.000 813 0.000 0

0 0.000	0 0.000 0

000 0.000	1.00 0.00 0.00 0.0000

1.000 813	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

0.000 0	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

-1.000 2	0.000 0 0.000 0

0 0.000	0 0.000 0

000 0.000	0.00 0.00 0.00 0.0000

-1.000 2	0.000 0 0.000 0

0 0.000	0 0.000 0

12


-------
8115801	=
0.00 5

0.000
0 0.000

8125801	=
0.00 5

0.000
0 0.000

8115802	=
0.00 5

0.000
0 0.000

8125802	=
0.00 5

0.000
0 0.000

8110610	=
0.00 3

0.000
0 0.000

8120610	=
0.00 3

0.000
0 0.000

8110611	=
0.00 5

0.000
0 0.000

8120611	=
0.00 5

0.000
0 0.000
8110613 =
0.00 4

0.000
0 0.000
8120613 =
0.00 4

0.000
0 0.000
8119031 =
0.00 5

0.000
0 0.000
8129031 =
0.00 5

0.000
0 0.000
8117320 =
0.00 5

0.000
0 0.000
8127320 =
0.00 5

0.000

FeHP04-
1.000 811
0 0.000
0 0.000
FeHP04-
1.000 812
0 0.000
0 0.000
FeP04-2
1.000 811
0 0.000
0 0.000
FeP04-2
1.000 812
0 0.000
0 0.000
FeH2As04
1.000 811
0 0.000
0 0.000
FeH2As04
1.000 812
0 0.000
0 0.000
FeHAs04-
1.000 811
0 0.000
0 0.000
FeHAs04-
1.000 812
0 0.000
0 0.000
Fe0HAs04-3
1.000 811
0 0.000
0 0.000
Fe0HAs04-3
1.000 812
0 0.000
0 0.000
Fe0HV04-3
1.000 811
0 0.000
0 0.000
Fe0HV04-3
1.000 812
0 0.000
0 0.000
FeS04-
1.000 811
0 0.000
0 0.000
FeS04-
1.000 812
0 0.000

0.0000
1.000 580
0 0.000
0 0.000
0.0000
1.000 580
0 0.000
0 0.000
0.0000
1.000 580
0 0.000
0 0.000
0.0000
1.000 580
0 0.000
0 0.000
0.0000
1.000 61
0 0.000
0 0.000
0.0000
1.000 61
0 0.000
0 0.000
0.0000
1.000 61
0 0.000
0 0.000
0.0000
1.000 61
0 0.000
0 0.000
0.0000 -
1.000 61
0 0.000
0 0.000
0.0000 -
1.000 61
0 0.000
0 0.000
0.0000 -
1.000 903
0 0.000
0 0.000
0.0000 -
1.000 903
0 0.000
0 0.000
0.0000
1.000 732
0 0.000
0 0.000
0.0000
1.000 732
0 0.000

25.3900 0.
2.000 330
0 0.000
0

25.3900 0.
2.000 330
0 0.000
0

17.7200 0.
1.000 330
0 0.000
0

17.7200 0.
1.000 330
0 0.000
0

8.6100 0.

-1.000 2
0 0.000
0

8.6100 0.

-1.000 2
0 0.000
0

2.8100 0.

-1.000 2
0 0.000
0

2.8100 0.

-1.000 2
0 0.000
0

10.1200 0.

-3.000 330
0 0.000
0

10.1200 0.

-3.000 330
0 0.000
0

16.6300 0.
2.000 002
0 0.000
0

16.6300 0.
2.000 002
0 0.000
0

7.7800 0.
1.000 330
0 0.000
0

7.7800 0.
1.000 330
0 0.000

000 0.000-1.00 0.00 0.00 0.0000
-1.000 2 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 2 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
-1.000 2 -2.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
-1.000 2 -2.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 330 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 330 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-3.00 0.00 0.00 0.0000
-3.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-3.00 0.00 0.00 0.0000
-3.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-3.00 0.00 0.00 0.0000
-4.000 330 -3.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-3.00 0.00 0.00 0.0000
-4.000 330 -3.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

13


-------
0 0.000
8117321 =
0.00 3

0.000
0 0.000
8127321 =
0.00 3

0.000
0 0.000

8117610	=
0.00 4

0.000
0 0.000

8127610	=
0.00 4

0.000
0 0.000

8117611	=
0.00 4

0.000
0 0.000

8127611	=
0.00 4

0.000
0 0.000

8117620	=
0.00 5

0.000
0 0.000

8127620	=
0.00 5

0.000
0 0.000

8117621	=
0.00 3

0.000
0 0.000

8127621	=
0.00 3

0.000
0 0.000

8112120	=
0.00 5

0.000
0 0.000

8122120	=
0.00 5

0.000
0 0.000

8112121	=
0.00 3

0.000
0 0.000

8122121	=
0.00 3

0 0.000
Fe0HS04-2
1.000 811
0 0.000
0 0.000
Fe0HS04-2
1.000 812
0 0.000
0 0.000
FeSe03-
1.000 811
0 0.000
0 0.000
FeSe03-
1.000 812
0 0.000
0 0.000
Fe0HSe03-2
1.000 811
0 0.000
0 0.000
Fe0HSe03-2
1.000 812
0 0.000
0 0.000
FeSe04-
1.000 811
0 0.000
0 0.000
FeSe04-
1.000 812
0 0.000
0 0.000
Fe0HSe04-2
1.000 811
0 0.000
0 0.000
Fe0HSe04-2
1.000 812
0 0.000
0 0.000
FeCr04-
1.000 811
0 0.000
0 0.000
FeCr04-
1.000 812
0 0.000
0 0.000
Fe0HCr04-2
1.000 811
0 0.000
0 0.000
Fe0HCr04-2
1.000 812

0 0.000
0.0000
1.000 732
0 0.000
0 0.000
0.0000
1.000 732
0 0.000
0 0.000
0.0000
1.000 761
0 0.000
0 0.000
0.0000
1.000 761
0 0.000
0 0.000
0.0000
1.000 761
0 0.000
0 0.000
0.0000
1.000 761
0 0.000
0 0.000
0.0000
1.000 762
0 0.000
0 0.000
0.0000
1.000 762
0 0.000
0 0.000
0.0000
1.000 762
0 0.000
0 0.000
0.0000
1.000 762
0 0.000
0 0.000
0.0000
1.000 212
0 0.000
0 0.000
0.0000
1.000 212
0 0.000
0 0.000
0.0000
1.000 212
0 0.000
0 0.000
0.0000
1.000 212

0

0.7900 0.

-2.000 813
0 0.000
0

0.7900 0.

-2.000 813
0 0.000
0

4.2900 0.

-1.000 2
0 0.000
0

4.2900 0.

-1.000 2
0 0.000
0

-3.2300 0.

-1.000 330
0 0.000
0

-3.2300 0.

-1.000 330
0 0.000
0

7.7300 0.
1.000 330
0 0.000
0

7.7300 0.
1.000 330
0 0.000
0

0.8000 0.

-2.000 813
0 0.000
0

0.8000 0.

-2.000 813
0 0.000
0

10.8500 0.
1.000 330
0 0.000
0

10.8500 0.
1.000 330
0 0.000
0

3.9000 0.

-2.000 813
0 0.000
0

3.9000 0.

-2.000 813

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
-2.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
-2.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0

14


-------
0.000
0 0.000

8114800	=
0.00 5

0.000
0 0.000

8124800	=
0.00 5

0.000
0 0.000

8114801	=
0.00 3

0.000
0 0.000

8124801	=
0.00 3

0.000
0 0.000

8117410	=
0.00 4

0.000
0 0.000

8127410	=
0.00 4

0.000
0 0.000

8117411	=
0.00 4

0.000
0 0.000

8127411	=
0.00 4

0.000
0 0.000

8111430	=
0.00 4

0.000
0 0.000

8121430	=
0.00 4

0.000
0 0.000

8111431	=
0.00 3

0.000
0 0.000

8121431	=
0.00 3

0.000
0 0.000

0 0.000
0 0.000
FeMo04-
1.000 811
0 0.000
0 0.000
FeMo04-
1.000 812
0 0.000
0 0.000
Fe0HMo04-2
1.000 811
0 0.000
0 0.000
Fe0HMo04-2
1.000 812
0 0.000
0 0.000
FeSbO(OH)4
1.000 811
0 0.000
0 0.000
FeSbO(OH)4
1.000 812
0 0.000
0 0.000
FeOHSbO(OH4
1.000 811
0 0.000
0 0.000
FeOHSbO(OH4
1.000 812
0 0.000
0 0.000
FeCN
1.000 811
0 0.000
0 0.000
FeCN
1.000 812
0 0.000
0 0.000
FeOHCN-
1.000 811
0 0.000
0 0.000
FeOHCN-
1.000 812
0 0.000
0 0.000

0

0.000
0 0.000
0.0000
1.000 480
0 0.000
0 0.000
0.0000
1.000 480
0 0.000
0 0.000
0.0000
1.000 480
0 0.000
0 0.000
0.0000
1.000 480
0 0.000
0 0.000
0.0000
1.000 741
0 0.000
0 0.000
0.0000
1.000 741
0 0.000
0 0.000
0.0000
1.000 741
0 0.000
0 0.000
0.0000
1.000 741
0 0.000
0 0.000
0.0000
1.000 143
0 0.000
0 0.000
0.0000
1.000 143
0 0.000
0 0.000
0.0000
1.000 143
0 0.000
0 0.000
0.0000
1.000 143
0 0.000
0 0.000

0 0.000
0

9.5000 0.
1.000 330
0 0.000
0

9.5000 0.
1.000 330
0 0.000
0

2.4000 0.

-2.000 813
0 0.000
0

2.4000 0.

-2.000 813
0 0.000
0

8.4000 0.
1.000 330
0 0.000
0

8.4000 0.
1.000 330
0 0.000
0

1.3000 0.

-1.000 002
0 0.000
0

1.3000 0.

-1.000 002
0 0.000
0

13.0000 0.
1.000 330
0 0.000
0

13.0000 0.
1.000 330
0 0.000
0

5.7000 0.

-1.000 813
0 0.000
0

5.7000 0.

-1.000 813
0 0.000
0

0

0.000

0

0.000

0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 002 -1.000 813 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-2.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
-2.000 002 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
-2.000 002 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
-1.000 813 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
-1.000 002 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000 0.00 0.00 0.00 0.0000
-1.000 002 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

000 0.000-1.00 0.00 0.00 0.0000
0.000 0 0.000 0 0.000 0
0 0.000 0 0.000 0

15


-------