DRAFT

2000 UPDATE OF AMBIENT WATER QUALITY CRITERIA FOR

CADMIUM

Prepared by:

Great Lakes Environmental Center
Traverse City, Michigan 49686

Prepared for:

U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, DC

EPA Contract No. 68-C-98-134
Work Assignment No. 1-11


-------
DRAFT

2000 UPDATE OF AMBIENT WATER QUALITY CRITERIA FOR

CADMIUM

(CAS Registry Number 7440-43-9)

June 2000

U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, DC


-------
NOTICES

This document has been reviewed by the Health and Ecological Effects Criteria
Division, Office of Science and Technology, U.S. Environmental Protection
Agency, and approved for publication.

Mention of trade names or commercial products does not constitute endorsement

or recommendation for use.

This document is available to the public through the National Technical
Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.

11


-------
FOREWORD

iii


-------
ACKNOWLEDGMENTS

John G. Eaton	John H. Gentile

(freshwater author)	(saltwater author)

Environmental Research Laboratory	Environmental Research Laboratory

Duluth, Minnesota	Narragansett, Rhode Island

Charles E. Stephan	David J. Hansen

(document coordinator)	(saltwater coordinator)

Environmental Research Laboratory	Environmental Research Laboratory

Duluth, Minnesota	Narragansett, Rhode Island

Statistical Support:John W. Rogers
Clerical Support:Terry L. Highland

Document Update Effort: June, 2000

Gregory J. Smith
(freshwater contributor)

Great Lakes Environmental Center
Columbus, Ohio

Cindy Roberts
(document coordinator)

USEPA

Health and Ecological Effects
Criteria Division
Washington, D.C.

IV


-------
CONTENTS

Page

Notices 	 ii

Foreword 	 iii

Acknowledgments 	 iv

Contents 	 v

Tables 	 vi

Figures 	 vi

Introduction 	 1

Acute Toxicity to Aquatic Animals 	 2

Chronic Toxicity to Aquatic Animals 	 10

Toxicity to Aquatic Plants 	 17

Bioaccumulation 	 18

Other Data 	 19

Unused Data 	 22

Summary 	 2 9

National Criteria 	 30

References 	 138

V


-------
TABLES

la. Acute Toxicity of Cadmium to Aquatic Animals 		38

lb. Results of Covariance Analysis of Freshwater Acute Toxicity

Versus Hardness 		65

2a. Chronic Toxicity of Cadmium to Aquatic Animals 		66

2b. Results of Covariance Analysis of Freshwater Chronic Toxicity

Versus Hardness 		70

2c. Acute-Chronic Ratio 		71

3a. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic

Ratios 		72

3b. Ranked Freshwater Genus Mean Chronic Values 		83

4.	Toxicity of Cadmium to Aquatic Plants 		85

5.	Bioaccumulation of Cadmium by Aquatic Organisms 		91

6.	Other Data on Effects of Cadmium on Aquatic Organisms 		95

FIGURES

1.	Comparison of All Table 1 Freshwater Acute Toxicity Test EC50s and

LC50s with the Hardness Slope Derived CMC	33

2.	Ranked Summary of Cadmium GMAVs (Freshwater) 		34

3.	Ranked Summary of Cadmium GMAVs (Saltwater) 		35

4.	Comparison of All Table 2 Freshwater Chronic Values with the

Hardness Slope Derived CCC 		36

5.	Chronic Toxicity of Cadmium to Aquatic Animals 		37

vi


-------
Introduction1

Cadmium is a relatively rare element that is not essential for any
biological process in plants or animals. It occurs mainly as a component of
minerals in the earth's crust at an average concentration of 0.18 ppm (Babich
and Stotzky 1978). Cadmium levels in soils usually range from approximately
0.01 to 1.8 ppm (Lagerwerff and Specht 1970). In natural fresh waters,
cadmium sometimes occurs at concentrations of less than 0.01 /ig/L, but in
environments impacted by man, concentrations can be several micrograms per
liter or greater. Cadmium can enter the environment from various
anthropogenic sources, such as by-products from zinc refining, coal
combustion, mine wastes, electroplating processes, iron and steel production,
fertilizers and pesticides (Hutton 1983).

The impact of cadmium on aquatic organisms depends on a variety of
possible chemical forms of cadmium (Callahan et al. 1979), which might have
different toxicities and bioconcentration factors. In most well oxygenated
fresh waters that are low in total organic carbon, free divalent cadmium will
be the predominant form. Precipitation by carbonate or hydroxide and
formation of soluble complexes by chloride, sulfate, carbonate, and hydroxide
should usually be of little importance. In salt waters with salinities from
about 10 to 35 g/kg, cadmium chloride complexes predominate. In both fresh
and salt waters, particulate matter and dissolved organic material may bind a
substantial portion of the cadmium.

Because of the variety of forms of cadmium (Callahan et al. 1979) and
lack of definitive information about their relative toxicities, no available
analytical measurement is known to be ideal for expressing aquatic life
criteria for cadmium. Previous aquatic life criteria for cadmium (U.S. EPA
1980) were expressed in terms of total recoverable cadmium (U.S. EPA 1983a),
but this measurement is probably too rigorous in some situations. More
recently, U.S. EPA (1985) expressed cadmium criteria as acid-soluble cadmium
(operationally defined as the cadmium that passes through a 0.45 /im membrane
filter after the sample is acidified to pH = 1.5 to 2.0 with nitric acid).

1 An understanding of the "Guidelines for Deriving Numerical National
Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses"
(Stephan et al. 1985), hereafter referred to as the Guidelines, is necessary
in order to understand the following text, tables, and calculations.

1


-------
The criteria presented herein supersede previous aquatic life water
quality criteria for cadmium (U.S. EPA 1976, 1980, 1985, 1995, 1999a) because
these new criteria were derived based on the most recent literature. Whenever
adequately justified, a national criterion may be replaced by a site-specific
criterion (U.S. EPA 1994a), which may include not only site-specific criterion
concentrations (U.S. EPA 1994b), but also site-specific durations of averaging
periods and site-specific frequencies of allowed exceedences (U.S. EPA 1991).
All concentrations are expressed as cadmium, not as the chemical tested. The
latest literature search for information for this document was conducted in
June, 1999; some newer information was also used.

Acute Toxicity to Aquatic Animals

Acceptable data on the acute effects of cadmium in freshwater are
available for 43 species of invertebrates, 27 species of fish, one salamander
species, and one frog species (Table 1). Although many factors might affect
the results of tests of the toxicity of cadmium to aquatic organisms (Sprague
1985), water quality criteria can quantitatively take into account only
factors for which enough data are available to show that the factor similarly
affects the results of tests with a variety of species. Hardness is often
thought of as having a major effect on the toxicity of cadmium, although the
observed effect may be due to one or more of a number of usually interrelated
ions, such as hydroxide, carbonate, calcium, and magnesium. Hardness is used
here as a surrogate for the ions which affect the results of toxicity tests on
cadmium.

Acute tests were conducted at three different levels of water hardness
with Daphnia magna (Chapman et al. Manuscript), demonstrating that daphnids
were at least five times more sensitive to cadmium in soft than hard water
(Table 1). Data in Table 1 also indicate that cadmium was more toxic to the
tubificid worm Limnodrilus hoffmeisteri, Ceriodaphnia reticulata, Daphnia
pulex, chinook salmon, goldfish, fathead minnow, green sunfish, striped bass
and bluegill in soft than in hard water. Other species tested at different
hardness levels (e.g., rainbow trout) did not show the same consistent water
hardness to acute toxicity relationship as discussed above, possibly due to
differences in the various test conditions. Carroll et al. (1979) found that
calcium, but not magnesium, reduced the acute toxicity of cadmium.

Other water quality characteristics could potentially influence the

2


-------
toxicity of cadmium to aquatic species. Giesy et al. (1977) found that
dissolved organics substantially reduced the toxicity of cadmium to daphnids,
but had little effect on its toxicity to fish. No consistent relationship
between toxicity and organic particle size was observed. Development of the
"biotic ligand model" (BLM - formerly the "gill model") in recent years has
attempted to better account for the bioavailability of metals to aquatic life.
The BLM, which quantifies the capacity of metals to bind to the gills of
aquatic organisms, can be used to calculate the bioavailable portion of
dissolved metals in the water column based on site-specific water quality
parameters such as alkalinity, pH and dissolved organic carbon (U.S. EPA
1999b). Future development of the BLM for cadmium will help better quantify
the bioavailable fraction of cadmium.

A tendency for increasing resistance to toxicity with increasing size or
age has been reported (Table 1) in the snails, Amnicola sp. (Rehwoldt et al.
1973) and Physa gyrina (Wier and Walter 1976), the coho salmon (Chapman 1975),
and the common carp (Suresh et al. (1993). No such effect was observed with
increasing age (Table 1) in the cladoceran, Daphnia magna (Stuhlbacher et al.
1993), the rainbow trout (Chapman 1975, 1978), or in the striped bass (Hughes
1973; Palawski et al. 1985). Data are unavailable for a sufficient number of
species and life stages to allow general adjustment of test results or
criteria on the basis of size or life stage. Where relationships were
apparent between life-stage and sensitivity, only values for the most
sensitive life-stage were considered.

Currently, the primary quantitative correlation used to modify metal
toxicity estimates is water hardness (viz. the USEPA 1984 water quality
criteria for cadmium). Hardness (as calcium or magnesium ions) almost
certainly has some direct effect on cadmium toxicity (e.g. by influencing
membrane integrity), but it also serves as a general surrogate for pH,
alkalinity, and ionic strength, because waters of higher hardness usually have
higher pH, alkalinity, and ionic strength.

Although past water quality criteria for cadmium (and other metals) have
been established upon the loosely defined term of "acid soluble metals," U.S.
EPA made the decision to allow the expression of metal criteria on the basis
of dissolved metal (U.S. EPA 1994), operationally defined as that metal that
passes through a 0.45 micron filter. Because most of the data in existing
databases are from tests that were either nominal concentrations, or provided

3


-------
only total cadmium measurements, some procedure was required to estimate their
dissolved equivalents. U.S. EPA evaluated the data on dissolved-total
relationships from existing data, and then had a number of tests conducted
under conditions (static, flow-through, fed, and unfed) that typified standard
acute and chronic toxicity tests from which criteria are derived. These
studies were used to derive conversion factors (CFs) (Stephan 1995; Lussier et
al. 1995; Univ. of Wisconsin-Superior 1995). For certain metals like cadmium,
these CFs are hardness dependent.

Based upon the results of these studies, acute freshwater total cadmium
concentrations were converted to dissolved concentrations using the factor of
0.97 at a total hardness level of 50 mg/L as CaC03, 0.94 at a total hardness
level of 100 mg/L as CaC03j and 0.92 at a total hardness level of 200 mg/L as
CaC03_ Acute saltwater total cadmium values were converted to dissolved using
the factor of 0.994. For the final criterion values, conversion from total to
dissolved was used because hardness relationships were established based upon
total cadmium concentrations as this minimized the number of conversions
required, and because of the uncertainty of the conversion factor in tests
reporting acute toxicity at higher cadmium concentrations. In cases where
only dissolved cadmium was reported in freshwater, conversion to total used
the same appropriate factor.

To account for the apparent relationship of cadmium acute toxicity to
hardness, an analysis of covariance (Dixon and Brown 1979; Neter and Wasserman
1974) as noted in the guidelines (Stephan 1985) was performed using the
Statistical Analysis System (SAS Inc., Cary, NC) software program to calculate
the pooled slope for hardness using the natural logarithm of the acute value
as the dependent variable, species as the treatment or grouping variable, and
the natural logarithm of hardness as the covariate or independent variable.
The pooled slope is a regression slope from a pooled data set, where every
variable is adjusted relative to it's mean. The species are adjusted
separately, then pooled for a single conventional least squares regression
analysis. The slope of the regression line is the best estimate of the
all-species relationship between toxicity and hardness. With analysis of
covariance, different species will be weighted relative to the number of data
points they have. In this case, the fathead minnow has 29 data points out of
the total of 69, and the next most frequent species has just 6 data points.

This analysis of covariance model was fit to the data in Table 1 for the

4


-------
10 species for which definitive acute values are available over a range of
hardness such that the highest hardness is at least three times the lowest,
and the highest is also at least 100 mg/L higher than the lowest (other
species in Table 1 either did not meet these criteria or did not show any
hardness-toxicity trend due to differences in exposure methods, species age,
etc.). For D. magna, only acute toxicity tests that were initiated with less
than 24-hr old neonates were used to estimate the hardness slope. For the
striped bass, the data from Rehwoldt et al. (1972) were not used because the
data were too divergent. The slopes for all 10 species ranged from 0.1720 to
1.535, and the pooled slope for these 10 species was 0.9931 (see Table lb).
An F-test was used to test whether a model with separate species slopes for
each species gives significantly better fit to the data than the model with
parallel slopes. This test showed that the separate slopes model is not
significantly better, and therefore the slopes are not significantly different
than the overall pooled slope (P=0.66). The slopes and confidence intervals
associated with the 10 species indicated that D. magna (all available data)
had a very flat slope and a large confidence interval (and large standard
error). If only the D. magna data from Chapman et al. (Manuscript) were used,
the resultant D. magna slope was 1.1824, with smaller confidence intervals
than for the all D. magna slope. If this reduced data set is used (all
species but using only data from Chapman et al. (Manuscript) for D. magna),
the pooled slope for these species was 1.2049 (see Table lb). The test for
equality of the 10 slopes using the reduced data set (all species but only
Chapman D. magna data) produced P=0.99. It therefore is reasonable to assume
that the slopes for these 10 species are the same, and that the overall slope
is a reasonable estimate of the average relationship between hardness and
toxicity. Either p value indicated that it was reasonable to assume that the
slopes were the same, however, the second model was considered the better
model and was therefore selected. The pooled slope of 1.2049 is close to the
slope of 1.0 that is expected on the basis that cadmium, calcium, magnesium,
and carbonate all have a charge of two. A plot of the acute effect level
(EC50 or LC50) versus total hardness is provided in Figure 1.

The potential for a back-trans formation bias associated with the
hardness slope adjustment has been noted by Newman (1991). However, the bias
discussed by the author reviews bias for single species in least squares
regression, rather than ANCOVA used here, so it is not clear how biases may

5


-------
accumulate (or cancel) with combined species and a combined slope.

The pooled slope of 1.2049 was used to adjust the freshwater acute
values in Table 1 to hardness = 50 mg/L, except where it was not possible
because no hardness was reported. Species Mean Acute Values (SMAV) were
calculated as geometric means of the adjusted acute values. As stated in the
guidelines (Stephen 1985), flow-through measured study data are given
preference over non-flow-through data for a particular species. In certain
cases flow-through measured results were available, yet preference was given
to the sensitive life stage for certain species in calculating SMAVs. Only
data from Chapman (1975) were used for coho salmon and only data from Rehwoldt
et al. (1972) were used for the common carp to avoid using test results from
studies in which the life stage tested is known to be less sensitive, or in
which the life stage tested is unreported and the higher LC50s may be due
primarily to the use of less sensitive life stages. The available acute
values for U. imbecilis, striped bass and brook trout covered a wide range.
The data for Palawski et al. (1985) were used for striped bass because they
were considered better data than those given in U.S. EPA (1985), although the
data from Hughes (1973) support the newer data. Only some of the Keller
unpublished data were used to calculate the SMAV for U. imbecilis. The data
for brook trout were not used in the calculation of the Final Acute Value.
Drummond and Benoit (Manuscript) reported that stress greatly affected the
sensitivity of brook trout to cadmium.

The SMAV for freshwater invertebrates ranged from 12.00 vig/L total
cadmium for the mussel, Anodonta coupierana to 78,579 vig/L total cadmium for
the midge, Chironomus riparius. Of the fish species tested, the brown trout,
Salmo trutta, had the lowest SMAV of 1.656 vig/L total cadmium, and the
tilapia, Oreochromis mossambica, recorded the highest fish SMAV of 11,861 vig/L
total cadmium. As indicated by the data, both invertebrate and fish species
display a wide range of sensitivities to cadmium.

Fish species represent eight of the nine most sensitive species to
cadmium (Table 3). Salmonids (Salmo trutta, Oncorhynchus kisutch,

Oncorhynchus mykiss, and Oncorhynchus tshawytscha) are four of the five most
sensitive species listed in Table 1, and thus are more sensitive to cadmium
than any other freshwater animal species thus far tested (Chapman 1975, 1978,
1982; Cusimano et al. 1986; Davies et al. 1993; Finlayson and Verrue 1982;
Phipps and Holcombe 1985; Spehar and Carlson 1984a,b). The mussel, Anodonta

6


-------
couplerana, is the sixth most sensitive species to cadmium, and thus the most
sensitive invertebrate species tested thus far (Keller Unpublished).

Genus Mean Acute Values (GMAV) at a hardness of 50 mg/L were then
calculated (Table 3) as geometric means of the available freshwater Species
Mean Acute Values and ranked. Of the 59 genera for which acute values are
available, the most sensitive genus, Salmo, is over 47,451 times more
sensitive than the most resistant, Chironomus. The first through fourth most
sensitive genera (and a total n of 59 were considered) in the computation of
the final acute value. Because there are 59 GMAVs, the four lowest GMAVs were
selected as being closest to the fifth percentile of toxicity, even though the
second through the sixth values were also equally as close to the fifth
percentile. The sensitivity of these four most sensitive genera are within a
factor of 7.2, and except for the fourth genus (Anodonta), all are fish. Of
the ten most sensitive genera, seven are fish, one is a mussel, one is a
cladoceran, and one is a bryozoan (Figure 2; Table 3). Hardness-adjusted
acute values are available for more than one species in 10 genera, and the
range of SMAVs within each genus is less than a factor of 4.0 for eight of the
10 genera. The ninth genus, Ptychocheilus, has two SMAVs that differ by a
factor of 146, possibly due to differences in the test conditions between
species. The tenth genus, Morone, has SMAVs that differ by a factor of 2,954,
but only the most sensitive species was used because the two species values
are too divergent to use for the genus value.

The freshwater Final Acute Value (FAV) for total cadmium at a hardness
of 50 mg/L was calculated to be 5.995 fig/L total cadmium from the Genus Mean
Acute Values in Table 3 using the procedure described in the Guidelines. The
Species Mean Acute Values for four salmonids and the striped bass are lower,
but the acute value for the brown trout and striped bass are from static
tests, whereas flow-through measured tests have been conducted with the
remaining three salmonid species. The freshwater Final Acute Value for total
cadmium at a hardness of 50 mg/L was lowered to 4.296 fig/L to protect the
important rainbow trout (Table 3). This value is above the SMAV of 1.656 vig/L
for the brown trout and 2.535 for striped bass, but below all other SMAVs
listed in Table 3 (Figure 2). The resultant freshwater Criterion Maximum

Concentration (CMC) at a hardness of 50 mg/L for total cadmium (in fig/L) =

_(1.205[In(hardness)]-3.949) _ , ,	i	i	j_ j_ n	i	n

e	.If the CMC based on total cadmium values is

converted to dissolved cadmium using the 0.97 factor at a hardness of 50 mg/L

7


-------
determined by EPA (Stephan 1995; Lussier et al. 1995; Univ. of Wisconsin-
Superior 1995), the freshwater CMC for dissolved cadmium (in /ig/L) = 0.97

r_(1.205[In(hardness)]-3.949),	,	, „ ..	,	-r	, , ¦	.

Le	]. Thus, the 2.1 /ig/L CMC for dissolved cadmium at

a hardness of 50 mg/L is below all of the SMAVs but the brown trout presented
in Table 3 (Figure 2).

Tests of the acute toxicity of cadmium to saltwater organisms have been
conducted with 50 species of invertebrates and 11 species of fish (Table 1).
The SMAVs for saltwater invertebrate species range from 41.29 /ig/L for a mysid
to 135, 000 /ig/L for an oligochaete worm (Tables 1 and 3) . The acute values
for saltwater polychaetes range from 200 /ig/L for Capitella capitata to 14,100
/ig/L for Neanthes arenaceodentata (Reish and LeMay 1991), but the larvae of C.
capitata are 38 times more sensitive than the adults. Saltwater molluscs have
Species Mean Acute Values from 227.9 fig/L for the Pacific oyster to 19,170
,wg/lj for the mud snail.

Frank and Robertson (1979) reported that the acute toxicity to juvenile
blue crabs was related to salinity. The 96-hr LC50s were 320, 4,700, and
11, 600 ,wg/lj at salinities of 1, 15, and 35 g/kg, respectively. The LC50 at
the very low salinity is in Table 6 and was not used in deriving criteria.
Studies with Americamysis bahia (formerly Mysidopsis bahia) by Gentile et al.
(1982) and Nimmo et al. (1977a) also support a relationship between salinity
and the acute toxicity of cadmium. O'Hara (1973a) investigated the effect of
temperature and salinity on the toxicity of cadmium to the fiddler crab. The
LC50s at 20"C were 32,300, 46,600, and 37,000 /ig/L at salinities of 10, 20,
and 30 g/kg, respectively. Increasing the temperature from 20 to 30"C lowered
the LC50 at all salinities tested. Toudal and Riisgard (1987) reported that
increasing the temperature from 13 to 2l"C at a salinity of 20 g/kg also
lowered the LC50 value of cadmium to the copepod, Acartia tonsa.

Saltwater fish species were generally more resistant to cadmium than
freshwater fish species with SMAVs ranging from 75.0 fig/L for the striped bass
(at a salinity of 1 g/kg) to 50,000 fig/L for the sheepshead minnow. In a
study of the interaction of dissolved oxygen and salinity on the acute
toxicity of cadmium to the mummichog, Voyer (1975) found that the 96-hr LC50
at a temperature of 18-20°C and a salinity of 32 g/kg was about one-half what
it was at 10 and 20 g/kg. Sensitivity of the mummichog to acute cadmium
poisoning was not influenced by reduction in dissolved oxygen concentration to
4 mg/L. This increase in toxicity with increasing salinity conflicts with

8


-------
other data reported in Tables 1 and 6.

Of the 54 saltwater genera for which acute values are available, the
most sensitive, Americamysis, is 3,270 times more sensitive than the most
resistant, Monopylephorus (Table 3). Acute values are available for more than
one species in each of seven genera, and the range of Species Mean Acute
Values within each genus is no more than a factor of 3.6 for six of the seven
genera. The seventh genus, Crassostrea, has two SMAVs that differ by a factor
of 16.7, possibly due to different exposure conditions between species. Only
the data from Reish et al. (1976) were used for Capitella capitata, only data
from Martin et al. (1981) and Nelson et al. (1976) were used for Mytilus
edulis, only data from Sullivan et al. (1983) were used for Eurytemora
affinis, only data from Cripe (1994) were used for Penaeus duorarum, and only
data from Park et al. (1994) were used for Rivulus marmoratus to avoid using
test results from studies in which the life stage tested is known to be less
sensitive or in which the life stage tested is unreported and the higher LC50s
may be due primarily to the use of less sensitive life stages. The
sensitivities of the four most sensitive genera differed by a factor of 2.7,
which includes two mysids, the striped bass and the American lobster.

The saltwater Final Acute Value for total cadmium calculated from the
Genus Mean Acute Values in Table 3 is 80.55 /ig/L. This Final Acute Value is
below the SMAV for the mysid, Mysidopsis bigelowi (110 fig/L), but is
aproximately three percent above the American lobster (78 fig/L), approximately
seven percent higher than the striped bass (75.0 fig/L), and approximately 95
percent above the SMAV for the mysid, Americamysis bahia (41.29 fig/L,
geometric mean of two flow-through measured tests). The resultant saltwater
Criterion Maximum Concentration (CMC) for total cadmium is 40.28 fig/L (FAV/2
or 80.55 ,wg/L/2). If the total cadmium CMC is converted to dissolved cadmium
using the 0.994 factor determined experimentally by EPA, the saltwater CMC for
dissolved cadmium is 40.03 fig/L. The resultant 40.03 fig/L CMC for dissolved
cadmium is below all of the saltwater SMAVs presented in Table 3 (Figure 3).

Chronic Toxicity to Aquatic Animals

Acceptable chronic toxicity tests have been conducted on cadmium in
freshwater with 21 species, including seven invertebrates and 14 fishes in 16
genera. Several related values are in Table 6. Among the unused values in

9


-------
Table 6, a 21-day Daphnia magna test in which the test concentrations were not
measured, Biesinger and Christensen (1972) found a 16 percent reduction in
reproduction at 0.17 /ig/L. Bertram and Hart (1979) and Ingersoll and Winner
(1982) found chronic toxicity to Daphnia pulex at less than 1 and 10 fig/L,
respectively. The 200-hr LC10 of 0.7 fig/L obtained with rainbow trout (Table
6) by Chapman (1978) probably would be close to the result of an early life-
stage test because of the extent to which various life stages were
investigated. Effects on other salmonids and many invertebrates have been
observed at 5 fig/L or less (Table 6). These species include decomposers
(Giesy 1978), protozoans (Fernandez-Leborans and Noville-Villajes 1993;
Niederlehner et al. 1985), Ceriodaphnia dubia (Winner 1988; Zuiderveen and
Birge 1997), D. magna (Enserink et al. 1993; Winner and Whitford 1987),
zooplankton (Lawrence and Holoka 1987), crayfish (Thorp et al. 1979),
amphipods (Borgmann et al. 1991; Phipps et al. 1995), copepods and annelids
(Giesy et al. 1979), midges (Anderson et al. 1980), and mayflies (Spehar et
al. 1978) .

An acceptable C. dubia seven-day static-renewal toxicity test was
conducted by Jop et al. (1995) using reconstituted soft laboratory water. The
<24-hr old neonates were exposed to 1, 5, 10, 19 and 41 ,wg/L measured cadmium
concentrations in addition to a laboratory water control at 25°C. The NOEC
and LOEC were 10 and 19 ,wg/L cadmium, respectively, with a resultant chronic
value of 14 ,wg/L cadmium (Table 2).

The effects of water hardness on the toxicity of cadmium to D. magna was
evaluated by Chapman et al. (Manuscript) under static-renewal conditions at a
temperature of 20 ±2°C. As part of the experimental design, the total
hardness level was adjusted to either 53, 103 or 209 mg/L (as CaC03) in three
distinct tests. Daphnids were individually exposed to six measured cadmium
concentrations (exposures ranged from 0.15 to 22.1 fig/L cadmium among the
three tests) and a control (0.08 fig/L cadmium) for 21 days. Based on an
analysis of variance hypothesis testing procedure, they reported reproductive
(mean number of young per adult) chronic values of 0.1523, 0.2117 and 0.4371
fig/L cadmium at hardness levels of 53, 103 and 209 mg/L, respectively (Table
2). These same data were also subjected to a regression analysis procedure,
whereby the 20 percent reproductive (mean number of young per adult)
inhibition concentration (IC20) was estimated for each hardness level. The
resultant IC20 values were 0.07, 0.23 and 0.33 fig/L cadmium for the 53, 103

10


-------
and 209 mg/L hardness levels, respectively. Overall, the results obtained by
the two different procedures are similar.

The effect of cadmium on the reproduction strategy of D. magna was
investigated by Bodar et al. (1988b). After a 25-day exposure of the 12 + 12-
hr old neonates to 0 (control), 0.5, 1.0, 5.0, 10.0, 20.0 and 50 fig/L cadmium
at 20 + 1°C, the authors compared the survival, number of neonates per female,
first day of reproduction and neonate size of the cadmium exposures to the
controls. The 25-day reproductive NOEC was 5.0 fig/L cadmium, and the
reproductive LOEC was 10.0 fig/L cadmium. However, a more sensitive endpoint
was the length of the 5th and 6th broods of neonates, where the 25-day NOEC and
LOEC were estimated to be 0.5 and 1.0 fig/L cadmium, respectively. The
resultant chronic value was 0.7071 fig/L cadmium (Table 2).

Borgman et al. (1989) also investigated the effect of cadmium on D.
magna reproduction. The 21-day static-renewal test was conducted at 20°C
using measured exposure concentrations of 0.22 (control), 1.86, 4.10, 7.78 and
22.9 fig/L cadmium. Reproduction was significantly reduced at the lowest
measured exposure concentration of 1.86 fig/L cadmium. Thus, the reproductive
NOEC and LOEC were <1.86 and 1.86 fig/L cadmium, respectively, with a chronic
value of <1.86 fig/L cadmium (Table 2) .

Brown et al. (1994) exposed 27 0-day old rainbow trout to cadmium under
flow-through conditions for 65 weeks using borehole water with a total
hardness of 250 mg/L (as CaC03) . Mean cadmium concentrations during the
exposure of adult fish were 0.47 (control), 1.77, 3.39 and 5.48 fig/L. After
65 weeks of exposure, the three most mature males and females were selected
from each treatment, anesthetized and striped of their gametes when possible,
with the milt and ova combined in a bucket. The fertilized eggs from each
treatment group were then divided into four approximately equal-sized
subsamples and exposed for seven weeks in 30-liter aquaria under flow-through
conditions to nominal concentrations of 0 (control), 2.0, 5.0 and 8.0 fig/L
cadmium. Second generation fry development was significantly affected when
the parents were exposed 1.77 fig/L cadmium, but not when exposed to 0.47 fig/L
cadmium. However, second generation embryo survival for all groups was less
than 60 percent, which may have influenced the fry development effect levels.
A more representative endpoint was the ability of the first generation adults
to reach sexual maturity, with a statistically derived NOEC and LOEC of 3.39
and 5.48 fig/L cadmium. The resultant chronic value was 4.310 fig/L cadmium

11


-------
(Table 2) .

Brown et al. (1994) also exposed two-year old brown trout to cadmium
under flow-through conditions for 95 weeks using the same borehole water.

Mean cadmium concentrations during the exposure of adult fish were 0.27
(control), 5.13, 9.34 and 29.1 /ig/L. After 60 weeks of exposure, the three
most mature males and females were selected from each treatment, anesthetized
and striped of their gametes, with the milt and ova combined in a bucket. The
fertilized eggs from each treatment group were then divided into four
approximately equal-sized subsamples and exposed for 50 days in 30-liter
aquaria under flow-through conditions to cadmium concentrations similar to
those in which the parents were exposed. After the 90 week exposure, the
survival NOEC and LOEC were 9.34 and 29.1 /ig/L cadmium, respectively, with a
resultant chronic value of 16.49 /ig/L cadmium (Table 2).

A 32-day fathead minnow early life stage toxicity test was conducted by
Spehar and Fiandt (1986) under flow-through conditions using sand filtered
Lake Superior dilution water (Table 2). They reported a chronic value of 10.0
/ig/L cadmium, which when coupled with their 96-hour LC50 of 13.2 /ig/L cadmium,
gives an acute-chronic ratio of 1.320.

Cope et al. (1994) examined the sublethal responses of juvenile
bluegills exposed to cadmium under flow-through conditions at an average total
hardness of 134 mg/L (as CaC03) and temperature of 21.7°C. The fish were
exposed to a control (0.02 /ig/L cadmium) and seven measured cadmium
concentrations that ranged from 2.8 to 32.3 /ig/L. At the end of the 28-day
test, test fish survival or growth was not adversely affected, resulting in a
NOEC of >32.3 /ig/L cadmium and a chronic value of >32.3 /ig/L cadmium (Table
2) .

Ingersoll and Kemble (unpublished) investigated the chronic toxicity of
cadmium to the amphipod Hyalella azteca. The organisms were exposed under
flow-through measured conditions at a mean temperature of 23°C and a total
hardness of 280 mg/L (as CaC03), and a 3-m nylon mesh substrate was provided
during the test. The seven- to eight-day old amphipods were exposed to water
only mean total cadmium concentrations of 0.10 (control), 0.12, 0.31, 0.51,
2.0 and 3.5 /ig/L for 42 days. The most sensitive endpoint was survival, with
an NOEC and LOEC of 0.5 and 2.0 /ig/L cadmium, respectively, after both 28 and
42 days of exposure. The resultant chronic value was 1.000 /ig/L total cadmium
(Table 2) .

12


-------
Ingersoll and Kemble (unpublished) also exposed the midge Chironomus
tentans to cadmium under the same conditions listed above for the amphipod,
except that a thin 5 ml layer of sand was provided as a substrate. The <24-hr
old larvae were exposed to water only mean measured total cadmium
concentrations of 0.15 (control), 0.50, 1.5, 3.1, 5.8 and 16.4 ,wg/L for 20
days. The mean weight, biomass, percent emergence and percent hatch endpoints
all had 20-day NOEC and LOEC values of 5.8 and 16.4 fig/L cadmium, respectively
(Table 2). The resultant chronic value was 9.753 fig/L total cadmium.

Chronic values are available over a wide range of hardness for two
species (Table 2). To account for the apparent relationship of cadmium
chronic toxicity to hardness, an analysis of covariance (same as the analysis
performed on the acute data) was performed to calculate the pooled slope for
hardness using the natural logarithm of the chronic value as the dependent
variable, species as the treatment or grouping variable, and the natural
logarithm of hardness as the covariate or independent variable. This analysis
of covariance model was fit to the data in Table 2 for the two species for
which definitive chronic values are available over a range of hardness such
that the highest hardness is at least three times the lowest, and the highest
is also at least 100 mg/L higher than the lowest (other species in Table 2
either did not meet these criteria or did not show any hardness-toxicity trend
probably due to differences in exposure methods, species age, etc.). The
slopes for the two species ranged from 0.9786 to 1.003, and the pooled slope
for these two species was 0.9917 (Table 2b). A plot of the chronic effect
level versus total hardness is provided in Figure 4.

The slope of 0.9917 was used to adjust each chronic value to a hardness
of 50 mg/L. Generally, replicate adjusted chronic values for a species agreed
well, as did values for species within a genus. The two values for Atlantic
salmon are very different, but one agrees well with the value for the other
tested species in the same genus. Twenty-one Species Mean Chronic Values were
then calculated, and from these, the sixteen Genus Mean Chronic Values were
calculated and ranked (Table 3b).

A freshwater Final Chronic Value was calculated from the sixteen Genus
Mean Chronic Values using the procedure used to calculate a Final Acute Value.
This approach seemed appropriate since a number of chronic tests have been
conducted with a large variety of species. Thus, the freshwater Final Chronic
Value for total cadmium is 0.0861 fig/L at a hardness of 50 mg/L, and the Final

13


-------
,T .	(0. 9917 [ In (hardness)]-6.332)	, , ,

Chronic Value (in /ig/L) = e	. For dissolved cadmium,

the Final Chronic value is 0.0809 /ig/L (0.94 x 0.0861 /ig/L) at a hardness of

50 mg/L, or = 0.94 [ e (0"9917 [ln (hardness) ] ~6-332' ] . At a hardness of 50 mg/L, all

Genus Mean Chronic Values are above the dissolved Final Chronic Value (Figure

5) .

Another option for calculating the Final Chronic Value is to use the
Final Acute-Chronic Ratio in conjunction with the Final Acute Value. However,
the acute-chronic ratios ranged from 0.9021 for the chinook salmon to 433.8
for the flagfish (greater than a factor of ten), with other values scattered
throughout this range (Tables 2c and 3). These ratios do not seem to follow
any of the patterns (Table 3) recommended in the guidelines, and so it does
not seem reasonable to use a freshwater Final Acute-Chronic Ratio to calculate
a Final Chronic Value.

Three chronic toxicity tests have been conducted with the saltwater
invertebrate, Americamysis bahia, formerly classified as Mysidopsis bahia
(Table 2). Nimmo et al. (1977a) conducted a 23-day life-cycle test at 20 to
28°C and salinity of 15 to 23 g/kg. Survival was 10 percent at 10.6 fig/L, 84
percent at the next lower test concentration of 6.4 fig/L, and 95 percent in
the controls. No unacceptable effects were observed at 6.4 fig/L or any lower
concentration. The chronic toxicity limits, therefore, are 6.4 and 10.6 fig/L,
with a chronic value of 8.237 fig/L. The 96-hr LC50 was 15.5 fig/L, resulting
in an acute-chronic ratio of 1.882.

Another life-cycle test was conducted on cadmium with Americamysis bahia
under different environmental conditions, including a constant temperature of
21°C and salinity of 30 g/kg (Gentile et al. 1982; Lussier et al. Manuscript).
All organisms died in 28 days at 23 fig/L. At 10 fig/L a series of
morphological abberations occurred at the onset of sexual maturity. External
genitalia in males were abberant, females failed to develop brood pouches, and
both sexes developed a carapace malformation that prohibited molting after the
release of the initial brood. Although initial reproduction at this
concentration was successful, successive broods could not be born because
molting resulted in death. No malformations or effects on initial or
successive reproductive processes were noted in the controls or at 5.1 fig/L.
Thus, the chronic limits for this study are 5.1 and 10 fig/L for a chronic
value of 7.141 /ig/L. The LC50 at 21°C and salinity of 30 g/kg was 110 /ig/L
which results in an acute-chronic ratio of 15.40 from this study.

14


-------
These two studies showed excellent agreement between the chronic values
but considerable divergence between the acute values and acute-chronic ratios.
Several studies have demonstrated an increase in acute toxicity of cadmium
with decreasing salinity and increasing temperature (Table 6). The observed
differences in acute toxicity to the mysids might be explained on this basis.
Nimmo et al. (1977a) conducted their acute test at 20 to 28°C and salinity of
15 to 23 g/kg, whereas the other test was performed at 21°C and salinity of 30
g/kg.

A third Americamysis bahia chronic study was conducted by Carr et al.

(1985) at a salinity of 30 g/kg, but the temperature varied from 14 to 26°C
over the 33 day study. At test termination, >50 percent of the organisms had
died in cadmium exposures >8 /ig/L. After 18 days of exposure, growth in the 4
/ig/L treatment group, the lowest exposure concentration was significantly
reduced when compared to the controls. The resultant chronic limits for this
study are <4 and 4 /ig/L cadmium. Acute data were not presented by the
authors. The lower chronic value observed for this study as compared to the
two studies described above may have been due to unexpected temperature
fluctuations over the study period (mechanical problems).

Gentile, et al. (1982) also conducted a life-cycle test with another
mysid, Mysidopsis bigelowi, and the results were very similar to those for A.
bahia. Thus, the chronic value was 7.141 fig/L and the acute-chronic ratio was
15.40.

Because they covered such a wide range, it would be inappropriate to use
any of the available freshwater acute-chronic ratios in the calculation of the
saltwater Final Chronic Value. The two saltwater species for which acute-
chronic ratios are available (Table 3) have Species Mean Acute Values in the
same range as the saltwater Final Acute Value, and so it seems reasonable to
use the geometric mean of these two ratios. When the saltwater Final Acute
Value of 80.55 fig/L is divided by the mean acute-chronic ratio of 9.106, a
saltwater Final Chronic Value of 8.846 fig/L is obtained, or 8.793 fig/L
dissolved cadmium (0.994 x 8.846 fig/L) .

Toxicity to Aquatic Plants

Thirty-three acceptable tests are available with freshwater plant
species exposed to cadmium which lasted from 4 to 28 days (Table 4). Growth
reduction was the major toxic effect observed with freshwater aquatic plants,

15


-------
and several values are in the range of concentrations causing chronic effects
on animals. The influence that plant growth media might have had on the
toxicity tests in unknown, but is probably minor at least in the case of
Conway (197 8) who used a medium patterned after natural Lake Michigan water.
Because the lowest toxicity values for fish and invertebrate species are lower
than the lowest values for plants, water quality criteria which protect
freshwater animals should also protect freshwater plants.

Toxicity values are available for five species of saltwater diatoms and
two species of macroalgae (Table 4). Concentrations causing fifty percent
reductions in the growth rates of diatoms range from 60 /ig/L for Ditylum
brightwelli to 22,390 /ig/L for Phaeodactylum tricornutum, the most resistant
to cadmium. The brown macroalga (kelp) exhibited mid-range sensitivity to
cadmium, with an EC50 of 860 fig/L. The most sensitive saltwater plant tested
was the red alga, Champia parvula, with significant reductions in the growth
of both the tetrasporophyte plant and female plant occurring at 22.8 fig/L.

This plant is more resistant than the chronically most sensitive animal
species tested. Therefore, water quality criteria for cadmium that protect
saltwater animals should also protect saltwater plants.

Bioaccumulation

Bioconcentration factors (BCFs) for cadmium in fresh water (Table 5)
range from 3 for brook trout muscle (Benoit et al. 1976) to 6,910 for the soft
tissue of the snail Viviparus georgianus (Tessier et al. 1994b). Usually,
fish accumulate only small amounts of cadmium in muscle as compared to most
other tissues and organs (Benoit et al. 1976; Sangalang and Freemen 1979).
Also, cadmium residues in fish reach steady-state only after exposure periods
greatly exceeding 28 days (Benoit et al. 1976; Sangalang and Freeman 1979).
Daphnia magna, and presumably other invertebrates of about this size or
smaller, often reach steady-state within a few days (Poldoski 1979). Cadmium
accumulated by fish from water is eliminated slowly (Benoit et al. 1976:

Kumada et al. 1980), but Kumada, et al. (1980) found that cadmium accumulated
from food is eliminated much more rapidly. If all variables, except
temperature, were kept the same, Tessier et al. (1994a) found that increased
exposure temperatures generally increased the soft tissue bioconcentration
factor observed for the snail, Viviparus georgianus, but not for the mussel,

16


-------
Elliptio complanata. Poldoski (1979) reported that humic acid decreased the
uptake of cadmium by Daphnia magna, but Winner (1984) did not find any effect.
Ramamoorthy and Blumhagen (1984) reported that fulvic and humic acids
increased uptake of cadmium by rainbow trout.

The only BCF reported for a saltwater fish is a value of 48 from a 21-
day exposure of the mummichog (Table 6). However, among ten species of
invertebrates, the BCFs range from 22 to 3,160 for whole body and from 5 to
2,040 for muscle (Table 5). The highest BCF was reported for the polychaete,
Ophryotrocha diadema (Klockner 1979). Although a BCF of 3,160 was attained
after sixty-four days exposure using the renewal technique, tissue residues
had not reached steady-state.

BCFs for four species of saltwater bivalve molluscs range from 113 for
the blue mussel (George and Coombs 1977) to 2,150 for the eastern oyster
(Zaroogian and Cheer 1976). In addition, the range of reported BCFs is rather
large for some individual species. BCFs for the oyster include 149 and 677
(Table 6) as well as 1,220, 1,830 and 2,150 (Table 5). Similarly, two studies
with the bay scallop resulted in BCFs of 168 (Eisler et al. 1972) and 2,040
(Pesch and Stewart 1980) and three studies with the blue mussel reported BCFs
of 113, 306, and 710 (Tables 5 and 6). George and Coombs (1977) studied the
importance of metal speciation on cadmium accumulation in the soft tissues of
Mytilus edulis. Cadmium complexed as Cd-EDTA, Cd-alginate, Cd-humate, and Cd-
pectate (Table 6) was bioconcentrated at twice the rate of inorganic cadmium
(Table 5). Because bivalve molluscs usually do not reach steady-state,
comparisons between species may be difficult and the length of exposure may be
the major determinant in the size of the BCF.

BCFs for five species of saltwater crustaceans range from 22 to 307 for
whole body and from 5 to 25 for muscle (Tables 5 and 6). Nimmo et al. (1977b)
reported whole-body BCFs of 203 and 307 for two species of grass shrimp,
Palaemonetes pugio and P. vulgaris. Vernberg et al. (1977) reported a factor
of 140 for P. pugio at 25"C (Table 6), whereas Pesch and Stewart (1980)
reported a BCF of 22 for the same species exposed at 10"C, indicating that
temperature might be an important variable. The commercially important
crustaceans, the pink shrimp and lobster, were not effective bioaccumulators
of cadmium with factors of 57 for whole body and 25 for muscle, respectively
(Tables 5 and 6).

Mallard ducks are a native wildlife species whose chronic sensitivity to

17


-------
cadmium has been studied. These birds can be expected to ingest many of the
freshwater and saltwater plants and animals listed in Table 4. White and
Finley (1978a,b) and White et al. (1978) found significant damage at a cadmium
concentration of 200 mg/kg in food for 90 days. Di Giulio and Scanlon (1984)
found significant effects on energy metabolism at 450 mg/kg, but not at 150
mg/kg. These are concentrations which would cause damage to mallard ducks.
More recent information may be available, but these data would not have been
identified during the literature search conducted for this update.

The bioaccumulation data provided in this document is for information
purposes only. Calculation of a Final Residue Value for cadmium will not be
presented at this time.

Other Data

A number of the values in Table 6 have already been discussed. When
possible, the freshwater acute effect concentration has been adjusted to a
hardness of 50 using the pooled slope. Cadmium-binding proteins were isolated
from Amoeba proteus (Al-atia, 1978, 1980) and rainbow trout (Roberts et al.
197 9). The cumulative mortality resulting from exposure to cadmium for more
than 96 hours is clearly evident from the studies with phytoplankton (Findlay
et al. 1996; Fargasova 1993), duckweed (Outridge 1992), protozoa (Niederlehner
1985), zooplankton (Lawrence and Holoka (1987), snails (Spehar et al. 1978),
zebra mussels (Kraak et al. 1992), crayfish (Thorp et al. 1979),
macroinvertebrates (Giesy et al. 1979), polychaetes (Reish et al. 1976),
bivalve molluscs, crabs, and starfish (Eisler and Hennekey 1977), scallops,
shrimp, and crabs (Pesch and Stewart 1980), and a mysid (Gentile et al. 1982;
Nimmo et al. 1977a).

Nimmo et al. (1977a) in studies with the mysid, Americamysis bahia,
reported a 96-hr LC50 of 15.5 /ig/L (Table 1) and a 17-day LC50 of 11 /ig/L
(Table 6) at 25 to 28"C and salinity of 15 to 23 g/kg. In another series of
studies with this mysid (Gentile et al. 1982), the 96-hr LC50 was 110 /j.g/L
(Table 1) and the 16-day LC50 was 28 /ig/L (Table 6) at 20 °C and salinity of
30g/kg. These data suggest that short-term acute toxicity might be strongly
influenced by environmental variables, whereas long-term effects, even
mortality, are not.

Considerable information exists concerning the effect of salinity and
temperature on the acute toxicity of cadmium. Unfortunately, the conditions

18


-------
and durations of exposure are so different that adjustment of acute toxicity
data for salinity is not possible. Rosenberg and Costlow (1976) studied the
synergistic effects of cadmium and salinity combined with constant and cycling
temperatures on the larval development of two estuarine crab species. They
reported reduction in survival and significant delay in development of the
blue crab with decreasing salinity. Cadmium was three times as toxic at a
salinity of 10 g/kg than at 30 g/kg. Studies with the mud crab resulted in a
similar cadmium-salinity response. In addition, the authors report that
cycling temperature may have a stimulating effect on survival of larvae
compared to constant temperature.

Theede et al. (1979) investigated the effect of temperature and salinity
on the acute toxicity of cadmium to the colonial hydroid, Laomedea loveni. At
17.5 °C cadmium concentrations inducing irreversible retraction of half of the
polyps ranged from 12.4 fig/L at a salinity of 25 g/kg to 3.0 fig/L at 10 g/kg
(Table 6). At a temperature of 17.5°C, the toxicity of cadmium increased as
salinity decreased from 25 g/kg to 10 g/kg..

A similar acute toxicity-salinity relationship was observed by Hall et
al. (1995) for the copepod, Eurytemora affinis, whereby the 96-hour toxicity
increased four-fold (from 213 to 51.6 /ig/L cadmium) when the salinity was
decreased from 15 to 5 g/kg at a test temperature of 25°C. Hall et al. (1995)
also observed an approximate three-fold toxicity increase to the sheepshead
minnow when the salinity was lowered in similar fashion at the same
temperature. Likewise, the 21-day toxicity of cadmium to the blue crab,
Callinectes sapidus, increased over nine-fold when the salinity was lowered
from 25 to 2.5 g/kg, and the temperature was held constant at 22-23 °C (Guerin
and Stickle 1995). In contrast, Snell and Personne (1989b) observed little
difference in the 24-hour toxicity of cadmium to the rotifer, Brachionus
plicatilis, exposed under 15 and 30 g/kg salinity regimes and a temperature of
25 °C.

The effect of environmental factors on the acute toxicity of cadmium is
also evident from tests with the early life stages of saltwater vertebrates.
Alderdice, et al. (1979a,b,c) reported that salinity influenced the effects of
cadmium on the volume, capsule strength, and osmotic response of embryos of
the Pacific herring. Studies with embryos of the winter flounder indicated a
quadratic salinity-cadmium relationship (Voyer et al. 1977), whereas Voyer et
al. (1979) reported a linear relationship between salinity and cadmium

19


-------
toxicity to Atlantic silverside embryos.

Several studies have reported chronic sublethal effects of cadmium on
saltwater fishes (Table 6). Significant reduction in gill tissue respiratory
rate was reported for the cunner after a 30-day exposure to 50 /ig/L (Maclnnes
et al. 1977). Dawson et al. (1977) also reported a significant decrease in
gill-tissue respiration of striped bass at 0.5 /ig/L above ambient levels after
a 30-day, but not a 90-day, exposure. A similar study with the winter
flounder (Calabrese et al. 1975) demonstrated a significant alteration in gill
tissue respiration rate measured in vitro after a 60-day exposure to 5 /ig/L.

Unused Data

Some data on the effects of cadmium on aquatic organisms were not used
because the studies were conducted with species that are not resident in North
America, e.g., Abbasi and Soni (1986), Abel and Papoutsoglou (1986), Abel and
Garner (1986), Abel and Barlocher (1988), Ahsanullah et al. (1981), Ahsanullah
and Williams (1991), Amiard-Triquet et al. (1987), Annune et al. (1994),
Arshaduddin et al. (1989), Austen et al. (1997), Avery et al. (1996), Azeez
and Banerjee (1987), Baby and Menon (1987), Bambang et al. (1994), Bednarz and
Warkowska-Dratnal (1983/1984), Birmelin et al. (1995), Bresler and Yanko
(1995), Brooks et al. (1996), Brunetti et al. (1991), Calevro et al. (1998),
Canli and Furness (1993, 1995), Cassini et al. (1986), Castille and Lawrence
(1981), Centeno et al. (1993), Chan (1988), Chandini (1988, 1988, 1989, 1991),
Chandra and Garg (1992), Charpentier et al. (1987), Chattopadhyay et al.

(1995),	Cheung and Lam (1998), Coppellotti (1994), D'Agostino and Finney
(1974), Dallinger et al (1989), Darmono (1990), Darmono et al. (1990), Datta
et al. (1987), Demon et al (1989), Den Besten et al. (1989, 1991), De Nicola
Giudici and Guarino (1989), De Nicola Giudici and Migliore (1988), Denton and
Burdon-Jones (1986, 1986), Devi (1987, 1996), Devi and Rao (1989), Devineau
and Triquet (1985), Dorgelo et al. (1995), Douben (1989), Drbal et al. (1985),
Duquesne and Coll (1995), Evtushenko et al. (1986), Evtushenko et al. (1990),
Ferrari et al. (1993), Fisher et al. (1996), Fisher et al. (1996), Forget et
al. (1998), Francesconi (1989), Francesconi et al. (1994), Forbes (1991), Gaur
et al. (1994), Gerhardt (1992, 1995), Ghosh and Chakrabarti (1990), Glynn

(1996),	Glynn et al. (1992, 1994), Gopal and Devi (1991), Green et al. (1986),
Greenwood and Fielder (1983), Gupta and Rajbanshi (1991), Gupta et al. (1992),
Hader et al. (1997), Hansten et al. (1996), Heinis et al. (1990), Herkovits

20


-------
and Coll (1993), Hiraoka et al. (1985), Hu et al. (1996), Huebner and Pynnonen
(1992), Husaini et al. (1991), Ikuta (1987), Jenkins and Sanders (1985),
Karlsson-Norrgren and Runn (1985), Kasuga (1980), Keduo et al. (1987),
Khangarot and Ray. (1987), Khristoforova et al. (1984), Kobayashi (1971),
Krassoi and Julli (1994), Krishnaja et al. (1987), Kuhn and Pattard (1990),
Kuroshima (1987), Kuroshima and Kimura (1990), Kuroshima et al. (1993), Lam
(1996, 1996), Lam et al. (1997), Lee and Xu (1984), Loumbourdis et al (1999),
McCahon et al. (1988), McCahon and Pascoe (1988, 1988, 1988), McCahon et al.
(1989), McClurg (1984), Ma et al. (1999), Malea (1994), Markich and Jeffree
(1994, 1994), Martinez et al. (1996), Metayer et al. (1982), Michibata et al.
(1986), Michibata et al. (1987), Migliore and Giudici (1987), Moller et al.
(1994), Mostafa and Khalil (1986), Muino et al. (1990), Musko et al. (1990),
Nakagawa and Ishio (1988, 1989, 1989), Nassiri et al. (1997), Negilski (1976),
Nir et al. (1990), Noraho and Gaur (1995), Notenboom et al. (1992), Nott and
Nicolaidou (1994), Nugegoda and Rainbow (1995), Ojaveer et al. (1980), Pantani
et al. (1997), Papathanassiou (1995), Pavicic et al. (1994), Perez-Coll and
Herkovits (1996), Pynnonen (1995), Rainbow and Kwan (1995), Rainbow et al.
(1980), Rainbow and White (1989), Ralph and Burchett (1998), Ramachandran et
al. (1997), Rao and Madhyastha (1987), Rebhun and Ben-Amotz (1984), Reish et
al. (1988), Ringwood (1990, 1992), Ritterhoff et al. (1996), Romeo and
Gnassia-Barelli (1995), Safadi (1998), Sastry and Shukla (1994), Sastry and
Sunita (1982), Saxena et al. (1990, 1993), Schafer et al. (1994), Sehgal and
Saxena (1987), Shanmukhappa and Neelakantan (1990), Shivaraj and Patil (1988),
Simoes Goncalves (1989), Stuhlbacher and Maltby (1992), Takamura et al.
(1989), Temara et al. (1996a,b), Ten Hoopen et al. (1985), Thaker and Haritos
(1989), Thebault et al. (1996), Theede et al. (1979), Tomasik et al. (1995),
Tyurin and Khristoforova (1993), Udoidiong and Akpan (1991), Valencia et al.
(1998), Van Gemert (1985), Vashchenko and Zhadan (193), Verriopoulos and
Moraitou-Apostolopoulou (1981, 1982), Visviki and Rachlin (1991), Vogiatzis
and Loumbourdis (1998), Vranken et al. (1985), Vuori (1994), Vymazal (1990,
1995), Walsh et al. (1995), Warnau et al. (1995a,b,c, 1996a,b, 1997),
Westernhagen and Dethlefsen (1975), Westernhagen et al. (1975, 1978), Wildgust
and Jones (1998), White and Rainbow (1986), Wicklund and Runn (1988), Wicklund
et al. (1988), Wu et al. (1997), Wundram et al. (1996), Zanders and Rojas
(1992, 1996),and Zou and Bu (1994). Brown and Ahsanullah (1971) conducted
tests with a brine shrimp, which species are too atypical to be used in

21


-------
deriving national criteria.

Data were also not used if cadmium was a component of a drilling mud,
effluent, mixture, sediment, or sludge (Allen 1994, 1995; Amiard-Triquet et
al. 1988; Andres et al. 1999; Arnac and Lassus 1985; Austen and McEvoy 1997;
Bartsch et al. 1999; Beiras et al. 1998; Bendell-Young 1994; Bendell-Young et
al. 1986; Besser and Rabeni 1987; Biesinger et al. 1986; Bigelow and Lasenby
1991; Bodar et al. 1990; Buckley et al. 1985; Burden and Bird 1994; Busch et
al. 1998; Campbell and Evans 1991; Camusso et al. 1995; Carlisle and Clements
1999; Casini and Depledge 1997; Cuvin-Aralar 1994; Cuvin-Aralar and Aralar
1993; Dallinger et al. 1997; de March 1988; Elliott et al. 1986; Farag et al.
1994, 1998; Gully and Mason 1993; Hall et al. 1984, 1987, 1988; Hardy and
Raber 1985; Hare et al. 1991, 1994; Haritonidis et al. 1994; Hartwell 1997;
Haynes et al. 1989; Hendriks 1995; Hickey and Clements 1998; Hickey and Martin
1995; Hickey and Roper 1992; Hogstrand et al. 1991; Hollis et al. 1996; Hooten
and Carr 1998; Hylland et al. 1996; Inza et al. 1998; Jak et al. 1996;

Janssens de Bisthoven et al. 1992; Jop 1991; Keenan and Alikhan 1991; Kelly
and Whitton 1989; Kettle and deNoyelles 1986; Khan and Weis 1993; Khan et al.
1989; Kiffney and Clements 1996; Klerks and Bartholomew 1991; Kock et al.
1995; Koivisto et al. 1997; Kolok et al. 1998; Kraak et al. 1993, 1994;
Krantzberg 1989a,b; Krantzberg and Stokes 1988, 1989; Kumar 1991; Lee and
Luoma 1998; Lithner et al. 1995; Lucker et al. 1997; Macdonald and Sprague
1988; Maloney 1996; Manz et al. 1994; Marr et al. 1995a,b; Mathew and Menon
1992; Mersch et al. 1996; Nalewajko 1995; Nelson 1994; Odin et al. 1996, 1997;
Palawski et al 1985; Pedersen and Petersen 1996; Pellegrini et al. 1993;

Playle et al. 1993; Polar and Kucukcezzar 1986; Poulton et al. 1995; Prevot
and Soyer-Gobillard 1986; Qichen et al. 1988; Rachlin and Grosso 1993;
Reynoldson et al. 1996; Richelle et al. 1995; Roch and McCarter 1984;

Roesijadi and Fellingham 1987; Sanchiz et al. 1999; Schaeffer et al. 1991;
Smokorowski et al. 1997; Stephenson and Macki 1989; Stern and Stern 1980;
Talbot 1985, 1987; Tessier et al 1993; Vuori 1993; Vymazal 1984; Wall et al.
1996; Walsh and Hunter 1992; Wang et al. 1996; Warren et al. 1998; Weimin et
al. 1994; Wong et al. 1982; Woodling 1993; Woodward et al. 1995). Reviews by
Barnthouse et al. (1987), Bay et al. (1993), Cairns et al. (1985), Chapman et
al. (1968), Dierickx and Bredael-Rozen (1996), Dyer et al. (1997), Eisler
(1981), Eisler et al. (1979), Enserink et al. (1991), Florence et al. (1992),
Guilhermino et al. (1997), Hare (1992), Hornstrom (1990), Jonnalagadda and Rao

22


-------
(1993),	Khangarot and Ray (1987), Kooijman and Bedaux (1996), Kraak et al.
(1994a,b), LeBlanc (1984), Mark and Solbe (1998), Meyer (1999), Nendza et al.
(1997), Oikari et al. (1992), Papoutsoglou and Abel (1993), Pesonen and

Andersson (1997), Phillips and Russo (1978), Ramesha et al. (1996), Rice

(1984),	Skowronski et al. (1998), Spry and Wiener (1991), Thomann et al.
(1997), Thompson et al. (1972), Toussaint et al. (1995), Trevors et al.
(1986), Van Leeuwen et al. (1987), Vymazal (1990), Wright and Welbourn (1994),
and Wong (1987) only contain data that have been published elsewhere.

Data were not used if the organisms were exposed to cadmium in food or
by injection or gavage (e.g., Bodar et al. 1988; Brouwer et al. 1992; Chou et
al. 1986; Davies et al. 1997; Decho and Luoma 1994; Gottofrey and Tjalve 1991;
Handy 1993; Kluttgen and Ratte 1994; Kuroshima 1992; Lasenby and Van Duyn
1992; Lawrence and Holoka 1991; Lomagin and Ul'yanova 1993; Malley and Chang
1991; Melgar et al. 1997; Mount et al. 1994; Munger and Hare 1997; Postma et
al. 1994; Postma and Davids 1995; Reinfelder and Fisher 1994, 1994; Reddy et
al. 1997; Rhodes et al. 1985; Van den Hurk et al. 1998; Wallace and Lopez
1997; Wang and Fisher 1996; Wen-Xiong and Fisher 1996; Wong 1989).

A number of studies of cadmium toxicity examined physiological or
behavioral effects but provided no interpretable concentration, time, response
data, and some papers described effects of only a single, often lethal,
concentration. Included in such studies are those of Berglind (1985), Bitton
et al. (1994), Block and Part (1992), Block et al. (1991), Blondin et al.
(1989), Bowen and Engel (1996), Bressan and Brunetti (1988), Castano et al.
(1996), Christoffers and Ernst (1983), Clausen et al. (1993), Fargasova

(1994),	Fernandez-Pinas et al. (1995), George et al. (1983), Iftode et al.

(1985),	Ilangovan et al. (1998), Issa et al. (1995), Jana and Sahana (1988),
Kluytmans et al. (1988), Kraak et al. (1993b), Kosakowska et al. (1988),
Lussier et al. (1999), Mateo et al. (1993), Palackova et al. (1994), Pereira
et al. (1993), Prasad et al. (1998), Rachlin and Grosso (1991), Reader et al.
(1989), Reddy and Fingerman (1994), Reid and McDonald (1991), Ribo (1997),
Rombough (1985), Rosas and Ramirez (1993), Sauvant et al. (1997), Skowronski
et al. (1991), Sunila and Lindstrom (1985), Trehan and Maneesha (1994),

Verbost et al. (1987), Visviki and Rachlin (1994), Wang et al. (1995), Woodall
et al. (1988), Wundram et al. (1996), and Xue and Sigg (1998).

Battaglini et al. (1993), Borchardt (1983), Craig et al. (1998),

Gargiulo et al. (1996), Gomot (1998), Harvey and Luoma (1985), Kraal et al.

23


-------
(1995), Penttinen et al. (1995), Rouleau et al. (1998), and Sobhan and
Sternberg (1999) presented no useable data on cadmium toxicity or
bioconcentration.

Papers that dealt with the selection, adaptation, or acclimation of
organisms for increased resistance to cadmium were not used, e.g., Anadu et
al. (1989), Bodar et al. (1990), Currie et al. (1998), Ramo et al. (1987),
Herkovits and Perez-Coll (1995), Kaplan et al. (1995), McNicol and Scherer
(1993), Madoni et al. (1994), Nagel and Voigt (1995), Thomas et al. (1985),
and Van Steveninck et al. (1992).

Data were not used if the results were only presented graphically
(Laegreild et al. 1983; Laube 1980; Remacle et al. 1982), if the organisms
were not exposed to cadmium in water (Foster 1982; Hatakeyama and Yasuno
1981a; O'Neill 1981), or if there was no pertinent adverse effect (Carr and
Neff 1982; DeFilippis et al. 1981; Dickson et al. 1982; Fisher and Fabris
1982; Fisher and Jones 1981; Tucker and Matte 1980; Watling 1981; Weis et al.
1981). Data in publications such as Abbasi and Soni (1989), Ball (1967),
Belabed et al. (1994), Bendell-Young (1999), Bitton et al. (1995), Bjerregaard
and Depledge (1994), Bolanos et al. (1992), Burnison et al. (1975), Calevro et
al. (1998), Canton and Slooff (1979), Carpene and Boni (1992), D'Aniello et
al. (1990), Davies et al. (1994), Department of the Environment (1973),
Errecalde et al. (1998), Fennikoh et al. (1978), Fernandez-Leborans and
Antonio-Garcia (1988), Galic and Sipos (1987), Glubokov (1990), Gorman and
Skogerboe (1987), Guanzon et al. (1994), Guerin et al. (1994), Hofslagare et
al. (1985), Janssen and Persoone (1993), Jaworska et al. (1997), Kay et al.
(1986), Kessler (1985), Khangarot et al. (1987), Koyama et al. (1992), Landner
and Jernelov (1969), Lee and Oshima (1998), Liao and Hsieh (1990), Maas
(1978), Mansour (1993), Ministry of Technology (1967), Moza et al. (1995),
Munger et al. (1999), Naylor et al. (1992), Nwadukwe and Erondu (1996), Pascoe
and Shazili (1986), Pauli and Berger (1997), Penttinen et al. (1998), Peterson
(1991), Peterson et al. (1984), Rayms-Keller et al. (1998), Rombough (1985),
Sandau et al. (1996), Sekkat et al. (1992), Shcherban (1977), Sheela et al.
(1995), Sovenyi and Szakolczai (1993), Stom and Zubareva (1994), Stubblefield
et al. (1999), Tarzwell and Henderson (1960), Verma et al. (1980), Vykusova
and Svobodova (1987), Wani (1986), Witeska et al. (1995), Yamamoto and Inque
(1985), and Zhang et al. (1992) were not used because either the materials,
methods, or results were insufficiently described. High control mortalities

24


-------
occurred in testing reported by Asato and Reish (1988), Hong and Reish (1987),
Sauter et al. (1976) and Wright (1988). The 96-hr values reported by Buikema
et al. (1974a,b) were subject to error because of possible reproductive
interactions (Buikema et al. 1977). Bringmann and Kuhn (1982) and Dave et al.
(1981) cultured daphnids in one water and tested them in a different water.

The acceptability of the dilution water or medium used in some studies
(e.g., Brkovic-Popovic and Popovic 1977a,b; Cearley and Coleman 1973, 1974;
Nasu et al. 1983) was open to question because of its origin or content.

Algal studies were not used if they were not conducted in an appropriate
medium (Stary and Kratzer 1982; Stary et al. 1983) or if the medium contained
too much of a complexing agent such as EDTA (Baillieul and Blust 1999; Brand
et al. 1986; Chen et al. 1997; Couillard 1989; Hockett and Mount 1996; Huebert
et al. 1993; Huebert and Shay 1991, 1992, 1993; Jenkins and Mason 1988;
Jenkins and Sanders 1986; Jenner and Janssen-Mommen 1993; Kessler 1986; Lue-
Kim et al. 1980; Macfie et al. 1994; Meteyer et al. 1988; Muller and Payer
1979; Nasu et al. 1988; Rebhun and Ben-Amotz 1986, 1988; Sloof et al. 1995;
Sunda and Huntsman 1996; Thongra-ar and Matsuda 1993; Thorpe and Costlow 1989;
Tortell and Price 1996; Vasseur and Pandard 1988; Wright et al 1985). Some
papers were omitted because of questionable treatment of test organisms or
inappropriate test conditions or methodology (e.g., Babich and Stotsky 1982;
Brown et al. 1984; Bryan 1971; Chan et al. 1981; Dorfman 1977; Eisler and
Gardner 1973; Greig 1979; Hung 1982; Hutcheson 1975; Moraitou-Apostolopoulou
et al. 1979; Parker 1984; Pecon and Powell 1981; Ridlington et al. 1981; Sunda
et al. 1978; Wikfors and Ukeles 1982) .

Data on bioconcentration by aquatic organisms were not used if the test
was conducted in distilled water, was not long enough, was not flow-through,
or if the concentrations in water were not adequately measured (e.g., Allen
1995; Amiard et al. 1993; Amiard-Triquet et al. 1986; Balogh and Salanki 1984;
Baudrimont et al. 1997; Beattie and Pascoe 1978; Bentley 1991; Berglind 1986;
Bernds 1998; Bervoets et al. 1995, 1996; Bjerregaard 1982, 1985, 1991; Block
and Glynn 1992; Brown et al. 1986; Burrell and Weihs 1983; Carmichael and
Fowler 1981; Carr and Neff 1982; Chan et al. 1992; Chander et al. 1991; Chawla
et al. 1991; Chitguppa et al. 1997; Chou and Uthe 1991; Collard and Matagne
1994; Craig et al. 1999; Davies et al. 1981; De Conto Cinier et al. 1997; De
Conto Cinier et al. 1998; De Nicola et al. 1993; Denton and Burdon-Jones 1981;
Elliott et al. 1985; Engel 1999; Everaarts 1990; Fair and Sick 1983; Frazier

25


-------
and George 1983; Freeman 1978, 1980; Giles 1988; Gottofrey et al. 1988; Graney
et al. 1984; Gupta and Devi 1993; Haines and Brumbaugh 1994; Hansen et al.
1995; Hardy and O'Keeffe 1985; Hashim et al. 1997; Hatakeyama 1987; Herwig et
al. 1989; Hollis et al. 1997; Irato and Piccinni 1996; John et al. 1987; Katti
and Sathyanesan 1985; Kerfoot and Jacobs 1976; Khoshmanesh et al. 1996, 1997;
Klaverkamp and Duncan 1987; Koelmans et al. 1996; Kohler and Riisgard 1982;
Kwan and Smith 1991; Langston and Zhou 1987; Les and Walker 1984; McLeese and
Ray 1984; Maeda et al. 1990; Malley et al. 1989; Maranhao et al. 1999; Mersch
et al 1993; Mizutani et al 1991; Muramoto 1980; Mwangi and Alikhan 1993; Nolan
and Duke 1983; Norey et al. 1990; Oakley et al. 1983; Olesen and Weeks 1994;
Papathanassiou 1986; Pawlik and Skowronski 1994; Pawlik et al. 1993; Pelgrom
et al 1994; Pelgrom et al. 1997; Playle and Dixon 1993; Presing et al. 1993;
Postma et al. 1996; Poulsen et al. 1982; Rai et al. 1995; Rainbow 1985;

Ramirez et al. 1989; Ray et al. 1981; Reichert et al. 1979; Reinfelder et al.
1997; Riisgard et al. 1987; Ringwood 1989, 1992, 1993; Roseman et al. 1994;
Rubinstein et al. 1983; Santojanni et al. 1998; Sedlacek et al. 1989; Sidoumou
et al. 1997; Simoes Goncalves et al. 1988; Sinha et al. 1994; Skowronski and
Przytocka-Jusiak 1986; Srivastava and Appenroth 1995; Stary et al. 1982; Sunil
et al. 1995; Suzuki et al. 1987; Swinehart 1990; Taylor et al. 1988; Tessier
et al. 1996; Thomas et al. 1983; Van Leeuwen et al. 1985; Van Ginneken et al.
1999; Vymazal 1995; Wang and Fisher 1998; Watling 1983a; White and Rainbow
1982; Williams et al. 1998; Windom et al. 1982; Winner and Gauss 1986; Winter
1996; Woodworth and Pascoe 1983; Xiaorong et al. 1997; Yager and Harry 1964;
Zauke et al. 1995; Zia and McDonald 1994). The bioconcentration tests of
Eisler (1974), Jennings and Rainbow (1979b), O'Hara (1973b), Phelps (1979),
and Sick and Baptist (1979), which used radioactive isotopes of cadmium, were
not used because of the possibility of isotope discrimination. Reports on the
concentrations of cadmium in wild aquatic organisms, such as Anderson et al.
(1978), Bouquegneau and Martoja (1982), Boyden (1977), Bryan et al. (1983),
Frazier (1979), Gordon et al. (1980), Greig and Wenzloff (1978), Hazen and
Kneip (1980), Kneip and Hazen (1979), McLeese et al. (1981), Noel-Lambot et
al. (1980), Pennington et al. (1982), Ray et al. (1981), Smith et al. (1981),
and Uthe et al. (1982) were not used for the calculation of bioaccumulation
factors due to an insufficient number of measurements of the concentration of
cadmium in the water.

26


-------
Summary

Freshwater Species Mean Acute Values for cadmium are available for
species in 59 genera and hardness adjusted values range from 1.656 /ig/L for
brown trout to 78,579 /ig/L for a midge. The antagonistic effect of hardness
on acute toxicity has been demonstrated with 10 species. Chronic tests have
been conducted on cadmium with 14 freshwater fish species and seven
invertebrate species with hardness adjusted Species Mean Chronic Values
ranging from 0.1811 /ig/L for Hyalella azteca to 34.19 fig/L for Ceriodaphnia
dubia. Acute-chronic ratios are available for eight species and range from
0.9021 for the chinook salmon to 433.8 for the flagfish.

Freshwater aquatic plants are affected by cadmium at concentrations
ranging from 2 to 20,000 /ig/L. These values are in the same range as the
acute toxicity values for fish and invertebrate species, and are considerably
above the chronic values. Bioconcentration factors (BCFs) for cadmium in
fresh water range from 7 to 6,910 for invertebrates and from 3 to 2,213 for
fishes.

Saltwater cadmium species mean acute values for 11 fish species range
from 75.0 /ig/L for striped bass to 50,000 /ig/L for sheepshead minnow. Species
Mean Acute values for 50 species of invertebrates range from 41.29 /ig/L for a
mysid to 135,000 /ig/L for an oligochaete worm. The acute toxicity of cadmium
generally increases as salinity decreases. The effect of temperature seems to
be species-specific. Two life-cycle tests with Americamysis bahia under
different test conditions resulted in similar chronic values of 8.237 and
7.141 /ig/L, but the acute-chronic ratios were 1.882 and 15.40, respectively.
A third chronic test with Americamysis bahia gave a slightly lower chronic
value, possibly due to the unexpected temperature (14-26 °C) fluctuation. The
acute values appear to reflect effects of salinity and temperature, whereas
the few available chronic values apparently do not. A life-cycle test with
Mysidopsis bigelowi also resulted in a chronic value of 7.141 fig/L and an
acute-chronic ratio of 15.40. Studies with microalgae and macroalgae revealed
effects at 2 to 22, 390 /ig/L.

BCFs determined with a variety of saltwater invertebrates range from 5
to 3,160. BCFs for bivalve molluscs were generally above 1,000 in long
exposures, with no indication that steady-state had been reached. Cadmium
mortality is cumulative for exposure periods beyond four days. Chronic
cadmium exposure resulted in significant effects on the growth of bay scallops

27


-------
at 78 /ig/L.

National Criteria

The procedures described in the "Guidelines for Deriving Numerical

National Water Quality Criteria for the Protection of Aquatic Organisms and

Their Uses" indicate that, except possibly where a locally important species

is very sensitive, freshwater aquatic organisms and their uses should not be

affected unacceptably if the four-day average concentration (in /ig/L) of

dissolved cadmium does not exceed the numerical value given by 0.94
r (0 . 9917[In(hardness)]-6.332 ) ,

[e	] more than once every three years on the average,

and if the one-hour average dissolved concentration (in /ig/L) does not exceed

,,	.	.	(1.205[In(hardness)]-3.949),	,

the numerical value given by 0.97 [e	] more than once

every three years on the average. For example, at hardnesses of 50, 100, and
200 mg/L as CaC03 the four-day average dissolved concentrations of cadmium are
0.08, 0.16 and 0.32 /ig/L, respectively, and the one-hour average dissolved
concentrations are 2.1, 4.8, and 11 /ig/L. If brown trout are as sensitive as
some data indicate, they may not be protected by this criterion.

The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, saltwater aquatic organisms and their uses should not be
affected unacceptably if the four-day average dissolved concentration of
cadmium does not exceed 8.8 /ig/L more than once every three years on the
average and if the one-hour average dissolved concentration does not exceed 40
ug/L more than once every three years on the average. However, the limited
data suggest that the acute toxicity of cadmium is salinity-dependent;
therefore the one-hour average concentration might be underprotective at low
salinities and overprotective at high salinities.

EPA believes that the use of dissolved cadmium will provide a more
scientifically correct basis upon which to establish water-column criteria for
metals. The criteria were developed on this basis. The use of dissolved
criteria reduces the amount of conservatism that was present in earlier
cadmium criteria. It is recognized that a considerable proportion of
dissolved cadmium in organic-rich waters may be less toxic than freely
dissolved cadmium. On the other hand, some particulate forms of cadmium may
contribute to cadmium loading of organisms, possibly through ingestion.

28


-------
The recommended exceedence frequency of three years is the Agency's best
scientific judgment of the average amount of time it will take an unstressed
system to recover from a pollution event in which exposure to cadmium exceeds
the criterion. Stressed systems, for example, one in which several outfalls
occur in a limited area, would be expected to require more time for recovery.
The resilience of ecosystems and their ability to recover differ greatly,
however, and site-specific criteria may be established if adequate
justification is provided.

The use of criteria in designing waste treatment facilities requires the
selection of an appropriate wasteload allocation model. Dynamic models are
preferred for the application of these criteria. Limited data or other
factors may make their use impractical, in which case one should rely on a
steady-state model. The Agency recommends the interim use of 1Q5 or 1Q10 for
Criterion Maximum Concentration (CMC) design flow and 7Q5 or 7Q10 for the
Criterion Continuous Concentration (CCC) design flow in steady-state models
for unstressed and stressed systems respectively. These matters are discussed
in more detail in the Technical Support Document for Water Quality-Based
Toxics Control (U.S. EPA 1985) .

29


-------
E
'E

TJ


-------
U)

c
o

+J

re

+->
c
a)
o
c
o
o
+->
o
a)
3=
LU

E

3

"e

"D

re
O

10S

104 ^

10001
1001
10l

Figure 2. Ranked Summary of Cadmium GMAVs

1 -

Freshwater



















~~~~

Freshwater Final Acute Value = 4.17 |jg/L dissolved cadmium @ 50 mg/L total hardness

Criteria Maximum Concentration = 2.1 |jg/L dissolved cadmium @50mg/L total hardness

0.2

0.4	0.6

% Rank GMAVs

—i	1

0.8	1

~ Freshwater Invertebrates
¦ Freshwater Fish
A Freshwater Amphibians


-------
-T 10 1

CT

c 105 i
o

re

104 i

c
a)
o
c
o

^ 10001
o
a)

3=

LU

£ 100^

3

"e

-a
re
O

re 10

Figure 3. Ranked Summary of Cadmium GMAVs

Saltwater







~~~



~~~





~~L



~~

Saltwater Final Acute Value = 80.1 (jg/L dissovled cadmium

Criteria Maximum Concentration = 40.0 (jg/L dissolved cadmium

0.0

0.2	0.4

% Rank of GMAVs

~l	1	1

0.6	0.8	1.0

~ Saltwater Invertebrates
¦ Saltwater Fish


-------
Figure 4. Comparison of All Table 2 Freshwater Chronic Values with the
Hardness Slope Derived CCC.

1984CCC

2000 CCC

36


-------
Figure 5. Chronic Toxicity of Cadmium to Aquatic Animals

100-3

10 i

o>

0)

_3

5 u

o

"E
o

O °-1l

Saltwater Final Chronic Value = 8.8 |jg/L dissolved cadmium

~ °

Freshwater Final Chronic Value = 0.08 pg/L dissolved cadmium @ 50 mg/L total hardness

0.01

T

T

T

0.0

0.2	0.4

0.6

	1	1

0.8	1.0

E Freshwater Invertebrate

% Rank Genus Mean Chronic Value ¦ Freshwater Fish


-------
Table la.

Acute Toxicity of Cadmium to Aquatic Animals

R, M, T

S, M, T

S,

S,

F,

Species

Planarian,
Dendrocoe1urn
lacteum

Worm (adult),

Lumbriculus

variegatus

Tubificid worm,
Branchiura
sowerbyi

Tubificid worm,
Limnodrilus
hoffmeisteri

Tubificid worm
(30-40 mm)
Limnodrilus
hoffmeisteri

Tubificid worm,
Quistadrilus
multisetosus

Tubificid worm,
Rhyacodr i1 us
montana

Tubificid worm, S, M
Spirosperma ferox

Tubificid worm, S, M
Spirosperma
nikolskyi

Tubificid worm, S, M
Stylodrilus
heringlianus

Tubificid worm S, U
Tubifex tubifex

Tubificid worm, S, M
Tubifex tubifex

Method3 Chemical

Tubificid worm,

Varichaeta

pacifica

S,

Cadmium
chloride

Cadmium
nitrate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
chloride

Cadmium
sulfate

Cadmium
sulfate

Hardness
(mg/L as
CaCO-,)	

87
280-300
5.3
5.3
152

5.3

5.3

5.3
5.3

5.3

Worm,
Nais sp.

S, U

Leech, G/ossiponiaR, M, T Cadmium

5.3
5.3

50
122.8

Species Mean
LC50 or EC50 Acute Value at
LC50 or EC50 LC50 or EC50 Adj . to Th=50	TH=50

(Total ug/L)b (Diss. ug/L) (Total ug/L) (Total ug/L)c Reference

FRESHWATER SPECIES

24,702
780
240
170
2,400

320

630

350
450

550

1 ,032
320
380

1 ,700
480

23,220

12.673

93.81

3,586

2,540

628.6

4.781

9,413

5,230

6.724

8.218

4,781

5.678

1 .700

162.6

12,673

93.81

4,781

Ham et al. 1995

Schubauer-Berigan et
al. 1993

3,586	Chapman et al. 1982a

Chapman et al. 1982a

628.6	Williams et al. 1985

Chapman et al. 1982a

9,413	Chapman et al. 1982a

5,230	Chapman et al. 1982a

6,724	Chapman et al. 1982a

8,218	Chapman et al. 1982a

Fargasova 1994a

4,781	Chapman et al. 1982a

5,678	Chapman et al. 1982a

1,700	Rehwoldt et al. 1973

162.6	Brown and Pascoe 1988


-------
Table la.

Continued

Species

Hardness
(mg/L as

Method Chemica CaCOO	

1

LC50 or EC50
(Total ue/L)b

Snail (embryo), S, U
Amnicola sp.

Snail (adult),	S, U

Amnicola sp.

Sna i1,	F, M

Aplexa hypnorum

Snail (adult), F, M, T
Aplexa hypnorum

Snail (adult),	S, M

Physa gyrina

Snail (immature), S, M
Physa gyrina

Mussel (juvenile), S, M

Utterbackia

imbecilis

Mussel (juvenile), S, M

Utterbackia

imbecilis

Mussel,	S, M, T

Utterbackia

imbecilis

Mussel,	S, M, T

Utterbackia

imbecilis

Mussel (juvenile) , S,M,T

Utterbackia

imbecilis

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

50
50

45.3

44.4
200
200
90

90

39

80-100

90

3,800
8,400
93
93
1 ,370
410
1 , 150

1 , 120

107

44

Mussel (juvenile) , S,M,T

Utterbackia

imbecilis

Mussel (juvenile) , S,M,T

Utterbackia

imbecilis

92

86

82

93.0

Mussel,

S, M, T

82

46.4

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

3,800

Rehwoldt et al. 1973

8,400

Rehwoldt et al. 1973

104.7

Hoicombe et al. 1984

107.3
257.8d
77. 15

106.0

77. 15

Phipps and Hoicombe
1985

Wier and Walter 1976

Wier and Walter 1976

566. 4e

Keller Unpublished

551 ,6e

Keller Unpublished

12. 14

Keller and Zam 1991

52.70

Keller and Zam 1991

21 .67

Keller Unpublished

39.33

48.38	30.50

25.57

Keller Unpublished

Keller Unpublished

Keller Unpublished


-------
Table la. Continued

Hardness

(mg/L as LC50 or EC50
Species	Method Chemica CaCOO	 (Total ug/L)b

Mussel,

Actinonaia

pectorosa

Mussel,

Anodonta
couplerana

Mussel,

Lampsi1 is
straminea
claibornensis

Mussel,

Lampsi1 is teres

Cladoceran,

Alona affinis

Cladoceran
(<24 hr),

Ceriodaphnia dubia

I, T
I, T
I, T

I, T
U
U

Cladoceran	R, M,

(<24 hr),

Ceriodaphnia dubia

Cladoceran	S, U

(<24 hr),

Ceriodaphnia dubia

Cadmium
nitrate

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

84
50
50

50
109
80-100

70-90

80-100

69
12
38

33
546
54

54.5

55.9

Cladoceran,
Ceriodaphnia
reticulata

S, U

45

66

Cladoceran
(<24 hr)
Ceriodaphnia
reticulata

S, U Cadmium
chloride

240

184

Cladoceran
(<6 hr)
Ceriodaphnia
reticulata

Cladoceran,
Daphnia magna

S, U Cadmium
chloride

S, U Cadmium
chloride

120

110

<1 ,6h

Cladoceran,

S, U Cadmium

45

65

LC50 or
LC50 or EC50 Adj .
EC50 (Diss. to Th=50
us/L)	(Total

ug/L)

36.93
12.00
38.00

33.00
213.5
26.60

30.94
27.53

74.93
27.80

38.31

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

30.73	Keller Unpublished

12.00	Keller Unpublished

38.00	Keller Unpublished

33.00	Keller Unpublished

213.5	Ghosh et al. 1990

Britton et al. 1996

Diamond et al. 1997

28.29	Lee et al. 1997

Mount and Norberg 1984

Elnabarawy et al. 1986

43.05	Hall et al. 1986

73.80

Anderson 1948
Biesinger and


-------
Table la. Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran
(<24 hr),
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

S, U

s, u
s, u

R,	M

S,	U

S,	U

S,	U

S, U
S, M, T
S, M, T

Cadmium
nitrate

Cadmium
nitrate

Cadmium
nitrate

Cadmium
Chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
sulfate

Cadmium
chloride

Cadmium
chloride

100
45
120
240

240
160-180
160-180

27.07
28.04
35. 13
30
118
28.3
178

1 ,880

3.6
(genotype A)

9.0

(genotype A-l)

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran
(<24 hr),
Daphnia magna

Cladoceran
(<24 hr),

S,
S,
S,
S,
S,

S,

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

160-180
160-180
160-180
160-180
160-180

160-180

9.0

(genotype A-2)

4.5

(genotype B)

27. 1

(genotype E)

115.9

(genotype S-l)

24 5
(Clone F)

129.4
(Clone S-l)

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

Reference

Canton and Adema 1978

Canton and Adema 1978

Canton and Adema 1978

13.01
134.0
9.855

Canton and Slooff 1982
Mount and Norberg 1984
Hall et al. 1986

26.89

Elnabarawy et al. 1986

284.0
0.8240

Khangarot and Ray
1989a

Baird et al. 1991

2.060

Baird et al. 1991

2.060
1 .030

Baird et al. 1991

Baird et al. 1991

6.203

Baird et al. 1991

26.53
5.608

Baird et al. 1991

Stuhlbacher et al.
1992

29.62

Stuhlbacher et al
1992


-------
Table la.

Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Cladoceran	S,

(<24 hr),

Daphnia magna

Cladoceran (3 d), S,
Daphnia magna

Cladoceran (3 d), S,
Daphnia magna

Cladoceran (6 d), S,
Daphnia magna

Cladoceran (6 d), S,
Daphnia magna

Cladoceran	S,

(10 d),

Daphnia magna

Cladoceran	S,

(10 d),

Daphnia magna

Cladoceran	S,

(20 d),

Daphnia magna

Cladoceran	S,

(20 d),

Daphnia magna

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

T Cadmium
chloride

10

160-180
160-180
160-180
160-180
160-180

160-180

160-180

160-180

37.9

25 4
(Clone F)

228.8
(Clone S-l)

49. 1
(Clone F)

250. 1
(Clone S-l)

131 .2

(Clone F)

319.3
(Clone S-l)

139.9
(Clone F)

326.3
(Clone S-l)

Cladoceran
(30 d),

Daphnia magna

Cladoceran
(30 d),

Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran
(<24 hr),
Daphnia magna

S, M, T Cadmium
chloride

S, M, T Cadmium
chloride

S, U

s, u
s, u

Cadmium
chloride

Cadmium
sulfate

Cadmium
chloride

160-180

160-180

250

160-180

146.7
(Clone F)

355.3
(Clone S-l)

360

280

9.5

Cladoceran,

S, M, T Cadmium

46. 1

112

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

263.5

Hickey and Vickers
1992

5.814
52.37
11 .24
57.24
30.03

Stuhlbacher et al.
1993

Stuhlbacher et al.
1993

Stuhlbacher et al.
1993

Stuhlbacher et al.
1993

Stuhlbacher et al.
1993

73.08

Stuhlbacher et al.
1993

32.02

Stuhlbacher et al.
1993

74.69

Stuhlbacher et al.
1993

33.58

Stuhlbacher et al.
1993

81 .32

Stuhlbacher et al.
1993

40.27

Fargasova 1994a
Crisinel et al. 1994

2. 174

Guilhermino et al.
1996

104

123.5

Barata et al. 1998


-------
Table la. Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
(<24 hr)
Daphnia magna

Cladoceran,
(<24 hr)
Daphnia magna

Cladoceran,
(<24 hr)
Daphnia magna

Cladoceran,
(<24 hr)
Daphnia magna

S,
S,
S,
S,
S,
S,

S,

S,

S,

T Cadmium
sulfate

T Cadmium
sulfate

T Cadmium
sulfate

T Cadmium
sulfate

T Cadmium
sulfate

T Cadmium
Chloride

T Cadmium
Chloride

T Cadmium
Chloride

T Cadmium
Chloride

90.7
179
46. 1
90.7
179
51

104

105
197

106
(clone S-l)

233
(clone S-l)

30. 1
(clone A)

23.4
(clone A)

23.6
(clone A)

9.9

33

34

63

Cladoceran,
(<24 hr)
Daphnia magna

Cladoceran,
(<24 hr)
Daphnia magna

Cladoceran,
Daphnia pulex

Cladoceran,
Daphnia pulex

Cladoceran,
Daphnia pulex

Cladoceran

S, M, T Cadmium
Chloride

F, M, T Cadmium
Chloride

S, U

s, u
s, u

Cadmium
nitrate

Cadmium
chloride

209

130

S, U Cadmium

57
45
240

49

58

93.45

47

68

319

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

91 .4

51 .72

179

50. 12

27.8

33. 19

20.2
18. 1

11 .42
5.076

9.667

13.65

13.91

12.07

8.745

18.34

18.34

40. 14
77.20
48. 19

Reference

Barata et al.	1998

Barata et al.	1998

Barata et al.	1998

Barata et al.	1998

Barata et al.	1998

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Attar and Maly 1982

Canton and Adema 1978
Bertram and Hart 1979
Mount and Norberg 1984
Elnabarawy et al. 1986


-------
Table la. Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Cladoceran	S, U Cadmium	120

(<24 hr),	chloride
Daphnia pulex

Cladoceran	S, M, T Cadmium	53.5

(<24 hr),	chloride
Daphnia pulex

Cladoceran,	S, U Cadmium	80-90

Daphnia pulex	chloride

Cladoceran,	S, U Cadmium	80-84

Moina macrocopa	chloride

Cladoceran,	S, M Cadmium	11.1

Simocephalus	chloride
serrulatus

Cladoceran,	S, M Cadmium	39-48

Simocephalus	chloride
serrulatus

Cladoceran,	S, U - 45

Simocepha1 us

vetulus

Copepod,	S, U Cadmium	109

Cyclops varicans	nitrate

89.4

70. 1

78.3
71 .25
7.0

24.5
24
493

Isopod,	F, M

Asel1 us bicrenata

Isopod,	F, M

Lirceus alabamae

Amphipod (4 mm), R, U

Crangonyx

pseudogracilis

Amphipod,	S, M

Gammarus

pseudolimnaeus

Amphipod,	S, U

Gammarus sp.

Crayfish (1.8 g), F, M,
Orconectes immunis

Crayfish,	S, M

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium

220
152
50

39-48

50
44.4

2, 129B
150B
1 ,700

68.3

70
>10,200
400

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

Reference

31 .13

Hall et al. 1986

64.61

Stackhouse and Benson
1988

41 .31

48. 12

Roux et al. 1993

39.26

42.92

39.26	Hatakeyama and Yasuno

1981b

Giesy et al. 1977

29. 14

35.36

Spehar and Carlson
1984a,b

27.25

27.25

Mount and Norberg 1984

192.8

192.8

Ghosh et al. 1990

357.2

39.29

357.2

39.29

Bosnak and Morgan 1981
Bosnak and Morgan 1981

1 .700

1 ,700

Martin and Holdich
1986

81 .91

81 .91

Spehar and Carlson
1984a,b

70.00

Rehwoldt et al. 1973

>11,769

>11,769

Phipps and Hoicombe
1985

Boutet and


-------
Table la. Continued

Species

Hardness
(mg/L as

Method Chemica CaCOO	

1

LC50 or EC50
(Total ue/L)b

Crayfish,	F, M, T Cadmium

Orconectes virilis	chloride

Crayfish	S, M Cadmium

(juvenile),	chloride

Procambarus
clarkii

Mayfly,	F, M Cadmium

Ephemerella	chloride

grandis

Mayfly,	S, U Cadmium

Ephemere11a	su1 fate

grandis

Damsel fly,	S, U

(Unidentified)

Stonefly,	F, M Cadmium

Pteronarcella	chloride

badia

26

30

44

50

6, 100
1 ,040

28,000

2,000

8, 100
18,000

Caddisfly,	S, U

(Unidentified)

Midge,	S, U

Chironomus sp.

Midge	R, M, r

(4th instar) ,

Chironomus
ripari us

Midge (10-12 mm), F, M,
Chironomus
ripari us

Bryozoan,
Pectinatella
magnifica

Bryozoan,
Lophopodella
carteri

Bryozoan,
Plumatella
emarginata

S, U

S, U

S, U

Cadmium
chloride

50
50
124

152
190-220
190-220
190-220

3,400
1 ,200
140,000

300,000
700
150
1 ,090

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

13.413

13,413

lirenda 1986

1 ,925

1,925	Naqvi and Howell 1993

Clubb et al. 1975

2.333

2,333	Warnick and Bell 1969

8. 100

8,100	Rehwoldt et al. 1973

Clubb et al. 1975

3.400

3,400	Rehwoldt et al. 1973

1 ,200
46,865

Rehwoldt et al. 1973

Pascoe et al. 1990

78,579

78,579	Williams et al. 1985

127.9

127.9	Pardue and Wood 1980

27.40

27.40	Pardue and Wood 1980

199. 1

199.1	Pardue and Wood 1980


-------
Table la. Continued

Hardness
(mg/L as

Species	Method Chemica CaCOO

American eel,	S, M	-	55

Anguilia rostrata

Coho salmon	S, U Cadmium	90

(1 year),	chloride

Oncorhynchus
kisutch

Coho salmon	S, U Cadmium	41

(juvenile),	chloride

Oncorhynchus
kisutch

Coho salmon	F, M Cadmium	23

(adult),	chloride

Oncorhynchus
kisutch

Coho salmon	F, M Cadmium	23

(parr),	chloride

Oncorhynchus
kisutch

Chinook salmon (9- S, U Cadmium	211

13 wk),	chloride

Oncorhynchus
tshawytscha

Chinook salmon S, U Cadmium	343

(18-21 wk),	chloride

Oncorhynchus
tshawytscha

Chinook salmon F, M Cadmium	23

(alevin),	chloride

Oncorhynchus
tshawytscha

Chinook salmon F, M Cadmium	23

(swim-up) ,	chloride

Oncorhynchus
tshawytscha

Chinook salmon F, M Cadmium	23

(parr),	chloride

Oncorhynchus
tshawytscha

Chinook salmon

F,

Cadmium

23

LC50 or

LC50 or EC50 LC50 or	EC50 Adj .

(Total ue/L)b EC50 (Diss.	to Th=50

us/L)	(Total
ug/L)

820	731.0

10.4 -	5.122

3.4	-	4.318
17.5d -	44.60d

2.7	6.882

26 -	4.587

57 -	5.600

>26d -	>66.27d

1.8	4.588

3.5	8.921
>2.9	>7.392

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

731.0	Rehwoldt et al. 1973

Lorz et al. 1978

Buhl and Hamilton 1991

Chapman 1975

6.882	Chapman 1975

Hamilton and Buhl 1990

Hamilton and Buhl 1990

Chapman 1975, 1978

Chapman 1975, 1978

Chapman 1975, 1978

Chapman 1975, 1978


-------
Table la.

Continued

Species

Chinook salmon
(juvenile) ,
Oncorhynchus
tshawytscha

Chinook salmon
(juvenile) ,
Oncorhynchus
tshawytscha

Ra i nbow trout,

Oncorhynchus

mykiss

Ra i nbow trout,

Oncorhynchus

mykiss

Ra i nbow trout,

Oncorhynchus

mykiss

Ra i nbow trout,

Oncorhynchus

mykiss

Rainbow trout
(juvenile) ,
Oncorhynchus
mykiss

Rainbow trout
(alevin),
Oncorhynchus
mykiss

Rainbow trout
(swim-up),
Oncorhynchus
mykiss

Rainbow trout
(parr),
Oncorhynchus
mykiss

Rainbow trout

Hardness
(mg/L as
Method Chemica CaCO/)

1

F, M Cadmium	25

chloride

F, M Cadmium	20-22

sulfate

S, U

s, u

S, U Cadmium
chloride

S, M Cadmium	39-48

chloride

S, U Cadmium	41

chloride

F, M Cadmium	23

chloride

F, M Cadmium	23

chloride

F, M Cadmium	23

chloride

F, M Cadmium	23

LC50 or EC50 LC50 or
(Total ue/L)b EC50 (Diss.

ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

1 .41

3.250

Chapman 1982

1 . 1

3. 129

4.984

Finlayson and Verrue
1982

Kumada et al. 1973

Kumada et al. 1973

6.0	-	-	-	Kumada et al. 1980

2.3	-	2.720	-	Spehar and Carlson

1984a,b

1.5	-	1.905	-	Buhl and Hamilton 1991

>27d	-	>68.82d	-	Chapman 1975, 1978

1.3	-	3.314	-	Chapman 1975, 1978

1.0	2.549	Chapman 1978

4.1	10.45	Chapman 1975


-------
Table la. Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Rainbow trout
(2 mo),
Oncorhynchus
mykiss

Ra i nbow trout,

Oncorhynchus

mykiss

F,

F,

Rainbow trout (8.8F,
g) .

Oncorhynchus
mykiss

Cadmium
nitrate

Cadmium
sulfate

Cadmium
chloride

31

44.4

6.6

1 .75

Rainbow trout F, M, T
(fry),

Oncorhynchus
mykiss

Brown trout,	S, M

Salmo trutta

Brook trout,	S, M

Salve Iinus
fontinalis

Brook trout,	F, M

Salve Iinus
fontinalis

Goldfish,	S, U

Carassius auratus

Goldfish,	S, M

Carassius auratus

Goldfish,	S, M

Carassius auratus

Goldfish (8.8 g), F, M, T
Carassius auratus

Common carp	R, U

(yolk absorbed),

Cyprinus carpio

Cadmium
chloride

Cadmium
chloride

Cadmium
sulfate

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

9.2

39-48
42

47.4

20
20
140
44.4

<0.5

1.4
<1.5

5,080

2,340
2, 130
46,800
748
140

Common carp

R, U

Cadmium

2,840

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

Hale 1977

3. 113

Davies 1976

3.462

Phipps and Hoicombe
1985

<3.844	4.296	Cusimano et al. 1986

1 .656	1.656	Spehar and Carlson

1984a,b

<1.851	-	Carroll et al. 1979

5,418	1	Hoicombe et al. 1983

7,058	-	Pickering and

Henderson 1966

6,425	-	McCarty et al. 1978

13,535	-	McCarty et al. 1978

863. 1	863.1	Phipps and Holcombe

1985

Ramesha et al. 1997
Ramesha et al. 1997


-------
Table la. Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Common carp	R, U

(advanced fry),

Cyprinus carpio

Common carp	R, U

(fingerling),

Cyprinus carpio

Common carp (fry), S, U
Cyprinus carpio

Common carp	S, U

(fingerling),

Cyprinus carpio

Cadmium
chloride

Cadmium
chloride

Cadmium
nitrate

Cadmium
nitrate

100

100

2,910

4,560

4,300d
17, 100d

Common carp,	S, M	-	55	240 (at 28NC)

Cyprinus carpio

Red shiner	S, M, T Cadmium	85.5	6,620

(0.8 - 2.0g)	sulfate

No trop is lutrensis

Fathead minnow, S, U Cadmium	20	l,050d

Pimephales	chloride

prome1 as

Fathead minnow, S, U Cadmium	20	630'1

Pimephales	chloride

prome1 as

Fathead minnow, S, U Cadmium	360	72,600'1

Pimephales	chloride

prome1 as

Fathead minnow, S, U Cadmium	360	73,500'1

Pimephales	chloride

prome1 as

Fathead minnow, F, M Cadmium	201	11,200d

Pimephales	sulfate

prome1 as

Fathead minnow, F, M Cadmium	201	12,000'1

Pimephales	sulfate

prome1 as

Fathead minnow, F, M Cadmium	201	6,400d

Pimephales	sulfate

prome1 as

Fathead minnow,

F,

Cadmium

201

2,000'1

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

Reference

Ramesha et al. 1997

Ramesha et al. 1997

1 ,865d
7,418d

Suresh et al. 1993a

Suresh et al. 1993a

214.0	214.0	Rehwoldt et al. 1972

3.468	3,468	Carrier and Beitinger

1988a

3,167d	-	Pickering and

Henderson 1966

1 ,9(1(1''	-	Pickering and

Henderson 1966

6,729d	-	Pickering and

Henderson 1966

6,812d	-	Pickering and

Henderson 1966

2,095d	-	Pickering and Gast

1972

2,245d	-	Pickering and Gast

1972

1 ,197d	-	Pickering and Gast

1972

374.ld	-	Pickering and Gast


-------
Table la.

Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Fathead minnow,
Pimephales
prome1 as

Fathead minnow
(fry),
Pimephales
prome1 as

Cadmium
sulfate

Cadmium
chloride

201

40

4,500d

21 .5

Fathead minnow
(fry),
Pimephales
prome1 as

Fathead minnow
(fry),
Pimephales
prome1 as

Fathead minnow
(fry),
Pimephales
prome1 as

Fathead minnow
(fry),
Pimephales
prome1 as

Fathead minnow
(fry),
Pimephales
prome1 as

Fathead minnow
(adult),
Pimephales
prome1 as

Fathead minnow
(adult),
Pimephales
prome1 as

Fathead minnow
(adult),
Pimephales
prome1 as

Fathead minnow

Cadmium	48

chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium

39

45

Cadmium	47

chloride

Cadmium	44

chloride

Cadmium	103

chloride

Cadmium	103

chloride

103

254-271

11.7

19.3

42.4

54.2

29.0

3,060d

2,900d

3, 100d

7, 160d

Species Mean
LC50 or Acute Value
LC50 or EC50 Adj . at TH=50
EC50 (Diss. to Th=50	(Total Reference

us/L)	(Total	us/L)c

ug/L)

841.7d	-	Pickering and Gast

1972

28.13	-	Spehar 1982

12.29	-	Spehar 1982

26.04	-	Spehar 1982

48.14	-	Spehar 1982

58.40	-	Spehar 1982

33.83	-	Spehar 1982

1 ,281d	-	Birge et al. 1983

1,214d	-	Birge et al. 1983

1,298d	-	Birge et al. 1983

968. 7d	-	Birge et al. 1983


-------
Table la.

Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Fathead minnow,
Pimephales
prome1 as

S,

Cadmium
chloride

39-48

1 ,280d

Fathead minnow S, U Cadmium	120

(14-30 d),	chloride

Pimephales
prome1 as

Fathead minnow S, M, T Cadmium	85.5

(0.8 - 2.0 g)	sulfate

Pimephales
prome1 as

Fathead minnow S, U Cadmium	60

(<24 hr),	nitrate

Pimephales
prome1 as

Fathead minnow (1- S, U Cadmium	60

2 d),	nitrate

Pimephales
prome1 as

Fathead minnow S, M, T Cadmium 280-300
(<24 hr),	nitrate

Pimephales
prome1 as

Fathead minnow S, M, T Cadmium	141

(juvenile),	chloride

Pimephales
prome1 as

Fathead minnow F, M, T Cadmium	44.4

(0.6 g),	chloride

Pimephales
prome1 as

Fathead minnow (30F, M, T Cadmium	44

d),	nitrate

Pimephales
prome1 as

Colorado squawfish S, U Cadmium	199

(larva),	chloride

Ptychochei1 us
lucius

>150h

3,580d

210

180

73 (pH=6-6.5)
60 (pH=7-7.5)
65 (pH=8-8.8)

3,465d

1 ,500d

13.2

78

Species Mean
LC50 or Acute Value
LC50 or EC50 Adj . at TH=50
EC50 (Diss. to Th=50	(Total Reference

us/L)	(Total	us/L)c

ug/L)

1 ,493d

Spehar and Carlson
1984a,b

>52.24h

Hall et al. 1986

1 ,876d

Carrier and Beitinger
1988a

168.6

Rifici et al. 1996

144.5

Rifici et al. 1996

8.780
7.216
7.817

Schubauer-Berigan et
al. 1993

2,509

993. 6d

Sherman et al. 1987

1 ,731d

Phipps and Hoicombe
1985

15.40

15.40	Spehar and Fiandt 1986

14.77

Buhl 1997


-------
Table la.

Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Colorado squawfish S, U Cadmium	199

(juvenile),	chloride

Ptychochei1 us
lucius

Northern pike	F, M Cadmium	20-30

minnow (juvenile),	chloride

Ptychochei1 us
oregonensis

Northern pike	F, M Cadmium	20-30

minnow (juvenile),	chloride

Ptychochei1 us
oregonensis

Bonytail (larva), S, U Cadmium	199

Gila elegans	chloride

Bonytail	S, U Cadmium	199

(juvenile),	chloride

Gila elegans

White sucker,	F, M Cadmium	18

Catostomus	chloride

commersoni

Razorback sucker S, U Cadmium	199

(larva), Xyrauchen	chloride

texanus

Razorback sucker S, U Cadmium	199

(juvenile),	chloride

Xyrauchen texanus

Channel catfish F, M, T Cadmium	44.4

(7.4 g),	chloride

Ictalurus
punctatus

Banded killifish, S, M	-	55

Fundulus diaphanus

108

1 ,092

1 , 104

148

168

1 , 110

139

160

4,480

110

Flagfish,
Jordanella
floridae

F,

Cadmium
chloride

44

2,500

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

20.45

17.38

Buhl 1997

2.517

Andros and Garton 1980

2.545

2,531

Andros and Garton 1980

28.02

Buhl 1997

31 .81

29.85

Buhl 1997

3.801

3,801

Duncan and Klaverkamp
1983

26.32

Buhl 1997

30.29

28.23

Buhl 1997

5, 169

5, 169

Phipps and Hoicombe
1985

98.07

98.07	Rehwoldt et al. 1972

2.916

2,916	Spehar 1976a,b


-------
Table la. Continued

Hardness

(mg/L as LC50 or EC50
Species	Method Chemica CaCOO	 (Total ug/L)b

Mosquitofish,	F, M Cadmium	11.1

Gambusia affinis	chloride

Mosquitofish,	F, M Cadmium	11.1

Gambusia affinis	chloride

Guppy,	S, U Cadmium	20

Poecilia	chloride

reticulata

Threespine	S, U Cadmium	115

stickleback,	chloride

Gasterosteus
aculeatus

Threespine	R, M Cadmium	103-111

stickleback,	chloride

Gasterosteus
aculeatus

900
2,200
1 ,270

6,500
23,000

White perch,	S, M	-	55

Morone ameri carta

Striped bass,	S, M	-	55

Morone saxatil is

Striped bass	S, U Cadmium	34.5

(larva),	chloride

Morone saxatil is

Striped bass	S, U Cadmium	34.5

(fingerling),	chloride

Morone saxatil is

Striped bass	S, U Cadmium	40

(63 d),	chloride

Morone saxatil is

Striped bass	S, U Cadmium	285

(63 d),	chloride

Morone saxatil is

Green sunfish,	S, U Cadmium	20

Lepomis cyanellus	chloride

Green sunfish,	S, U Cadmium	360

Lepomis cyanellus	chloride

8,400
1 , 100
1

10

2,840
66,000

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50

(Total Reference
ug/L)c

5.519

13,490

3,831

Giesy et al. 1977

8,628	Giesy et al. 1977

3,831	Pickering and

Henderson 1966

2.383

Pascoe and Cram 1977

9. 196

4,681

Pascoe and Mattey 1977

7,489

7,489	Rehwoldt et al. 1972

980. 7e

Rehwoldt et al. 1972

1 .564e

Hughes 1973

3. 128e

Hughes 1973

5.234

Palawski et al. 1985

1 .228

2.535

Palawski et al. 1985

8,566
6, 117

Pickering and
Henderson 1966

Pickering and
Henderson 1966


-------
Table 1

Continued

Species

Method Chemica

= I

Hardness
(mg/L as
CaCOj)	

LC50 or EC50
(Total ue/L)b

Green sunfish	S, M, T Cadmium	85.5

(juvenile),	sulfate
Lepomis cyane11 us

Green sunfish,	F, M Cadmium	335

Lepomis cyanellus	chloride

Pumpkinseed,	S, M - 55
Lepomis gibbosus

Bluegill,	S, U Cadmium	20

Lepomis	chloride
macrochirus

Bluegill,	S, M Cadmium	18

Lepomis	chloride
macrochirus

Bluegill,	S, M Cadmium	18

Lepomis	chloride
macrochirus

Bluegill,	S, M Cadmium	18

Lepomis	chloride
macrochirus

Bluegill,	F, M Cadmium	207

Lepomis	chloride
macrochirus

Bluegill (1.0 g), F, M, T Cadmium	44.4

Lepomis	chloride
macrochirus

Tilapia	R, U Cadmium	28.4

Oreochromis	chloride
mossambica

African clawed	R, U Cadmium	112-120

frog,	chloride
Xenopus laevis

Salamander	F, M, T Cadmium	45

(3 mo larva),	chloride
Ambystoma gracHe

11,520

20,500
1 ,500
1 ,940

3,860

2,800

2,260

21,100

6,470

6,000'1

3,597

468.4

LC50 or
EC50 (Diss.
ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

Reference

6,036

Carrier and Beitinger
1988b

2,072

2,072

Jude 1973

1 ,337

1 ,337

Rehwoldt et al. 1972

5,852

Pickering and
Henderson 1966

13,219

Bishop and Mcintosh
1981

9,589

Bishop and Mcintosh
1981

7,740

Bishop and Mcintosh
1981

3.809

Eaton 1980

7.466

5,333

Phipps and Hoicombe
1985

11,861

11,861

Gaikwad 1989

1 ,305

1,305	Sunderman et al. 1991

531 .8

531 .8

Nebeker et al. 1995


-------
Table la. Continued

Species

Hardness
(mg/L as

Method Chemica CaCOO	

1

LC50 or EC50 LC50 or
(Total ue/L)b EC50 (Diss.

ug/L)

LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)

Species Mean
Acute Value
at TH=50
(Total
ug/L)c

Reference

Table la. Continued

Species

Method3 Chemical

Salinity
(g/kg)

LC50
or EC50
(Total ug/L)b

LC50 or EC50
(Diss. ug/L)

Species Mean
Acute Value

(Total ug/L) Reference

SALTWATER SPECIES

Polychaete worm (adult),	S, U Cadmium

Neanthes arenaceodentata	chloride

Polychaete worm	S, U Cadmium

(juvenile),	chloride
Neanthes arenaceodentata

Polychaete worm, Neanthes	S, U Cadmium

arenaceodentata	chloride

Polychaete worm,	S, U Cadmium

Nereis grubei	chloride

Sand worm,	S, U Cadmium

Nereis virens	chloride

Sand worm,	S, U Cadmium

Nereis virens	chloride

Polychaete worm (adult),	S, U Cadmium

Capitella capitata	chloride

Polychaete worm,	S, U Cadmium

Capitella capitata	chloride

Polychaete worm (larva),	S, U Cadmium

Capitella capitata	chloride

Polychaete worm,	S, U Cadmium

Pectinaria californiensis	chloride

Oligochaete worm,	R, U Cadmium

Limnodriloides verrucosus	sulfate

Oligochaete worm,	R, U Cadmium

Monopylephorus	sulfate
cuticulatus

Oligochaete worm,	R, U Cadmium

Tubificoides gabriellae	sulfate

Oyster dri11,

S, U Cadmium

12.000
12.500

14.100
4.700
11.000
9.300
7,500d
2,800d

200
2.600
10.000
135.000

24.000
6,600

Reish et al. 1976
Reish et al. 1976

12,836	Reish and LeMay 1991

4,700	Reish and LeMay 1991

Eisler 1971
10,114	Eisler and Hennekey 1977

Reish et al. 1976
Reish and LeMay 1991
200	Reish et al. 1976

2,600	Reish and LeMay 1991

10,000	Chapman et al. 1982a

135,000	Chapman et al. 1982a

24,000	Chapman et al. 1982a

6,600	Eisler 1971


-------
Mud sna i1,	S, U

Nassarius obsoletus

Mud sna i1,	S, U

Nassarius obsoletus

Blue mussel,	S, U

Mytilus edulis

Blue mussel,	S, M

Mytilus edulis

Blue mussel,	F, M

Mytilus edulis

Blue mussel,	F, M

Mytilus edulis

Blue mussel (embryo),	S, U

Mytilus edulis

Blue Mussel (juvenile), R, U
Mytilus edulis

Bay scallop (juvenile), S, U
Argopecten irradians

Pacific oyster (embryo), S, U
Crassostrea gigas

Pacific oyster (larva), S, U
Crassostrea gigas

Eastern oyster (larva), S, U
Crassostrea virginica

Soft-shell clam,	S, U

Mya arenaria

Soft-shell clam,	S, U

Mya arenaria

Soft-shell clam,	S, U

Mya arenaria

Squid (larva),	S, M,

Loligo opalescens

Copepod,	S, U

Pseudodiaptomus coronatus

Copepod,	S, U

Eurytemora affinis

Copepod (naupilus),	S, U

Eurytemora affinis

Copepod,	S, U

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium

10.500	Eisler 1971

35.000	-	19,170	Eisler and Hennekey 1977

25,000d	-	-	Eisler 1971

1,620d	-	-	Ahsanu11ah 1976

3,600d	-	-	Ahsanu11ah 1976

4,300d	-	-	Ahsanu11ah 1976

1.200	-	-	Martin et al. 1981

960	-	1,073	Nelson et al. 1988

1.480	-	1,480	Nelson et al. 1976

611	-	-	Martin et al. 1981

85	-	227.9	Watling 1982

3.800	-	3,800	Calabrese et al. 1973

2.200	Eisler 1971

2.500	-	-	Eisler and Hennekey 1977

850	-	1,672	Eisler 1977

>10.200	>10,200	Dinnel et al. 1989

1.708	1,708	Gentile 1982

1,080d	-	-	Gentile 1982

147.7	-	147.7	Sullivan et al. 1983

144	-	144	Gentile 1982


-------
Table la. Continued

Salinity

Species	Method3 Chemica (a/kg)

1

Copepod,
Acartia tonsa

s,

U

Cadmium
chloride

-

Copepod,
Acartia tonsa

s,

u

Cadmium
chloride

-

Copepod,
Acartia tonsa

s,

u

Cadmium
chloride

-

Copepod,
Acartia tonsa

s,

u

Cadmium
chloride

-

Copepod (adult),
Acartia tonsa

s,

u

Cadmium
chloride

15

Copepod (adult),
Acartia tonsa

s,

u

Cadmium
chloride

20

Copepod (adult),
Acartia tonsa

s,

u

Cadmium
chloride

20

Copepod,

Amphiascus tenuiremis

S, M

[, T

Cadmium
nitrate

30.7

Copepod,

Ni tocra spinipes

s,

u

Cadmium
chloride

-

Copepod,

Ni tocra spinipes

F,

u

Cadmium
chloride

3

Copepod,

Ni tocra spinipes

F,

u

Cadmium
chloride

7

Copepod,

Ni tocra spinipes

F,

u

Cadmium
chloride

15

LC50	Species Mean

or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c Reference

90	-	-	Sosnowski and Gentile 1978

122	-	-	Sosnowski and Gentile 1978

220	-	-	Sosnowski and Gentile 1978

337	-	-	Sosnowski and Gentile 1978

93 (18NC)	-	-	Toudal and Riisgard 1987

151 (13NC)	-	-	Toudal and Riisgard 1987

29 (21NC)	-	118.7	Toudal and Riisgard 1987

224	-	224	Green et al. 1993

1.800	-	-	Bengtsson 1978

430	-	-	Bengtsson and Bergstrom

1987

660	-	-	Bengtsson and Bergstrom

1987

780	-	794.5	Bengtsson and Bergstrom

1987


-------
Table la. Continued

Salinity

Species

Method3

Chemica
I

(e/ke)

Mysid (7 d),
Americamysis bahia

S, M,
D

T,

Cadmium
chloride

6

Mysid (7 d),
Americamysis bahia

S, M,
D

T,

Cadmium
chloride

14

Mysid (7 d),
Americamysis bahia

S, M,
D

T,

Cadmium
chloride

22

Mysid (7 d),
Americamysis bahia

S, M,
D

T,

Cadmium
chloride

30

Mysid (7 d),
Americamysis bahia

S, M,
D

T,

Cadmium
chloride

38

Mysid (<24 hr),
Americamysis bahia

S, M

, T

-

10

Mysid (<24 hr),
Americamysis bahia

S, M

, T

-

30

Mysid,

Americamysis bahia

F,

M

Cadmium
chloride

15-23

Mysid,

Americamysis bahia

F,

M

Cadmium
chloride

30

Mysid,

Mysidopsis bigelowi

F,

M

Cadmium
chloride

30

Iosopd,
Jaeropsis sp.

s,

U

Cadmium
chloride

35

Isopod,

Limnoria tripunctata

s,

U

Cadmium
chloride

35

Amphipod,

Ampelisca abdita

S, M

, T

Cadmium
chloride

28

Amphipod (adult),
Ampelisca abdita

F,

M

Cadmium
chloride

-

Amphipod (adult),

Marinogammarus obtusatus

s,

M

Cadmium
chloride

-

Amphipod (young),

Marinogammarus obtusatus

s,

M

Cadmium
chloride

-

LC50
or EC50
(Total ue/L)b

Species Mean
LC50 or EC50 Acute Value
(Diss. us/L) (Total us/L)c

Reference

14.7	2.8 -	DeLisle and Roberts 1988

38.0	3.6 -	DeLisle and Roberts 1988

70.4	4.1	-	DeLisle and Roberts 1988

77.3	2.9 -	DeLisle and Roberts 1988

90.3	2.3 -	DeLisle and Roberts 1988

30.9 (20NC)	- -	Voyer and Modica 1990
<11.1 (30NC)

82.0 (20NC)	- -	Voyer and Modica 1990
32.8 (25NC)

<11.1 (30NC)

15.5	-	-	Nimmo et al. 1977a

110	41.29	Gentile et al. 1982;

Lussier et al. Manuscript

110	110	Gentile et al. 1982

410.0	410.0	Hong and Reish 1987

7.120	7,120	Hong and Reish 1987

400	- -	Redmond et al. 1994

2.900	- 2,900	Scott et al. Manuscript

13,000d	- -	Wright and Frain 1981

3.500	3,500	Wright and Frain 1981


-------
Table la. Continued

Species

Amphipod,

Chelura terebrans

Amphipod,

Corophium insidiosum

Amphipod (8-12 mm),
Corophium insidiosum

Amphipod (juvenile),
Diporeia spp.

Amphipod,

Elasmopus bampo

Amphipod (8-12 mm),
Elasmopus bampo

Amphipod (3-5 mm),
Eohaustorius estuarius

Amphipod,

Grandidierella japonica

Amphipod (500 ,«in) ,
Leptocheirus plumulosus

Amphipod (700 ,«in) ,
Leptocheirus plumulosus

Amphipod (1,000 //in) ,
Leptocheirus plumulosus

Pink shrimp (subadult),
Penaeus duorarum

Pink shrimp
(2nd post larva) ,

Penaeus duorarum

Grass shrimp (adult),
Palaemonetes pugio

Method3

Chemica
I

Salinity
(s/ks)

s,

u

Cadmium
chloride

35

s,

u

Cadmium
chloride

35

s,

u

Cadmium
chloride

-

S, M

[, T

Cadmium
chloride

20 (4NC)
20 (10NC)
20 (15NC)

s,

u

Cadmium
chloride

35

s,

u

Cadmium
chloride

-

R, M

[, T

Cadmium
chloride

30

s,

u

Cadmium
chloride

35

s,

u

Cadmium
chloride

8

s,

u

Cadmium
chloride

8

s,

u

Cadmium
chloride

8

F,

M

Cadmium
chloride

-

s,

u

cadmium
chloride

25

s,

u

Cadmium
chloride

20

LC50	Species Mean

or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c

Reference

630

1 .270

680

49,400f
17,500f
6.700

570

900

41.900

(held lid before
testing)
36.100
(held 17 d before
testing)
14.500
(held 121 d before
testing)

1 . 170

360

650

880

3,500d

310.5

1 .830

(Big Sheepshead
Creek)

630	Hong and Reish 1987

Hong and Reish 1987
929.3	Reish 1993

Gossiaux et al. 1992

6,700

Hong and Reish 1987
716.2	Reish 1993

Meador 1993

27,992

1,170	Hong and Reish 1987

McGee et al. 1998
McGee et al. 1998

590.5	McGee et al . 1998

Nimmo et al. 1977b
310.5	Cripe 1994

Khan et al. 1988


-------
Table la. Continued

Species

Method3 Chemica
1

Salinity
(g/kg)

Grass shrimp (adult),	S, U

Palaemonetes pugio

Grass shrimp (juvenile). S, M,
Palaemonetes pugio

Grass shrimp,	S, U

Palaemonetes vulgaris

Grass shrimp,	F, M

Palaemonetes vulgaris

Sand shrimp,	S, U

Crangon septemspinosa

American Lobster (larva), S, U
Homarus americanus

Hermit crab,	S, U

Pagurus longicarpus

Hermit crab,	S, U

Pagurus longicarpus

Rock crab (zoea),	F, M

Cancer irroratus

Dungeness crab (zoea), S, U
Cancer magister

Dungeness crab (zoea), S, M,
Cancer magister

Blue crab (juvenile),	S, U

Cal1inectes sapidus

Blue crab (juvenile),	S, U

Cal1inectes sapidus

Green crab,	S, U

Carcinus maenas

Fiddler crab,	S, U

Uca pugilator

Fiddler crab,	S, U

Uca pugilator

Fiddler crab,	S, U

Uca pugilator

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

20

10

30
35
15

20
30
10

Fiddler crab,

S, U

Cadmium

LC50	Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c Reference

3 . 280	Khan et al. 1988
(Pine Creek)

1.300	- 1,983	Burton and Fisher 1990

420	- -	Eisler 1971

760	- 760	Nimmo et al. 1977b

320	320	Eisler 1971

78	- 78	Johnson and Gentile 1979

320	Eisler 1971

I.300	-	645.0	Eisler and Hennekey 1977
250	- 250	Johns and Miller 1982
247	- -	Martin et al. 1981

200	222.3	Dinnel et al. 1989

II.600	-	-	Frank and Robertson 1979
4.700	- 7,384	Frank and Robertson 1979
4.100	4,100	Eisler 1971

46.600	0 'Hara 1973a

37.000	0 Hara 1973a

32.300	0 Hara 1973a

23.300	0 Hara 1973a


-------
Table la. Continued

Species

Method3 Chemica
1

Salinity
(g/kg)

Fiddler crab,	S, U Cadmium

Uca pugilator	chloride

Fiddler crab,	S, U Cadmium

Uca pugilator	chloride

Starfish,	S, U Cadmium

Asterias forbesi	chloride

Starfish,	S, U Cadmium

Asterias forbesi	chloride

Green sea urchin	S, M, T Cadmium	30

(embryo),	chloride
Strongylocentrotus
droebachiensis

Purple sea urchin	S, M, T Cadmium	30

(embryo),	chloride
Strongylocentrotus
purpuratus

Sand dollar (embryo),	S, M, T Cadmium	30

Dendraster excentricus	chloride

Coho salmon (smolt),	F, M, T Cadmium	28.3

Oncorhynchus kisutch	chloride

Sheepshead minnow,	S, U Cadmium
Cyprinodon variegatus chloride

Mummichog (adult),	S, U Cadmium
Fundulus heteroclitus chloride

Mummichog (juvenile),	S, U Cadmium	20

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium	20

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium	20

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium	10

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium	10

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium

Fundulus heteroclitus	chloride

Mummichog (juvenile),	S, U Cadmium

32

32

LC50	Species Mean

or EC50	LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c

10.400

6.800	21,238
820

7.100	2,413

1.800	1,800

500	500

7.400	7,400

1.500	1,500

50.000	50,000

49,000
114,000
92,000
78,000
73,000
63,000

31,000

Reference

0 'Hara 1973a
0 'Hara 1973a
Eisler 1971

Eisler and Hennekey 1977
Dinnel et al. 1989

Dinnel et al. 1989

Dinnel et al. 1989
Dinnel et al. 1989

Eisler 1971
Eisler 1971
Voyer 1975
Voyer 1975
Voyer 1975
Voyer 1975
Voyer 1975

Voyer 1975

30,000

Voyer 1975


-------
Table la. Continued

Species

Method3 Chemica
1

Salinity
(g/kg)

Mummichog (juvenile),	S, U

Fundulus heteroclitus

Mummichog (adult),	S, U

Fundulus heteroclitus

Mummichog (12-20 mm), F, M, T
Fundulus heteroclitus

Striped killifish	S, U

(adult),

Fundulus majalis

Rivulus (30 d juvenile) S, M, T
Rivulus marmoratus

Rivulus (120 d adult), S, M, T
Rivulus marmoratus

Rivulus (1118 mm),	F, M, T

Rivulus marmoratus

Rivulus (7 d larva), S, M, T
Rivulus marmoratus

Atlantic silverside	S, U

(adult),

Menidia menidia

Atlantic silverside	S, U

(juvenile) ,

Menidia menidia

Atlantic silverside	S, U

(juvenile) ,

Menidia menidia

Atlantic silverside	S, U

(larva),

Menidia menidia

Atlantic silverside	S, U

(larva),

Menidia menidia

Cadmium
chloride

Cadmium
chloride

Cadmium
sulfate

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
sulfate

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

32

14

10
10
14
10

Striped bass (63 d),	S, U

Morone saxatil is

Cabezon (larva),	S, M, T

Scorpaenichthys

marmoratus

Shiner perch	F, M, T

Cadmium
chloride

Cadmium
chloride

Cadmium

27

30. 1

LC50	Species Mean

or EC50 LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c Reference

29,000	-	-	Voyer 1975

22,000	-	-	Eisler and Hennekey 1977

18.200	-	18,200	Lin and Dunson 1993

21.000	21,000	Eisler 1971

18,800d	-	-	Park et al 1994

32,200d	-	-	Park et al 1994

21 , 100'1	-	-	Lin and Dunson 1993

800	800	Park et al 1994

2,032d	-	-	Cardin 1982

28,532d	-	-	Cardin 1982

13,652d	-	-	Cardin 1982

1.054	Cardin 1982

577	-	779.8	Cardin 1982

75.0	-	75.0	Palawski et al. 1985

>200	-	>200.0	Dinnel et al. 1989

11 .000	11,000	Dinnel et al. 1989


-------
Table la. Continued

Species

Salinity
Method3 Chemica (a/kg)

1

LC50	Species Mean

or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c Reference

Striped mullet	S, U Cadmium

(50 mm juvenile),	chloride
Mugi1 cepha1 us

Striped mullet	S, U Cadmium

(10 mm fry),	chloride
Mugi1 cepha1 us

Winter flounder (larva),	S, U Cadmium

Pseudopleuronectes	chloride
americanus

Winter flounder (larva),	S, U Cadmium

Pseudopleuronectes	chloride
americanus

37.3

37.3

28,000'1

7.079

602J

14,297

Hilmy et al. 1985

7,079	Hilmy et al. 1985

Cardin 1982

14,297	Cardin 1982

d

e
f

g
h
i

j

S=static, R=renewal, F=flow-through, M=measured, U=unmeasured, T=total measured concentration, D=dissolved metal concentration measur
Results are expressed as cadmium, not as the chemical.

Freshwater Species Mean Acute Values are calculated at a hardness of 50 mg/L using the pooled slope. SMAVs calculated using Lotus sp
values presented may be different than those calculated with a hand held calculator due to rounding. Each SMAV was calculated from t
associated underlined number(s) in the preceding column.

Not used in calculations because data are available for a more sensitive life stage.

Not used in calculations (see text).

Not used in calculations because data are available for a more sensitive test condition.

Average of values calculated using log-probit and Spearman-Karber statistical methods.

"Greater than" and "less than" values were not used in calculations.

No Species Mean Acute Value calculated because acute values are too divergent for this species.

Not used in calculations because this lower value was obtained in artificial sea water.


-------
Table lb. Results of Covariance Analysis of Freshwater Acute Toxicity versus Hardness

Results of Covariance Analysis of Freshwater Acute Toxicity versus Hardness

Species

Limnodrilus hoffmeisteri

Ceriodaphnia reticulata

Daphnia magna
(all data)

Daphnia magna

(Chapman et al. Manuscript)

Daphnia pulex

Goldfish

Fathead minnow

Green sunfish

Bluegi11

Chinook salmon

Striped bass

All of above using all data
for I), magna

All of above except using
only data from Chapman et
al. (Manuscript) for D.
magna

n

2

3

29

6
4

29
4
6
6
4

93
69

Slope
0.7888
0.6064
0.1720

1.1824*

0.9447*
1.4608
1.5351*
0.8986
0.8647*
1.2576*
0.8089
0.9931*®

1.2049*#

95% Confidence Limits
cannot calculate
0.3422, 0.8706
-0.5658, 0.9099

0.6042, 1.7606

0.3499, 1.5395
-1.3925, 4.3141
0.5523, 2.5179
0.1508, 1.6464
0.5199, 1.2095
0.8766, 1.6386
-0.3206, 1.9384
0.6301, 1.3561

0.8078, 1.6021

Error Degrees of Freedom

0

1

27

4
2

27
2
4
4
2

82

58

*	Slope is significantly different than 0 (p<0.05).

@ Individual slopes not significantly different (p=0.66).

#	Individual slopes not significantly different (p=0.99).


-------
Table 2a. Chronic Toxicity of Cadmium to Aquatic Animals

Chronic	Chrani	Chronic	Chronic	Species

Ifen±ES Limits	c	Value	Value	Chronic	Mean

s Total	Limits	Total	Diss.	Value Adj.	Chronic

Species Test Chaiiica (mg/L (ug/L)b	Diss.	(ug/V)h	C/ig/L)1'	to TH=50	Value

" 1 as	643/L)	(Total	at TH=50

CaCOO	ug/L) (Total

ug/L)

Reference

FRESHWATER SPECIES

01 igochaeteLC

Aeolosoma

headleyi

Snai 1,
Aplexa
hypnorum

Snai 1,
Aplexa
hypnorum

LC

LC

Cladoceran, LC
Ceriodaphnia
dubia

65

Cadniun 45.3 4.41-7.63
chlcrid

Cadniun 45.3 2.50-4.79
chlcrid

20 10-19

Cladoceran, LC	Cadniun

Daphnia	chlarid
magna e

Cladoceran, LC	cadniun

Daphn i a	chlcrid
magna e

Cladoceran, LC	Cadniun

Daphnia	chlcrid
magna e

53

0.08-0.29

103 0.16-0.28

209 0.21-0.91

25.19

5.801

3.460

13.78

0.1523

0.2117

0.4371

19.42 19.42 Ni eder1eher

1984

6.398	- Hoicombe et

al. 1984

3.816 4.941 Hoicombe et

al. 1984

34.19 34.19 Jop et al.

1995

0.1437

0.1034

0.1058

Chapman et
al.

Manuscript

Chapman et
al.

Manuscript

Chapman et
al.

Manuscript


-------
Table 2a. Continued

Chronic
Ifendnes Limits
s Total
Species Test Chaiiica (mg/L (ug/L)b

1 as
CaCOO

Cladoceran, LC	Cadniun

Daphnia	c±lcrid

magna	e

Cladoceran, LC	Cadniun

Daphnia	chlarid

magna	e

Cladoceran, LC

Daphnia

pulex

Amphipod, LC	Cadniun

Hyalella	chlcrid

azteca	e

150 0.5-1.0

130

65

<1.86-
1.86

280 0.5-2.0

Midge,	LC Cadniun

Chironomus	chlarid

ten tans	e

280 5.8-16.4

Coho salmonELS Cadniun 44 1.3-3.4

(Lake	chlcrid

Supr.),	e

Oncorhynchus

kisutch

Chrani Chronic Chronic Chronic Species

c Value Value Value
Limits Total Diss. Total at
Diss. Img/Llb (WLV' TH=50
(u%/D	(Total

ug/L)

Mean
Chronic
Value
at TH=50

(Total
ug/L)

Reference

0.7071

0.2379

Bodar et al
1988b

<1.86

<0.7211 0.1933 Borgmann et

al. 1989

7.49

5.774 5.774 Ni eder1ehner

1984

1.000

9.753

0.1811

1.767

0.1811

1.767

Ingersol1
and Kemble
Manuscript

Ingersol1
and Kemble
Manuscript

2.102

2.386

Eaton et al
1978


-------
Table 2a. Continued

Chronic
Ifendnes Limits
s Total
Species Test Chaiiica (mg/L (ug/L)b

1 as
CaCOO

Coho salmonELS
(West
Coast),
Oncorhynchus
kisutch

Chinook ELS
salmon,
Oncorhynchus
tshawytscha

Ra i nbow LC
trout (270
d) ,

Oncorhynchus
mykiss

At1ant i c ELS
salmon,

Salmo salar

Brown troutELS
Salmo trutta

Cadniun
chloric!

e

Cadniun
chlarid

e

Cadniun
sulfate

44

4.1-12.5

25

1.3-1.88

250 3.39-5.48

Cadniun	19-28 90-270

chlarid	(5NC)

e	2.5-8.2
(9.6NC)

Cadniun	44 3.8-11.7
chlarid

e

Brown trout LC
Salmo trutta

Cadniun
sulfate

250

9.34-29.1

Chrani Chronic Chronic Chronic	Species

c Value Value Value	Mean

Limits Total Diss. Total at	Chronic

Diss. (ug/V)h C/ig/L)1' TH=50	Value Reference

(uq/L)	(Total	at TH=50

ug/L)	(Total

ug/L)

7.159

8.127 4.404 Eaton et al

1978

1.563

3.108

3.108 Chapman 1975

4.310

0.8736

0.8736

Brown et al.
1994

155.9C
4.528

329.6d

9.574

9.574

Rombough and
Garside 1982

6.668

7.569

Eaton et al
1978

16.49

3.342

5.029

Brown et al
1994


-------
Table 2a. Continued

Species Test

Chronic	Chrani

Ifendnes Limits	c

s Total	Limits

Chaiiica (mg/L (ug/L)b	Diss.

1 as	C^g/L)
CaCOO

Brook trout LC
Salve 1inus
fontinalis

Brook troutELS
Salve 1inus
fontinalis

Brook troutELS
Salve 1inus
fontinalis

Lake trout,ELS
Salve 1inus
namaycush

Northern ELS
pike,

Esox lucius

Fathead LC
minnow,
Pimephales
promelas

Fathead
minnow,
Pimephales
promelas

ELS

Cadniun
chlcrid

e

Cadniun
chlcrid

e

Cadniun
chlarid

e

Cadniun
chlarid

e

Cadniun
chlarid

e

Cadniun
sulfate

Cadniun
nitrate

44

37

44

44

44

201

44

1.7-3.4

1-3

1.1-3.8

4.4-12.3

4.2-12.9

37-57

Chronic Chronic Chronic	Species

Value Value Value	Mean

Total Diss. Total at	Chronic

(ug/V)h C/ig/L)1' TH=50	Value Reference

(Total	at TH=50
ug/L) (Total
ug/L)

2.404 -	2.729	- Benoit et

al. 1976

1.732 -	2.335	- Sauter et

al. 1976

2.045 -	2.321 2.455 Eaton et al

1978

7.357 -	8.351 8.351 Eaton et al

1978

7.361 -	8.356 8.356 Eaton et al

1978

45.92 -	11.56	-	Pickering

and Gast
1972

10.0

11.35

11.45

Spehar and
Fiandt 1986


-------
White	ELS Cadniun

sucker,	chloric!

Catostomus	e
commersoni

Flagfish, LC	Cadniun

Jordane 11a	chlcrid

floridae	e

Flagfish, LC	Cadniun

Jordane 11a	chlcrid

floridae	e

Flagfish, LC	Cadniun

Jordane 11a	chlcrid

floridae	e

Bluegill, LC	Cadniun

Lepomis	sulfate
macrochirus

Bluegill, LC	Cadniun

Lepom i s	chlcrid

macrochirus	e

Smal 1 mouth ELS Cadniun

bass,	chlcrid

Micropterus	e
dolomieui

Blue LC	Cadniun

t i 1 ap i a,	nitrate
Oreochromis

44	4.2-12.0

44	4.1-8.1

44-51	3.0-6.5

44-51	3.4-7.3

207	31-80

134	NOEC
>32.3

44	4.3-12.7

145	>52

aurea

7.099	-	8.059

5.763	-	6.542

4.416	-	4.646

4.982	-	5.242

49.80	-	12.17

>32.3	-	>12.15

7.390	-	8.389

>52	-	>18.09

8.059 Eaton et al.
1978

Spehar 1976a

Carlson et
al. 1982

5.421 Carlson et
al. 1982

Eaton 1974

12 .16 Cope et al.
1994

8.389 Eaton et al.
1978

>18.09 Papoutsog1ou
and Abel
1988


-------
Table 2a. Continued

Species Test3

Chaiiica
1

Salinity
Ig/kgl

Chronic
Limits
Total
(ug/V>h

Chronic
Limits
Dissolved
(ug/L)

Chronic
Value Total
(ug/V)

Chronic

Value
Dissolved
(ug/V)

Species
Mean
Chronic
Value

(Total
ug/L)

Reference

SALTWATER SPECIES

Mys id,	LC

Americamysis
bahia

Mys id,	LC

Americamysis
bahia

Mys id,	LC

Americamysis
bahia

Mys i d,

Mysidopsis

bigelowi

LC

Cadniun 15-23 6.4-10.6
chlcrid

e

Cadniun 30 5.1-10
chlcrid

e

Cadniun
chlarid

e

Cadniun
chlarid

e

30

<4-4

5.1-10

8.237

7.141

<4

7.141

6.173

7.141

Nimmo et al.
1977a

Gentile et al
1982; Lussier
et al.
Manuscript

Carr et al.
1985

Gentile et al
1982

ELS = early life stage, LC = life cycle or partial life cycle.
Results are expressed as cadmium, not as the chemical.

Not used in calculations (see text).


-------
Table 2b. Results of Covariance Analysis of Freshwater Chronic Toxicity versus Hardness

Results of Covariance Analysis	of Freshwater Chronic Toxicity versus Hardness

Species n	Slope 9g%Confidencel,imits Degrees of Freedom

Daphnia magna 4	0.9786 -0.5044, 2.4615	3

(Chapman et al. Manuscript)

Fathead minnow 2	1.0034 Cannot be calculated	1

All species 6*	0.9917 0.3179, 1.6654	5

* Slope is significantly different from 0 (p=0.05)


-------
Table 2c. Acute-Chronic Ratio

Acute-Chronic Ratio

Freshwater Species

Species

Reference

Hardness
Jmg/L_as
CaCO;)

Snai1,

Aplexa hypnorum
Snai1,

Aplexa hypnorum

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Holcombe et al. 1984 45.3
Holcombe et al. 1984 45.3

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Chapman et al.
Manuscript

Chinook salmon, Chapman 1975, 1982
Oncorhynchus tshawytscha

51
104
209
25

Fathead minnow, Pickering and Gast 1912)1
Pimephales promelas

Fathead minnow, Spehar and Fiandt 198644
Pimephales promelas

Flagfish,	Spehar 1976a

Jordanella floridae

Bluegill,	Eaton 1974

Lepomis macrochirus

44
207

Species

Acute	Chronic	Mean

Value	Value	Ratio	Acute-

(ug/L)	(ug/L)	Chronic

Ratio

93	5.801	16.03

93	3.460	26.88	20.76

9.9	0.1523	65.00

33	0.2117	155.9

49	0.4371	112.1	104.3

1.41	1.563	0.9021	0.9021

5,995a	45.92	130.6

13.2	10.0	1.320	13.13

2,500	5.763	433.8	433.8

21,100	49.80	423.7	423.7


-------
Species

Reference

Hardness
_[rng/L_as
CaCO;)

Acute
Value

Chronic
Value

(ug/L) (ug/L)

Species
Mean
Ratio Acute-
Chronic
Ratio

Saltwater Species

Mysid,	Nimmo et al. 1977a

Americamysis bahia

Mysid,	Gentile et al. 1982

Americamysis bahia

Mysid,	Gentile et al. 1982

Mysidopsis bigelowi

15.5 8.237 1.882

110

110

7.141 15.40 5.384

7.141 15.40 15.40

a Geometric mean of five values in Table 1 from Pickering and Gast (1972)


-------
Table 3a. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios

Genus Mean
Acute

Rank3	Value

(Total

ug/L)b

Species

Species Mean
Acute Value
(Total

ug/L)b

FRESHWATER SPECIES

Species Mean
Acute-
Chronic
Ratio

59

58

57

56

55

54

78,579 Midge,

Chironomus
ripari us

12,673 Planarian,

Dendrocoel um
lacteum

>12,564 Crayfish,
Orconectes
viri1 is

Crayfish,

Orconectes

immunis

11,861 Tilapia,

Oreochromis
mossambica

9,413 Tubificid worm,
Rhyacodri1 us
montana

8,628 Mosquitofish,

Gambusia affinis

78,579

12,673

13,413

>11,769

11,861

9,413

8,628


-------
53	8,218

52	8,100

51	5,930

50	5,678

49	5,169

Table 3a. (continued)

Tubificid worm,
Stylodrilus
heringianus

Damsel fly,
Unidentified.

Tubificid worm,
Spirosperma ferox

Tubificid worm,

Spirosperma

nikolskyi

Tubificid worm,

Varichaeta

pacifica

Channel catfish,

Ictalurus

punctatus

Species

Tubificid worm,
Quistradilus
multisetosus

Rank3
48

Genus Mean
Acute
Value
(Total

ug/L)b

4,781

47

4,781

Tubificid worm,
Tubifex tubifex

8,218

8,100
5,230
6,724

5,678

5,169

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

4,781

4,781


-------
Table 3a.

(continued)

Rank3

46

45

44

43

42
41
40

39

Genus Mean
Acute
Value
(Total

ug/L)b

4,681

3,831

3,801

3,586

3,468
3,400
2,916

2,454

Species

Threespine
stickleback,
Gasterosteus
aculeatus

Guppy,

Poecilia
reticulata

White sucker,

Catostomus

commersoni

Tubificid worm,
Branchiura
sowerbyi

Red shiner,

Notrop is lutrenis

Caddisfly,
(Unidentified)

Flagfish,
Jordanella
floridae

Green sunfish,
Lepomis cyanellus

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

4,681

3,831

3,801

3,586

3,468
3,400

2,916	433.8

2,072


-------
Table 3a. (continued)

Genus Mean
Acute

Rank3	Value

(Total

ug/L)b

38	2,333

37	1,925

36	1,700

35	1,700

34	1,305

33	863.1

Species

Pumpkinseed,
Lepomis gibbosus

Bluegi11,

Lepomis

macrochirus

Mayfly,
Ephemerella
grandis

Crayfish,
Procambarus
clarkii

Amphipod,
Crangonyx
pseudogracilis

Worm,

Nais sp.

African clawed
frog,

Xenopus laevis

Goldfish,
Carassius auratus

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

1,337

5,333	423.7

2,333

1,925

1,700

1,700

1,305

863.1


-------
Table 3a.

(continued)

Rank3

32
31

30
29
28
27
26

25
24

Genus Mean
Acute
Value
(Total

ug/L)b

731.0
628.6

531.8
357.2

214.0

213.5

199.1

192.8

162.6

Species

American eel,
Anguilla rostrata

Tubificid worm,

Limnodrilus

hoffmeisteri

Salamander,
Ambystoma gracile

Isopod,

Asellus bicrenata

Common carp,
Cyprinus carpio

Cladoceran,

Alona affinis

Bryozoan,
Plumatella
emarginata

Copepod,

Cyclops varicans

Leech,

Glossiponia

complanta

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

731.0

628.6

531.8
357.2

214.0
213.5

199.1

192.8

162.6


-------
Table 3a.

(continued)

Rank3
23

22
21

20

19

18
17
16

Genus Mean
Acute
Value
(Total

ug/L)b

127.9

106.0
98.07

93.81

81.91

77.15
39.29
39.26

Species

Bryozoan,
Pectinatella
magnifica

Snai1,

Aplexa hypnorum

Banded killifish

Fundulus

diaphanus

Worm,

Lumbricuius
variegatus

Amphipod,
Gammarus
pseudolimnaeus

Snai1,

Physa gyrina
Isopod,

Lirceus alabamae

Cladoceran,

Moina macrocopa

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

127.9

106.0	20.76c

98.07

93.81

81.91

77.15
39.29
39.26


-------
Table 3a. (continued)

Genus Mean
Acute

Rank3	Value

(Total

ug/L)b

15	35.41

14	34.90

13	31.04

Species

Musse1,
Lampsilis
straminea
claibornensis

Musse1,

Lampsilis teres

Cladoceran,
Ceriodaphnia
dubia

Cladoceran,
Ceriodaphnia
reticulata

Cladoceran,

Simocephalus

serrulatus

Cladoceran,

Simocephalus

vetulus

12

30.73

Musse1,

Actinonaia

pectorosa

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

38.00

33.00

28.29

43.05

35.36

27.25

30.73


-------
Table 3a.

(continued)

Rank3

11

10

9

8
7

6

Genus Mean
Acute
Value
(Total

ug/L)b

30.50

29.85

29.71

28.23
27.40

17.38

Species

Musse1,
Utterbackia
imbecilis

Bonytai1,

Gila elegans

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia pulex

Razorback sucker,
Xyrauchen texanus

Bryozoan,
Lophopodella
carteri

Colorado
squawfish,
Ptychochei1 us
lucius

Northern pike
minnow

Ptychochei1 us
oregonensis

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

30.50

29.85

18.34	104.3d

48.12

28.23

27.40

17.38

2,531f


-------
Table 3a. (continued)

Rank3

Genus Mean
Acute
Value
(Total

ug/L)b

15.40

12.00

5.282

Species

Fathead minnow,

Pimephales

promelas

Musse1,

Anodonta
coupierana

Coho salmon,
Oncorhynchus
kisutch

Chinook salmon,

Oncorhynchus

tshawytscha

Rainbow trout,

Oncorhynchus

mykiss

2	2.535

White perch,
Morone americana

Striped bass,
Morone saxati1 is

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

15.40

13.13c

12.00

6.882

4.984	0.9021

4.296

7,489e

2.535


-------
Table 3a.

(continued)

Rank3

Genus Mean
Acute
Value
(Total

ug/L)b

1.656

Species

Brown trout,
Salmo trutta

Species Mean
Acute Value
(Total

ug/L)b

1.656

Species Mean
Acute-
Chronic
Ratio

SALTWATER SPECIES

54

53

52

51

50

135,000 Oligochaete worm,
Monopylephorus
cuticulatus

50,000 Sheepshead
minnow,

Cyprinodon
variegatus

27,992 Amphipod,

Eohaustoris
estuarius

24,000 Oligochaete worm,
Tubificoides
gabriellae

21,238 Fiddler crab,
Uca pugilator

135,000

50,000

27,992

24,000

21,238


-------
Table 3a. (continued)

Genus Mean
Acute

Rank3	Value Species

(Total

ug/L)b

49	19,550 Mummichog,

Fundulus
heteroclitus

48	19,170

47	14,297

46	12,836

45	11,000

44	>10,200

Striped
killifish,
Fundulus majalis

Mud snai1,

Nassarius

obsoletus

Winter flounder,
Pseudopleuronecte
s americanus

Polychaete worm,
Neanthes
arenaceodentata

Shiner perch,
Cymatogaster
aggregata

Squid,

Loligo opalescens

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

18,200

21,000

19,170

14,297

12,836

11,000

>10,200


-------
Table 3a. (continued)

Rank3

43

42

41

40

39
38

Genus Mean
Acute
Value
(Total

ug/L)b

10,000

7,400

7,384

7,120

7,079
6,895

37

6,700

Species

Oligochaete worm
L i mnodriloides
verrucosus

Sand dollar,
Dendraster
excentricus

Blue crab,
Callinectes
sapidus

Isopod,

Limnoria
tripunctata

Striped mullet,
Mugi1 cepha1 us

Polychaeta worm,
Nereis grubei

Sand worm,

Nereis virens

Amphipod,
Diporeia spp.

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

10,000

7,400

7,384

7,120

7,079
4,700
10,114

6,700


-------
Table 3a.

(continued)

Rank3
36

35
34

33
32

31
30

29

Genus Mean
Acute
Value
(Total

ug/L)b

6,600

4,100
3,500

2,900
2,600

2,413
1,708

1,672

Species

Oyster dri11,

Urosalpinx

cinerea

Green crab,
Carcinus maenas

Amphipod,

Marinogammarus

obtusatus

Amphipod,
Ampelisca abdita

Polychaete worm,

Pectinaria

ca1i forniensis

Starfish,
Asterias forbesi

Copepod,
Pseudodiaptomus
coronatus

Soft-shell clam,
My a arenaria

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

6,600

4,100

3,500

2,900

2,600

2,413

1,708

1,672


-------
Table 3a. (continued)

Rank3
28

Genus Mean
Acute
Value
(Total

ug/L)b

1,500

27

1,480

26

1,228

25

1,170

24

1,073

23

948.7

Species

Coho salmon,
Oncorhynchus
kisutch

Bay scallop,
Argopecten
irradians

Grass shrimp,

Palaemonetes

pugio

Grass shrimp,

Palaemonetes

vulgaris

Amphipod,
Grandidiere 11a
japonica

Blue mussel,
Mytilus edulis

Green sea urchin,
Strongylocentrotu
s droebachiensis

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

1,500

1,480

1,983

760

1,170

1,073

1,800


-------
Table 3a.

(continued)

Rank3

22

21

20

19
18

17

Genus Mean
Acute
Value
(Total

ug/L)b

930.6

929.3

800

794.5
779.8

716.2

Species

Purple sea
urchin,

Strongylocentrotu
s purpuratus

Pacific oyster,
Crassostrea gigas

Eastern oyster,
Crassostrea
virginica

Amphipod,

Corophium

insidiosum

Rivulus,

Rivulus

marmoratus

Copepod,

Nitocra spinipes

At 1ant i c
silverside,
Menidia menidia

Amphipod,
Elasmopus bampo

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

500

227.9

3,800

929.3

800

794.5

779.8

716.2


-------
Table 3a.

(continued)

Rank3
16

15
14

13
12

11
10

Genus Mean
Acute
Value
(Total

ug/L)b

645.0

630.0
590.5

410.0
320.0

310.5
235.7

9

224

Species

Hermit crab,
Pagurus
1 ongi carpus

Amphipod,

Chelura terebrans

Amphipod,

Leptocheirus

plumulosus

Isopod,

Jaeropsis sp.

Sand shrimp,

Crangon

septemspinosa

Pink shrimp,
Penaeus duorarum

Rock crab,

Cancer irroratus

Dungeness crab,
Cancer magister

Copepod,

Amphiascus

tenuiremis

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

645.0

630.0
590.5

410.0
320.0

310.5
250.0
222.3

224


-------
Table 3a. (continued)

Rank3

8

6

Genus Mean
Acute
Value
(Total

ug/L)b

>200

200

147.7

130.7

110

78

75.0

Species

Cabezon,
Scorpaenichthys
marmoratus

Polychaete worm,
Capitella
capitata

Copepod,
Eurytemora
affinis

Copepod,

Acartia clausi

Copepod,

Acartia tonsa

Mysid,

Mysidopsis

bigelowi

American lobster

Homarus

americanus

Striped bass,
Morone saxati1 is

Species Mean	Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

>200

200

147.7

144

118.7
110	15.40

78

75.0


-------
Table 3a. (continued)

Rank3

1

Genus Mean
Acute

Value Species
(Total

ug/L)b

41.29 Mysid,

Species Mean Species Mean

Acute Value	Acute-

(Total	Chronic

ug/L)b	Ratio

41.29

5.384c

Anier i camys i s
bahia

a Ranked from most resistant to most sensitive based on Genus Mean
Acute Value.

b Freshwater Genus Mean Acute Values and Freshwater Species Mean Acute

Values are at a hardness of 50 mg/L.
c Geometric mean of two values in Table 2C.
d Geometric mean of three values in Table 2C.

e Species values are too divergent to use the geometric mean for the
genus value, therefore, the most sensitive value used.


-------
Table 3. (continued)

Fresh water
CMC:

Final Acute Value = 5.995 //g/L (calculated at a hardness of 50
mg/L from Genus Mean Acute Values).

Final Acute Value = 4.296 //g/L (lowered to protect rainbow trout
at a hardness of 50 mg/L; see text)

Criterion Maximum Concentration = (4.296 //g/L) /2 = 2.148 //g/L
Total Cadmium (at a hardness of 50 mg/L)

Pooled Slope = 1.205 (see Table 1)

In (Criterion Maximum Intercept) = ln(2.148) - [slope x ln(50)]

= 0.7645 - (1.205 x 3.912) = -

3.949

Criterion Maximum Concentration for Total Cadmium (at a hardness
of 50 mg/L) = e^1 205 tln(hardness) ] -3.949)

Criterion Maximum Concentration for Dissolved Cadmium (at 50 mg/L
hardness) = 0.97 [e(1' 205 [In (hardness) ]-3.949) }

CCC:

Total Cadmium Freshwater Final Chronic Value = 0.0861 //g/L (see text)
Slope = 0.9917 (see text)

In (Final Chronic intercept) = In (0.0861) - [slope x ln(50)]


-------
= -2.452 - (0.9917 x 3.912) = -6.332
[ in (hardness)	Freshwater Final Chronic Value (at a hardness of 50 mg/L) = e(° 9917

Dissolved Cadmium Freshwater Final Chronic Value (at 50 mg/L hardness) = 0.94 [e^° 91

[In(hardness)]-6.332) 1

Salt water
CMC:

Total Cadmium Final Acute Value = 80.55 Mg/L

Total Cadmium Criterion Maximum Concentration = (80.55 mg/L)/2 =
40.28 Mg/L

Dissolved Cadmium Criterion Maximum Concentration = 0.994 (40.28
Mg/L) = 40.04 Mg/L

Final Acute-Chronic Ratio = 9.106 (see text)

CCC:

Total Cadmium Final Chronic Value = (80.55 Mg/L)/9.106 = 8.846

Mg/L

Dissolved Cadmium Final Chronic Value = 0.994 (8.846 Mg/L) =
8.793 Mg/L


-------
Table 3b. Ranked Freshwater Genus Mean Chronic Values

Ranked Freshwater Genus Mean Chronic Values

Rank3

16

15
14
13

12

11

10

Genus Mean
Chronic
Value
(ug/L)

34.19

19.42
>18.09
12.16

11.45

8.389

8.356

Species

Cladoceran,
Ceriodaphnia dubia

01igochaete,
Aeolosoma headleyi

Blue Tilapia,
Oreochromis aurea

Bluegi11,

Lepomis

macrochirus

Fathead minnow,

Pimephales

promelas

Smallmouth bass,

Micropterus

dolomieui

Northern pike,

Esox lucius

Species

Mean
Chronic
Value

(ug/L)]

34.19

19.42
>18.09
12.16c

11,45c

8.389

8.356

Species

Mean
Acute-
Chronic _
Ratio

423.7

13.13c


-------
Table 3b. Continued

Ranked Freshwater Genus Mean Chronic Values

Rank3

Genus Mean
Chronic
Value
(ug/L)

Species

Species

Mean
Chronic
Value

(ug/LV

Species

Mean
Acute-
Chronic _
Ratio

9

8

8.059 White sucker,
Catostomus
commersoni

6.939 Atlantic salmon,
Salmo salar

Brown trout,
Salmo trutta

5.421 Flagfish,
Jordanella
floridae

8.059

9.574

5.029c

5.421c

433.8

6
5

4.941 Snai1,

Aplexa hypnorum

4.528 Brook trout,
Salve 1inus
fontinalis

4.941'

2.455d

20.76c


-------
Table 3b. Continued

Ranked Freshwater Genus Mean Chronic Values

Rank3

Genus Mean
Chronic
Value
(ug/L)

Species

Species

Mean
Chronic
Value

(ug/L)b	

Species

Mean
Acute-
Chronic _
Ratio

Lake trout,	8.351

Salve 1inus

namaycush

4	2.287 Coho salmon,	4.404c

Oncorhynchus
kisutch

Rainbow trout,	0.8736

Oncorhynchus

mykiss

Chinook salmon,	3.108	0.9021

Oncorhynchus

tshawytscha

3	1.767 Midge,	1.767

Chironomus ten tans

2	0.1933f Cladoceran,	0.1933s 104.3d

Daphnia magna

Cladoceran,	5.774f

Daphnia pulex


-------
Table 3b. Continued

Ranked Freshwater Genus Mean Chronic Values

Rank3

Genus Mean
Chronic
Value
(ug/L)

Species

Species

Mean
Chronic
Value

(ug/L)b	

Species

Mean
Acute-
Chronic _
Ratio

0.1811 Amph i pod,	0.1811

Hyalella azteca

Value.

b

of 50 mg/L.

C

d
e
f

Ranked from most resistant to most sensitive based on Genus Mean Chronic
Genus Mean Chronic Values and Species Mean Chronic Values are at a hardness

Geometric mean of two values.

Geometric mean of three values.

Geometric mean of five values.

Species values are too divergent to use the geometric mean for the genus value, ther
the most sensitive value used.


-------
Table 4

Species	Meth Chemi

oda cal

Diatom,
Asterione 1 la
formosa

Diatom,

Scenedesmus

quadracauda

Diatom,
Nitzschia
costerium

Diatom,

Navicula

incerta

Green alga,
Scenedesmus
obiiquus

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Toxicity of Cadmium to Aquatic Plants

Hardne
ss

(mg/L Durat

as ion
CaCO.)

Effect1

Resu1t
(Total

ug/L) Reference

FRESHWATER SPECIES

Factor of
10 growth
rate

decrease

Reduction
in cell
count

2 Conway 1978

6.1 Klass et al
1974

96-hr EC50

480 Rachlin et al
1982

96-hr EC50

310 Rachlin et al
1982

39%	2,500 Devi Prasad &

reduction	Devi Prasad

in growth	1982


-------
Alga,

Eugl ena
gracilis

Alga,

Eugl ena
gracilis
anabaena

Green alga,
Ankistrodesmus
falcatus

Blue alga,

Microcystis

aeruginosa

Green alga.
Scenedesmus
quadricauda

Green alga,
Chlorella
saccharophila

Alga,

Chlorococcum
sp.

Cadmi

um
chlor
ide

Cadmi

um
nitra
te

Cadmi

um
chlor
ide

Cadmi

um
nitra
te

Cadmi

um
nitra
te

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Morphologic
al

abnormal iti

es

Cell

division
inhibition

5,000

20,000

Nakano et al
1980

Nakano et al
1980

58%	2,500 Devi Prasad &

reduction	Devi Prasad

in growth	1982

incipient
inhibition

incipient
inhibition

96-hr EC50

70 Bringmann 1975;
Bringmann &
Kuhn 1976,
1978a,b

310 Bringmann &
Kuhn 1977a,
1978a,b, 1979,
1980b

105 Rachlin et al.
1984

42%

reduction
in growth

2,500

Devi Prasad &
Devi Prasad
1982


-------
Green alga,

Chlorella
pyrenoidosa

Green alga,

Chlorella
vulgaris

Table 4. (Continued)

Species

Meth Chemi

oda

cal

Hardne

ss
(mg/L
as

CaCO.)

Alga,	S,

Chara vulgaris M, T

Alga,	S,

Chara vulgaris M, T

Green alga,	F,

Chlamydomonas M, T
reinhardi

Cadmi

um
sulfa

te

Cadmi

um
sulfa

te

Cadmi

um
chlor
ide

24

Reduction	250 Hart & Scalfe
in growth 1977

Reduction	50 Hutchinson &
in growth Stokes 1975

Durat
ion

Resu1t

Effect (Total Reference
ug/L)b

7 Lethal dose 56.2 Heumann 1987
days

14

days

EC50 growth 9.5 Heumann 1987

4

EC50 (cell

203

days

dens i ty)

130

7

EC50 (cell

99

days

dens i ty)



10

EC50 (cell



days

dens i ty)



Schafer et al
1993


-------
Table 4. (Continued)

Species	Meth Chemi

oda cal

Green alga,
CIorella
vulgaris

Green alga,
CIorella
vulgaris

Green alga,
Selenastrum
capricornuturn

Green alga,
Selenastrum
capricornuturn

Green alga,
Selenastrum
capricornuturn

Cadm i

um
chlor
ide

Cadm i

um
chlor
ide

Cadm i

um
chlor
ide

Cadm i

um
nitra
te

S, U Cadmi
um
chlor
ide

Hardne

ss
(mg/L
as

CaCO.)

50

Durat

ion

Effect

Resu1t

(Total Reference

50%

reduction
in growth

96-hr EC50

(growth

inhibition)

Reduction
in growth

Reduction
in growth

4 IC 50
days growth

ug/L)b

60 Rosko & Rachlin
1977

3,700 Canton & Slooff
1982

50 Bartlett et al.
1974

255 Slooff et al.
1983

10,500 Bozeman et al.
1989


-------
Table 4. (Continued)

Species

Meth Chemi

oda

cal

Hardne

ss
(mg/L
as

CaCO.)

Green alga,
Selenastrum
capricornuturn

Green alga,
Selenastrum
capricornuturn

Alga,

Anabaena flos-
aquae

Algae

(mixed spp.)

Fern,

Salvina natans

S, U

S, U

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
nitra
te

171

11.1

Resu1t

Durat Effect (Total Reference
ion

ug/L)b

4 EC50 growth 23.2 The 11 en et al
days	1989

4 EC50 growth
days

130 Versteeg 1990

96-hr EC50 120

Rachlin et al
1984

Significant
reduction

in

population

Reduction
in number
of fronds

10

Giesy et al.
1979

Hutchinson &
Czyrska 1972


-------
Table 4. (Continued)

Species

Meth Chemi

oda

cal

Hardne

ss
(mg/L
as

CaCO.)

Euras i an
watermilfoi1,
Myriophyl1um
spicatum

Duckweed,	S,

Lemna gibba	M, T

Duckweed,	S, U
Lemna minor

Duckweed,	R,

Lemna minor	M, T

Duckweed,

Lemna

valdiviana

Duckweed,	R, U

Spirodela

polyrhiza

Cadmi

um
nitra
te

Cadmi

um
chlor
ide

Cadmi

um
nitra
te

Cadmi

um
sulfa

te

39

Durat
ion

Effect

Resu1t

(Total Reference

32-day EC50

(root

weight)

7 EC50 growth
days

4	EC50 growth
days

4	Reduced

days	chlorophyll

Reduction
in number
of fronds

28 LOEC growth
days

ug/L)b

7,400 Stanley 1974

800 Devi et al.
1996

200 Wang 1986
54 Taraldsen 1990

10 Hutchinson &
Czyrska 1972

7.63 Saj wan and
Ornes 1994


-------
Table 4. (Continued)

Species	Meth Chemi

oda cal

Kelp,	- Cadmi

Laminana	um

saccharina	chlor

ide

Diatom,	- Cadmi

Asterionella	um

japonica	chlor

ide

Diatom,	- Cadmi

Ditylum	um

brightwel1ii	ch1or

ide

Diatom,	S, U Cadmi

Phaeodactylum	um

tricornutum	chlor

ide

Diatom,	- Cadmi

Thalassiosira	um

pseudonana	chlor

ide

Hardne
ss

(mg/L Durat
as ion

CaCO.)

Resu1t

Effect (Total Reference
ug/L)b

SALTWATER SPECIES

8-day EC50

(growth

rate)

860 Markham et al.
1980

72-hr EC50

(growth

rate)

224.8 Fisher & Jones
1981

5-day EC50
(growth)

60 Canterford &

Canterford 1980

35c	4 EC50 growth 22,390 Torres et al.

days	1998

96-hr EC50 160 Gentile &
(growth	Johnson, 1982

rate)


-------
Table 4. (Continued)

Hardne
ss

Species	Meth Chemi (mg/L

oda cal	as

CaCO.)

Diatom,
Skeletonema
costatum

Red alga,
Champia parvula

Red alga,
Champia parvula

Red alga,
Champia parvula

Red alga,
Champia parvula

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Effect

Resu1t

(Total Reference

ug/L)1

96-hr EC50

(growth

rate)

175 Gentile &

Johnson 1982

Reduced
tetrasporop
hyte growth

24.9 Steele &

Thursby 1983

Reduced	>189

tetrasporan

gia

production

Reduced	22.8

female

growth

Steele &
Thursby 1983

Steele &
Thursby 1983

Stopped
sexual
reproductio

n

22.8 Steele &

Thursby 1983


-------
Table 4. (Continued)

Species

Meth Chemi

oda

cal

Hardne
ss

(mg/L Durat
as ion

CaCO.)

Resu1t

Effect (Total Reference
ug/L)b

Red alga,	R, U Cadmi

Champia parvula	um

chlor
ide

28-30c 14 NOEC sexual
days reproduct i o
n

77 Thursby and
Steele 1986

a S= static: R= renewal; F= flow through; U= unmeasured; M= measured; T= total
metal concentration measured; D= dissolved metal	concentration

measured.

b Results are expressed as cadmium, not as the chemical.
c Salinity (g/kg).


-------
Table 5. Bioaccumulation of Cadmium by Aquatic Organisms

Hardness Concentr

(mg/L as at ion in	Durat BCF

Species Tissue Chem i ca1	water	ion or Reference

		(ug/L)a	(days BAF

CaC03)	1

FRESHWATER SPECIES

Aufwuchs
(attached
microscopic
plants and
animals

Aufwuchs
(attached
microscopic
plants and
animals

Duckweed,

Lemna

valdiviana

Fern,

Salvinia
natans

Snai1,

Physa integra

Cadmium
chloride

365 720 Giesy et al.
1979

Whole
plant

Whole
plant

Whole
body

Cadmium
chloride

365 580 Giesy et al.
1979

Cadmium
nitrate

Cadmium
nitrate

Cadmium
chloride

21 603 Hutchinson &
Czyrska 1972

21 960 Hutchinson &
Czyrska 1972

28 1,75 Spehar et al
0 1978


-------
Snai1,

Vi vi parus
georgianus

Soft
tissue
(1 yr
old)

Cadmium
chloride

Soft
tissue
(2 yrs
old)

Cadmium
chloride

Soft
tissue
(3 yrs
old)

Cadmium
chloride

Snai1,

Vi vi parus
georgianus

Soft
tissue
(1 yr
old)

Soft
tissue
(2 yrs
old)

Soft
tissue
(3 yrs
old)

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

100(10NC

20

71b

Tessier

)

20

74b

1994a

100(15NC

20

109b



)







100(25NC







)







100(10NC

20

28b



)

20

42b



100(15NC

20

60b



)







100(25NC







)







100(10NC

20

27b



)

20

42b



100(15NC

20

26b



)







100(25NC







)







10

60

6,91

Tessier

50

60

0b

1994b





2,23







8b



10

60

1,75



50

60

8b







758b



10

60

1,25



50

60

8b







617b




-------
Musse1,
El 1iptio
complanata

Soft
tissue
(0-74 mm
length)

Cadmium
chloride

Table 5. (Continued)

Species

Tissue

Chem i ca1

Soft
tissue
(74-86

mm
length)

Cadmium
chloride

Soft
tissue
(86-100

mm
length)

Cadmium
chloride

Musse1,
El 1iptio
complanata

Soft
tissue
(0-74 mm
length)

Cadmium
chloride

100(10NC

)

100(15NC
)

100(25NC
)

20
20
20

15b
16b
28b

Tessier et al
1994a

Hardness
(mg/L as

CaCOi)	

Concentr





at ion

Durat

BCF

in water

ion

or

(ug/Ua

(davs

BAF



1



100(10NC

20

16b

)

20

16b

100(15NC

20

14b

)





100(25NC





)





100(10NC

20

8b

)

20

7b

100(15NC

20

8b

)





100(25NC





)





10

60

1,25

50

60

6b

Reference

Tessier et al
1994b

918b


-------
Table 5. (Continued)

Species	Tissue Chemical

Asiatic clam,

Corbicula

fluminea

Asiatic clam,

Corbicula

fluminea

Cladoceran,
Daphnia magna

Cladoceran,
Daphnia magna

Crayfish,

Orconectes

propinquus

Soft
tissue
(74-86
mm)

Soft
tissue
(86-100
mm)

Whole
body

Whole
body

Whole
body

Whole
body

Whole
body

Cadmium
chloride

Cadmium
chloride

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Cadmium
sulfate

Hardness Concentr

(mg/L as at ion	Durat	BCF

	 in water	ion	or Reference

CaCOi)	 (ug/L)a	(days BAF

1

10	60	945b

50	60	613b

10	60 574b

50	60 254b

28 3,77 Graney et al.
0 1983

28 1,75 Graney et al.
2 1983

2-4 320 Poldoski 1979
7 484b Winner 1984

8 184 Gillespie et
al. 1977


-------
Table 5. (Continued)



Species

Tissue

Chem i ca1

Mayfly,

Whole

Cadmium

Ephemeroptera

body

chloride

sp.





Mayfly,

Whole

Cadmium

Ephemeroptera

body

chloride

sp.





Dragonfly,

Whole

Cadmium

Pantala

body

chloride

hymenea



Dragonfly,

Whole

Cadmium

Pantala

body

chloride

hymenea



Damsel fly,

Whole

Cadmium

Ischnura sp.

body

chloride

Damsel fly,

Whole

Cadmium

Ischnura sp.

body

chloride

Stonefly,

Whole

Cadmium

Pteronarcys

body

chloride

dorsata





Beetle,

Whole

Cadmium

Dytiscidae

body

chloride

Hardness Concentr

(mg/L as at ion Durat	BCF

	 in water ion	or Reference

CaCOi)	 (/ig/L)" (days BAF

1

365	1,63 Giesy et al
0 1979

365 3,52 Giesy et al
0 1979

365 736 Giesy et al
1979

365 680 Giesy et al
1979

365 1,30 Giesy et al
0 1979

365 928 Giesy et al
1979

28 373 Spehar et a
1978

365 164 Giesy et al
1979


-------
Table 5. (Continued)

Species	Tissue

Beetle,	Whole

Dytiscidae	body

Caddisfly,	Whole

Hydropsyche	body
bet teni

Caddisfly,	Whole

Hydropsyche	body
sp.

Biting midge,	Whole

Ceratopogonid	body
ae

Biting midge,	Whole

Ceratopogonid	body
ae

Midge,	Whole

Ch i ronom i dae	body

Midge,	Whole

Ch i ronom i dae	body

Midge,	Whole

Chironomus	body
ripari us

Chem i ca1

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Hardness	Concentr

(mg/L as at ion	Durat	BCF

		in water ion or Reference

CaCOi)		(/ig/L)"	(days	BAF

1

365 260 Giesy et al.
1979

28 4,19 Spehar et al
0 1978

2-8 228. Dressing et al
2b 1982

365 936 Giesy et al.
1979

365 662 Giesy et al.
1979

365 2,20	Giesy et al.

0	1979

365 1,83	Giesy et al.

0	1979

10,000 28 1,37	Timmermans et

0b	al. 1992


-------
Table 5. (Continued)

Species

Lake

whitefish,

Coregonus

clupeaformis

Rainbow
trout,

Oncorhynchus
mykiss

Rainbow
trout,

Oncorhynchus
mykiss

Rainbow
trout,

Oncorhynchus
mykiss

Rainbow
trout,

Oncorhynchus
mykiss

Tissue Chem i ca1

Whole	Cadmium

body	chloride

Whole
body

Whole	Cadmium

body	chloride

Whole	Cadmium

body	chloride

Muscle Cadmium
sulfate

Hardness
(mg/L as

CaCOi)	

82.5

Concentr

at ion
in water
(ug/L)a

2.07

Durat

ion
(days

1

72

BCF
or
BAF

42

Reference

Harrison and
Klaverkamp 1989

140 540 Kumada et al.
1973

82.5

250

70 33 Kumada et al.
1980

3.39

72

55

Harrison and







Klaverkamp 1989

1.8

231

333

Brown et al.

3.4

231

294

1994

5.5

231

509



1.8

455

89



3.4

455

182



5.5

455

127




-------
Table 5. (Continued)

Species	Tissue Chemical

At 1ant i c
salmon,
Salmo salar

Whole
body
(egg)

Cadmium
chloride

Brook trout,
Salve 1inus
fontinalis

Brook trout,
Salve 1inus
fontinalis

Brook trout,
Salve 1inus
fontinalis

Mosquitofish,
Gambusia
affinis

Muscle

Muscle

Muscle

Whole
body
(estimat

ed
steady
state)

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Hardness
(mg/L as

CaCOi)	

Concentr

at ion

Durat

BCF



in water

ion

or

Reference

(ug/Ua

(davs

1

BAF



0.87

91

229

Peterson et

(pH=6.8)

91

176

1985

1.74

91

4



(pH=6.8)

91

7



1.01

(pH=4.5)

2.09
(pH=4.5)

490 3 Benoit et al.
1976

84 151 Benoit et al.
1976

93 22 Sangalang &
Freeman 1979

180

2,21 Giesy et al
3 1979


-------
Table 5. (Continued)

Species	Tissue Chemical

Mosquitofish,
Gambusia
affinis

Guppy,
Poecilia
reticulata

Bluegi11
sunfish,
Lepomis
macrochirus

Whole
body
(estimat

ed
steady
state)

Whole
body

Whole
body

Cadmium
chloride

Cadmium
chloride

Hardness
(mg/L as

CaCOi)	

Concentr

at ion
in water
(ug/L)a

Durat

ion
(days

1

180

BCF
or
BAF

1,89
1

Reference

Giesy et al
1979

32 280 Canton & Slooff
1982

134	0.8	28 113 Cope et al

1994

0.8

28

113

1.8

28

78

2.2

28

86

2.8

28

68

3.6

28

67

4.4

28

66

5.2

28

69

6.2

28

50

7.7

28

48

8.4

28

62

13.2

28

55

16.1

28

37

19.7

28

34

32.3

28

41


-------
Table 5. (Continued)

Hardness Concentr

clawed frog,

Xenopus

laevis

Mallard duck,
Anas

pi a tyrhynchos

body

K i dney
tubule
degenera
tion,
Testis
weight
reductio
n,

inhibite
d

spermato

zoa
product i
on

200
mg/kgc
(in
food)

90







(mg/L as

at ion

Durat

BCF

Species

Tissue

Chem i ca1



in water

ion

or





CaCOO

(ug/Ua

(davs

BAF







—



1



Blue tilapia,

Muscle

Cadmium

145

6.8

112

17.6

Tilapia aurea



nitrate



14

112

16.4







28

112

25.7









52

112

17.7

African

Whole

_

_

_

100

130

Reference

Papoutsoglou
and Abel 1988

Canton & Slooff
1982

White and
Finley 1978a,b;
White et al.
1978

SALTWATER SPECIES


-------
Table 5. (Continued)

Species

Polychaete
worm,

Ophryotrocha
diadema

Blue mussel,
Mytilus
edulis

Blue mussel,
Mytilus
edulis

Bay scallop,
Argopecten
irradians

Eastern
oyster,
Crassostrea
virginica

Eastern
oyster,
Crassostrea
virginica

Tissue Chem i ca1

Whole	Cadmium

body	chloride

Soft	Cadmium

parts	chloride

Soft	Cadmium

parts	chloride

Muscle	Cadmium
chloride

Soft	Cadmium

parts	chloride

Soft	Cadmium

parts chloride

Hardness Concentr

(mg/L as
CaCOi)	

at ion
in water
(ug/L)a

Durat

ion
(days

1

64

BCF
or
BAF

3,16
0

Reference

Klockner 1979

28 113 George &

Coombs1977

35 306 Phillips 1976

42 2,04 Pesch & Stewart
0 1980

280 2,15 Zaroogian &
0 Cheer 1976

280

1,83
0

Zaroogian 1979


-------
Table 5. (Continued)

Species	Tissue

Eastern	Soft

oyster,	parts

Crassostrea
virginica

Soft-shell	Soft

clam,	parts

Mya arenaria

Pink shrimp,	Whole

Penaeus	body

duorarum

Grass shrimp, Whole
Pa 1eomonetes	body

pugio

Grass shrimp, Whole
Pa 1eomonetes	body

pugio

Grass shrimp, Whole
Pa 1eomonetes	body

vulgaris

Green crab,	Muscle

Carcinus

maenas

Chem i ca1

Cadmium
nitrate

Cadmium
nitrate

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Cadmium
chloride

Hardness Concentr

(mg/L as at ion Durat	BCF

	 in water ion	or Reference

CaCOi)	 (/ig/L)" (days	BAF

1

98	1,22 Schuster &

0 Pringle 1969

70 160 Pringle et al.
1968

30 57 Nimmo et al.
1977b

42 22 Pesch & Stewart
1980

28 203 Nimmo et al
1977b

28 307 Nimmo et al
1977b

68 5 Wright 1977


-------
Table 5. (Continued)

Species

Green crab,

Carcinus

maenas

Tissue

Muscle

Chem i ca1

Cadmium
chloride

Hardness Concentr

(mg/L as at ion Durat	BCF

	 in water ion	or

CaCOi)	 (/ig/L)" (days	BAF

1

40	7

Reference

Jennings &
Rainbow 1979a

Results are based on cadmium, not the chemical.

Bioconcentration factor was converted from dry weight to wet weight basis.
More recent information may be available for this species.


-------
Table 6. Other Data on Effects of Cadmium on Aquatic Organisms

Species Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCO-;

Effect

Result
(Total

//g/L)13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Reference

ug/L)

FRESHWATER SPECIES

Mixed
natural
fungi and
bacterial
colonies on
leaf litter

Plankton

Mixed algal
species

Cadmi

um
chlor
ide

10.7 28

S, U Cadmi
um
chlor
ide

wk Inh i b i t i on
of leaf
decomposit

32.0

ion

2 wk Reduced	1-3

crustacean
»

zooplankto
n, and
roti fers

10 Growth	50

days i nh i b i t i on

Giesy
1978

Marshal 1
et al.
1981,
1983

Lasheen
et al.
1990


-------
Phytoplankt S,

on	M, T
commun i ty

Duckweed,	R, U
Lemna minor

Duckweed,	S,

Spirodela M, T
punctata

Water fern, S,
Salvinia M, T
minima

Cyanophycea S, U
e,

Microcystis
aeroginosa

Cyanobacter S, U
ium,

Anacystis
nidulans

Green alga, R, U
Selenastrum
capricornut
urn

Green alga, S, U
Selenastrum
capricornut
um

Cadmi - 150
um	days

chlor
ide

10

days

30
days

30
days

Cadmi - 24 hr

um
chlor
ide

Cadmi -	14

um	days

chlor
ide

Cadmi 24.2 72 hr

um
chlor
ide

Cadmi 24.2 72 hr

um
chlor
ide

NOEC	0.185 - - Findlay

biomas and	et al.

photosynth	1996
esis

EC50	191 - - Smith and

(frond	Kwan 1989
production
)

Reduced	25 - - Outridge

growth	1992
rate

Reduced	10 - - Outridge

growth	1992
rate

EC50	0.56 - - Guanzon

growth	et al.

1994

No growth	50,000 - - Lee et

al. 1992

EC50	20.6 49.39 - Radetski

(eel 1	et al.

counts)	1995

EC50	42.7 102.4 - Radetski

(eel 1	et al.

counts)	1995


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Green alga,	S, U Cadmi

Chlamydomon	um

as	chlor

reinhardi	ide

Green alga,	S, U Cadmi

Scenedesmus	um

dimorphus	nitra

te

Green alga,	S, U Cadmi

Scenedesmus	um

quadricauda	chlor

ide

Green alga,	S, Cadmi

Selenastrum	M, T um

capricornut	nitra

um	te

72 hr

11.3 48 hr

20
days

120
hr

Effect

EC50
(growth)

LC50
(density)

LC50

LOEC
growth

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

789	-	- Schafer

et al.
1994

63 378.1 - Ghosh et

al. 1990

9	-	- Fargasova

1993

30	-	- Thompson

and

Couture
1991


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Green alga, S, U -	- 72 hr

Selenastrum
capricornut
um

Green alga, S, U
Scenedesmus
quadricauda

Green alga, S, U

Stichococcu

s

baci1laris

Cadmi - 24 hr

um
chlor
ide

Cadmi - 96 hr

um
chlor
ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

EC50	164

(eel 1
number)	97

EC50
(chlorophy

11)

EC50	1.9

growth

Reduced
growth

5,000

Van der

Heever

and

Grobbelaa
r 1996

Guanzon
et al.
1994

Skowronsk
i et al.
1985


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Green alga, S, U Cadmi - 72 hr
Chlorella	um

vulgaris	chlor

ide

Green alga, S, U Cadmi - 72 hr
Chlorella	um

vulgaris	nitra

te

Green alga, - Cadmi - 96 hr
Scenedesmus	um

quadricauda	chlor

ide

Bacteria,	- Cadmi

Escherichia	um

coli	chlor

ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

Reduced
progeny
formation

100

Wi lczok
et al.
1994

EC50 50,000
growth

Wren and
McCarrol1
1990

Incipient 100
inhibition
(river
water)

Incipient 150
inhibition

Bringmann
and Kuhn
1959a,b

Bringmann
and Kuhn
1959a


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Bacteria,	- Cadmi 50 8 hr

Salmonella	um

typhimurium	chlor

ide

Bacteria,	- Cadmi - 16 hr

Pseudomonas	um

putida	chlor

ide

Bacteria,	- Cadmi - 18 hr

(6 species)	um

chlor
ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

EC50
(growth
nhibition
)

Incipient
nhibition

10,400

Reduced
growth

80

5,000
100,000

10,40
0

Canton
and

Slooff

1982

Bringmann

and Kuhn

1976,

1977a,

1979,

1980b

Seyfried
and

Horgan

1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Protozoan S, Cadmi	70 2

community M, T um	days

chlor

ide	28
days

Protozoan S, U Cadmi	- 240

community um	hr

chlor
ide

Result
(Total

Effect		

ug/L)b

Resul	Result

t	Adj ust

Adj us	ed to

ted	TH=50

to	(Disso Referenc

TH=50	lved 	 e

(Tota	ug/L)

1

ug/L)

EC50
(number of
species)

EC20
(colonizat
ion)

Reduced
b i omas

4,600
1

3,067

Niederleh
ner et
al. 1985

Fernande
z-

Leborans
and

Novi1lo-
V i 11 aj os
1993


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Protozoan,	- Cadmi - 72 hr

Entosiphon	um

sulcatum	nitra

te

Protozoan,	- Cadmi - 28 hr

Mi croregma	um

heterostoma	chlor

ide

Protozoan, - Cadmi - 48 hr
Chilomonas	um

paramecium	nitra

te

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

Incipient
inhibition

11

Incipient
inhibition

100

Bringmann
1978;

Bringmann
and Kuhn
1979,
1980b,
1981

Bringmann
and Kuhn
1959b

Incipient
inhibition

160

Bringmann
et al.
1980,

1981


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Protozoan, - Cadmi - 20 hr
Uronema	um

parduezi	nitra

te

Protozoan, S, U Cadmi 28 24 hr
Spirostomum	um 250 24 hr

ambiguum	chlor

ide

Protozoan, S, U Cadmi - 48 hr
Spirostomum	um

ambiguum	nitra

te

Ciliate,	S, U Cadmi - 72 hr

Te trahymena	um

pyri formis	chlor

ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/U

ug/L)

Incipient 26
nhibition

LC50
LC50

LC50

78.1

5,270

168

Growth 3,372
nhibition

157.1
757.9

Bringman
and Kuhn
1980a,
1981

Nalecz-
Jawecki
et al.
1993

Nalecz-
Jawecki
and

Sawicki
1998

Krawczyns
ka et al.
1989


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Ciliate,	S, U

Tetrahymena

pyriformis

Ciliate,	S, U

Tetrahymena

pyriformis

Ciliate,	S, U

Colpidium
campy1 urn

Ciliate,	S, U

Tetrahymena

pyriformis

Cadmi - 96 hr

um
chlor
ide

Cadmi - 30
um	min

aceta
te

Cadmi - 24 hr

um
sulfa

te

Cadmi - 9 hr

um
chlor
ide

Resul
t

Result Adjus
(Total ted

Effect			to

uq/L)b TH=50
(Tota
1

ug~L)

EC50	1,045

growth

Complete 56,205
mortality

EC50	75

growth

Result
Adj ust
ed to
TH=50

(Disso Referenc

lved 	 e

ug/L)

Schafer
et al.
1994

Larsen
and

Svensmark
1991

Dive et
al. 1989

IC50
growth

3,000

Sauvant
et al.
1995


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Ci1iate,

Spirostomum

teres

Hydra,

Hydra
oligactis

Hydra,

Hydra

1ittoralis

Planarian,
Dendrocoelu
m lacteum

S, U Cadmi
um
chlor
ide

Cadmi

um
ni tra

te

Cadmi

um
chlor
ide

R, Cadmi
M, T um
chlor
ide

24 hr

48 hr

70 12
days

122.8 48 hr

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

LC50

1,950

Twagi1ima
na et al.
1998

LC50

583

Reduced
growth

20

13.3

Slooff
1983:

Slooff et
al. 1983

Santiago-

Faudino

1983

LC50 46,000 15,58 - Brown and

0	Pascoe

1988


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Planarian,

Dugesia

lugubris

Mixed macro
invertebrat
es

Rotifer,	S, U

Brachionus
calycifloru
s

Cadmi - 48 hr

um
ni tra

te

Cadmi 11.1 52 wk

um
chlor
ide

Cadmi 80- 72 hr

um 100
ni tra

te

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50

>20,000

Slooff
1983

Reduced
taxa

30.7

Giesy et
al. 1979

Chronic

value
(asexual
reproducti
on)
Chronic
Value
(sexual
reproducti
on)

20

20

9.9

9.9

Snell and

Carmona

1995


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rotifer,	S, U Cadmi 80- 48 hr

Brachionus	um 100

calycifloru	nitra

s	te

Rotifer,	S, U Cadmi 80- 24 hr

Brachionus	um 100

calycifloru	nitra

s	te

Rotifer,	S, U Cadmi 80- 24 hr

Brachionus	um 100

ruhens	chlor

ide

Rotifer,	S, U Cadmi 170 35

Brach i onus	um m i n

calycifloru	chlor

s	ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

EC50
Chronic
value

70
60

34.5

29.6

Snell and

Moffat

1992

LC50

1,300 640.3

Snell et
al. 1991a

LC50	810 398.9

N0EC	280 137.9

(survival)

Snell and

Persoone

1989a

N0EC	250

(ingestion
rate)

57.2

Juchelka
and Snell
1994


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rotifer,	S, U

Brachionus
calycifloru
s

Mixed	F,

zooplankton M, T
commun i ty

Cadmi 80- 48 hr

um 100
ni tra

te

14
days

Tubificid	- Cadmi 224 48 hr

worm,	um

Tubif ex	chlor

tubif ex	ide

Tubificid	R, U Cadmi 245 96 hr

worm,	um

Tubif ex	chlor

tubif ex	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

EC50

10

4.93

Radix et
al. 1999

60%
reduced
b i omass

LC50

320,000 52,53
2

Lawrence
and

Hoioka
1987

Qureshi
et al.
1980

LC50

47,530 7,004

Khangarot
1991


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Worm,

Lumbricuius
variegatus

Worm,
Pristina
sp.

Worm,
Pristina
leidyi

Nematode,
Caenorhabdi
tis elegans

F, Cadmi
M, T um
chlor
ide

Cadmi

um
chlor
ide

S, Cadmi
M, T um
chlor
ide

S, U Cadmi
um
chlor
ide

44-47 10
days

11.1 52 wk
95 48 hr
96 hr

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

158

177.0

Phipps et
al. 1995

Population
reduction

30.7

Giesy et
al. 1979

LC50

215

99.2

Smith et
al. 1991

LC50
(fed)

61

Willi ams
and

Dusenbery
1990


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Leech (cocoon), S> M> T Cadmi	- 96 hr

Nephe1 opsls obscura

um
chlor
ide

^nai1',	s, m, t Cadmi 15.3 96 hr

Amnicola limosa

um
chlor
ide

Snail,	- Cadmi - 48 hr

Lymnaea	um

stagnalis	chlor

ide

Effect

Result
(Total

//gyp13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

ug~L)

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

LC50

832.6

Wicklum
et al.
1997

LC50 6,350 26,45
(pH=3.5 0
)

3,800 15,82
(pH=4.0 8
)

2,710 1,288
(pH=4.5
)

LC50	583

Mackie
1989

Slooff
1983;

Slooff et
al. 1983


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Snai 1,

Physa

integra

Snai 1,
Vi vpara
bengal ens is

Zebra
mussel,
Dreissena
polymorpha

S, U

Mussel,	S,

Utterbackia M, T
imbecilis

R,
M, T

Cadmi 44-58

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

140-
190

39
80-
100

28
days

96 hr

48 hr
48 hr

150 48 hr

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

10.4

10.2

Spehar et
al. 1978

LC50

1,550 367.8

LC50
LC50

57
137

76.9
67.5

Gadkari
and

Marathe
1983

Keller
and Zam
1991

EC50

388

103.3

Kraak et
al. 1994a


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Zebra	R,

musse1,	M, T
Dreissena
polymorpha

Bivalve,	S, M, T

Pisidium casertanum

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

268

10	wk

11	wk

15.3 96 hr

Bivalve,	S,

Pisidium compressum

T Cadmium 15.3

chloride

96 hr

Cladoceran
(<24 hr)

Ceriodaphnia dubia

R,M,
T

Cadmium
nitrate

100 48 hr

Effect

Result
(Total

//gyp13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

ug~L)

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

LOEC
1tration
rate
EC50

LC50

LC50

LC50

9

130

1 ,370
(pH=3.5)

480
(pH=4.0)

700
(pH=4.5)

2,080
(pH=3.5)

700
(pH=4.0)

360
(pH=4.5)

27.3

(High

T0C)

1.19
17.2

5,707

1,999

2,916
8,664

2,916

I,500

II.84

Kraak et
al. 1992b

Mackie 1989

Mackie 1989

Spehar and
Fiandt 1986


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Effect

Result
(Total

ug/L)b

Resul
t

Adius
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

Cladoceran, R, U

Ceriodaphni

a

Cladoceran, S, U
Ceriodaphni
a dubia

Cladoceran, S, U
Ceriodaphni
a dubia

Cladoceran S,
(<48 hr), M, T
Ceriodaphni
a dubia

Cadmi

um
sulfa

te

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
ni tra

te

169

80-
100

80-
100

280-
300

7 Chronic
days value

reproducti

<14

<3.23

1 hr

1 hr

on

EC50
feeding
inhibition

EC50
feeding
inhibition

48 hr LC50 (fed)

54

76.2

560

26.6

37.5

67.3

Masters
et al.
1991

Britton
et al.
1996

Lee et
al. 1997

Schubaue
r-Berigan
et al.
1993


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

ciadQcerati	g u Cadmi 80 48 hr

(<24 hr),

Ceriodaphnia dubia	UIIl

chlor
ide

91^°Peran	S, U Cadmi 172 48 hr

(<24 hr),

Ceriodaphnia dubia	UIIl

chlor
ide

Cladoceran S, Cadmi 160- 120
(<24 hr) , M, D um 180 min
Ceriodaphni	su1fa

a dubia	te

Cladoceran, R, U Cadmi 80- 7
Ceri odaphn i	um 100 days

a dubia	chlor

ide

Effect

Resul
t

Result Adjus
(Total ted

		to

uq/L)b TH=50
(Tota
1

Result
Adj ust
ed to
TH=50

(Disso Referenc

lved 	 e

ug/L)

ug/L)

LC50

49.5 28.10

Hockett and
Mount 1996

LC50

221 49.9

Hockett and
Mount 1996

Reduced
mob i1i ty

2,500 572.2

Brent and
Herricks
1998

Chronic
value

1.4 0.69

Zuidervee
n and
Birge
1997


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran	S, U Cadmi 80- 48 hr

(<24 hr),	um 100

Ceriodaphni	nitra

a dubia	te

Cladoceran,	R, U Cadmi 90 10

Ceriodaphni	um days

a dubia	sulfa

te

Cladoceran,	S, M Cadmi 55-79 48 hr

Ceriodaphni	um

a	chlor

reticulata	ide

Cladoceran	S, U Cadmi 200 48 hr

(<6 hr),	um

Ceriodaphni	chlor

a	ide
reticulata

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

LC50	78.2 38.51 - Nelson

(fed)	and

Ro1i ne
1998

N0EC	0.5 0.25 - Winner

reproducti	1988

on

LC50

LC50

129
(High
T0C)

79.4

90.7

14.94

Spehar
and

Carlson
1984a,b

Hall et
al. 1986


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran,	S, Cadmi 37.6 48 hr

Ceriodaphni	M, T um

a	sulfa

reticulata	te

Cladoceran,	S, Cadmi 37.6 48 hr

M, T um

Daphnia	sulfa

carinata	te

Cladoceran,	- Cadmi - 22 wk

Daphnia	um

galeata	chlor

mendotae	ide

Cladoceran,	- Cadmi -	15

Daphnia	um days

galeata	chlor

mendotae	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

1,900 2,679

LC50

280 394.7

Reduced
b i omass

4.0

Sharma
and

Selvaraj
1994

Sharma
and

Selvaraj
1994

Marshal 1
1978a

Reduced
rate of
increase

5.0

Marshal 1
1978b


-------
Table 6. (Continued)

ess

Meth Chemi (mg/L Durat
od cal	ion

CaCCK

Cladoceran, - Cadmi	48 hr

Daphnia

chlor
ide

Cladoceran, -	45 21

um

magna	chlor

Cladoceran, -	163 72 hr

um

magna	chlor

Cadmi

Daphnia	um

magna

te

Resul Result
Adj ust

Adjus
ted TH=50

(Disso Referenc
TH=50	_

(Tota g/L)

LL

Bringmann
1959a,b

0.19	Biesinger

and

en 1972

14-17 3.71	Debelak

1975

LC50	600	- Bringmann

1977b

Result
(Total

ug/L)

EC50	100

water)

Reproducti 0.17
ve


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran	- Cadmi - 72 hr

(3-5 days),	um

Daphnia	sulfa

magna	te

Cladoceran	- Cadmi - 72 hr

(adult) ,	um

Daphnia	sulfa

magna	te

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50

224

Braginskl

(10NC)

224

y and



12

Shcherban

(15NC)

0.1

1978

(25NC)





(30NC)





LC50

479

Braginskl

(10NC)

187

y and



10.2

Shcherban

(15NC)

2.4

1978

(25NC)





(30NC)






-------
Species

Meth Chemi

Hardn
ess

as

CaCO

Durat

Cladoceran,
magna

um
ni tra

200 24 hr

Cladoceran,
Daphnia

Cladoceran,
magna

Cadmi

chlor
ide

um
chlor

96 hr

200

20

Daphnia
magna

Cadmi 55-79
um

ide

Effect

Result

kL

Result

t

Adjus

ed to
TH=50
to

TH=50 lved _
ug/L)

1

g~L)

160

30.1

Bellavera
and Gorbi

EC50

1.58

Maly 1982

LC50

LC50

670

166 116.7
T0C)

Canton

Slooff
1982

Spehar
and

1984a,b


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran	S, Cadmi 160- 48 hr

(<24 hr) ,	M, T um 180

Daphnia	chlor

magna	i de

Cladoceran,	S, U Cadmi 200 48 hr

Daphnia	um

magna	chlor

ide

Cladoceran	g y Cadmi ^8	4g

(<4 hr),	41

Daphnia magna	Um 71

chlor It
ide

Cladoceran	g y Cadmi	™	4g

(<4 hr),	74

Daphn i a magna	Um

chlor
ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

uq/L)

LC50

140

32.0

Lewis and

Weber

1985

LC50

49.0

9.22

Hall et
al. 1986

LC50

LC50

164
99
101
120

65

16
146

228.3
125.7
66.2
74.8

39.2

22.3
91.0

Nebeker
et al.
1986a

Nebeker
et al.
1986a


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Cladoceran (1 d),
Daphnia magna

Cladoceran (2 d),
Daphnia magna

Cladoceran (5 d),
Daphnia magna

Cladoceran
(5 d),
Daphnia
magna

S, U

S, U

s,

M, T

R,
M, T

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

38
71
74
76

38
71
74
76

34

48 hr

225

48 hr

48 hr

21
days

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/U

ug/L)

LC50

LC50

LC50

307
135
200
45

131
18
38
21

24

427.3
88.5
124.7
27.2

182.3
11.8
23.7
12.7

38.2

Nebeker
et al.
1986a

Nebeker
et al.
1986a

Nebeker
et al.
1986b

LOEC
reproducti
on

2.3

0.38

Enserink
et al.
1993


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran,

Daphnia

magna

Cladoceran
(14 days),
Daphnia
magna

Cladoceran
(egg),
Daphnia
magna

S, U Cadmi
um
chlor
ide

S, Cadmi
M, T um
chlor
ide

S, Cadmi
M, T um
chlor
ide

48 hr

160- 48 hr
180

150 46 hr

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

48
(fed)

Domal-

Kwiatkowska et
al. 1994

LC50

80

18.3

Allen et
al. 1995

Profound
effect on

egg

developmen
t

>1,000

>266
1

Bodar et
al. 1989


-------
Table 6. (Continued)

ess

Meth Chemi (mg/L Durat
od cal	ion

CaCCK

Cladoceran, S, U
magna

Cladoceran S,
(<24 hr),

magna

250 48 hr

um
chlor

Cadmi 160- 48 hr
um

Cadmi

Daphnia	um

magna

te

Result
(Total

ug/L)

Resul

Ad jus
ted

TH=50
(Tota
1

gZu

Result

ed to
TH=50

lved 	 e

ug/L)

LC50	98	- Enserink

(smal1	et al.

294 42.3

LC50
(large

LC50
NC)

LC50
(26 C)
(fed)

8.70

9

Horning
1991

EC50

980

Sorvari

Si 1 lanpaa
1996


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran R,
(<24 hr), M, T
Daphnia
magna

Cladoceran, R, U

Daphnia

magna

Cladoceran, R, U

Daphnia

magna

Cadmi - 24 hr

um	24

chlor	days

ide

Cadmi 90 10

um	days

sulfa

te

Cadmi 100 25

um	days

sulfa

te

Effect

Result
(Total

//gyp13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

EC50
NOEC
reproducti

on

NOEC
reproducti

1,900
0.6

2.5

1.23

Kuhn et
al. 1989

Winner
1988

on

NOEC
(20NC)
reproducti
on
NOEC
(25NC)
reproducti
on

2.25
0.75

0.98
0.33

Winner
and

Whitford
1987


-------
Species

Meth Chemi

Hardn
ess

as

CaCO

Durat

Effect

Result

kL

Result

t

Adjus

ed to
TH=50
to

TH=50 lved _
ug/L)

1

g~L)

Cladoceran,
pulex

um
chlor

57 140 Reduced	1

reproducti

0.85

Bertram
and Hart

Cladoceran,
Daphnia

Cladoceran,
Daphnia

Cladoceran,
pulex

Cadmi

chlor
ide

Cadmi

chlor
ide

um
sulfa

48 hr LC50 (fed)

58
days

44.5

100 72 hr

5-10

80-92

2.87

37.2

and

Winner

Ingersol1
and

1982

Winner
1984


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran	S, U Cadmi 200 48 hr

(<24 hr),	um

Daphnia	chlor

pulex	ide

Cladoceran	S, U Cadmi 124- 48 hr

(adult),	um 130

Daphnia	chlor

pulex	ide

Cladoceran	S, Cadmi 80-90 48 hr

(<24 hr),	M, T um

Daphnia	chlor

pulex	ide

Cladoceran	S, Cadmi 80-90 48 hr

(<24 hr),	M, T um

Daphnia	chlor

pulex	ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

100

18.81

Hall et
al. 1986

LC50

87.9

28.6

Jindal
and Verma
1990

LC50

24

12.7

Lewis and

Weber

1985

LC50
(20NC)
(fed)
LC50
(26NC)
(fed)

42
6

22.2
3.17

Lewis and

Horning

1991


-------
Hardn
ess

Species	Meth Chemi	Durat

	* 	 as 	

CaCO

Cladoceran

Daphnia
pulex

Cladoceran

M, T

Daphnia
pulex

Cladoceran,

Moina

macrocopa

Cladoceran, R,
Moina	M, T

macrocopa

Cadmi 80-90
um	days

ide

Cadmi	21

115	days

chlor 230	21

i de	days
21
days

Cadmi 80-84	20

um	days
chlor
ide

Cadmi -	240

um	hr
chlor
ide

Result

t

Result Adjus ed to

TH=50

Effect	to

y,	_ TH=50 lved 	 e

ug/L)

1

g~L)

N0EC

on

<0.003

al. 1993

N0EC
survival
N0EC brood

size
N0EC brood
size

Reduced
survival

Reduced
survival

3.8
7.5
7.5

0.2

10

3.17
2.75
1.19

0.11

Winner
1986

Hatakeyam
a and
Yasuno
1981b

Wong and
Wong 1990


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Cladoceran, S, Cadmi 37.6 48 hr
Moina	M, T um

macrocopa	su1fa

te

S, M Cadmi 55-79 48 hr

Cladoceran,

S imocepha1 us
serrulatus	um

chlor
ide

cladoceran,	S, M Cadmi 55-79 48 hr

5imocephalus vetulus

um
chlor
ide

Copepod,	- Cadmi - 72 hr

Acanthocyc1	um

ops viridis	sulfa

te

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

UQ./V)

LC50

320 451.1

LC50

LC50

LC50

123
(high
TOC)

89.3

(high

TOC)

0.5

86.4

62.76

Sharma
and

Selvaraj
1994

Spehar
and

Carlson
1984a,b

Spehar
and

Carlson
1984a,b

Braginskl
y and
Shcherban
1978


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Copepod,
Eucyclops
agi lis

Copepod,
Mesocyclops
hyalinus

Copepod,
Heliodinpto
mus vidus

Copepod,
Tropocyclop
s prasinus
mexicanus

Cadmi

um
chlor
ide

S, Cadmi
M, T um
sulfa

te

S, Cadmi
M, T um
sulfa

te

S, U Cadmi
um
chlor
ide

11.1 52 wk

37.6 48 hr

37.6 48 hr

10 48 hr

Effect

Result
(Total

ug/nb

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

ug 7n

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/U

Referenc
e

Population
reduction

5

30.7

-

Giesy et
al. 1979

LC50

870

1,227

-

Sharma
and

Selvaraj
1994

LC50

150

211.5



Sharma
and

Selvaraj
1994

LC50

149

1,036



Lalande
and
Pinel-
Alloul
1986


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Copepod,	S, Cadmi 37.6 48 hr

Stenocypris M, T um
malcolmsoni	sulfa

te

Amphipod,	S, Cadmi - 96 hr

Diporeia M, T um
sp.	chlor

ide

Amphipod,	g m Cadmi 55-79 96 hr

Gammarus

pseudol imnaeus	UIIl

chlor
ide

Amphipod, S, M Cadmi 217- 24 hr
Hyalella	um 301

azteca	chlor

ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/U

ug/L)

LC50 11,500 16,21

2

LC50 (4NC)
LC50
(10NC)
LC50
(15NC)

LC50

LC50

800
280
60

54.4

38.23

140 19.3

Sharma
and

Selvaraj
1994

Goss i aux
et al.
1992

Spehar
and

Carlson
1984a,b

McNulty
et al.
1999


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Amphipod,	S, M Cadmi 55-79 96 hr

Hyalella	um

azteca	chlor

ide

Amphipod,	S, Cadmi 15.3 96 hr

Hyalella	M, T um

azteca	chlor

ide

Amphipod	S, Cadmi 90 96 hr

(0-2 d) ,	M, T um

Hyalella	chlor

azteca	ide

Amphipod	S, Cadmi 90 96 hr

(2-4 d),	M, T um

Hyalella	chlor

azteca	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

LC50

285
(high
TOC)

12 (pH-5.0)
16 (pH=5.5)
33 (pH=6.0)

200.3

49.98
66.65
137.5

Spehar
and

Carlson
1984a,b

Mackie
1989

LC50

>13

= 6.4

Collyard
et al.
1994

LC50

= 7.5

= 3.7

Collyard
et al.
1994


-------
Table 6. (Continued)

Species

Hardn
ess

Meth Chemi (mg/L Durat

oda

cal

as

CaCCK

ion

Amphipod	S, Cadmi 90 96 hr

(4-6 d),	M, T um

Hyalella	chlor

azteca	ide

Amphipod	S, Cadmi 90 96 hr

(10-12 d),	M, T um

Hyalella	chlor

azteca	ide

Amphipod	S, Cadmi 90 96 hr

(16-18 d),	M, T um

Hyalella	chlor

azteca	ide

Amphipod	S, Cadmi 90 96 hr

(24-26 d),	M, T um

Hyalella	chlor

azteca	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

= 9.5

= 4.7

Collyard
et al.
1994

LC50

= 3.4

Collyard
et al.
1994

LC50

= 11.5

= 5.7

Collyard
et al.
1994

LC50

14

= 6.9

Collyard
et al.
1994


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Amphipod,
Hyalella
azteca

Amphipod,
Hyalella
azteca

Amphipod,
Hyalella
azteca

Crayfish,

Cambarus

latimanus

R, Cadmi
M, T um
ni tra

te

F, Cadmi
M, T um
chlor
ide

S, Cadmi
M, T um
ni tra

te

Cadmi

um
chlor
ide

130 6 wk

44-47 10
days

280- 96 hr
300

11.1 5 mo

Result
(Total

Effect		

ug/L)b

Resul	Result

t	Adj ust

Adj us	ed to

ted	TH=50

to	(Disso Referenc

TH=50	lved 	 e

(Tota	ug/L)

1

ug/L)

EC50	0.53 0.17 - Borgmann

et al.
1991

LC50	2.8 3.14 - Phipps et

al. 1995

LC50	230 27.7 - Schubaue

(fed)	r-Berigan

et al.
1993

Significan
t

mortality

5	30.7

Thorp et
al. 1979


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Crayfish,

Orconectes

immunis

Anostracan

crustacean,

Brachionus

calycifloru

s

Anostracan
crustacean,
Streptoceph
alus

rubricaudat
us

S, Cadmi
M, T um
chlor
ide

S, U Cadmi
um
sulfa

te

S, U Cadmi
um
sulfa

te

50.3 96 hr

250 24 hr

250 24 hr

Effect

LC50

EC50



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/U

ug/L)

>10,000 >9,92 - Thorp and
8	Gloss

1986

120

17.3

Crisinel
et al.
1994

EC50

250

36.0

Crisinel
et al.
1994


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Anostracan	S, U Cadmi 80- 24 hr

crustacean,	um 100

Thamnocepha	chlor

lus	ide
platyurus

Mayfly,	- Cadmi - 72 hr

Cloeon	um

dipterum	sulfa

te

Mayfly,	- Cadmi - 48 hr

Cloeon	um

dipterum	nitra

te

Effect

Result
(Total

//gyp13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

ug~L)

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

LC50

400

197.0

Centeno
et al.
1995

LC50
(10NC)

(15NC)

(25NC)

(30NC)
LC50

70,600
28,600
6,990
930

56,000

Braginskl
y and
Shcherban
1978

Slooff et
al. 1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Damsel fly, Enallagma g Cadmi 15.3 96 hr

sp	M, T um

chlor
ide

Mayfly,	- Cadmi 44-48 28

Ephemerella	um	days

sp.	chlor

ide

nayfl,y'.	S, M Cadmi 55-77 96 hr

rara1eptophlebia

praepedi ta	UIIl

chlor
ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

LC50

7,050
(pH=3.5)
8,660
(pH=4.0)
10,660
(pH=4.5)

29,36
6

36,07
2

Mackie
1989

LC50

<3.0

44,40
3

<3.3

Spehar et
al. 1978

LC50

449

315.6

Spehar
and

Carlson
1984a,b


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Mayfly,

Hexagenia

rigida

Mosquito,

Aedes

aegypti

Mosquito,

Culex

pipiens

Midge,
Chironomus
ten tans

Cadmi

um
ni tra

te

Cadmi

um
ni tra

te

Cadmi

um
ni tra

te

S, U Cadmi
um
chlor
ide

79.1 96 hr

48 hr

48 hr

25 48 hr

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

>1,000

>575.
4

Leonhard
et al.
1980

LC50

4,000

Slooff et
al. 1983

LC50

765

Slooff et
al. 1983

LC50

8,050

18,55
7

Khangarot
and Ray
1989b


-------
Table 6. (Continued)

Species

Hardn
ess

Meth Chemi (mg/L Durat
oda cal as ion
CaCCK

Midge (1st S,
instar),	M, T

Chironomus
ripari us

Midge (4th S,
instar),	M, T

Chironomus
ripari us

Midge (1st R,
instar),	M, T

Chironomus
ripari us

100

100

98

1 hr
10 hr

1 hr
10 hr

17

days

Midge (2nd
instar),
Chironomus
ripari us

R, Cadmi
M, T um
chlor
ide

100-
110

96 hr

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

ug~L)

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

Reduced 2,100 911.0
emergence

Reduced 210 91.1
emergence

Reduced 2,000 867.6
emergence

Reduced 200 86.8
emergence

L0EC	150 66.7

survival,
developmen
t and
growth

LC50 (fed) 13,000 5,317

McCahon
and

Pascoe
1991

McCahon
and

Pascoe
1991

Pascoe et
al. 1989

Willi ams
et al.
1986


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Midge (3rd	R, Cadmi 100- 96 hr

instar) ,	M, T um 110

Chironomus	ch1or

ripari us	ide

Midge (4th	R, Cadmi 100- 96 hr

instar),	M, T um 110

Chironomus	ch1or

ripari us	ide

Midge,	S, U Cadmi 98 120

Chironomus	um hr

ripari us	chlor

ide	10
days

Effect

viabi1ity)

L0EC
(number of

eggs
ovipositio
ned)



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso

ug/L)b

TH=50

lved 	



(Tota

ug/L)



1









22,000

8,999

-

54,000

22,08





8



30,000

13,33





5



100,000



-



44,44





9



Referenc

Willi ams
et al.
1986

Willi ams
et al.
1986

Willi ams
et al.
1987


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Midge,	- Cadmi 47 10

Tanytarsus	um days

dissimi1 is	chlor

ide

Coho salmon	- Cadmi 22 217

(juvenile),	um hr

Oncorhynchu	chlor

s kisutch	ide

Coho salmon	- Cadmi 22 215

(adult),	um hr

Oncorhynchu	chlor

s kisutch	ide

Coho salmon	S, U Cadmi 41 96 hr

(alevin),	um

Oncorhynchu	chlor

s kisutch	ide

Effect

LC50

LC50

LC50

LC50



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

3.8 4.09	- Anderson

et al.
1980

2.0 5.38 - Chapman

and

Stevens
1978

3.7 9.95 - Chapman

and

Stevens
1978

6.0 7.62	- Buhl and

Hami1 ton
1991


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Chinook

Cadmi

salmon

um

(alevin),

chlor

Oncorhynchu

c

ide

o

tshawytscha



Chinook

Cadmi

salmon

um

(swim-up),

chlor

Oncorhynchu

c

ide

o

tshawytscha



Chinook

Cadmi

salmon

um

(parr) ,

chlor

Oncorhynchu

c

ide

o

tshawytscha



23 200
hr

23 200
hr

23 200
hr

Result
(Total

Effect		

ug/L)b

LC10	18-26

LC10	1.2

Resul	Result

t	Adj ust

Adj us	ed to

ted	TH=50

to	(Disso Referenc

TH=50	lved 	 e

(Tota	ug/L)

1

ug~L)

55.1	- Chapman

1978

3.06	- Chapman

1978

LC10

1.3

3.31

Chapman
1978


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Chinook
salmon
(smolt),
Oncorhynchu
s

tshawytscha

Ra i nbow
trout,
Oncorhynchu
s mykiss

Ra i nbow
trout,
Oncorhynchu
s mykiss

Ra i nbow
trout,
Oncorhynchu
s mykiss

Cadmi

um
chlor
ide

Cadmi
um

stear
ate

Cadmi
um

aceta
te

Cadmi
um

chlor
ide

23

112

200
hr

96 hr

96 hr

80
min

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC10

1.5

3.82

Chapman
1978

LC50

6.0

Kumada et
al. 1980

LC50

6.2

Kumada et
al. 1980

Significan
t

avoidance

52

19.7

Black and

Birge

1980


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Ra i nbow	-	- 112 18 mo

trout,

Oncorhynchu
s mykiss

Rainbow	- Cadmi 104 28

trout,	um	days

(embryo,	chlor

larva)	ide

Oncorhynchu
s mykiss

Rainbow	-	240

trout,	hr

Oncorhynchu
s mykiss

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

Reduced
survival

0.2

0.08

Birge et
al. 1981

EC50
(death and
deformity)

140

57.9

Birge
1978;
Birge et
al. 1980

LC50

7

5

Kumada et
al. 1973


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion

CaCO

.3

Rainbow	- Cadmi 54 408

trout	um hr

(adult),	chlor

Oncorhynchu	i de
s mykiss

Rainbow	- Cadmi 23 186

trout	um hr

(alevin),	chlor

Oncorhynchu	i de
s mykiss

Rainbow	- Cadmi 23 200

trout	um hr

(swim-up),	chlor

Oncorhynchu	i de
s mykiss

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

5.2

4.73

Chapman
and

Stevens
1978

LC10

>6

>15.3

Chapman
1978

LC10

1.0

2.55

Chapman
1978


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Ra i nbow
trout
(parr) ,
Oncorhynchu
s mykiss

Ra i nbow
trout
(smolt),
Oncorhynchu
s mykiss

Ra i nbow
trout,
Oncorhynchu
s mykiss

Ra i nbow
trout,
Oncorhynchu
s mykiss

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
sulfa

te

Cadmi
um

stear
ate

23

23

200
hr

200
hr

326 96 hr

10 wk

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC10

0.7

1.78

Chapman
1978

LC10

0.8

2.04

Chapman
1978

LC20

20

2.09

Davies
1976

BCF = 27
BCF = 40

Kumada et
al. 1980


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	- Cadmi - 10 wk

trout,	um

Oncorhynchu	aceta

s mykiss	te

Rainbow	- Cadmi 125 10

trout,	um days

Oncorhynchu	chlor

s mykiss	ide

Rainbow	- Cadmi 240 234

trout,	um days

Oncorhynchu	su1fa

s mykiss	te

Rainbow	- Cadmi 320 4 mo

trout,	um

Oncorhynchu	chlor

s mykiss	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

BCF = 63

Kumada et
al. 1980

LC50
(18NC)

(12NC)
(6NC)

Increased

gill
diffusion

10-30

30
10-30

5.74
9.95
5.74

0.30

Roch and
Maly 1979

Hughes et
al. 1979

Phys i o1og i
cal
effects

10

1.07

Arillo et
al. 1982,
1984


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	- Cadmi 98.6 47

trout,	um days

Oncorhynchu	chlor

s mykiss	ide

Rainbow	- Cadmi 100 62

trout,	um days

(embryo,	sulfa

larva)	te
Oncorhynchu
s mykiss

Rainbow	- Cadmi 89- 7

trout	um 107 days

(larva),	chlor

Oncorhynchu	i de
s mykiss

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

Reduced 100
growth and
survival

Reduced
Survival

<5

44.1

<2.17

Woodworth
and

Pascoe
1982

Dave et
al. 1981

LC50

700

311.1

Birge et
al. 1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	- Cadmi 89- 7

trout	um 107 days

(larva),	chlor

Oncorhynchu	i de
s mykiss

Rainbow	- Cadmi - 48 hr

trout,	um

Oncorhynchu	n i t ra

s mykiss	te

Rainbow	S, M Cadmi 55-79 96 hr

trout,	um

Oncorhynchu	chlor

s mykiss	ide

Rainbow	- Cadmi 82 11

trout,	um days

Oncorhynchu	chlor

s mykiss	ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50 after 1,590 706.7 - Birge et
24 days	al. 1983

acclimated
to 5.9
Mg/L

LC50	55	-	- Slooff et

al. 1983

LC50

LC50
(10NC)

10.2

(high

TOC)

16.0

7.17

8.81

Spehar
and

Carlson
1984a,b

Maj ewski
and Giles
1984


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion

CaCO

.3

Rainbow	- Cadmi 82	8

trout,	um days

Oncorhynchu	chlor

s mykiss	ide

Rainbow	- Cadmi 82 178

trout,	um days

Oncorhynchu	chlor

s mykiss	ide

Rainbow	R, U Cadmi 50 96 hr

trout,	um

(egg-0 hr)	chlor

Oncorhynchu	i de
s mykiss

Effect

LC50
(15NC)

Phys i o1og i
cal
effects

LC50



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso

ug/L)b

TH=50

lved 	



(Tota

ug/L)



1









16.6

9.15

-

3.6-6.4

2.65

-

13,000

13,00





0



Referenc

Maj ewski
and Giles
1984

Maj ewski
and Giles
1984

Van

Leeuwen
et al.
1985a


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Rainbow	R, U Cadmi 50 96 hr

trout,	um

(egg-24 hr)	chlor

Oncorhynchu	i de
s mykiss

Rainbow	R, U Cadmi 50 96 hr

trout,	um

(eyed egg-	chlor

14 d)	ide

Oncorhynchu

s mykiss

Rainbow	R, U Cadmi 50 96 hr

trout,	um

(eyed egg-	chlor

28 d)	ide

Oncorhynchu

s mykiss

Effect

Result
(Total

ug/L)b

LC50

13,000

LC50

7,500

LC50

9,200

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc
e

ug7n





13,00
0

-

Van

Leeuwen
et al.
1985a

7,500



Van

Leeuwen
et al.
1985a

9,200

-

Van

Leeuwen
et al.
1985a


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	R, U

trout,

(sac fry-42
d)

Oncorhynchu
s mykiss

Rainbow	R, U

trout,

(early fry-
77 d)

Oncorhynchu
s mykiss

Rainbow	R,

trout,	M, D

Oncorhynchu
s mykiss

Cadmi 50 96 hr

um
chlor
ide

Cadmi 50 96 hr

um
chlor
ide

Cadmi 63 96 hr
um 300 96 hr
chlor
ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

30

30

Van

Leeuwen
et al.
1985a

LC50	10	10	- Van

Leeuwen
et al.
1985a

LC50 (fed)
LC50 (fed)

1,300
2,600

984.0
300.2

Pascoe et
al. 1986


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	F, Cadmi 87.7 48 hr

trout,	M, T um

(5 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

Rainbow	F, Cadmi 87.7 48 hr

trout,	M, T um

(10 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

uq/L)

LC50

>100,00
0

>50,8
12

Shazi1i
and

Pascoe
1986

LC50

3,300 1,677

Shazi1i
and

Pascoe
1986


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Rainbow	F, Cadmi

trout,	M, T um

(15 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

Rainbow	F, Cadmi

trout,	M, T um

(22 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

87.7 48 hr

87.7 48 hr

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

7,200 3,658

Shazi1i
and

Pascoe
1986

LC50

8,000 4,065

Shazi1i
and

Pascoe
1986


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Rainbow	F, Cadmi

trout,	M, T um

(29 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

Rainbow	F, Cadmi

trout,	M, T um

(36 d post	chlor

fertilizati	ide

on)

Oncorhynchu
s mykiss

87.7 48 hr

87.7 48 hr

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

12,500 6,352

Shazi1i
and

Pascoe
1986

LC50

16,500 8,384

Shazi1i
and

Pascoe
1986


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	F,

trout,	M, T

(alevin, 2
d post
hatch)

Oncorhynchu
s mykiss

Rainbow	F,

trout,	M, T

(alevin, 7
d post
hatch)

Oncorhynchu
s mykiss

Rainbow	S, U

trout
(alevin),
Oncorhynchu
s mykiss

Cadmi 87.7 48 hr

um
chlor
ide

Cadmi 87.7 48 hr

um
chlor
ide

Cadmi 41 96 hr

um
chlor
ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

5,800 2,947

Shazi1i
and

Pascoe
1986

LC50	8,300 4,217 - Shazili

and

Pascoe
1986

LC50

37.9

48.14

Buh1 and
Hami1 ton
1991


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Rainbow	F, Cadmi 9.2 96 hr

trout	M, T um

(fry),	chlor

Oncorhynchu	i de

s mykiss

Rainbow	F,	-	50 96 hr

trout	M, T

(36 g),

Oncorhynchu

s mykiss

Rainbow	F, - 200 96 hr

trout	M, T

(36 g),

Oncorhynchu

s mykiss

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50	28 215.3 - Cusimano

(pH=4.7 5.382 - et al.
)	1986

0.7
(pH=5.7
)

LC50	2.7 2.70 - Davies et

al. 1993

LC50	3.2 0.602 - Davies et

al. 1993


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Rainbow	F,

trout	M, T

(36 g),
Oncorhynchu
s mykiss

Brown trout,	g

Salmo trutta	'

Atlantic
salmon,
Salmo salar

Atlantic	R,

salmon,	M, T

(alevin)

Salmo salar

400 96 hr

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

55-79 96 hr

13

28

70

days

92
days

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

7.6

0.620

Davies et
al. 1993

LC50

Reduced
growth

15.1 10.61

10.1

Spehar
and

Carlson
1984a,b

Peterson,
1983

Net water

uptake
inhibited

0.78 1.57

Rombough
and

Garside
1984


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Brook	- Cadmi 10 21

trout,	um days

Salvelinus	chlor

fontinalis	ide

Brook trout R,	-	20 10

(8 months), M, T	days

Salvelinus
fontinalis

Lake trout, F, Cadmi 90 8-9
Salvel inus M, T um	mo

namaycush	chlor

ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

Testicular 10
damage

NOEL	8

survival

69.5

24.1

Sangalang
and

0 'Hal lora
n 1972,
1973

Jop et
al. 1995

Decreased
thyroid
fol1icle
epithelial
eel 1
height

2.46

Scherer
et al.
1997


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Arctic grayling g u Cadmi 41 96 hr

(alevin),

Thymal lus arcticus	UIIl

chlor
ide

Arctic grayling g u Cadmi 41 96 hr

(juveni le) ,

Thymal lus arcticus	UIIl

chlor
ide

Goldfish,	- Cadmi 195 7

(embryo,	um	days

larva),	chlor

Carassius	ide

auratus

Goldfish,	-	-	-	50

Carassius	days

auratus

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

LC50

6.1
(1-d
acclima
tion)

4.0
(low
D.O.)

7.748

5.081

Buh1 and
Hami1 ton
1991

Buh1 and
Hami1 ton
1991

EC50
(death and
deformity)

170

32.98

Birge
1978

Reduced
p1asma
sodium

44.5

McCarty
and

Houston
1976


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Common carp
(embryo),

Cyprinus
carpio

Common carp S, U
(fry) ,

Cyprinus
carpio

Common carp S,
(fingerling U,
) , Cyprinus
carpio

Common carp F,
(embryo,	M, T

larva),

Cyprinus
carpio

Cadmi

um
sulfa

te

360

100 96 hr

100 96 hr

Cadmi

um
chlor
ide

101.6

8

days

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

EC50
(hatch)

2,094 194.1

Kapur and

Yadav

1982

LC50

4,260 1,848

Suresh et
al. 1993a

LC50

17,050 7,396

Suresh et
al. 1993a

LC50
(multiple-
species
test)

139

59.17

Birge et
al. 1985


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Common	R, Cadmi 48	7

shiner	M, D um days

(0.75-3.5	chlor

mg),	ide

Notrop is

cornutus

Fathead	- Cadmi 63 96 hr

minnow,	um

Pimephales	chlor

promelas	ide

Fathead	- Cadmi 55 96 hr

minnow,	um

Pimephales	chlor

promelas	ide

Fathead	- Cadmi 59 96 hr

minnow,	um

Pimephales	chlor

promelas	ide

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

67%
reduced
growth

200

210.1

Borgmann
and Ralph
1986

LC50

80.8 61.16

Spehar
1982

LC50

40.9 36.46

Spehar
1982

LC50

64.8 53.08

Spehar
1982


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Fathead

Cadmi

66

96

hr

minnow,

um







Pimephales
promelas

chlor
ide







Fathead

Cadmi

65

96

hr

minnow,

um







Pimephales
promelas

chlor
ide







Fathead

Cadmi

74

96

hr

minnow,

um







Pimephales
promelas

chlor
ide







Fathead

Cadmi

79

96

hr

minnow,

um







Pimephales
promelas

chlor
ide







Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

135 96.61

Spehar
1982

LC50

120 87.47

Spehar
1982

LC50

86.3 53.81

Spehar
1982

LC50

86.6 49.91

Spehar
1982


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Fathead

Cadmi

62

96 hr

minnow,

um





Pimephales
promelas

chlor
ide





Fathead

Cadmi

63

96 hr

minnow,

um





Pimephales
promelas

chlor
ide





Fathead

Cadmi

-

48 hr

minnow,

um





Pimephales
promelas

ni tra

te





Fathead

Cadmi

103

6.8

minnow,

um



hr

Pimephales
promelas

chlor
ide





Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

114

87.97

Spehar
1982

LC50

80.8 61.16

Spehar
1982

LC50

2,200

Slooff et
al. 1983

LT50

6,000 2,512

Birge et
al. 1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Fathead	- Cadmi 254- 3.7

minnow,	um 271 hr

Pimephales	chlor

promelas	ide

Fathead	- Cadmi 89- 7

minnow	um 107 days

(larva),	chlor

Pimephales	ide
promelas

Fathead	- Cadmi 89- 7

minnow	um 107 days

(larva),	chlor

Pimephales	ide
promelas

Fathead	- Cadmi -	4

minnow,	um days

Pimephales	chlor

promelas	ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LT50

16,000 2,170

Birge et
al. 1983

LC50

200

88.9

Birge et
al. 1983

LC50 after

4 days
acclimated
to 5.6
Mg/L

Histologic
al effects

540

12,000

240.0

Birge et
al. 1983

Stromberg
et al.
1983


-------
Table 6. (Continued)

Species	Meth Chemi

oda cal

Fathead
minnow,
Pimephales
promelas

Fathead
minnow,
Pimephales
promelas

Fathead
minnow,
Pimephales
promelas

Fathead
minnow
(1-7 d),
Pimephales
promelas

Cadmi

um
ni tra

te

S, M Cadmi
um
chlor
ide

F, M Cadmi
um
chlor
ide

R, Cadmi

M, T um
chlor
ide

Hardn
ess

(mg/L Durat
as ion
CaCCK

209 48 hr

55-79 96 hr

55-79 96 hr

70-90 48 hr

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso

ug/nb

TH=50

lved 	



(Tota

ug/U

Referenc

ug/L)

LC50

802 143.1

Slooff et
al. 1983

LC50

3,390 2,383

LC50

1,830 1,286

LC50

35.4 20.09

Spehar
and

Carlson
1984a,b

Spehar
and

Carlson
1984a,b

D i amond
et al.
1997


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Fathead	F, Cadmi 101.6 8

minnow	M, T um days

(embryo,	chlor

larva),	ide

Pimephales

promelas

Fathead	R, Cadmi 101.6 8

minnow	M, T um days

(embryo,	chlor

larva),	ide

Pimephales

promelas

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50 125(20. 53.19 - Birge et

al. 1985

125(20.

53.19

INC)

35.75

84

32.34

(22.8NC

37.03

)



76



(25.7NC



)



87



(27.9NC



)



LC50
NOEC

41
12

17.45
5.107

Birge et
al. 1985


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Fathead	F, Cadmi 101.6 8

minnow	M, T um days

(embryo,	chlor

larva),	ide

Pimephales

promelas

Fathead	F, Cadmi 44 96 hr

minnow	M, T um

(30 d),	nitra

Pimephales	te

promelas

Fathead	S, U Cadmi 200 96 hr

minnow	um

(14-30 d),	chlor

Pimephales	ide

promelas

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50
(multiple-
species
test)

107

45.54

Birge et
al. 1985

LC50

13.2

15.40

Spehar
and

F i andt
1986

LC50

90

16.94

Hall et
al. 1986


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

White
sucker
(larva) ,
Catostomus
commersoni

Brown
bullhead,
Ictalurus
nebulosus

Channel
catfish,
Ictalurus
punctatus

Channel
catfish,
Ictalurus
punctatus

R,
M, D

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

48

7

days

2 hr

Resul
t

Result Adjus
(Total ted

Effect			to

uq/L)b TH=50
(Tota
1

ug~L)

46%	36 37.8

reduced
growth

Affected 61,300
gills and
kidney

Increased 0.5
a1b i n i sm

Result
Adj ust
ed to
TH=50

(Disso Referenc

lved 	 e

ug/L)

Borgmann
and Ralph
1986

B1ickens
1978;
Garofano
1979

Westerman
and Birge
1978

BCF =4.0-
6.7

Birge et
al. 1979


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Channel	S, M

catfish,

Ictalurus
punctatus

Walking	S, U

catfish,

CI arias
batrachus

Mummichog, S, U
Fundulus
heteroclitu
s

Mosquitofis
h,

Gambusia
affinis

Cadmi 55-79 96 hr

um
chlor
ide

Cadmi -	14

um	days

chlor
ide

Cadmi 5 96 hr

um
chlor
ide

Cadmi - 8 wk

um
chlor
ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/nb

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

LC50

7,940 5,581

60%
mortality

8,993

Spehar
and

Carlson
1984a,b

Jana and

Sahana

1989

TL50	12.2 195.6 - Gill and

Epple
1992

Willi ams
and Giesy
1978
& 1.13 ppm
added to
food

BCF =
6,100 at
0.02 //g/L


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Mosquitofis
h,

Gambusia
affinis

Mosquitofis
h, Gambusia
af finis

Guppy,
Poeci11a
reticulata

Cadmi

um
chlor
ide

R, Cadmi
M, T um
sulfa

te

Cadmi

um
ni tra

te

29 8 wk

45 48 hr

209 48 hr

Effect

Result
(Total

ug/V)h

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

BCF =
1,430 at
10 //g/L &
1.13 ppm
added to
food

LC50

LC50

7,260 8,243

41,900 7,478

Willi ams
and Giesy
1978

Chagnon
and

Guttman
1989

Slooff et
al. 1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Guppy,	S, U Cadmi 140- 96 hr

Lebistes	um 190

reticulatus	chlor

ide

Threespine F, Cadmi 299 18
stickleback M, T um	days

sulfa

Gasterosteu	te

s aculeatus

Bluegill,	- Cadmi 112 80

Lepomis	um	min

macrochirus	chlor

ide

Bluegill,	- Cadmi 340- 3

Lepomis	um 360 days

macrochirus	chlor

ide

Effect



Resul

Result



t

Adj ust

Result

Ad jus

ed to

(Total

ted

TH=50



to

(Disso Referenc

ug/L)b

TH=50

lved 	 e



(Tota

ug/L)

ug/L)

LC50 (fry)
LC50
(male)
LC50
(female)

Kidney

eel 1
tissue
breakdown

2,500
12,750
16,000

593.2
3,025
3,796

6,000 695.5

Gadkaic
and

Marathe
1983

Oronsaye
1989

Significan >41.1 >15.5

t	5

avoidance

Black and

Birge

1980

Increased
cough rate

50

4.79

Bishop
and

Mcintosh
1981


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Bluegill,	S, M Cadmi 55-79 96 hr

Lepomis	um

macrochirus	chlor

ide

Bluegill	F, Cadmi 174 22

(31.1 ±1.3	M,T um days

mm)	chlor

Lepomis	ide
macrochirus

Largemouth	- Cadmi 112 80

bass,	um min

Micropterus	chlor

salmo ides	ide

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

8,810 6,192

LOEC prey
attack
rate

37.3

8.30

Spehar
and

Carlson
1984a,b

Bryan et
al. 1995

Significan 8.83
t

avoidance

3.34

Black and

Birge

1980


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Largemouth - Cadmi 99	8

bass,	um	days

(embryo,	chlor

larva)	ide

Micropterus
salmo ides

Largemouth -	-	24 hr

bass,

Micropterus
salmo ides

Largemouth F, Cadmi 101.6 8

bass,	M, T um	days

(embryo,	chlor

larva),	ide

Micropterus

salmo ides

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

EC50	1,640 720.1 - Birge et

(death and	al. 1978

deformity)

Affected 150	-	- Morgan

opercular	1979

activity

LC50	244 103.8 - Birge et

(multiple-	al. 1985

species
test)


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Orangethroa	R, Cadmi

t darter	M, T um

(embryo),	chlor

Etheostoma	i de
spectabile

Tilapia	S,U Cadmi

(1arva <1	um

d),	chlor

Oreochromis	i de
mossambica

Tilapia	S,U Cadmi

(1arva, 1	um

d),	chlor

Oreochromis	i de
mossambica

180 96 hr

96 hr

96 hr

Effect

LC50

LC50

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

>500

>106.
8

Sharp and
Kaszubski
1989

205	-	- Hwang et

al. 1995

LC50

83

Hwang et
al. 1995


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Tilapia	S,U Cadmi - 96 hr

(1arva, 2	um

d) ,	chlor

Oreochromis	i de

mossambica

Tilapia	S,U Cadmi - 96 hr

(1arva, 3	um

d),	chlor

Oreochromis	i de

mossambica

Tilapia	S,U Cadmi - 96 hr

(1arva, 7	um

d) ,	chlor

Oreochromis	i de

mossambica

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

LC50	33	-	- Hwang et

al. 1995

LC50	22	Hwang et

al. 1995

LC50

29

Hwang et
al. 1995


-------
Table 6. (Continued)

Species	Meth

oda

Tilapia (72 S, U
hr) ,

Oreochromis
mossambica

Narrow-

mouthed

toad

(embryo,

larva),

Gastrophyry

ne

carolinensi
s

African
c1awed
frog,

Xenopus
laevis

Hardn
ess

Chemi (mg/L Durat
cal as ion
CaCCK

Cadmi 28 96 hr

um
chlor
ide

Cadmi 195 7

um	days

chlor
ide

Cadmi 209 48 hr

um
ni tra

te

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

21.4

43.04

Chang et
al. 1998

EC50
(death and
deformity)

40

7.76

Birge
1978

LC50

11,700 2,088

Slooff
and

Baerselma
n 1980;
Slooff et
al. 1983


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

African	-	- 170 48 hr

c1awed

frog,

Xenopus

laevis

African	-	- 170 100

c1awed	days

frog,

Xenopus

laevis

African	S, U Cadmi - 24 hr

c1awed	um

frog,	chlor

Xenopus	i de

laevis

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50

3,200 732.4

Canton
and

Slooff
1982

Inhibited 650 148.8 - Canton
developmen	and

t	Slooff

1982

LC50
(stage 40)

1,000

Herkovits
et al.
1997


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

African	S, U Cadmi

c1awed	um

frog,	chlor

Xenopus	i de
laevis

Northwester	F, Cadmi

n	M, T um

salamander,	chlor

(3 mo	ide

larva)

Ambystoma

gracile

Northwester	F, Cadmi

n	M, T um

salamander,	chlor

Ambystoma	i de
gracile

72 hr

45

10

days

45

10

days

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

LC50
(stage 40)

LC50
(stage 47)

0.2
1.6

Herkovits
et al.
1998

LOAEC
(1 imb
regenerati
on)

44.6

50.6

Nebeker
et al.
1994

L0AEL
growth

227

257.7

Nebeker
et al.
1995


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Hardn
ess

(mg/L Durat
as ion
CaCCK

Marbled
salamander
(embryo,
larva),
Ambystoma
opacum

Cadmi

um
chlor
ide

99

8

days

Effect

Result
(Total

ug/L)b

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

ug/L)

EC50
(death and
deformity)

150

65.9

Birge et
al. 1978


-------
Table 6. (Continued)

Hardn
ess

Species	Meth Chemi (mg/L Durat

oda cal as ion
CaCCK

Lake study,	S, Cadmi - 120

Periphyton	M, T um days

and	chlor

amphipods	ide

Stream	F, Cadmi -	21

microcosm M, T um	days

ni tra
te

Effect

Result
(Total

//gyp13

Resul
t

Ad jus
ted
to
TH=50
(Tota
1

Result
Adj ust
ed to
TH=50
(Disso

lved 	

ug/L)

Referenc

uq/L)

BCF =
64,000
(periphyto
n)
BCF =
24,000
(Hyalella
azteca)

No effect
on

periphyton
structure,
but
adverse
effect on
invertebra
te grazers

and
col lectors

22

Stephenso
n and
Turner
1993

Selby et
al. 1985


-------
Table 6.
(Continued)

Sal in

Species	Meth Chemi i ty

oda cal

(g/kg

Bacterium	S, U Cadmi 35

(Microtoxd)	um

nitra

Vibrio	te
fischeri

Natural	- Cadmi

phytoplankt	um

on	chlor

population	ide

Green alga,	S, U Cadmi

Acetabulari	um

a	chlor

acetabulum	ide

Resu
It

Durat Effect (Tot
ion	al

ug/L

SALTWATER SPECIES
22 hr EC50 214

4 Reduced 112
days b i omass

3 wk Morpholo 100
gical
deformit 1

ies
Decrease

d eel 1
elongati
on

Result

Adjuste	Result

d to TH	(Disso
= 50 lved Reference

(Total	ug/L)
ug/L)

Radix et
al. 1999

Hoi 1ibaugh
et al. 1980

Karez et
al. 1989


-------
Phytoflagel S,
late,	M, T

01isthodisc
us luteus

Red alga, R, U
Champia
parvula

Alga,	S, U

Tetraselmis
gracilis

Diatom,	S, U

Minutocellu

s

polymorphus

Diatom,	S, U

Skeletonema

costatum

Diatom,	S, U

Skeletonema

costatum

Cadmi - 192
um	hr

chlor
ide

Cadmi 28-30 2

um	days

chlor
ide

96 hr

Cadmi - 48 hr

um
chlor
ide

10

days

Cadmi - 72 hr

um
chlor
ide

27% 500
biovolum

e

reductio
n

NOEC >100
sexual
reproduc
tion

LC50 1,80
0

EC50 66

EC50 450
growth

EC50 144

Fernandez-
Leborans
and Novillo
1996

Thursby and
Steele 1986

Okamoto et
al. 1996

Walsh et
al. 1988

Govindaraj a
n et al.
1993

Walsh et
al. 1988


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Hydroid,
Campanulari
a flexuosa

Hydroid,
Campanulari
a flexuosa

Rotifer,	S, U

Brachionus
piicati1 is

Rotifer,	S, U

Brachionus
piicati1 is

Rotifer,	S, U

Brachionus
piicati1 is

11

days

Cadmi 15 24 hr

um
chlor
ide

Cadmi 30 24 hr

um
chlor
ide

Cadmi 15 24 hr

um
ni tra

te

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

Enzyme
i nh i b i t i
on

Growth
rate

40-
75

110-
280

Moore and

Stebbing

1976

Stebbing
1976

LC50

54,9
00

Snell and

Personne

1989b

LC50

56,8
00

Snell and

Personne

1989b

LC50

>39,
000

Snell et
al. 1991b


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Polychaete

Cadmi

28

worm,

um

days

Neanthes

chlor



arenaceoden

ide



tata





Polychaete

Cadmi

28

worm,

um

days

Capitella

chlor



capitata

ide



Polychaete

Cadmi

28

worm,

um

days

Capitella

chlor



capitata

ide



Polychaete

R, M Cadmi

144

worm,

um

hr

Nereis

chlor



virens

ide



Result

Resu Adjuste	Result

It d to TH	(Disso

Effect (Tot = 50	lved

al (Total	ug/V)
ug/h ug/L)

Reference

LC50

3,00
0

Reish et
al. 1976

LC50

630

Reish et
al. 1976

LC50

700

Reish et
al. 1976

LC50

170

McLeese and
Ray 1986


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Clam,
Macoma
balthica

Blue
mussel,
Mytilus
edulis

Blue
mussel,
Mytilus
edulis

Blue
mussel,
Mytilus
edulis

Blue
mussel,
Mytilus
edulis

R, M Cadmi
um
chlor
ide

Cadmi

um
EDTA

Cadmi

um
algin
ate

Cadmi

um
humat

e

Cadmi
um

pecta
te

144
hr

28
days

28
days

28
days

28
days

Result

Resu	Adjuste Result

It	d to TH (Disso

Effect (Tot	= 50 lved Reference

al	(Total ug/V)

ug/L	ug/L)

LC50 1,71	- - McLeese and

0	Ray 1986

BCF = -	-	- George and

252	Coombs 1977

BCF = -	-	- George and

252	Coombs 1977

BCF = -	-	- George and

252	Coombs 1977

BCF = -	-	- George and

252	Coombs 1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Blue
mussel,

Mytilus
edulis

Blue	F,

musse1,	M, T

Mytilus
edulis

Bay

seal lop,
Argopecten
irradians

Bay

seal lop,
Argopecten
irradians

Cadmi -	21

um	days

chlor
ide

Cadmi 28 2 wk

um
chlor
ide

Cadmi -	42

um	days

chlor
ide

Cadmi -	21

um	days

chlor
ide

Resu
It

Effect (Tot
al

ug/L

BCF =
710

LT50 = 47
9.5 days
(anoxic
conditio
ns)

EC50 78
(growth
reductio
n)

Result

Adjuste	Result

d to TH	(Disso
= 50 lved Reference

(Total	ug/L)
ug/L)

Janssen and
Scholz 1979

Veldhuizen-
Tsoerkan et
al. 1991

Pesch and

Stewart

1980

BCF =
168

Eisler et
al. 1972


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Eastern	- Cadmi -	40

oyster,	um days

Crassostrea	iodid

virginica	e

Eastern	- Cadmi -	21

oyster,	um days

Crassostrea	chlor

virginica	ide

Eastern	- Cadmi -	2

oyster,	um days

Crassostrea	chlor

virginica	ide

Pacific	- Cadmi -	6

oyster,	um days

Crassostrea	chlor

gigas	ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

BCF =
677

Kerfoot and
Jacobs 1976

BCF =
149

Eisler et
al. 1972

Reductio

n in
embryoni
c

developm
ent

50%
reductio

n in
settleme
nt

15

20-
25

Zaroogian
and

Morrison
1981

Watling
1983b


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Pacific	- Cadmi -	14

oyster,	um days

Crassostrea	chlor

gigas	ide

Pacific	- Cadmi - 23

oyster,	um days

Crassostrea	chlor

gigas	ide

Soft-shell	- Cadmi -	7

c 1 am,	um days

Mya	chlor

arenaria	ide

Soft-shell	- Cadmi -	7

c 1 am,	um days

Mya	chlor

arenaria	ide

Copepod	- Cadmi - 1 day

(nauplius),	um

Eurytemora	chlor

affinis	ide

Result

Resu Adjuste	Result

It d to TH	(Disso
Effect (Tot = 50 lved Reference

al (Total	ug/V)
ug/L ug/L)

Growth
reductio
n

10

LC50

50

LC50

150

LC50

700

Reductio

n in
swimming
speed

130

Watling
1983b

Watling
1983b

Eisler 1977

Eisler and

Hennekey

1977

Sullivan et
al. 1983


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Copepod	- Cadmi -	2

(nauplius),	um days

Eurytemora	chlor

affinis	ide

Copepod,	S, Cadmi 5 96 hr

Eurytemora M, T um 15 96 hr
af finis	chlor

ide

Copepod,	- Cadmi - 48 hr

Tisbe	um

holothurlae	chlor

ide

Mysid,	- - 15-23 17

Americamysi	days
s bahia

Mysid,	- Cadmi 30 16

Amer i camys i	um days

s bahia	chlor

ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

Reductio

n in
developm
ent rate

LC50
(fed)
LC50
(fed)

LC50

116

LC50

51.6
213

970

11

Sullivan et
al. 1983

Hall
1995

et al.

Moraitou-
Apostolopou
lou and
Verriopoulo
s 1982

Nimmo et
al. 1977a

LC50

28

Gentile et
al. 1982


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Mysid,	- Cadmi -	8

Americamysi	um days

s bahia	chlor

ide

Mysid,	F, - 13-29 28

Americamysi	M, T days
s bahia

Mysid,	S,	-	12 24 hr

Americamysi M, T
s bahia

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

60

Gentile et
al. 1982

NOEC
survival
, growth

and
reproduc
tion

Reduced

serum
osmo1a1i

ty

4-5

3.62

Voyer and

McGovern

1991

DeLisle and

Roberts

1994


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Mysid (8	R, U Cadmi	25 96 hr

d) ,	um

Americamysi	ch1or	7

s bahia	ide	days

Mysid (<72 F,	-	10 96 hr

hr),	M, T

Americamysi
s bahia

Mysid (<72 F, - 20 96 hr
hr),	M, T

Americamysi
s bahia

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

NOEC
survival
and
growth
NOEC
survival
and
growth

LC50

LC50

5
5

47.0
(20°
C)

15.5
(25°
C)

73.0
(20°
C)
20.5
(25°
C)

Khan et al.
1992

Voyer and
Modica 1990

Voyer and
Modica 1990


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Mysid (<72 F, - 30 96 hr
hr),	M, T

Americamysi
s bahia

Mysid,	- Cadmi -	8

Mysidopsis	um	days

bigelowi	chlor

ide

Mysid,	- Cadmi -	28

Mysidopsis	um	days

bigelowi	chlor

ide

Isopod,	- Cadmi 3	5

I do tea	um	days

baltica	sulfa

te

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

LC50

85.0
(20°
C)
28.0
(25°
C)

70

Voyer and
Modica 1990

Gentile et
al. 1982

LC50

18

Gentile et
al. 1982

LC50

10,0
00

Jones 1975


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Isopod,	- Cadmi 21 3

I do tea	um days

baltica	sulfa

te

Isopod,	- Cadmi 14 1.5

I do tea	um days

baltica	sulfa

te

Sand	R, M Cadmi - 144

shrimp,	um hr

Crangon	chlor

septemspino	ide
sa

Pink	R, M Cadmi - 144

shrimp,	um hr

Panda 1 us	chlor

montagui	ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

10,0
00

Jones 1975

LC50

10,0
00

Jones 1975

LC50

1,16
0

McLeese and
Ray 1986

LC50

1,28
0

McLeese and
Ray 1986


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Pink	- Cadmi - 30

shrimp,	um days

Penaeus	chlor

duorarum	i de

White	S, Cadmi 11 96 hr

shrimp,	M, T um

Penaeus	chlor

setiferus	ide

Grass	- Cadmi -	42

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi 5	21

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi 10 21

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

720

Nimmo et
al. 1977b

LC50

990

Vanegas et
al. 1997

LC50

300

Pesch and

Stewart

1980

LC25

50

Vernberg et
al. 1977

LC10

50

Vernberg et
al. 1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Grass	- Cadmi 20 21

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi 10	6

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi 15	6

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi 30 6

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Grass	- Cadmi -	21

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

Effect



Result



Resu

Adj uste

Result

It

d to TH

(Disso

(Tot

= 50

lved

al

(Total

ug/n

Mg/L

ug/U









Reference

LC5

50

Vernberg et
al. 1977

LC75

300

Middaugh
and Floyd
1978

LC50

300

Middaugh
and Floyd
1978

LC25

300

Middaugh
and Floyd
1978

BCF =
140

Vernberg et
al. 1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Grass	- Cadmi - 29

shrimp,	um days

Palaemonete	chlor

s pugi o	i de

American	- Cadmi -	21

lobster,	um days

Homarus	chlor

americanus	ide

American	- Cadmi -	30

lobster,	um days

Homarus	chlor

americanus	ide

Hermit	- Cadmi -	7

crab,	um days

Pagurus	chlor

1 ongi carpus	i de

Hermit	- Cadmi -	60

crab,	um days

Pagurus	chlor

1 ongi carpus	i de

Result

Resu Adjuste	Result

It d to TH	(Disso
Effect (Tot = 50 lved Reference

al (Total	ug/V)
ug/L ug/L)

LC50

120

BCF = 25

Increase

in
ATPase
activity

25%
mortal it

y

6

270

LC56

70

Nimmo et
al. 1977b

Eisler et
al. 1972

Tucker 1979

Eisler and

Hennekey

1977

Pesch and

Stewart

1980


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Ye1 low

R, U Cadmi

34

crab,

um



Cancer

chlor



anthonyi

ide



Rock crab,

Cadmi

_

Cancer

um



irroratus

chlor





ide



Rock crab

Cadmi

_

(larva) ,

um



Cancer

chlor



irroratus

ide



Blue crab,

Cadmi

10

Callinectes

um



sapidus

ni tra





te



Blue crab,

Cadmi

30

Callinectes

um



sapidus

ni tra





te



7

days

96 hr

28
days

7

days

7

days

Result

Resu Adjuste	Result

It d to TH	(Disso

Effect (Tot = 50	lved Reference

al (Total	ug/L)
ug/h ug/L)

28%	1,00

mortal it	0

y

Enzyme	1,00

activity	0

Delayed 50
developm
ent

LC50 50

LC50 150

Macdonald
et al. 1988

Gould et
al. 1976

Johns and
Miller 1982

Rosenberg
and Costlow
1976

Rosenberg
and Costlow
1976


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Blue crab
(juveni le) ,
Callinectes
sapidus

Blue crab, R,
Cal1inectes M, T
sapidus

Blue crab, S,
Cal1inectes M, T
sapidus

Mud crab
(larva) ,
Eurypanopeu
s depressus

Mud crab
(larva) ,
Eurypanopeu
s depressus

Cadmi	1 4

um	days
chlor
ide

Cadmi	2.5 21

um	25 days

chlor	21

i de	days

Cadmi 28 6-8
um	days

chlor
ide

Cadmi -	8

um	days

chlor
ide

Cadmi -	44

um	days

chlor
ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved
ug/L)

Reference

LC50

320

Frank and
Robertson
1979

LC50 19
LC50 186

Guerin and

Stickle

1995

EC50 0.25
hatching

Lee et al.
1996

LC50

10

Mirkes et
al. 1978

Delay in 10
metamorp
hysis

Mirkes et
al. 1978


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

11

days

Mud crab,

Cadmi

10

Rhithropano

um



peus

ni tra



harasi1

te



Mud crab,

Cadmi

20

Rhithropano

um



peus

ni tra



harasi1

te



Mud crab,

Cadmi

30

Rhithropano

um



peus

ni tra



harasi1

te



Fiddler

_

_

crab,





Uca





pugi la tor





Fiddler

Cadmi

_

crab,

um



Uca

chlor



pugi la tor

ide



11

days

11

days

10

days

Effect

Resu
It

(Tot
al

ug/h

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC80

50

Rosenberg
and Costlow
1976

LC75

50

Rosenberg
and Costlow
1976

LC40

50

Rosenberg
and Costlow
1976

LC50 2,90
0

0 'Hara
1973a

Effect 1.0
on

respirat
ion

Vernberg et
al. 1974


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Starfish,	- Cadmi -	7

Asterias	um	days

forbesi	chlor

ide

Sea urchin, S, U Cadmi 30 1 hr
Arbacia	um

punctulata	chlor	4 hr

ide

Green sea	S, Cadmi 30 80

urchin,	M, T um min

Strongyloce	chlor

ntrotus	ide

droebachien

sis

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

25%
mortal it

y

270

Eisler and

Hennekey

1977

EC50
(sperm
eel 1)
EC50
(embryo
growth

EC50
(sperm-
fert.)

38,0
00

13,9
00

26,0
00

Nacci et
al. 1986

Dinnel et
al. 1989


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Red sea	S, Cadmi 30 80

urchin,	M, T um min

Strongyloce	chlor

ntrotus	ide
franciscanu
s

Purple sea	S, Cadmi 30 80

urchin,	M, T um min

Strongyloce	chlor

ntrotus	ide
purpuratus

Purple sea	S, U Cadmi 30 40

urchin,	um min

Strongyloce	chlor

ntrotus	ide
purpuratus

Sand	S, Cadmi 30 80

dollar,	M, T um min

Dendraster	chlor

excen tricus	ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

EC50
(sperm-
fert.)

12,0
00

Dinnel et
al. 1989

EC50
(sperm-
fert.)

18,0
00

Dinnel et
al. 1989

N0EC
sperm-
ferti1iz
at ion

>67

Bailey et
al. 1995

EC50 8,00 -	- Dinnel et

(sperm- 0	al. 1989

fert.)


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Sand

S, U Cadmi 30

40

dollar,

um

min

Dendraster

chlor



excentricus

ide



Herring

Cadmi

_

(larva) ,

um



Clupea

chlor



harengus

ide



Pacific

Cadmi

<24

herring

um

hr

(embryo),

chlor



Clupea

ide



harengus





pallasi





Pacific

Cadmi

96 hr

herring

um



(embryo),

chlor



Clupea

ide



harengus





pallasi





Effect

Resu
It

(Tot
al

ug/h

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved
ug/L)

Reference

NOEC
sperm-
ferti1iz
at ion

100%
embryoni
c

survival

17%
reductio
n in
volume

>67

5,00
0

10,0
00

Bailey et
al. 1995

Westernhage
n et al.
1979a

Alderdice
et al.
1979a

Decrease

in
capsule
strength

1,00
0

Alderdice
et al.
1979b


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Pacific	- Cadmi - 48 hr

herring	um

(embryo),	chlor

Clupea	ide

harengus

pallasi

Sheepshead	R, Cadmi 34-35 96 hr

minnow,	M, T um 7

Cyprinodon	chlor days

variegatus	ide

Sheepshead
minnow,
Cyprinodon
variegatus

s,

Cadmi

5

96

hr

M,

um

15

96

hr

T, D

chlor

25

96

hr



ide







Result



Resu

Adj uste

Result





It

d to TH

(Disso



Effect

(Tot

= 50

lved

Reference



al

(Total

ug/L)





Mg/L

ug/L)















Reduced

1,00





Alderdice

osmo1a1i

0





et al.

ty of







1979c

perivite









1 ine









fluid









LC50

1,23

_

_

Hutchinson

(fed)

0

-

-

et al. 1994

NOEC

560







survival









and









growth









LC50

180

_

_

Hal 1 et al.

(fed)

312

-

-

1995

LC50

496

-

-



(fed)









LC50









(fed)










-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Mummichog	- Cadmi 20 48 hr

(adult),	um

Fundulus	chlor

heteroclitu	ide

Mummichog	- Cadmi 30 48 hr

(adult),	um

Fundulus	chlor

heteroclitu	ide

Mummichog,	- Cadmi -	21

Fundulus	um days

heteroclitu	chlor

s	ide

Mummichog	- Cadmi 20 48 hr

(larva),	um

Fundulus	chlor

heteroclitu	ide

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved
ug/L)

Reference

LC50 60,0
00

Middaugh
and Dean
1977

LC50 43,0
00

Middaugh
and Dean
1977

BCF = 48

Eisler et
al. 1972

LC50 32,0
00

Middaugh
and Dean
1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Mummichog	- Cadmi 30 48 hr

(larva),	um

Fundulus	chlor

heteroclitu	ide

Mummichog	S, Cadmi 10 48 hr

(<23 d),	M, T um

Fundulus	chlor

heteroclitu	ide

Atlantic	- Cadmi 20 48 hr

silverside	um

(adult),	chlor

Menidia	ide

menidia

Atlantic	- Cadmi 30 48 hr

silverside	um

(adult),	chlor

Menidia	ide

menidia

Result

Resu Adjuste	Result

It d to TH	(Disso

Effect (Tot = 50	lved Reference

al (Total	ug/L)
ug/L ug/L)

LC50 7,80 -	- Middaugh

0	and Dean

1977

LC50 44,4	-	- Burton and

00	Fisher 1990

LC50 13,0 -	- Middaugh

00	and Dean

1977

LC50 12,0 -	- Middaugh

00	and Dean

1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Atlantic	- Cadmi 12 19

silverside,	um days

Menidia	chlor

menidia	ide

Atlantic	- Cadmi 20 19

silverside,	um days

Menidia	chlor

menidia	ide

Atlantic	- Cadmi 30 19

silverside,	um days

Menidia	chlor

menidia	ide

Atlantic	- Cadmi 20 48 hr

silverside	um

(larva),	chlor

Menidia	ide

menidia

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

<160

Voyer et
al. 1979

LC50

540

Voyer et
al. 1979

LC50

>970

Voyer et
al. 1979

LC50

2,20
0

Middaugh
and Dean
1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Atlantic	- Cadmi 30 48 hr

silverside	um

(larva),	chlor

Menidia	ide

menidia

Striped	- Cadmi - 90

bass	um days

(juvenile),	chlor

Morone	i de
saxati1 is

Striped	- Cadmi - 30

bass	um days

(juvenile),	chlor

Morone	i de
saxati1 is

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

LC50

1,60
0

Middaugh
and Dean
1977

S i gn i f i c

ant
decrease
in
enzyme
activity

S i gn i f i c

ant
decrease
in
oxygen
consumpt
ion

0.5-
5.0

Dawson et
al. 1977

Dawson et
al. 1977


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg

Spot	- Cadmi -	9

(larva),	um days

Leiostomus	chlor

xanthurus	ide

Cunner	- Cadmi -	60

(adult),	um days

Tautogolabr	chlor

us	ide
adspersus

Cunner	- Cadmi -	30

(adult),	um days

Tautogolabr	chlor

us	ide
adspersus

Cunner	- Cadmi - 96 hr

(adult),	um

Tautogolabr	chlor

us	ide
adspersus

Effect

Resu
It

(Tot
al

ug/L

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

Incipien
t LC50

200

Middaugh
and Dean
1977

37.5%
mortal it

y

100

Maclnnes et
al. 1977

Depresse
d gill
tissue
oxygen
consumpt
ion

Decrease
d enzyme
activity

50

3,00
0

Maclnnes et
al. 1977

Gould and

Karolus

1974


-------
Table 6. (Continued)

Species

Meth Chemi

oda

cal

Sal in
ity

(g/kg

Durat Effect
ion

Resu
It

(Tot
al

ug/h

Result
Adj uste
d to TH
= 50
(Total
ug/L)

Result
(Disso
lved

ug/L)

Reference

Winter
flounder,
Pseodopleur
onectes
americanus

Winter
flounder,
Pseodopleur
onectes
americanus

Winter
flounder,
Pseodopleur
onectes
americanus

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

Cadmi

um
chlor
ide

8

days

60
days

17

days

50%
viable
hatch

Increase
d gill
tissue
respirat
ion

Reductio
n of
viable
hatch

300

Voyer et
al. 1977

Calabrese
et al. 1975

586

Voyer et
al. 1982

a S= static, R= renewal, F= flow-through, M= measured, U= unmeasured, T= total
measured concentration, D=dissolved metal concentration	measured.

b Results are expressed as cadmium, not as the chemical.


-------
Table 6. (Continued)

Sal in

Species	Meth Chemi i ty Durat

oda cal	ion

(g/kg



Result



Resu

Adj uste

Result

It

d to TH

(Disso

(Tot

= 50

lved

al

(Total

ug/U

li g/L

ug/L)









Effect (Tot = 50 lved Reference


-------
REFERENCES

Abbasi, S.A. and R. Soni. 1986. An examination of environmentally safe levels
of zinc (II), Cadmium (II) and lead (II) with reference to impact on
channelfish Nuria denricus. Environ. Pollut. (Series A) 40(1): 37-51.

Abbasi, S.A. and R. Soni. 1989. Relative toxicity of seven heavy metals with
respect to impact towards larvae of amphibian Rana tigrina. Intern. J.

Environ. Stud. 35: 121-122.

Abel, P.D. and S.M. Garner. 1986. Comparisons of median survival times and
median lethal exposure times for Gammarus pulex exposed to cadmium, permethrin
and cyanide. Water Res. 20(5): 579-582.

Abel, P.D. and S.E. Papoutsoglou. 1986. Lethal toxicity of cadmium to Cyprinus
carpio and Tilapia aurea. Bull. Environ. Contam. Toxicol. 37: 382-386.

Abel, T. and F. Barlocher. 1988. Uptake of cadmium by Gammarus fossarum
(amphipoda) from food and water. J. Appl. Ecol. 25: 223-231.

Ahsanullah, M. 197 6. Acute toxicity of cadmium and zinc to seven invertebrate
species from Western Port, Victoria. Aust. Jour. Mar. Freshwater Res. 27:

187 .

Ahsanullah, M. and A.R. Williams. 1991. Sublethal effects and bioaccumulation
of cadmium, chromium, copper and zinc in the marine amphipod Allorchestes
compressa. Mar. Biol. 108: 59-65.

Ahsanullah, M.D., et al. 1981. Toxicity of zinc, cadmium, and copper to the
shrimp Callianassa australiensis. I. Effects of individual metals. Mar. Biol.
64: 299.

Al-atia, G.R. 1978. The uptake and toxicity of cadmium in Amoeba proteus.
Jour. Protozool. 25: 5B.

Al-atia, G.R. 1980. Toxicity of cadmium to Amoeba proteus: a biochemical
approach. Jour. Protozool. 27: 128.

138


-------
Alderdice, D.F., et al. 1979a. Influence of salinity and cadmium on the
volume of Pacific herring eggs. Helgol. Wiss. Meeresunters. 32:163.

Alderdice, D.F., et al. 1979b. Influence of salinity and cadmium on capsule
strength in Pacific herring eggs. Helgol. Wiss. Meeresunters. 32: 149.

Alderdice, D.F., et al. 1979c. Osmotic responses of eggs and larvae of the
Pacific herring to salinity and cadmium. Helgol. Wiss. Meeresunters. 32: 508.

Allen, P. 1994. Accumulation profiles of lead and the influence of cadmium and
mercury in Oreochromis aureus (Steindachner) during chronic exposure. Toxicol.
Environ. Chem. 44: 101-112.

Allen, P. 1995a. Soft-tissue accumulation of lead in the blue tilapia,
Oreochromis aureus (Steindachner), and the modifying effects of cadmium and
mercury. Biological Trace Element Research. 50: 193-208.

Allen, P. 1995b. Accumulation profiles of lead and cadmium in the edible
tissues of Oreochromis aureus during acute exposure. J. Fish Biol. 47: 559-
568 .

Allen, Y., P. Calow and D.J. Baird. 1995. A mechanistic model of contaminant-
induced feeding inhibition on Daphnia magna. Environmental Toxicology and
Chemistry. 14(9): 1625-1630.

Amiard, J.C., C. Metayer, J.P. Baud and F. Ribeyre. 1994. Influence of some
ecological and biological factors on metal bioaccumulation in young oysters
(Crassostrea gigas Thunberg) during their spat rearing. 28(1): 219-231.

Amiard-Triquet, C., B. Berthet, C. Metayer and J.C. Amiard. 1986. Contribution
to the ecotoxicological study of cadmium, copper and zinc in the mussel
Mytilus edulis. Mar. Biol. 92: 7-13.

Amiard-Triquet, C, C. Metayer and J.C. Amiard. 1987. Etudes in situ et
experimentales de 1'eotoxicologie de quatre metaux (Cd, Pb, Cu, Zn) chez des
algues et des mollusques gasteropodes brouteurs. Water, Air, Soil Pollut. 34:
11-30.

Amiard-Triquet, C., J.C. Amiard, B. Berthet and C. Metayer. 1988. Field and
experimental study of the bioaccumulation of some trace metals in a coastal

139


-------
food chain: seston, oyster (Crassostrea gigas), drill (Ocenebra erinacea).
Water Sci. Tech. 20(6/7): 13-21.

Anadu, D.I., G.A. Chapman, L.R. Curtis and R.A. Tubb. 1989. Effect of zinc
exposure on subsequent acute tolerance to heavy metals in rainbow trout. Bull.
Environ. Contam. Toxicol. 43: 329-336.

Anderson, B.G. 1948. The apparent thresholds of toxicity to Daphnia magna for
chlorides of various metals when added to Lake Erie water. Trans. Am. Fish.
Soc. 78: 96.

Anderson, R.L., et al. 1980. Survival and growth of Tanytarsus dissimilis
(Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch. Environ.
Contam. Toxicol. 9: 329.

Anderson, R.V., et al. 1978. The distribution of Cd, Cu, Pb and Zn in the
biota of two freshwater sites with different trace metal inputs. Holartic
Ecol. 1: 377.

Andres, S., M. Baudrimont, Y. Lapaquellerie, F. Ribeyre, N. Maillet, C.
Latouche and A. Boudou. 1999. Field transplantation of the freshwater bivalve
Corbicula fluminea along a polymetallic contamination gradient (River Lot,
France): I. Geochemical characteristics of sampling sites and cadmium and zinc
bioaccumulation kinetics. Environ. Toxicol. Chem. 18(11): 2462-2471.

Andros, J.D. and R.R. Garton. 1980. Acute lethality of copper, cadmium, and
zinc to northern squawfish. Trans. Am. Fish. Soc. 109: 235.

Annune, P.A., S.O. Ebele and A.A. Oladimeji. 1994. Acute toxicity of cadmium
to juveniles of Clarias gariepinus (Teugels) and Oreochromis niloticus
(Trewavas). J. Environ. Sci. Health. A29(7): 1357-1365.

Anonymous. 1950. Ohio River Valley Water Sanitation Commission, Subcommittee
on Toxicities, Metal Finishing Industries Action Committee Report No. 3.

Arillo, A., et al. 1982. Biochemical effects of long-term exposure to Cr, Cd,
Ni on rainbow trout (Salmo gairdneri Rich.): influence of sex and season.
Chemosphere 11: 47.

140


-------
Arillo, A., et al. 1984. Biochemical effects of long-term exposure to cadmium
and copper on rainbow trout (Salmo gairdneri) : validation of water quality
criteria. Ecotoxicol. Environ. Safety 8: 106.

Arnac, M. and C. Lassus. 1985. Heavy metal accumulation (Cd, Cu, Pb and Zn) by
smelt (Osmerus mordax) from the north shore of the St. Lawrence estuary. Water
Res. 19(6): 725-734 .

Arshaduddin, M., R. Yasmeen, M.M. Hussain and M.A. Khan. 1989. Effect of two
heavy metals (lead and cadmium) on growth in the rotifer Asplanchna
intermedia. Pollut. Res. 8(3): 129-128.

Asato, S.L. and D.J. Reish. 1988. The effects of heavy metals on the survival
and feeding of Holmesimysis costata (Crustacea: Mysidacea). In: Proc. 7th Int.
Symp. on Mar. Biol., California State University, Long Beach, CA: 113-120.

Attar, E.N. and E.J. Maly. 1982. Acute toxicity of cadmium, zinc, and cadmium-
zinc mixtures to Daphnia magna. Arch. Environ. Contam. Toxicol. 11: 291.

Austen, M.C. and A.J. McEvoy. 1997. The use of offshore meiobenthic
communities in laboratory microcosm experiments: response to heavy metal
contamination. J. Exp. Mar. Biol. Ecol. 211: 247-261.

Avery, E.L., R.H. Dunstan and J.A. Nell. 1996. The detection of pollutant
impact in marine environments: condition index, oxidative DNA damage, and
their associations with metal bioaccumulation in the Sydney rock oyster
Saccostrea commercialis. Arch. Environ. Contam. Toxicol. 31: 192-198.

Azeez, P.A. and D.K. Banerjee. 1987. Influence of light on chlorophyll, a
content of blue-green algae treated with heavy metals. Bull. Environ. Contam.
Toxicol. 38: 1062-1069.

Babich, H. and G. Stotzky. 1978. Effects of cadmium on the biota: influence of
environmental factors. Adv. Appl. Microbiol. 23: 55-117.

141


-------
Babich, H. and G. Stotzky. 1982. Influence of chloride ions on the toxicity of
cadmium to fungi. Zbl. Bakt. Hyg., I. Abt. Orig. C. 3: 421.

Baby, K.V. and N.R. Menon. 1987. Salt forms of metals and their toxicity in
the brown mussel Perna indica (Kuriakose and Nair). Indian J. Mar. Sci. 16(2):
107-109.

Bailey, H.C., J.L. Miller, M.J. Miller and B.S. Dhaliwal. 1995. Application
of toxicity identification procedures to the echinoderm fertilization assay to
identify toxicity in a municipal effluent. Environmental Toxicology and
Chemistry. 14(12): 2181-2186.

Baillieul, M. and R. Blust. 1999. Analysis of the swimming velocity of
cadmium-stressed Daphnia magna. Aquat. Toxicol. 44: 245-254.

Baird, D.J., I. Barber and P. Calow. 1990. Clonal variation in general
responses of Daphnia magna Straus to toxic stress. I. Chronic life-history
effects. Functional Ecology. 4(3): 399-407.

Baird, D.J., I. Barber, M. Bradley, A.M.V.M. Soares and P. Calow. 1991. A
comparative study of genotype sensitivity to acute toxic stress using clones
of Daphnia magna Straus. Ecotoxicology and Environmental Safety. 21: 257-265.
Ball, I.R. 1967. The toxicity of cadmium to rainbow trout (Salmo gairdnerii
Richardson). Water Res. 1: 805.

Balogh, K.V. and J. Salanki. 1984. The dynamics of mercury and cadmium uptake
into different organs of Anodonta cygnea L. Water Res. 18(11): 1381-1387.

Bambang, Y., G. Charmantier, P. Thuet and J.P. Trilles. 1994. Effect of
cadmium on survival and osmoregulation of various developmental stages of the
shrimp Penaeus japonicus (Crustacea: Decapoda). Mar. Biol. 123: 443-450.

Barata, C., D.J. Baird and S.J. Markich. 1998. Influence of genetic and
environmental factors on the tolerance of Daphnia magna Straus to essential
and non-essential metals. Aquatic Toxicology. 42: 115-137.

142


-------
Barnthouse, L.W., G.W. Suter II, A.E. Rosen and J.J. Beauchamp. 1987.
Estimating responses of fish populations to toxic contaminants. Environ.
Toxicol. Chem. 6: 811-824.

Barque, J. Ph., A. Abahamid, Y. Bourezgui, H. Chacun and J. Bonaly. 1995.
Growth responses of achlorophyllous Euglena gracilis to selected
concentrations of cadmium and pentachlorophenol. Arch. Environ. Contam.
Toxicol. 28: 8-12.

Bartlett, L., et al. 1974. Effects of copper, zinc and cadmium on Selenastrum
capricornutum. Water Res. 8: 17 9.

Bartsch, M.R., W.G. Cope and R.G. Rada. 1999. Effects of cadmium-spiked
sediment on cadmium accumulation and bioturbation by nymphs of the burrowing
mayfly Hexagenia bilineata. Water, Air, Soil Pollut. 109: 277-292.

Battaglini, P., G. Andreozzi, R. Antonucci, N. Arcamone, P. De Giroloamo, L.
Ferrara and G. Gargiulo. 1993. The effects of cadmium on the gills of the
goldfish Carassius auratus L.: metal uptake and histochemical changes. Comp.
Biochem. Physiol. 104C(2): 239-247.

Baudrimont, M., J. Metivaud, R. Maury-Brachet, F. Ribeyre and A. Boudou. 1997.
Bioaccumulation and metallothionein response in the asiatic clam (Corbicula
fluminea) after experimental exposure to cadmium and inorganic mercury.
Environmental Toxicology and Chemistry. 16(10): 2096-2105.

Bay, S, R. Burgess and D. Nacci. 1993. Status and applications of echinoid
(Phylum echinodermata) toxicity test methods. Environ. Toxicol. Risk. Assess.,
ASTM STP 1179, W.G. Landis, J.S. Hughes and M.A. Lewis (eds.), American
Society for Testing and Materials, Philadelphia, pp. 281-302.

Beattie, J.H. and D. Pascoe. 1978. Cadmium uptake by rainbow trout, Salmo
gairdneri eggs and alevins. Jour. Fish Biol. 13: 631.

143


-------
Bednarz, T. and H. Warkowska-Dratnal. 1983/1984. Toxicity of zinc, cadmium,
lead, copper, and their mixture for Chlorella pyrenoidosa Chick. Acta
Hydrobiol. 25/26(3/4): 389-400.

Beiras, R. , E. His and M.N.L. Seaman. 1998. Effects of storage temperature and
duration on toxicity of sediments assessed by Crassostrea gigas oyster embryo
bioassay. Environ. Toxicol. Chem. 17(10): 2100-2105.

Belabed, W., N. Kestali, S. Semsari and A. Gaid. 1994. Toxicity study of some
heavy metals with daphnia test. Tech. Sci. Methods. 6: 331-336.

Belanger, S.E. and D.S. Cherry. 1990. Interacting effects of pH acclimation,
pH, and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia
(cladocera). J. Crustacean Biol. 10(2): 225-235.

Bellavere, C. and J. Gorbi. 1981. A comparative analysis of acute toxicity of
chromium, copper and cadmium to Daphnia magna, Biomphalaria glabrata, and
Brachydanio rerio. Environ. Technol. Letters 2: 119.

Bendell-Young, L.I. 1994. Comparison of metal concentrations in the fore and
hindguts of the crayfish Cambarus bartoni and Orconectes virilis and
implications regarding metal absorption efficiencies. Bull. Environ. Contam.
Toxicol. 53: 844-851.

Bendell-Young, L.I. 1999. Application of a kinetic model of bioaccumulation
across a pH and salinity gradient for the prediction of cadmium uptake by the
sediment dwelling chironomidae. Environ. Sci. Technol. 33: 1501-1508.

Bendell-Young, L.I., H.H. Harvey and J.F. Young. 1986. Accumulation of cadmium
by white suckers (Catostomus commersoni) in relation to fish growth and lake
acidification. Can. J. Fish. Aquat. Sci. 43: 806-811.

Bengtsson, B. 1978. Use of harpacticoid copepod in toxicity tests. Mar.

Pollut. Bull. 9: 238.

Bengtsson, B.E. and B. Bergstrom. 1987. A flow-through fecundity test with
Nitocra spinipes (Harpacticoidea Crustacea) for aquatic toxicity.

Ecotoxicology and Environmental Safety. 14: 260-268.

144


-------
Benoit, D.A., et al. 1976. Toxic effects of cadmium on three generations of
brook trout (Salvelinus fontinalis). Trans. Am. Fish. Soc. 105:550.

Bentley, P.J. 1991. Accumulation of cadmium by channel catfish (Ictalurus
punctatus): influx from environmental solutions. Comp. Biochem. Physiol. 99C:
527-529.

Berglind, R. 1985. The effects of cadmium on ala-d activity, growth and
haemoglobin content in the water flea, Daphnia magna. Comp. Biochem. Physiol.
8 0C(2) : 407-410.

Berglind, R. 1986. Combined and separate effects of cadmium, lead and zinc on
ala-d activity, growth and hemoglobin content in Daphnia magna. Environ.
Toxicol. Chem. 5: 989-995.

Bernds, D, D. Wubben and G.P. Zauke. 1998. Bioaccumulation of trace metals in
polychaetes from the German Wadden Sea: evaluation and verification of
toxicokinetic models. Chemosphere. 37(13): 2573-2587.

Bertram, P.E. and B.A. Hart. 197 9. Longevity and reproduction of Daphnia pulex
(deGeer) exposed to cadmium-contaminated food or water. Environ. Pollut. 19:
295.

Bervoets, L., R. Blust and R. Verheyen. 1995. The uptake of cadmium by the
midge larvae Chironomus riparius as a function of salinity. Aquat. Toxicol.
33: 227-243.

Bervoets, L, R. Blust and R. Verheyen. 1996. Effect of temperature on cadmium
and zinc uptake by the midge larvae Chironomus riparius. Arch. Environ.

Contam. Toxicol. 31: 502-511.

Besser, J.M. and C.F. Rabeni. 1987. Bioavailability and toxicity of metals
leached from lead-mine tailings to aquatic invertebrates. Environ. Toxicol.
Chem. 6: 879-890.

Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals on
survival, growth, reproduction, and metabolism of Daphnia magna. Jour. Fish.
Res. Board Can. 29: 1691.

145


-------
Biesinger, K.E., G.M. Christensen and J.T. Fiandt. 1986. Effects of metal salt
mixtures on Daphnia magna reproduction. Ecotoxicol. Environ. Safety. 11: 9-14.

Bigelow, L.K. and D.C. Lasenby. 1991. Particle size selection in cadmium
uptake by the opossum shrimp, Mysis relicta. Bull. Environ. Contam. Toxicol.
47: 790-796.

Birge, W.J. 1978. Aquatic toxicology of trace elements of coal and fly ash.
In: J.H. Thorp and J.W. Gibbons (eds.), Energy and Environmental Stress in
Aquatic Systems. CONF-771114. National Technical Information Service,
Springfield, Virginia, p. 219.

Birge, W.J., et al. 1978. Embryo-larval bioassay on inorganic coal elements
and in situ biomonitoring of coal-waste effluents. In: D.E. Samuel, et al.
(eds.), Surface Mining and Fish/Wildlife Needs in the Eastern United States.
PB 298353. National Technical Information Service, Springfield, Virginia, p.
97 .

Birge, W.J., et al. 1979. The effects of mercury on reproduction of fish and
amphibians. In: J.O. Nriagu (ed.), The Biochemistry of Mercury in the
Environment. Elsevier/North-Holland, New York. p. 629.

Birge, W.J., et al. 1980. Aquatic toxicity tests on inorganic elements
occurring in oil shale, In: C. Gale (ed.), Oil Shale Symposium: Sampling,
Analysis and Quality Assurance. EPA-600/9-80-022. National Technical
Information Service, Springfield, Virginia, p. 519.

Birge, W.J., et al. 1981. The reproductive toxicology of aquatic contaminants.
In: J. Saxena and F. Fisher (eds.), Hazard Assessment of Chemicals: Current
Developments. Vol. 1. Academic Press, New York. p. 59.

Birge, W.J., et al. 1983. Induction of tolerance to heavy metals in natural
and laboratory populations of fish. PB84-111756. National Technical
Information Service, Springfield, Virginia.

Birge, W.J., J.A. Black and A.G. Westerman. 1985. Short-term fish and
amphibian embryo-larval tests for determining the effects of toxicant stress

146


-------
on early life stages and estimating chronic values for single compounds and
complex effluents. Environmental Toxicology and Chemistry. 4: 807-821.

Birmelin, C., J. Cuzin-Roudy, M. Romeo, M. Gnassia-Barelli and S. Puiseux-Dao.
1995. The mysid Siriella armata as a test organisms in toxicology: effects of
cadmium. Mar. Environ. Res. 39: 317- 320.

Bishop, W.E. and A.W. Mcintosh. 1981. Acute lethality and effects of sublethal
cadmium exposure on ventilation frequency and cough rate of bluegill (Lepomis
macrochirus) . Arch. Environ. Contam. Toxicol. 10: 519.

Bitton, G., K. Jung and B. Koopman. 1994. Evaluation of a microplate assay
specific for heavy metal toxicity. Arch. Environ. Contam. Toxicol. 27: 25-28.

Bitton, G., K. Rhodes, B. Koopman and M. Cornejo. 1995. Short-term toxicity
assay based on daphnid feeding behavior. Water Environ. Res. 67(3): 290-293.

Bitton, G., K. Rhodes and B. Koopman. 1996. Ceriofast™: an acute toxicity test
based on Ceriodaphnia dubia feeding behavior. Environmental Toxicology and
Chemistry. 15(2): 123-125.

Bjerregaard, P. 1982. Accumulation of cadmium and selenium and their mutual
interaction in the shore crab Carcinus maenas. Aquat. Toxicol. 2: 113.

Bjerregaard, P.	1985. Effect of selenium on cadmium uptake in the shore crab

Carcinus maenas	(L.). Aquat. Toxicol. 7: 177-189.

Bjerregaard, P.	1991. Relationship between physiological condition and cadmium

accumulation in	Carcinus maenas (L.). Comp. Biochem. Physiol. 99A(l/2): 75-83.

Bjerregaard, P. and M.H. Depledge. 1994. Cadmium accumulation in Littorina
littorea, Mytilus edulis and Carcinus maenas: the influence of salinity and
calcium ion concentrations. Mar. Bio. 119: 385-395.

Black, J.A. and W.J. Birge. 1980. An avoidance response bioassay for aquatic
pollutants. PB80-180490. National Technical Information Service, Springfield,
Virginia.

147


-------
Blickens, E.A.M. 1978. Cadmium induced histopathological changes in the gills
of the brown bullhead Ictalurus nebulosus (Lesueur). Ph.D. Thesis. New York
University.

Block, M. and A.W. Glynn. 1992. Influence of xanthates on the uptake of 109Cd
by Eurasian dace (Phoxinus phoxinus) and rainbow trout (Oncorhynchus mykiss).
Environ. Toxicol. Chem. 11: 873-879.

Block, M. and P. Part. 1992. Uptake of 109Cd by cultured gill epithelial cells
from rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 23: 137-151.

Block, M, A.W. Glynn and P. Part. 1991. Xanthate effects on cadmium uptake and
intracellular distribution in rainbow trout (Oncorhynchus mykiss) gills.

Aquat. Toxicol. 20: 267-284.

Blondin, G.A., L.M. Knobeloch, H.W. Read and J.M. Harkin. 1989. An in vitro
submitochondrial bioassay for predicting acute toxicity in fish. Aquat.
Toxicol. Environ. Fate. ASTM STP 1007, G.W. Suter II and M.A. Lewis (eds.),
American Society for Testing and Materials, Philadelphia. 11: 551-563.

Bodar, C.W.M., I. Van der Sluis, P.A. Voogt and D.I. Zandee. 1988a. Effects of
cadmium on consumption, assimilation and biochemical parameters of Daphnia
magna: possible implications for reproduction. Comp. Biochem. Physiol. 90C(2):
341-346.

Bodar, C.W.M., C.J. Van Leeuwen, P.A. Voogt and D.I. Zandee. 1988b. Effect of
cadmium on the reproduction strategy of Daphnia magna. Aquatic Toxicology. 12:
301-310.

Bodar, C.W.M., A.V.D. Zee, P.A. Voogt, H. Wynne and D.I. Zandee. 1989.

Toxicity of heavy metals to early life stages of Daphnia magna. Ecotoxicology
and Environmental Safety. 17: 333-338.

Bodar, C.W.M., P.A. Voogt and D.I. Zandee. 1990a. Ecdysteroids in Daphnia
magna: their role in moulting and reproduction and their levels upon exposure
to cadmium. Aquat. Toxicol. 17: 339-350.

148


-------
Bodar, C.W.M., I. Van der Sluis, J.C.P., Van Montfort, P.A. Voogt and D.I.
Zandee. 1990b. Cadmium resistance in Daphnia magna. Aquat. Toxicol. 16: 5633-
40.

Bolanos, L., M. Garcia-Gonzalez, P. Mateo and I. Bonilla. 1992. Differential
toxicological response to cadmium in Anabaena strain PCC 7119 grown with N03~
or NH4+ as nitrogen source. J. Plant Physiol. 140: 345-349.

Borchardt., T. 1983. Influence of food quantity on the kinetics of cadmium
uptake and loss via food and seawater in Mytilus edulis. Mar. Biol. 76: 67-76.

Borgmann, U., W.P. Norwood and I.M. Babirad. 1991. Relationship between
chronic toxicity and bioaccumulation of cadmium in Hyalella azteca. Can. J.
Fish. Aquat. Sci. 48: 1055-1060.

Borgmann, U. and K.M. Ralph. 1986. Effects of cadmium, 2,4-dichlorophenol, and
pentachlorophenol on feeding, growth, and particle-size-conversion efficiency
of white sucker larvae and young common shiners. Arch. Environ. Contam.
Toxicol. 15: 473-480.

Borgmann, U., K.M. Ralph and W.P. Norwood. 1989. Toxicity test procedures for
Hyalella azteca, and chronic toxicity of cadmium and pentachlorophenol to H.
azteca, Gammarus fasciatus, and Daphnia magna. Arch. Environ. Contam. Toxicol.
18: 756-764.

Bosnak, A.D. and E.L. Morgan. 1981. Acute toxicity of cadmium, zinc, and total
residual chlorine to epigean and hypogean isopods (Asellidae). Natl.
Speleological Soc. Bull. 43: 12.

Bouquegneau, J.M. and M. Martoja. 1982. La teneur en cuivre et son degre de
complexation chez quatre gasteropodes marins. Donnees sur le cadmium et zinc.
Oceanologica Acta 5: 219.

Boutet, C. And C. Chaisemartin. 1973. Specific toxic properties of metallic
salts in Austropotamobius pallipes pallipes and Orconectes limosus. C.R. Soc.
Biol. 167: 1933.

149


-------
Bowen, W.J., III and D.W. Engel. 1996. Effects of protracted cadmium exposure
on gametes of the purple sea urchin, Arbacia punctulata. Bull. Environ.

Contam. Toxicol. 56: 493-499.

Boyden, C.R. 1977. Effect of size upon metal content of shellfish. Jour. Mar.
Biol. Assoc. U.K. 57: 675.

Bozeman, J., B. Koopman and G. Bitton. 1989. Toxicity testing using
immobilized algae. Aquatic Toxicology. 14: 345-352.

Braginskiy, L.P. and E.P. Shcherban. 1978. Acute toxicity of heavy metals to
aquatic invertebrates at different temperatures. Hydrobiol. Jour. 14(6) : 78.

Brand, L.E., W.G. Sunda and R.R.L. Guillard. 1986. Reduction of marine
phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol.
Ecol. 96: 225-250.

Brent, R.N. and E.E. Herricks. 1998. Postexposure effects of brief cadmium,
zinc, and phenol exposures on freshwater organisms. Environmental Toxicology
and Chemistry. 17(10): 2091-2099.

Bresler, V. and V. Yanko. 1995. Acute toxicity of heavy metals for benthic
epiphytic foraminifera Pararotalia spinigera (Le Calvez) and influence of
seaweed-derived doc. Environ. Toxicol. Chem. 14(10): 1687-1695.

Bressan, M. and R. Brunetti. 1988. The effects of nitriloacetic acid, Cd and
Hg on the marine algae Dunaliella tertiolecta and Isochrysis galbana. Water
Res. 22(5): 553-556.

Bringmann, G. 1975. Determination of the biologically harmful effect of water
pollutants by means of the retardation of cell proliferation of the blue algae
Microcystis. Gesundheits-Ing. 96: 238.

Bringmann, G. 1978. Determination of the biological toxicity of waterbound
substances towards protozoa. I. bacteriovorous flagellates (model organism:
Entosiphon sulcatum Stein). Z. Wasser Abwasser Forsch. 11: 210.

150


-------
Bringmann, G. and R. Kuhn. 1959a. The toxic effects of waste water on aquatic
bacteria, algae, and small crustaceans. Gesundheits-Ing. 80: 115.

Bringmann, G. and R. Kuhn. 1959b. Water toxicology studies with protozoans as
test organisms. Gesundheits-Ing. 80: 239.

Bringmann, G. and R. Kuhn. 1976. Comparative results of the damaging effects
of water pollutants against bacteria (Pseudomonas putida) and blue algae
(Microcystis aeruginosa). Gas-Wasserfach, Wasser-Abwasser 117: 410.

Bringmann, G. and R. Kuhn. 1977a. Limiting values for the damaging action of
water pollutants to bacteria (Pseudomonas putida) and green algae (Scenedesmus
quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser
Forsch. 10: 87.

Bringmann, G. and R. Kuhn. 1977b. Results of damaging effect of water
pollutants on Daphnia magna. Z. Wasser Abwasser Forsch. 10: 161.

Bringmann, G. and R. Kuhn. 1978a. Limiting values for the noxious effects of
water pollutant material to blue algae (Microcystis aeruginosa) and green
algae (Scenedesmus quadricauda) in cell propagation inhibition test. Vom
Wasser 50: 45.

Bringmann, G. and R. Kuhn. 1978b. Testing of substances for their toxicity
threshold: model organisms Microcystis (Diplocystis) aeruginosa and
Scenedesmus quadricauda. Mitt. Int. Ver. Theor. Angew. Limnol. 21: 275.

Bringmann, G. and R. Kuhn. 1979. Comparison of toxic limiting concentrations
of water contaminants toward bacteria, algae, and protozoa in the cell-growth
inhibition test. Haustech. Bauphys. Umwelttech. 100: 249.

Bringmann, G. and R. Kuhn. 1980a. Determination of the harmful biological
effect of water pollutants on protozoa. II. bacteriovorous ciliates. Z. Wasser
Abwasser Forsch. 13: 26.

Bringmann, G. and R. Kuhn. 1980b. Comparison of the toxicity thresholds of
water pollutants to bacteria, algae, and protozoa in the cell multiplication
inhibition test. Water Res. 14: 231.

151


-------
Bringmann, G. and R. Kuhn. 1981. Comparison of the effects of harmful
substances on flagellates as well as ciliates and on halozoic bacteriophagous
and saprozoic protozoa. Gas-Wasserfach, Wasser-Abwasser 122: 308.

Bringmann, G. and R Kuhn. 1982. Results of toxic action of water pollutants on
Daphnia magna Straus tested by an improved standardized procedure. Z. Wasser
Abwasser Forsch. 15: 1.

Bringmann, G., et al. 1980. Determination of biological damage from water
pollutants to protozoa. III. saprozoic flagellates. Z. Wasser Abwasser Forsch.
13: 170.

Brkovic-Popovic, I. and M. Popovic. 1977a. Effects of heavy metals on survival
and respiration rate of tubificid worms: Part I-effects on survival. Environ.
Pollut. 13:65.

Brkovic-Popovic, I. and M. Popovic. 1977b. Effects of heavy metals on survival
and respiration rate of tubificid worms: Part II-effects on respiration rate.
Environ. Pollut. 13: 93.

Brooks, A.W., L. Maltby, A.J. Saul and P. Calow. 1996. A simple indoor
artificial stream system designed to study the effects of toxicant pulses on
aquatic organisms. Wat. Res. 30(2) : 285-290.

Brouwer, M, D.W. Engel, J. Bonaventura and G.A. Johnson. 1992. In vivo
magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of
cadmium accumulation in tissues on proton relaxation properties. J. Exp. Zool.
263: 32-40.

Brown, B. and M. Ahsanullah. 1971. Effect of heavy metals on mortality and
growth. Mar. Pollut. Bull. 2: 182.

Brown, A.F. and D. Pascoe. 1988. Studies on the acute toxicity of pollutants
to freshwater macroinvertebrates 5. The acute toxicity of cadmium to twelve
species of predatory macroinvertebrates. Arch. Hydrobiol. 114(2): 311-319.

152


-------
Brown, D.A., et al. 1984. Detoxification/toxification of cadmium in
scorpionfish (Scorpaena quttata) : acute exposure. Aquat. Toxicol. 5: 93.

Brown, M.W., D.G. Thomas, D. Shurben, J.F. De L.G. Solbe, J. Kay and A. Cryer.
1986. A comparison of the differential accumulation of cadmium in the tissues
of three species of freshwater fish, Salmo Gairdneri, Rutilus rutilus and
Noemacheilus barbatulus. Comp. Biochem. Physiol. 84C(2) : 213-217.

Brown, V. , D. Shurben, W. Miller and M. Crane. 1994. Cadmium toxicity to
rainbow trout Oncorhynchus mykiss Walbaum and brown trout Salmo trutta L. over
extended exposure periods. Ecotoxicology and Environmental Safety. 29: 38-46.

Brunetti, R., M. Marin, M. Bressan, M. Zordan and A. Soggia. 1991. Effects of
the chelating agent nitrilotriacetic acid (NTA) on the toxicity of metals (Cd,
Cu, Zn and Pb) in the sea urchin Paracentrotus lividus LMK. Vie Milieu. 41(1):
39-43.

Bryan, G.W. 1971. The effects of heavy metals (other than mercury) on marine
and estuarine organisms. Proc. R. Soc. London B. 177: 389.

Bryan, G.W., et al. 1983. An assessment of the gastropod, Littorina littorea,
as an indicator of heavy metal contamination in United Kingdom estuaries.

Jour. Mar. Biol. Assoc. U.K. 63: 327.

Bryan, M.D., G.J. Atchison and M.B. Sandheinrich. 1995. Effects of cadmium on
the foraging behavior and growth of juvenile bluegill, Lepomis macrochirus.
Can. J. Fish. Aquat. Sci. 53: 1630-1638.

Buckley, J.A., G.A. Yoshida, N.R. Wells and R.T. Aquino. 1985. Toxicities of
total and chelex-labile cadmium to salmon in solutions of natural water and
diluted sewage with potentially different cadmium complexing capacities. Water
Res. 19 (12) : 1549-1554 .

Buhl, K.J. 1997. Relative sensitivity of three endangered fishes, Colorado
squawfish, bonytail, and razorback sucker, to selected metal pollutants.
Ecotoxicology and Environmental Safety. 37: 186-192.

153


-------
Buhl, K.J. and S.J. Hamilton. 1991. Relative sensitivity of early life stages
of arctic grayling, coho salmon, and rainbow trout to nine inorganics.
Ecotoxicology and Environmental Safety. 22: 184-197.

Buikema, A.L., Jr., et al. 1974a. Rotifers as monitors of heavy metal
pollution in water. Bulletin 71. Virginia Water Resources Research Center,
Blacksburg, Virginia.

Buikema, A.L., Jr., et al. 1974b. Evaluation of Philodina acuticornis
(Rotifera) as a bioassay organism for heavy metals. Water Resources Bull. 10:
648 .

Buikema, A.L., Jr., et al. 1977. Rotifer sensitivity to combinations of
inorganic water pollutants. Bulletin 92. Virginia Water Resources Research
Center, Blacksburg, Virginia.

Burdin, K.S. and K.T. Bird. 1994. Heavy metal accumulation by carrageenan and
agar producing algae. Bot. Mar. 37: 467-470.

Burnison, G., et al. 1975. Toxicity of cadmium to freshwater algae. Proc. Can.
Fed. Biol. Soc. 18: 46.

Burrell, D.C. and D. Weihs. 1983. Uptake of cadmium by marine bacteria and
transfer to a deposit feeding clam. Sea Grant Report 83-5. University of
Alaska, Fairbanks, Alaska.

Burton, D.T. and D.J. Fisher. 1990. Acute toxicity of cadmium, copper, zinc,
ammonia, 3,3'-dichlorobenzidine, 2,6-dichloro-4-nitroaniline, methylene
chloride, and 2,4,6-trichlorophenol to juvenile grass shrimp and killifish.
Bull. Environ. Contam. Toxicol. 44: 776-783.

Busch, D, T. Lucker and W. Wosniok. 1998. Effects of changing salt
concentrations and other physical-chemical parameters on bioavailability and
bioaccumulation of heavy metals in expose Dreissena polymorpha (Pallas, 1771).
Limnol. 28(3): 263-274.

154


-------
Cairns, J. Jr., J.R. Pratt, B.R. Niederlehner and P.V. McCormick. 1986. A
simple, cost-effective multispecies toxicity test using organisms with a
cosmopolitan distribution. Environ. Monit. Assess. 6: 207-220.

Calabrese, A., et al. 1973. The toxicity of heavy metals to embryos of the
American oyster Crassostrea virginica. Mar. Biol. 18: 162.

Calabrese, A., et al. 1975. Sublethal physiological stress induced by cadmium
and mercury in the winter flounder, Pseudopleuronectes americanus. In: J.H.
Koeman and J.J.T.W.A. Strik (eds.), Sublethal Effects of Toxic Chemicals in
Aquatic animals. Elsevier, New York. p. 15.

Calevro, F., S. Campani, M. Ragghianti, S. Bucci and G. Mancino. 1998a. Tests
of toxicity and teratogenicity in biphasic vertebrates treated with heavy
metals (Cr3+, Al3+, Cd2+) . Chemosphere. 37(14-15) : 3011-3017

Calevro, F, C. Filippi, P. Deri, C. Albertosi, R. Batistoni. 1998b. Toxic
effects of aluminum, chromium and cadmium in intact and regenerating
freshwater planarians. Chemosphere. 37(4): 651-659.

Callahan, M.A., et al. 1979. Water-related environmental fate of 129 priority
pollutants. Vol. I. EPA-4 40/4-79-029a. National Technical Information Service,
Springfield, Virginia.

Campbell, J. and R.D. Evans. 1991. Cadmium concentrations in the freshwater
mussel (Elliptio complanata) and their relationship to water chemistry. Arch.
Environ. Contam. Toxicol. 20: 125-131.

Camusso, M., L. Vigano and R. Balestrini. 1995. Bioconcentration of trace
metals in rainbow trout: a field study. Ecotoxicol. Environ. Safety. 31: 133-
141.

Canli, M. and R.W. Furness. 1993. Toxicity of heavy metals dissolved in sea
water and influences of sex and size on metal accumulation and tissue
distribution in the Norway lobster Nephrops norvegicus. Mar. Environ. Res. 36:
217-236.

155


-------
Canli, M. and R.W. Furness. 1995. Mercury and cadmium uptake from seawater and
from food by the Norway lobster Nephrops norvegicus. Environ. Toxicol. Chem.
14(5) : 819-828 .

Canterford, G.S. and D.R. Canterford. 1980. Toxicity of heavy metals to the
marine diatom Ditylum brightwellii (West) Grunow: correlation between toxicity
and metal speciation. Jour. Mar. Biol. Assoc. U.K. 60: 227.

Canton, J.H. and D.M.M. Adema. 1978. Reproducibility of short-term and re-
production toxicity experiments with Daphnia magna and comparison of the
sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in
short-term experiment. Hydrobiologia 59: 135.

Canton, J.H. and W. Slooff. 1979. A proposal to classify compounds and to
establish water quality based on laboratory data. Ecotoxicol. Environ. Safety
3: 126.

Canton, J.H. and W. Slooff. 1982. Toxicity and accumulation studies of cadmium
(Cd2+) with freshwater organisms of different trophic levels. Ecotoxicol.
Environ. Safety 6: 113.

Cardin, J.A. 1982. Memorandum to J.H. Gentile. U.S. EPA, Narragansett, Rhode
Island.

Carlisle, D.M. and W.H. Clements. 1999. Sensitivity and variability of metrics
used in biological assessments of running waters. Environ. Toxicol. Chem.
18(2): 285-291.

Carlson, A.R., et al. 1982. Cadmium and endrin toxicity to fish in waters
containing mineral fibers. EPA-600/3-82-053. National Technical Information
Service, Springfield, Virginia.

Carmichael, N.G. and B.A. Fowler. 1981. Cadmium accumulation and toxicity in
the kidney of the bay scallop Argopecten irradians. Mar. Biol. 65: 35.

Carpene, E. and L. Boni. 1992. Effects of heavy metals on the algae Nitzschia
closterium and Prorocentrum micans. Sci. Total Environ, pp. 921-927.

156


-------
Carr, R.S. and J.M. Neff. 1982. Biochemical indices of stress in the sandworm
Neanthes virens (Sars). II. sublethal responses to cadmium. Aquat. Toxicol. 2:
319.

Carr, R.S., J.W. Williams, F.I. Saksa, R.L. Buhl and J.M. Neff. 1985.
Bioenergetic alterations correlated with growth, fecundity and body burden of
cadmium for mysids (Mysidopsis bahia) . Environ. Toxicol. Chem. 4: 181-188.

Carrier, R. and T.L. Beitinger. 1988a. Reduction in thermal tolerance of
Notropis lutrensis and Pimephales promelas exposed to cadmium. Water Res.
22(4): 511-515.

Carrier, R. and T.L. Beitinger. 1988b. Resistance of temperature tolerance
ability of green sunfish to cadmium exposure. Bull. Environ. Contam. Toxicol.
40: 475-480.

Carroll, J.J., et al. 1979. Influences of hardness constituents on the acute
toxicity of cadmium to brook trout (Salvelinus fontinalis). Bull. Environ.
Contam. Toxicol. 22:575.

Casini, S. and M.H. Depledge. 1997. Influence of copper, zinc, and iron on
cadmium accumulation in the Talitrid amphipod, Platorchestia platensis. Bull.
Environ. Contam. Toxicol. 59: 500-506.

Cassini, A, L. Tallandini, N. Favero and V. Albergoni. 1986. Cadmium
bioaccumulation studies in the freshwater molluscs Anodonta cygnea and Unio
elongatulus. Comp. Biochem. Physiol. 8 4 C(1) : 35-41.

Castano, A., M.J. Cantarino, P. Castillo and J.V. Tarazona. 1996. Correlations
between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout
bioassay. Chemosphere. 32(11): 2141-2157.

Castille, F.L., Jr., and A.L. Lawrence. 1981. The effects of EDTA (ethylene-
dinitrotetraacetic acid) on the survival and development of shrimp nauplii
(Penaeus stylirostris Stimpson) and the interactions of EDTA and the
toxicities of cadmium, calcium, and phenol. Jour. World Maricul. Soc. 12: 292.

157


-------
Cearley, J.E. and R.L. Coleman. 1973. Cadmium toxicity and accumulation in
southern naiad. Bull. Environ. Contam. Toxicol. 9: 100.

Cearley, J.E. and R.L. Coleman. 1974. Cadmium toxicity and bioconcentration in
largemouth bass and bluegill. Bull. Environ. Contam. Toxicol. 11: 146.

Centeno, M.D., L. Brendonck and G. Persoone. 1993. Cyst-based toxicity tests.
III. Development and standardization of an acute toxicity test with the
freshwater anostracan crustacean Streptocephalus proboscideus. In: A.M.V.M.
Soares and P. Calo (eds.). Progress in Standardization of Aquatic Toxicity
Tests. Lewis Publishers, pp 37-55.

Centeno, M.D.F., G. Persoone and M.P.Goyvaerts. 1995. Cyst-based toxicity
tests. IX. The potential of Thamnocephalus platyurus as test species in
comparison with Streptocephalus proboscideus (Crustacea: branchiopoda:
anostraca). Environ. Toxicol. Water Qual.: an International Journal. 10(4):
275-282 .

Chagnon, N.L. and S.I. Guttman. 1989. Differential survivorship of allozyme
genotypes in mosquitofish populations exposed to copper or cadmium.
Environmental Toxicology and Chemistry. 8: 319-326.

Chan, H.M. 1988. Accumulation and tolerance to cadmium, copper, lead and zinc
by the green mussel Perna viridis. Mar. Ecol. Prog. Ser. 48: 295-303.

Chan, H.M., P. Bjerregaard, P.S. Rainbow, M.H. Depledge. 1992. Uptake of zinc
and cadmium by two populations of shore crabs Carcinus maenas at different
salinities. Mar. Ecol. Prog. Ser. 86: 91-97.

Chan, K., et al. 1981. Effects of polyethylene glycol on growth and cadmium
accumulation of Chlorella salina CU-1. Chemosphere 10: 985.

Chander, G.P., N.V. Madhav and Vidyavati. 1991. Response of Pithophora
oedogonia to cadmium. Acta Botanica Indica. 19: 240-242.

Chandini, T. 1988a. Changes in food (Chlorella) levels and the acute toxicity
of cadmium to Daphnia carinata (daphnidae) and Echinisca triserialis

158


-------
(macrothricidae) (Crustacea: cladocera). Bull. Environ. Contam. Toxicol. 41:
398-403.

Chandini, T. 1988b. Effects of different food (Chlorella) concentrations on
the chronic toxicity of cadmium to survivorship, growth and reproduction of
Echinisca triserialis (crustacea: cladocera). Environ. Pollut. 54: 139-154.

Chandini, T. 1989. Survival, growth and reproduction of Daphnia carinata
(crustacea: cladocera) exposed to chronic cadmium stress at different food
(Chlorella) levels. Environ. Pollut. 60: 29-45.

Chandini, T. 1991. Reproductive value and the cost of reproduction in Daphnia
carinata and Echinisca triserialis (crustacea: cladocera) exposed to food and
cadmium stress. Bull. Environ. Contam. Toxicol. 47: 76-83.

Chandra, P. and P. Garg. 1992. Absorption and toxicity of chromium and cadmium
in Limnanthemum cristatum Griseb. Sci. Total Environ. 125: 175-183.

Chang, M., H.C. Lin and P. Hwang. 1998. Ca2+ uptake and Cd2+ accumulation in
larval tilapia (Oreochromis mossambicus) acclimated to waterborne Cd2. Am. J.
Physiol. 27(6): 1570-1577.

Chapman, G.A. 1975. Toxicity of copper, cadmium and zinc to Pacific Northwest
salmoides. U.S. EPA, Corvallis, Oregon.

Chapman, G.A. 1978. Toxicities of cadmium, copper, and zinc to four juvenile
stages of chinook salmon and steelhead. Trans. Am. Fish. Soc. 107: 841.

Chapman, G.A. 1982. Letter to C.E. Stephan. U.S. EPA, Corvallis, Oregon.
December 6.

Chapman, G.A. and D.G. Stevens. 1978. Acutely lethal levels of cadmium,
copper, and zinc to adult male coho salmon and steelhead. Trans. Am. Fish.
Soc. 107: 837 .

Chapman, G.A., et al. Manuscript. Effects of water hardness on the toxicity of
metals to Daphnia magna. U.S. EPA, Corvallis, Oregon.

159


-------
Chapman, P.M., et al. 1982. Relative tolerances of selected aquatic
oligochaetes to individual pollutants and environmental factors. Aquat.
Toxicol. 2: 47.

Chapman, W.H., et al. 1968. Concentration factors of chemical elements in
edible aquatic organisms. UCRL-50564. National Technical Information Service,
Springfield, Virginia.

Charpentier, S., J. Garnier and R. Flaugnatti. 1987. Toxicity and
bioaccumulation of cadmium in experimental cultures of duckweed, Lemna
polyrrhiza L. Bull. Environ. Contam. Toxicol. 38: 1055-1061.

Chattopadhyay, S. K. Anam and A.K. Aditya. 1995. Bioassay evaluation of acute
toxicity levels of mercuric chloride and cadmium chloride on the early growing
stages of Labeo rohita. J. Ecobiol. 7(1): 41-47.

Chawla, G., J. Singh and P.N. Viswanathan. 1991. Effect of pH and temperature
on the uptake of cadmium by Lemna minor L. Bull. Environ. Contam. Toxicol. 47:
84-90.

Chen, C.Y., K.C. Lin and D.T. Yang. 1997. Comparison of the relative toxicity
relationships based on batch and continuous algal toxicity tests. Chemosphere.
35(9): 1959-1965.

Cheung, C.C.C. and P.K.S. Lam. 1998. Effect of cadmium on the embryos and
juveniles of a tropical freshwater snail, Physa acuta (Draparnaud, 1805).

Water Sci. Tech. 38(7): 263-270.

Chitguppa, R., K.H. Chu and M.A. Hashim. 1997. Reusability of seaweed
biosorbent in multiple cycles of cadmium adsorption and desorption. Biotech.
Techniques 11(6): 371-373.

Chou, C.L. and J.F. Uthe. 1991. Effect of starvation on trace metal levels in
blue mussels (Mytilus edulis). Bull. Environ. Contam. Toxicol. 46: 473-478.

Chou, C.L., J.F. Uthe, J.D. Castell and J.C. Kean. 1987. Effect of dietary
cadmium on growth, survival, and tissue concentrations of cadmium, zinc,

160


-------
copper, and silver in juvenile american lobster (Homarus americanus). Can. J.
Fish. Aquat. Sci. 44: 1443-1450.

Christoffers, D. and D.E.W. Ernst. 1983. The in-vivo fluorescence of Chlorella
fusca as a biological test for the inhibition of photosynthesis. Toxicol.
Environ. Chem. 7: 61-71.

Clausen, P.S., P. Bjerregaard and M.H. Depledge. 1993. Passive and active
cadmium uptake in the isolated gills of the shore crab, Carcinus maenas (L.).
Chemosphere. 26(12): 2209-2219.

Clubb, R.W., et al. 1975. Acute cadmium toxicity studies upon nine species of
aquatic insects. Environ. Res. 9: 332.

Collard, J.M. and R.F. Matagne. 1994. Cd2+ resistance in wild-type and mutant
strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2) : 235-244.

Collyard, S.A., G.T. Ankley, R.A. Hoke and T. Goldenstein. 1994. Influence of
age on the relative sensitivity of Hyalella azteca to diazinon, alkylphenol
ethoxylates, copper, cadmium, and zinc. Arch. Environ. Contam. Toxicol. 26:
110-113.

Conway, H.L. 1978. Sorption of arsenic and cadmium and their effects on
growth, micronutrient utilization, and photosynthetic pigment composition of
Asterionella formosa. Jour. Fish. Res. Board Can. 35: 286.

Cope, W.G., J.G. Wiener and G.J. Atchison. 1994. Hepatic cadmium, metal-
binding proteins and bioaccumulation in bluegills exposed to aqueous cadmium.
Environmental Toxicology and Chemistry. 13(4): 553-562.

Coppellotti, 0. 1994. Effects of cadmium on Uronema marinum (ciliophora,
scuticociliatida) from Antarctica. Acta Protozool. 33: 159-167.

Couillard, Y., P. Ross and B. Rinel-Alloul. 1989. Acute toxicity of six metals
to the rotifer Brachionus calyciflorus, with comparisons to other freshwaer
organisms. Toxic. Assess. 4(4): 451-462.

161


-------
Craig, A., L. Hare, P.M. Charest and A. Tessier. 1998. Effect of exposure
regime on the internal distribution of cadmium in Chironomus staegeri larvae
(insecta, diptera). Aquat. Toxicol. 41: 265-275.

Craig, A., L. Hare and A. Tessier. 1999. Experimental evidence for cadmium
uptake via calcium channels in the aquatic insect Chironomus staegeri. Aquat.
Toxicol. 44: 255-262.

Cripe, G.M. 1994. Comparative acute toxicities of several pesticides and
metals to Mysidopsis bahia and postlarval Penaeus duorarum. Environmental
Toxicology and Chemistry. 13(11): 1867-1872.

Crisinel, A., L. Delaunay, D. Rossel, J. Tarradellas, H. Meyer, H. Saiah, P.
Vogel, C. Delisle and C. Blaise. 1994. Cyst-based ecotoxicological tests using
anostracans: comparison of two species of Streptocephalus. Environ. Toxicol.
Water Qual. 9(4): 317-326.

Currie, R.S., D.C.G. Muir, W.L. Fairchild, M.H. Holoka and R.E. Hecky. 1998.
Influence of nutrient additions on cadmium bioaccumulation by aquatic
invertebrates in littoral enclosures. Environ. Toxicol. Chem. 17(12): 2435-
2443.

Cusimano, R.F., D.F. Brakke and G.A. Chapman. 1986. Effects of pH on the
toxicities of cadmium, copper, and zinc to steelhead trout (Salmo gairdneri).
Can. J. Fish. Aquat. Sci. 43: 1497-1503.

D'Agostino, A. and C. Finney. 1974. The effect of copper and cadmium on the
development of Tigriopus japonicus. In: F.J. Vernberg and W.B. Vernberg
(eds.), Pollution and Physiology of Marine Organisms. Academic Press, New
York. p. 445.

D'Aniello, A., M. Pischetola, F. Vanacore, M. De Nicola and M. Denuce. 1990.
Effect of mercury, cadmium and copper on the development and viability of
Loligo vulgaris and Sepia officinalis embryos. Ital. J. Biochem. 39(2): 130A-
132A (ABS).

162


-------
Dallinger, R. , E. Carpene, G.J. Dalla Via and P. Cortesi. 1989. Effects of
cadmium on Murex trunculus from the Adriatic Sea. I. Accumulation of metal and
binding to a metallothionein-like protein. Arch. Environ. Contam. Toxicol. 18:
554-561.

Dallinger, R., M. Egg, G. Kock and R. Hofer. 1997. The role of metallothionein
in cadmium accumulation of Arctic char (Salvelinus alpinus) from high alpine
lakes. Aquat. Toxicol. 38: 47-66.

Darmono, D. 1990. Uptake of cadmium and nickel in banana prawn (Penaeus
merguiensis de Man). Bull. Environ. Contam. Toxicol. 45: 320-328.

Darmono, G.R.W. Denton, R.S.F. Campbell. 1990. The pathology of cadmium and
nickel toxicity in the banana shrimp (Penaeus merguiensis de Man). Asian Fish.
Sci. 3(3): 287-297.

Datta, D.K and Sinha. 1987. Estimation of acute toxicity of cadmium, a heavy
metal, in a carnivorous freshwater teleost, Mystus vittatus (Bloch). In: Proc.
Indian Natl. Sci. Acad. Part B 53(1) : 43-45.

Dave, G., et al. 1981. Toxicity of eight solvent extraction chemicals and of
cadmium to water fleas, Daphnia magna, rainbow trout, Salmo gairdneri, and
zebrafish, Brachydanio rerio. Comp. Biochem. Physiol. 69C: 83.

Davies, I.M., et al. 1981. Field and experimental studies on cadmium in the
edible crab Cancer pagurus. Mar. Biol. 64: 291.

Davies, N.A., M.G. Taylor and K. Simkiss. 1997. The influence of particle
surface characteristics on pollutant metal uptake by cells. Environ. Pollut.
96(2) : 179-184 .

Davies, P.H. 1976. Use of dialysis tubing in defining the toxic fractions of
heavy metals in natural water. In: R.W. Andrew, et al. (eds.), Toxicity to
Biota of Metal Forms in Natural Water. International Joint Commission,

Windsor, Ontario, p. 110.

163


-------
Davies, P.H. and W.C. Gorman. 1987. Effects of chemical equilibria and
kinetics on the bioavailability and toxicity of cadmium to rainbow trout. Am.
Chem. Soc. Natl. Meeting. 194: 646-650.

Davies, P.H., W.C. Gorman, C.A. Carlson and S.F. Brinkman. 1993. Effect of
hardness on bioavailability and toxicity of cadmium to rainbow trout. Chemical
Speciation and Bioavailability. 5(2): 67-77.

Davies, R.W., R.N. Singhal and D.D. Wicklum. 1995. Changes in reproductive
potential of the leech Nephelopsis obscura (Erpobdellidae) as biomarkers for
cadmium stress. Can. J. Zool. 73: 2192-2196.

Dawson, M.A., et al. 1977. Physiological response of juvenile striped bass,
Morone saxatilis, to low levels of cadmium and mercury. Chesapeake Sci. 18:
353.

De Conto Cinier, C., M. Petit-Ramel, R. Faure and D. Garin. 1997. Cadmium
bioaccumulation in carp (Cyprinus carpio) tissues during long-term high
exposure: analysis by inductively coupled plasma-mass spectrometry.
Ecotoxicology and Environmental Safety. 38: 137-143.

De Conto Cinier, C, M. Petit-Ramel, R. Faure and M. Bortolato. 1998. Cadmium
accumulation and metallothionein biosynthesis in Cyprinus carpio tissues.

Bull. Environ. Contam. Toxicol. 61: 793-799.

De Lisle, P.F. and M.H. Roberts, Jr. 1988. The effect of salinity on cadmium
toxicity to the estuarine mysid Mysidopsis bahia: role of chemical speciation.
Aquatic Toxicology. 12: 357-370.

De Lisle, P.F. and M.H. Roberts, Jr. 1994. The effect of salinity on cadmium
toxicity in the estuarine mysid Mysidopsis bahia: roles of osmoregulation and
calcium. Marine Environmental Research. 37: 47-62.

De March, B.G.E. 1988. Acute toxicity of binary mixtures of five cations

(Cu 2+, Cd 2+, Zn2+, Mg2+, and K+) to the freshwater amphipod Gammarus lacustris

(Sars): alternative descriptive models. Can. J. Fish. Aquat. Sci. 45: 625-633.

164


-------
De Nicola Giudici, M. and S.M. Guarino. 1989. Effects of chronic exposure to
cadmium or copper on Idothea baltica (crustacea, isopoda). Mar. Pollut. Bull.
20(2): 69-73.

De Nicloa Guidici, M. and L. Migliore. 1988. Long term effect of cadmium of
copper on Asellus aquaticus (L.) (Crustacea, isopoda). Verh.- Int. Ver. Theor.
Angew. Limnol. 23: 1660-1662.

De Nicola, M., N. Cardellicchio, C. Gambardella, S.M. Guarino and C. Marra.
1993. Effects of cadmium on survival, bioaccumulation, histopathology, and PGM
polymorphism in the marine isopod Idotea baltica. Ecotoxicol. Met. Invert.
Proc. Sess. 1993. 1st Meet.: 103-116.

Debelak, R.W. 1975. Acute toxicity of mixtures of copper, chromium, and
cadmium to Daphnia magna. Thesis. Miami University, Oxford, Ohio.

Decho, A.W. and S.N. Luoma. 1994. Humic and fulvic acids: ink or source in the
availability of metals to the marine bivalves Macoma balthica and
Potamocorbula amurensis? Mar. Ecol. Prog. Ser. 108: 133-145.

DeFilippis, L.F., et al. 1981. The effects of sublethal concentrations of
zinc, cadmium and mercury on Euglena. II. respiration, photosynthesis and
photochemical activities. Arch. Microbiol. 128: 407.

Del Ramo, J, J. Diaz-Mayans, A Torreblanca and A Nunez. 1987. Effects of
temperature on the acute toxicity of heavy metals (Cr, Cd, and Hg) to the
freshwater crayfish, Procambarus clarkii (Girard). Bull. Environ. Contam.
Toxicol. 38: 736-741.

Demon, A., M. De Bruin and H. TH. Wolterbeek. 1988. The influence of pH on
trace element uptake by an alga (Scenedesmus pannonicus subsp. Berlin) and
fungus (Aureobasidium pullulans). Environ. Monit. Assess. 10-2: 165-173.

Demon, A., M. De Bruin and H. TH. Wolterbeek. 1989. The influence of pre-
treatment, temperature and calcium ions on trace element uptake by an alga
(Scenedesmus pannonicus subsp. Berlin) and fungus (Aureobasidium pullulans).
Environ. Monit. Assess. 13: 21-33.

165


-------
Den Besten, P.J., H.J. Herwig, D.I. Zandee and P.A. Voogt. 1989. Effects of
cadmium and PCBs on reproduction of the sea star Asterias rubens: aberrations
in the early development. Ecotoxicol. Environ. Safety. 18(2): 173-180.

Den Besten, P.J., E.G. van Donselaar, H.J. Herwig, D.I. Zandee and P.A. Voogt.
1991. Effects of cadmium on gametogenesis in the sea star Asterias rubens L.
Aquat. Toxicol. 20: 83-94.

Denton, G.R.W. and C. Burdon-Jones. 1981. Influence of temperature and
salinity on the uptake, distribution, and depuration of mercury, cadmium, and
lead by the black-lip oyster Saccostrea echinata. Mar. Biol. 64: 317.

Denton, G.R.W. and C. Burdon-Jones. 1986. Environmental effects on toxicity of
heavy metals to two species of tropical marine fish from northern Australia.
Chem. Ecol. 2: 233-249.

Department of the Environment. 1973. Water Pollution Research 1972. London,
p. 37 .

Devi, M., D.A. Thomas, J.T. Barber and M. Fingerman. 1996. Accumulation and
physiological and biochemical effects of cadmium in a simple aquatic food
chain. Ecotoxicology and Environmental Safety. 33: 38-43.

Devi, V.U. 1987. Heavy metal toxicity to fiddler crabs, Uca annulipes
Latreille and Uca triangularis (Milne Edwards): tolerance to copper, mercury,
cadmium, and zinc. Bull. Environ. Contam. Toxicol. 39: 1020-1027.

Devi, V.U. 1996. Bioaccumulation and metabolic effects of cadmium on marine
fouling dressinid bivalve, Mytilopsis sallei (Recluz). Arch. Environ. Contam.
Toxicol. 31: 47-53.

Devi, V.U. and Y.P. Rao. 1989. Cadmium accumulation in fiddler crabs Uca
annulipes latelle and Uca triangularis (Milne Edwards). Water, Air, Soil
Pollut. 43: 309-321.

Devi Prasad, P.V. and P.S. Devi Prasad. 1982. Effect of cadmium, lead and
nickel on three freshwater green algae. Water Air Soil Pollut. 17: 263.

166


-------
Devineau, J. and C.A. Triquet. 1985. Patterns of bioaccumulation of an
essential trace element (zinc) and a pollutant metal (cadmium) in larvae of
the prawn Palaemon serratus. Mar. Biol. 86: 139-143.

Di Giulio, R.T. and R.F. Scanlon. 1984. Sublethal effects of cadmium ingestion
on mallard ducks. Arch. Environ. Contam. Toxicol. 13: 7 65.

Diamond, J.M., D.E. Koplish, J. McMahon III and R. Rost. 1997. Evaluation of
the water-effect ratio procedure for metals in a riverine system.

Environmental Toxicology and Chemistry. 16(3): 509-520.

Dickson, G.W., et al. 1982. The effect of chronic cadmium exposure on
phosphoadenylate concentrations and adenylate energy charge of gills and
dorsal muscle tissue of crayfish. Environ. Toxicol. Chem. 1: 147.

Dierickx, P.J. and E. Bredael-Rozen. 1996. Correlation between the in vitro
cytotoxicity of inorganic metal compounds to cultured fathead minnow fish
cells and the toxicity to Daphnia magna. Bull. Environ. Contam. Toxicol. 57:
107-110.

Dillon, T.M. and B.C. Suedel. 1986. The relationship between cadmium
bioaccumulation and survival, growth, and reproduction in the freshwater
crustacean, Daphnia magna. Environ. Contam., 2nd Conf., CEP Consult.,

Edinburgh, U.K.: 21-23.

Dinnel, P.A., J.M. Link, Q.J. Stober, M.W. Letourneau and W.E. Roberts. 1989.
Comparative sensitivity of sea urchin sperm bioassays to metals and
pesticides. Arch. Environ. Contam. Toxicol. 18: 748-755.

Dive, D., S. Robert, E. Angrand, C. Bel, H. Bonnemain, L. Brun, Y. Demarque,
A. Le Du, R. El Bouhouti, M.N. Fourmaux, L. Guery, 0. Hanssens and M. Murat.
1989. A bioassay using the measurement of the growth inhibition of a ciliate
protozoan: Colpidium campylum Stokes. Hydrobiologia. 188/189: 181-188.

Dixon, W.J. and M.B. Brown, eds. 1979. BMDP Biomedical Computer Programs, P-
series. University of California, Berkeley, California, p. 521.

167


-------
Domal-Kwiatkowska, D., B. Sosak-Swiderska, U. Mazurek and D. Tyrawska. 1994.
The effect of cadmium on the survival and filtering rate of Daphnia Magna,
Straus 1820. Pol. Arch. Hydrobiol. 41(4) : 465-473.

Dorfman, D. 1977. Tolerance of Fundulus heteroclitus to different metals in
salt waters. Bull. New Jersey Acad. Sci. 22: 21.

Dorgelo, J., H. Meester and C. van Velzen. 1995. Effects of diet and heavy
metals on growth rate and fertility in the deposit-feeding snail Potamopyrgus
jenkinsi (Smith) (gastropoda: hydrobiidae). Hydrobiol. 316: 199-210.

Douben, P.E.T. 1989. Uptake and elimination of waterborne cadmium by the fish
Noemacheilus barbatulus L. (Stone Loach). Arch. Environ. Contam. Toxicol. 18:
576-586.

Drbal, K., K. Veber and J. Zahradnik. 1985. Toxicity and accumulation of
copper and cadmium in the alga Scenedesmus obliquus LH. Bull. Environ. Contam.
Toxicol. 34: 904-908.

Dressing, et al. 1982. Effect of chemical speciation on the accumulation of
cadmium by the caddis fly, Hydropsyche sp. Bull. Environ. Contam. Toxicol. 28:
172 .

Drummond, R.A. and D.A. Benoit. Manuscript. Toxicity of cadmium to fish: some
observations on the influence of experimental procedures. U.S. EPA, Duluth,
Minnesota.

Duncan, D.A. and J.F. Klaverkamp. 1983. Tolerance and resistance to cadmium in
white suckers (Catostomus commersoni) previously exposed to cadmium, mercury,
zinc, or selenium. Can. Jour. Fish. Aquat. Sci. 40: 128.

Duquesne, S.J. and J.C. Coll. 1995. Metal accumulation in the clam Tridacna
crocea under natural and experimental conditions. Aquat. Toxicol. 32: 239-253.

Dyer, S.D., S.E. Belanger and G.J. Carr. 1997. An initial evaluation of the
use of Euro/North American fish species for tropical effects assessments.
Chemosphere. 35(11): 2767-2781.

168


-------
Eaton, J.G. 1974. Chronic cadmium toxicity to the bluegill (Lepomis macro-
chirus Rafinesque). Trans. Am. Fish. Soc. 4: 729.

Eaton, J.G. 1980. Memorandum to C.E. Stephan. U.S. EPA, Duluth, Minnesota.
August 5.

Eaton, J.G., et al. 1978. Metal toxicity to embryos and larvae of seven
freshwater fish species-I. cadmium. Bull. Environ. Contam. Toxicol. 19: 95.

Eisler, R. 1971. Cadmium poisoning in Fundulus heteroclitus (Pisces:
Cyprinodontidae) and other marine organisms. Jour. Fish. Res. Board Can. 28:
1225.

Eisler, R. 1974. Radio cadmium exchange with seawater by Fundulus heteroclitus
(L.) (Pisces: Cyprinodontidae). Jour. Fish Biol. 6: 601.

Eisler, R. 1977. Acute toxicities of selected heavy metals to the soft-shell
clam, Mya arenaria. Bull. Environ. Contam. Toxicol. 17: 137.

Eisler, R. 1981. Trace Metal	Concentrations in Marine Organisms. Pergamon
Press, New York.

Eisler, R. and G.R. Gardner.	1973. Acute toxicology to an estuarine teleost of

mixtures of cadmium, copper,	and zinc salts. Jour. Fish Biol. 5: 131.

Eisler, R. and R. Hennekey. 1977. Acute toxicities of Cd+2, Cr+6, Hg+2, Ni+2, and
Zn+2 to estuarine macrofauna. Arch. Environ. Contam. Toxicol. 6: 315.

Eisler, R., et al. 1972. Cadmium uptake by marine organisms. Jour. Fish. Res.
Board Can. 29: 1367.

Eisler, R., et al. 1979. Fourth annotated bibliography on biological effects
of metals in aquatic environments. EPA-600/3-7 9-084. National Technical
Information Service, Springfield, Virginia.

169


-------
Elliott, N.G., R. Swain and D.A. Ritz. 1985. The influence of cyclic exposure
on the accumulation of heavy metals by Mytilus edulis planulatus (Lamarck).
Mar. Environ. Res. 15: 17-30.

Elliott, N.G., R. Swain and D.A. Ritz. 1986. Metal interaction during
accumulation by the mussel Mytilus edulis planulatus. Mar. Biol. 395-399.

Elnabarawy, M.T., A.N. Welter and R.R. Robideau. 1986. Relative sensitivity of
three daphnid species to selected organic and inorganic chemicals.
Environmental Toxicology and Chemistry. 5: 393-398.

Engel, D.W. 1999. Accumulation and cytosolic partitioning of metals in the
american oyster Crassostrea virginica. Mar. Environ. Res. 47: 89-102.

Enserink, L., W. Luttmer and H. Maas-Diepeveen. 1990. Reproductive strategy of
Daphnia magna affects the sensitivity of its progeny in acute toxicity tests.
Aquatic Toxicology. 17: 15-26.

Enserink, E.L., J.L. Maas-Diepeveen and C.J. Van Leeuwen. 1991. Combined
effects of metals; an ecotoxicological evaluation. Water Res. 25(6): 679-687.

Enserink, L., M. De la Haye and H. Maas. 1993. Reproductive strategy of
Daphnia magna: implications for chronic toxicity test. Aquatic Toxicology. 25:
111-124 .

Errecalde, 0. M. Seidl and P.G.C. Campbell. 1998. Influence of a low molecular
weight metabolite (citrate) on the toxicity of cadmium and zinc to the
unicellular green alga Selenastrum capricornutum: and exception to the free-
ion model. Water Res. 32(2): 419-429.

Everaarts, J.M. 1990. Uptake and release of cadmium in various organs of the
common mussel, Mytilus edulis (L.). Bull. Environ. Contam. Toxicol. 45: 560-
567 .

Evtushenko, Z.S., N.N. Belcheva, O.N. Lukyanova. 1986. Cadmium accumulation in
organs of the scallop Mizuhopecten yessoensis - I. activities of phosphatases
and composition and amount of lipids. Comp. Biochem. Physiol. 83C: 371-376.

170


-------
Evtushenko, Z.S., O.N. Lukyanova, N.N. Belcheva. 1990. Cadmium bioaccumulatio
in organs of the scallop Mizuhopecten yessoensis. Mar. Biol. 104: 247-250.

Fair, P.A. and L.V. Sick. 1983. Accumulations of naphthalene and cadmium afte
simultaneous ingestion by the Black Sea Bass, Centropristis striata. Arch.
Environ. Contam. Toxicol. 12: 551.

Faraday. W.E. and A.C. Churchill. 1979. Uptake of cadmium by the eelgrass
Zostera marina. Mar. Biol. 53: 293.

Farag, A.M., C.J. Boese, D.F. Woodward and H.L. Bergman. 1994. Physiological
changes and tissue metal accumulation in rainbow trout exposed to foodborne
and waterborne metals. Environ. Toxicol. Chem. 13(12): 2021-2029.

Farag, A.M., D.F. Woodward, J.N. Goldstein, W. Brumbaugh and J.S. Meyer. 1998
Concentrations of metals associated with mining waste in sediments, biofilm,
benthic macroinvertebrates, and fish from the Coeur d'Alene River basin,
Idaho. Arch. Environ. Contam. Toxicol. 34: 19-127.

Fargasova, A. 1993. Effect of five toxic metals on the alga Scenedesmus
quadricauda. Biologia, Bratislava. 48(3): 301-304.

Fargasova, A. 1994a. Toxicity of metals on Daphnia magna and Tubifex tubifex.
Ecotoxicology and Environmental Safety. 27: 210-213.

Fargasova, A. 1994b. Comparative toxicity of five metals on various biologica
subjects. Bull. Environ. Contam. Toxicol. 53: 317-324.

Fennikoh, K.B., et al. 1978. Cadmium toxicity in planktonic organisms of a
freshwater food web. Environ. Res. 15: 357.

Fernandez-Leborans, G. and M.T. Antonio-Garcia. 1988. Effects of lead and
cadmium in a community of protozoans. Acta Protozool. 27(2): 141-159.

171


-------
Fernandez-Leborans, G. and A. Novillo-Villajos. 1993. Changes in trophic
structure of a freshwater protozoan community subjected to cadmium.
Ecotoxicology and Environmental Safety. 25: 271-279.

Fernandez-Leborans, G. and A. Novillo. 1996. Toxicity and bioaccumulation of
cadmium in Olisthodiscus Leteus. Wat. Res. 30(1): 57-62.

Fernandez-Pinas, F, P. Mateo and I. Bonilla. 1995. Cadmium toxicity in Nostoc
UAM208: protection by calcium. New Phytol. 131: 403-407.

Ferrari, L, A. Salibian and C.V. Muino. 1993. Selective protection of
temperature against cadmium acute toxicity to Bufo arenarum tadpoles. Bull.
Environ. Contam. Toxicol. 50: 212-218.

Findlay, D.L., S.E.M. Kasian, and E.U. Schindler. 1996. Long-term effects of
low cadmium concentrations on a natural phytoplankton community. Can. J. Fish.
Aquat. Sci. 53: 1903-1912.

Finlayson, B.J. and K.M. Verrue. 1982. Toxicities of copper, zinc, and cadmium
mixtures to juvenile chinook salmon. Trans. Am. Fish. Soc. Ill: 645.

Fisher, N.S. and J.G. Fabris. 1982. Complexation of Cu, Zn and Cd by
metabolites excreted from marine diatoms. Mar. Chem. 11: 245.

Fisher, N.F. and G.J. Jones. 1981. Heavy metals and marine phytoplankton:
correlation of toxicity and sulfhydryl-binding. Jour. Phycol. 17: 108.

Fisher, N.S., J.L. Teyssie, S.W. Fowler and W.X. Wang. 1996. Accumulation and
retention of metals in mussels from food and water: a comparison under field
and laboratory conditions. Environ. Sci. Technol. 30(11): 3232-3242.

Florence, T.M., G.M. Morrison and J.L. Stauber. 1992. Determination of trace
element speciation and the role of speciation in aquatic toxicity. Sci. Total
Environ. 125: 1-13.

Forbes, V.E. 1991. Response of Hydrobia ventrosa (Montagu) to environmental
stress: effects of salinity fluctuations and cadmium exposure on growth.

Funet. Ecol. 5(5): 642-648.

172


-------
Forget, J., J.F. Pavilion, M.R. Menasria and G. Bocquene. 1998. Mortality and
LC50 values for several stages of the marine copepod Tigriopus brevicornis
(Muller) exposed to the metals arsenic and cadmium and the pesticides
atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicol. Environ. Safety.
40: 239-244.

Foster, P.L. 1982. Metal resistances of chlorophyta from rivers polluted by
heavy metals. Freshwater Biol. 12: 41.

Francesconi, D.A. 1989. Distribution of cadmium in the pearl oyster, Pinctada
albina albina (Lamarck), following exposure to cadmium in seawater. Bull.
Environ. Contam. Toxicol. 43: 321-328.

Francesconi, K.A., E.J. Moore, J.S. Edmonds. 1994. Cadmium uptake from
seawater and food by the western rock lobster Panulirus cygnus. Bull. Environ.
Contam. Toxicol. 53: 219-223.

Frank, P.M. and P.B. Robertson. 1979. The influence of salinity on toxicity of
cadmium and chromium to the blue crab, Callinectes sapidus. Bull. Environ.
Contam. Toxicol. 21: 74.

Frazier, J.M. 1979. Bioaccumulation of cadmium in marine organisms. Environ.
Health Perspect. 28: 75.

Frazier, J.M. and S.G. George. 1983. Cadmium kinetics in oyster - a
comparative study of Crassostrea gigas and Ostrea edulis. Mar. Biol. 76: 55.

Freeman, B.J. 1978. Accumulation of cadmium, chromium, and lead by bluegill
sunfish (Lepomis macrochirus Rafinesque) under temperature and oxygen stress.
SRO-757-6. National Technical Information Service, Springfield, Virginia.

Freeman, B.J. 1980. Accumulation of cadmium, chromium, and lead by bluegill
sunfish (Lepomis macrochirus Rafinesque) under temperature and oxygen stress.
Thesis. University of Georgia, Athens, Georgia.

Gadkari, A.S. and V.B. Marathe. 1983. Toxicity of cadmium and lead to a fish
and a snail from two different habitats. IAWPC Tech. Annual. X: 141-148.

173


-------
Gaikwad, S.A. 1989. Effects of mixture and three individual heavy metals on
susceptibility of three fresh water fishes. Poll. Res. 8(1): 33-35.

Galic, M., L. Sipos and B. Raspor. 1987. Toxicity of cadmium and
nitrilotriacetic acid in sea water to the photobacteria Vibrio fisheri. Sci.
Total Environ. 60: 173-184.

Gargiulo, G.,	P. De Girolamo, L. Ferrara, 0. Soppelsa, G. Andreozzi, R.

Antonucci and	P. Battaglini. 1996. Action of cadmium on the gills of Carassius

auratus L. In	the presence of catabolic NH3. Arch. Environ. Contam. Toxicol.
30: 235-240.

Garofano, J.S. 1979. The effects of cadmium on the peripheral blood and head
kidney of the brown bullhead Ictalurus nebulosus (Lesueur). Thesis. New York
University.

Gaur, J.P., N. Noraho, Y.S. Chauhan. 1994. Relationship between heavy metal
accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla
pinnata R. Br. Aquat. Bot. 49(2/3) : 183-192.

Gentile, J.H. and M. Johnson. 1982. Memorandum to John H. Gentile. U.S. EPA,
Narragansett, Rhode Island.

Gentile, S.M. 1982. Memorandum to John H. Gentile. U.S. EPA, Narragansett,
Rhode Island.

Gentile, S.M., et al. 1982. Chronic effects of cadmium on two species of mysid
shrimp: Mysidopsis bahia and Mysidopsis bigelowi. Hydrobiologia 93: 195.

George, S.G. and T.L. Coombs. 1977. The effects of chelating agents on the
uptake and accumulation of cadmium by Mytilus edulis. Mar. Biol. 39: 261.

George, S.G., B.J.S. Pirie and J.M. Frazier. 1983. Effects of cadmium exposure
on metal-containing amoebocytes of the oyster Ostrea edulis. Mar. Biol. 76:
63-66.

Gerhardt, A. 1992. Acute toxicity of Cd in stream invertebrates in relation to
pH and test design. Hydrobiologia. 239: 93-100.

174


-------
Gerhardt, A. 1995. Joint and single toxicity of Cd and Fe related to metal
uptake in the mayfly Leptophlebia marginata (L.) (Insecta). Hydrobiologia.
306: 229-240.

Ghosh, A.R. and P. Chakrabarti. 1990. Toxicity of arsenic and cadmium to a
freshwater fish. Environ. Ecol. 8(2): 576-579.

Ghosh, T.K., J.P. Kotangale and K.P. Krishnamoorthi. 1990. Toxicity of
selective metals to freshwater algae, ciliated protozoa and planktonic
crustaceans. Environmental and Ecology. 8 (1):356-360.]

Giesy, J.P., Jr. 1978. Cadmium inhibition of leaf decomposition in an aquati
microcosm. Chemosphere 6: 467.

Giesy, J.P., Jr., et al. 1977. Effects of naturally occurring aquatic organi
fractions on cadmium toxicity to Simocephalus serrulatus (Daphnidae) and
Gambusia affinis (Poeciliidae). Water Res. 11: 1013.

Giesy, J.P., Jr., et al. 1979. Fate and biological effects of cadmium
introduced into channel microcosms. EPA-600/3-7 9-039. National Technical
Information Service, Springfield, Virginia.

Giles, M.A. 1988. Accumulation of cadmium by rainbow trout, Salmo gairdneri,
during extended exposure. Can. J. Fish. Aquat. Sci. 45: 1045-1053.

Gill, T.S. and A. Epple. 1992. Impact of cadmium on the mummichog Fundulus
heteroclitus and the role of calcium in suppressing heavy metal toxicity.
Comp. Biochem. Physiol. 101C(3): 519-523.

Gillespie, R. , et al. 1977. Cadmium uptake by the crayfish, Orconectes
propinquus propinquus (Girard). Environ. Res. 13: 364.

Glubokov, A.I. 1990. Growth of three species of fish during early ontogeny
under normal and toxic conditions. Voprosy Ikhtiologii. 30(1): 137-143.

Glynn, A.W. 1996. The concentration dependency of branchial intracellular
cadmium distribution and influx in the zebrafish (Brachydanio rerio) . Aquat.
Toxicol. 35: 47-58.

175


-------
Glynn, A.W., C. Haux and C. Hogstrand. 1992. Chronic toxicity and metabolism
of Cd and Zn in juvenile minnows (Phoxinus phoxinus) exposed to a Cd and Zn
mixture. Can. J. Fish. Aquat. Sci. 49: 2070-2079.

Glynn, A.W., L. Norrgren, A. Mussener. 1994. Differences in uptake of
inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio
rerio. Aquatic Toxicol. 30: 13-26.

Gomot, A. 1997. Dose-Dependent effects of cadmium on the growth of snails in
toxicity bioassays. Arch. Environ. Contam. Toxicol. 33: 209-216.

Gomot, A. 1998. Toxic effects of cadmium on reproduction, development, and
hatching in the freshwater snail Lymnaea stagnalis for water quality
monitoring. Ecotoxicol. Environ. Safety. 41: 288-297.

Gopal, V. and K.M. Devi. 1991. Influence of nutritional status on the median
tolerance limits (LC50) of Ophiocephalus striatus for certain heavy metal and
pesticide toxicants. Indian. J. Environ. Health. 33: 393-394.

Gordon, M., et al. 1980. Mytilus californianus as a bioindicator of trace
metal pollution: variability and statistical considerations. Mar. Pollut.

Bull. 11: 195.

Gorman, W.C. Jr. and R.K. Skogerboe. 1987. Speciation of cadmium in natural
waters and their effect on rainbow trout. Preprint extended abstract,
presented before the Division of Environ. Chem., Am. Chem. Soc. , Aug. 30 -
Sept. 4, 1987. New Orleans, La: 664-645.

Gossiaux, D.C., P.F. Landrum and V.N. Tsymbal. 1992. Response of the amphipod
Diporeia spp. To various stressors: cadmium, salinity, and temperature. J.
Great Lakes Res. 18(3): 364-371.

Gottofrey, J. and H. Tjalve. 1991. Axonal transport of cadmium in the
olfactory nerve of the pike. Pharmacol. Toxicol. 19: 242-252.

Gottofrey, J., I. Bjorklund and H. Tjalve. 1986. Effect of sodium
isopropylxanthate, potassium amylxanthate and sodium diethyldithiocarbamate or

176


-------
the uptake and distribution of cadmium in the brown trout (Salmo trutta) .
Aquat. Toxicol. 12: 171-184.

Gould, E. and J. Karolus. 1974. Physiological response of the cunner,
Tautogolabrus adspersus, to cadmium. Observations on the biochemistry. NOAA
Technical Report SSRF-681, Part V.

Gould, E., et al. 1976. Heart transaminase in the rock crab, Cancer irroratus,
exposed to cadmium salts. Bull. Environ. Contam. Toxicol. 15: 635.

Govindarajan, S., C.P. Valsaraj, R. Mohan, V. Hariprasad and R.
Ramasubramanian. 1993. Toxicity of heavy metals in aquaculture organisms:
Penaeus indicus, Perna viridis, Artemia salina and Skeletonema costatum.
Pollut. Res. 12(3): 187-189.

Graney, R.L., Jr., et al. 1983. Heavy metal indicator potential of the Asiatic
clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia 102: 81.

Graney, R.L., Jr., D.S. Cherry and J. Cairns Jr. 1984. The influence of
substrate, pH, diet and temperature upon cadmium accumulation in the asiatic
clam (Corbicula fluminea) in laboratory artificial streams. Water Res. 18:
833-842 .

Green, A.S., G.T. Chandler and E.R. Blood. 1993. Aqueous-, pore-water-, and
sediment-phase cadmium: toxicity relationships for a meiobenthic copepod.
Environmental Toxicology and Chemistry. 12: 1497-1506.

Green, D.W.J., K.A. Williams and D. Pascoe. 1986. The acute and chronic
toxicity of cadmium to different life history stages of the freshwater
crustacean Asellus aquaticus (L). Arch. Environ. Contam. Toxicol. 15(5): 465-
471.

Greenwood, J.G. and D.R. Fielder. 1983. Acute toxicity of zinc and cadmium to
zoeae of three species of portnid crabs (Crustacea: Brachyura). Comp. Biochem.
Physiol. 75C: 141.

Greig, R.A. 1979. Trace metal uptake by three species of mollusks. Bull.
Environ. Contam. Toxicol. 22: 643.

177


-------
Greig, R.A. and D.R. Wenzloff. 1978. Metal accumulation and depuration by the
american oyster, Crassostrea virginica. Bull. Environ. Contam. Toxicol. 20:
499.

Guanzon, N.G., Jr., H. Nakahara and Y. Yoshida. 1994. Inhibitory effects of
heavy metals on growth and photosynthesis of three freshwater microalgae.

Fish. Sci. 60 (4) : 379-384.

Guerin, J.L. and W.B. Stickle. 1995. Effects of cadmium on survival,
osmoregulatory ability and bioenergetics of juvenile blue crabs Callinectes
sapidus at different salinities. Marine Environmental Research. 40(3) : 227-
246.

Guerin, C., N. Giani and M. Sire. 1994. A study of the sensitivity of
Enchytraeus variatus (Oligochaeta, Enchytraeidae) to certain salts of heavy
metals in relation to its use as a test organism. Ann. Limnol. 30(3) : 167-178.

Guilhermino, L., M.C. Lopes, A.P. Carvalho and A.M.V.M. Soares. 1996.
Inhibition of acetylcholinesterase activity as effect criterion in acute tests
with juvenile Daphnia magna. Chemosphere. 32(4): 727-738.

Guilhermino, L., T.C. Diamantino, R. Ribeiro, F. Goncalves and A.M.V.M.

Soares. 1997. Suitability of test media containing EDTA for the evaluation of
acute metal toxicity to Daphnia magna Straus. Ecotoxicology and Environmental
Safety. 38: 292-295.

Gully, J.R. and A.Z. Mason. 1993. Cytosolic redistribution and enhanced
accumulation of Cu in gill tissue of Littorina littorea as a result of Cd
exposure. Mar. Environ. Res. 35: 53-57.

Gupta, A.K. and V.K. Rajbanshi. 1991. Toxicity of copper and cadmium to
Heteropneustes fossilis (Bloch) Acta Hydrochim. Hydrobiol. 19(3): 331-340.

Gupta, M. and S. Devi. 1995. Uptake and toxicity of cadmium in aquatic ferns.
J. Environ. Biol. 16(2): 131-136.

178


-------
Gupta, M., S. Devi and J. Singh. 1992. Effects of long-term low-dose exposure
to cadmium during the entire life cycle of Ceratopteris thalictroides, a water
fern. Arch. Environ. Contam. Toxicol. 23(2): 184-189.

Hader, D.P., M. Lebert, H. Tahedl and P. Richter. 1997. The Erlanger
flagellate test (EFT): photosynthetic flagellates in biological dosimeters. J.
Photochem. Photobiol, B: Biol. 40: 23-28.

Haines, T.A. and W.G. Brumaugh. 1994. Metal concentration in the gill,
gastrointestinal tract, and carcass of white suckers (Catostomus commersoni)
in relation to lake acidity. Water, Air, Soil Pollut. 73: 265-274.

Hale, J.G. 1977. Toxicity of metal mining wastes. Bull. Environ. Contam.
Toxicol. 17: 66.

Hall, L.W., Jr., L.O. Horseman and S. Zeger. 1984. Effects of organic and
inorganic chemical contaminants on fertilization, hatching success, and
prolarval survival of striped bass. Arch. Environ. Contam. Toxicol. 13: 723-
729.

Hall, W.S., R.L. Paulson, L.W. Hall, Jr. and D.T. Burton. 1986. Acute toxicity
of cadmium and sodium pentachlorophenate to daphnids and fish. Bull. Environ.
Contam. Toxicol. 37: 308-316.

Hall, L.W., Jr., W.S. Hall, S.J. Bushong and R.L. Herman. 1987. In situ
striped bass (Morone saxatilis) contaminant and water quality studies in the
Potomac River. Aquat. Toxicol. 19: 73-99.

Hall, L.W., Jr., S.J. Bushong, M.C. Ziegenfuss, W.S. Hall and R.L. Herman.
1988. Concurrent mobile on-site and in situ striped bass contaminant and water
quality studies in the Choptank River and upper Chesapeake Bay. Environ.
Toxicol. Chem. 7: 815-830.

Hall. L.W., Jr., M.C. Ziegenfuss, R.D. Anderson and B.L. Lewis. 1995. The
effect of salinity on the acute toxicity of total and free cadmium to a
Chesapeake Bay copepod and fish. Mar. Pollut. Bull. 30(6): 376-384.

179


-------
Ham, L., R. Quinn and D. Pascoe. 1995. Effects of cadmium on the predator-prey
interaction between the Turbellarian Dendrocoelum lacteum (Muller, 1774) and
the isopod crustacean Asellus aquaticus (L.). Arch. Environ. Contam. Toxicol.
29: 358-365.

Hamilton, S.J. and K.J. Buhl. 1990. Safety assessment of selected inorganic
elements to fry of chinook salmon (Oncorhynchus tshawytscha). Ecotoxicology
and Environmental Safety. 20: 307-324.

Handy, R.D. 1993. The effect of acute exposure to dietary Cd and Cu organ
toxicant concentrations in rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol.
27: 1-14.

Hansen, I.V., J.M. Weeks and M.H. Depledge. 1995 Accumulation of copper, zinc,
cadmium and chromium by the marine sponge Halichondria panicea Pallas and the
implications for biomonitoring. Mar. Pollut. Bull. 31(3-1) : 133-138.

Hansten, C., M. Heino and K. Pynnonen. 1996. Viability of glochidia of
Anodonta anatina (Unionidae) exposed to selected metals and chelating agents.
Aquat. Toxicol. 34: 1-12.

Hardy, J.K. and D.H. O'Keeffe. 1985. Cadmium uptake by the water hyacinth:
effects of root mass, solution volume, complexers and other metal ions.
Chemosphere. 14(5): 417-426.

Hardy, J.K. and N.B. Raber. 1985. Zinc uptake by the water hyacinth: effect of
solution factors. Chemosphere. 14(9): 1155-1166.

Hare, L. 1992. Aquatic insects and trace metals: bioavailability,
bioaccumulation, and toxicity. Critic. Rev. Toxicol. 22(5/6): 327-369.

Hare, L, E. Saouter, P.G.C. Campbell, A. Tessier, F. Ribeyre and A. Boudou.
1991. Dynamics of cadmium, lead, and zinc exchange between nymphs of the
burrowing mayfly Hexagenia rigida (Ephemeroptera) and the environment. Can. J.
Fish. Aquat. Sci. 48: 39-47.

180


-------
Hare, L., R. Carignan and MA. Huerta-Diaz. 1994. A field study of metal
toxicity and accumulation by benthic invertebrates; implications for the acid-
volatile sulfide (AVS) model. Limnol. Oceanogr. 39(7) : 1653-1668.

Haritonidis, S., J.W. Rijstenbil, P. Malea, J. van Drie and J.A. Wijnholds.
1994. Trace metal interactions in the macroalga Enteromorpha prolifera (O.F.
Muller) J. Ag., grown in water of the Scheldt estuary (Belgium and SW
Netherlands), in response to cadmium exposure. BioMetals. 7: 61-66.

Harrison, S.E. and J.F. Klaverkamp. 1989. Uptake, elimination and tissue
distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri
Richardson) and lake whitefish (Coregonus clupeaformis Mitchell).
Environmental Toxicology and Chemistry. 8: 87-97.

Hart, B.A. and B.D. Schaife. 1977. Toxicity and bioaccumulation of cadmium in
Chlorella pyrenoidosa. Environ. Res. 14: 401.

Hartwell, S.I. 1997. Demonstration of a toxicological risk ranking method to
correlate measures of ambient toxicity and fish community diversity. Environ.
Toxicol. Chem. 16(2): 361-371.

Harvey, R.W. and S.N. Luoma. 1985. Separation of solute and particulate
vectors of heavy metal uptake in controlled suspension-feeding experiments
with Macoma balthica. Hydrobiologia. 21: 97-102.

Hashim, M.A., K.H. Chu, S.M. Phang and G.S. Ong. 1997. Adsorption equilibria
of cadmium on algal biomass. Adsorpt. Sci. Technol. 15(6) : 445-453.

Hatakeyama, S. 1987. Chronic effects of Cd on reproduction of Polypedilum
nubifer (chironomidae) through water and food. Environ. Pollut. 48: 249-261.

Hatakeyama, S. and M. Yasuno. 1981a. The effects of cadmium-accumulated
chlorella on the reproduction of Moina macrocopa (Cladocera). Ecotoxicol.
Environ. Safety 5: 341.

Hatakeyama, S. and M. Yasuno. 1981b. Effects of cadmium on the periodicity of
parturation and brook size of Moina macrocopa (Cladocera). Environ. Pollut.
(Series A) 26: 111.

181


-------
Haynes, G.J., A.J. Stewart and B.C. Harvey. 1989. Gender-dependent problems in
toxicity tests with Ceriodaphnia dubia. Bull. Environ. Contam Toxicol. 43:
271-279.

Hazen, R.E. and T.J. Kneip. 1980. Biogeochemical cycling of cadmium in a marsh
ecosystem. In: J.O. Nriagu (ed.), Cadmium in the Environment, Part I. Wiley,
New York. p. 399.

Heinis, F., K.R. Timmermans and W.R. Swain. 1990. Short-term sublethal effects
of cadmium on the filter feeding chironomid larva Glyptotendipes pallens
(Meigen) (Diptera). Aquatic Toxicology. 16: 73-86.

Hendriks, J.A. 1995. Modelling equilibrium concentrations of microcontaminants
in organisms of the Rhine delta: Can average field residues in the aquatic
foodchain be predicted from laboratory accumulation? Aquat. Toxicol. 31: 1-25.

Herkovits, J. and C.S. Perez-Coll. 1993. Stage-dependent susceptibility of
Bufo arenarum embryos to cadmium. Bull. Environ. Contam. Toxicol. 50: 608-611.

Herkovits, J. and C.S. Perez-Coll. 1995. Increased resistance against cadmium
toxicity by means of pretreatment with low cadmium-zinc concentrations in Bufo
arenarum embryos. Biol. Trace Elem. Res. 49: 171-175.

Herkovits, J., P. Cardellini, C. Pavanati and C.S. Perez-Coll. 1997.
Susceptibility of early life stages of Xenopus laevis to cadmium.

Environmental Toxicology and Chemistry. 16(2): 312-316.

Herkovits, J., P. Cardellini, C. Pavanati and C.S. Perez-Coll. 1998. Cadmium
uptake and bioaccumulation in Xenopus laevis embryos at different
developmental stages. Ecotoxicology and Environmental Safety. 39: 21-26.

Herwig, H.J., F. Brands, E. Kruitwagen and D.I. Zandee. 1989. Bioaccumulation
and histochemical localization of cadmium in Dreissena polymorpha exposed to
cadmium chloride. Aquat. Toxicol. 15: 269-286.

Heumann, H.G. 1987. Effects of heavy metals on growth and ultrastructure of
Chara vulgaris. Protoplasma. 136: 37-48.

182


-------
Hickey, C.W. and W.H. Clements. 1998. Effects of heavy metals on benthic
macroinvertebrate communities in New Zealand streams. Environ. Toxicol. Chem.
17(11): 2338-2346.

Hickey, C.W. and M.L. Martin. 1995. Relative sensitivity of five benthic
invertebrate species to reference toxicants and resin-acid contaminated
sediments. Environ. Toxicol. Chem. 14(8): 1401-1409.

Hickey, C.W. and D.S. Roper. 1992. Acute toxicity of cadmium to two species of
infaunal marine amphipods (tube-dwelling and burrowing) from New Zealand.

Bull. Environ. Contam. Toxicol. 49: 165-170.

Hickey, C.W. and M.L. Vickers. 1992. Comparison of the sensitivity to heavy
metals and pentachlorophenol of the mayflies Deleatidium spp. and the
cladoceran Daphnia magna. New Zealand Journal of Marine and Freshwater
Research. 26: 87-93.

Hilmy, A.M., M.B. Shabana and A.Y. Daabees. 1985. Bioaccumulation of cadmium:
toxicity in Mugil cephalus. Comp. Biochem. Physiol. 81(1): 139-143.

Hiraoka, Y. 1985. Acute toxicity of 14 different kinds of metals affecting
medaka (Oryzias latipes) fry. Hiroshima J. Med. Sci. 34: 327-30.

Hockett, J. R and D.R. Mount. 1996. Use of metal chelating agents to
differentiate among sources of acute aquatic toxicity. Environ. Toxicol. Chem.
15: 1687-1693.

Hofslagare, 0., G. Samuelsson and S. Sjoberg. 1985. Cadmium effects on
photosynthesis and nitrate assimilation in Scenedesmus obliquus. A
potentiometric study in an open C02-system. Environ. Exp. Bot. 25(1) : 75-82.

Hogstrand, C., L. Goran and C. Haux. 1991. The importance of metallothionein
for the accumulation of copper, zinc and cadmium in environmentally exposed
perch, Perca fluviatilis. Pharmacol. Toxicol. 68: 492-501.

Holcombe, G.W., et al. 1983. Toxicity of selected priority pollutants to
various aquatic organisms. Ecotoxicol. Environ. Safety 7: 400.

183


-------
Holcombe, G.W., et al. 1984. Methods for conducting snail (Aplexa hypnorum)
embryo through adult exposures: effects of cadmium and reduced pH levels.
Arch. Environ. Contam. Toxicol. 13: 627.

Hollibaugh, D.L., et al. 1980. A comparison of the acute toxicities of ten
heavy metals to the plankton from Sasnick Inlet, B.C., Canada. Estuarine
Coastal Mar. Sci. 10: 93.

Hollis, L, K. Burnison and R.C. Playle. 1996. Does the age of metal-dissolved
organic carbon complexes influence binding of metals to fish gills? Aquat.
Toxicol. 35: 253-264.

Hollis, L., L. Muench and R.C. Playle. 1997. Influence of dissolved organic
matter on copper binding, and calcium on cadmium binding, by gills of rainbow
trout. J. Fish Biol. 50: 703-720.

Hong, J.S. and D.J. Reish. 1987. Acute
marine amphipod and isopod crustaceans
Environ. Contam. Toxicol. 39: 884-888.

toxicity of cadmium to eight species of
from southern California. Bull.

Hooten, R.L. and R.S. Carr. 1997. Development and application of a marine
sediment pore-water toxicity test using Ulva fasciata zoospores. Environ.
Toxicol. Chem. 17(5): 932-940.

Hornstrom, E. 1990. Toxicity test with algae - a discussion on the batch
method. Ecotoxicol. Environ. Safety. 20: 343-353.

Hu, S., C.H. Tang and M. Wu. 1996. Cadmium accumulation by several seaweeds.
Sci. Total Environ. 187: 65-71.

Huebert, D.B. and J.M. Shay. 1991. The effect of cadmium and its interaction
with external calcium in the submerged aquatic macrophyte Lemna trisulca L.
Aquat. Toxicol. 20: 57-72.

Huebert, D.B. and J.M. Shay. 1992. Zinc toxicity and its interaction with
cadmium in the submerged aquatic macrophyte Lemna trisulca L. Environ.
Toxicol. Chem. 11: 715-720.

184


-------
Huebert, D.B. and J.M. Shay. 1993. The response of Lemna trisulca L. To
cadmium. Environ. Pollut. 80: 247-253.

Huebert, D.B., B.S. Dyck and J.M. Shay. 1993. The effect of EDTA on the
assessment of Cu toxicity in the submerged aquatic macrophyte, Lemna trisulca
L. Aquat. Toxicol. 24: 183-194.

Huebner, J.D. and K.S. Pynnonen. 1992. Viability of glochidia of two species
of Anodonta exposed to low pH and selected metals. Can. J. Zool. 70: 2348-
2355.

Hughes, G.M., et al. 1979. A morphometric study of effects of nickel, chromium
and cadmium on the secondary lamellae of rainbow trout gills. Water Res. 13:
665.

Hughes, J.S. 1973. Acute toxicity to thirty chemicals to striped bass (Morone
saxatilis) . Western Assoc. State Game Fish Comm., Salt Lake City, Utah. July.

Hung, Y. 1982. Effects of temperature and chelating agents on cadmium uptake
in the American oyster. Bull. Environ. Contam. Toxicol. 28: 546.

Husaini, Y., A.K. Singh and L.C. Rai. 1991. Cadmium toxicity to photosynthesis
and associated electron transport system of Nostoc linckia. Bull. Environ.
Contam. Toxicol. 46: 146-150.

Hutcheson, M.S. 1975. The effects of temperature and salinity on cadmium
uptake by the blue crab, Callinectes sapidus. Chesapeake Sci. 15: 237.

Hutchinson, T.C. and H. Czyrska. 1972. Cadmium and zinc toxicity and synergism
to floating aquatic plants. In: Water Pollution Research in Canada 1972.

Proc. 7th Canadian Symp. Water Pollut. Res., Inst. Environ. Sci. Eng. Publ.
No. EI-3. p. 59.

Hutchinson, T.C. and P.M. Stokes. 1975. Heavy metal toxicity and algal
bioassays. In: S. Barabos (ed.), Water Quality Parameters. ASTM STP 573.
American Society for Testing and Materials, Philadelphia, Pennsylvania, p.

320.

185


-------
Hutchinson, T.H., T.D. Williams and G.J. Eales. 1994. Toxicity of cadmium,
hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus)
and copepods (Tisbe battagliai) . Marine Environmental Research. 38: 275-290.

Hutton, M. 1983. Sources of cadmium in the environment. Ecotoxicol. Environ.
Saf. 7: 9-24.

Hwang, P.P., S.W. Lin and H.C. Lin. 1995. Different sensitivities to cadmium
in Tilapia larvae (Oreochromis mossambicus; Teleostei). Arch. Environ.

Contam. Toxicol. 29:1-7.

Hylland, K., M. Skold, J.S. Gunnarsson and J. Skei. 1997. Interactions between
eutrophication and contaminants. IV. Effects on sediment-dwelling organisms.
Mar. Pollut. Bull. 33(1-6) : 90-99

Iftode, F, J.J. Curgy, A. Fleury and G. Fryd-Versavel. 1985. Action of a heavy
ion, Cd2+, and the antagonistic effect of Ca2+, on two ciliates Tetrahymena
pyriformis and Euplotes vannus. Acta Protozool. 24(3-4): 273-279.

Ikuta, K. 1987. Cadmium accumulation by a top shell Batillus cornutus. Nippon
Suisan Gakkaishi. 53(7): 1237-1242.

Ilangovan, K., R.O. Canizares-Villanueva, S. Gonzalez Moreno and D. Voltolina.
1998. Effect of cadmium and zinc on respiration and photosynthesis in
suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus
acutus. Bull. Environ. Contam. Toxicol. 60: 936-943.

Ingersoll, C.G. and N. Kemble. 2000. Unpublished. Methods development for
long-term sediment toxicity tests with the amphipod Hyalella azteca and the
midge Chironomus tentans.

Ingersoll, C.G. and R.W. Winner. 1982. Effect on Daphnia pulex (De Geer) of
daily pulse exposures to copper or cadmium. Environ. Toxicol. Chem. 1: 321.

Inza, B., F. Ribeyre and A. Boudou. 1998. Dynamics of cadmium and mercury
compounds (inorganic mercury or methylmercury): uptake and depuration in

186


-------
Corbicula fluminea. Effects of temperature and pH. Aquat. Toxicol. 43: 273-285.

Irato, P. and Piccinni, E. 1996. Effects of cadmium and copper on Astasia
longa: metal uptake and glutathione levels. Acta Protozool. 35: 281-285.

Issa, A.A., R. Abdel-Basset and M.S. Adam. 1995. Abolition of heavy metal
toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann. Bot. 75: 189-
192 .

Jak, R.G., J.L. Maas and M.C.Th. Scholten. 1996. Evaluation of laboratory
derived toxic effect concentrations of a mixture of metals by testing fresh
water plankton communities in enclosure. Water Res. 30(5): 1215-1227.

Jana, S. and S.S. Sahana. 1988. Effects of copper, cadmium and chromium
cations on the freshwater fish Clarias batrachus L. Physiol. Bohemoslov.
37(1) : 79-82 .

Jana, S. and S.S. Sahana. 1989. Sensitivity of the freshwater fishes Clarias
batrachus and Anabas testudineus to heavy metals. Environ. Ecol. 7(2): 265-
270.

Janssen, C.R. and G. Persoone. 1993. Rapid toxicity screening tests for
aquatic biota. I. Methodology and experiments with Daphnia magna. Environ.
Toxicol. Chem. 12:711-717.

Janssen, H.H. and N. Scholz. 1979. Uptake and cellular distribution of cadmium
in Mytilus edulis. Mar. Biol. 55: 133.

Janssen, M.P.M., C. Oosterhoff, G.J.S.M. Heijmans, H. Van der Voet. 1995. The
toxicity of metal salts and the population growth of the Ciliate Colpoda
cucculus. Bull. Environ. Contam. Toxicol. 54: 597-605.

Janssens de Bisthoven, L.G., K.R. Timmerans and F. Ollevier. 1992. The
concentration of cadmium, lead, copper and zinc in Chironomus gr. thummi
larvae (Diptera, chironomidae) with deformed versus normal menta. Hydrobiol.
239: 141-149.

Jaworska, M, A. Gorczyca, J. Sepiol and P. Tomasik. 1997. Effect of metal ions
on the entomopathogenic nematode Heterorhabditis bacteriophora poinar

187


-------
(Nematoda: Heterohabditidae) under laboratory conditions. Water, Air, Soil
Pollut. 93: 157-166.

Jenkins, K.D. and A.Z. Mason. 1988. Relationships between subcellular
distributions of cadmium and perturbations in reproduction in the polychaete
Neanthes arenaceodentata. Aquat. Toxicol. 12: 229-244.

Jenkins, K.D. and B.M. Sanders. 1986. Relationships between free cadmium ion
activity in seawater, cadmium accumulation and subcellular distibution, and
growth in polychaetes. Environ. Health Perspect. 65: 205-210.

Jenner, H.A. and J.P.M. Janssen-mommen. 1993. Duckweed Lemna minor as a tool
for testing toxicity of coal residues and polluted sediments. Arch. Environ.
Contam. Toxicol. 25: 3-11.

Jennings, J.R. and P.S. Rainbow. 1979a. Studies on the uptake of cadmium by
the crab Carcinus maenas in the laboratory. I. Accumulation from seawater and
a food source. Mar. Biol. 50: 131.

Jennings, J.R. and P.S. Rainbow. 1979b. Accumulation of cadmium by Dunaliella
tertiolecta Butcher. Jour. Plankton Res. 1: 67.

Jindal, R. and A. Verma. 1990. Heavy metal toxicity to Daphnia pulex. Indian
J. Environ. Hlth. 32(3): 289-292.

John, J., E.T. Gjessing, M. Grande and B. Salbu. 1987. Influence of aquatic
humus and pH on the uptake and depuration of cadmium by the atlantic salmon
(Salmo salar L.). Sci. Total Environ. 62: 253-265.

Johns, D.M. and D.C. Miller. 1982. The use of bioenergetics to investigate the
mechanisms of pollutant toxicity in crustacean larvae. In: W.B. Vernberg, et
al. (eds.), Physiological Mechanisms of Marine Pollutant Toxicity. Academic
Press, New York. p. 261.

Johnson, M. and J. Gentile. 1979. Acute toxicity of cadmium, copper, and
mercury to larval American lobster (Homarus americanus). Bull. Environ.

Contam. Toxicol. 22: 258.

188


-------
Jones, M.B. 1975. Synergistic effects of salinity, temperature and heavy
metals on mortality and osmoregulation in marine and estuarine isopods
(Crustacea). Mar. Biol. 30: 13.

Jonnalagadda, S.B. and P.V.V.P. Rao. 1993. Toxicity, bioavailability and metal
speciation. Comp. Biochem. Physiol. 106C(3): 585-595.

Jop, K.M. 1991. Concentration of metals in various larval stages of four
Ephemeroptera species. Bull. Environ. Contam. Toxicol. 46: 901-905.

Jop, K.M., A.M. Askew and R.B. Foster. 1995. Development of a water-effect
ratio for copper, cadmium, and lead for the Great Works River in Maine using
Ceriodaphnia dubia and Salvelinus fontinalis. Bull. Environ. Contam. Toxicol.
54: 29-33.

Juchelka, C.M. and T.W. Snell. 1994. Rapid toxicity assessment using rotifer
ingestion rate. Arch. Environ. Contam. Toxicol. 26: 549-554.

Jude, D.J. 1973. Sublethal effects of ammonia and cadmium on growth of green
sunfish. Ph.D. Thesis. Michigan State University.

Kaplan, D, Y.M. Heimer, A Abeliovich, P.B. Goldsbrough. 1995. Cadmium toxicity
and resistance in Chlorella sp. Plant Sci. 109: 129-137.

Karlsson-Norrgren, L. And P. Runn. 1985. Cadmium dynamics in fish: pulse
studies with 109Cd in female zebrafish, Brachydanio rerio. J. Fish Biol. 27:
571-581.

Kapur, K. and N.A. Yadav. 1982. The effects of certain heavy metal salts on
the development of eggs in common carp, Cyprinus carpio var. communis. Acta
Hydrochim. Hydrobiol. 10: 517.

Karez, C.S., S. Bonotto and S. Puiseux-Dao. 1989. Response of the unicellular
giant alga Acetabularia acetabulum to cadmium toxicity and accumulation.
Toxicological and Environmental Chemistry. 19: 223-232.

189


-------
Kasuga, S. 1980. Sexual Differences of medaka, Oryzias latipes in the acute
toxicity test of cadmium. Bull. Jap. Soc. Sci. Fish. 46(9): 1073-1076.

Katti, S.R. and A.G. Sathyanesan. 1985. Chronic effects of lead and cadmium on
the testis of the catfish Clarias batrachus. Environ. Ecol. 3(4): 596-598.

Kay, J., D.G. Thomas, M.W. Brown, A. Cryer, D. Shurben, J.F. deL.G. Solbe and
J.S. Garvey. 1986. Cadmium accumulation and protein binding patterns in
tissues of the rainbow trout, Salmo gairdneri. Environ. Health Perspect. 65:
133-139.

Keduo, C. L. Yumei and H. Lanying. 1987. Effects os six heavy metals on
hatching eggs and survival of larval of marine fish. Oceanol. Limol. Sin.
(Haiyang Yu Huzhao). 18(2): 138-144.

Keenan, S. and M.A. Alikhan. 1991. Comparative study of cadmium and lead
accumulations in Cambarus bartoni (Fab.) (Decapoda, Crustacea) from an acidic
and a neutral lake. Bull. Environ. Contam. Toxicol. 47: 91-96.

Keller, A.E. and S.G. Zam. 1991. The acute toxicity of selected metals to the
freshwater mussel, Anodonta imbecilis. Environ. Toxicol. Chem. 10: 539-546.

Kelly, M.G. and B.A. Whitton. 1989. Interspecific differences in Zn, Cd and Pb
accumulation by freshwater algae and bryophytes. Hydrobiol. 17: 1-11.

Kerfoot, W.B. and S.A. Jacobs. 1976. Cadmium accrual in combined waste-
treatment aquaculture system. Environ. Sci. Technol. 10: 662.

Kessler, E. 1985. An extremely cadmium-sensitive strain of Chlorella.
Experientia. 41: 1621.

Kessler, E. 1986. Limits of growth of five Chlorella species in the presence
of toxic heavy metals. Arch. Hydrobiol. 71(1) : 123-128.

Kettle, W.D. and F. deNoyelles, Jr. 1986. Effects of cadmium stress on the
plankton communities of experimental ponds. Journal of Freshwater Ecology.
3(4): 433-443.

190


-------
Khan, A.T. and J.S. Weis. 1993. Bioaccumulation of heavy metals in two
populations of mummichog (Fundulus heteroclitus) . Bull. Environ. Contam.
Toxicol. 51: 1-5.

Khan, A.T., J.S. Weis and L. D'Andrea. 1988. Studies of cadmium tolerance in
two populations of grass shrimp, Palaemonetes pugio. Bull. Environ. Contam.
Toxicol. 40: 30-34.

Khan, A.T., J.S. Weis and L. D'Andrea. 1989. Bioaccumulation of four heavy
metals in tow populations of grass shrimp, Palaemonetes pugio. Bull. Environ.
Contam. Toxicol. 42: 339-343.

Khan, A.T., J. Barbieri, S. Khan and F. Sweeney. 1992. A new short-term mysid
toxicity test using sexual maturity as an endpoint. Aquatic Toxicology. 23:
97-105.

Khangarot, B.S. 1991. Toxicity of metals to a freshwater tubificid worm,
Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol. 46: 906-912.

Khangarot, B.S. and P.K. Ray. 1987a. Correlation between heavy metal acute
toxicity values in Daphnia magna and fish. Bull. Environ. Contam. Toxicol. 38:
722-726.

Khangarot, B.S. and P.K. Ray. 1987b. Sensitivity of toad tadpoles, Bufo
melanostictus (Schneider), to heavy metals. Bull. Environ. Contam. Toxicol.
38(3) : 523-527.

Khangarot, B.S. and P.K. Ray. 1989a. Investigation of correlation between
physicochemical properties of metals and their toxicity to the water flea
Daphnia magna Straus. Ecotoxicol. Environ. Safety. 18: 109-120.

Khangarot, B.S. and P.K. Ray. 1989b. Sensitivity of midge larvae of Chironomus
tentans Fabricius (diptera chironomidea) to heavy metals. Bull. Environ.
Contam. Toxicol. 1989. 42: 325-330.

Khangarot, B.S., P.K. Ray and H. Chandra. 1987. Daphnia magna as a model to
assess heavy metal toxicity: comparative assessment with mouse system. Acta
Hydrochim. Hydrobiol. 15(4): 427-432.

191


-------
Khoshmanesh, A., F. Lawson and I.G. Prince. 1996. Cadmium uptake by
unicellular green microalgae. Chem. Eng. J. 62: 81-88.

Khoshmanesh, A., F. Lawson and I.G. Prince. 1997. Cell surface area as a major
parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng.
J. 65: 13-19.

Khristoforova, N.K., S.M. Gnezdilova and G.A. Vlasova. 1984. Effect of cadmium
on gametogenesis and offspring of the sea urchin Strongylocentrotus
intermedius. Mar. Ecol. Prog. Ser. 17: 9-14.

Kiffney, P.M. and W.H. Clements. 1996. Size-dependent response of
macroinvertebrates to metals in experimental streams. Environ. Toxicol. Chem.
15(8): 1352-1356.

Klass, E., et al. 1974. The effect of cadmium on population growth of the
green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol. 12: 442.

Klaverkamp, J.F. and D.A. Duncan.1987. Acclimation to cadmium toxicity by
white suckers: cadmium binding capacity and metal distribution in gill and
liver cytosol. Environ. Toxicol. Chem. 6: 275-289.

Klerks, P.J. and P.R. Bartholomew. 1991. Cadmium accumulation and
detoxification in a Cd-resistant population of the oligochaete Limnodrilus
hoffmeisteri. Aquat. Toxicol. 19: 97-112.

Klockner, K. 1979. Uptake and accumulation of cadmium by Ophryotrocha diadema
(Polychaeta). Mar. Ecol. Progress Series 1: 71.

Kluttgen, B. and H.T. Ratte. 1994. Effects of different food doses on cadmium
toxicity to Daphnia magna. Environ. Toxicol. Chem. 13(10): 1619-1627.

Kluytmand, J.H., D.I. Zandee and E.L. Enserink. Effects of cadmium on the
reproduction of Mytilus edulis L. University of Utrecht, Department of
Experimental Zoology, 8 Padualan, 3584 CH Utrecht, The Netherlands.

Kneip, T.J. and R.E. Hazen. 1979. Deposit and mobility of cadmium in marsh-
cove ecosystem and the relation to cadmium concentration in biota. Environ.
Health Perspect. 28: 67.

192


-------
Kobayashi, N. 1971. Fertilized sea urchin eggs as an indicator material for
marine pollution bioassay, preliminary experiments. Publ. Seto Mar. Biol. Lab.
18: 379.

Kock, G., R. Hofer and S. Wograth. 1995. Accumulation of trace metals (Cd, Pb,
Cu, Zn) in arctic char (Salvelinus alpinus) from oligotrophic alpine lakes:
relation to alkalinity. Can. J. Fish. Aquat. Sci. 52: 2367-2376.

Koelmans, A.A., F. Gillissen and L. Lijklema. 1996. Influence of salinity and
mineralization on trace metal sorption to cyanobacteria in natural waters.
Water Res. 30(4): 853-864.

Kohler, K. and H.U. Riisgard. 1982. Formation of metallothioneins in relation
to accumulation of cadmium in the common mussel Mytilus edulis. Mar. Biol. 66:
53.

Koivisto, S., M. Arner and N. Kautsky. 1997. Does cadmium pollution change
trophic interactions in rockpool food webs? Environmental Toxicology and
Chemistry. 16(6): 1330-1336.

Kolok, A.S., E.P. Plaisance and A. Abdelghani. 1998. Individual variation in
the swimming performance of fishes: an overlooked source of variation in
toxicity studies. Environ. Toxicol. Chem. 17(2): 282-285.

Kooijman, S.A.L.M. and J.J.M. Bedaux. 1996. Analysis of toxicity tests on
Daphnia survival and reproduction. Water Res. 30(7): 1711-1723.

Kosakowska, A., L. Falkowski and J. Lewandowska. 1988. Effect of amino acids
on the toxicity of heavy metals to phytoplankton. Bull. Environ. Contam.
Toxicol. 40: 532-538.

Koyama, J, R. Kuroshima and A. Ishimatsu. 1992. The seawater fish for
evaluation of the toxicity of pollutants. Mizu Kankyo Gakkaishi. 15(11): 804-
813.

193


-------
Kraak, M.H.S., M. Toussaint, D. Lavy and C. Davids. 1992a. Short-term effects
of metals on the filtration rate of the zebra mussel Dreissena polymorphs.
Environ. Pollut. pp.139-143.

Kraak, M.H.S., D. Lavy, W.H.M. Peeters and C. Davids. 1992b Chronic
ecotoxicity of copper and cadmium to the zebra mussel Dreissena polymorphs.
Arch. Environ. Contam. Toxicol. 23: 363-369.

Kraak, M.H.S., H. Schoon, W.H.M. Peeters and N.M. Van Straalen. 1993a. Chronic
ecotoxicity of mixtures of Cu, Zn, and Cd to the zebra mussel Dreissena
polymorpha. Ecotoxicol. Environ. Safety. 25: 315-327.

Kraak, M.H.S., D. Lavy, M. Toussaint, H. Schoon, W.H.M. Peeters and C. Davids.
1993b. Toxicity of heavy metals to the zebra mussel (Dreissena polymorpha).
In: T.F. Nalepa and D.W. Schloessen (eds.), zebra mussels - biology, impacts,
and control, chapter 29, Lewis Publishers, Boca Raton. 8: 491-502.

Kraak, M.H.S., M. Toussaint, D. Lavy and C. Davids. 1994a. Short-term effects
of metals on the filtration rate of the zebra mussel Dreissena polymorpha.
Environ. Pollut. 84(2): 139-143.

Kraak, M.H.S., D. Lavy, H. Schoon, M. Toussaint, W.H.M. Peeters and N.M. Van
Straalen. 1994b. Ecotoxicity of mixtures of metals to the zebra mussel
Dreissena polymorpha. Environ. Toxicol. Chem. 13: 109-114.

Kraak, M.H.S., Y.A. Wink, S.C. Stuijfzand, M.C. Buckert-de Jong, C.J. de
Groot, W. Admiraal. 1994c. Chronic ecotoxicity of Zn and Pb to the zebra
mussel Dreissena polymorpha. Aquatic Toxicology. 30: 77-89.

Kraal, M.H., M.H.S. Kraak, C.J. De Groot and C. Davids. 1995. Uptake and
tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio) .
Ecotoxicol. Environ. Safety. 31: 179-183.

Krantzberg, G. 1989a. Accumulation of essential and nonessential metals by
chironomid larvae in relation to physical and chemical properties of the
elements. Can. J. Fish. Aquat. Sci. 46: 1755-1761.

Krantzberg, G. 1989b. Metal accumulation by chironomid larvae: the effects of
age and body weight on metal body burdens. Hydrobiol. 188/189: 497-506.

194


-------
Krantzberg, G. and P.M. Stokes. 1988. The importance of surface adsorption and
pH in metal accumulation by chironomids. Environ. Toxicol. Chem. 7: 653-67 0.

Krantzberg, G. and P.M. Stokes. 1989. Metal regulation, tolerance, and body
burdens in the larvae of the genus Chironomus. Can. J. Fish. Aquat. Sci. 46:
389-398 .

Krassoi, F.R., M. Julli. 1994. Chemical batch as a factor affecting the acute
toxicity of the reference toxicant potassium dichromate to the cladoceran
Moina australiensis (Sars). Bull. Environ. Contam. Toxicol. 53: 153-157.

Krawczynska, W., N.N. Pivovarova and A. Sobota. 1989. Effects of cadmium on
growth, ultrastructure and content of chemical elements in Tetrahymena
pyriformis and Acanthamoeba castellanii. Acta Protozoologica. 28:(3-4): 245-
252 .

Krishnaja, A.P., M.S. Rege and A.G. Joshi. 1987. Toxic effects of certain
heavy metals (Hg, Cd, Pb, As and Se) on the intertidal crab Scylla serrata.
Environ. Res. 21: 109-119.

Kuhn, R. and M. Pattard. 1990. Results of the harmful effects of water
pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication
inhibition test. Water Res. 24(1): 31-38.

Kuhn, R., M. Pattard, K.D. Pernak and A. Winter. 1989. Results of the harmful
effects of water pollutants to Daphnia magna in the 21 day reproduction test.
Wat. Res. 23(4): 501-510.

Kumada, H., et al. 1973. Acute and chronic toxicity, uptake and retention of
cadmium in freshwater organisms. Bull. Freshwater Fish. Res. Lab. 22: 157.

Kumada, H., et al. 1980. Accumulation and biological effects of cadmium in
rainbow trout. Bull. Jap. Soc. Sci. Fish. 46: 97.

Kumar, M. 1991. Accumulation of Pb, Cd, and Zn in aquatic snails from four
freshwater sites in Steuben County, Indiana. Bios. 62(1) : 2-8.

195


-------
Kuroshima, R. 1987. Cadmium accumulation and it effect on calcium metabolism
in the girella Girella punctata during a long term exposure. Bull. Jpn. Soc.
Sci. Fish. 53 (3) : 445-450.

Kuroshima, R. 1992. Cadmium accumulation in the mummichog, Fundulus
heteroclitus, adapted to various salinities. Bull. Environ. Contam. Toxicol.
49: 680-685.

Kuroshima, R., S. Kimura. 1990. Changes in toxicity of Cd and its accumulation
in girella and goby with their growth. Bull. Jpn. Soc. Sci. Fish. 56(3) : 431-
453.

Kuroshima, R., S. Kimura, K. Date and Y. Yamamoto. 1993. Kinetic analysis of
cadmium toxicity to red sea bream, Pagrus major. Ecotoxicol. Environ. Safety.
25: 300-314.

Kwan, K.H.M. and S. Smith. 1991. Some aspects of the kinetics of cadmium and
thallium uptake by fronds of Lemna minor L. New Phytologist. 117(1): 91-102.

Laegreid, M., et al. 1983. Seasonal variation of cadmium toxicity toward the
alga Selenastrum capricornutum Printz in two lakes with different humus
content. Environ. Sci. Technol. 17: 357.

Lagerwerff, J.V. and A.W. Specht. 1970. Contamination of roadside soil and
vegetation with cadmium, nickel, lead and zinc. Environ. Sci. Technol. 4: 583-
586.

Lalande, M. and B. Pinel-Alloul. 1986. Acute toxicity of cadmium, copper,
mercury and zinc to Tropocyclops Prasinus Mexicanus (Cyclopoida, copepoda)
from three Quebec lakes. Environmental Toxicology and Chemistry. 5:95-102.

Lam, P.K.S. 1996a. Effects of cadmium on the consumption and absorption rates
of a tropical freshwater snail, Radix plicatulus. Chemosphere. 32(11): 2127-
2132 .

Lam, P.K.S. 1996b. Interpopulation differences in acute response of Brotia
hainanensis (gastropoda, prosobranchia) to cadmium: genetic or environmental
variance? Environ. Pollut. 94(1): 1-7.

196


-------
Lam. P.K.S., K.N. Yu, K.P. Ng and M.W.K. Chong. 1997. Cadmium uptake and
depuration in the soft tissues of Brotia hainanensis (gastropoda:
prosobranchia: thiaridae) : a dynamic model. Chemosphere. 35(11) : 2449-2461.

Landner, L. and A. Jernelov. 1969. Cadmium in aquatic systems. Metals and
Ecology Symposium. Bulletin No. 5. Ecology Research Committee, Stockholm,
Sweden. p. 47 .

Langston, W.J. and M. Zhou. 1987. Cadmium accumulation, distribution and
metabolism in the gastropod Littorina littorea: the role of metal-binding
proteins. J. Mar. Biol. Assoc. U.K. 67: 585-601.

Larsen, J. and B. Svensmark. 1991. Labile species of Pb, Zn and Cd determined
by anodic stripping staircase voltammetry and their toxicity to Tetrahymena.
Talanta. 38(9) : 981-988 .

Lasenby, D.C. and J. Van Duyn. 1992. Zinc and cadmium accumulation by the
opossum shrimp Mysis relicta. Arch. Environ. Contam. Toxicol. 23: 179-183.

Lasheen, M.R., S.A. Shehata and G.H. Ali. 1990. Effect of cadmium, copper and
chromium (VI) on the growth of nile water algae. Water, Air, and Soil
Pollution. 50: 19-30.

Laube, V.M., et al. 1980. Strategies of response to copper, cadmium, and lead
by a blue-green and a green alga. Can. Jour. Microbiol. 26: 1300.

Lawrence, S.G. and M.H. Holoka. 1987. Effects of low concentrations of cadmium
on the crustacean zooplankton community of an artificially acidified lake.
Can. J. Fish. Aquat. Sci. 44: 163-172.

Lawrence, S.G. and M.H. Holoka. 1991. Response of crustacean zooplankton
impounded in situ to cadmium at low environmental concentrations. Verh.
Internat. Verein. Limnol. 24: 2254-2259.

LeBlanc, G.A. 1984. Interspecies relationships in acute toxicity of chemicals
to aquatic organisms. Environ. Toxicol. Chem. 3: 47-60.

197


-------
Lee, B.G. and S.N. Luoma. 1998. Influence of microalgal biomass on absorption
efficiency of Cd, Cr, and Zn by two bivalves from San Francisco Bay. Limnol.
Oceanogr. 43(7): 1455-1466.

Lee, H.H. and C.H. Xu. 1984. Differential response of marine organisms to
certain metal and agrichemical pollutants. Bull. Environ. Contam. Toxicol. 33:
460-467 .

Lee, H.L., B. Lustigman, V. Schwinge, I.Y. Chiu and S. Hsu. 1992. Effects of
mercury and cadmium on the growth of Anacystis nidulans. Bull. Environ.

Contam. Toxicol. 49: 272-278.

Lee, J.G. 1995. Cadmium; a toxin and a nutrient for marine phytoplankton.
Environ. Sci. pp.1.

Lee, R. and Y. Oshima. 1998. Effects of selected pesticides, metals and
organometallics on development of blue crab (Callinectes sapidus) embryos.
Mar. Environ. Res. 46(1-5) : 479-482.

Lee, R.F., K. O'Malley and Y. Oshima. 1996. Effects of toxicants on developing
oocytes and embryos of the blue crab, Callinectes sapidus. Marine
Environmental Research. 42(1-4): 125-128.

Lee, S. Ill, E.J. Na, Y.O. Cho, B. Koopman and G. Bitton. 1997. Short-term
toxicity test based on algal uptake by Ceriodaphnia dubia. Water Environment
Research. 69(7): 1207-1210.

Leonhard, S.L., et al. 1980. Evaluation of the acute toxicity of the heavy
metal cadmium to nymphs of the burrowing mayfly, Hexagenia rigida. In: J.F.
Flannagan and K.E. Marshall (eds.), Advances in Ephemeroptera Biology. Plenum
Publishing Corp., New York. p. 457.

Les, A. And R.W. Walter. 1984. Toxicity and binding of copper, zinc and
cadmium by the blue-green alga, Chroococcus paris. Water, Air, Soil Pollut.
23: 129-130.

198


-------
Lewis, P.A. and W.B. Horning II. 1991. Differences in acute toxicity test
results of three reference toxicants on Daphnia at two temperatures.
Environmental Toxicology and Chemistry. 10: 1351-1357.

Lewis, P.A. and C.I. Weber. 1985. A study of the reliability of Daphnia acute
toxicity tests. Aquatic Toxicology and Hazard Assessment: Seventh Symposium.
ASTM STP 854, R.D. Cardwell, R. Purdy and R.C. Bahner (eds.), American Society
for Testing and Materials, Philadelphia, pp. 73-86.

Liao, I.C. and C.S. Hsieh. 1990. Toxicity of three heavy metals to
Macrobrachium rosenbergii. In: Proc. of the 2nd Asian Fisheries Forum, April
17 - 22, 1989, Tokyo, Japan, Asian Fish. Soc., Manila, Philippines: 923-926.

Lin, H.C. and W.A. Dunson. 1993. The effect of salinity on the acute toxicity
of cadmium to the tropical, estuarine, hermaphroditic fish, Rivulus
marmoratus: a comparison of Cd, Cu, and Zn tolerance with Fundulus
heteroclitus. Arch. Environ. Contam. Toxicol. 25: 41-47.

Lithner, G, K. Holm and H. Borg. 1995. Bioconcentration factors for metals in
humic waters at different pH in the Ronnskar area (N. Sweden). Water, Air Soil
Pollut. 85: 785-790.

Lomagin, A.G. and L.V. Ul'yanova. 1993. A new bioassay on water pollution
using duckweed Lemna minor L. Sov. Plant Physiol./Fiziol. Rast. 49(2): 327.

Lorz, H.W., et al. 1978. Effects of several metals on smolting of coho salmon.
EPA-600/3-7 8-090. National Technical Information Service, Springfield,
Virginia.

Loumbourdis, N.S., P. Kyriakopoulou-Sklavounou and G. Zachariadis. 1999.
Effects of cadmium exposure on bioaccumulation and larval growth in the frog
Rana ridibunda. Environ. Pollut. 104: 429-433.

Lourdes, M. 1994. Survival and heavy metal accumulation of two Oreochromis
niloticus (L.) Strains exposed to mixtures of zinc, cadmium and mercury. Sci.
Total Environ. 148: 31-38.

199


-------
Lourdes, M. and E.V. Aralar. 1993. Effects of long-term exposure to a mixture
of cadmium, zinc, and inorganic mercury on two strains of tilapia Oreochromis
niloticus (L.). Bull. Environ. Contam. Toxicol. 50: 891-897.

Lucker, T., D. Busch and W. Wosniok. 1997. Experiments to determine the impact
of salinity on the heavy metal accumulation of Dreissena polymorphs (Pallas
1771). Limnol. 27(10: 91-101.

Lue-Kim, H., et al. 1980. Cadmium toxicity on synchronous populations of
Chlorella ellipsoidea. Can. Jour. Biol. 58: 1780.

Lussier, S.M., W.S. Boothman, S. Poucher, D. Champlin and A. Helmstetten.
1999. Comparison of dissolved and total metals concentrations from acute tests
with saltwater organisms. Environ. Toxicol. Chem. 18(5): 889-898

Lussier, S.M., et al. Manuscript. Acute and chronic effects of heavy metals
and cyanide on Mysidopsis bahia (Crustacea: Mysidacea). U.S. EPA,

Narragansett, Rhode Island.

McCahon, C.P. and D. Pascoe. 1988a. Cadmium toxicity to the freshwater
amphipod Gammarus pulex (L.) During the moult cycle. Freshwater Biol. 19: 197-
203.

McCahon, C.P. and D. Pascoe. 1988b. Increased sensitivity to cadmium of the
freshwater amphipod Gammarus pulex (L.) during the reproductive period. Aquat.
Toxicol. 13: 183-194.

McCahon, C.P. and D. Pascoe. 1988c. Use of Gammarus pulex (L.) In safety
evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol.
Environ. Safety. 15: 245-252.

McCahon, C.P. and D. Pascoe. 1991. Brief-exposure of first and fourth instar
Chironomus riparius larvae to equivalent assumed doses of cadmium: effects on
adult emergence. Water, Air, and Soil Pollution. 60: 395-403.

McCahon, C.P., A.F. Brown and D. Pascoe. 1988. The effect of the
acanthocephalan Pomphorhynchus laevis (Muller 1776) on the acute toxicity of
cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch.
Environ. Contam. Toxicol 17: 239-243.

200


-------
McCahon, C.P., A.J. Whiles and D. Pascoe. 1989. The toxicity of cadmium to
different larval instars of the trichopteran larvae Agapetus fuscipes Curtis
and the importance of life cycle information to the design of toxicity tests.
Hydrobiol. 185: 153-162.

McCarty, L.S. and A.H. Houston. 1976. Effects of exposure to sublethal levels
of cadmium upon water-electrolyte status in the goldfish (Carassius auratus) .
Jour. Fish Biol. 9: 11.

McCarty, L.S., et al. 1978. Toxicity of cadmium to goldfish, Carassius
auratus, in hard and soft water. Jour. Fish. Res. Board Can. 35: 35.

McClurg, T.P. 1984. Effects of fluoride, cadmium and mercury on the estuarine
prawn Penaeus indicus. Water SA 10: 40.

McGee, B.L., D.A. Wright and D.J. Fisher. 1998. Biotic factors modifying acute
toxicity of aqueous cadmium to estuarine amphipod Leptocheirus plumulosus.
Arch. Environ. Contam. Toxicol. 34: 34-40.

McLeese, D.W. and S. Ray. 1984. Uptake and excretion of cadmium, CdEDTA, and
zinc by Macoma balthica. Bull. Environ. Contam. Toxicol. 32: 85.

McLeese, D.W. and S. Ray. 1986. Toxicity of CdCl2, CdEDTA, CuCl2, and CuEDTA
to Marine Invertebrates. Bull. Environ. Contam. Toxicol. 36: 749-755.

McLeese, D.W., et al. 1981. Lack of excretion of cadmium from lobsters.
Chemosphere 10: 775.

McNicol, R.E. and E. Scherer. 1993. Influence of cadmium pre-exposure on the
preference-avoidance responses of Lake Whitefish (Coregonus clupeaformis) to
cadmium. Arch. Environ. Contam. Toxicol. 25: 36-40.

McNulty, E.W., F.J. Dwyer, M.R. Ellersieck, E.I. Greer, C.G. Ingersoll and
C.F. Rabeni. 1999. Evaluation of ability of reference toxicity tests to
identify stress in laboratory populations of the amphipod Hyalella azteca.
Environmental Toxicology and Chemistry. 18(3): 544-548.

201


-------
Ma, M., Z. Tong, Z. Wang, W. Zhu. 1999. Acute toxicity bioassay using the
freshwater luminescent bacterium Vibrio-qinghaiensis sp. Nov.-Q67. Bull.
Environ. Contam. Toxicol. 62: 247-253.

Maas, R.P. 1978. A field study of the relationship between heavy metal
concentrations in stream water and selected benthic macroinvertebrate species.
PB 297284. National Technical Information Service, Springfield, Virginia.

Macdonald, C.R. and J.B. Sprague. 1998. Cadmium in marine invertebrates and
arctic cod in the Canadian Arctic. Distibution and ecological implications.
Mar. Ecol. Prog. Ser. 47: 17-30.

Macdonald, J.M., J.D. Shields and R.K. Zimmer-Faust. 1988. Acute toxicities of
eleven metals to early life-history stages of the yellow crab Cancer anthonyi.
Marine Biology. 98: 201-207.

Macfie, S.M., Y. Tarmohamed and P.M. Welbourn. 1994. Effects of cadmium,
cobalt, copper, and nickel on growth of the green alga Chlamydomonas
reinhardtii: the influences of the cell wall and pH. Arch. Environ. Contam.
Toxicol. 27: 454-458.

Maclnnes, J.R., et al. 1977. Long-term cadmium stress in the cunner
Tautogolabrus adspersus. Fish. Bull. 75: 199.

Mackie, G.L. 1989. Tolerances of five benthic invertebrates to hydrogen ions
and metals (Cd, Pb, Al). Arch. Environ. Contam. Toxicol. 18: 215-223.

Madoni, P., D. Davoli and G. Gorbi. 1994. Acute toxicity of lead, chromium,
and other heavy metals to ciliates from activated sludge plants. Bull.

Environ. Contam. Toxicol. 53: 420-425.

Maeda, S., M. Mizoguchi, A. Ohki and J. Inanaga. 1990. A bioaccumulation of
zinc and cadmium in freshwater alga, Chlorella vulgaris. Part II. Association
mode of the metals and cell tissue. Chemosphere. 21(8): 965-973.

Majewski, H.S. and M.A. Giles. 1984. Cardio vascular-respiratory responses of
rainbow trout (Salmo gairdneri) during chronic exposure to sublethal
concentrations of cadmium. Water Res. 15: 1211.

202


-------
Malea, P. 1994. Uptake of cadmium and the effect on viability of leaf cells in
the seagrass Halophila stipulacea (Forsk.) Aschers. Bot. Mar. 37: 67-73.

Malley, D.F. and P.S.S. Chang. 1991. Early observations on the zooplankton
community of a precambrian shield lake receiving experimental additions of
cadmium. Verh.-Int. Ver. Theor. Angew. Limnol. 24: 2248-2253.

Malley, D.F., P.S.S. Chang and R.H. Hesslein. 1989. Whole lake addition of
cadmium-109: radiotracer accumulation in the mussel population in the first
season. The Science of the Total Environment. 87/88: 397-417.

Maloney, J. 1996. Influence of organic enrichment on the partitioning and
bioavailability of cadmium in a microcosm study. Mar. Ecol. Prog. Ser. 144:
147-161.

Mansour, G.M.M. 1993. Effects on fish of cadmium concentrations in water.
Oceanologia. 34: 91.

Manz, W., M. Wagner, R. A. and D.H. Schleifer. In situ characterization of the
microbial consortia active in two wastewater treatment plants. Water Res.
28(8) : 1715-1732 .

Maranhao, P., J.C. Marques and V.M.C. Madeira. 1999. Zinc and cadmium
concentrations in soft tissues of the red swamp crayfish Procambarus clarkii
(Girard, 1852) after exposure to zinc and cadmium. Environ. Toxicol. Chem.
18(8): 1769-1771.

Mark, U. and J. Solbe. 1998. Analysis of the ecetoc aquatic toxicity (EAT)
database V- the relevance of Daphnia magna as a representative test species.
Chemosphere. 36(1): 155-166.

Markham, J.W., et al. 1980. Effects of cadmium on Laminaria saccharina in
culture. Mar. Ecol. Progress Series 3: 31.

Markich, S.J. and R.A. Jeffree. 1994. Absorption of divalent trace metals as
analogues of calcium by Australian freshwater bivalves: an explanation of how
water hardness reduces metal toxicity. Aquat. Toxicol. 29: 257-290.

203


-------
Marr, J.C.A., H.L. Bergman, J. Lipton and C. Hogstrand. 1995a. Differences in
relative sensitivity of naive and metals-acclimated brown and rainbow trout
exposed to metals representative of the Clark Fork River, Montana. Can J.
Aquat. Sci. 52: 2016-2030.

Marr, J.C.A., H.L. Bergman, M. Parker, J. Lipton, D. Cacela, W. Erickson and
G.R Phillips. 1995b. Relative sensitivity of brown and rainbow trout to pulsed
exposures of an acutely lethal mixture of metals typical of the Clark Fork
River, Montana. Can. J. Aquat. Sci. 52: 2005-2015.

Marshall, J.S. 1978a. Population dynamics of Daphnia galeata mendotae as
modified by chronic cadmium stress. Jour. Fish. Res. Board Can. 35: 461.

Marshall, J.S. 1978b. Field verification of cadmium toxicity to laboratory
Daphnia populations. Bull. Environ. Contam. Toxicol. 20: 387.

Marshall, J.S., et al. 1981. An in situ study of cadmium and mercury stress in
the plankton community of lake 382, Experimental Lakes Area, northwestern
Ontario. Can. Jour. Fish. Aquat. Sci. 38: 1209.

Marshall, J.S., et al. 1983. Bioaccumulation and effects of cadmium and zinc
in a Lake Michigan plankton community. Can. Jour. Fish. Aquat. Sci. 40: 1469.

Martin, T.R. and D.M. Holdich. 1986. The acute lethal toxicity of heavy metals
to peracarid crustaceans (with particular reference to fresh-water asellids
and gammarids) . Wat. Res. 20(9) : 1137-1147.

Martin, M., et al. 1981. Toxicities of ten metals to Crassostrea gigas and
Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull. 12: 305.

Martinez, M., J. Del Ramo, A. Torreblanca, A. Pastor and J. Diaz-Mayans. 1996.
Cadmium toxicity, accumulation and metallothionein induction in Echinogammarus
echinosetosus. J. Environ. Sci. Health. A31(7): 1605-1617.

204


-------
Masters, J.A., M.A. Lewis and D.H. Davidson. 1991. Validation of a four-day
Ceriodaphnia toxicity test and statistical considerations in data analysis.
Environmental Toxicology and Chemistry. 10: 47-55.

Mateo, P., F Fernandez-Pinas and I. Bonilla. 1994. 02-induced inactivation of
nitrogenase as a mechanism for the toxic action of Cd2+ on Nostoc UAM 208. New
Phytologist. 126(2): 267-272.

Mathew, P. and N.R. Menon. 1992. Toxic responses of bivalves to metal
mixtures. Bull. Environ. Contam. Toxicol. 48: 185-193.

Meador, J.P. 1993. The effect of laboratory holding on the toxicity response
of marine infaunal amphipods to cadmium and tributyltin. Exp. Mar. Biol. Ecol.
174: 227-242.

Melgar, M.J., M. Perez, M.A. Garcia, J. Alonso and B. Miguez. 1997.
Accumulation profiles in rainbow trout (Oncorhynchus mykiss) after short-term
exposure to cadmium. J. Environ. Sci. Health. A32(3): 621-631.

Mersch, J., E. Morhain and C. Mouvet. 1993. Laboratory accumulation and
depuration of copper and cadmium in the freshwater mussel Dreissena polymorpha
and the aquatic moss Rhynchostegium riparioides. Chemosphere. 27(8): 1475-
1485.

Mersch, J., P. Wagner and J.C. Pihan. 1996. Copper in indigenous and
transplanted zebra mussels in relation to changing water concentrations and
body weight. Environ. Toxicol. Chem. 15(6): 886-893.

Metayer, C., et al. 1982. Accumulation of some trace metals (cadmium, lead,
copper and zinc) in sole (Solea solea) and flounder (Platichthus flesus):
changes as a function of age and organotropism. Rev. Int. Oceanogr. Med. 66-
67: 33.

Meteyer, M.J., D.A. Wright and F.D. Martin. 1988. Effect of cadmium on early
developmental stages of the sheepshead minnow (Cyprinodon variegatus) .

Environ. Toxicol. Chem. 7:321-328.

205


-------
Meyer, J.S. 1999. A mechanistic explanation for the ln(LC50) vs ln(hardness)
adjustment equation for metals. Environ. Sci. Technol. 33: 908-912.

Michibata, H., S Sahara and M.K. Kojima. 1986. Effects of calcium and
magnesium ions on the toxicity of cadmium to the egg of the teleost, Oryzias
latipes. Environ. Res. 40: 110-114.

Michibata, H., Y. Nojima and M.K. Kojima. 1987. Stage sensitivity of eggs of
the teleost Oryzias latipes to cadmium exposure. Environmental Research. 42:
321-327 .

Middaugh, D.P. and J.M. Dean. 1977. Comparative sensitivity of eggs, larvae
and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia
menidia to cadmium. Bull. Environ. Contam. Toxicol. 17: 645.

Middaugh, D.P. and G. Floyd. 1978. The effect of prehatch and posthatch
exposure to cadmium on salinity tolerance of larval grass shrimp, Palaemonetes
pugio. Estuaries 1: 123.

Middaugh, D.P., et al. 1975. The response of larval fish Leiostomus xanthurus
to environmental stress following sublethal cadmium exposure. Contrib. Mar.
Sci. 19.

Migliore, J. And M. De Nicola Giudici. 1988. Effect of heavy metals (Hg, Cd,
Cu and Fe) on two species of crustacean isopods, Asellus aquaticus (L.) And
Proasellus coxalis Dollf. Verh.-Int. Ver. Theor. Angew. Limnol. 23: 1655-1659.

Ministry of Technology. 1967. Water Pollution Research 1966. London, p. 50

Mirenda, R.J. 1986. Toxicity and accumulation of cadmium in the crayfish,
Orconectes virilis (Hagen). Arch. Environ. Contam. Toxicol. 15: 401-407.

Mirkes, D.Z., et al. 197 8. Effects of cadmium and mercury on the behavioral
responses and development of Eurypanopeus depressus larvae. Mar. Biol. 47:

143.

206


-------
Mizutani, A., E. Ifune, A. Zanella and C. Eriksen. 1991. Uptake of lead,
cadmium and zinc by the fairy shrimp, Branchinecta longiantenna (crustacea:
anostraca). Hydrobiol. 212: 145-149.

Moller, V., V.E. Forbes and M.H. Depledge. 1994. Influence of acclimation and
exposure temperature on the acute toxicity of cadmium to the freshwater snail
Potamopyrgus antipodarum (Hydrobiidae) . Environ. Toxicol. Chem. 13(9) : 1519-
1524 .

Moore, M.N. and A.R.D. Stebbing. 1976. The quantitative cytochemical effects
of three metal ions on a lysosomal hydrolase of a hydroid. Jour. Mar. Biol.
Assoc. U.K. 56: 9 95.

Moraitou-Apostolopoulou, M. and G. Verriopoulos. 1982. Individual and combined
effects of three heavy metals, Cu, Cd and Cr for the marine copepod Tisbe
holothuriae. Hydrobiologia 87: 83.

Moraitou-Apostolopoulou, M., et al. 1979. Effects of sublethal concentrations
of cadmium pollution for two populations of Acartis clausi (Copepoda) living
at two differently polluted areas. Bull. Environ. Contam. Toxicol. 23: 642.

Morgan, W.S.G. 1979. Fish locomotor behavior patterns as a monitoring tool.
Jour. Water Pollut. Control Fed. 51: 580.

Mostafa, L.Y. and Z. Khalil. 1986. Uptake, release and incorporation of radio
active cadmium and mercury by the fresh water alga Phormidium fragile. Isot.
Rad. Res. 18(1): 57-62.

Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran toxicity
test. Environ. Toxicol. Chem. 3: 425.

Mount, D.R., A.K. Barth, T.D. Garrison, D.A. Barten and J.R. Hockett. 1994.
Dietary and waterborne exposure of rainbow trout (Oncorhynchus mykiss) to
copper, cadmium, lead and zinc using a live diet. Environ. Toxicol. Chem.
13(12): 2031-2041.

Moza, U., S.S. De Solva and B.M. Mitchell. 1995. Effect of sub-lethal
concentrations of cadmium on food intake, growth and digestibility in the gold
fish, Carassius auratus L. J. Environ. Biol. 16(3): 253-264.

207


-------
Muino, C.V., L. Ferrari and A. Salibian. 1990. Protective action of ions
against cadmium toxicity to young Bufo arenarum tadpoles. Bull. Environ.
Contam. Toxicol. 45: 313-319.

Muller, K.W. and H.D. Payer. 1979. The influence of pH on the cadmium-
repressed growth of the alga Coelostrum proboscideum. Physiol. Plant. 45: 415.

Muller, K.W. and H.D. Payer. 1980. The influence of zinc and light conditions
on the cadmium-repressed growth of the green alga Coelostrum proboscideum.
Physiol. Plant. 50: 265.

Munger, C. and L. Hare. 1997. Relative importance of water and food as cadmium
sources to an aquatic insect (Chaoborus punctipennis): implications for
predicting Cd bioaccumulation in nature. Environ. Sci. Technol. 31: 891-895.

Munger, C., et al. 1999. Influence of exposure time on the distribution of
cadmium within the cladoceran Ceriodaphnia dubia. Aquat. Toxicol. 44: 195-200.

Muramoto, S. 1980. Decrease in cadmium concentration in a Cd-contaminated fish
by short-term exposure to EDTA. Bull. Environ. Contam. Toxicol. 25: 828.

Musko, I.B., W. Meinel, R. Krause and M. Barlas. 1990. The impact of Cd and
different pH on the amphipod Gammarus fossarum Koch (Crustacea: amphipoda).
Comp. Biochem. Physiol. 96C(1): 11-16.

Mwangi, S.M. and M.A. Alikhan. 1993. Cadmium and nickel uptake by tissues of
Cambarus bartoni (astacidae, decapoda, Crustacea): effects on copper and zinc
stores. Water Res. 27(5): 921-927.

Nacci, D., E. Jackim and R. Walsh. 1986. Comparative evaluation of three rapid
marine toxicity tests: sea urchin early embryo growth test, sea urchin sperm
cell toxicity test and microtox. Environmental Toxicology and Chemistry. 5:
521-525.

Nagel, K. And J. Voigt. 1995. Impaired photosynthesis in a cadmium-tolerant
Chlamydomonas mutant strain. Microbiol. Res. 150: 105-110.

208


-------
Nakagawa, H. and S. Ishio. 1988. Aspects of accumulation of cadmium ion in the
egg of medaka Oryzias latipes. Bull. Jpn. Soc. Sci. Fish. (JPN)(ENG ABS).
54 (12) : 2159-2164 .

Nakagawa, H. and S. Ishio. 1989. Effects of water hardness on the toxicity and
accumulation of cadmium in eggs and larvae of medaka Oryzias latipes. Bull.
Jpn. Soc. Sci. Fish. (JPN)(ENG ABS). 55(2): 327-331.

Nakano, Y. 1980. Chloroplast replication in Euglena gracilis grown in cadmium
ion containing media. Agric. Biol. Chem. 44: 2733.

Nakano, Y., et al. 1980. Morphological observation of Euglena gracilis grown
in zinc-sufficient media containing cadmium ions. Agric. Biol. Chem. 44: 2305.

Nalecz-Jawecki, G. and J. Sawicki. 1998. Toxicity of inorganic compounds in
the spirotox test: a miniaturized version of the Spirostomum ambiguum test.
Arch. Environ. Contam. Toxicol. 34: 1-5.

Nalecz-Jawecki, G., K. Demkowicz-Dobrzanski and J. Sawicki. 1993. Protozoan
Spirostomum ambiguum as a highly sensitive bioindicator for rapid and easy
determination of water quality. The Science of the Total Environment, pp.
1227-1234 .

Nalewajko, C. 1995. Effects of cadmium and metal-contaminated sediments on
photosynthesis heterotrophy, and phosphate uptake in Mackenzie River delta
phytoplankton. Chemosphere. 30(7): 1401-1414.

Naqvi, S.M. and R.D. Howell. 1993. Toxicity of cadmium and lead to juvenile
red swamp crayfish, Procambarus clarkii, and effects on fecundity of adults.
Bull. Environ. Contam. Toxicol. 51: 303-308.

Nassiri, Y., J. Wery, J.L. Mansot, T. Ginsburger-Vogel. 1997. Cadmium
bioaccumulation in Tetraselmis suecica: and electron energy loss spectroscopy
(EELS) study. Arch. Environ. Contam. Toxicol. 33: 156-161.

Nasu, Y., K. Hirabayashi and M. Kugimoto. 1988. The toxicity of some water
pollutants for lemnaceae (duckweed) plant. Proc. ICMR Semin. 8: 485-491.

209


-------
Nasu, Y., et al. 1983. Comparative studies on the absorption of cadmium and
copper in Lemna paucicostata. Environ. Pollut. (Series A) 32: 201.

Naylor, C. E.J. Cox, M.C. Bradley and P. Calow. 1992. Effect of differing
maternal food ration on susceptibility of Daphnia magna Straus neonates to
toxic substances. Aquat. Toxicol. 24: 75-82.

Nebeker, A.V., M.A. Cairns, S.T. Onjukka and R.H. Titus. 1986a. Effect of age
on sensitivity of Daphnia magna to cadmium, copper and cyanazine. Environ.
Toxicol. Chem. 5: 527-530.

Nebeker, A.V., S.T. Onjukka, M.A. Cairns and D.F. Krawczyk. 1986b. Survival of
Daphnia magna and Hyalella azteca in cadmium-spiked water and sediment.
Environ. Toxicol. Chem. 5: 933-938.

Nebeker, A.V., G.S. Schuytema and S.L. Ott. 1994. Effects of cadmium on limb
regeneration in the northwestern salamander Ambystoma gracile. Arch. Environ.
Contam. Toxicol. 27: 318-322.

Nebeker, A.V., G.S. Schuytema and S.L. Ott. 1995. Effects of cadmium on growth
and bioaccumulation in the northwestern salamander Ambystoma gracile. Arch.
Environ. Contam. Toxicol. 29: 492-499.

Negilski, D.S. 1976. Acute toxicity of zinc, cadmium and chromium to the
marine fishes, yellow-eye mullet (Aldrichetta forsteri C. and V.) and
smallmouth hardy head (Atherinasoma microstoma Whitley). Aust. Jour. Mar.
Freshwater Res. 27: 137.

Nelson, D.A., et al. 1976. Biological effects of heavy metals on juvenile bay
scallops, Argopenten irradians, in short-term exposures. Bull. Environ.

Contam. Toxicol. 16: 275.

Nelson, D.A., J.E. Miller and A. Calabrese. 1988. Effect of heavy metals on
bay scallops, surf clams, and blue mussels in acute and long-term exposures.
Arch. Environ. Contam. Toxicol. 17: 595-600.

210


-------
Nelson, S.M. 1994. Observed field tolerance of caddisfly larvae (Hesperophylax
sp. to fish metal concentrations and low pH. J. Freshwater Ecol. 9(2): 169-170.

Nelson, S.M. and R.A. Roline. 1998. Evaluation of the sensitivity of rapid
toxicity tests relative to daphnid acute lethality tests. Bull. Environ.

Contam. Toxicol. 60: 292-299.

Nendza, M., T. Herbst, C. Kussatz and A. Gies. 1997. Potential for secondary
poisoning and biomagnification in marine organisms. Chemosphere. 35(9): 1875-
1885.

Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models. Irwin,
Inc., Homewood, Illinois.

Niederlehner, B. 1984. A comparison of techniques for estimating the hazard of
chemicals in the aquatic environment. M.S. thesis. Virginia Polytechnic
Institute and State University.

Niederlehner, B.R., et al. 1985. Laboratory test evaluating the effects of
cadmium on freshwater protozoan communities. Environmental Toxicology and
Chemistry. 4: 155-165.

Nimmo, D.R., et al. 1977a. Mysidopsis bahia: an estuarine species suitable for
life-cycle toxicity tests to determine the effects of a pollutant. In: F.L.
Mayer and J.L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. ASTM
STP 634. American Society for Testing and Materials, Philadelphia,

Pennsylvania, p. 109.

Nimmo, D.R., et al. 1977b. Effects of cadmium on the shrimps Penaeus duorarum,
Palaemonetes pugio, and Palaemonetes vulgaris. In: F.J. Vernberg, et al.
(eds.), Physiological Responses of Marine Biota to Pollutants. Academic Press,
New York. p. 131.

Nir, R., A. Gasith and A.S. Perry. 1990. Cadmium uptake and toxicity to water
hyacinth: effect of repeated exposures under controlled conditions. Bull.
Environ. Contam. Toxicol. 44: 149-157.

211


-------
Noel-Lambot, F., et al. 1980. Cadmium, zinc, and copper accumulation in
limpets (Patella vulgata) from the British channel and special reference to
metallothioneins. Mar. Ecol. Progress Series 2: 81.

Nolan, C.V. and E.J. Duke. 1983. Cadmium accumulation and toxicity in Mytilus
edulis: involvement of metallothioneins and heavy molecular weight protein.
Aquat. Toxicol. 4: 153.

Noraho, N. and J.P. Gaur. 1995. Effect of cations, including heavy metals, on
cadmium uptake by Lemna polyrhiza L. BioMetals. 8: 95-98.

Norey, C.G., M.W. Brown, A. Cryer and J. Kay. 1990a. A comparison of the
accumulation, tissue distribution and secretion of cadmium in different
species of freshwater fish. Comp. Biochem. Physiol. 96C(1): 181-184.

Norey, C.G., A. Cryer and J. Kay. 1990b. Cadmium uptake and sequestration in
the pike (Esox lucius) Comp. Biochem. Physiol. 95C(2): 217-221.

Notenboom, J., K. Cruys, J. Hoekstra and P. Van Beelen. 1992. Effect of
ambient oxygen concentration upon the acute toxicity of chlorophenols and
heavy metals to the groundwater copepod Parastenocaris germanica (crustacea).
Ecotoxicol. Environ. Safe. 24: 131-143.

Nott, J.A. and A. Nicolaidou. 1994. Variable transfer of detoxified metals
from snails to hermit crabs in marine food chains. Mar. Biol. 120: 369-377.

Nugegoda, D. and P.S. Rainbow. 1995. The uptake of dissolved zinc and cadmium
by the decapod crustacean Palaemon elegans. Mar. Pollut. Bull. 31(4-12) : 460-
463.

O'Hara, J. 1973a. The influence of temperature and salinity on the toxicity of
cadmium to the fiddler crab, Uca pugilator. Fish. Bull. 71: 149.

O'Hara, J. 1973b. Cadmium uptake by fiddler crabs exposed to temperature and
salinity stress. Jour. Fish. Res. Board Can. 30: 846.

212


-------
O'Neill, J.G. 1981. Effects of intraperitoneal lead and cadmium on the humoral
immune response of Salmo trutta. Bull. Environ. Contam. Toxicol. 27: 42.

Oakley, S.M., et al. 1983. Accumulation of cadmium by Abarenicola pacifica.
Sci. Total Environ. 28: 105.

Odin, M., F. Ribeyre and A. Boudou. 1996. Temperature and pH effects on
cadmium and methylmercury bioaccumulation by nymphs of the burrowing mayfly
Hexagenia rigida, from water column or sediment source. Arch. Environ. Contam.
Toxicol. 31: 339-349.

Odin, M., F. Ribeyre and A. Boudou. 1997. Depuration processes after exposure
of burrowing mayfly nymphs (Hexagenia rigida) to methylmercury and cadmium
from water column or sediment: effects of temperature and pH. Aquat. Toxicol.
37: 125-137.

Oikari, A., J. Kukkonen and V. Virtanen. 1992. Acute toxicity of chemicals to
Daphnia magna in humic water. Sci. Total Environ. 117/118: 367-377.

Ojaveer, E., et al. 1980. On the effect of copper, cadmium and zinc on the
embryonic development of Baltic spring spawning herring. Finnish Mar. Res.
247: 135.

Okamoto, O.K., C.S. Asano, E. Aidar and P. Colepicolo. 1996. Effects of
cadmium on growth and superoxide dismutase activity of the marine microalga
Tetraselmis gracilis (Prasinophyceae) J. Physiol. 32: 74-79.

Olesen, T.M.E. and J.M. Weeks. 1994. Accumulation of Cd by the marine sponge
Halichondria panicea Pallas: effects upon filtration rate and its relevance
for biomonitoring. Bull. Environ. Contam. Toxicol. 52: 722-728.

Onuoha, G.C., F.O. Nwadukwe and E.S. Erondu. 1996. Comparative toxicity of
cadmium to crustacean zooplankton (copepods and ostracods) Environ. Ecol.
14(3) ; 557-562 .

Oronsaye, J.A.O. 1989. Histological changes in the kidneys and gills of the
stickleback, Gasterosteus aculeatus L, exposed to dissolved cadmium in hard
water. Ecotoxicology and Environmental Safety. 17: 279-290.

213


-------
Outridge, P.M. 1992. Comparing Cd toxicity tests with plants in monocultures
and species mixtures. Bull. Environ. Contam. Toxicol. 48: 344-351.

Palackova, J., D. Pravda, K. Fasaic and 0. Celechovska. 1994. Sublethal
effects of cadmium on carp (Cyprinus carpio) fingerlings. In: R. Muller and R.
Lloyd (eds.), Sublethal and chronic effects of pollutants on freshwater fish,
chapter 5, Fishing News Books, London: 53-61.

Palawski, D., J.B. Hunn and F.J. Dwyer. 1985. Sensitivity of young striped
bass to organic and inorganic contaminants in fresh and saline water. Trans.
Am. Fish. Soc. 114: 748-753.

Pantani, C., G. Pannunzio, M. De Cristofaro, A.A. Novelli and M. Salvatori.
1997. Comparative acute toxicity of some pesticides, metals, and surfactants
to Gammarus italicus Goedm. and Echinogammarus tibaldii Pink, and stock
(crustacea: amphipoda). Bull. Environ. Contam. Toxicol. 59(6): 963-967.

Papathanassiou, E. 1983. Effects of cadmium and mercury ions on respiration
and survival of the common prawn Palaemon serratus (pennant). Rev. Int.
Oceanogr. Med. 72: 21-35.

Papathanassiou, E. 1986. Cadmium Accumulation and ultrastructural alterations
in oogenesis of the prawn Palaemon serratus (pennant). Bull. Environ. Contam.
Toxicol. 36: 192-198.

Papoutsoglou, S.E. and P.D. Abel. 1988. Sublethal toxicity and accumulation of
cadmium in Tilapia aurea. Bull. Environ. Contam. Toxicol. 41: 404-411.

Papoutsoglou, S.E. and D. Abel. 1993. Studies on the lethal and sublethal
effects of cadmium on some commercially cultured species of the Mediterranean.
In: Final Reports on Projects (activity G), UNEP Mediterranean Action Plan,
Athens, Greece. MAP Tech. Rep. Ser. No. 48: 33-43.

Pardue, W.J. and T.S. Wood. 1980. Baseline toxicity data for freshwater bryoza
exposed to copper, cadmium, chromium, and zinc. Jour. Tennessee Acad. Sci. 55:
27 .

Park, E.H., H.H. Chang, W.N. Joo, H.S. Chung and H.S. Kwak. 1994. Assessment
of the estuarine hermaphroditic fish Rivulus marmoratus as a useful euryhaline

214


-------
species for acute toxicity tests as shown using cadmium. Can. J. Fish. Aquat.
Sci. 51: 280-285.

Parker, J.G. 1984. The effects of selected chemicals and water quality on the
marine polychaete Ophryotrocha diadema. Water Res. 18: 865.

Pascoe, D. and P. Cram. 1977. The effect of parasitism on the toxicity of
cadmium to the three-spined stickleback, Gasterosteus aculeatus L. Jour. Fish.
Biol. 10: 467.

Pascoe, D. and D.L. Mattey. 1977. Studies on the toxicity of cadmium to the
three-spined stickleback Gasterosteus aculeatus L. Jour. Fish. Biol. 11: 207.

Pascoe, D. and N.A.M. Shazili. 1986. Episodic pollution - a comparison of
brief and continuous exposure of rainbow trout to cadmium. Ecotoxicol.

Environ. Safety. 12: 189-198.

Pascoe, D., S.A. Evans and J. Woodworth. 1986. Heavy metal toxicity to fish
and the influence of water hardness. Arch. Environ. Contam. Toxicol. 15: 481-
487 .

Pascoe, D., K.A. Williams and D.W.J. Green. 1989. Chronic toxicity of cadmium
to Chironomus riparius Meigen - effects upon larval development and adult
emergence. Hydrobiologia. 175: 109-115.

Pascoe, D., A.F. Brown, B.M.J. Evans and C. McKavanagh. 1990. Effects and fate
of cadmium during toxicity tests with Chironomus riparius - the influence of
food and artificial sediment. Arch. Environ. Contam. Toxicol. 19: 872-877.

Pauli, W. and S. Berger. 1997. Toxicological comparisons of Tetrahymena
species, end points and growth media: supplementary investigations to the
pilot ring test. Chemosphere. 35(5) : 1043-1052.

Pavicic, J., M. Skreblin, I. Kregar, M. Tusek-Znidaric and P. Stegnar. 1994.
Embryo-larval tolerance of Mytilus galloprovincialis, exposed to the elevated
sea water metal concentrations - I. Toxic effects of Cd, Zn and Hg in relation
to the metallothionein level. Comp. Biochem. Physiol. 107C(2): 249-257.

215


-------
Pawlik, B. and T. Skowronski. 1994. Transport and toxicity of cadmium: its
regulation in the cyanobacterium Synechocystis aquatilis. Environ. Exp. Bot.
34(2): 225-233.

Pawlik, B., T. Skowronski, Z. Ramazanow, P. Gardestrom and G. Samuelsson.
1993. pH-dependent cadmium transport inhibits photosynthesis in the
cyanobacterium Synechocystis aquatilis. Environ. Exp. Bot. 33(2): 331-337.

Pecon, J. and E.N. Powell. 1981. Effect of the amino acid histidine on the
uptake of cadmium from the digestive system of the blue crab, Callinectes
sapidus. Bull. Environ. Contam. Toxicol. 27: 34.

Pedersen, F. and G.I. Petersen. 1996. Variability of species sensitivity to
complex mixtures. Water Sci. Tech. 33(6): 109-119.

Pelgrom, S.M.G.J., L.P.M. Lamers, J.A.M. Garritsen, B.M. Pels, R.A.C. Lock,
P.H.M. Balm and S.E.W. Bonga. 1994. Interactions between copper and cadmium
during single and combined exposure in juvenile tilapia Oreochromis
mossambicus: influence of feeding condition on whole body metal accumulation
and the effect of the metals on tissue water and ion content. Aquat. Toxicol.
30: 117-135.

Pelgrom, S.M.G.J., R.A.C. Lock, P.H.M. Balm and S.E.W. Bonga. 1997. Calcium
fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal
waterborne Cd, Cu or mixtures of these metals. Environ. Toxicol Chem. 16(4):
770-774 .

Pellegrini, M., An. Laugier, M. Sergent., R. Phan-Tan-Luu, R. Vails and L.
Pellegrini. 1993. Interactions between the toxicity of the heavy metals
cadmium, copper, zinc in combinations and the detoxifying role of calcium in
the brown alga Cystoseira barbata. J. Appl. Phycol. 5: 351-361.

Pennington, C.H., et al. 1982. Contaminant levels in fishes from Brown's Lake,
Mississippi. Jour. Mississippi Acad. Sci. 27: 139.

Penttinen, S., J. Kukkonen and A. Oikari. 1995. The kinetics of cadmium in
Daphnia magna as affected by humic substances and water hardness. Ecotoxicol.
Environ. Safety. 30: 72-76.

216


-------
Penttinen, S., A. Kostamo and J.V.K. Kukkonen. 1998. Combined effects of
dissolved organic material and water hardness on toxicity of cadmium to
Daphnia magna. Environ. Toxicol. Chem. 17(12): 2498-2503.

Pereira, J.J., R. Mercaldo-Allen, C. Kuropat, D. Luedke and G. Sennefelder.
1993. Effect of cadmium accumulation on serum vitellogenin levels and
hepatosomatic and gonadosomatic indices of winter flounder (Pleuronectes
americanus). Arch. Environ. Contam. Toxicol. 24: 427-431.

Perez-Coll, C.S. and J. Herkovits. 1996. Stage-dependent uptake of cadmium by
Bufo arenarum embryos. Bull. Environ. Contam. Toxicol. 56: 663-669.

Pesch, G.G. and N.E. Stewart. 1980. Cadmium toxicity to three species of
estuarine invertebrates. Mar. Environ. Res. 3: 145.

Pesonen, M. And T.B. Andersson. 1997. Fish primary hepatocyte culture; and
important model for xenobiotic metabolism and toxicity studies. Aquat.

Toxicol. 37: 253-267.

Peterson, H.G. 1991. Toxicity testing using a chemostat-grown green alga,
Selenastrum capricornutum. In: J.W. Garoch, W.K. Lower, W. Wang and M.A. Lewis
(eds.), Plants for toxic assessment, 2nd Volume, ASTM STP 1115, Philadelphia,
PA: 107-117.

Peterson, H.G., F.P. Healey and R. Wagemann. 1984. Metal toxicity to algae: a
highly pH dependent phenomenon. Can. J. Fish. Aquat. Sci. 41: 974-979.

Peterson, R.H., et al. 1983. Effects of cadmium on yolk utilization, growth,
and survival of atlantic salmon alevins on newly feeding fry. Arch. Environ.
Contam. Toxicol. 12: 37.

Peterson, R.H., J.L. Metcalfe and S. Ray. 1985. Uptake of cadmium by eggs and
alevins of atlantic salmon (Salmo salar) as influenced by acidic conditions.
Bull. Environ. Contam. Toxicol. 34: 359-368.

Phelps, H.L. 197 9. Cadmium sorption in estuarine mud-type sediment and the
accumulation of cadmium in the soft-shell clam, Mya arenaria. Estuaries 2: 40.

217


-------
Phillips, D.J.H. 1976. The common mussel Mytilus edulis as an indicator of
pollution by zinc, cadmium, lead and copper. I. effects of environmental
variables on uptake of metals. Mar. Biol. 38: 59.

Phillips, G.R. and R.C. Russo. 1978. Metal bioaccumulation in fishes and
aquatic invertebrates: a literature review. EPA-600/3-7 8-103. National
Technical Information Service, Springfield, Virginia.

Phipps, G.L. and G.W. Holcombe. 1985. A method for aquatic multiple species
toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2
invertebrates. Environmental Pollution (Series A). 38: 141-157.

Phipps, G.L., V.R. Mattson, G.T. Ankley. 1995. Relative sensitivity of three
freshwater benthic macroinvertebrates to ten contaminants. Arch. Environ.
Contam. Toxicol. 28: 281-286.

Pickering, Q.H. and M.H. Gast. 1972. Acute and chronic toxicity of cadmium to
the fathead minnow (Pimephales promelas) Jour. Fish. Res. Board Can. 29: 1099.

Pickering, Q.H. and C. Henderson. 1966. The acute toxicity of some heavy
metals to different species of warmwater fishes. Air Water Pollut. Int. Jour.
10: 453.

Playle, R.C., D.G. Dixon and K. Burnison. 1993a. Copper and cadmium binding to
fish gills: estimates of metal-gill stability constants and modelling of metal
accumulation. Can. J. Fish. Aquat. Sci. 50: 2678-2687.

Playle, R.C., D.G. Dixon and K. Burnison. 1993b. Copper and cadmium binding to
fish gills: modification by dissolved organic carbon and synthetic ligands.
Can. J. Fish. Aquat. Sci. 50: 2667-2677.

Polar, E. And R. Kucukcezzar. 1986. Influence of some metal chelators and
light regimes on bioaccumulation and toxicity of Cd2+ in duckweed (Lemna
gibba) . Physiol. Plant 66: 87-93.

Poldoski, J.E. 1979. Cadmium bioaccumulation assays. Their relationship to
various ionic equilibria in Lake Superior water. Environ. Sci. Technol. 13:
701.

218


-------
Postma, J.F. and C. Davids. 1995. Tolerance induction and life cycle changes
in cadmium-exposed Chironomus riparius (diptera) during consecutive
generation. Ecotoxicol. Environ. Safety. 30: 195-202.

Postma, J.F., M.C. Buckert-de Jong, N. Staats and C. Davids. 1994. Chronic
toxicity of cadmium to Chironomus reparius (diptera: chironomidae) at
different food levels. Arch. Environ. Contam. Toxicol. 26: 143-148.

Postma. J.F., P. Van Nugteren and M.B. Buckert-De Jong. 1996. Increased
cadmium excretion in metal-adapted populations of the midge Chironomus
riparius (Diptera). Environ. Toxicol Chem. 15(3): 332-339.

Poulsen, E., et al. 1982. Accumulation of cadmium and bioenergetics in the
mussel Mytilus edulis. Mar. Biol. 68: 25.

Poulton. B.C., D.P. Monda, D.F. Woodward, M.L.Wildhaber and W.G. Brumbaugh.
1995. Relations between benthic community structure and metals concentrations
in aquatic macroinvertebrates: Clark Fork River, Montana. J. Freshwater Ecol.
10(3): 277-293.

Prasad, M.N.V., K. Drej, A. Skawinska and K. Stralka. 1998. Toxicity of
cadmium and copper in Chlamydomonas reinhardtii wild-type (WT2137) and cell
wall deficient mutant strain (CW15). Bull. Environ. Contam. Toxicol. 60: 306-
311.

Presing, M., K.V. Balogh and J. Salanki. 1993. Cadmium uptake and depuration
in different organs of Lymnaea stagnalis L. And the effect of cadmium on the
natural zinc level. Arch. Environ. Contam. Toxicol. 24: 28-34.

Prevot, P. and M.O. Soyer-Gobillard. 1986. Combined action of cadmium and
selenium on two marine dinoflagellates in culture, Prorocentrum micans Ehrbg.
and Crypthecodinium cohnii Biecheler. J. Protozool. 33(1): 42-47.

Pringle, B.H., et al. 1968. Trace metal accumulation by estuarine mollusks.
Am. Soc. Civil Eng., Jour. Sanit. Eng. Div. 94: 455.

219


-------
Pynnonen, K. 1995. Effect of pH, hardness and maternal pre-exposure on the
toxicity of Cd, Cu and Zn to the glochidial larvae of a freshwater clam
Anodonta cygnea. Water Res. 29(1) : 247-254.

Qichen, C., Z. Kejien and Z. Guanwen. 1988. A comprehensive investigation of
the toxic effects of heavy metals on fish. J. Fish. China/Shuichan Xuebao
(Chi.) (Eng. Trans.) (Author communication used). 12(1): 21-33.

Qureshi, S.A., et al. 1980. Acute toxicity of four heavy metals to benthic
fish food organisms from the river Khan, Ujjain. Int. Jour. Environ. Studies
15: 59.

Rachlin, J.W. and A. Grosso. 1991. The effects of pH on the growth of
Chlorella vulgaris and its interactions with cadmium toxicity. Arch. Environ.
Contam. Toxicol. 20: 505-508.

Rachlin, J.W. and A. Grosso. 1993. The growth response of the green alga
Chlorella vulgaris to combined divalent cation exposure. Arch. Environ.

Contam. Toxicol. 24:16-20.

Rachlin, J.W., et al. 1982. The growth responses of Chlorella saccharophila,
Navicula incerta and Nitzschia closterium to selected concentrations of
cadmium. Bull. Torrey Bot. Club 109: 129.

Rachlin, J.W., et al. 1984. The toxicological response of the algae Anabaena
flos-aquae (Cyanophyceae) to cadmium. Arch. Environ. Contam. Toxicol. 13: 143.

Radetski, C.M., J.F. Ferard and C. Blaise. 1995. A semistatic microplate-based
phytotoxicity test. Environmental Toxicology and Chemistry. 14(2): 299-302.

Radix, P., M. Leonard, C. Papantoniou, G. Roman, E. Saouter, S. Gallotti-
Schmitt, H. Threbaud and P. Vasseur. 1999. Comparison of Brachionus
calyciflorus 2-D and microtox® chronic 22-h tests with Daphnia magna 21-D test
for chronic toxicity assessment of chemicals. Environ. Toxicol. Chem. 18(10):
2178-2185.

Rai, U.N., R.D. Tripathi, S. Sinha and P. Chandra. 1995. Chromium and cadmium
bioaccumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara
corallina Wildenow. J. Environ. Sci. Health. A30: 537-551.

220


-------
Rainbow, P.S. 1985. Accumulation of Zn, Cu and Cd by crabs and barnacles.
Estuarine Coastal Shelf Sci. 21: 669-686.

Rainbow, P.S. and M.K.H Kwan. 1995. Physiological responses and the uptake of
cadmium and zinc by the amphipod crustacean Orchestia gammarellus. Mar. Ecol.
Prog. Ser. 127: 87-102.

Rainbow, P.S. and S.L. White. 1989. Comparative strategies of heavy metal
accumulation by crustaceans: zinc, copper and cadmium in a decapod, and
amphipod and a barnacle. Hydrobiol. 174: 245-262.

Rainbow, P.S., et al. 1980. Effects of chelating agents on the accumulation of
cadmium by the barnacle Semibalanus balanoides, and the complexation of
soluble Cd, Zn and Cu. Mar. Ecol. Progress Series 2: 143.

Ralph, P.J. and M.D. Burchett. 1998. Photosynthetic response of Halophila
ovalis to heavy metal stress. Environ. Pollut. 103: 91-101.

Ramachandran, S., T.R. Patel and M.H. Colbo. 1997. Effect of copper and
cadmium on three Malaysian tropical estuarine invertebrate larvae. Ecotoxicol.
Environ. Safety. 36: 183-188.

Ramamoorthy, S. and K. Blumhagen. 1984. Uptake of Zn, Cd, and Hg by fish in
the presence of competing compartments. Can. Jour. Fish. Aquat. Sci. 41: 750.

Ramesha, A.M., T.R.C. Guptha, R.J. Katti, G. Gowda and C. Lingdhal. 1996.
Toxicity of cadmium to common carp Cyprinus carpio (Linn.). Environ. Ecol.
14(2): 329-333.

Ramesha, A.M., T.R.C. Gupta, C. Lingdhal, K.V.B. Kumar, G. Gowda and K.S.
Udupa. 1997. Combined toxicity of mercury and cadmium to the common carp
Cyprinus carpio (Linn.) Environ. Ecol. 15(1): 194-198.

Ramirez, P., G. Barrera and C. Rosas. 1989. Effects of chromium and cadmium
upon respiration and survival of Callinectes similis. Bull. Environ. Contam.
Toxicol. 43: 850-857.

221


-------
Rao, J.I. and M.N. Madhyastha. 1987. Toxicities of some heavy metals to the
tadpoles of frog, Microhyla ornata (Dumeril and Bibron). Toxicol. Lett. 36:
205-208 .

Ray, S., et al. 1981. Accumulation of copper, zinc, cadmium and lead from two
contaminated sediments by three marine invertebrates - a laboratory study.
Bull. Environ. Contam. Toxicol. 25: 315.

Rayms-Keller, A., K.E. Olson, M. McGaw, C. Oray, J.O. Carlson and B.J. Beaty.
1998. Effect of heavy metals on Aedes aegypti (diptera: culicidae) larvae.
Ecotoxicol. Environ. Safety. 39: 41-17.

Reader, J.P., N.C. Everall, M.D.J. Sayer and R. Morris. 1989. The effects of
eight trace metals in acid soft water on survival, mineral uptake and skeletal
calcium deposition in yolk-sac fry of brown trout, Salmo trutta L. J. Fish
Biol. 35: 187-198.

Rebhun, S. and A. Ben-Amotz. 1984. The distribution of cadmium between the
marine alga Chlorella stigmatophora and sea water medium. Water Res. 18(2):
173-179.

Rebhun, S. and A. Ben-Amotz. 1986. Effect of NaCl concentration on cadmium
uptake by the halophilic alga Dunaliella salina. Mar. Ecol. Prog. Ser. 30:
215-219.

Rebhun, S. and A. Ben-Amotz. 1988. Antagonistic effect of maganese to cadmium
toxicity in the alga Dunaliella salina. Mar. Ecol. Prog Ser. 42: 97-104.

Reddy, P.S. and M. Fingerman. 1994. Effect of cadmium chloride on amylase
activity in the red swamp crayfish, Procambarus clarkii. Comp. Biochem.
Physiol. 109C(3): 309-314.

Reddy, P.S., S.R. Tuberty and M. Fingerman. 1997. Effects of cadmium and
mercury on ovarian maturation in the red swamp crayfish, Procambarus clarkii.
Ecotoxicol. Environ. Safety. 37: 62-65.

Redmond, M.S., K H. Scott, R.C. Swartz and J.K.P. Jones. 1994. Preliminary
culture and life-cycle experiments with the benthic amphipod Ampelisca abdita.
Environ. Toxicol. Chem. 13(8): 1355-1365.

222


-------
Rehwoldt, R., et al. 1972. The effect of increased temperature upon the acute
toxicity of some heavy metal ions. Bull. Environ. Contam. Toxicol. 8: 91.

Rehwoldt, R., et al. 1973. The acute toxicity of some heavy metals ions toward
benthic organisms. Bull. Environ. Contam. Toxicol. 10: 291.

Reichert, W.L., et al. 1979. Uptake and metabolism of lead and cadmium in coho
salmon (Oncorhynchus kisutch) . Comp. Biochem. Physiol. 63C: 229.

Reid, S.D. and D.G. McDonald. 1991. Metal binding activity of the gills of
rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 48: 1061-1068.

Reinfelder, J.R. and N.S. Fisher. 1994a. The assimilation of elements ingested
by marine planktonic bivalve larvae. Limnol. Oceanogr. 39(1): 12-20.

Reinfelder, J.R. and N.S. Fisher. 1994b. Retention of elements absorbed by
juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey.
Limnol. Oceanogr. 39(8): 1783-1789.

Reinfelder, J.R., W.X. Wang, S.N. Luoma and N.S. Fisher. 1997. Assimilation
efficiencies and turnover rates of trace elements in marine bivalves: a
comparison of oysters, clams and mussels. Mar. Biol. 129: 443-452.

Reish, D.J. 1993. Effects of metals and organic compounds on survival and
bioaccumulation in two species of marine gammaridean amphipod, together with a
summary of toxicological research on this group. Journal of Natural History.
27: 781-794.

Reish, D.J. and J.A. LeMay. 1991. Toxicity and bioconcentration of metals and
organic compounds by polychaeta. Ophelia Suppl. 5: 653-660.

Reish, D.J., et al. 1976. The effect of heavy metals on laboratory populations
of two polychaetes with comparisons to the water quality conditions and
standards in Southern California marine waters. Water Res. 10: 299.

Reish, D.J., et al. 1978. Interlaboratory calibration experiments using the
Polychaetous annelid Capitella capitata. Mar. Environ. Res. 1: 109.

223


-------
Reish, D.J., S.L. Asato and J.A. Lemay. 1988. The effect of cadmium and DDT on
the survival and regeneration in the amphinomid polychaete Eurythoe
complanata. In: Proc. 7th Symp. Mar. Biol., June 1, 1988, LaPaz BCS, Mexico:
107-111.

Remacle, J., et al. 1982. Cadmium fate in bacterial microcosms. Water Air Soil
Pollut. 18: 455.

Reynoldson, T.B., P.. Rodriguez and M.M Madrid. 1996. A comparison of
reproduction, growth and acute toxicity in two populations of Tubifex tubifex
(Muller, 1774) from the North American great lakes and Northern Spain.
Hydrobiol. 334: 199-206.

Rhodes, L., E. Casillas, B. McKnight, W. Gronlund, M. Myers, O.P. Olson and B.
McCain. 1985. Interactive effects of cadmium, polychlorinated biphenyls, and
fuel oil on experimentally exposed English sole (Parophrys vetulus). Can J.
Fish. Aquat. Sci. 42: 1870-1880.

Ribo, J.M. 1997. Interlaboratory comparison studies of the luminescent
bacteria toxicity bioassay. pp. 283-294.

Rice, D.L. 1984. A simple mass transport model for metal uptake by marine
macroalgae growing at different rates. Exp. Mar. Biol. Ecol. 82: 175-182.

Richelle, E., Y. Degoudenne, L. Dejonghe and G. Van de Vyver. 1995.
Experimental and field studies on the effect of selected heavy metals on three
freshwater sponge species: Ephydatia fluviatilis, Ephydatia muelleri and
Spongilla lacustris. Arch. Hydrobiol. 135(2): 209-231.

Ridlington, J.W., et al. 1981. Metallothionein and Cu-chelation:
characterization of metal-binding proteins from the tissues of four marine
animals. Comp. Biochem. Physiol. 70B: 93.

Rifici, L.M., D.S. Cherry. J.L. Farris and J. Cairns, Jr. 1996. Acute and
subchronic toxicity of methylene blue to larval fathead minnows (Pimephales
promelas) : implications for aquatic toxicity testing. Environmental Toxicology
and Chemistry. 15(8) : 1304- 1308.

224


-------
Riisgard, H.V., E. Bjornestad and F. Mohlenberg. 1987. Accumulation of cadmium
in the mussel Mytilus edulis: kinetics and importance of uptake via food and
sea water. Mar. Biol. 96: 349-353.

Ringwood, A.H. 1989. Accumulation of cadmium by larvae and adults of an
Hawaiian bivalve, Isognomon californicum, during chronic exposure. Mar. Biol.
102: 499-504.

Ringwood, A.H. 1990. The relative sensitivities of different life stages of
Isognomon californicum to cadmium toxicity. Arch. Environ. Contam. Toxicol.
19: 338-340.

Ringwood, A.H. 1992a. Comparative sensitivity of gametes and early
developmental stages of a sea urchin species (Echinometra mathaei) and a
bivalve species (Isognomon californicum) during metal exposures. Arch.

Environ. Contam. Toxicol. 22: 288-295.

Ringwood, A.H. 1992b. Effects of chronic cadmium exposures on growth of larvae
of an Hawaiian bivalve, Isognomon californicum. 1992. Mar. Ecol. Prog. Ser.
83: 63-70.

Ringwood, A.H. 1993. Age-specific differences in cadmium sensitivity and
bioaccumulation in bivalve molluscs. Mar. Environ. Res. 35: 35-39.

Ritterhoff, J., G.P. Zauke and R. Dallinger. 1996. Calibration of the
estuarine amphipods, Gammarus zaddachi Sexton (1912), as biomonitors:
toxicokinetics of cadmium and possible role of inducible metal-binding
proteins in Cd detoxification. Aquat. Toxicol. 34: 351-369.

Roberts, K.S., et al. 1979. A high molecular-weight cadmium-binding fraction
isolated from the liver cytosol of trout exposed to environmentally relevant
concentrations of the metal. Trans. Biochem. Soc. London. 7: 650.

Roch, M. and J.A. McCarter. 1984. Metallothionein induction, growth, and
survival of chinook salmon exposed to zinc, copper, and cadmium. Bull.

Environ. Contam. Toxicol. 32: 478-485.

225


-------
Roch, M. and E.J. Maly. 1979. Relationship of cadmium-induced hypocalcemia
with mortality in rainbow trout (Salmo gairdneri) and the influence of
temperature on toxicity. Jour. Fish. Res. Board Can. 36: 1297.

Roesijadi, G. And G.W. Fellingham. 1987. Influence of Cu, Cd, and Zn
preexposure on Hg toxicity in the mussel Mytilus edulis. Can. J. Fish. Aquat.
Sci. 44: 680-684.

Rombough, P.J. 1985. The influence of the zona radiata on the toxicities of
inc, lead, mercury, copper and silver ions to embryos of steelhead trout Salmo
gairdneri. Comp. Biochem. Physiol. 82C(1): 115-117.

Rombough, P.J. and E.T. Garside. 1982. Cadmium toxicity and accumulation in
eggs and alevins of Atlantic salmon Salmo salar. Can. Jour. Zool. 60: 2006.

Rombough, P.J. and E.T. Garside. 1984. Disturbed ion balance in alevins of
Atlantic salmon Salmo salar chronically exposed to sublethal concentrations of
cadmium. Can. J. Zool. 62: 1443-1450.

Romeo, M. and M. Gnassia-Barelli. 1995. Metal distribution in different
tissues and in subcellular fractions of the Mediterranean clam Ruditapes
decussatus treated with cadmium, copper, or zinc. Comp. Biochem. Physiol.
111C: 457-463.

Rosas, C. And P. Ramirez. 1993. Effect of chromium and cadmium on the thermal
tolerance of the prawn Macrobrachium rosenbergii expose to hard and soft
water. Bull. Environ. Contam. Toxicol. 51: 568-574.

Roseman, E.F., E.L. Mills, M. Rutzke, W.H. Gutenmann and D.J. Lisk. 1994.
Absorption of cadmium from water by north American zebra and quagga mussels
(Bivalvia: dreissenidae) . Chemosphere. 28(4) : 737-743.

Rosenberg, R. and J.D. Costlow. 1976. Synergistic effects of cadmium and
salinity combined with constant and cycling temperatures on the larval
development of two estuarine crab species. Mar. Biol. 38: 291.

Rosko, J.J. and J.W. Rachlin. 1977. The effect of cadmium, copper, mercury,
zinc and lead on cell division, growth, and chloropyll a content of the
chlorophyte Chlorella vulgaris. Bull. Torrey Bot. Club 104: 226.

226


-------
Rouleau, C, M. Block and H. Tjalve. 1998. Kinetics and body distribution of
waterborne 65Zn(II), 109Cd(II), 203Hg(II), and CH3203Hg(II) in phantom midge
larvae (Chaoborus americanus) and effects of complexing agents. Environ. Sci.
Technol. 32: 1230-1236.

Roux, D.J., P.L. Kempster, E. Truter and L. van der Merwe. 1993. Effect of
cadmium and copper on survival and reproduction of Daphnia pulex. Water SA.
19(4) : 269-274 .

Rubinstein, N.I., et al. 1983. Accumulation of PCBs, mercury and cadmium by
Nereis virens, Mercenaria mercenaria and Palaemontes pugio from contaminated
harbor sediments. Aquat. Toxicol. 3: 249.

Safadi, R.S. 1998. The use of freshwater planarians in acute toxicity test
with heavy metals. Verh. Internat. Verein. Limnol. 26: 2391-2392

Sajwan, K.S. and W.H. Ornes. 1994. Phytoavailability and bioaccumulation of
cadmium in duckweed plants (Spirodela polyrhiza L. Schleid). J. Environ. Sci.
Health. A29(5): 1035-1044.

Sanchiz, C., A.M. Garcia-Carrascosa and A. Pastor. 1999. Bioaccumulation of
Hg, Cd, Pb and Zn in four marine phanerogams and the alga Caulerpa prolifera
(Forsskal) Lamouroux from the east coast of Spain. Bot. Mar. 42(2): 157-164.

Sandau, E., P. Sandau and 0. Pulz. 1996. Heavy metal sorption by microalagae.
Acta Biotechnol. 16(4): 227-235.

Sangalang, G.B. and H.C. Freeman. 1979. Tissue uptake of cadmium in brook
trout during chronic sublethal exposure. Arch. Environ. Contam. Toxicol. 8:

77 .

Sangalang, G.B. and M.J. O'Halloran. 1972. Cadmium-induced testicular injury
and alterations of androgen synthesis in brook trout. Nature 240: 470.

Sangalang, G.B. and M.J. O'Halloran. 1973. Adverse effects of cadmium on brook
trout testis and on in vitro testicular androgen synthesis. Biol. Reprod.
9:394.

227


-------
Santiago-Fandino, V.J.R. 1983. The effects of nickel and cadmium on the growth
rate of Hydra littoralis and an assessment of the rate of uptake of 63Ni and
14C by the same organism. Water Res. 17: 917.

Santojanni, A., G. Gorbi and F. Sartore. 1998. Prediction of fecundity in
chronic toxicity tests on Daphnia magna. Water Res. 32(1): 3146-3156.

Sastry, K.V. and V. Shukla. 1994. Influence of protective agents in the
toxicity of cadmium to a freshwater fish (Channa punctatus). Bull. Environ.
Contam. Toxicol. 53: 711-717.

Sastry, K.V. and K. Sunita. 1982. Effect of cadmium and chromium on the
intestinal absorption of glucose in the snakehead fish, Channa punctatus.
Toxicol. Letters. 10: 293.

Sauter, S., et al. 1976. Effects of exposure to heavy metals on selected
freshwater fish. Toxicity of copper, cadmium, chromium and lead to eggs and
fry of seven fish species. EPA-600/3-7 6-105. National Technical Information
Service, Springfield, Virginia.

Sauvant, M.P., D. Pepin, C.A. Groliere and J. Bohatier. 1995. Effects of
organic and inorganic substances on the cell proliferation of L-929
Fibroblasts and Tetrahymena toxicological bioassays. Bull. Environ. Contam.
Toxicol. 55: 171-178.

Sauvant, M.P., D. Pepin, J. Bohatier, C.A. Groliere and J. Guillot. 1997.
Toxicity assessment of 16 inorganic environmental pollutants by six bioassays.
Ecotoxicol. Environ. Safety. 37: 131-140.

Saxena, K.K., A.K. Dubey and R.R.S. Chauhan. 1993. Experimental studies on
toxicity of zinc and cadmium to Heteropneustes fossilis (Bl.) J. Freshwater
Biol. 5(4): 343-346.

Schaeffer, D.J., M. Goehner, E. Grebe, L.G. Hansen, K. Hankenson, E.E.
Herricks, G. Matheus, A. Miz, R. Reddy and K. Trommater. 1991. Evaluation of
the "reference toxicant" addition procedure for testing the toxicity of
environmental samples. Bull. Environ. Contam. Toxicol. 47: 540-546.

228


-------
Schafer, H., A. Wenzel, U. Fritsche, G. Roderer and W. Traunspurger. 1993.
Long-term effects of selected xenobiotica on freshwater green algae:
development of a flow-through test system. The Science of the Total
Environment, Supplement, pp. 735-740.

Schafer, H., H. Hettler, U. Fritsche, G. Pitzen, G. Roderer and A Wenzel.
1994. Biotests using unicellular algae and ciliates for predicting long-term
effects of toxicants. Ecotoxicol. Environ. Safety. 27: 64-81.

Scherer, E., R.E. McNicol and R.E. Evans. 1997. Impairment of lake trout
foraging by chronic exposure to cadmium: a black-box experiment. Aquatic
Toxicology. 37: 1-7.

Schubauer-Berigan, M.K., J.R. Dierkes, P.D. Monson and G.T. Ankley. 1993. pH-
dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales
promelas, Hyalella azteca and Lumbriculus variegatus. Environmental Toxicology
and Chemistry. 12: 1261-1266.

Schuster, C.N. and B.H. Pringle. 1969. Trace metal accumulation by the
American oyster, Crassostrea virginica. Proc. Natl. Shellfish Assoc. 59: 91.

Scott, K.J., et al. Manuscript. Toxicological methods using the benthic
amphipod Ampelisca abdita Mills. U.S. EPA, Narragansett, Rhode Island.

Sedlacek, J., E.T. Gjessing and T Kallqvist. 1989. Influence of different
aquatic humus fractions on uptake of cadmium to alga Selenastrum capriconutum
Printz. Sci. Total Environ. 81/82: 711-718.

Sehgal, R. and A.B. Saxena. 1987. Determination of acute toxicity levels of
cadmium and lead to the fish Lebistes reticulatus (Peters). Int. J. Environ.
Stud. 29: 157-161.

Sekkat, N., A. Le Du, J.M. Jouany and M. Guerbet. 1992. Study of the
interactions between copper, cadmium, and ferbam using the protozoan Colpidium
campylum bioassay. Ecotoxicol. Environ. Safety. 24: 294-300.

229


-------
Selby, D.A., J.M. Ihnat and J.J. Messer. 1985. Effects of subacute cadmium
exposure on a hardwater mountain stream microcosm. Water Res. 19(5): 645-655.

Seyfreid, P.L. and C.B.L. Horgan. 1983. Effect of cadmium on lade water
bacteria as determined by the luciferase assay of adenosine triphosphate. In:
W.E. Bishop, et al. (eds.), Aquatic Toxicology and Hazard Assessment: Sixth
Symposium. ASTM STP 802, American Society for Testing and Materials,
Philadelphia, Pennsylvania, p. 425.

Shanmukhappa, H. and K. Neelakantan. 1990. Influence of humic acid on the
toxicity of copper, cadmium and lead to the unicellular alga, Synechosystis
aquatilis. Bull. Environ. Contam. Toxicol. 44: 840-843.

Sharma, M.S. and C.S. Selvaraj. 1994. Zinc, lead and cadmium toxicity to
selected freshwater zooplankters. Poll. Res. 13(2): 191-201.

Sharp, J.R. and J.L. Kaszubski. 1989. The influence of exposure duration on
the embryotoxicity of cadmium to the freshwater teleost, Etheostoma
spectabile. Trace Subst. Environ. Health. 23: 277-289.

Shazili, N.A.M. and D. Pascoe. 1986. Variable sensitivity of rainbow trout
(Salmo gairdneri) eggs and alevins to heavy metals. Bull. Environ. Contam.
Toxicol. 36: 468-474.

Shcherban, E.P. 1977. Toxicity of some heavy metals for Daphnia magna Strauss,
as a function of temperature. Hydrobiol. Jour. 13(4) : 75.

Sheela, M., G. Mallika and S. Muniandy. 1995. Impact of cadmium on food
utilization, growth and body composition in the fish Oreochromis mossambicus.
Environ. Ecol. 13(2): 410-414.

Sherman, R.E., S.P. Gloss and L.W. Lion. 1987. A comparison of toxicity test
conducted in the laboratory and in experimental ponds using cadmium and the
fathead minnow (Pimephales promelas) . Wat. Res. 21(3): 317-323.

Shivaraj, K.M. and H.S. Patil. 1988. Toxicity of cadmium and copper to a
freshwater fish Puntius arulius. Environ. Ecol. 6(1): 5-8

230


-------
Shukla, J.P. and K. Pandey. 1988. Toxicity and long term effects of a
sublethal concentration of cadmium on the growth of the fingerlings of
Ophiocephalus punctatus (Bl.). Acta Hydrochim. Hydrobiol. 16(5): 537-540.

Sick, L.V. and G. Baptist. 1979. Cadmium incorporation by the marine copepod
Pseudodiaptomous coronatus. Limnol. Oceanogr. 24: 453.

Sidoumou, Z., M. Gnassia-Barelli and M. Romeo. 1997. Cadmium and calcium
uptake in the mollusc Donax rugosus and effect of a calcium channel blocker.
Bull. Environ. Contam. Toxicol. 58: 318-325.

Simoes-Goncalves, M.L.S., M.F.C. Vilhena and M.A. Sampayo. 1988. Effect of
nutrients, temperature and light on uptake of cadmium by Selenastrum
capricornutum Printz. Water Res. 22(11): 1429-1435.

Simoes-Goncalves, M.L.S., M.F.C. Vilhena, L.M.V.F. Machado, C.M.R. Pescada and
M.L. de Moura. 1989. Effect of speciation on uptake and toxicity of cadmium to
shrimp Crangon crangon (L.). Bull. Environ. Contam. Toxicol. 43: 287-294.

Sinha, S, M. Gupta and P. Chandra. 1994. Bioaccumulation and toxicity of Cu
and Cd in Vallisneria spiralis (L.). Environ. Monit. Assess. 33(1): 75-84.

Skowronski, T. and M. Przytocka-Jusiak. 1986. Cadmium removal by green alga
Stichococcus bacillaris. Chemosphere. 15(1): 77-79.

Skowronski, T., M. Jakubowski and B. Pawlik. 1985. Cadmium toxicity to green
alga Stichococcus bacillaris. Acta Microbiologica Polonica. 34(3/4): 309.

Skowronski, T., B. Pawlik and M. Jakubowski. 1988. Reduction of cadmium
toxicity to green microalga Stichococcus bacillaris by manganese. Bull.
Environ. Contam. Toxicol. 41: 915-920.

Skowronski, T., S. Szubinska, B. Pawlik, M. Jakubowski, R. Bilewicz and E.
Cukrowsak. 1991. The influence of pH on cadmium toxicity to the green alga
Stichococcus bacillaris and on the cadmium forms present in the culture
medium. Environ. Pollut. 74: 89-100.

Sloof, J.E., A. Viragh and B. Van der Veer. 1995. Kinetics of cadmium uptake
by green algae. Water, Air Soil Pollut. 83: 105-122.

231


-------
Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some
toxicological considerations. Aquat. Toxicol. 4: 73.

Slooff, W. and R. Baerselman. 1980. Comparison of the usefulness of the
Mexican axoloth (Ambystoma mexicanum) and the clawed toad (Xenopus laevis) in
toxicological bioassays. Bull. Environ. Contam. Toxicol. 24: 439.

Slooff, W.J., et al. 1983. Comparison of the susceptibility of 22 freshwater
species to 15 chemical compounds. I. (sub)acute toxicity tests. Aquat.

Toxicol. 4: 113.

Smith, D.P., J.H. Kennedy and K.L. Dickson. 1991. An evaluation of a naidid
oligochaete as a toxicity test organism. Environmental Toxicology and
Chemistry. 10: 1459-1465.

Smith, J.D., et al. 1981. Distribution and significance of copper, lead, zinc
and cadmium in the Corio Bay ecosystem. Aust. Jour. Mar. Freshwater Res. 32:
151.

Smith, S. and M.K.H. Kwan. 1989. Use of aquatic macrophytes as a bioassay
method to assess relative toxicity, uptake and accumulated forms of trace
metals. Hydrobiologia. 188/189: 345-351.

Smokorowski, K.E., D.C. Lasenby and R.D. Evans. 1998. Quantifying the uptake
and release of cadmium and copper by the opossum shrimp Mysis relicta preying
upon the cladoceran Daphnia magna using stable isotope tracers. Can. J. Fish.
Aquat. Sci. 55: 909-915.

Snell, T.W. and M.J. Carmona. 1995. Comparative toxicant sensitivity of sexual
and asexual reproduction in the rotifer Brachionus calyciflorus. Environmental
Toxicology and Chemistry. 14: 415-420.

Snell, T.W. and B.D. Moffat. 1992. A 2-d life cycle test with the rotifer
Brachionus calyciflorus. Environmental Toxicology and Chemistry. 11: 1249-
1257 .

232


-------
Snell, T.W. and G. Persoone. 1989a. Acute toxicity bioassays using rotifers.

I.	A test for brackish and marine environments with Brachionus plicatilis.
Aquatic Toxicology. 14: 65-80.

Snell, T.W. and G. Persoone. 1989b. Acute toxicity bioassays using rotifers.

II.	A freshwater test with Brachionus rubens. Aquatic Toxicology. 14: 81-92.

Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991a. Acute toxicity
test using rotifers. III. Effects of temperature, strain and exposure time on
the sensitivity of Brachionus plicatilis. Environmental Toxicology and Water
Quality: An International Journal. 6: 63-75.

Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991b. Acute toxicity
tests using rotifers. Ecotoxicology and Environmental Safety. 21: 308-317.

Sobahn, R. and S.P.K. Sternberg. 1999. Cadmium removal using cladophora. J.
Environ. Sci. Health. A34(l): 53-72.

Sorvari, J. and M. Sillanpaa. 1996. Influence of metal complex formation on
heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna.
Chemosphere. 33(6): 1119-1127.

Sosnowski, S. and J. Gentile. 1978. Toxicological comparison of natural and
cultured populations of Acartia tonsa to cadmium, copper and mercury. Jour.
Fish. Res. Board Can. 35: 1366.

Sovenyi, J. and J. Szakolczai. 1993. Studies on the toxic and
immunosuppressive effects of cadmium on the common carp. Acta Veterinaria
Hungarica. 41(3-4): 415-426.

Spehar, R.L. 1976a. Cadmium and zinc toxicity to flagfish, Jordanella
floridae. Jour. Fish. Res. Board Can. 33: 1939.

Spehar, R.L. 1976b. Cadmium and zinc toxicity to Jordanella floridae. EPA-
600/3-7 6-096. National Technical Information Service, Springfield, Virginia.

Spehar, R.L. 1982. Memorandum to J.G. Eaton. U.S. EPA, Duluth, Minnesota.
February 24.

233


-------
Spehar, R.L. and A.R. Carlson. 1984a. Derivation of site-specific water
quality criteria for cadmium and the St. Louis River Basin, Duluth, Minnesota.
PB84-153196. National Technical Information Service, Springfield, Virginia.

Spehar, R.L. and A.R. Carlson. 1984b. Derivation of site-specific water
quality criteria for cadmium and the St. Louis River Basin, Duluth, Minnesota.
Environ. Toxicol. Chem. 3: 651.

Spehar, R.L. and J.T. Fiandt. 1986. Acute and chronic effects of water quality
criteria-based metal mixtures on three aquatic species. Environmental
Toxicology and Chemistry. 5: 917-931.

Spehar, R.L., et al. 1978. Toxicity and bioaccumulation of cadmium and lead in
aquatic invertebrates. Environ. Pollut. 15: 195.

Sprague, J.B. 1985. Factors that modify toxicity. In: Fundamentals of aquatic
toxicology. Rand, G.M. and S.R. Petrocelli (eds.). Hemisphere Publishing
Company, New York, N.Y. pp.124-163.

Spry, D.J. and J.G. Wiener. 1991. Metal bioavailability and toxicity to fish
in low-alkalinity lakes: a critical review. Environ. Pollut. 243-304.

Srivastava, A. and K.J. Appenroth. 1995. Interaction of EDTA and iron on the
accumulation of Cd2+ in duckweeds (Lemnaceae). J. Plant Physiol. 146: 173-176.

Stackhouse, R.A. and W.H. Benson. 1988. The influence of humic acid on the
toxicity and bioavailability of selected trace metals. Aquatic Toxicology. 13:
99-108.

Stanley, R.A. 1974. Toxicity of heavy metals and salts to Eurasian water-
milfoil (Myriophyllum spicatum L.). Arch. Environ. Contam. Toxicol. 2: 331.

Stary, J. and K. Kratzer. 1982. The cumulation of toxic metals on alga. Int.
Jour. Environ. Anal. Chem. 12: 65.

Stary, J., et al. 1982. The cumulation of zinc and cadmium in fish (Poecilia
reticulata). Int. Jour. Environ. Anal. Chem. 11: 117.

234


-------
Stary, J., et al. 1983. Cumulation of zinc, cadmium and mercury on the alga
Scenedesmus obliquus. Acta. Hydrochim. Hydrobiol. 11: 401.

Stebbing, A.R.D. 1976. The effects of low metal levels on a colonial hydroid.
Jour. Mar. Biol. Assoc. U.K. 56: 1977.

Steele, R.L. and G.B. Thursby. 1983. A toxicity test using life stages of
Champia parvula (Rhodophyta). In: W.E. Bishop, et al. (eds.), Aquatic
Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802. American
Society for Testing and Materials, Philadelphia, Pennsylvania, p. 73.

Stephan, C.E., et al. 1985. Guidelines for deriving numerical national water
quality criteria for the protection of aquatic organisms and their uses.
National Technical Information Service, Springfield, Virginia.

Stephenson, M. and G.L. Macki. 1989. Net cadmium flux in Hyalella azteca
(crustacea: amphipoda) populations from five central Ontario lakes. Sci. Total
Environ. 87/88: 463-475.

Stephenson, M. and M.A. Turner. 1993. A field study of cadmium dynamics in
periphyton and in Hyalella azteca (Crustacea: amphipoda). Water, Air, and Soil
Pollution 68: 341-361.

Stern, M.S. and D.H. Stern. 1980. Effects of fly ash heavy metals on Daphnia
magna. PB81-198327. National Technical Information Service, Springfield,
Virginia.

Stom, D.I. and L.D. Zubareva. 1994. Comparative resistance of Daphnia and
Epischura to toxic substances in acute exposure. Hydrobiol. J. 30(3): 35-38.

Stromberg, P.C., et al. 1983. Pathology of lethal and sublethal exposure of
fathead minnows, Pimephales promelas, to cadmium: a model for aquatic toxicity
assessment. Jour. Toxicol. Environ. Health 11: 247.

Stuhlbacher, A. and L. Maltby. 1992. Cadmium resistance in Gammarus pulex
(1.). Arch. Environ. Contam. Toxicol. 22: 319-324.

235


-------
Stuhlbacher, A., M.C. Bradley, C. Naylor and P. Calow. 1992. Induction of
cadmium tolerance in two clones of Daphnia magna Straus. Comp. Biochem.
Physiol. 101C(3): 571-577.

Stuhlbacher, A., M.C. Bradley, C. Naylor and P. Calow. 1993. Variation in the
development of cadmium resistance in Daphnia magna Straus; effect of
temperature, nutrition, age and genotype. Environ. Pollut. 80(2): 153-158.

Sullivan, B.K., et al. 1983. Effects of copper and cadmium on growth, swimming
and predator avoidance in Eurytemora affinis (Copepoda). Mar. Biol. 77: 299.

Sunda, W.G. and S.A. Huntsman. 1996. Antagonisms between cadmium and zinc
toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr.
41(3) : 373-387 .

Sunda, W.G., et al. 1978. Effect of chemical speciation on toxicity of cadmium
to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environ.
Sci. Technol. 12: 409.

Sunderman, F.W., Jr., M.C. Plowman and S.M. Hopfer. 1991. Embryotoxicity and
teratogenicity of cadmium chloride in Xenopus laevis, assayed by the FETAX
procedure. Annals of Clinical and Laboratory Science. 21(6): 381-391.

Sunil, P.P.G, N. Siriwardena, K.J. Rana and D.J. Baird. 1995. A method for
partitioning cadmium bioaccumulated in small aquatic organisms. Environ.
Toxicol. Chem. 14(9): 1575-1577.

Sunila, I. and R. Lindstrom. 1985. Survival, growth and shell deformities of
copper- and cadmium-exposed mussels (Mytilus edulis L.) In brackish water.
Estuarine Coastal Shelf Sci. 21(4) : 555-565.

Suresh, A., B. Sivaramakrishna and K. Radhakrishnaiah. 1993a. Effect of lethal
and sublethal concentrations of cadmium on energetics in the gills of fry and
fingerlings of Cyprinus carpio. Bull. Environ. Contam. Toxicol. 51: 920-926.

Suresh, A., B. Sivaramakrishna and K. Radhakrishnaiah. 1993b. Patterns of
cadmium accumulation in the organs of fry and fingerlings of freshwater fish
Cyprinus carpio following cadmium exposure. Chemosphere. 26(5): 945-953.

236


-------
Suzuki, K.T., H. Sunaga, E. Kobayashi and S. Hatakeyama. 1987. Environmental
and injected cadmium are sequestered by two major isoforms of basal copper,
zinc-metallothionein in gibel (Carassius auratus langsdorfi) liver. Comp.
Biochem. Physiol. 87C (1) : 87-93.

Swinehart, J.H. 1990. Final Technical report for U.S.G.S. grant: the effects
of humic substances on the interactions of metal ions with organisms and
liposomes. Department of chemistry, University of California, Davis, CA 95616:
103.

Takamura, N., F. Kasai and M.M. Watanabe. 1989. Effects of Cu, Cd and Zn on
photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1: 39-52.

Talbot, V. 1985. Relationship between cadmium concentrations in seawater and
those in the mussel Mytilus edulis. Mar. Biol. 85: 51-54.

Talbot, V. 1987. Relationship between lead concentrations in seawater and in
the mussel Mytilus edulis: a water-quality criterion. Mar. Biol. 94: 557-560.

Taraldsen, J.E. and T.J. Norberg-King. 1990. New method for determining
effluent toxicity using duckweed (Lemna minor). Environ. Toxicol. Chem. 9:
761-767 .

Tarzwell, C.M. and C. Henderson. 1960. Toxicity of less common metals to
fishes. Ind. Wastes 5: 12.

Taylor, G., D.J. Baird and A.M.V.M. Soares. 1998. Surface binding of
contaminants by algae: consequences for lethal toxicity and feeding to Daphnia
magna Straus. Environ. Toxicol. Chem. 17(3): 412-419.

Temara, A., G. Ledent, M. Warnau, H. Paucot, M. Jangoux and P. Dubois. 1996a.
Experimental cadmium contamination of Asterias rubens (Echinodermata). Mar.
Ecol. Prog. Ser. 140: 83-90.

Temara, A., M. Warnau, G. Ledent, M. Jangoux and P. Dubois. 1996b. Allometric
variations in heavy metal bioconcentration in the asteroid Asterias rubens
(Echinodermata). Bull. Environ. Contam. Toxicol. 56: 98-105.

237


-------
Ten Hoopen, H.J.G., P.J. Nobel, A. Schaap, A. Fuchs and J.A. Roels. 1985.
Effects of temperature on cadmium toxicity to the green alga Scenedesmus
acutus. I. Development of cadmium tolerance in batch cultures. Antonie van
Leeuwenhoek. 51: 344-346.

Tessier, A., Y. Couillard, P.G.C. Campbell and J.C. Auclair. 1993. Modeling Cd
partitioning in oxic lake sediments and Cd concentrations in the freshwater
bivalve Anodonta grandis. Limnol Oceanogr. 38(1): 1-17.

Tessier, L., G. Vaillancourt and L. Pazdernik. 1994a. Comparative study of the
cadmium and mercury kinetics between the short-lived gastropod Viviparus
georgianus (lea) and pelecypod Elliptio complanata (lightfoot), under
laboratory conditions. Environ. Pollut. 271-282.

Tessier, L., G. Vaillancourt and L. Pazdernik. 1994b. Temperature effects on
cadmium and mercury kinetics in freshwater molluscs under laboratory
conditions. Arch. Environ. Contam. Toxicol. 26:179-184.

Tessier, L. G. Vaillancourt and L. Pazdernik. 1996. Laboratory study of Cd and
Hg uptake by two freshwater molluscs in relation to concentration, age and
exposure time. Water, Air Soil Pollut. 86: 347-357.

Thaker, A.A. and A.A. Haritos. 1989. Cadmium bioaccumulation and effects on
soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp
Callianassa tyrrhena. Comp. Biochem. Physiol. 94C(1): 63-7 0.

Thebault, M.T., A. Biegniewska, J.P. Raffin and E.F. Skorkowski. 1996. Short
term cadmium intoxication of the shrimp Palaemon serratus: effect on adenylate
metabolism. Comp. Biochem. Physiol. 113C(3): 345-348.

Theede, H., et al. 1979. Temperature and salinity effects on the acute
toxicity of cadmium to Laomedea loveni (Hydrozoa). Mar. Ecol. Progress Series
1: 13.

Thellen, C., C. Blaise, Y. Roy and C. Hickey. 1989. Round robin testing with
the Selenastrum capricornutum microplate toxicity assay. Hydrobiologia.
188/189: 259-268.

238


-------
Thomann, R.V., F. Shkreli and S. Harrison. 1997. A pharmacokinetic model of
cadmium in rainbow trout. Environ. Toxicol. Chem. 16(11): 2268-2274.

Thomas, D.G., A. Cryer, J.F. De L.G. Solbe and J. Kay. 1983. A comparison of
the accumulation and protein binding of environmental cadmium in the gills,
kidney and liver of rainbow trout (Salmo gairdneri Richardson). Comp. Biochem.
Physiol. 7 6C(2) : 241-246.

Thomas, D.G., M.W. Brown, D. Shurben, J.F. Del G. Solbe, A. Cryer and J. Kay.
1985. A comparison of the sequestration of cadmium and zinc in the tissues of
rainbow trout (Salmo gairdneri) following exposure to the metals singly or in
combination. Comp. Biochem. Physiol. 82C(1): 55-62.

Thompson, P.A. and P. Couture. 1991. Short- and long-term changes in growth
and biochemical composition of Selenastrum capricornutum populations exposed
to cadmium. Aquatic Toxicology. 21: 135-144.

Thompson, S.E., et al. 1972. Concentration factors of the chemical elements in
edible aquatic organisms. UCRL-50564. Rev. 1. National Technical Information
Service, Springfield, Virginia.

Thongra-ar, W. and 0. Matsuda. 1995. Effects of cadmium and zinc on growth of
Thalassiosira weissflogii and Heterosigma akiashiwo. In: A. Snidvongs, W.
Utoomprukporn and M. Hungspreugs (eds.), 1995, Proceedings of the NRCT-JSPS
Joint Seminar on Marine Science, December 2-3, 1993, Chulalongkorn University,
Songkhla, Thailand. Bangkok: Department of Marine Science: 90-96.

Thorp, J.H. and S.P. Gloss. 1986. Field and laboratory tests on acute
toxicity of cadmium to freshwater crayfish. Bull. Environ. Contam. Toxicol.
37: 355-361.

Thorp, J.H., et al. 1979. Effects of chronic cadmium exposure on crayfish
survival, growth, and tolerance to elevated temperatures. Arch. Environ.
Contam. Toxicol. 8: 449.

Thorpe, G.J. and J.D. Costlow. 1989. The relation of the acute (96-h) uptake
and subcellular distribution of cadmium and zinc to cadmium toxicity in larvae
of Rhithropanopeus harrisii and a Palaemonetes pugio. In: U.M. Cowgill and

239


-------
L.R. Williams (eds.), Aquatic Toxicology and Hazard Assessment, ASTM STP 1027,
Philadelphia, PA. 12: 82-94.

Thursby, G.B. and R.L. Steele. 1986. Comparison of short- and long-term sexual
reproduction tests with the marine red alga Champia Parvula. Environmental
Toxicology and Chemistry. 5: 1013-1018.

Timmermans, K.R., W. Peeters and M. Tonkes. 1992. Cadmium, zinc, lead and
copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): uptake
and effects. Hydrobiologia. 241: 119-134.

Tomasik, P., C.M. Magadza, S. Mhizha and A. Chirume. 1995a The metal-metal
interactions in biological systems. Part III. Daphnia magna. Water, Air Soil
Pollut. 82: 695-711.

Tomasik, P, C.M. Magadza, S. Mhizha, A. Chirume, M.F. Zaranyika and S.
Muchiriri. 1995b Metal-metal interaction in biological systems. Part IV.
Freshwater snail Bulinus globosus. Water, Air Soil Pollut. 83: 123-145.

Torres, E., A. Cid, C. Herrero and J. Abalde. 1998. Removal of cadmium ions by
the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term
kinetics of uptake. Bioresource Technology. 63: 213-220.

Tortell, P.D. and N.M. Price. 1996. Cadmium toxicity and zinc limitation in
centric diatoms of the genus Thalassiosira. Mar. Ecol. Prog. Ser. 138: 245-
254 .

Toudal, K. and H.U. Riisgard. 1987. Acute and sublethal effects of cadmium on
ingestion, egg production and life-cycle development in the copepod Acartia
tonsa. Mar. Ecol. Prog. Ser. 37: 141-146.

Toussaint, M.W., T.R. Shedd, W.H. Van der Schalie and G.R. Leather. 1995. A
comparison of standard acute toxicity test with rapid-screening toxicity test.
Environ. Toxicol. Chem. 14(5): 907-915.

Trehan, K. And Maneesha. 1994. Cadmium mediated control of nitrogenase
activity and other enzymes in a nitrogen fixing cyanobacterium. Acta
Microbiol. Hungarica. 41(4): 441-449.

240


-------
Trevors, J.T., G.W. Stratton and G.M. Gadd. 1986. Cadmium transport,
resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32:
447-464 .

Tucker, R.K. 1979. Effects of in vivo cadmium exposure on ATPases in gill of
the lobster, Homarus americanus. Bull. Environ. Contam. Toxicol. 23: 33.

Tucker, R.K. and A. Matte. 1980. In vitro effects of cadmium and lead on
ATPases in the gill of the rock crab, Cancer irroratus. Bull. Environ. Contam.
Toxicol. 24: 847.

Twagilimana, L., J. Bohatier, C-A. Groliere, F. Bonnemoy and D. Sargos. 1998.
A new low-cost microbiotest with the protozoan Spirostomum teres: culture
conditions and assessment of sensitivity of the ciliate to 14 pure chemicals.
Ecotoxicology and Environmental Safety. 41: 231-244.

Tyurin, A.N. and N.K. Khristoforova. 1993. Effect of toxicants on the
development of the chiton Ischnochiton hakodadensis. Russ. Mar. Biol. 29(5/6):
100-106.

U.S. EPA. 1976. Quality criteria for water. EPA-440/9-76-023. National
Technical Information Service, Springfield, Virginia.

U.S. EPA. 1980. Ambient water quality criteria for cadmium. EPA-440/5-80-025.
National Technical Information Service, Springfield, Virginia.

U.S. EPA. 1983a. Methods for chemical analysis of water and wastes. EPA-600/4-
79-020 (Revised March 1983). National Technical Information Service,
Springfield, Virginia.

U.S. EPA. 1983b. Water quality standards regulation. Federal Register 48:
51400. November 8.

U.S. EPA. 1983c. Water quality standards handbook. Office of Water Regulations
and Standards, Washington, D.C.

U.S. EPA. 1985. Ambient water quality criteria for cadmium. EPA-440/5-84-032
(Revised late 1984). National Technical Information Service, Springfield , VA.

241


-------
U.S. EPA. 1991. Technical support document for water quality-based toxics
control. EPA-505/2-90-001. Office of Water, Washington, D.C.

U.S. EPA. 1994a. Water quality standards handbook, second ed. EPA-823-B-94-
005b. Office of Water, Washington, D.C.

U.S. EPA. 1994b. Interim guidance on determination and use of water-effect
ratios for metals. U.S. Environmental Protection Agency, Office of Water,
Washington, D.C. EPA-823-B-94-001

U.S. EPA. 1999a. National Recommended Water Quality Criteria -- Correction.
EPA-822-Z-99-001. Office of Water, Washington, D.C.

U.S. EPA. 1999b. Integrated approach to assessing the bioavailability and
toxicity of metals in surface water and sediments. EPA-822-E-99-001. Office of
Water, Washington, D.C.

Udoidiong, O.M., P.M. Akpan. 1991. Toxicity of cadmium, lead and lindane to
Egeria radiata Lamarck (Lamellibranchia, Donacidae). Rev. Hydrobiol. Trap.
24(2): 111-117 .

Uthe, J.F., et al. 1982. Cadmium in American lobster (Homarus americanus) from
the area of a lead smelter. Can. Tech. Rept. Fish. Aquat. Sci. No. 1163.

Valencia, R., M. Gerpe, J. Trimmer, T. Buckman, A.Z. Mason and P.E. Olsson.
1998. The effect of estrogen on cadmium distribution in rainbow trout
(Oncorhynchus mykiss). Mar. Environ. Res. 46(1-5): 167-171.

Van den Hurk, P., M. Faisal and M.H. Roberts Jr. 1998. Interaction of cadmium
and benzo[a]pyrene in mummichog (Fundulus heteroclitus) : effects on acute
mortality. Mar. Environ. Res. 46(1-5) : 525-528.

Van der Heever, J.A. and J.U. Grobbelaar. 1996. The use of Selenastrum
capricornutum growth potential as a measure of toxicity of a few selected
compounds. Water SA 22(2): 183-191.

Van Gemert, J.M, H.J.G. Ten Hoopen, J.A. Roels and A. Fuchs. 1985. Effects of
temperature on cadmium toxicity to the green alga Scenedesmus acutus. II.

242


-------
Light-limited growth in continuous culture. Antonie van Leeuwenhoek. 51: 347-351.

Van Ginneken, L., M.J. Chowdhury and R. Blust. 1999. Bioavailability of
cadmium and zinc to the common carp, Cyprinus carpio, in complexing
environments: A test for the validity of the free ion activity model. Environ.
Toxicol. Chem. 18(10): 2295-2304.

Van Leeuwen, C.J., P.S. Griffioen, W.H.A. Vergouw and J.L. Maas-Diepeveen.
1985a. Differences in susceptibility of early life stages of rainbow trout
(Salmo gairdneri) to environmental pollutants. Aquatic Toxicology. 7: 59-78.

Van Leeuwen, C.J., W.J. Luttmer and P.S. Griffioen. 1985b. The use of cohorts
and populations in chronic toxicity studies with Daphnia magna: a cadmium
example. Ecotoxicol. Environ. Safety. 9: 26-39.

Van Leeuwen, C.J., G. Niebeek and M. Rijkeboer. 1987. Effects of chemical
stress on the population dynamics of Daphnia magna: a comparison of two test
procedures. Ecotoxicol. Environ. Safety. 14:1-11.

Van Steveninck, R.F.M., M.E. Van Steveninck and D.R. Fernando. 1992. Heavy-
metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor). Plant
Soil. 146: 271-280.

Vanegas, C., S. Espina, A.V. Botello and S. Villanueva. 1997. Acute toxicity
and synergism of cadmium and zinc in white shrimp, Penaeus setiferus,
juveniles. Bull. Environ. Contam. Toxicol. 58: 87-92.

Vashchenko, M.A. and P.M. Zhadan. 1993. Ecological assessment of marine
environment using two sea urchin tests, disturbance of reproduction and
sediment embryotoxicity. Sci. Total Environ. ppl235-1245.

Vasseur, P and P. Pandard. 1988. Influence of some experimental factors o
metals toxicity to Selenastrum capricornutum. Toxic. Assess. 3: 331-343.

Veldhuizen-Tsoerkan, M.B., D.A. Holwerda and D.I. Zandee. 1991. Anoxic
survival time and metabolic parameters as stress indices in sea mussels

243


-------
exposed to cadmium or polychlorinated biphenyls. Arch. Environ. Contam.
Toxicol. 20: 259-265.

Verbost, P.M., G. Flik, R.A.C. Lock and S.E.W. Bonga. 1987. Cadmium inhibition
of Ca2+ uptake in rainbow trout gills. Am. J. Physiol. 253 (Regulatory
Integrative Comp. Physiol. 22): R216-R221.

Verma, S.R., et al. 1980. Short term toxicity tests with heavy metals for
predicting safe concentrations. Toxicol. Letters 1: 113.

Vernberg, W.B., et al. 1974. Multiple environmental factor effects on
physiology and behavior of the fiddler crab, Uca pugilator. In: F.J. Vernberg
and W.B. Vernberg (eds.), Pollution and Physiology of Marine Organisms.
Academic Press, New York. p. 381.

Vernberg, W.B., et al. 1977. Effects of sublethal concentrations of cadmium on
adult Paleomonetes pugio under static and flow-through conditions. Bull.
Environ. Contam. Toxicol. 17: 16.

Verriopoulos, G. and M. Moraitou-Apostolopoulou. 1981. Effects of some
environmental factors on the toxicity of cadmium to the copepod Tisbe
holothuriae. Arch. Hydrobiol. 91: 287.

Verriopoulos, G. and M. Moraitou-Apostolopoulou. 1982. Differentiation of the
sensitivity to copper and cadmium in different life stages of a copepod. Mar.
Pollut. Bull. 13: 123.

Versteeg, D.J. 1990. Comparison of short- and long- term toxicity test results
for the green alga, Selenastrum capricornutum. Plants for Toxicity Assessment.
ASTM STP 1091. W. Wang, J.W. Gorsuch and W.R. Lower (eds), American Society
for Testing and Materials, Philadelphia, pp. 40-48.

Visviki, I. and J.W. Rachlin. 1991. The toxic action and interactions of
copper and cadmium to the marine alga Dunaliella minuta, in both acute and
chronic exposure. Arch. Environ. Contam. Toxicol. 20: 271-275.

Visviki, I. and J.W. Rachlin. 1994. Acute and chronic exposure of Dunaliella
salina and Chlamydomonas bullosa to Copper and cadmium: effects on growth.
Arch. Environ. Contam. Toxicol. 26: 149-153.

244


-------
Vogiatzis, A.K. and N.S. Loumbourdis. 1998. Cadmium accumulation in liver and
kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda,
after exposure to CdCl2. Arch. Environ. Contam. Toxicol. 34: 64-68.

Voyer, R.A. 1975. Effect of dissolved oxygen concentration on the acute
toxicity of cadmium to the mummichog, Fundulus heteroclitus. Trans. Am. Fish.
Soc. 104: 129.

Voyer, R.A. and D.G. McGovern. 1991. Influence of constant and fluctuating
salinity on responses of Mysidopsis bahia exposed to cadmium in a life-cycle
test. Aquatic Toxicology. 19: 215-230.

Voyer, R.A. and G. Modica. 1990. Influence of salinity and temperature on
acute toxicity of cadmium to Mysidopsis bahia Molenock. Arch. Environ. Contam.
Toxicol. 19: 124-131.

Voyer, R.A., et al. 1977. Viability of embryos of the winter flounder
Pseudopleuronectes americanus exposed to combinations of cadmium and salinity
at selected temperatures. Mar. Biol. 44: 117.

Voyer, R.A., et al. 1979. Hatching success and larval mortality in an
estuarine teleost, Menidia menidia (Linnaeus), exposed to cadmium in constant
and fluctuating salinity regimes. Bull. Environ. Contam. Toxicol. 23: 475.

Voyer, R.A., et al. 1982. Viability of embryos of the winter flounder
Pseudopleuronectes americanus exposed to mixtures of cadmium and silver in
combination with selected fixed salinities. Aquat. Toxicol. 2: 223.

Vranken, G, R. Vanderhaeghen and C. Heip. 1985. Toxicity of cadmium to free-
living marine and brackish water nematodes (Monhystera microphthalma,
Monhystera disjuncta, Pellioditis marina). Dis. Aquat. Org. 1: 49-58.

Vuori, K.M. 1993. Influence of water quality and feeding habits on the whole-
body metal concentrations in lotic trichopteran larvae. Limnol. 23(4): 301-
308 .

245


-------
Vuori, K.M. 1994. Rapid behavioural and morphological responses of
hydropsychid larvae (Trichoptera, Hydropsychidae) to sublethal cadmium
exposure. Environ. Pollut. 84: 291-299.

Vykusova, B., Z. Svobodova. 1987. Comparison of the sensitivity of male and
female guppies (Poecilia reticulata Peters) to toxic substances. Bull. Vurh
Vodnany. (CZE)(ENG ABS). 23(3): 20-23.

Vymazal, J. 1984. Short-term uptake of heavy metals by periphyton algae.
Hydrobiol. 119: 171-179.

Vymazal, J. 1990a. Toxicity and accumulation of lead with respect to algae and
cyanobacteria: a review. Acta Hydrochim. Hydrobiol. 18(5) : 513-535.

Vymazal, J. 1990b. Uptake of lead, chromium, cadmium and cobalt by Cladophora
glomerata. Bull. Environ. Contam. Toxicol. 44: 468-472.

Vymazal, J. 1995. Influence of pH on heavy metals uptake by Cladophora
glomerata. Pol. Arch. Hydrobiol. 42(3): 231-237.

Wall, S.B., J.J. Isley and T.W. La Point. 1996. Fish Bioturbation of cadmium-
contaminated sediments: factors affecting Cd availability to Daphnia magna.
Environ. Toxicol. Chem. 15(3) : 294-298.

Wallace, W.G. and G.R. Lopez. 1997. Bioavailability of biologically
sequestered cadmium and the implications of metal detoxification. Mar. Ecol.
Prog. Ser. 147: 149-157.

Walsh, G.E., L.L. McLaughlin, M.J. Yoder, P.H. Moody, E.M. Lores, J. Forester
and P.B. Wessinger-Duvall. 1988. Minutocellus polymorphus: a new marine diatom
for use in algal toxicity tests. Environmental Toxicology and Chemistry. 7:
925-929.

Walsh, K., R.H. Dunstan, R.N. Murdoch. 1995. Differential Bioaccumulation of
heavy metals and organopollutants in the soft tissue and shell of the marine
gastropod, Austrocochlea constricta. Arch. Environ. Contam. Toxicol. 28: 35-
39.

246


-------
Walsh, R.S. and K.A. Hunter. 1992. Influence of phosphorus storage on the
uptake of cadmium by the marine alga Macrocystis pyrifera. Limnol. Oceanogr.
37(7): 1361-1369.

Wang, J., M. Zhang, J. Xu and Y, Wang. 1995. Reciprocal effect of Cu, Cd, Zn
on a kind of marine alga. Water Res. 29(1) : 209-214.

Wang, W. 1986. Toxicity tests of aquatic pollutants by using common duckweed.
Environmental Pollution (Series B). 11: 1-14.

Wang, W.X. and N.S. Fisher. 1996. Assimilation of trace elements and carbon by
the mussel Mytilus edulis: effects of food composition. Limnol. Oceanogr.
41(2) : 197-207 .

Wang, W.X. and N.S. Fisher. 1998. Accumulation of trace elements in a marine
copepod. Limnol. Oceanogr. 43(2): 273-283.

Wang, W.X., N.S. Fisher and S.N. Luoma. 1996. Kinetic determinations of trace
element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser.
140: 91-113.

Wani, G.P. 1986. Toxicity of heavy metals to embryonic stages of Cyprinus
carpio communis Pollut. Res. 5(2): 47-51.

Warnau, M., G. Ledent, A. Temara, V. Alva, M. Jangoux and P. Dubois. 1995a.
Allometry of heavy metal bioconcentration in the echinoid Paracentrotus
lividus. Arch. Environ. Contam. Toxicol. 29: 393-399.

Warnau, M., G. Ledent, A. Temara, M Jangoux and P. Dubois. 1995b. Experimental
cadmium contamination of the echinoid Paracentrotus lividus: influence of
exposure mode and distribution of the metal in the organism. 116: 117-124.

Warnau, M., J.L. Teyssie and S.W. Fowler. 1995c. Effect of feeding on cadmium
bioaccumulation in the echinoid Paracentrotus lividus (Echinodermata). Mar.
Ecol. Prog. Ser. 126: 305-309.

Warnau, M., S.W. Fowler and J.L. Teyssie. 1996a. Biokinetics of selected heavy
metals and radionuclides in two marine macrophytes: the seagrass Posidonia
oceanica and the alga Caulerpa taxifolia. Mar. Environ. Res. 41(4) : 343-362.

247


-------
Warnau, M., M. Iaccarino, A. De Biase, A. Temara, M Jangoux, P. Dubois and G.
Pagano. 1996b. Spermiotoxicity and embryotoxicity of heavy metals in the
echinoid Paracentrotus lividus. Environ. Toxicol Chem. 15(11): 1931-1936.

Warnau, M., J.L., Teyssie and S.W. Fowler, 1997. Cadmium bioconcentration in
the echinoid Paracentrotus lividus: influence of the cadmium concentration in
seawater. Mar. Environ. Res. 43(4) : 303-314.

Warnick, S.L. and H.L. Bell. 1969. The acute toxicity of some heavy metals to
different species of aquatic insects. Jour. Water Pollut. Control Fed. 41:
280.

Warren, L.A., A. Tessier and L. Hare. 1998. Modelling cadmium accumulation by
benthic invertebrates in situ: the relative contributions of sediment and
overlying water reservoirs to organism cadmium concentrations. Limnol.
Oceanogr. 43(7): 1442-1454.

Watling, H.R. 1981. Effects of metals on the development of oyster embryos.
South African Jour. Sci. 77: 134.

Watling, H.R. 1982. Comparative study on the effects of zinc, cadmium, and
copper on the larval growth of three oyster species. Bull. Environ. Contam.
Toxicol. 28: 195.

Watling, H.R. 1983a. Accumulation of seven metals by Crassostrea gigas,
Crassostrea margaritacea, Perna perna, and Choromytilus meridionalis. Bull.
Environ. Contam. Toxicol. 30: 317.

Watling, H.R. 1983b. Comparative study on the effects of metals on the
settlement of Crassostrea gigas. Bull. Environ. Contam. Toxicol. 31: 344.

Watson, C.F. 1988. Sublethal effects of cadmium exposure on freshwater
teleosts. Northeast Louisiana University, pp. 136.

Weber, W.J., Jr. and W. Stumm. 1963. Mechanism of hydrogen ion buffering in
natural waters. Jour. Am. Water Works Assoc. 55: 1553.

Weimin, Y., G.E. Batley and M. Ahsanuullah. 1994. Metal bioavailability to the
soldier crab Mictyris longicarpus. Sci. Total Environ. 141: 27-44.

248


-------
Weis, J.S., et al. 1981. Effects of cadmium, zinc, salinity, and temperature
on the teratogenicity of methylmercury to the killifish (Fundulus
heteroclitus) . Rapp. P. v. Reun. Cons. Int. Explor. Mer. 178: 64.

Westerman, A.G. and W.J. Birge. 1978. Accelerated rate of albinism in channel
catfish exposed to metals. Prog. Fish-Cult. 40: 143.

Westernhagen, H.V. and V. Dethlefsen. 1975. Combined effects of cadmium and
salinity on development and survival of flounder eggs. Jour. Mar. Biol. Assoc.
U.K. 55: 945.

Westernhagen, H.V., et al. 1975. Combined effects of cadmium and salinity on
development and survival of garpike eggs. Helgol. Wiss. Meeresunters. 27: 268.

Westernhagen, H.V., et al. 1978. Fate and effects of cadmium in an
experimental marine ecosystem. Helgol. Wiss. Meeresunters. 31: 471.

Westernhagen, H.V., et al. 1979. Combined effects of cadmium, copper and lead
on developing herring eggs and larvae. Helgol. Wiss. Meeresunters. 32: 257.

White, D.H. and M.T. Finley. 1978a. Effects of dietary cadmium in mallard
ducks. In: D.D. Hemphill (ed.), Trace Substances in Environmental Health-XII.
University of Missouri, Columbia, Missouri, p. 220.

White, D.H. and M.T. Finley. 1978b. Uptake and retention of dietary cadmium in
mallard ducks. Environ. Res. 17: 53.

White, D.H., et al. 1978. Histopathologic effects of dietary cadmium on
kidneys and testes of mallard ducks. Jour. Toxicol. Environ. Health 4: 551.

White, S.L. and P.S. Rainbow. 1982. Regulation and accumulation of copper,
zinc and cadmium by the shrimp Palaemon elegans. Mar. Ecol. Progress Series 8:
95.

White, S.L. and P.S. Rainbow. 1986. Accumulation of cadmium by Palaemon
elegans (crustacea: decapoda). Mar. Ecol. Prog. Ser. 32: 17-25.

249


-------
Wicklum, D. and R.W. Davies. 1996. The effects of chronic cadmium stress on
energy acquisition and allocation in a freshwater benthic invertebrate
predator. Aquatic Toxicology. 35: 237-252.

Wicklum, D., D.E.C. Smith and R.W. Davies. 1997. Mortality, preference,
avoidance, and activity of a predatory leech exposed to cadmium. Arch.

Environ. Contam. Toxicol. 32: 178-183.

Wicklund, A. and P. Runn. 1988. Calcium effects on cadmium uptake,
redistribution, and elimination in minnows, Phoxinus phoxinus, acclimated to
different calcium concentrations. Aquat. Toxicol. 13: 109-122.

Wicklund, A., P. Runn and L. Norrgren. 1988. Cadmium and zinc interactions in
fish: effects of zinc on the uptake, organ distribution, and elimination of
109Cd in the zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 17:
345-354 .

Wier, C.F. and W.M. Walter. 1976. Toxicity of cadmium in the freshwater snail,
Physa gyrina Say. Jour. Environ. Qual. 5: 359.

Wikfors, G.H. and R. Ukeles. 1982. Growth and adaptation of estuarine
unicellular algae in media with excess copper, cadmium or zinc, and effects of
metal-contaminated algal food on Crassostrea virginica larvae. Mar. Ecol.
Progress Series 7: 191.

Wilczok, A., U. Mazurek, D. Tyrawska, B. Sosak-Swiderska. 1994. Effect of
cadmium on the cell division of Chlorella vulgaris Beij. 1890, strain A-8.
Pol. Arch. Hydrobiol. 41(1) : 123-131.

Wildgust, M.A. and M.B. Jones. 1998. Salinity change and the toxicity of the
free cadmium ion [Cd2+(aq)] to Neomysis integer (Crustacea: Mysidacea) . Aquatic
Toxicology. 41: 187-192.

Williams, C.J., D. Aderhold and R.G.J. Edyvean. 1998. Comparison between
biosorbents for the removal of metal ions from aqueous solutions.

Williams, D.R. and J.P. Giesy, Jr. 1978. Relative importance of food and water
sources to cadmium uptake by Gambusia affinis (Poeciliidae). Environ. Res. 16:
326.

250


-------
Williams, K.A., D.W.J. Green and D. Pascoe. 1985. Studies on the acute
toxicity of pollutants to freshwater macroinvertebrates 1. Cadmium. Arch.
Hydrobiol. 102(4): 461-471.

Williams, K.A., D.W.J. Green, D. Pascoe and D.E. Gower. 1986. The acute
toxicity of cadmium to different larval stages of Chironomus riparius
(diptera: chironomidae) and its ecological significance for pollution
regulation. Oecologia. 70(3): 362-366.

Williams, K.A., D.W.J. Green, D. Pascoe and D.E. Gower. 1987. Effect of
cadmium on oviposition and egg viability in Chironomus riparius (diptera:
chironomidae). Bull. Environ. Contam. Toxicol. 38: 86-90.

Williams, P.L and D.B. Dusenbery. 1990. Aquatic toxicity testing using the
nematode, Caenorhabditis elegans. Environmental Toxicology and Chemistry.
9:1285-1290.

Windom, H.L., et al. 1982. Metal accumulation by the polychaete Capitella
capitata: influences of metal content and nutritional quality of detritus.
Can. Jour. Fish. Aquat. Sci. 39: 191.

Winner, R.W. 1984. The toxicity and biaccumulation of cadmium and copper as
affected by humic acid. Aquat. Toxicol. 5: 267.

Winner, R.W. 1986. Interactive effects of water hardness and humic acid on the
chronic toxicity of cadmium to Daphnia pulex. Aquatic Toxicology. 8: 281-293.

Winner. R.W. 1988. Evaluation of the relative sensitivities of 7-d Daphnia
magna and Ceriodaphnia dubia toxicity tests for cadmium and sodium
pentachlorophenate. Environmental Toxicology and Chemistry. 7: 153-159.

Winner, R.W. and J.D. Gauss. 1986. Relationship between chronic toxicity and
bioaccumulation of copper, cadmium and zinc as affected by water hardness and
humic acid. Aquat. Toxicol. 8: 149-161.

Winner, R.W. and T.C. Whitford. 1987. The interactive effects of a cadmium
stress, a selenium deficiency and water temperature on the survival and
reproduction of Daphnia magna Straus. Aquatic Toxicology. 10: 217-224.

251


-------
Winter, S. 1996. Cadmium uptake kinetics by freshwater mollusc soft body under
hard and soft water conditions. Chemosphere. 32(10): 1937-1948.

Witeska, M., B. Jezierska and J. Chaber. 1995. The influence of cadmium on
common carp embryos and larvae. Aquaculture. 129: 129-132.

Witzel, B. 1998. Uptake, storage and loss of cadmium and lead in the woodlouse
Porcellio scaber (crustacea, isopoda). Water, Air, Soil Pollut. 108: 51-68.

Wong, C.K. 1989. Effects of cadmium on the feeding behavior of the freshwater
cladoceran Moina macrocopa. 1989. Chemosphere. 18(7/8): 1681-1687.

Wong, C.K. and P.K. Wong. 1990. Life table evaluation of the effects of
cadmium exposure on the freshwater cladoceran, Moina macrocopa. Bull. Environ.
Contam. Toxicol. 44: 135-141.

Wong, P.T.S. 1987. Toxicity of cadmium to freshwater microorganisms,
phytoplankton, and invertebrates.

Wong, P.T.S., et al. 1982. Physiological and biochemical responses of several
freshwater algae to a mixture of metals. Chemosphere 11: 367.

Woodall, C, N. Maclean and F. Crossley. 1988. Responses of trout fry (Salmo
gairdneri) and Xenopus laevis tadpoles to cadmium and zinc. Comp. Biochem.
Physiol. 8 9C(1) : 93-99.

Woodling, J.D. 1993. Survival and mortality of brown trout (Salmo trutta)
exposed to in situ acute toxic concentrations of cadmium and zinc. University
of Colorado at Boulder, pp. 130.

Woodward, D.F., A.M. Farag, H.L. Bergman, A.J. DeLonay, E.E. little, C.E.

Smith and F.T. Barrow. 1995. Metals-contaminated benthic invertebrates in the
Clark Fork River, Montana: effects on age-0 brown trout and rainbow trout.
Can. J. Fish. Aquat. Sci. 52: 1994-2004.

Woodworth, J. and D. Pascoe. 1982. Cadmium toxicity to rainbow trout, Salmo
gairdneri Richardson: a study of eggs and alevins. Jour. Fish Biol. 21: 47.

252


-------
Woodworth, J. and D. Pascoe. 1983. Cadmium uptake and distribution in
sticklebacks related to the concentration and method of exposure. Ecotoxicol.
Environ. Safe. 7: 525-530.

Wren, M.J. and D. McCarroll. 1990. A simple and sensitive bioassay for the
detection of toxic materials using a unicellular green alga. Environmental
Pollution. 64: 87-91.

Wright, D.A. 1977. The effect of salinity on cadmium uptake by the tissues of
the shore crab, Carcinus maenas. Exp. Biol. 67: 137.

Wright, D.A. 1988. Dose-related toxicity of copper and cadmium in striped bass
larvae from the Chespeake Bay: field considerations. Wat. Sci. Tech. 20(6/7):
39-48 .

Wright, D.A. and J.W. Frain. 1981. Cadmium toxicity in Marinogammarus
obtusatus: effect of external calcium. Environ. Res. 24: 338.

Wright, D.A. and P.M. Welbourn. 1994. Cadmium in the aquatic environment: a
review of ecological, physiological, and toxicological effects on biota.
Environ. Reviews 2: 187-214.

Wright, D.A., M.J. Meteyer and F.D. Martin. 1985. Effect of calcium on cadmium
uptake and toxicity in larvae and juveniles of striped bass (Morone
saxatilis). Bull. Environ. Contam. Toxicol. 34(2): 196-204.

Wu, R.S.S., P.K.S. Lam and B. Zhou. 1997. A settlement inhibition assay with
cyprid larvae of the barnacle Balanus amphitrite. Chemosphere. 35(9): 1867-
1874 .

Wundram, M., D. Selmar and M. Bahadir. 1996. The Chlamydomonas test: a new
phytotoxicity test based on the inhibition of algal photosynthesis enables the
assessment of hazardous leachates from waste disposals in salt mines.
Chemosphere. 32(8): 1623-1632.

253


-------
Xiaorong, W. J. Mei, S. Hao and X. Ouyong. 1997. Effects of chelation on the
bioconcentration of cadmium and copper by carp (Cyprinus carpio L.). Bull.
Environ. Contam. Toxicol. 59: 120-124.

Xue, H. and L. Sigg. 1998. Cadmium speciation and complexation by natural
organic ligands in freshwater. Analytica Chemica Acta. 363: 249-259.

Yager, C.M. and H.W. Harry. 1964. The uptake of radioactive zinc, cadmium and
copper by the freshwater snail, Taphius glabratus. Malacologia 1: 339.

Yamamoto, Y and M. Inoue. 1985. Lethal tolerance of acute cadmium toxicity in
rainbow trout previously exposed to cadmium. Bull. Jpn. Soc. Sci. Fish.
51(10): 1733-1735.

Zanders, I.P. and W.E. Rojas. 1996. Salinity effects on cadmium accumulation
in various tissues of the tropical fiddler crab Uca rapax. Environ. Pollut.
94(3): 293-299.

Zaroogian, G.E. 1979. Studies on the depuration of cadmium and copper by the
American oyster Crassostrea virginica. Bull. Environ. Contam. Toxicol. 23:
117 .

Zaroogian, G.E. 1980. Crassostrea virginica as an indicator of cadmium
pollution. Mar. Biol. (Berl.). 58(4): 275-284.

Zaroogian, G.E. and S. Cheer. 1976. Cadmium accumulation by the American
oyster, Crassostrea virginica. Nature. 261: 408.

Zaroogian, G.E. and G. Morrison. 1981.
Crassostrea virginica on fecundity and
Contam. Toxicol. 27: 344.

Effect of cadmium body burdens in adult
viability of larvae. Bull. Environ.

Zauke, G.P., R. Von Lemm, H.G. Meurs and W. Butte. 1995. Validation of
estuarine gammarid collectives (amphipoda: Crustacea) as biomonitors for
cadmium in semi-controlled toxicokinetic flow-through experiments. Environ.
Pollut. 90(2): 209-219.

254


-------
Zhang, M., J. Wang and J. Bao. 1992. Study on the relationship between
speciation of heavy metals and their ecotoxicity. Chin. J. Oceanol. Limnol.
10(3): 215-222.

Zia, S. and D.G. McDonald. 1994. Role of the gills and gill chloride cells in
metal uptake in the freshwater-adapted rainbow trout, Oncorhynchus mykiss.
Can. J. Fish. Aquat. Sci. 51: 2482-2492.

Zou, E. And S. Bu. 1994. Acute toxicity of copper, cadmium, and zinc to the
water flea, Moina irrasa (cladocera). Bull. Environ. Contam. Toxicol. 52: 742-
748 .

Zuiderveen, J.A. and W.J. Birge. 1997. The relationship between chronic values
in toxicity tests with Ceriodaphnia dubia. Environmental Toxicology and Risk
Assessment: Modeling and Risk Assessment (sixth volume), ASTM STP 1317, F.J.
Dwyer, T.R. Doane and M.L. Hinman (eds), American Society for Testing and
Materials, pp. 551-556.

255


-------