DRAFT
2000 UPDATE OF AMBIENT WATER QUALITY CRITERIA FOR
CADMIUM
Prepared by:
Great Lakes Environmental Center
Traverse City, Michigan 49686
Prepared for:
U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, DC
EPA Contract No. 68-C-98-134
Work Assignment No. 1-11
-------
DRAFT
2000 UPDATE OF AMBIENT WATER QUALITY CRITERIA FOR
CADMIUM
(CAS Registry Number 7440-43-9)
June 2000
U.S. Environmental Protection Agency
Office of Water
Office of Science and Technology
Washington, DC
-------
NOTICES
This document has been reviewed by the Health and Ecological Effects Criteria
Division, Office of Science and Technology, U.S. Environmental Protection
Agency, and approved for publication.
Mention of trade names or commercial products does not constitute endorsement
or recommendation for use.
This document is available to the public through the National Technical
Information Service (NTIS), 5285 Port Royal Road, Springfield, VA 22161.
11
-------
FOREWORD
iii
-------
ACKNOWLEDGMENTS
John G. Eaton John H. Gentile
(freshwater author) (saltwater author)
Environmental Research Laboratory Environmental Research Laboratory
Duluth, Minnesota Narragansett, Rhode Island
Charles E. Stephan David J. Hansen
(document coordinator) (saltwater coordinator)
Environmental Research Laboratory Environmental Research Laboratory
Duluth, Minnesota Narragansett, Rhode Island
Statistical Support:John W. Rogers
Clerical Support:Terry L. Highland
Document Update Effort: June, 2000
Gregory J. Smith
(freshwater contributor)
Great Lakes Environmental Center
Columbus, Ohio
Cindy Roberts
(document coordinator)
USEPA
Health and Ecological Effects
Criteria Division
Washington, D.C.
IV
-------
CONTENTS
Page
Notices ii
Foreword iii
Acknowledgments iv
Contents v
Tables vi
Figures vi
Introduction 1
Acute Toxicity to Aquatic Animals 2
Chronic Toxicity to Aquatic Animals 10
Toxicity to Aquatic Plants 17
Bioaccumulation 18
Other Data 19
Unused Data 22
Summary 2 9
National Criteria 30
References 138
V
-------
TABLES
la. Acute Toxicity of Cadmium to Aquatic Animals 38
lb. Results of Covariance Analysis of Freshwater Acute Toxicity
Versus Hardness 65
2a. Chronic Toxicity of Cadmium to Aquatic Animals 66
2b. Results of Covariance Analysis of Freshwater Chronic Toxicity
Versus Hardness 70
2c. Acute-Chronic Ratio 71
3a. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic
Ratios 72
3b. Ranked Freshwater Genus Mean Chronic Values 83
4. Toxicity of Cadmium to Aquatic Plants 85
5. Bioaccumulation of Cadmium by Aquatic Organisms 91
6. Other Data on Effects of Cadmium on Aquatic Organisms 95
FIGURES
1. Comparison of All Table 1 Freshwater Acute Toxicity Test EC50s and
LC50s with the Hardness Slope Derived CMC 33
2. Ranked Summary of Cadmium GMAVs (Freshwater) 34
3. Ranked Summary of Cadmium GMAVs (Saltwater) 35
4. Comparison of All Table 2 Freshwater Chronic Values with the
Hardness Slope Derived CCC 36
5. Chronic Toxicity of Cadmium to Aquatic Animals 37
vi
-------
Introduction1
Cadmium is a relatively rare element that is not essential for any
biological process in plants or animals. It occurs mainly as a component of
minerals in the earth's crust at an average concentration of 0.18 ppm (Babich
and Stotzky 1978). Cadmium levels in soils usually range from approximately
0.01 to 1.8 ppm (Lagerwerff and Specht 1970). In natural fresh waters,
cadmium sometimes occurs at concentrations of less than 0.01 /ig/L, but in
environments impacted by man, concentrations can be several micrograms per
liter or greater. Cadmium can enter the environment from various
anthropogenic sources, such as by-products from zinc refining, coal
combustion, mine wastes, electroplating processes, iron and steel production,
fertilizers and pesticides (Hutton 1983).
The impact of cadmium on aquatic organisms depends on a variety of
possible chemical forms of cadmium (Callahan et al. 1979), which might have
different toxicities and bioconcentration factors. In most well oxygenated
fresh waters that are low in total organic carbon, free divalent cadmium will
be the predominant form. Precipitation by carbonate or hydroxide and
formation of soluble complexes by chloride, sulfate, carbonate, and hydroxide
should usually be of little importance. In salt waters with salinities from
about 10 to 35 g/kg, cadmium chloride complexes predominate. In both fresh
and salt waters, particulate matter and dissolved organic material may bind a
substantial portion of the cadmium.
Because of the variety of forms of cadmium (Callahan et al. 1979) and
lack of definitive information about their relative toxicities, no available
analytical measurement is known to be ideal for expressing aquatic life
criteria for cadmium. Previous aquatic life criteria for cadmium (U.S. EPA
1980) were expressed in terms of total recoverable cadmium (U.S. EPA 1983a),
but this measurement is probably too rigorous in some situations. More
recently, U.S. EPA (1985) expressed cadmium criteria as acid-soluble cadmium
(operationally defined as the cadmium that passes through a 0.45 /im membrane
filter after the sample is acidified to pH = 1.5 to 2.0 with nitric acid).
1 An understanding of the "Guidelines for Deriving Numerical National
Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses"
(Stephan et al. 1985), hereafter referred to as the Guidelines, is necessary
in order to understand the following text, tables, and calculations.
1
-------
The criteria presented herein supersede previous aquatic life water
quality criteria for cadmium (U.S. EPA 1976, 1980, 1985, 1995, 1999a) because
these new criteria were derived based on the most recent literature. Whenever
adequately justified, a national criterion may be replaced by a site-specific
criterion (U.S. EPA 1994a), which may include not only site-specific criterion
concentrations (U.S. EPA 1994b), but also site-specific durations of averaging
periods and site-specific frequencies of allowed exceedences (U.S. EPA 1991).
All concentrations are expressed as cadmium, not as the chemical tested. The
latest literature search for information for this document was conducted in
June, 1999; some newer information was also used.
Acute Toxicity to Aquatic Animals
Acceptable data on the acute effects of cadmium in freshwater are
available for 43 species of invertebrates, 27 species of fish, one salamander
species, and one frog species (Table 1). Although many factors might affect
the results of tests of the toxicity of cadmium to aquatic organisms (Sprague
1985), water quality criteria can quantitatively take into account only
factors for which enough data are available to show that the factor similarly
affects the results of tests with a variety of species. Hardness is often
thought of as having a major effect on the toxicity of cadmium, although the
observed effect may be due to one or more of a number of usually interrelated
ions, such as hydroxide, carbonate, calcium, and magnesium. Hardness is used
here as a surrogate for the ions which affect the results of toxicity tests on
cadmium.
Acute tests were conducted at three different levels of water hardness
with Daphnia magna (Chapman et al. Manuscript), demonstrating that daphnids
were at least five times more sensitive to cadmium in soft than hard water
(Table 1). Data in Table 1 also indicate that cadmium was more toxic to the
tubificid worm Limnodrilus hoffmeisteri, Ceriodaphnia reticulata, Daphnia
pulex, chinook salmon, goldfish, fathead minnow, green sunfish, striped bass
and bluegill in soft than in hard water. Other species tested at different
hardness levels (e.g., rainbow trout) did not show the same consistent water
hardness to acute toxicity relationship as discussed above, possibly due to
differences in the various test conditions. Carroll et al. (1979) found that
calcium, but not magnesium, reduced the acute toxicity of cadmium.
Other water quality characteristics could potentially influence the
2
-------
toxicity of cadmium to aquatic species. Giesy et al. (1977) found that
dissolved organics substantially reduced the toxicity of cadmium to daphnids,
but had little effect on its toxicity to fish. No consistent relationship
between toxicity and organic particle size was observed. Development of the
"biotic ligand model" (BLM - formerly the "gill model") in recent years has
attempted to better account for the bioavailability of metals to aquatic life.
The BLM, which quantifies the capacity of metals to bind to the gills of
aquatic organisms, can be used to calculate the bioavailable portion of
dissolved metals in the water column based on site-specific water quality
parameters such as alkalinity, pH and dissolved organic carbon (U.S. EPA
1999b). Future development of the BLM for cadmium will help better quantify
the bioavailable fraction of cadmium.
A tendency for increasing resistance to toxicity with increasing size or
age has been reported (Table 1) in the snails, Amnicola sp. (Rehwoldt et al.
1973) and Physa gyrina (Wier and Walter 1976), the coho salmon (Chapman 1975),
and the common carp (Suresh et al. (1993). No such effect was observed with
increasing age (Table 1) in the cladoceran, Daphnia magna (Stuhlbacher et al.
1993), the rainbow trout (Chapman 1975, 1978), or in the striped bass (Hughes
1973; Palawski et al. 1985). Data are unavailable for a sufficient number of
species and life stages to allow general adjustment of test results or
criteria on the basis of size or life stage. Where relationships were
apparent between life-stage and sensitivity, only values for the most
sensitive life-stage were considered.
Currently, the primary quantitative correlation used to modify metal
toxicity estimates is water hardness (viz. the USEPA 1984 water quality
criteria for cadmium). Hardness (as calcium or magnesium ions) almost
certainly has some direct effect on cadmium toxicity (e.g. by influencing
membrane integrity), but it also serves as a general surrogate for pH,
alkalinity, and ionic strength, because waters of higher hardness usually have
higher pH, alkalinity, and ionic strength.
Although past water quality criteria for cadmium (and other metals) have
been established upon the loosely defined term of "acid soluble metals," U.S.
EPA made the decision to allow the expression of metal criteria on the basis
of dissolved metal (U.S. EPA 1994), operationally defined as that metal that
passes through a 0.45 micron filter. Because most of the data in existing
databases are from tests that were either nominal concentrations, or provided
3
-------
only total cadmium measurements, some procedure was required to estimate their
dissolved equivalents. U.S. EPA evaluated the data on dissolved-total
relationships from existing data, and then had a number of tests conducted
under conditions (static, flow-through, fed, and unfed) that typified standard
acute and chronic toxicity tests from which criteria are derived. These
studies were used to derive conversion factors (CFs) (Stephan 1995; Lussier et
al. 1995; Univ. of Wisconsin-Superior 1995). For certain metals like cadmium,
these CFs are hardness dependent.
Based upon the results of these studies, acute freshwater total cadmium
concentrations were converted to dissolved concentrations using the factor of
0.97 at a total hardness level of 50 mg/L as CaC03, 0.94 at a total hardness
level of 100 mg/L as CaC03j and 0.92 at a total hardness level of 200 mg/L as
CaC03_ Acute saltwater total cadmium values were converted to dissolved using
the factor of 0.994. For the final criterion values, conversion from total to
dissolved was used because hardness relationships were established based upon
total cadmium concentrations as this minimized the number of conversions
required, and because of the uncertainty of the conversion factor in tests
reporting acute toxicity at higher cadmium concentrations. In cases where
only dissolved cadmium was reported in freshwater, conversion to total used
the same appropriate factor.
To account for the apparent relationship of cadmium acute toxicity to
hardness, an analysis of covariance (Dixon and Brown 1979; Neter and Wasserman
1974) as noted in the guidelines (Stephan 1985) was performed using the
Statistical Analysis System (SAS Inc., Cary, NC) software program to calculate
the pooled slope for hardness using the natural logarithm of the acute value
as the dependent variable, species as the treatment or grouping variable, and
the natural logarithm of hardness as the covariate or independent variable.
The pooled slope is a regression slope from a pooled data set, where every
variable is adjusted relative to it's mean. The species are adjusted
separately, then pooled for a single conventional least squares regression
analysis. The slope of the regression line is the best estimate of the
all-species relationship between toxicity and hardness. With analysis of
covariance, different species will be weighted relative to the number of data
points they have. In this case, the fathead minnow has 29 data points out of
the total of 69, and the next most frequent species has just 6 data points.
This analysis of covariance model was fit to the data in Table 1 for the
4
-------
10 species for which definitive acute values are available over a range of
hardness such that the highest hardness is at least three times the lowest,
and the highest is also at least 100 mg/L higher than the lowest (other
species in Table 1 either did not meet these criteria or did not show any
hardness-toxicity trend due to differences in exposure methods, species age,
etc.). For D. magna, only acute toxicity tests that were initiated with less
than 24-hr old neonates were used to estimate the hardness slope. For the
striped bass, the data from Rehwoldt et al. (1972) were not used because the
data were too divergent. The slopes for all 10 species ranged from 0.1720 to
1.535, and the pooled slope for these 10 species was 0.9931 (see Table lb).
An F-test was used to test whether a model with separate species slopes for
each species gives significantly better fit to the data than the model with
parallel slopes. This test showed that the separate slopes model is not
significantly better, and therefore the slopes are not significantly different
than the overall pooled slope (P=0.66). The slopes and confidence intervals
associated with the 10 species indicated that D. magna (all available data)
had a very flat slope and a large confidence interval (and large standard
error). If only the D. magna data from Chapman et al. (Manuscript) were used,
the resultant D. magna slope was 1.1824, with smaller confidence intervals
than for the all D. magna slope. If this reduced data set is used (all
species but using only data from Chapman et al. (Manuscript) for D. magna),
the pooled slope for these species was 1.2049 (see Table lb). The test for
equality of the 10 slopes using the reduced data set (all species but only
Chapman D. magna data) produced P=0.99. It therefore is reasonable to assume
that the slopes for these 10 species are the same, and that the overall slope
is a reasonable estimate of the average relationship between hardness and
toxicity. Either p value indicated that it was reasonable to assume that the
slopes were the same, however, the second model was considered the better
model and was therefore selected. The pooled slope of 1.2049 is close to the
slope of 1.0 that is expected on the basis that cadmium, calcium, magnesium,
and carbonate all have a charge of two. A plot of the acute effect level
(EC50 or LC50) versus total hardness is provided in Figure 1.
The potential for a back-trans formation bias associated with the
hardness slope adjustment has been noted by Newman (1991). However, the bias
discussed by the author reviews bias for single species in least squares
regression, rather than ANCOVA used here, so it is not clear how biases may
5
-------
accumulate (or cancel) with combined species and a combined slope.
The pooled slope of 1.2049 was used to adjust the freshwater acute
values in Table 1 to hardness = 50 mg/L, except where it was not possible
because no hardness was reported. Species Mean Acute Values (SMAV) were
calculated as geometric means of the adjusted acute values. As stated in the
guidelines (Stephen 1985), flow-through measured study data are given
preference over non-flow-through data for a particular species. In certain
cases flow-through measured results were available, yet preference was given
to the sensitive life stage for certain species in calculating SMAVs. Only
data from Chapman (1975) were used for coho salmon and only data from Rehwoldt
et al. (1972) were used for the common carp to avoid using test results from
studies in which the life stage tested is known to be less sensitive, or in
which the life stage tested is unreported and the higher LC50s may be due
primarily to the use of less sensitive life stages. The available acute
values for U. imbecilis, striped bass and brook trout covered a wide range.
The data for Palawski et al. (1985) were used for striped bass because they
were considered better data than those given in U.S. EPA (1985), although the
data from Hughes (1973) support the newer data. Only some of the Keller
unpublished data were used to calculate the SMAV for U. imbecilis. The data
for brook trout were not used in the calculation of the Final Acute Value.
Drummond and Benoit (Manuscript) reported that stress greatly affected the
sensitivity of brook trout to cadmium.
The SMAV for freshwater invertebrates ranged from 12.00 vig/L total
cadmium for the mussel, Anodonta coupierana to 78,579 vig/L total cadmium for
the midge, Chironomus riparius. Of the fish species tested, the brown trout,
Salmo trutta, had the lowest SMAV of 1.656 vig/L total cadmium, and the
tilapia, Oreochromis mossambica, recorded the highest fish SMAV of 11,861 vig/L
total cadmium. As indicated by the data, both invertebrate and fish species
display a wide range of sensitivities to cadmium.
Fish species represent eight of the nine most sensitive species to
cadmium (Table 3). Salmonids (Salmo trutta, Oncorhynchus kisutch,
Oncorhynchus mykiss, and Oncorhynchus tshawytscha) are four of the five most
sensitive species listed in Table 1, and thus are more sensitive to cadmium
than any other freshwater animal species thus far tested (Chapman 1975, 1978,
1982; Cusimano et al. 1986; Davies et al. 1993; Finlayson and Verrue 1982;
Phipps and Holcombe 1985; Spehar and Carlson 1984a,b). The mussel, Anodonta
6
-------
couplerana, is the sixth most sensitive species to cadmium, and thus the most
sensitive invertebrate species tested thus far (Keller Unpublished).
Genus Mean Acute Values (GMAV) at a hardness of 50 mg/L were then
calculated (Table 3) as geometric means of the available freshwater Species
Mean Acute Values and ranked. Of the 59 genera for which acute values are
available, the most sensitive genus, Salmo, is over 47,451 times more
sensitive than the most resistant, Chironomus. The first through fourth most
sensitive genera (and a total n of 59 were considered) in the computation of
the final acute value. Because there are 59 GMAVs, the four lowest GMAVs were
selected as being closest to the fifth percentile of toxicity, even though the
second through the sixth values were also equally as close to the fifth
percentile. The sensitivity of these four most sensitive genera are within a
factor of 7.2, and except for the fourth genus (Anodonta), all are fish. Of
the ten most sensitive genera, seven are fish, one is a mussel, one is a
cladoceran, and one is a bryozoan (Figure 2; Table 3). Hardness-adjusted
acute values are available for more than one species in 10 genera, and the
range of SMAVs within each genus is less than a factor of 4.0 for eight of the
10 genera. The ninth genus, Ptychocheilus, has two SMAVs that differ by a
factor of 146, possibly due to differences in the test conditions between
species. The tenth genus, Morone, has SMAVs that differ by a factor of 2,954,
but only the most sensitive species was used because the two species values
are too divergent to use for the genus value.
The freshwater Final Acute Value (FAV) for total cadmium at a hardness
of 50 mg/L was calculated to be 5.995 fig/L total cadmium from the Genus Mean
Acute Values in Table 3 using the procedure described in the Guidelines. The
Species Mean Acute Values for four salmonids and the striped bass are lower,
but the acute value for the brown trout and striped bass are from static
tests, whereas flow-through measured tests have been conducted with the
remaining three salmonid species. The freshwater Final Acute Value for total
cadmium at a hardness of 50 mg/L was lowered to 4.296 fig/L to protect the
important rainbow trout (Table 3). This value is above the SMAV of 1.656 vig/L
for the brown trout and 2.535 for striped bass, but below all other SMAVs
listed in Table 3 (Figure 2). The resultant freshwater Criterion Maximum
Concentration (CMC) at a hardness of 50 mg/L for total cadmium (in fig/L) =
_(1.205[In(hardness)]-3.949) _ , , i i j_ j_ n i n
e .If the CMC based on total cadmium values is
converted to dissolved cadmium using the 0.97 factor at a hardness of 50 mg/L
7
-------
determined by EPA (Stephan 1995; Lussier et al. 1995; Univ. of Wisconsin-
Superior 1995), the freshwater CMC for dissolved cadmium (in /ig/L) = 0.97
r_(1.205[In(hardness)]-3.949), , , „ .. , -r , , ¦ .
Le ]. Thus, the 2.1 /ig/L CMC for dissolved cadmium at
a hardness of 50 mg/L is below all of the SMAVs but the brown trout presented
in Table 3 (Figure 2).
Tests of the acute toxicity of cadmium to saltwater organisms have been
conducted with 50 species of invertebrates and 11 species of fish (Table 1).
The SMAVs for saltwater invertebrate species range from 41.29 /ig/L for a mysid
to 135, 000 /ig/L for an oligochaete worm (Tables 1 and 3) . The acute values
for saltwater polychaetes range from 200 /ig/L for Capitella capitata to 14,100
/ig/L for Neanthes arenaceodentata (Reish and LeMay 1991), but the larvae of C.
capitata are 38 times more sensitive than the adults. Saltwater molluscs have
Species Mean Acute Values from 227.9 fig/L for the Pacific oyster to 19,170
,wg/lj for the mud snail.
Frank and Robertson (1979) reported that the acute toxicity to juvenile
blue crabs was related to salinity. The 96-hr LC50s were 320, 4,700, and
11, 600 ,wg/lj at salinities of 1, 15, and 35 g/kg, respectively. The LC50 at
the very low salinity is in Table 6 and was not used in deriving criteria.
Studies with Americamysis bahia (formerly Mysidopsis bahia) by Gentile et al.
(1982) and Nimmo et al. (1977a) also support a relationship between salinity
and the acute toxicity of cadmium. O'Hara (1973a) investigated the effect of
temperature and salinity on the toxicity of cadmium to the fiddler crab. The
LC50s at 20"C were 32,300, 46,600, and 37,000 /ig/L at salinities of 10, 20,
and 30 g/kg, respectively. Increasing the temperature from 20 to 30"C lowered
the LC50 at all salinities tested. Toudal and Riisgard (1987) reported that
increasing the temperature from 13 to 2l"C at a salinity of 20 g/kg also
lowered the LC50 value of cadmium to the copepod, Acartia tonsa.
Saltwater fish species were generally more resistant to cadmium than
freshwater fish species with SMAVs ranging from 75.0 fig/L for the striped bass
(at a salinity of 1 g/kg) to 50,000 fig/L for the sheepshead minnow. In a
study of the interaction of dissolved oxygen and salinity on the acute
toxicity of cadmium to the mummichog, Voyer (1975) found that the 96-hr LC50
at a temperature of 18-20°C and a salinity of 32 g/kg was about one-half what
it was at 10 and 20 g/kg. Sensitivity of the mummichog to acute cadmium
poisoning was not influenced by reduction in dissolved oxygen concentration to
4 mg/L. This increase in toxicity with increasing salinity conflicts with
8
-------
other data reported in Tables 1 and 6.
Of the 54 saltwater genera for which acute values are available, the
most sensitive, Americamysis, is 3,270 times more sensitive than the most
resistant, Monopylephorus (Table 3). Acute values are available for more than
one species in each of seven genera, and the range of Species Mean Acute
Values within each genus is no more than a factor of 3.6 for six of the seven
genera. The seventh genus, Crassostrea, has two SMAVs that differ by a factor
of 16.7, possibly due to different exposure conditions between species. Only
the data from Reish et al. (1976) were used for Capitella capitata, only data
from Martin et al. (1981) and Nelson et al. (1976) were used for Mytilus
edulis, only data from Sullivan et al. (1983) were used for Eurytemora
affinis, only data from Cripe (1994) were used for Penaeus duorarum, and only
data from Park et al. (1994) were used for Rivulus marmoratus to avoid using
test results from studies in which the life stage tested is known to be less
sensitive or in which the life stage tested is unreported and the higher LC50s
may be due primarily to the use of less sensitive life stages. The
sensitivities of the four most sensitive genera differed by a factor of 2.7,
which includes two mysids, the striped bass and the American lobster.
The saltwater Final Acute Value for total cadmium calculated from the
Genus Mean Acute Values in Table 3 is 80.55 /ig/L. This Final Acute Value is
below the SMAV for the mysid, Mysidopsis bigelowi (110 fig/L), but is
aproximately three percent above the American lobster (78 fig/L), approximately
seven percent higher than the striped bass (75.0 fig/L), and approximately 95
percent above the SMAV for the mysid, Americamysis bahia (41.29 fig/L,
geometric mean of two flow-through measured tests). The resultant saltwater
Criterion Maximum Concentration (CMC) for total cadmium is 40.28 fig/L (FAV/2
or 80.55 ,wg/L/2). If the total cadmium CMC is converted to dissolved cadmium
using the 0.994 factor determined experimentally by EPA, the saltwater CMC for
dissolved cadmium is 40.03 fig/L. The resultant 40.03 fig/L CMC for dissolved
cadmium is below all of the saltwater SMAVs presented in Table 3 (Figure 3).
Chronic Toxicity to Aquatic Animals
Acceptable chronic toxicity tests have been conducted on cadmium in
freshwater with 21 species, including seven invertebrates and 14 fishes in 16
genera. Several related values are in Table 6. Among the unused values in
9
-------
Table 6, a 21-day Daphnia magna test in which the test concentrations were not
measured, Biesinger and Christensen (1972) found a 16 percent reduction in
reproduction at 0.17 /ig/L. Bertram and Hart (1979) and Ingersoll and Winner
(1982) found chronic toxicity to Daphnia pulex at less than 1 and 10 fig/L,
respectively. The 200-hr LC10 of 0.7 fig/L obtained with rainbow trout (Table
6) by Chapman (1978) probably would be close to the result of an early life-
stage test because of the extent to which various life stages were
investigated. Effects on other salmonids and many invertebrates have been
observed at 5 fig/L or less (Table 6). These species include decomposers
(Giesy 1978), protozoans (Fernandez-Leborans and Noville-Villajes 1993;
Niederlehner et al. 1985), Ceriodaphnia dubia (Winner 1988; Zuiderveen and
Birge 1997), D. magna (Enserink et al. 1993; Winner and Whitford 1987),
zooplankton (Lawrence and Holoka 1987), crayfish (Thorp et al. 1979),
amphipods (Borgmann et al. 1991; Phipps et al. 1995), copepods and annelids
(Giesy et al. 1979), midges (Anderson et al. 1980), and mayflies (Spehar et
al. 1978) .
An acceptable C. dubia seven-day static-renewal toxicity test was
conducted by Jop et al. (1995) using reconstituted soft laboratory water. The
<24-hr old neonates were exposed to 1, 5, 10, 19 and 41 ,wg/L measured cadmium
concentrations in addition to a laboratory water control at 25°C. The NOEC
and LOEC were 10 and 19 ,wg/L cadmium, respectively, with a resultant chronic
value of 14 ,wg/L cadmium (Table 2).
The effects of water hardness on the toxicity of cadmium to D. magna was
evaluated by Chapman et al. (Manuscript) under static-renewal conditions at a
temperature of 20 ±2°C. As part of the experimental design, the total
hardness level was adjusted to either 53, 103 or 209 mg/L (as CaC03) in three
distinct tests. Daphnids were individually exposed to six measured cadmium
concentrations (exposures ranged from 0.15 to 22.1 fig/L cadmium among the
three tests) and a control (0.08 fig/L cadmium) for 21 days. Based on an
analysis of variance hypothesis testing procedure, they reported reproductive
(mean number of young per adult) chronic values of 0.1523, 0.2117 and 0.4371
fig/L cadmium at hardness levels of 53, 103 and 209 mg/L, respectively (Table
2). These same data were also subjected to a regression analysis procedure,
whereby the 20 percent reproductive (mean number of young per adult)
inhibition concentration (IC20) was estimated for each hardness level. The
resultant IC20 values were 0.07, 0.23 and 0.33 fig/L cadmium for the 53, 103
10
-------
and 209 mg/L hardness levels, respectively. Overall, the results obtained by
the two different procedures are similar.
The effect of cadmium on the reproduction strategy of D. magna was
investigated by Bodar et al. (1988b). After a 25-day exposure of the 12 + 12-
hr old neonates to 0 (control), 0.5, 1.0, 5.0, 10.0, 20.0 and 50 fig/L cadmium
at 20 + 1°C, the authors compared the survival, number of neonates per female,
first day of reproduction and neonate size of the cadmium exposures to the
controls. The 25-day reproductive NOEC was 5.0 fig/L cadmium, and the
reproductive LOEC was 10.0 fig/L cadmium. However, a more sensitive endpoint
was the length of the 5th and 6th broods of neonates, where the 25-day NOEC and
LOEC were estimated to be 0.5 and 1.0 fig/L cadmium, respectively. The
resultant chronic value was 0.7071 fig/L cadmium (Table 2).
Borgman et al. (1989) also investigated the effect of cadmium on D.
magna reproduction. The 21-day static-renewal test was conducted at 20°C
using measured exposure concentrations of 0.22 (control), 1.86, 4.10, 7.78 and
22.9 fig/L cadmium. Reproduction was significantly reduced at the lowest
measured exposure concentration of 1.86 fig/L cadmium. Thus, the reproductive
NOEC and LOEC were <1.86 and 1.86 fig/L cadmium, respectively, with a chronic
value of <1.86 fig/L cadmium (Table 2) .
Brown et al. (1994) exposed 27 0-day old rainbow trout to cadmium under
flow-through conditions for 65 weeks using borehole water with a total
hardness of 250 mg/L (as CaC03) . Mean cadmium concentrations during the
exposure of adult fish were 0.47 (control), 1.77, 3.39 and 5.48 fig/L. After
65 weeks of exposure, the three most mature males and females were selected
from each treatment, anesthetized and striped of their gametes when possible,
with the milt and ova combined in a bucket. The fertilized eggs from each
treatment group were then divided into four approximately equal-sized
subsamples and exposed for seven weeks in 30-liter aquaria under flow-through
conditions to nominal concentrations of 0 (control), 2.0, 5.0 and 8.0 fig/L
cadmium. Second generation fry development was significantly affected when
the parents were exposed 1.77 fig/L cadmium, but not when exposed to 0.47 fig/L
cadmium. However, second generation embryo survival for all groups was less
than 60 percent, which may have influenced the fry development effect levels.
A more representative endpoint was the ability of the first generation adults
to reach sexual maturity, with a statistically derived NOEC and LOEC of 3.39
and 5.48 fig/L cadmium. The resultant chronic value was 4.310 fig/L cadmium
11
-------
(Table 2) .
Brown et al. (1994) also exposed two-year old brown trout to cadmium
under flow-through conditions for 95 weeks using the same borehole water.
Mean cadmium concentrations during the exposure of adult fish were 0.27
(control), 5.13, 9.34 and 29.1 /ig/L. After 60 weeks of exposure, the three
most mature males and females were selected from each treatment, anesthetized
and striped of their gametes, with the milt and ova combined in a bucket. The
fertilized eggs from each treatment group were then divided into four
approximately equal-sized subsamples and exposed for 50 days in 30-liter
aquaria under flow-through conditions to cadmium concentrations similar to
those in which the parents were exposed. After the 90 week exposure, the
survival NOEC and LOEC were 9.34 and 29.1 /ig/L cadmium, respectively, with a
resultant chronic value of 16.49 /ig/L cadmium (Table 2).
A 32-day fathead minnow early life stage toxicity test was conducted by
Spehar and Fiandt (1986) under flow-through conditions using sand filtered
Lake Superior dilution water (Table 2). They reported a chronic value of 10.0
/ig/L cadmium, which when coupled with their 96-hour LC50 of 13.2 /ig/L cadmium,
gives an acute-chronic ratio of 1.320.
Cope et al. (1994) examined the sublethal responses of juvenile
bluegills exposed to cadmium under flow-through conditions at an average total
hardness of 134 mg/L (as CaC03) and temperature of 21.7°C. The fish were
exposed to a control (0.02 /ig/L cadmium) and seven measured cadmium
concentrations that ranged from 2.8 to 32.3 /ig/L. At the end of the 28-day
test, test fish survival or growth was not adversely affected, resulting in a
NOEC of >32.3 /ig/L cadmium and a chronic value of >32.3 /ig/L cadmium (Table
2) .
Ingersoll and Kemble (unpublished) investigated the chronic toxicity of
cadmium to the amphipod Hyalella azteca. The organisms were exposed under
flow-through measured conditions at a mean temperature of 23°C and a total
hardness of 280 mg/L (as CaC03), and a 3-m nylon mesh substrate was provided
during the test. The seven- to eight-day old amphipods were exposed to water
only mean total cadmium concentrations of 0.10 (control), 0.12, 0.31, 0.51,
2.0 and 3.5 /ig/L for 42 days. The most sensitive endpoint was survival, with
an NOEC and LOEC of 0.5 and 2.0 /ig/L cadmium, respectively, after both 28 and
42 days of exposure. The resultant chronic value was 1.000 /ig/L total cadmium
(Table 2) .
12
-------
Ingersoll and Kemble (unpublished) also exposed the midge Chironomus
tentans to cadmium under the same conditions listed above for the amphipod,
except that a thin 5 ml layer of sand was provided as a substrate. The <24-hr
old larvae were exposed to water only mean measured total cadmium
concentrations of 0.15 (control), 0.50, 1.5, 3.1, 5.8 and 16.4 ,wg/L for 20
days. The mean weight, biomass, percent emergence and percent hatch endpoints
all had 20-day NOEC and LOEC values of 5.8 and 16.4 fig/L cadmium, respectively
(Table 2). The resultant chronic value was 9.753 fig/L total cadmium.
Chronic values are available over a wide range of hardness for two
species (Table 2). To account for the apparent relationship of cadmium
chronic toxicity to hardness, an analysis of covariance (same as the analysis
performed on the acute data) was performed to calculate the pooled slope for
hardness using the natural logarithm of the chronic value as the dependent
variable, species as the treatment or grouping variable, and the natural
logarithm of hardness as the covariate or independent variable. This analysis
of covariance model was fit to the data in Table 2 for the two species for
which definitive chronic values are available over a range of hardness such
that the highest hardness is at least three times the lowest, and the highest
is also at least 100 mg/L higher than the lowest (other species in Table 2
either did not meet these criteria or did not show any hardness-toxicity trend
probably due to differences in exposure methods, species age, etc.). The
slopes for the two species ranged from 0.9786 to 1.003, and the pooled slope
for these two species was 0.9917 (Table 2b). A plot of the chronic effect
level versus total hardness is provided in Figure 4.
The slope of 0.9917 was used to adjust each chronic value to a hardness
of 50 mg/L. Generally, replicate adjusted chronic values for a species agreed
well, as did values for species within a genus. The two values for Atlantic
salmon are very different, but one agrees well with the value for the other
tested species in the same genus. Twenty-one Species Mean Chronic Values were
then calculated, and from these, the sixteen Genus Mean Chronic Values were
calculated and ranked (Table 3b).
A freshwater Final Chronic Value was calculated from the sixteen Genus
Mean Chronic Values using the procedure used to calculate a Final Acute Value.
This approach seemed appropriate since a number of chronic tests have been
conducted with a large variety of species. Thus, the freshwater Final Chronic
Value for total cadmium is 0.0861 fig/L at a hardness of 50 mg/L, and the Final
13
-------
,T . (0. 9917 [ In (hardness)]-6.332) , , ,
Chronic Value (in /ig/L) = e . For dissolved cadmium,
the Final Chronic value is 0.0809 /ig/L (0.94 x 0.0861 /ig/L) at a hardness of
50 mg/L, or = 0.94 [ e (0"9917 [ln (hardness) ] ~6-332' ] . At a hardness of 50 mg/L, all
Genus Mean Chronic Values are above the dissolved Final Chronic Value (Figure
5) .
Another option for calculating the Final Chronic Value is to use the
Final Acute-Chronic Ratio in conjunction with the Final Acute Value. However,
the acute-chronic ratios ranged from 0.9021 for the chinook salmon to 433.8
for the flagfish (greater than a factor of ten), with other values scattered
throughout this range (Tables 2c and 3). These ratios do not seem to follow
any of the patterns (Table 3) recommended in the guidelines, and so it does
not seem reasonable to use a freshwater Final Acute-Chronic Ratio to calculate
a Final Chronic Value.
Three chronic toxicity tests have been conducted with the saltwater
invertebrate, Americamysis bahia, formerly classified as Mysidopsis bahia
(Table 2). Nimmo et al. (1977a) conducted a 23-day life-cycle test at 20 to
28°C and salinity of 15 to 23 g/kg. Survival was 10 percent at 10.6 fig/L, 84
percent at the next lower test concentration of 6.4 fig/L, and 95 percent in
the controls. No unacceptable effects were observed at 6.4 fig/L or any lower
concentration. The chronic toxicity limits, therefore, are 6.4 and 10.6 fig/L,
with a chronic value of 8.237 fig/L. The 96-hr LC50 was 15.5 fig/L, resulting
in an acute-chronic ratio of 1.882.
Another life-cycle test was conducted on cadmium with Americamysis bahia
under different environmental conditions, including a constant temperature of
21°C and salinity of 30 g/kg (Gentile et al. 1982; Lussier et al. Manuscript).
All organisms died in 28 days at 23 fig/L. At 10 fig/L a series of
morphological abberations occurred at the onset of sexual maturity. External
genitalia in males were abberant, females failed to develop brood pouches, and
both sexes developed a carapace malformation that prohibited molting after the
release of the initial brood. Although initial reproduction at this
concentration was successful, successive broods could not be born because
molting resulted in death. No malformations or effects on initial or
successive reproductive processes were noted in the controls or at 5.1 fig/L.
Thus, the chronic limits for this study are 5.1 and 10 fig/L for a chronic
value of 7.141 /ig/L. The LC50 at 21°C and salinity of 30 g/kg was 110 /ig/L
which results in an acute-chronic ratio of 15.40 from this study.
14
-------
These two studies showed excellent agreement between the chronic values
but considerable divergence between the acute values and acute-chronic ratios.
Several studies have demonstrated an increase in acute toxicity of cadmium
with decreasing salinity and increasing temperature (Table 6). The observed
differences in acute toxicity to the mysids might be explained on this basis.
Nimmo et al. (1977a) conducted their acute test at 20 to 28°C and salinity of
15 to 23 g/kg, whereas the other test was performed at 21°C and salinity of 30
g/kg.
A third Americamysis bahia chronic study was conducted by Carr et al.
(1985) at a salinity of 30 g/kg, but the temperature varied from 14 to 26°C
over the 33 day study. At test termination, >50 percent of the organisms had
died in cadmium exposures >8 /ig/L. After 18 days of exposure, growth in the 4
/ig/L treatment group, the lowest exposure concentration was significantly
reduced when compared to the controls. The resultant chronic limits for this
study are <4 and 4 /ig/L cadmium. Acute data were not presented by the
authors. The lower chronic value observed for this study as compared to the
two studies described above may have been due to unexpected temperature
fluctuations over the study period (mechanical problems).
Gentile, et al. (1982) also conducted a life-cycle test with another
mysid, Mysidopsis bigelowi, and the results were very similar to those for A.
bahia. Thus, the chronic value was 7.141 fig/L and the acute-chronic ratio was
15.40.
Because they covered such a wide range, it would be inappropriate to use
any of the available freshwater acute-chronic ratios in the calculation of the
saltwater Final Chronic Value. The two saltwater species for which acute-
chronic ratios are available (Table 3) have Species Mean Acute Values in the
same range as the saltwater Final Acute Value, and so it seems reasonable to
use the geometric mean of these two ratios. When the saltwater Final Acute
Value of 80.55 fig/L is divided by the mean acute-chronic ratio of 9.106, a
saltwater Final Chronic Value of 8.846 fig/L is obtained, or 8.793 fig/L
dissolved cadmium (0.994 x 8.846 fig/L) .
Toxicity to Aquatic Plants
Thirty-three acceptable tests are available with freshwater plant
species exposed to cadmium which lasted from 4 to 28 days (Table 4). Growth
reduction was the major toxic effect observed with freshwater aquatic plants,
15
-------
and several values are in the range of concentrations causing chronic effects
on animals. The influence that plant growth media might have had on the
toxicity tests in unknown, but is probably minor at least in the case of
Conway (197 8) who used a medium patterned after natural Lake Michigan water.
Because the lowest toxicity values for fish and invertebrate species are lower
than the lowest values for plants, water quality criteria which protect
freshwater animals should also protect freshwater plants.
Toxicity values are available for five species of saltwater diatoms and
two species of macroalgae (Table 4). Concentrations causing fifty percent
reductions in the growth rates of diatoms range from 60 /ig/L for Ditylum
brightwelli to 22,390 /ig/L for Phaeodactylum tricornutum, the most resistant
to cadmium. The brown macroalga (kelp) exhibited mid-range sensitivity to
cadmium, with an EC50 of 860 fig/L. The most sensitive saltwater plant tested
was the red alga, Champia parvula, with significant reductions in the growth
of both the tetrasporophyte plant and female plant occurring at 22.8 fig/L.
This plant is more resistant than the chronically most sensitive animal
species tested. Therefore, water quality criteria for cadmium that protect
saltwater animals should also protect saltwater plants.
Bioaccumulation
Bioconcentration factors (BCFs) for cadmium in fresh water (Table 5)
range from 3 for brook trout muscle (Benoit et al. 1976) to 6,910 for the soft
tissue of the snail Viviparus georgianus (Tessier et al. 1994b). Usually,
fish accumulate only small amounts of cadmium in muscle as compared to most
other tissues and organs (Benoit et al. 1976; Sangalang and Freemen 1979).
Also, cadmium residues in fish reach steady-state only after exposure periods
greatly exceeding 28 days (Benoit et al. 1976; Sangalang and Freeman 1979).
Daphnia magna, and presumably other invertebrates of about this size or
smaller, often reach steady-state within a few days (Poldoski 1979). Cadmium
accumulated by fish from water is eliminated slowly (Benoit et al. 1976:
Kumada et al. 1980), but Kumada, et al. (1980) found that cadmium accumulated
from food is eliminated much more rapidly. If all variables, except
temperature, were kept the same, Tessier et al. (1994a) found that increased
exposure temperatures generally increased the soft tissue bioconcentration
factor observed for the snail, Viviparus georgianus, but not for the mussel,
16
-------
Elliptio complanata. Poldoski (1979) reported that humic acid decreased the
uptake of cadmium by Daphnia magna, but Winner (1984) did not find any effect.
Ramamoorthy and Blumhagen (1984) reported that fulvic and humic acids
increased uptake of cadmium by rainbow trout.
The only BCF reported for a saltwater fish is a value of 48 from a 21-
day exposure of the mummichog (Table 6). However, among ten species of
invertebrates, the BCFs range from 22 to 3,160 for whole body and from 5 to
2,040 for muscle (Table 5). The highest BCF was reported for the polychaete,
Ophryotrocha diadema (Klockner 1979). Although a BCF of 3,160 was attained
after sixty-four days exposure using the renewal technique, tissue residues
had not reached steady-state.
BCFs for four species of saltwater bivalve molluscs range from 113 for
the blue mussel (George and Coombs 1977) to 2,150 for the eastern oyster
(Zaroogian and Cheer 1976). In addition, the range of reported BCFs is rather
large for some individual species. BCFs for the oyster include 149 and 677
(Table 6) as well as 1,220, 1,830 and 2,150 (Table 5). Similarly, two studies
with the bay scallop resulted in BCFs of 168 (Eisler et al. 1972) and 2,040
(Pesch and Stewart 1980) and three studies with the blue mussel reported BCFs
of 113, 306, and 710 (Tables 5 and 6). George and Coombs (1977) studied the
importance of metal speciation on cadmium accumulation in the soft tissues of
Mytilus edulis. Cadmium complexed as Cd-EDTA, Cd-alginate, Cd-humate, and Cd-
pectate (Table 6) was bioconcentrated at twice the rate of inorganic cadmium
(Table 5). Because bivalve molluscs usually do not reach steady-state,
comparisons between species may be difficult and the length of exposure may be
the major determinant in the size of the BCF.
BCFs for five species of saltwater crustaceans range from 22 to 307 for
whole body and from 5 to 25 for muscle (Tables 5 and 6). Nimmo et al. (1977b)
reported whole-body BCFs of 203 and 307 for two species of grass shrimp,
Palaemonetes pugio and P. vulgaris. Vernberg et al. (1977) reported a factor
of 140 for P. pugio at 25"C (Table 6), whereas Pesch and Stewart (1980)
reported a BCF of 22 for the same species exposed at 10"C, indicating that
temperature might be an important variable. The commercially important
crustaceans, the pink shrimp and lobster, were not effective bioaccumulators
of cadmium with factors of 57 for whole body and 25 for muscle, respectively
(Tables 5 and 6).
Mallard ducks are a native wildlife species whose chronic sensitivity to
17
-------
cadmium has been studied. These birds can be expected to ingest many of the
freshwater and saltwater plants and animals listed in Table 4. White and
Finley (1978a,b) and White et al. (1978) found significant damage at a cadmium
concentration of 200 mg/kg in food for 90 days. Di Giulio and Scanlon (1984)
found significant effects on energy metabolism at 450 mg/kg, but not at 150
mg/kg. These are concentrations which would cause damage to mallard ducks.
More recent information may be available, but these data would not have been
identified during the literature search conducted for this update.
The bioaccumulation data provided in this document is for information
purposes only. Calculation of a Final Residue Value for cadmium will not be
presented at this time.
Other Data
A number of the values in Table 6 have already been discussed. When
possible, the freshwater acute effect concentration has been adjusted to a
hardness of 50 using the pooled slope. Cadmium-binding proteins were isolated
from Amoeba proteus (Al-atia, 1978, 1980) and rainbow trout (Roberts et al.
197 9). The cumulative mortality resulting from exposure to cadmium for more
than 96 hours is clearly evident from the studies with phytoplankton (Findlay
et al. 1996; Fargasova 1993), duckweed (Outridge 1992), protozoa (Niederlehner
1985), zooplankton (Lawrence and Holoka (1987), snails (Spehar et al. 1978),
zebra mussels (Kraak et al. 1992), crayfish (Thorp et al. 1979),
macroinvertebrates (Giesy et al. 1979), polychaetes (Reish et al. 1976),
bivalve molluscs, crabs, and starfish (Eisler and Hennekey 1977), scallops,
shrimp, and crabs (Pesch and Stewart 1980), and a mysid (Gentile et al. 1982;
Nimmo et al. 1977a).
Nimmo et al. (1977a) in studies with the mysid, Americamysis bahia,
reported a 96-hr LC50 of 15.5 /ig/L (Table 1) and a 17-day LC50 of 11 /ig/L
(Table 6) at 25 to 28"C and salinity of 15 to 23 g/kg. In another series of
studies with this mysid (Gentile et al. 1982), the 96-hr LC50 was 110 /j.g/L
(Table 1) and the 16-day LC50 was 28 /ig/L (Table 6) at 20 °C and salinity of
30g/kg. These data suggest that short-term acute toxicity might be strongly
influenced by environmental variables, whereas long-term effects, even
mortality, are not.
Considerable information exists concerning the effect of salinity and
temperature on the acute toxicity of cadmium. Unfortunately, the conditions
18
-------
and durations of exposure are so different that adjustment of acute toxicity
data for salinity is not possible. Rosenberg and Costlow (1976) studied the
synergistic effects of cadmium and salinity combined with constant and cycling
temperatures on the larval development of two estuarine crab species. They
reported reduction in survival and significant delay in development of the
blue crab with decreasing salinity. Cadmium was three times as toxic at a
salinity of 10 g/kg than at 30 g/kg. Studies with the mud crab resulted in a
similar cadmium-salinity response. In addition, the authors report that
cycling temperature may have a stimulating effect on survival of larvae
compared to constant temperature.
Theede et al. (1979) investigated the effect of temperature and salinity
on the acute toxicity of cadmium to the colonial hydroid, Laomedea loveni. At
17.5 °C cadmium concentrations inducing irreversible retraction of half of the
polyps ranged from 12.4 fig/L at a salinity of 25 g/kg to 3.0 fig/L at 10 g/kg
(Table 6). At a temperature of 17.5°C, the toxicity of cadmium increased as
salinity decreased from 25 g/kg to 10 g/kg..
A similar acute toxicity-salinity relationship was observed by Hall et
al. (1995) for the copepod, Eurytemora affinis, whereby the 96-hour toxicity
increased four-fold (from 213 to 51.6 /ig/L cadmium) when the salinity was
decreased from 15 to 5 g/kg at a test temperature of 25°C. Hall et al. (1995)
also observed an approximate three-fold toxicity increase to the sheepshead
minnow when the salinity was lowered in similar fashion at the same
temperature. Likewise, the 21-day toxicity of cadmium to the blue crab,
Callinectes sapidus, increased over nine-fold when the salinity was lowered
from 25 to 2.5 g/kg, and the temperature was held constant at 22-23 °C (Guerin
and Stickle 1995). In contrast, Snell and Personne (1989b) observed little
difference in the 24-hour toxicity of cadmium to the rotifer, Brachionus
plicatilis, exposed under 15 and 30 g/kg salinity regimes and a temperature of
25 °C.
The effect of environmental factors on the acute toxicity of cadmium is
also evident from tests with the early life stages of saltwater vertebrates.
Alderdice, et al. (1979a,b,c) reported that salinity influenced the effects of
cadmium on the volume, capsule strength, and osmotic response of embryos of
the Pacific herring. Studies with embryos of the winter flounder indicated a
quadratic salinity-cadmium relationship (Voyer et al. 1977), whereas Voyer et
al. (1979) reported a linear relationship between salinity and cadmium
19
-------
toxicity to Atlantic silverside embryos.
Several studies have reported chronic sublethal effects of cadmium on
saltwater fishes (Table 6). Significant reduction in gill tissue respiratory
rate was reported for the cunner after a 30-day exposure to 50 /ig/L (Maclnnes
et al. 1977). Dawson et al. (1977) also reported a significant decrease in
gill-tissue respiration of striped bass at 0.5 /ig/L above ambient levels after
a 30-day, but not a 90-day, exposure. A similar study with the winter
flounder (Calabrese et al. 1975) demonstrated a significant alteration in gill
tissue respiration rate measured in vitro after a 60-day exposure to 5 /ig/L.
Unused Data
Some data on the effects of cadmium on aquatic organisms were not used
because the studies were conducted with species that are not resident in North
America, e.g., Abbasi and Soni (1986), Abel and Papoutsoglou (1986), Abel and
Garner (1986), Abel and Barlocher (1988), Ahsanullah et al. (1981), Ahsanullah
and Williams (1991), Amiard-Triquet et al. (1987), Annune et al. (1994),
Arshaduddin et al. (1989), Austen et al. (1997), Avery et al. (1996), Azeez
and Banerjee (1987), Baby and Menon (1987), Bambang et al. (1994), Bednarz and
Warkowska-Dratnal (1983/1984), Birmelin et al. (1995), Bresler and Yanko
(1995), Brooks et al. (1996), Brunetti et al. (1991), Calevro et al. (1998),
Canli and Furness (1993, 1995), Cassini et al. (1986), Castille and Lawrence
(1981), Centeno et al. (1993), Chan (1988), Chandini (1988, 1988, 1989, 1991),
Chandra and Garg (1992), Charpentier et al. (1987), Chattopadhyay et al.
(1995), Cheung and Lam (1998), Coppellotti (1994), D'Agostino and Finney
(1974), Dallinger et al (1989), Darmono (1990), Darmono et al. (1990), Datta
et al. (1987), Demon et al (1989), Den Besten et al. (1989, 1991), De Nicola
Giudici and Guarino (1989), De Nicola Giudici and Migliore (1988), Denton and
Burdon-Jones (1986, 1986), Devi (1987, 1996), Devi and Rao (1989), Devineau
and Triquet (1985), Dorgelo et al. (1995), Douben (1989), Drbal et al. (1985),
Duquesne and Coll (1995), Evtushenko et al. (1986), Evtushenko et al. (1990),
Ferrari et al. (1993), Fisher et al. (1996), Fisher et al. (1996), Forget et
al. (1998), Francesconi (1989), Francesconi et al. (1994), Forbes (1991), Gaur
et al. (1994), Gerhardt (1992, 1995), Ghosh and Chakrabarti (1990), Glynn
(1996), Glynn et al. (1992, 1994), Gopal and Devi (1991), Green et al. (1986),
Greenwood and Fielder (1983), Gupta and Rajbanshi (1991), Gupta et al. (1992),
Hader et al. (1997), Hansten et al. (1996), Heinis et al. (1990), Herkovits
20
-------
and Coll (1993), Hiraoka et al. (1985), Hu et al. (1996), Huebner and Pynnonen
(1992), Husaini et al. (1991), Ikuta (1987), Jenkins and Sanders (1985),
Karlsson-Norrgren and Runn (1985), Kasuga (1980), Keduo et al. (1987),
Khangarot and Ray. (1987), Khristoforova et al. (1984), Kobayashi (1971),
Krassoi and Julli (1994), Krishnaja et al. (1987), Kuhn and Pattard (1990),
Kuroshima (1987), Kuroshima and Kimura (1990), Kuroshima et al. (1993), Lam
(1996, 1996), Lam et al. (1997), Lee and Xu (1984), Loumbourdis et al (1999),
McCahon et al. (1988), McCahon and Pascoe (1988, 1988, 1988), McCahon et al.
(1989), McClurg (1984), Ma et al. (1999), Malea (1994), Markich and Jeffree
(1994, 1994), Martinez et al. (1996), Metayer et al. (1982), Michibata et al.
(1986), Michibata et al. (1987), Migliore and Giudici (1987), Moller et al.
(1994), Mostafa and Khalil (1986), Muino et al. (1990), Musko et al. (1990),
Nakagawa and Ishio (1988, 1989, 1989), Nassiri et al. (1997), Negilski (1976),
Nir et al. (1990), Noraho and Gaur (1995), Notenboom et al. (1992), Nott and
Nicolaidou (1994), Nugegoda and Rainbow (1995), Ojaveer et al. (1980), Pantani
et al. (1997), Papathanassiou (1995), Pavicic et al. (1994), Perez-Coll and
Herkovits (1996), Pynnonen (1995), Rainbow and Kwan (1995), Rainbow et al.
(1980), Rainbow and White (1989), Ralph and Burchett (1998), Ramachandran et
al. (1997), Rao and Madhyastha (1987), Rebhun and Ben-Amotz (1984), Reish et
al. (1988), Ringwood (1990, 1992), Ritterhoff et al. (1996), Romeo and
Gnassia-Barelli (1995), Safadi (1998), Sastry and Shukla (1994), Sastry and
Sunita (1982), Saxena et al. (1990, 1993), Schafer et al. (1994), Sehgal and
Saxena (1987), Shanmukhappa and Neelakantan (1990), Shivaraj and Patil (1988),
Simoes Goncalves (1989), Stuhlbacher and Maltby (1992), Takamura et al.
(1989), Temara et al. (1996a,b), Ten Hoopen et al. (1985), Thaker and Haritos
(1989), Thebault et al. (1996), Theede et al. (1979), Tomasik et al. (1995),
Tyurin and Khristoforova (1993), Udoidiong and Akpan (1991), Valencia et al.
(1998), Van Gemert (1985), Vashchenko and Zhadan (193), Verriopoulos and
Moraitou-Apostolopoulou (1981, 1982), Visviki and Rachlin (1991), Vogiatzis
and Loumbourdis (1998), Vranken et al. (1985), Vuori (1994), Vymazal (1990,
1995), Walsh et al. (1995), Warnau et al. (1995a,b,c, 1996a,b, 1997),
Westernhagen and Dethlefsen (1975), Westernhagen et al. (1975, 1978), Wildgust
and Jones (1998), White and Rainbow (1986), Wicklund and Runn (1988), Wicklund
et al. (1988), Wu et al. (1997), Wundram et al. (1996), Zanders and Rojas
(1992, 1996),and Zou and Bu (1994). Brown and Ahsanullah (1971) conducted
tests with a brine shrimp, which species are too atypical to be used in
21
-------
deriving national criteria.
Data were also not used if cadmium was a component of a drilling mud,
effluent, mixture, sediment, or sludge (Allen 1994, 1995; Amiard-Triquet et
al. 1988; Andres et al. 1999; Arnac and Lassus 1985; Austen and McEvoy 1997;
Bartsch et al. 1999; Beiras et al. 1998; Bendell-Young 1994; Bendell-Young et
al. 1986; Besser and Rabeni 1987; Biesinger et al. 1986; Bigelow and Lasenby
1991; Bodar et al. 1990; Buckley et al. 1985; Burden and Bird 1994; Busch et
al. 1998; Campbell and Evans 1991; Camusso et al. 1995; Carlisle and Clements
1999; Casini and Depledge 1997; Cuvin-Aralar 1994; Cuvin-Aralar and Aralar
1993; Dallinger et al. 1997; de March 1988; Elliott et al. 1986; Farag et al.
1994, 1998; Gully and Mason 1993; Hall et al. 1984, 1987, 1988; Hardy and
Raber 1985; Hare et al. 1991, 1994; Haritonidis et al. 1994; Hartwell 1997;
Haynes et al. 1989; Hendriks 1995; Hickey and Clements 1998; Hickey and Martin
1995; Hickey and Roper 1992; Hogstrand et al. 1991; Hollis et al. 1996; Hooten
and Carr 1998; Hylland et al. 1996; Inza et al. 1998; Jak et al. 1996;
Janssens de Bisthoven et al. 1992; Jop 1991; Keenan and Alikhan 1991; Kelly
and Whitton 1989; Kettle and deNoyelles 1986; Khan and Weis 1993; Khan et al.
1989; Kiffney and Clements 1996; Klerks and Bartholomew 1991; Kock et al.
1995; Koivisto et al. 1997; Kolok et al. 1998; Kraak et al. 1993, 1994;
Krantzberg 1989a,b; Krantzberg and Stokes 1988, 1989; Kumar 1991; Lee and
Luoma 1998; Lithner et al. 1995; Lucker et al. 1997; Macdonald and Sprague
1988; Maloney 1996; Manz et al. 1994; Marr et al. 1995a,b; Mathew and Menon
1992; Mersch et al. 1996; Nalewajko 1995; Nelson 1994; Odin et al. 1996, 1997;
Palawski et al 1985; Pedersen and Petersen 1996; Pellegrini et al. 1993;
Playle et al. 1993; Polar and Kucukcezzar 1986; Poulton et al. 1995; Prevot
and Soyer-Gobillard 1986; Qichen et al. 1988; Rachlin and Grosso 1993;
Reynoldson et al. 1996; Richelle et al. 1995; Roch and McCarter 1984;
Roesijadi and Fellingham 1987; Sanchiz et al. 1999; Schaeffer et al. 1991;
Smokorowski et al. 1997; Stephenson and Macki 1989; Stern and Stern 1980;
Talbot 1985, 1987; Tessier et al 1993; Vuori 1993; Vymazal 1984; Wall et al.
1996; Walsh and Hunter 1992; Wang et al. 1996; Warren et al. 1998; Weimin et
al. 1994; Wong et al. 1982; Woodling 1993; Woodward et al. 1995). Reviews by
Barnthouse et al. (1987), Bay et al. (1993), Cairns et al. (1985), Chapman et
al. (1968), Dierickx and Bredael-Rozen (1996), Dyer et al. (1997), Eisler
(1981), Eisler et al. (1979), Enserink et al. (1991), Florence et al. (1992),
Guilhermino et al. (1997), Hare (1992), Hornstrom (1990), Jonnalagadda and Rao
22
-------
(1993), Khangarot and Ray (1987), Kooijman and Bedaux (1996), Kraak et al.
(1994a,b), LeBlanc (1984), Mark and Solbe (1998), Meyer (1999), Nendza et al.
(1997), Oikari et al. (1992), Papoutsoglou and Abel (1993), Pesonen and
Andersson (1997), Phillips and Russo (1978), Ramesha et al. (1996), Rice
(1984), Skowronski et al. (1998), Spry and Wiener (1991), Thomann et al.
(1997), Thompson et al. (1972), Toussaint et al. (1995), Trevors et al.
(1986), Van Leeuwen et al. (1987), Vymazal (1990), Wright and Welbourn (1994),
and Wong (1987) only contain data that have been published elsewhere.
Data were not used if the organisms were exposed to cadmium in food or
by injection or gavage (e.g., Bodar et al. 1988; Brouwer et al. 1992; Chou et
al. 1986; Davies et al. 1997; Decho and Luoma 1994; Gottofrey and Tjalve 1991;
Handy 1993; Kluttgen and Ratte 1994; Kuroshima 1992; Lasenby and Van Duyn
1992; Lawrence and Holoka 1991; Lomagin and Ul'yanova 1993; Malley and Chang
1991; Melgar et al. 1997; Mount et al. 1994; Munger and Hare 1997; Postma et
al. 1994; Postma and Davids 1995; Reinfelder and Fisher 1994, 1994; Reddy et
al. 1997; Rhodes et al. 1985; Van den Hurk et al. 1998; Wallace and Lopez
1997; Wang and Fisher 1996; Wen-Xiong and Fisher 1996; Wong 1989).
A number of studies of cadmium toxicity examined physiological or
behavioral effects but provided no interpretable concentration, time, response
data, and some papers described effects of only a single, often lethal,
concentration. Included in such studies are those of Berglind (1985), Bitton
et al. (1994), Block and Part (1992), Block et al. (1991), Blondin et al.
(1989), Bowen and Engel (1996), Bressan and Brunetti (1988), Castano et al.
(1996), Christoffers and Ernst (1983), Clausen et al. (1993), Fargasova
(1994), Fernandez-Pinas et al. (1995), George et al. (1983), Iftode et al.
(1985), Ilangovan et al. (1998), Issa et al. (1995), Jana and Sahana (1988),
Kluytmans et al. (1988), Kraak et al. (1993b), Kosakowska et al. (1988),
Lussier et al. (1999), Mateo et al. (1993), Palackova et al. (1994), Pereira
et al. (1993), Prasad et al. (1998), Rachlin and Grosso (1991), Reader et al.
(1989), Reddy and Fingerman (1994), Reid and McDonald (1991), Ribo (1997),
Rombough (1985), Rosas and Ramirez (1993), Sauvant et al. (1997), Skowronski
et al. (1991), Sunila and Lindstrom (1985), Trehan and Maneesha (1994),
Verbost et al. (1987), Visviki and Rachlin (1994), Wang et al. (1995), Woodall
et al. (1988), Wundram et al. (1996), and Xue and Sigg (1998).
Battaglini et al. (1993), Borchardt (1983), Craig et al. (1998),
Gargiulo et al. (1996), Gomot (1998), Harvey and Luoma (1985), Kraal et al.
23
-------
(1995), Penttinen et al. (1995), Rouleau et al. (1998), and Sobhan and
Sternberg (1999) presented no useable data on cadmium toxicity or
bioconcentration.
Papers that dealt with the selection, adaptation, or acclimation of
organisms for increased resistance to cadmium were not used, e.g., Anadu et
al. (1989), Bodar et al. (1990), Currie et al. (1998), Ramo et al. (1987),
Herkovits and Perez-Coll (1995), Kaplan et al. (1995), McNicol and Scherer
(1993), Madoni et al. (1994), Nagel and Voigt (1995), Thomas et al. (1985),
and Van Steveninck et al. (1992).
Data were not used if the results were only presented graphically
(Laegreild et al. 1983; Laube 1980; Remacle et al. 1982), if the organisms
were not exposed to cadmium in water (Foster 1982; Hatakeyama and Yasuno
1981a; O'Neill 1981), or if there was no pertinent adverse effect (Carr and
Neff 1982; DeFilippis et al. 1981; Dickson et al. 1982; Fisher and Fabris
1982; Fisher and Jones 1981; Tucker and Matte 1980; Watling 1981; Weis et al.
1981). Data in publications such as Abbasi and Soni (1989), Ball (1967),
Belabed et al. (1994), Bendell-Young (1999), Bitton et al. (1995), Bjerregaard
and Depledge (1994), Bolanos et al. (1992), Burnison et al. (1975), Calevro et
al. (1998), Canton and Slooff (1979), Carpene and Boni (1992), D'Aniello et
al. (1990), Davies et al. (1994), Department of the Environment (1973),
Errecalde et al. (1998), Fennikoh et al. (1978), Fernandez-Leborans and
Antonio-Garcia (1988), Galic and Sipos (1987), Glubokov (1990), Gorman and
Skogerboe (1987), Guanzon et al. (1994), Guerin et al. (1994), Hofslagare et
al. (1985), Janssen and Persoone (1993), Jaworska et al. (1997), Kay et al.
(1986), Kessler (1985), Khangarot et al. (1987), Koyama et al. (1992), Landner
and Jernelov (1969), Lee and Oshima (1998), Liao and Hsieh (1990), Maas
(1978), Mansour (1993), Ministry of Technology (1967), Moza et al. (1995),
Munger et al. (1999), Naylor et al. (1992), Nwadukwe and Erondu (1996), Pascoe
and Shazili (1986), Pauli and Berger (1997), Penttinen et al. (1998), Peterson
(1991), Peterson et al. (1984), Rayms-Keller et al. (1998), Rombough (1985),
Sandau et al. (1996), Sekkat et al. (1992), Shcherban (1977), Sheela et al.
(1995), Sovenyi and Szakolczai (1993), Stom and Zubareva (1994), Stubblefield
et al. (1999), Tarzwell and Henderson (1960), Verma et al. (1980), Vykusova
and Svobodova (1987), Wani (1986), Witeska et al. (1995), Yamamoto and Inque
(1985), and Zhang et al. (1992) were not used because either the materials,
methods, or results were insufficiently described. High control mortalities
24
-------
occurred in testing reported by Asato and Reish (1988), Hong and Reish (1987),
Sauter et al. (1976) and Wright (1988). The 96-hr values reported by Buikema
et al. (1974a,b) were subject to error because of possible reproductive
interactions (Buikema et al. 1977). Bringmann and Kuhn (1982) and Dave et al.
(1981) cultured daphnids in one water and tested them in a different water.
The acceptability of the dilution water or medium used in some studies
(e.g., Brkovic-Popovic and Popovic 1977a,b; Cearley and Coleman 1973, 1974;
Nasu et al. 1983) was open to question because of its origin or content.
Algal studies were not used if they were not conducted in an appropriate
medium (Stary and Kratzer 1982; Stary et al. 1983) or if the medium contained
too much of a complexing agent such as EDTA (Baillieul and Blust 1999; Brand
et al. 1986; Chen et al. 1997; Couillard 1989; Hockett and Mount 1996; Huebert
et al. 1993; Huebert and Shay 1991, 1992, 1993; Jenkins and Mason 1988;
Jenkins and Sanders 1986; Jenner and Janssen-Mommen 1993; Kessler 1986; Lue-
Kim et al. 1980; Macfie et al. 1994; Meteyer et al. 1988; Muller and Payer
1979; Nasu et al. 1988; Rebhun and Ben-Amotz 1986, 1988; Sloof et al. 1995;
Sunda and Huntsman 1996; Thongra-ar and Matsuda 1993; Thorpe and Costlow 1989;
Tortell and Price 1996; Vasseur and Pandard 1988; Wright et al 1985). Some
papers were omitted because of questionable treatment of test organisms or
inappropriate test conditions or methodology (e.g., Babich and Stotsky 1982;
Brown et al. 1984; Bryan 1971; Chan et al. 1981; Dorfman 1977; Eisler and
Gardner 1973; Greig 1979; Hung 1982; Hutcheson 1975; Moraitou-Apostolopoulou
et al. 1979; Parker 1984; Pecon and Powell 1981; Ridlington et al. 1981; Sunda
et al. 1978; Wikfors and Ukeles 1982) .
Data on bioconcentration by aquatic organisms were not used if the test
was conducted in distilled water, was not long enough, was not flow-through,
or if the concentrations in water were not adequately measured (e.g., Allen
1995; Amiard et al. 1993; Amiard-Triquet et al. 1986; Balogh and Salanki 1984;
Baudrimont et al. 1997; Beattie and Pascoe 1978; Bentley 1991; Berglind 1986;
Bernds 1998; Bervoets et al. 1995, 1996; Bjerregaard 1982, 1985, 1991; Block
and Glynn 1992; Brown et al. 1986; Burrell and Weihs 1983; Carmichael and
Fowler 1981; Carr and Neff 1982; Chan et al. 1992; Chander et al. 1991; Chawla
et al. 1991; Chitguppa et al. 1997; Chou and Uthe 1991; Collard and Matagne
1994; Craig et al. 1999; Davies et al. 1981; De Conto Cinier et al. 1997; De
Conto Cinier et al. 1998; De Nicola et al. 1993; Denton and Burdon-Jones 1981;
Elliott et al. 1985; Engel 1999; Everaarts 1990; Fair and Sick 1983; Frazier
25
-------
and George 1983; Freeman 1978, 1980; Giles 1988; Gottofrey et al. 1988; Graney
et al. 1984; Gupta and Devi 1993; Haines and Brumbaugh 1994; Hansen et al.
1995; Hardy and O'Keeffe 1985; Hashim et al. 1997; Hatakeyama 1987; Herwig et
al. 1989; Hollis et al. 1997; Irato and Piccinni 1996; John et al. 1987; Katti
and Sathyanesan 1985; Kerfoot and Jacobs 1976; Khoshmanesh et al. 1996, 1997;
Klaverkamp and Duncan 1987; Koelmans et al. 1996; Kohler and Riisgard 1982;
Kwan and Smith 1991; Langston and Zhou 1987; Les and Walker 1984; McLeese and
Ray 1984; Maeda et al. 1990; Malley et al. 1989; Maranhao et al. 1999; Mersch
et al 1993; Mizutani et al 1991; Muramoto 1980; Mwangi and Alikhan 1993; Nolan
and Duke 1983; Norey et al. 1990; Oakley et al. 1983; Olesen and Weeks 1994;
Papathanassiou 1986; Pawlik and Skowronski 1994; Pawlik et al. 1993; Pelgrom
et al 1994; Pelgrom et al. 1997; Playle and Dixon 1993; Presing et al. 1993;
Postma et al. 1996; Poulsen et al. 1982; Rai et al. 1995; Rainbow 1985;
Ramirez et al. 1989; Ray et al. 1981; Reichert et al. 1979; Reinfelder et al.
1997; Riisgard et al. 1987; Ringwood 1989, 1992, 1993; Roseman et al. 1994;
Rubinstein et al. 1983; Santojanni et al. 1998; Sedlacek et al. 1989; Sidoumou
et al. 1997; Simoes Goncalves et al. 1988; Sinha et al. 1994; Skowronski and
Przytocka-Jusiak 1986; Srivastava and Appenroth 1995; Stary et al. 1982; Sunil
et al. 1995; Suzuki et al. 1987; Swinehart 1990; Taylor et al. 1988; Tessier
et al. 1996; Thomas et al. 1983; Van Leeuwen et al. 1985; Van Ginneken et al.
1999; Vymazal 1995; Wang and Fisher 1998; Watling 1983a; White and Rainbow
1982; Williams et al. 1998; Windom et al. 1982; Winner and Gauss 1986; Winter
1996; Woodworth and Pascoe 1983; Xiaorong et al. 1997; Yager and Harry 1964;
Zauke et al. 1995; Zia and McDonald 1994). The bioconcentration tests of
Eisler (1974), Jennings and Rainbow (1979b), O'Hara (1973b), Phelps (1979),
and Sick and Baptist (1979), which used radioactive isotopes of cadmium, were
not used because of the possibility of isotope discrimination. Reports on the
concentrations of cadmium in wild aquatic organisms, such as Anderson et al.
(1978), Bouquegneau and Martoja (1982), Boyden (1977), Bryan et al. (1983),
Frazier (1979), Gordon et al. (1980), Greig and Wenzloff (1978), Hazen and
Kneip (1980), Kneip and Hazen (1979), McLeese et al. (1981), Noel-Lambot et
al. (1980), Pennington et al. (1982), Ray et al. (1981), Smith et al. (1981),
and Uthe et al. (1982) were not used for the calculation of bioaccumulation
factors due to an insufficient number of measurements of the concentration of
cadmium in the water.
26
-------
Summary
Freshwater Species Mean Acute Values for cadmium are available for
species in 59 genera and hardness adjusted values range from 1.656 /ig/L for
brown trout to 78,579 /ig/L for a midge. The antagonistic effect of hardness
on acute toxicity has been demonstrated with 10 species. Chronic tests have
been conducted on cadmium with 14 freshwater fish species and seven
invertebrate species with hardness adjusted Species Mean Chronic Values
ranging from 0.1811 /ig/L for Hyalella azteca to 34.19 fig/L for Ceriodaphnia
dubia. Acute-chronic ratios are available for eight species and range from
0.9021 for the chinook salmon to 433.8 for the flagfish.
Freshwater aquatic plants are affected by cadmium at concentrations
ranging from 2 to 20,000 /ig/L. These values are in the same range as the
acute toxicity values for fish and invertebrate species, and are considerably
above the chronic values. Bioconcentration factors (BCFs) for cadmium in
fresh water range from 7 to 6,910 for invertebrates and from 3 to 2,213 for
fishes.
Saltwater cadmium species mean acute values for 11 fish species range
from 75.0 /ig/L for striped bass to 50,000 /ig/L for sheepshead minnow. Species
Mean Acute values for 50 species of invertebrates range from 41.29 /ig/L for a
mysid to 135,000 /ig/L for an oligochaete worm. The acute toxicity of cadmium
generally increases as salinity decreases. The effect of temperature seems to
be species-specific. Two life-cycle tests with Americamysis bahia under
different test conditions resulted in similar chronic values of 8.237 and
7.141 /ig/L, but the acute-chronic ratios were 1.882 and 15.40, respectively.
A third chronic test with Americamysis bahia gave a slightly lower chronic
value, possibly due to the unexpected temperature (14-26 °C) fluctuation. The
acute values appear to reflect effects of salinity and temperature, whereas
the few available chronic values apparently do not. A life-cycle test with
Mysidopsis bigelowi also resulted in a chronic value of 7.141 fig/L and an
acute-chronic ratio of 15.40. Studies with microalgae and macroalgae revealed
effects at 2 to 22, 390 /ig/L.
BCFs determined with a variety of saltwater invertebrates range from 5
to 3,160. BCFs for bivalve molluscs were generally above 1,000 in long
exposures, with no indication that steady-state had been reached. Cadmium
mortality is cumulative for exposure periods beyond four days. Chronic
cadmium exposure resulted in significant effects on the growth of bay scallops
27
-------
at 78 /ig/L.
National Criteria
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, freshwater aquatic organisms and their uses should not be
affected unacceptably if the four-day average concentration (in /ig/L) of
dissolved cadmium does not exceed the numerical value given by 0.94
r (0 . 9917[In(hardness)]-6.332 ) ,
[e ] more than once every three years on the average,
and if the one-hour average dissolved concentration (in /ig/L) does not exceed
,, . . (1.205[In(hardness)]-3.949), ,
the numerical value given by 0.97 [e ] more than once
every three years on the average. For example, at hardnesses of 50, 100, and
200 mg/L as CaC03 the four-day average dissolved concentrations of cadmium are
0.08, 0.16 and 0.32 /ig/L, respectively, and the one-hour average dissolved
concentrations are 2.1, 4.8, and 11 /ig/L. If brown trout are as sensitive as
some data indicate, they may not be protected by this criterion.
The procedures described in the "Guidelines for Deriving Numerical
National Water Quality Criteria for the Protection of Aquatic Organisms and
Their Uses" indicate that, except possibly where a locally important species
is very sensitive, saltwater aquatic organisms and their uses should not be
affected unacceptably if the four-day average dissolved concentration of
cadmium does not exceed 8.8 /ig/L more than once every three years on the
average and if the one-hour average dissolved concentration does not exceed 40
ug/L more than once every three years on the average. However, the limited
data suggest that the acute toxicity of cadmium is salinity-dependent;
therefore the one-hour average concentration might be underprotective at low
salinities and overprotective at high salinities.
EPA believes that the use of dissolved cadmium will provide a more
scientifically correct basis upon which to establish water-column criteria for
metals. The criteria were developed on this basis. The use of dissolved
criteria reduces the amount of conservatism that was present in earlier
cadmium criteria. It is recognized that a considerable proportion of
dissolved cadmium in organic-rich waters may be less toxic than freely
dissolved cadmium. On the other hand, some particulate forms of cadmium may
contribute to cadmium loading of organisms, possibly through ingestion.
28
-------
The recommended exceedence frequency of three years is the Agency's best
scientific judgment of the average amount of time it will take an unstressed
system to recover from a pollution event in which exposure to cadmium exceeds
the criterion. Stressed systems, for example, one in which several outfalls
occur in a limited area, would be expected to require more time for recovery.
The resilience of ecosystems and their ability to recover differ greatly,
however, and site-specific criteria may be established if adequate
justification is provided.
The use of criteria in designing waste treatment facilities requires the
selection of an appropriate wasteload allocation model. Dynamic models are
preferred for the application of these criteria. Limited data or other
factors may make their use impractical, in which case one should rely on a
steady-state model. The Agency recommends the interim use of 1Q5 or 1Q10 for
Criterion Maximum Concentration (CMC) design flow and 7Q5 or 7Q10 for the
Criterion Continuous Concentration (CCC) design flow in steady-state models
for unstressed and stressed systems respectively. These matters are discussed
in more detail in the Technical Support Document for Water Quality-Based
Toxics Control (U.S. EPA 1985) .
29
-------
E
'E
TJ
-------
U)
c
o
+J
re
+->
c
a)
o
c
o
o
+->
o
a)
3=
LU
E
3
"e
"D
re
O
10S
104 ^
10001
1001
10l
Figure 2. Ranked Summary of Cadmium GMAVs
1 -
Freshwater
~~~~
Freshwater Final Acute Value = 4.17 |jg/L dissolved cadmium @ 50 mg/L total hardness
Criteria Maximum Concentration = 2.1 |jg/L dissolved cadmium @50mg/L total hardness
0.2
0.4 0.6
% Rank GMAVs
—i 1
0.8 1
~ Freshwater Invertebrates
¦ Freshwater Fish
A Freshwater Amphibians
-------
-T 10 1
CT
c 105 i
o
re
104 i
c
a)
o
c
o
^ 10001
o
a)
3=
LU
£ 100^
3
"e
-a
re
O
re 10
Figure 3. Ranked Summary of Cadmium GMAVs
Saltwater
~~~
~~~
~~L
~~
Saltwater Final Acute Value = 80.1 (jg/L dissovled cadmium
Criteria Maximum Concentration = 40.0 (jg/L dissolved cadmium
0.0
0.2 0.4
% Rank of GMAVs
~l 1 1
0.6 0.8 1.0
~ Saltwater Invertebrates
¦ Saltwater Fish
-------
Figure 4. Comparison of All Table 2 Freshwater Chronic Values with the
Hardness Slope Derived CCC.
1984CCC
2000 CCC
36
-------
Figure 5. Chronic Toxicity of Cadmium to Aquatic Animals
100-3
10 i
o>
0)
_3
5 u
o
"E
o
O °-1l
Saltwater Final Chronic Value = 8.8 |jg/L dissolved cadmium
~ °
Freshwater Final Chronic Value = 0.08 pg/L dissolved cadmium @ 50 mg/L total hardness
0.01
T
T
T
0.0
0.2 0.4
0.6
1 1
0.8 1.0
E Freshwater Invertebrate
% Rank Genus Mean Chronic Value ¦ Freshwater Fish
-------
Table la.
Acute Toxicity of Cadmium to Aquatic Animals
R, M, T
S, M, T
S,
S,
F,
Species
Planarian,
Dendrocoe1urn
lacteum
Worm (adult),
Lumbriculus
variegatus
Tubificid worm,
Branchiura
sowerbyi
Tubificid worm,
Limnodrilus
hoffmeisteri
Tubificid worm
(30-40 mm)
Limnodrilus
hoffmeisteri
Tubificid worm,
Quistadrilus
multisetosus
Tubificid worm,
Rhyacodr i1 us
montana
Tubificid worm, S, M
Spirosperma ferox
Tubificid worm, S, M
Spirosperma
nikolskyi
Tubificid worm, S, M
Stylodrilus
heringlianus
Tubificid worm S, U
Tubifex tubifex
Tubificid worm, S, M
Tubifex tubifex
Method3 Chemical
Tubificid worm,
Varichaeta
pacifica
S,
Cadmium
chloride
Cadmium
nitrate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
chloride
Cadmium
sulfate
Cadmium
sulfate
Hardness
(mg/L as
CaCO-,)
87
280-300
5.3
5.3
152
5.3
5.3
5.3
5.3
5.3
Worm,
Nais sp.
S, U
Leech, G/ossiponiaR, M, T Cadmium
5.3
5.3
50
122.8
Species Mean
LC50 or EC50 Acute Value at
LC50 or EC50 LC50 or EC50 Adj . to Th=50 TH=50
(Total ug/L)b (Diss. ug/L) (Total ug/L) (Total ug/L)c Reference
FRESHWATER SPECIES
24,702
780
240
170
2,400
320
630
350
450
550
1 ,032
320
380
1 ,700
480
23,220
12.673
93.81
3,586
2,540
628.6
4.781
9,413
5,230
6.724
8.218
4,781
5.678
1 .700
162.6
12,673
93.81
4,781
Ham et al. 1995
Schubauer-Berigan et
al. 1993
3,586 Chapman et al. 1982a
Chapman et al. 1982a
628.6 Williams et al. 1985
Chapman et al. 1982a
9,413 Chapman et al. 1982a
5,230 Chapman et al. 1982a
6,724 Chapman et al. 1982a
8,218 Chapman et al. 1982a
Fargasova 1994a
4,781 Chapman et al. 1982a
5,678 Chapman et al. 1982a
1,700 Rehwoldt et al. 1973
162.6 Brown and Pascoe 1988
-------
Table la.
Continued
Species
Hardness
(mg/L as
Method Chemica CaCOO
1
LC50 or EC50
(Total ue/L)b
Snail (embryo), S, U
Amnicola sp.
Snail (adult), S, U
Amnicola sp.
Sna i1, F, M
Aplexa hypnorum
Snail (adult), F, M, T
Aplexa hypnorum
Snail (adult), S, M
Physa gyrina
Snail (immature), S, M
Physa gyrina
Mussel (juvenile), S, M
Utterbackia
imbecilis
Mussel (juvenile), S, M
Utterbackia
imbecilis
Mussel, S, M, T
Utterbackia
imbecilis
Mussel, S, M, T
Utterbackia
imbecilis
Mussel (juvenile) , S,M,T
Utterbackia
imbecilis
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
50
50
45.3
44.4
200
200
90
90
39
80-100
90
3,800
8,400
93
93
1 ,370
410
1 , 150
1 , 120
107
44
Mussel (juvenile) , S,M,T
Utterbackia
imbecilis
Mussel (juvenile) , S,M,T
Utterbackia
imbecilis
92
86
82
93.0
Mussel,
S, M, T
82
46.4
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
3,800
Rehwoldt et al. 1973
8,400
Rehwoldt et al. 1973
104.7
Hoicombe et al. 1984
107.3
257.8d
77. 15
106.0
77. 15
Phipps and Hoicombe
1985
Wier and Walter 1976
Wier and Walter 1976
566. 4e
Keller Unpublished
551 ,6e
Keller Unpublished
12. 14
Keller and Zam 1991
52.70
Keller and Zam 1991
21 .67
Keller Unpublished
39.33
48.38 30.50
25.57
Keller Unpublished
Keller Unpublished
Keller Unpublished
-------
Table la. Continued
Hardness
(mg/L as LC50 or EC50
Species Method Chemica CaCOO (Total ug/L)b
Mussel,
Actinonaia
pectorosa
Mussel,
Anodonta
couplerana
Mussel,
Lampsi1 is
straminea
claibornensis
Mussel,
Lampsi1 is teres
Cladoceran,
Alona affinis
Cladoceran
(<24 hr),
Ceriodaphnia dubia
I, T
I, T
I, T
I, T
U
U
Cladoceran R, M,
(<24 hr),
Ceriodaphnia dubia
Cladoceran S, U
(<24 hr),
Ceriodaphnia dubia
Cadmium
nitrate
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
84
50
50
50
109
80-100
70-90
80-100
69
12
38
33
546
54
54.5
55.9
Cladoceran,
Ceriodaphnia
reticulata
S, U
45
66
Cladoceran
(<24 hr)
Ceriodaphnia
reticulata
S, U Cadmium
chloride
240
184
Cladoceran
(<6 hr)
Ceriodaphnia
reticulata
Cladoceran,
Daphnia magna
S, U Cadmium
chloride
S, U Cadmium
chloride
120
110
<1 ,6h
Cladoceran,
S, U Cadmium
45
65
LC50 or
LC50 or EC50 Adj .
EC50 (Diss. to Th=50
us/L) (Total
ug/L)
36.93
12.00
38.00
33.00
213.5
26.60
30.94
27.53
74.93
27.80
38.31
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
30.73 Keller Unpublished
12.00 Keller Unpublished
38.00 Keller Unpublished
33.00 Keller Unpublished
213.5 Ghosh et al. 1990
Britton et al. 1996
Diamond et al. 1997
28.29 Lee et al. 1997
Mount and Norberg 1984
Elnabarawy et al. 1986
43.05 Hall et al. 1986
73.80
Anderson 1948
Biesinger and
-------
Table la. Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran
(<24 hr),
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
S, U
s, u
s, u
R, M
S, U
S, U
S, U
S, U
S, M, T
S, M, T
Cadmium
nitrate
Cadmium
nitrate
Cadmium
nitrate
Cadmium
Chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
sulfate
Cadmium
chloride
Cadmium
chloride
100
45
120
240
240
160-180
160-180
27.07
28.04
35. 13
30
118
28.3
178
1 ,880
3.6
(genotype A)
9.0
(genotype A-l)
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran
(<24 hr),
Daphnia magna
Cladoceran
(<24 hr),
S,
S,
S,
S,
S,
S,
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
160-180
160-180
160-180
160-180
160-180
160-180
9.0
(genotype A-2)
4.5
(genotype B)
27. 1
(genotype E)
115.9
(genotype S-l)
24 5
(Clone F)
129.4
(Clone S-l)
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
Reference
Canton and Adema 1978
Canton and Adema 1978
Canton and Adema 1978
13.01
134.0
9.855
Canton and Slooff 1982
Mount and Norberg 1984
Hall et al. 1986
26.89
Elnabarawy et al. 1986
284.0
0.8240
Khangarot and Ray
1989a
Baird et al. 1991
2.060
Baird et al. 1991
2.060
1 .030
Baird et al. 1991
Baird et al. 1991
6.203
Baird et al. 1991
26.53
5.608
Baird et al. 1991
Stuhlbacher et al.
1992
29.62
Stuhlbacher et al
1992
-------
Table la.
Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Cladoceran S,
(<24 hr),
Daphnia magna
Cladoceran (3 d), S,
Daphnia magna
Cladoceran (3 d), S,
Daphnia magna
Cladoceran (6 d), S,
Daphnia magna
Cladoceran (6 d), S,
Daphnia magna
Cladoceran S,
(10 d),
Daphnia magna
Cladoceran S,
(10 d),
Daphnia magna
Cladoceran S,
(20 d),
Daphnia magna
Cladoceran S,
(20 d),
Daphnia magna
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
T Cadmium
chloride
10
160-180
160-180
160-180
160-180
160-180
160-180
160-180
160-180
37.9
25 4
(Clone F)
228.8
(Clone S-l)
49. 1
(Clone F)
250. 1
(Clone S-l)
131 .2
(Clone F)
319.3
(Clone S-l)
139.9
(Clone F)
326.3
(Clone S-l)
Cladoceran
(30 d),
Daphnia magna
Cladoceran
(30 d),
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran
(<24 hr),
Daphnia magna
S, M, T Cadmium
chloride
S, M, T Cadmium
chloride
S, U
s, u
s, u
Cadmium
chloride
Cadmium
sulfate
Cadmium
chloride
160-180
160-180
250
160-180
146.7
(Clone F)
355.3
(Clone S-l)
360
280
9.5
Cladoceran,
S, M, T Cadmium
46. 1
112
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
263.5
Hickey and Vickers
1992
5.814
52.37
11 .24
57.24
30.03
Stuhlbacher et al.
1993
Stuhlbacher et al.
1993
Stuhlbacher et al.
1993
Stuhlbacher et al.
1993
Stuhlbacher et al.
1993
73.08
Stuhlbacher et al.
1993
32.02
Stuhlbacher et al.
1993
74.69
Stuhlbacher et al.
1993
33.58
Stuhlbacher et al.
1993
81 .32
Stuhlbacher et al.
1993
40.27
Fargasova 1994a
Crisinel et al. 1994
2. 174
Guilhermino et al.
1996
104
123.5
Barata et al. 1998
-------
Table la. Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
(<24 hr)
Daphnia magna
Cladoceran,
(<24 hr)
Daphnia magna
Cladoceran,
(<24 hr)
Daphnia magna
Cladoceran,
(<24 hr)
Daphnia magna
S,
S,
S,
S,
S,
S,
S,
S,
S,
T Cadmium
sulfate
T Cadmium
sulfate
T Cadmium
sulfate
T Cadmium
sulfate
T Cadmium
sulfate
T Cadmium
Chloride
T Cadmium
Chloride
T Cadmium
Chloride
T Cadmium
Chloride
90.7
179
46. 1
90.7
179
51
104
105
197
106
(clone S-l)
233
(clone S-l)
30. 1
(clone A)
23.4
(clone A)
23.6
(clone A)
9.9
33
34
63
Cladoceran,
(<24 hr)
Daphnia magna
Cladoceran,
(<24 hr)
Daphnia magna
Cladoceran,
Daphnia pulex
Cladoceran,
Daphnia pulex
Cladoceran,
Daphnia pulex
Cladoceran
S, M, T Cadmium
Chloride
F, M, T Cadmium
Chloride
S, U
s, u
s, u
Cadmium
nitrate
Cadmium
chloride
209
130
S, U Cadmium
57
45
240
49
58
93.45
47
68
319
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
91 .4
51 .72
179
50. 12
27.8
33. 19
20.2
18. 1
11 .42
5.076
9.667
13.65
13.91
12.07
8.745
18.34
18.34
40. 14
77.20
48. 19
Reference
Barata et al. 1998
Barata et al. 1998
Barata et al. 1998
Barata et al. 1998
Barata et al. 1998
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Attar and Maly 1982
Canton and Adema 1978
Bertram and Hart 1979
Mount and Norberg 1984
Elnabarawy et al. 1986
-------
Table la. Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Cladoceran S, U Cadmium 120
(<24 hr), chloride
Daphnia pulex
Cladoceran S, M, T Cadmium 53.5
(<24 hr), chloride
Daphnia pulex
Cladoceran, S, U Cadmium 80-90
Daphnia pulex chloride
Cladoceran, S, U Cadmium 80-84
Moina macrocopa chloride
Cladoceran, S, M Cadmium 11.1
Simocephalus chloride
serrulatus
Cladoceran, S, M Cadmium 39-48
Simocephalus chloride
serrulatus
Cladoceran, S, U - 45
Simocepha1 us
vetulus
Copepod, S, U Cadmium 109
Cyclops varicans nitrate
89.4
70. 1
78.3
71 .25
7.0
24.5
24
493
Isopod, F, M
Asel1 us bicrenata
Isopod, F, M
Lirceus alabamae
Amphipod (4 mm), R, U
Crangonyx
pseudogracilis
Amphipod, S, M
Gammarus
pseudolimnaeus
Amphipod, S, U
Gammarus sp.
Crayfish (1.8 g), F, M,
Orconectes immunis
Crayfish, S, M
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
220
152
50
39-48
50
44.4
2, 129B
150B
1 ,700
68.3
70
>10,200
400
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
Reference
31 .13
Hall et al. 1986
64.61
Stackhouse and Benson
1988
41 .31
48. 12
Roux et al. 1993
39.26
42.92
39.26 Hatakeyama and Yasuno
1981b
Giesy et al. 1977
29. 14
35.36
Spehar and Carlson
1984a,b
27.25
27.25
Mount and Norberg 1984
192.8
192.8
Ghosh et al. 1990
357.2
39.29
357.2
39.29
Bosnak and Morgan 1981
Bosnak and Morgan 1981
1 .700
1 ,700
Martin and Holdich
1986
81 .91
81 .91
Spehar and Carlson
1984a,b
70.00
Rehwoldt et al. 1973
>11,769
>11,769
Phipps and Hoicombe
1985
Boutet and
-------
Table la. Continued
Species
Hardness
(mg/L as
Method Chemica CaCOO
1
LC50 or EC50
(Total ue/L)b
Crayfish, F, M, T Cadmium
Orconectes virilis chloride
Crayfish S, M Cadmium
(juvenile), chloride
Procambarus
clarkii
Mayfly, F, M Cadmium
Ephemerella chloride
grandis
Mayfly, S, U Cadmium
Ephemere11a su1 fate
grandis
Damsel fly, S, U
(Unidentified)
Stonefly, F, M Cadmium
Pteronarcella chloride
badia
26
30
44
50
6, 100
1 ,040
28,000
2,000
8, 100
18,000
Caddisfly, S, U
(Unidentified)
Midge, S, U
Chironomus sp.
Midge R, M, r
(4th instar) ,
Chironomus
ripari us
Midge (10-12 mm), F, M,
Chironomus
ripari us
Bryozoan,
Pectinatella
magnifica
Bryozoan,
Lophopodella
carteri
Bryozoan,
Plumatella
emarginata
S, U
S, U
S, U
Cadmium
chloride
50
50
124
152
190-220
190-220
190-220
3,400
1 ,200
140,000
300,000
700
150
1 ,090
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
13.413
13,413
lirenda 1986
1 ,925
1,925 Naqvi and Howell 1993
Clubb et al. 1975
2.333
2,333 Warnick and Bell 1969
8. 100
8,100 Rehwoldt et al. 1973
Clubb et al. 1975
3.400
3,400 Rehwoldt et al. 1973
1 ,200
46,865
Rehwoldt et al. 1973
Pascoe et al. 1990
78,579
78,579 Williams et al. 1985
127.9
127.9 Pardue and Wood 1980
27.40
27.40 Pardue and Wood 1980
199. 1
199.1 Pardue and Wood 1980
-------
Table la. Continued
Hardness
(mg/L as
Species Method Chemica CaCOO
American eel, S, M - 55
Anguilia rostrata
Coho salmon S, U Cadmium 90
(1 year), chloride
Oncorhynchus
kisutch
Coho salmon S, U Cadmium 41
(juvenile), chloride
Oncorhynchus
kisutch
Coho salmon F, M Cadmium 23
(adult), chloride
Oncorhynchus
kisutch
Coho salmon F, M Cadmium 23
(parr), chloride
Oncorhynchus
kisutch
Chinook salmon (9- S, U Cadmium 211
13 wk), chloride
Oncorhynchus
tshawytscha
Chinook salmon S, U Cadmium 343
(18-21 wk), chloride
Oncorhynchus
tshawytscha
Chinook salmon F, M Cadmium 23
(alevin), chloride
Oncorhynchus
tshawytscha
Chinook salmon F, M Cadmium 23
(swim-up) , chloride
Oncorhynchus
tshawytscha
Chinook salmon F, M Cadmium 23
(parr), chloride
Oncorhynchus
tshawytscha
Chinook salmon
F,
Cadmium
23
LC50 or
LC50 or EC50 LC50 or EC50 Adj .
(Total ue/L)b EC50 (Diss. to Th=50
us/L) (Total
ug/L)
820 731.0
10.4 - 5.122
3.4 - 4.318
17.5d - 44.60d
2.7 6.882
26 - 4.587
57 - 5.600
>26d - >66.27d
1.8 4.588
3.5 8.921
>2.9 >7.392
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
731.0 Rehwoldt et al. 1973
Lorz et al. 1978
Buhl and Hamilton 1991
Chapman 1975
6.882 Chapman 1975
Hamilton and Buhl 1990
Hamilton and Buhl 1990
Chapman 1975, 1978
Chapman 1975, 1978
Chapman 1975, 1978
Chapman 1975, 1978
-------
Table la.
Continued
Species
Chinook salmon
(juvenile) ,
Oncorhynchus
tshawytscha
Chinook salmon
(juvenile) ,
Oncorhynchus
tshawytscha
Ra i nbow trout,
Oncorhynchus
mykiss
Ra i nbow trout,
Oncorhynchus
mykiss
Ra i nbow trout,
Oncorhynchus
mykiss
Ra i nbow trout,
Oncorhynchus
mykiss
Rainbow trout
(juvenile) ,
Oncorhynchus
mykiss
Rainbow trout
(alevin),
Oncorhynchus
mykiss
Rainbow trout
(swim-up),
Oncorhynchus
mykiss
Rainbow trout
(parr),
Oncorhynchus
mykiss
Rainbow trout
Hardness
(mg/L as
Method Chemica CaCO/)
1
F, M Cadmium 25
chloride
F, M Cadmium 20-22
sulfate
S, U
s, u
S, U Cadmium
chloride
S, M Cadmium 39-48
chloride
S, U Cadmium 41
chloride
F, M Cadmium 23
chloride
F, M Cadmium 23
chloride
F, M Cadmium 23
chloride
F, M Cadmium 23
LC50 or EC50 LC50 or
(Total ue/L)b EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
1 .41
3.250
Chapman 1982
1 . 1
3. 129
4.984
Finlayson and Verrue
1982
Kumada et al. 1973
Kumada et al. 1973
6.0 - - - Kumada et al. 1980
2.3 - 2.720 - Spehar and Carlson
1984a,b
1.5 - 1.905 - Buhl and Hamilton 1991
>27d - >68.82d - Chapman 1975, 1978
1.3 - 3.314 - Chapman 1975, 1978
1.0 2.549 Chapman 1978
4.1 10.45 Chapman 1975
-------
Table la. Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Rainbow trout
(2 mo),
Oncorhynchus
mykiss
Ra i nbow trout,
Oncorhynchus
mykiss
F,
F,
Rainbow trout (8.8F,
g) .
Oncorhynchus
mykiss
Cadmium
nitrate
Cadmium
sulfate
Cadmium
chloride
31
44.4
6.6
1 .75
Rainbow trout F, M, T
(fry),
Oncorhynchus
mykiss
Brown trout, S, M
Salmo trutta
Brook trout, S, M
Salve Iinus
fontinalis
Brook trout, F, M
Salve Iinus
fontinalis
Goldfish, S, U
Carassius auratus
Goldfish, S, M
Carassius auratus
Goldfish, S, M
Carassius auratus
Goldfish (8.8 g), F, M, T
Carassius auratus
Common carp R, U
(yolk absorbed),
Cyprinus carpio
Cadmium
chloride
Cadmium
chloride
Cadmium
sulfate
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
9.2
39-48
42
47.4
20
20
140
44.4
<0.5
1.4
<1.5
5,080
2,340
2, 130
46,800
748
140
Common carp
R, U
Cadmium
2,840
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
Hale 1977
3. 113
Davies 1976
3.462
Phipps and Hoicombe
1985
<3.844 4.296 Cusimano et al. 1986
1 .656 1.656 Spehar and Carlson
1984a,b
<1.851 - Carroll et al. 1979
5,418 1 Hoicombe et al. 1983
7,058 - Pickering and
Henderson 1966
6,425 - McCarty et al. 1978
13,535 - McCarty et al. 1978
863. 1 863.1 Phipps and Holcombe
1985
Ramesha et al. 1997
Ramesha et al. 1997
-------
Table la. Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Common carp R, U
(advanced fry),
Cyprinus carpio
Common carp R, U
(fingerling),
Cyprinus carpio
Common carp (fry), S, U
Cyprinus carpio
Common carp S, U
(fingerling),
Cyprinus carpio
Cadmium
chloride
Cadmium
chloride
Cadmium
nitrate
Cadmium
nitrate
100
100
2,910
4,560
4,300d
17, 100d
Common carp, S, M - 55 240 (at 28NC)
Cyprinus carpio
Red shiner S, M, T Cadmium 85.5 6,620
(0.8 - 2.0g) sulfate
No trop is lutrensis
Fathead minnow, S, U Cadmium 20 l,050d
Pimephales chloride
prome1 as
Fathead minnow, S, U Cadmium 20 630'1
Pimephales chloride
prome1 as
Fathead minnow, S, U Cadmium 360 72,600'1
Pimephales chloride
prome1 as
Fathead minnow, S, U Cadmium 360 73,500'1
Pimephales chloride
prome1 as
Fathead minnow, F, M Cadmium 201 11,200d
Pimephales sulfate
prome1 as
Fathead minnow, F, M Cadmium 201 12,000'1
Pimephales sulfate
prome1 as
Fathead minnow, F, M Cadmium 201 6,400d
Pimephales sulfate
prome1 as
Fathead minnow,
F,
Cadmium
201
2,000'1
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
Reference
Ramesha et al. 1997
Ramesha et al. 1997
1 ,865d
7,418d
Suresh et al. 1993a
Suresh et al. 1993a
214.0 214.0 Rehwoldt et al. 1972
3.468 3,468 Carrier and Beitinger
1988a
3,167d - Pickering and
Henderson 1966
1 ,9(1(1'' - Pickering and
Henderson 1966
6,729d - Pickering and
Henderson 1966
6,812d - Pickering and
Henderson 1966
2,095d - Pickering and Gast
1972
2,245d - Pickering and Gast
1972
1 ,197d - Pickering and Gast
1972
374.ld - Pickering and Gast
-------
Table la.
Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Fathead minnow,
Pimephales
prome1 as
Fathead minnow
(fry),
Pimephales
prome1 as
Cadmium
sulfate
Cadmium
chloride
201
40
4,500d
21 .5
Fathead minnow
(fry),
Pimephales
prome1 as
Fathead minnow
(fry),
Pimephales
prome1 as
Fathead minnow
(fry),
Pimephales
prome1 as
Fathead minnow
(fry),
Pimephales
prome1 as
Fathead minnow
(fry),
Pimephales
prome1 as
Fathead minnow
(adult),
Pimephales
prome1 as
Fathead minnow
(adult),
Pimephales
prome1 as
Fathead minnow
(adult),
Pimephales
prome1 as
Fathead minnow
Cadmium 48
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
39
45
Cadmium 47
chloride
Cadmium 44
chloride
Cadmium 103
chloride
Cadmium 103
chloride
103
254-271
11.7
19.3
42.4
54.2
29.0
3,060d
2,900d
3, 100d
7, 160d
Species Mean
LC50 or Acute Value
LC50 or EC50 Adj . at TH=50
EC50 (Diss. to Th=50 (Total Reference
us/L) (Total us/L)c
ug/L)
841.7d - Pickering and Gast
1972
28.13 - Spehar 1982
12.29 - Spehar 1982
26.04 - Spehar 1982
48.14 - Spehar 1982
58.40 - Spehar 1982
33.83 - Spehar 1982
1 ,281d - Birge et al. 1983
1,214d - Birge et al. 1983
1,298d - Birge et al. 1983
968. 7d - Birge et al. 1983
-------
Table la.
Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Fathead minnow,
Pimephales
prome1 as
S,
Cadmium
chloride
39-48
1 ,280d
Fathead minnow S, U Cadmium 120
(14-30 d), chloride
Pimephales
prome1 as
Fathead minnow S, M, T Cadmium 85.5
(0.8 - 2.0 g) sulfate
Pimephales
prome1 as
Fathead minnow S, U Cadmium 60
(<24 hr), nitrate
Pimephales
prome1 as
Fathead minnow (1- S, U Cadmium 60
2 d), nitrate
Pimephales
prome1 as
Fathead minnow S, M, T Cadmium 280-300
(<24 hr), nitrate
Pimephales
prome1 as
Fathead minnow S, M, T Cadmium 141
(juvenile), chloride
Pimephales
prome1 as
Fathead minnow F, M, T Cadmium 44.4
(0.6 g), chloride
Pimephales
prome1 as
Fathead minnow (30F, M, T Cadmium 44
d), nitrate
Pimephales
prome1 as
Colorado squawfish S, U Cadmium 199
(larva), chloride
Ptychochei1 us
lucius
>150h
3,580d
210
180
73 (pH=6-6.5)
60 (pH=7-7.5)
65 (pH=8-8.8)
3,465d
1 ,500d
13.2
78
Species Mean
LC50 or Acute Value
LC50 or EC50 Adj . at TH=50
EC50 (Diss. to Th=50 (Total Reference
us/L) (Total us/L)c
ug/L)
1 ,493d
Spehar and Carlson
1984a,b
>52.24h
Hall et al. 1986
1 ,876d
Carrier and Beitinger
1988a
168.6
Rifici et al. 1996
144.5
Rifici et al. 1996
8.780
7.216
7.817
Schubauer-Berigan et
al. 1993
2,509
993. 6d
Sherman et al. 1987
1 ,731d
Phipps and Hoicombe
1985
15.40
15.40 Spehar and Fiandt 1986
14.77
Buhl 1997
-------
Table la.
Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Colorado squawfish S, U Cadmium 199
(juvenile), chloride
Ptychochei1 us
lucius
Northern pike F, M Cadmium 20-30
minnow (juvenile), chloride
Ptychochei1 us
oregonensis
Northern pike F, M Cadmium 20-30
minnow (juvenile), chloride
Ptychochei1 us
oregonensis
Bonytail (larva), S, U Cadmium 199
Gila elegans chloride
Bonytail S, U Cadmium 199
(juvenile), chloride
Gila elegans
White sucker, F, M Cadmium 18
Catostomus chloride
commersoni
Razorback sucker S, U Cadmium 199
(larva), Xyrauchen chloride
texanus
Razorback sucker S, U Cadmium 199
(juvenile), chloride
Xyrauchen texanus
Channel catfish F, M, T Cadmium 44.4
(7.4 g), chloride
Ictalurus
punctatus
Banded killifish, S, M - 55
Fundulus diaphanus
108
1 ,092
1 , 104
148
168
1 , 110
139
160
4,480
110
Flagfish,
Jordanella
floridae
F,
Cadmium
chloride
44
2,500
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
20.45
17.38
Buhl 1997
2.517
Andros and Garton 1980
2.545
2,531
Andros and Garton 1980
28.02
Buhl 1997
31 .81
29.85
Buhl 1997
3.801
3,801
Duncan and Klaverkamp
1983
26.32
Buhl 1997
30.29
28.23
Buhl 1997
5, 169
5, 169
Phipps and Hoicombe
1985
98.07
98.07 Rehwoldt et al. 1972
2.916
2,916 Spehar 1976a,b
-------
Table la. Continued
Hardness
(mg/L as LC50 or EC50
Species Method Chemica CaCOO (Total ug/L)b
Mosquitofish, F, M Cadmium 11.1
Gambusia affinis chloride
Mosquitofish, F, M Cadmium 11.1
Gambusia affinis chloride
Guppy, S, U Cadmium 20
Poecilia chloride
reticulata
Threespine S, U Cadmium 115
stickleback, chloride
Gasterosteus
aculeatus
Threespine R, M Cadmium 103-111
stickleback, chloride
Gasterosteus
aculeatus
900
2,200
1 ,270
6,500
23,000
White perch, S, M - 55
Morone ameri carta
Striped bass, S, M - 55
Morone saxatil is
Striped bass S, U Cadmium 34.5
(larva), chloride
Morone saxatil is
Striped bass S, U Cadmium 34.5
(fingerling), chloride
Morone saxatil is
Striped bass S, U Cadmium 40
(63 d), chloride
Morone saxatil is
Striped bass S, U Cadmium 285
(63 d), chloride
Morone saxatil is
Green sunfish, S, U Cadmium 20
Lepomis cyanellus chloride
Green sunfish, S, U Cadmium 360
Lepomis cyanellus chloride
8,400
1 , 100
1
10
2,840
66,000
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total Reference
ug/L)c
5.519
13,490
3,831
Giesy et al. 1977
8,628 Giesy et al. 1977
3,831 Pickering and
Henderson 1966
2.383
Pascoe and Cram 1977
9. 196
4,681
Pascoe and Mattey 1977
7,489
7,489 Rehwoldt et al. 1972
980. 7e
Rehwoldt et al. 1972
1 .564e
Hughes 1973
3. 128e
Hughes 1973
5.234
Palawski et al. 1985
1 .228
2.535
Palawski et al. 1985
8,566
6, 117
Pickering and
Henderson 1966
Pickering and
Henderson 1966
-------
Table 1
Continued
Species
Method Chemica
= I
Hardness
(mg/L as
CaCOj)
LC50 or EC50
(Total ue/L)b
Green sunfish S, M, T Cadmium 85.5
(juvenile), sulfate
Lepomis cyane11 us
Green sunfish, F, M Cadmium 335
Lepomis cyanellus chloride
Pumpkinseed, S, M - 55
Lepomis gibbosus
Bluegill, S, U Cadmium 20
Lepomis chloride
macrochirus
Bluegill, S, M Cadmium 18
Lepomis chloride
macrochirus
Bluegill, S, M Cadmium 18
Lepomis chloride
macrochirus
Bluegill, S, M Cadmium 18
Lepomis chloride
macrochirus
Bluegill, F, M Cadmium 207
Lepomis chloride
macrochirus
Bluegill (1.0 g), F, M, T Cadmium 44.4
Lepomis chloride
macrochirus
Tilapia R, U Cadmium 28.4
Oreochromis chloride
mossambica
African clawed R, U Cadmium 112-120
frog, chloride
Xenopus laevis
Salamander F, M, T Cadmium 45
(3 mo larva), chloride
Ambystoma gracHe
11,520
20,500
1 ,500
1 ,940
3,860
2,800
2,260
21,100
6,470
6,000'1
3,597
468.4
LC50 or
EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
Reference
6,036
Carrier and Beitinger
1988b
2,072
2,072
Jude 1973
1 ,337
1 ,337
Rehwoldt et al. 1972
5,852
Pickering and
Henderson 1966
13,219
Bishop and Mcintosh
1981
9,589
Bishop and Mcintosh
1981
7,740
Bishop and Mcintosh
1981
3.809
Eaton 1980
7.466
5,333
Phipps and Hoicombe
1985
11,861
11,861
Gaikwad 1989
1 ,305
1,305 Sunderman et al. 1991
531 .8
531 .8
Nebeker et al. 1995
-------
Table la. Continued
Species
Hardness
(mg/L as
Method Chemica CaCOO
1
LC50 or EC50 LC50 or
(Total ue/L)b EC50 (Diss.
ug/L)
LC50 or
EC50 Adj.
to Th=50
(Total
ug/L)
Species Mean
Acute Value
at TH=50
(Total
ug/L)c
Reference
Table la. Continued
Species
Method3 Chemical
Salinity
(g/kg)
LC50
or EC50
(Total ug/L)b
LC50 or EC50
(Diss. ug/L)
Species Mean
Acute Value
(Total ug/L) Reference
SALTWATER SPECIES
Polychaete worm (adult), S, U Cadmium
Neanthes arenaceodentata chloride
Polychaete worm S, U Cadmium
(juvenile), chloride
Neanthes arenaceodentata
Polychaete worm, Neanthes S, U Cadmium
arenaceodentata chloride
Polychaete worm, S, U Cadmium
Nereis grubei chloride
Sand worm, S, U Cadmium
Nereis virens chloride
Sand worm, S, U Cadmium
Nereis virens chloride
Polychaete worm (adult), S, U Cadmium
Capitella capitata chloride
Polychaete worm, S, U Cadmium
Capitella capitata chloride
Polychaete worm (larva), S, U Cadmium
Capitella capitata chloride
Polychaete worm, S, U Cadmium
Pectinaria californiensis chloride
Oligochaete worm, R, U Cadmium
Limnodriloides verrucosus sulfate
Oligochaete worm, R, U Cadmium
Monopylephorus sulfate
cuticulatus
Oligochaete worm, R, U Cadmium
Tubificoides gabriellae sulfate
Oyster dri11,
S, U Cadmium
12.000
12.500
14.100
4.700
11.000
9.300
7,500d
2,800d
200
2.600
10.000
135.000
24.000
6,600
Reish et al. 1976
Reish et al. 1976
12,836 Reish and LeMay 1991
4,700 Reish and LeMay 1991
Eisler 1971
10,114 Eisler and Hennekey 1977
Reish et al. 1976
Reish and LeMay 1991
200 Reish et al. 1976
2,600 Reish and LeMay 1991
10,000 Chapman et al. 1982a
135,000 Chapman et al. 1982a
24,000 Chapman et al. 1982a
6,600 Eisler 1971
-------
Mud sna i1, S, U
Nassarius obsoletus
Mud sna i1, S, U
Nassarius obsoletus
Blue mussel, S, U
Mytilus edulis
Blue mussel, S, M
Mytilus edulis
Blue mussel, F, M
Mytilus edulis
Blue mussel, F, M
Mytilus edulis
Blue mussel (embryo), S, U
Mytilus edulis
Blue Mussel (juvenile), R, U
Mytilus edulis
Bay scallop (juvenile), S, U
Argopecten irradians
Pacific oyster (embryo), S, U
Crassostrea gigas
Pacific oyster (larva), S, U
Crassostrea gigas
Eastern oyster (larva), S, U
Crassostrea virginica
Soft-shell clam, S, U
Mya arenaria
Soft-shell clam, S, U
Mya arenaria
Soft-shell clam, S, U
Mya arenaria
Squid (larva), S, M,
Loligo opalescens
Copepod, S, U
Pseudodiaptomus coronatus
Copepod, S, U
Eurytemora affinis
Copepod (naupilus), S, U
Eurytemora affinis
Copepod, S, U
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
10.500 Eisler 1971
35.000 - 19,170 Eisler and Hennekey 1977
25,000d - - Eisler 1971
1,620d - - Ahsanu11ah 1976
3,600d - - Ahsanu11ah 1976
4,300d - - Ahsanu11ah 1976
1.200 - - Martin et al. 1981
960 - 1,073 Nelson et al. 1988
1.480 - 1,480 Nelson et al. 1976
611 - - Martin et al. 1981
85 - 227.9 Watling 1982
3.800 - 3,800 Calabrese et al. 1973
2.200 Eisler 1971
2.500 - - Eisler and Hennekey 1977
850 - 1,672 Eisler 1977
>10.200 >10,200 Dinnel et al. 1989
1.708 1,708 Gentile 1982
1,080d - - Gentile 1982
147.7 - 147.7 Sullivan et al. 1983
144 - 144 Gentile 1982
-------
Table la. Continued
Salinity
Species Method3 Chemica (a/kg)
1
Copepod,
Acartia tonsa
s,
U
Cadmium
chloride
-
Copepod,
Acartia tonsa
s,
u
Cadmium
chloride
-
Copepod,
Acartia tonsa
s,
u
Cadmium
chloride
-
Copepod,
Acartia tonsa
s,
u
Cadmium
chloride
-
Copepod (adult),
Acartia tonsa
s,
u
Cadmium
chloride
15
Copepod (adult),
Acartia tonsa
s,
u
Cadmium
chloride
20
Copepod (adult),
Acartia tonsa
s,
u
Cadmium
chloride
20
Copepod,
Amphiascus tenuiremis
S, M
[, T
Cadmium
nitrate
30.7
Copepod,
Ni tocra spinipes
s,
u
Cadmium
chloride
-
Copepod,
Ni tocra spinipes
F,
u
Cadmium
chloride
3
Copepod,
Ni tocra spinipes
F,
u
Cadmium
chloride
7
Copepod,
Ni tocra spinipes
F,
u
Cadmium
chloride
15
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c Reference
90 - - Sosnowski and Gentile 1978
122 - - Sosnowski and Gentile 1978
220 - - Sosnowski and Gentile 1978
337 - - Sosnowski and Gentile 1978
93 (18NC) - - Toudal and Riisgard 1987
151 (13NC) - - Toudal and Riisgard 1987
29 (21NC) - 118.7 Toudal and Riisgard 1987
224 - 224 Green et al. 1993
1.800 - - Bengtsson 1978
430 - - Bengtsson and Bergstrom
1987
660 - - Bengtsson and Bergstrom
1987
780 - 794.5 Bengtsson and Bergstrom
1987
-------
Table la. Continued
Salinity
Species
Method3
Chemica
I
(e/ke)
Mysid (7 d),
Americamysis bahia
S, M,
D
T,
Cadmium
chloride
6
Mysid (7 d),
Americamysis bahia
S, M,
D
T,
Cadmium
chloride
14
Mysid (7 d),
Americamysis bahia
S, M,
D
T,
Cadmium
chloride
22
Mysid (7 d),
Americamysis bahia
S, M,
D
T,
Cadmium
chloride
30
Mysid (7 d),
Americamysis bahia
S, M,
D
T,
Cadmium
chloride
38
Mysid (<24 hr),
Americamysis bahia
S, M
, T
-
10
Mysid (<24 hr),
Americamysis bahia
S, M
, T
-
30
Mysid,
Americamysis bahia
F,
M
Cadmium
chloride
15-23
Mysid,
Americamysis bahia
F,
M
Cadmium
chloride
30
Mysid,
Mysidopsis bigelowi
F,
M
Cadmium
chloride
30
Iosopd,
Jaeropsis sp.
s,
U
Cadmium
chloride
35
Isopod,
Limnoria tripunctata
s,
U
Cadmium
chloride
35
Amphipod,
Ampelisca abdita
S, M
, T
Cadmium
chloride
28
Amphipod (adult),
Ampelisca abdita
F,
M
Cadmium
chloride
-
Amphipod (adult),
Marinogammarus obtusatus
s,
M
Cadmium
chloride
-
Amphipod (young),
Marinogammarus obtusatus
s,
M
Cadmium
chloride
-
LC50
or EC50
(Total ue/L)b
Species Mean
LC50 or EC50 Acute Value
(Diss. us/L) (Total us/L)c
Reference
14.7 2.8 - DeLisle and Roberts 1988
38.0 3.6 - DeLisle and Roberts 1988
70.4 4.1 - DeLisle and Roberts 1988
77.3 2.9 - DeLisle and Roberts 1988
90.3 2.3 - DeLisle and Roberts 1988
30.9 (20NC) - - Voyer and Modica 1990
<11.1 (30NC)
82.0 (20NC) - - Voyer and Modica 1990
32.8 (25NC)
<11.1 (30NC)
15.5 - - Nimmo et al. 1977a
110 41.29 Gentile et al. 1982;
Lussier et al. Manuscript
110 110 Gentile et al. 1982
410.0 410.0 Hong and Reish 1987
7.120 7,120 Hong and Reish 1987
400 - - Redmond et al. 1994
2.900 - 2,900 Scott et al. Manuscript
13,000d - - Wright and Frain 1981
3.500 3,500 Wright and Frain 1981
-------
Table la. Continued
Species
Amphipod,
Chelura terebrans
Amphipod,
Corophium insidiosum
Amphipod (8-12 mm),
Corophium insidiosum
Amphipod (juvenile),
Diporeia spp.
Amphipod,
Elasmopus bampo
Amphipod (8-12 mm),
Elasmopus bampo
Amphipod (3-5 mm),
Eohaustorius estuarius
Amphipod,
Grandidierella japonica
Amphipod (500 ,«in) ,
Leptocheirus plumulosus
Amphipod (700 ,«in) ,
Leptocheirus plumulosus
Amphipod (1,000 //in) ,
Leptocheirus plumulosus
Pink shrimp (subadult),
Penaeus duorarum
Pink shrimp
(2nd post larva) ,
Penaeus duorarum
Grass shrimp (adult),
Palaemonetes pugio
Method3
Chemica
I
Salinity
(s/ks)
s,
u
Cadmium
chloride
35
s,
u
Cadmium
chloride
35
s,
u
Cadmium
chloride
-
S, M
[, T
Cadmium
chloride
20 (4NC)
20 (10NC)
20 (15NC)
s,
u
Cadmium
chloride
35
s,
u
Cadmium
chloride
-
R, M
[, T
Cadmium
chloride
30
s,
u
Cadmium
chloride
35
s,
u
Cadmium
chloride
8
s,
u
Cadmium
chloride
8
s,
u
Cadmium
chloride
8
F,
M
Cadmium
chloride
-
s,
u
cadmium
chloride
25
s,
u
Cadmium
chloride
20
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c
Reference
630
1 .270
680
49,400f
17,500f
6.700
570
900
41.900
(held lid before
testing)
36.100
(held 17 d before
testing)
14.500
(held 121 d before
testing)
1 . 170
360
650
880
3,500d
310.5
1 .830
(Big Sheepshead
Creek)
630 Hong and Reish 1987
Hong and Reish 1987
929.3 Reish 1993
Gossiaux et al. 1992
6,700
Hong and Reish 1987
716.2 Reish 1993
Meador 1993
27,992
1,170 Hong and Reish 1987
McGee et al. 1998
McGee et al. 1998
590.5 McGee et al . 1998
Nimmo et al. 1977b
310.5 Cripe 1994
Khan et al. 1988
-------
Table la. Continued
Species
Method3 Chemica
1
Salinity
(g/kg)
Grass shrimp (adult), S, U
Palaemonetes pugio
Grass shrimp (juvenile). S, M,
Palaemonetes pugio
Grass shrimp, S, U
Palaemonetes vulgaris
Grass shrimp, F, M
Palaemonetes vulgaris
Sand shrimp, S, U
Crangon septemspinosa
American Lobster (larva), S, U
Homarus americanus
Hermit crab, S, U
Pagurus longicarpus
Hermit crab, S, U
Pagurus longicarpus
Rock crab (zoea), F, M
Cancer irroratus
Dungeness crab (zoea), S, U
Cancer magister
Dungeness crab (zoea), S, M,
Cancer magister
Blue crab (juvenile), S, U
Cal1inectes sapidus
Blue crab (juvenile), S, U
Cal1inectes sapidus
Green crab, S, U
Carcinus maenas
Fiddler crab, S, U
Uca pugilator
Fiddler crab, S, U
Uca pugilator
Fiddler crab, S, U
Uca pugilator
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
20
10
30
35
15
20
30
10
Fiddler crab,
S, U
Cadmium
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c Reference
3 . 280 Khan et al. 1988
(Pine Creek)
1.300 - 1,983 Burton and Fisher 1990
420 - - Eisler 1971
760 - 760 Nimmo et al. 1977b
320 320 Eisler 1971
78 - 78 Johnson and Gentile 1979
320 Eisler 1971
I.300 - 645.0 Eisler and Hennekey 1977
250 - 250 Johns and Miller 1982
247 - - Martin et al. 1981
200 222.3 Dinnel et al. 1989
II.600 - - Frank and Robertson 1979
4.700 - 7,384 Frank and Robertson 1979
4.100 4,100 Eisler 1971
46.600 0 'Hara 1973a
37.000 0 Hara 1973a
32.300 0 Hara 1973a
23.300 0 Hara 1973a
-------
Table la. Continued
Species
Method3 Chemica
1
Salinity
(g/kg)
Fiddler crab, S, U Cadmium
Uca pugilator chloride
Fiddler crab, S, U Cadmium
Uca pugilator chloride
Starfish, S, U Cadmium
Asterias forbesi chloride
Starfish, S, U Cadmium
Asterias forbesi chloride
Green sea urchin S, M, T Cadmium 30
(embryo), chloride
Strongylocentrotus
droebachiensis
Purple sea urchin S, M, T Cadmium 30
(embryo), chloride
Strongylocentrotus
purpuratus
Sand dollar (embryo), S, M, T Cadmium 30
Dendraster excentricus chloride
Coho salmon (smolt), F, M, T Cadmium 28.3
Oncorhynchus kisutch chloride
Sheepshead minnow, S, U Cadmium
Cyprinodon variegatus chloride
Mummichog (adult), S, U Cadmium
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium 20
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium 20
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium 20
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium 10
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium 10
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium
Fundulus heteroclitus chloride
Mummichog (juvenile), S, U Cadmium
32
32
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c
10.400
6.800 21,238
820
7.100 2,413
1.800 1,800
500 500
7.400 7,400
1.500 1,500
50.000 50,000
49,000
114,000
92,000
78,000
73,000
63,000
31,000
Reference
0 'Hara 1973a
0 'Hara 1973a
Eisler 1971
Eisler and Hennekey 1977
Dinnel et al. 1989
Dinnel et al. 1989
Dinnel et al. 1989
Dinnel et al. 1989
Eisler 1971
Eisler 1971
Voyer 1975
Voyer 1975
Voyer 1975
Voyer 1975
Voyer 1975
Voyer 1975
30,000
Voyer 1975
-------
Table la. Continued
Species
Method3 Chemica
1
Salinity
(g/kg)
Mummichog (juvenile), S, U
Fundulus heteroclitus
Mummichog (adult), S, U
Fundulus heteroclitus
Mummichog (12-20 mm), F, M, T
Fundulus heteroclitus
Striped killifish S, U
(adult),
Fundulus majalis
Rivulus (30 d juvenile) S, M, T
Rivulus marmoratus
Rivulus (120 d adult), S, M, T
Rivulus marmoratus
Rivulus (1118 mm), F, M, T
Rivulus marmoratus
Rivulus (7 d larva), S, M, T
Rivulus marmoratus
Atlantic silverside S, U
(adult),
Menidia menidia
Atlantic silverside S, U
(juvenile) ,
Menidia menidia
Atlantic silverside S, U
(juvenile) ,
Menidia menidia
Atlantic silverside S, U
(larva),
Menidia menidia
Atlantic silverside S, U
(larva),
Menidia menidia
Cadmium
chloride
Cadmium
chloride
Cadmium
sulfate
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
sulfate
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
32
14
10
10
14
10
Striped bass (63 d), S, U
Morone saxatil is
Cabezon (larva), S, M, T
Scorpaenichthys
marmoratus
Shiner perch F, M, T
Cadmium
chloride
Cadmium
chloride
Cadmium
27
30. 1
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ug/L)b (Diss. us/L) (Total us/L)c Reference
29,000 - - Voyer 1975
22,000 - - Eisler and Hennekey 1977
18.200 - 18,200 Lin and Dunson 1993
21.000 21,000 Eisler 1971
18,800d - - Park et al 1994
32,200d - - Park et al 1994
21 , 100'1 - - Lin and Dunson 1993
800 800 Park et al 1994
2,032d - - Cardin 1982
28,532d - - Cardin 1982
13,652d - - Cardin 1982
1.054 Cardin 1982
577 - 779.8 Cardin 1982
75.0 - 75.0 Palawski et al. 1985
>200 - >200.0 Dinnel et al. 1989
11 .000 11,000 Dinnel et al. 1989
-------
Table la. Continued
Species
Salinity
Method3 Chemica (a/kg)
1
LC50 Species Mean
or EC50 LC50 or EC50 Acute Value
(Total ue/L)b (Diss. us/L) (Total us/L)c Reference
Striped mullet S, U Cadmium
(50 mm juvenile), chloride
Mugi1 cepha1 us
Striped mullet S, U Cadmium
(10 mm fry), chloride
Mugi1 cepha1 us
Winter flounder (larva), S, U Cadmium
Pseudopleuronectes chloride
americanus
Winter flounder (larva), S, U Cadmium
Pseudopleuronectes chloride
americanus
37.3
37.3
28,000'1
7.079
602J
14,297
Hilmy et al. 1985
7,079 Hilmy et al. 1985
Cardin 1982
14,297 Cardin 1982
d
e
f
g
h
i
j
S=static, R=renewal, F=flow-through, M=measured, U=unmeasured, T=total measured concentration, D=dissolved metal concentration measur
Results are expressed as cadmium, not as the chemical.
Freshwater Species Mean Acute Values are calculated at a hardness of 50 mg/L using the pooled slope. SMAVs calculated using Lotus sp
values presented may be different than those calculated with a hand held calculator due to rounding. Each SMAV was calculated from t
associated underlined number(s) in the preceding column.
Not used in calculations because data are available for a more sensitive life stage.
Not used in calculations (see text).
Not used in calculations because data are available for a more sensitive test condition.
Average of values calculated using log-probit and Spearman-Karber statistical methods.
"Greater than" and "less than" values were not used in calculations.
No Species Mean Acute Value calculated because acute values are too divergent for this species.
Not used in calculations because this lower value was obtained in artificial sea water.
-------
Table lb. Results of Covariance Analysis of Freshwater Acute Toxicity versus Hardness
Results of Covariance Analysis of Freshwater Acute Toxicity versus Hardness
Species
Limnodrilus hoffmeisteri
Ceriodaphnia reticulata
Daphnia magna
(all data)
Daphnia magna
(Chapman et al. Manuscript)
Daphnia pulex
Goldfish
Fathead minnow
Green sunfish
Bluegi11
Chinook salmon
Striped bass
All of above using all data
for I), magna
All of above except using
only data from Chapman et
al. (Manuscript) for D.
magna
n
2
3
29
6
4
29
4
6
6
4
93
69
Slope
0.7888
0.6064
0.1720
1.1824*
0.9447*
1.4608
1.5351*
0.8986
0.8647*
1.2576*
0.8089
0.9931*®
1.2049*#
95% Confidence Limits
cannot calculate
0.3422, 0.8706
-0.5658, 0.9099
0.6042, 1.7606
0.3499, 1.5395
-1.3925, 4.3141
0.5523, 2.5179
0.1508, 1.6464
0.5199, 1.2095
0.8766, 1.6386
-0.3206, 1.9384
0.6301, 1.3561
0.8078, 1.6021
Error Degrees of Freedom
0
1
27
4
2
27
2
4
4
2
82
58
* Slope is significantly different than 0 (p<0.05).
@ Individual slopes not significantly different (p=0.66).
# Individual slopes not significantly different (p=0.99).
-------
Table 2a. Chronic Toxicity of Cadmium to Aquatic Animals
Chronic Chrani Chronic Chronic Species
Ifen±ES Limits c Value Value Chronic Mean
s Total Limits Total Diss. Value Adj. Chronic
Species Test Chaiiica (mg/L (ug/L)b Diss. (ug/V)h C/ig/L)1' to TH=50 Value
" 1 as 643/L) (Total at TH=50
CaCOO ug/L) (Total
ug/L)
Reference
FRESHWATER SPECIES
01 igochaeteLC
Aeolosoma
headleyi
Snai 1,
Aplexa
hypnorum
Snai 1,
Aplexa
hypnorum
LC
LC
Cladoceran, LC
Ceriodaphnia
dubia
65
Cadniun 45.3 4.41-7.63
chlcrid
Cadniun 45.3 2.50-4.79
chlcrid
20 10-19
Cladoceran, LC Cadniun
Daphnia chlarid
magna e
Cladoceran, LC cadniun
Daphn i a chlcrid
magna e
Cladoceran, LC Cadniun
Daphnia chlcrid
magna e
53
0.08-0.29
103 0.16-0.28
209 0.21-0.91
25.19
5.801
3.460
13.78
0.1523
0.2117
0.4371
19.42 19.42 Ni eder1eher
1984
6.398 - Hoicombe et
al. 1984
3.816 4.941 Hoicombe et
al. 1984
34.19 34.19 Jop et al.
1995
0.1437
0.1034
0.1058
Chapman et
al.
Manuscript
Chapman et
al.
Manuscript
Chapman et
al.
Manuscript
-------
Table 2a. Continued
Chronic
Ifendnes Limits
s Total
Species Test Chaiiica (mg/L (ug/L)b
1 as
CaCOO
Cladoceran, LC Cadniun
Daphnia c±lcrid
magna e
Cladoceran, LC Cadniun
Daphnia chlarid
magna e
Cladoceran, LC
Daphnia
pulex
Amphipod, LC Cadniun
Hyalella chlcrid
azteca e
150 0.5-1.0
130
65
<1.86-
1.86
280 0.5-2.0
Midge, LC Cadniun
Chironomus chlarid
ten tans e
280 5.8-16.4
Coho salmonELS Cadniun 44 1.3-3.4
(Lake chlcrid
Supr.), e
Oncorhynchus
kisutch
Chrani Chronic Chronic Chronic Species
c Value Value Value
Limits Total Diss. Total at
Diss. Img/Llb (WLV' TH=50
(u%/D (Total
ug/L)
Mean
Chronic
Value
at TH=50
(Total
ug/L)
Reference
0.7071
0.2379
Bodar et al
1988b
<1.86
<0.7211 0.1933 Borgmann et
al. 1989
7.49
5.774 5.774 Ni eder1ehner
1984
1.000
9.753
0.1811
1.767
0.1811
1.767
Ingersol1
and Kemble
Manuscript
Ingersol1
and Kemble
Manuscript
2.102
2.386
Eaton et al
1978
-------
Table 2a. Continued
Chronic
Ifendnes Limits
s Total
Species Test Chaiiica (mg/L (ug/L)b
1 as
CaCOO
Coho salmonELS
(West
Coast),
Oncorhynchus
kisutch
Chinook ELS
salmon,
Oncorhynchus
tshawytscha
Ra i nbow LC
trout (270
d) ,
Oncorhynchus
mykiss
At1ant i c ELS
salmon,
Salmo salar
Brown troutELS
Salmo trutta
Cadniun
chloric!
e
Cadniun
chlarid
e
Cadniun
sulfate
44
4.1-12.5
25
1.3-1.88
250 3.39-5.48
Cadniun 19-28 90-270
chlarid (5NC)
e 2.5-8.2
(9.6NC)
Cadniun 44 3.8-11.7
chlarid
e
Brown trout LC
Salmo trutta
Cadniun
sulfate
250
9.34-29.1
Chrani Chronic Chronic Chronic Species
c Value Value Value Mean
Limits Total Diss. Total at Chronic
Diss. (ug/V)h C/ig/L)1' TH=50 Value Reference
(uq/L) (Total at TH=50
ug/L) (Total
ug/L)
7.159
8.127 4.404 Eaton et al
1978
1.563
3.108
3.108 Chapman 1975
4.310
0.8736
0.8736
Brown et al.
1994
155.9C
4.528
329.6d
9.574
9.574
Rombough and
Garside 1982
6.668
7.569
Eaton et al
1978
16.49
3.342
5.029
Brown et al
1994
-------
Table 2a. Continued
Species Test
Chronic Chrani
Ifendnes Limits c
s Total Limits
Chaiiica (mg/L (ug/L)b Diss.
1 as C^g/L)
CaCOO
Brook trout LC
Salve 1inus
fontinalis
Brook troutELS
Salve 1inus
fontinalis
Brook troutELS
Salve 1inus
fontinalis
Lake trout,ELS
Salve 1inus
namaycush
Northern ELS
pike,
Esox lucius
Fathead LC
minnow,
Pimephales
promelas
Fathead
minnow,
Pimephales
promelas
ELS
Cadniun
chlcrid
e
Cadniun
chlcrid
e
Cadniun
chlarid
e
Cadniun
chlarid
e
Cadniun
chlarid
e
Cadniun
sulfate
Cadniun
nitrate
44
37
44
44
44
201
44
1.7-3.4
1-3
1.1-3.8
4.4-12.3
4.2-12.9
37-57
Chronic Chronic Chronic Species
Value Value Value Mean
Total Diss. Total at Chronic
(ug/V)h C/ig/L)1' TH=50 Value Reference
(Total at TH=50
ug/L) (Total
ug/L)
2.404 - 2.729 - Benoit et
al. 1976
1.732 - 2.335 - Sauter et
al. 1976
2.045 - 2.321 2.455 Eaton et al
1978
7.357 - 8.351 8.351 Eaton et al
1978
7.361 - 8.356 8.356 Eaton et al
1978
45.92 - 11.56 - Pickering
and Gast
1972
10.0
11.35
11.45
Spehar and
Fiandt 1986
-------
White ELS Cadniun
sucker, chloric!
Catostomus e
commersoni
Flagfish, LC Cadniun
Jordane 11a chlcrid
floridae e
Flagfish, LC Cadniun
Jordane 11a chlcrid
floridae e
Flagfish, LC Cadniun
Jordane 11a chlcrid
floridae e
Bluegill, LC Cadniun
Lepomis sulfate
macrochirus
Bluegill, LC Cadniun
Lepom i s chlcrid
macrochirus e
Smal 1 mouth ELS Cadniun
bass, chlcrid
Micropterus e
dolomieui
Blue LC Cadniun
t i 1 ap i a, nitrate
Oreochromis
44 4.2-12.0
44 4.1-8.1
44-51 3.0-6.5
44-51 3.4-7.3
207 31-80
134 NOEC
>32.3
44 4.3-12.7
145 >52
aurea
7.099 - 8.059
5.763 - 6.542
4.416 - 4.646
4.982 - 5.242
49.80 - 12.17
>32.3 - >12.15
7.390 - 8.389
>52 - >18.09
8.059 Eaton et al.
1978
Spehar 1976a
Carlson et
al. 1982
5.421 Carlson et
al. 1982
Eaton 1974
12 .16 Cope et al.
1994
8.389 Eaton et al.
1978
>18.09 Papoutsog1ou
and Abel
1988
-------
Table 2a. Continued
Species Test3
Chaiiica
1
Salinity
Ig/kgl
Chronic
Limits
Total
(ug/V>h
Chronic
Limits
Dissolved
(ug/L)
Chronic
Value Total
(ug/V)
Chronic
Value
Dissolved
(ug/V)
Species
Mean
Chronic
Value
(Total
ug/L)
Reference
SALTWATER SPECIES
Mys id, LC
Americamysis
bahia
Mys id, LC
Americamysis
bahia
Mys id, LC
Americamysis
bahia
Mys i d,
Mysidopsis
bigelowi
LC
Cadniun 15-23 6.4-10.6
chlcrid
e
Cadniun 30 5.1-10
chlcrid
e
Cadniun
chlarid
e
Cadniun
chlarid
e
30
<4-4
5.1-10
8.237
7.141
<4
7.141
6.173
7.141
Nimmo et al.
1977a
Gentile et al
1982; Lussier
et al.
Manuscript
Carr et al.
1985
Gentile et al
1982
ELS = early life stage, LC = life cycle or partial life cycle.
Results are expressed as cadmium, not as the chemical.
Not used in calculations (see text).
-------
Table 2b. Results of Covariance Analysis of Freshwater Chronic Toxicity versus Hardness
Results of Covariance Analysis of Freshwater Chronic Toxicity versus Hardness
Species n Slope 9g%Confidencel,imits Degrees of Freedom
Daphnia magna 4 0.9786 -0.5044, 2.4615 3
(Chapman et al. Manuscript)
Fathead minnow 2 1.0034 Cannot be calculated 1
All species 6* 0.9917 0.3179, 1.6654 5
* Slope is significantly different from 0 (p=0.05)
-------
Table 2c. Acute-Chronic Ratio
Acute-Chronic Ratio
Freshwater Species
Species
Reference
Hardness
Jmg/L_as
CaCO;)
Snai1,
Aplexa hypnorum
Snai1,
Aplexa hypnorum
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Holcombe et al. 1984 45.3
Holcombe et al. 1984 45.3
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Chapman et al.
Manuscript
Chinook salmon, Chapman 1975, 1982
Oncorhynchus tshawytscha
51
104
209
25
Fathead minnow, Pickering and Gast 1912)1
Pimephales promelas
Fathead minnow, Spehar and Fiandt 198644
Pimephales promelas
Flagfish, Spehar 1976a
Jordanella floridae
Bluegill, Eaton 1974
Lepomis macrochirus
44
207
Species
Acute Chronic Mean
Value Value Ratio Acute-
(ug/L) (ug/L) Chronic
Ratio
93 5.801 16.03
93 3.460 26.88 20.76
9.9 0.1523 65.00
33 0.2117 155.9
49 0.4371 112.1 104.3
1.41 1.563 0.9021 0.9021
5,995a 45.92 130.6
13.2 10.0 1.320 13.13
2,500 5.763 433.8 433.8
21,100 49.80 423.7 423.7
-------
Species
Reference
Hardness
_[rng/L_as
CaCO;)
Acute
Value
Chronic
Value
(ug/L) (ug/L)
Species
Mean
Ratio Acute-
Chronic
Ratio
Saltwater Species
Mysid, Nimmo et al. 1977a
Americamysis bahia
Mysid, Gentile et al. 1982
Americamysis bahia
Mysid, Gentile et al. 1982
Mysidopsis bigelowi
15.5 8.237 1.882
110
110
7.141 15.40 5.384
7.141 15.40 15.40
a Geometric mean of five values in Table 1 from Pickering and Gast (1972)
-------
Table 3a. Ranked Genus Mean Acute Values with Species Mean Acute-Chronic Ratios
Genus Mean
Acute
Rank3 Value
(Total
ug/L)b
Species
Species Mean
Acute Value
(Total
ug/L)b
FRESHWATER SPECIES
Species Mean
Acute-
Chronic
Ratio
59
58
57
56
55
54
78,579 Midge,
Chironomus
ripari us
12,673 Planarian,
Dendrocoel um
lacteum
>12,564 Crayfish,
Orconectes
viri1 is
Crayfish,
Orconectes
immunis
11,861 Tilapia,
Oreochromis
mossambica
9,413 Tubificid worm,
Rhyacodri1 us
montana
8,628 Mosquitofish,
Gambusia affinis
78,579
12,673
13,413
>11,769
11,861
9,413
8,628
-------
53 8,218
52 8,100
51 5,930
50 5,678
49 5,169
Table 3a. (continued)
Tubificid worm,
Stylodrilus
heringianus
Damsel fly,
Unidentified.
Tubificid worm,
Spirosperma ferox
Tubificid worm,
Spirosperma
nikolskyi
Tubificid worm,
Varichaeta
pacifica
Channel catfish,
Ictalurus
punctatus
Species
Tubificid worm,
Quistradilus
multisetosus
Rank3
48
Genus Mean
Acute
Value
(Total
ug/L)b
4,781
47
4,781
Tubificid worm,
Tubifex tubifex
8,218
8,100
5,230
6,724
5,678
5,169
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
4,781
4,781
-------
Table 3a.
(continued)
Rank3
46
45
44
43
42
41
40
39
Genus Mean
Acute
Value
(Total
ug/L)b
4,681
3,831
3,801
3,586
3,468
3,400
2,916
2,454
Species
Threespine
stickleback,
Gasterosteus
aculeatus
Guppy,
Poecilia
reticulata
White sucker,
Catostomus
commersoni
Tubificid worm,
Branchiura
sowerbyi
Red shiner,
Notrop is lutrenis
Caddisfly,
(Unidentified)
Flagfish,
Jordanella
floridae
Green sunfish,
Lepomis cyanellus
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
4,681
3,831
3,801
3,586
3,468
3,400
2,916 433.8
2,072
-------
Table 3a. (continued)
Genus Mean
Acute
Rank3 Value
(Total
ug/L)b
38 2,333
37 1,925
36 1,700
35 1,700
34 1,305
33 863.1
Species
Pumpkinseed,
Lepomis gibbosus
Bluegi11,
Lepomis
macrochirus
Mayfly,
Ephemerella
grandis
Crayfish,
Procambarus
clarkii
Amphipod,
Crangonyx
pseudogracilis
Worm,
Nais sp.
African clawed
frog,
Xenopus laevis
Goldfish,
Carassius auratus
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
1,337
5,333 423.7
2,333
1,925
1,700
1,700
1,305
863.1
-------
Table 3a.
(continued)
Rank3
32
31
30
29
28
27
26
25
24
Genus Mean
Acute
Value
(Total
ug/L)b
731.0
628.6
531.8
357.2
214.0
213.5
199.1
192.8
162.6
Species
American eel,
Anguilla rostrata
Tubificid worm,
Limnodrilus
hoffmeisteri
Salamander,
Ambystoma gracile
Isopod,
Asellus bicrenata
Common carp,
Cyprinus carpio
Cladoceran,
Alona affinis
Bryozoan,
Plumatella
emarginata
Copepod,
Cyclops varicans
Leech,
Glossiponia
complanta
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
731.0
628.6
531.8
357.2
214.0
213.5
199.1
192.8
162.6
-------
Table 3a.
(continued)
Rank3
23
22
21
20
19
18
17
16
Genus Mean
Acute
Value
(Total
ug/L)b
127.9
106.0
98.07
93.81
81.91
77.15
39.29
39.26
Species
Bryozoan,
Pectinatella
magnifica
Snai1,
Aplexa hypnorum
Banded killifish
Fundulus
diaphanus
Worm,
Lumbricuius
variegatus
Amphipod,
Gammarus
pseudolimnaeus
Snai1,
Physa gyrina
Isopod,
Lirceus alabamae
Cladoceran,
Moina macrocopa
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
127.9
106.0 20.76c
98.07
93.81
81.91
77.15
39.29
39.26
-------
Table 3a. (continued)
Genus Mean
Acute
Rank3 Value
(Total
ug/L)b
15 35.41
14 34.90
13 31.04
Species
Musse1,
Lampsilis
straminea
claibornensis
Musse1,
Lampsilis teres
Cladoceran,
Ceriodaphnia
dubia
Cladoceran,
Ceriodaphnia
reticulata
Cladoceran,
Simocephalus
serrulatus
Cladoceran,
Simocephalus
vetulus
12
30.73
Musse1,
Actinonaia
pectorosa
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
38.00
33.00
28.29
43.05
35.36
27.25
30.73
-------
Table 3a.
(continued)
Rank3
11
10
9
8
7
6
Genus Mean
Acute
Value
(Total
ug/L)b
30.50
29.85
29.71
28.23
27.40
17.38
Species
Musse1,
Utterbackia
imbecilis
Bonytai1,
Gila elegans
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia pulex
Razorback sucker,
Xyrauchen texanus
Bryozoan,
Lophopodella
carteri
Colorado
squawfish,
Ptychochei1 us
lucius
Northern pike
minnow
Ptychochei1 us
oregonensis
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
30.50
29.85
18.34 104.3d
48.12
28.23
27.40
17.38
2,531f
-------
Table 3a. (continued)
Rank3
Genus Mean
Acute
Value
(Total
ug/L)b
15.40
12.00
5.282
Species
Fathead minnow,
Pimephales
promelas
Musse1,
Anodonta
coupierana
Coho salmon,
Oncorhynchus
kisutch
Chinook salmon,
Oncorhynchus
tshawytscha
Rainbow trout,
Oncorhynchus
mykiss
2 2.535
White perch,
Morone americana
Striped bass,
Morone saxati1 is
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
15.40
13.13c
12.00
6.882
4.984 0.9021
4.296
7,489e
2.535
-------
Table 3a.
(continued)
Rank3
Genus Mean
Acute
Value
(Total
ug/L)b
1.656
Species
Brown trout,
Salmo trutta
Species Mean
Acute Value
(Total
ug/L)b
1.656
Species Mean
Acute-
Chronic
Ratio
SALTWATER SPECIES
54
53
52
51
50
135,000 Oligochaete worm,
Monopylephorus
cuticulatus
50,000 Sheepshead
minnow,
Cyprinodon
variegatus
27,992 Amphipod,
Eohaustoris
estuarius
24,000 Oligochaete worm,
Tubificoides
gabriellae
21,238 Fiddler crab,
Uca pugilator
135,000
50,000
27,992
24,000
21,238
-------
Table 3a. (continued)
Genus Mean
Acute
Rank3 Value Species
(Total
ug/L)b
49 19,550 Mummichog,
Fundulus
heteroclitus
48 19,170
47 14,297
46 12,836
45 11,000
44 >10,200
Striped
killifish,
Fundulus majalis
Mud snai1,
Nassarius
obsoletus
Winter flounder,
Pseudopleuronecte
s americanus
Polychaete worm,
Neanthes
arenaceodentata
Shiner perch,
Cymatogaster
aggregata
Squid,
Loligo opalescens
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
18,200
21,000
19,170
14,297
12,836
11,000
>10,200
-------
Table 3a. (continued)
Rank3
43
42
41
40
39
38
Genus Mean
Acute
Value
(Total
ug/L)b
10,000
7,400
7,384
7,120
7,079
6,895
37
6,700
Species
Oligochaete worm
L i mnodriloides
verrucosus
Sand dollar,
Dendraster
excentricus
Blue crab,
Callinectes
sapidus
Isopod,
Limnoria
tripunctata
Striped mullet,
Mugi1 cepha1 us
Polychaeta worm,
Nereis grubei
Sand worm,
Nereis virens
Amphipod,
Diporeia spp.
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
10,000
7,400
7,384
7,120
7,079
4,700
10,114
6,700
-------
Table 3a.
(continued)
Rank3
36
35
34
33
32
31
30
29
Genus Mean
Acute
Value
(Total
ug/L)b
6,600
4,100
3,500
2,900
2,600
2,413
1,708
1,672
Species
Oyster dri11,
Urosalpinx
cinerea
Green crab,
Carcinus maenas
Amphipod,
Marinogammarus
obtusatus
Amphipod,
Ampelisca abdita
Polychaete worm,
Pectinaria
ca1i forniensis
Starfish,
Asterias forbesi
Copepod,
Pseudodiaptomus
coronatus
Soft-shell clam,
My a arenaria
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
6,600
4,100
3,500
2,900
2,600
2,413
1,708
1,672
-------
Table 3a. (continued)
Rank3
28
Genus Mean
Acute
Value
(Total
ug/L)b
1,500
27
1,480
26
1,228
25
1,170
24
1,073
23
948.7
Species
Coho salmon,
Oncorhynchus
kisutch
Bay scallop,
Argopecten
irradians
Grass shrimp,
Palaemonetes
pugio
Grass shrimp,
Palaemonetes
vulgaris
Amphipod,
Grandidiere 11a
japonica
Blue mussel,
Mytilus edulis
Green sea urchin,
Strongylocentrotu
s droebachiensis
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
1,500
1,480
1,983
760
1,170
1,073
1,800
-------
Table 3a.
(continued)
Rank3
22
21
20
19
18
17
Genus Mean
Acute
Value
(Total
ug/L)b
930.6
929.3
800
794.5
779.8
716.2
Species
Purple sea
urchin,
Strongylocentrotu
s purpuratus
Pacific oyster,
Crassostrea gigas
Eastern oyster,
Crassostrea
virginica
Amphipod,
Corophium
insidiosum
Rivulus,
Rivulus
marmoratus
Copepod,
Nitocra spinipes
At 1ant i c
silverside,
Menidia menidia
Amphipod,
Elasmopus bampo
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
500
227.9
3,800
929.3
800
794.5
779.8
716.2
-------
Table 3a.
(continued)
Rank3
16
15
14
13
12
11
10
Genus Mean
Acute
Value
(Total
ug/L)b
645.0
630.0
590.5
410.0
320.0
310.5
235.7
9
224
Species
Hermit crab,
Pagurus
1 ongi carpus
Amphipod,
Chelura terebrans
Amphipod,
Leptocheirus
plumulosus
Isopod,
Jaeropsis sp.
Sand shrimp,
Crangon
septemspinosa
Pink shrimp,
Penaeus duorarum
Rock crab,
Cancer irroratus
Dungeness crab,
Cancer magister
Copepod,
Amphiascus
tenuiremis
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
645.0
630.0
590.5
410.0
320.0
310.5
250.0
222.3
224
-------
Table 3a. (continued)
Rank3
8
6
Genus Mean
Acute
Value
(Total
ug/L)b
>200
200
147.7
130.7
110
78
75.0
Species
Cabezon,
Scorpaenichthys
marmoratus
Polychaete worm,
Capitella
capitata
Copepod,
Eurytemora
affinis
Copepod,
Acartia clausi
Copepod,
Acartia tonsa
Mysid,
Mysidopsis
bigelowi
American lobster
Homarus
americanus
Striped bass,
Morone saxati1 is
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
>200
200
147.7
144
118.7
110 15.40
78
75.0
-------
Table 3a. (continued)
Rank3
1
Genus Mean
Acute
Value Species
(Total
ug/L)b
41.29 Mysid,
Species Mean Species Mean
Acute Value Acute-
(Total Chronic
ug/L)b Ratio
41.29
5.384c
Anier i camys i s
bahia
a Ranked from most resistant to most sensitive based on Genus Mean
Acute Value.
b Freshwater Genus Mean Acute Values and Freshwater Species Mean Acute
Values are at a hardness of 50 mg/L.
c Geometric mean of two values in Table 2C.
d Geometric mean of three values in Table 2C.
e Species values are too divergent to use the geometric mean for the
genus value, therefore, the most sensitive value used.
-------
Table 3. (continued)
Fresh water
CMC:
Final Acute Value = 5.995 //g/L (calculated at a hardness of 50
mg/L from Genus Mean Acute Values).
Final Acute Value = 4.296 //g/L (lowered to protect rainbow trout
at a hardness of 50 mg/L; see text)
Criterion Maximum Concentration = (4.296 //g/L) /2 = 2.148 //g/L
Total Cadmium (at a hardness of 50 mg/L)
Pooled Slope = 1.205 (see Table 1)
In (Criterion Maximum Intercept) = ln(2.148) - [slope x ln(50)]
= 0.7645 - (1.205 x 3.912) = -
3.949
Criterion Maximum Concentration for Total Cadmium (at a hardness
of 50 mg/L) = e^1 205 tln(hardness) ] -3.949)
Criterion Maximum Concentration for Dissolved Cadmium (at 50 mg/L
hardness) = 0.97 [e(1' 205 [In (hardness) ]-3.949) }
CCC:
Total Cadmium Freshwater Final Chronic Value = 0.0861 //g/L (see text)
Slope = 0.9917 (see text)
In (Final Chronic intercept) = In (0.0861) - [slope x ln(50)]
-------
= -2.452 - (0.9917 x 3.912) = -6.332
[ in (hardness) Freshwater Final Chronic Value (at a hardness of 50 mg/L) = e(° 9917
Dissolved Cadmium Freshwater Final Chronic Value (at 50 mg/L hardness) = 0.94 [e^° 91
[In(hardness)]-6.332) 1
Salt water
CMC:
Total Cadmium Final Acute Value = 80.55 Mg/L
Total Cadmium Criterion Maximum Concentration = (80.55 mg/L)/2 =
40.28 Mg/L
Dissolved Cadmium Criterion Maximum Concentration = 0.994 (40.28
Mg/L) = 40.04 Mg/L
Final Acute-Chronic Ratio = 9.106 (see text)
CCC:
Total Cadmium Final Chronic Value = (80.55 Mg/L)/9.106 = 8.846
Mg/L
Dissolved Cadmium Final Chronic Value = 0.994 (8.846 Mg/L) =
8.793 Mg/L
-------
Table 3b. Ranked Freshwater Genus Mean Chronic Values
Ranked Freshwater Genus Mean Chronic Values
Rank3
16
15
14
13
12
11
10
Genus Mean
Chronic
Value
(ug/L)
34.19
19.42
>18.09
12.16
11.45
8.389
8.356
Species
Cladoceran,
Ceriodaphnia dubia
01igochaete,
Aeolosoma headleyi
Blue Tilapia,
Oreochromis aurea
Bluegi11,
Lepomis
macrochirus
Fathead minnow,
Pimephales
promelas
Smallmouth bass,
Micropterus
dolomieui
Northern pike,
Esox lucius
Species
Mean
Chronic
Value
(ug/L)]
34.19
19.42
>18.09
12.16c
11,45c
8.389
8.356
Species
Mean
Acute-
Chronic _
Ratio
423.7
13.13c
-------
Table 3b. Continued
Ranked Freshwater Genus Mean Chronic Values
Rank3
Genus Mean
Chronic
Value
(ug/L)
Species
Species
Mean
Chronic
Value
(ug/LV
Species
Mean
Acute-
Chronic _
Ratio
9
8
8.059 White sucker,
Catostomus
commersoni
6.939 Atlantic salmon,
Salmo salar
Brown trout,
Salmo trutta
5.421 Flagfish,
Jordanella
floridae
8.059
9.574
5.029c
5.421c
433.8
6
5
4.941 Snai1,
Aplexa hypnorum
4.528 Brook trout,
Salve 1inus
fontinalis
4.941'
2.455d
20.76c
-------
Table 3b. Continued
Ranked Freshwater Genus Mean Chronic Values
Rank3
Genus Mean
Chronic
Value
(ug/L)
Species
Species
Mean
Chronic
Value
(ug/L)b
Species
Mean
Acute-
Chronic _
Ratio
Lake trout, 8.351
Salve 1inus
namaycush
4 2.287 Coho salmon, 4.404c
Oncorhynchus
kisutch
Rainbow trout, 0.8736
Oncorhynchus
mykiss
Chinook salmon, 3.108 0.9021
Oncorhynchus
tshawytscha
3 1.767 Midge, 1.767
Chironomus ten tans
2 0.1933f Cladoceran, 0.1933s 104.3d
Daphnia magna
Cladoceran, 5.774f
Daphnia pulex
-------
Table 3b. Continued
Ranked Freshwater Genus Mean Chronic Values
Rank3
Genus Mean
Chronic
Value
(ug/L)
Species
Species
Mean
Chronic
Value
(ug/L)b
Species
Mean
Acute-
Chronic _
Ratio
0.1811 Amph i pod, 0.1811
Hyalella azteca
Value.
b
of 50 mg/L.
C
d
e
f
Ranked from most resistant to most sensitive based on Genus Mean Chronic
Genus Mean Chronic Values and Species Mean Chronic Values are at a hardness
Geometric mean of two values.
Geometric mean of three values.
Geometric mean of five values.
Species values are too divergent to use the geometric mean for the genus value, ther
the most sensitive value used.
-------
Table 4
Species Meth Chemi
oda cal
Diatom,
Asterione 1 la
formosa
Diatom,
Scenedesmus
quadracauda
Diatom,
Nitzschia
costerium
Diatom,
Navicula
incerta
Green alga,
Scenedesmus
obiiquus
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Toxicity of Cadmium to Aquatic Plants
Hardne
ss
(mg/L Durat
as ion
CaCO.)
Effect1
Resu1t
(Total
ug/L) Reference
FRESHWATER SPECIES
Factor of
10 growth
rate
decrease
Reduction
in cell
count
2 Conway 1978
6.1 Klass et al
1974
96-hr EC50
480 Rachlin et al
1982
96-hr EC50
310 Rachlin et al
1982
39% 2,500 Devi Prasad &
reduction Devi Prasad
in growth 1982
-------
Alga,
Eugl ena
gracilis
Alga,
Eugl ena
gracilis
anabaena
Green alga,
Ankistrodesmus
falcatus
Blue alga,
Microcystis
aeruginosa
Green alga.
Scenedesmus
quadricauda
Green alga,
Chlorella
saccharophila
Alga,
Chlorococcum
sp.
Cadmi
um
chlor
ide
Cadmi
um
nitra
te
Cadmi
um
chlor
ide
Cadmi
um
nitra
te
Cadmi
um
nitra
te
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Morphologic
al
abnormal iti
es
Cell
division
inhibition
5,000
20,000
Nakano et al
1980
Nakano et al
1980
58% 2,500 Devi Prasad &
reduction Devi Prasad
in growth 1982
incipient
inhibition
incipient
inhibition
96-hr EC50
70 Bringmann 1975;
Bringmann &
Kuhn 1976,
1978a,b
310 Bringmann &
Kuhn 1977a,
1978a,b, 1979,
1980b
105 Rachlin et al.
1984
42%
reduction
in growth
2,500
Devi Prasad &
Devi Prasad
1982
-------
Green alga,
Chlorella
pyrenoidosa
Green alga,
Chlorella
vulgaris
Table 4. (Continued)
Species
Meth Chemi
oda
cal
Hardne
ss
(mg/L
as
CaCO.)
Alga, S,
Chara vulgaris M, T
Alga, S,
Chara vulgaris M, T
Green alga, F,
Chlamydomonas M, T
reinhardi
Cadmi
um
sulfa
te
Cadmi
um
sulfa
te
Cadmi
um
chlor
ide
24
Reduction 250 Hart & Scalfe
in growth 1977
Reduction 50 Hutchinson &
in growth Stokes 1975
Durat
ion
Resu1t
Effect (Total Reference
ug/L)b
7 Lethal dose 56.2 Heumann 1987
days
14
days
EC50 growth 9.5 Heumann 1987
4
EC50 (cell
203
days
dens i ty)
130
7
EC50 (cell
99
days
dens i ty)
10
EC50 (cell
days
dens i ty)
Schafer et al
1993
-------
Table 4. (Continued)
Species Meth Chemi
oda cal
Green alga,
CIorella
vulgaris
Green alga,
CIorella
vulgaris
Green alga,
Selenastrum
capricornuturn
Green alga,
Selenastrum
capricornuturn
Green alga,
Selenastrum
capricornuturn
Cadm i
um
chlor
ide
Cadm i
um
chlor
ide
Cadm i
um
chlor
ide
Cadm i
um
nitra
te
S, U Cadmi
um
chlor
ide
Hardne
ss
(mg/L
as
CaCO.)
50
Durat
ion
Effect
Resu1t
(Total Reference
50%
reduction
in growth
96-hr EC50
(growth
inhibition)
Reduction
in growth
Reduction
in growth
4 IC 50
days growth
ug/L)b
60 Rosko & Rachlin
1977
3,700 Canton & Slooff
1982
50 Bartlett et al.
1974
255 Slooff et al.
1983
10,500 Bozeman et al.
1989
-------
Table 4. (Continued)
Species
Meth Chemi
oda
cal
Hardne
ss
(mg/L
as
CaCO.)
Green alga,
Selenastrum
capricornuturn
Green alga,
Selenastrum
capricornuturn
Alga,
Anabaena flos-
aquae
Algae
(mixed spp.)
Fern,
Salvina natans
S, U
S, U
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
nitra
te
171
11.1
Resu1t
Durat Effect (Total Reference
ion
ug/L)b
4 EC50 growth 23.2 The 11 en et al
days 1989
4 EC50 growth
days
130 Versteeg 1990
96-hr EC50 120
Rachlin et al
1984
Significant
reduction
in
population
Reduction
in number
of fronds
10
Giesy et al.
1979
Hutchinson &
Czyrska 1972
-------
Table 4. (Continued)
Species
Meth Chemi
oda
cal
Hardne
ss
(mg/L
as
CaCO.)
Euras i an
watermilfoi1,
Myriophyl1um
spicatum
Duckweed, S,
Lemna gibba M, T
Duckweed, S, U
Lemna minor
Duckweed, R,
Lemna minor M, T
Duckweed,
Lemna
valdiviana
Duckweed, R, U
Spirodela
polyrhiza
Cadmi
um
nitra
te
Cadmi
um
chlor
ide
Cadmi
um
nitra
te
Cadmi
um
sulfa
te
39
Durat
ion
Effect
Resu1t
(Total Reference
32-day EC50
(root
weight)
7 EC50 growth
days
4 EC50 growth
days
4 Reduced
days chlorophyll
Reduction
in number
of fronds
28 LOEC growth
days
ug/L)b
7,400 Stanley 1974
800 Devi et al.
1996
200 Wang 1986
54 Taraldsen 1990
10 Hutchinson &
Czyrska 1972
7.63 Saj wan and
Ornes 1994
-------
Table 4. (Continued)
Species Meth Chemi
oda cal
Kelp, - Cadmi
Laminana um
saccharina chlor
ide
Diatom, - Cadmi
Asterionella um
japonica chlor
ide
Diatom, - Cadmi
Ditylum um
brightwel1ii ch1or
ide
Diatom, S, U Cadmi
Phaeodactylum um
tricornutum chlor
ide
Diatom, - Cadmi
Thalassiosira um
pseudonana chlor
ide
Hardne
ss
(mg/L Durat
as ion
CaCO.)
Resu1t
Effect (Total Reference
ug/L)b
SALTWATER SPECIES
8-day EC50
(growth
rate)
860 Markham et al.
1980
72-hr EC50
(growth
rate)
224.8 Fisher & Jones
1981
5-day EC50
(growth)
60 Canterford &
Canterford 1980
35c 4 EC50 growth 22,390 Torres et al.
days 1998
96-hr EC50 160 Gentile &
(growth Johnson, 1982
rate)
-------
Table 4. (Continued)
Hardne
ss
Species Meth Chemi (mg/L
oda cal as
CaCO.)
Diatom,
Skeletonema
costatum
Red alga,
Champia parvula
Red alga,
Champia parvula
Red alga,
Champia parvula
Red alga,
Champia parvula
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Effect
Resu1t
(Total Reference
ug/L)1
96-hr EC50
(growth
rate)
175 Gentile &
Johnson 1982
Reduced
tetrasporop
hyte growth
24.9 Steele &
Thursby 1983
Reduced >189
tetrasporan
gia
production
Reduced 22.8
female
growth
Steele &
Thursby 1983
Steele &
Thursby 1983
Stopped
sexual
reproductio
n
22.8 Steele &
Thursby 1983
-------
Table 4. (Continued)
Species
Meth Chemi
oda
cal
Hardne
ss
(mg/L Durat
as ion
CaCO.)
Resu1t
Effect (Total Reference
ug/L)b
Red alga, R, U Cadmi
Champia parvula um
chlor
ide
28-30c 14 NOEC sexual
days reproduct i o
n
77 Thursby and
Steele 1986
a S= static: R= renewal; F= flow through; U= unmeasured; M= measured; T= total
metal concentration measured; D= dissolved metal concentration
measured.
b Results are expressed as cadmium, not as the chemical.
c Salinity (g/kg).
-------
Table 5. Bioaccumulation of Cadmium by Aquatic Organisms
Hardness Concentr
(mg/L as at ion in Durat BCF
Species Tissue Chem i ca1 water ion or Reference
(ug/L)a (days BAF
CaC03) 1
FRESHWATER SPECIES
Aufwuchs
(attached
microscopic
plants and
animals
Aufwuchs
(attached
microscopic
plants and
animals
Duckweed,
Lemna
valdiviana
Fern,
Salvinia
natans
Snai1,
Physa integra
Cadmium
chloride
365 720 Giesy et al.
1979
Whole
plant
Whole
plant
Whole
body
Cadmium
chloride
365 580 Giesy et al.
1979
Cadmium
nitrate
Cadmium
nitrate
Cadmium
chloride
21 603 Hutchinson &
Czyrska 1972
21 960 Hutchinson &
Czyrska 1972
28 1,75 Spehar et al
0 1978
-------
Snai1,
Vi vi parus
georgianus
Soft
tissue
(1 yr
old)
Cadmium
chloride
Soft
tissue
(2 yrs
old)
Cadmium
chloride
Soft
tissue
(3 yrs
old)
Cadmium
chloride
Snai1,
Vi vi parus
georgianus
Soft
tissue
(1 yr
old)
Soft
tissue
(2 yrs
old)
Soft
tissue
(3 yrs
old)
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
100(10NC
20
71b
Tessier
)
20
74b
1994a
100(15NC
20
109b
)
100(25NC
)
100(10NC
20
28b
)
20
42b
100(15NC
20
60b
)
100(25NC
)
100(10NC
20
27b
)
20
42b
100(15NC
20
26b
)
100(25NC
)
10
60
6,91
Tessier
50
60
0b
1994b
2,23
8b
10
60
1,75
50
60
8b
758b
10
60
1,25
50
60
8b
617b
-------
Musse1,
El 1iptio
complanata
Soft
tissue
(0-74 mm
length)
Cadmium
chloride
Table 5. (Continued)
Species
Tissue
Chem i ca1
Soft
tissue
(74-86
mm
length)
Cadmium
chloride
Soft
tissue
(86-100
mm
length)
Cadmium
chloride
Musse1,
El 1iptio
complanata
Soft
tissue
(0-74 mm
length)
Cadmium
chloride
100(10NC
)
100(15NC
)
100(25NC
)
20
20
20
15b
16b
28b
Tessier et al
1994a
Hardness
(mg/L as
CaCOi)
Concentr
at ion
Durat
BCF
in water
ion
or
(ug/Ua
(davs
BAF
1
100(10NC
20
16b
)
20
16b
100(15NC
20
14b
)
100(25NC
)
100(10NC
20
8b
)
20
7b
100(15NC
20
8b
)
100(25NC
)
10
60
1,25
50
60
6b
Reference
Tessier et al
1994b
918b
-------
Table 5. (Continued)
Species Tissue Chemical
Asiatic clam,
Corbicula
fluminea
Asiatic clam,
Corbicula
fluminea
Cladoceran,
Daphnia magna
Cladoceran,
Daphnia magna
Crayfish,
Orconectes
propinquus
Soft
tissue
(74-86
mm)
Soft
tissue
(86-100
mm)
Whole
body
Whole
body
Whole
body
Whole
body
Whole
body
Cadmium
chloride
Cadmium
chloride
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Cadmium
sulfate
Hardness Concentr
(mg/L as at ion Durat BCF
in water ion or Reference
CaCOi) (ug/L)a (days BAF
1
10 60 945b
50 60 613b
10 60 574b
50 60 254b
28 3,77 Graney et al.
0 1983
28 1,75 Graney et al.
2 1983
2-4 320 Poldoski 1979
7 484b Winner 1984
8 184 Gillespie et
al. 1977
-------
Table 5. (Continued)
Species
Tissue
Chem i ca1
Mayfly,
Whole
Cadmium
Ephemeroptera
body
chloride
sp.
Mayfly,
Whole
Cadmium
Ephemeroptera
body
chloride
sp.
Dragonfly,
Whole
Cadmium
Pantala
body
chloride
hymenea
Dragonfly,
Whole
Cadmium
Pantala
body
chloride
hymenea
Damsel fly,
Whole
Cadmium
Ischnura sp.
body
chloride
Damsel fly,
Whole
Cadmium
Ischnura sp.
body
chloride
Stonefly,
Whole
Cadmium
Pteronarcys
body
chloride
dorsata
Beetle,
Whole
Cadmium
Dytiscidae
body
chloride
Hardness Concentr
(mg/L as at ion Durat BCF
in water ion or Reference
CaCOi) (/ig/L)" (days BAF
1
365 1,63 Giesy et al
0 1979
365 3,52 Giesy et al
0 1979
365 736 Giesy et al
1979
365 680 Giesy et al
1979
365 1,30 Giesy et al
0 1979
365 928 Giesy et al
1979
28 373 Spehar et a
1978
365 164 Giesy et al
1979
-------
Table 5. (Continued)
Species Tissue
Beetle, Whole
Dytiscidae body
Caddisfly, Whole
Hydropsyche body
bet teni
Caddisfly, Whole
Hydropsyche body
sp.
Biting midge, Whole
Ceratopogonid body
ae
Biting midge, Whole
Ceratopogonid body
ae
Midge, Whole
Ch i ronom i dae body
Midge, Whole
Ch i ronom i dae body
Midge, Whole
Chironomus body
ripari us
Chem i ca1
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Hardness Concentr
(mg/L as at ion Durat BCF
in water ion or Reference
CaCOi) (/ig/L)" (days BAF
1
365 260 Giesy et al.
1979
28 4,19 Spehar et al
0 1978
2-8 228. Dressing et al
2b 1982
365 936 Giesy et al.
1979
365 662 Giesy et al.
1979
365 2,20 Giesy et al.
0 1979
365 1,83 Giesy et al.
0 1979
10,000 28 1,37 Timmermans et
0b al. 1992
-------
Table 5. (Continued)
Species
Lake
whitefish,
Coregonus
clupeaformis
Rainbow
trout,
Oncorhynchus
mykiss
Rainbow
trout,
Oncorhynchus
mykiss
Rainbow
trout,
Oncorhynchus
mykiss
Rainbow
trout,
Oncorhynchus
mykiss
Tissue Chem i ca1
Whole Cadmium
body chloride
Whole
body
Whole Cadmium
body chloride
Whole Cadmium
body chloride
Muscle Cadmium
sulfate
Hardness
(mg/L as
CaCOi)
82.5
Concentr
at ion
in water
(ug/L)a
2.07
Durat
ion
(days
1
72
BCF
or
BAF
42
Reference
Harrison and
Klaverkamp 1989
140 540 Kumada et al.
1973
82.5
250
70 33 Kumada et al.
1980
3.39
72
55
Harrison and
Klaverkamp 1989
1.8
231
333
Brown et al.
3.4
231
294
1994
5.5
231
509
1.8
455
89
3.4
455
182
5.5
455
127
-------
Table 5. (Continued)
Species Tissue Chemical
At 1ant i c
salmon,
Salmo salar
Whole
body
(egg)
Cadmium
chloride
Brook trout,
Salve 1inus
fontinalis
Brook trout,
Salve 1inus
fontinalis
Brook trout,
Salve 1inus
fontinalis
Mosquitofish,
Gambusia
affinis
Muscle
Muscle
Muscle
Whole
body
(estimat
ed
steady
state)
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Hardness
(mg/L as
CaCOi)
Concentr
at ion
Durat
BCF
in water
ion
or
Reference
(ug/Ua
(davs
1
BAF
0.87
91
229
Peterson et
(pH=6.8)
91
176
1985
1.74
91
4
(pH=6.8)
91
7
1.01
(pH=4.5)
2.09
(pH=4.5)
490 3 Benoit et al.
1976
84 151 Benoit et al.
1976
93 22 Sangalang &
Freeman 1979
180
2,21 Giesy et al
3 1979
-------
Table 5. (Continued)
Species Tissue Chemical
Mosquitofish,
Gambusia
affinis
Guppy,
Poecilia
reticulata
Bluegi11
sunfish,
Lepomis
macrochirus
Whole
body
(estimat
ed
steady
state)
Whole
body
Whole
body
Cadmium
chloride
Cadmium
chloride
Hardness
(mg/L as
CaCOi)
Concentr
at ion
in water
(ug/L)a
Durat
ion
(days
1
180
BCF
or
BAF
1,89
1
Reference
Giesy et al
1979
32 280 Canton & Slooff
1982
134 0.8 28 113 Cope et al
1994
0.8
28
113
1.8
28
78
2.2
28
86
2.8
28
68
3.6
28
67
4.4
28
66
5.2
28
69
6.2
28
50
7.7
28
48
8.4
28
62
13.2
28
55
16.1
28
37
19.7
28
34
32.3
28
41
-------
Table 5. (Continued)
Hardness Concentr
clawed frog,
Xenopus
laevis
Mallard duck,
Anas
pi a tyrhynchos
body
K i dney
tubule
degenera
tion,
Testis
weight
reductio
n,
inhibite
d
spermato
zoa
product i
on
200
mg/kgc
(in
food)
90
(mg/L as
at ion
Durat
BCF
Species
Tissue
Chem i ca1
in water
ion
or
CaCOO
(ug/Ua
(davs
BAF
—
1
Blue tilapia,
Muscle
Cadmium
145
6.8
112
17.6
Tilapia aurea
nitrate
14
112
16.4
28
112
25.7
52
112
17.7
African
Whole
_
_
_
100
130
Reference
Papoutsoglou
and Abel 1988
Canton & Slooff
1982
White and
Finley 1978a,b;
White et al.
1978
SALTWATER SPECIES
-------
Table 5. (Continued)
Species
Polychaete
worm,
Ophryotrocha
diadema
Blue mussel,
Mytilus
edulis
Blue mussel,
Mytilus
edulis
Bay scallop,
Argopecten
irradians
Eastern
oyster,
Crassostrea
virginica
Eastern
oyster,
Crassostrea
virginica
Tissue Chem i ca1
Whole Cadmium
body chloride
Soft Cadmium
parts chloride
Soft Cadmium
parts chloride
Muscle Cadmium
chloride
Soft Cadmium
parts chloride
Soft Cadmium
parts chloride
Hardness Concentr
(mg/L as
CaCOi)
at ion
in water
(ug/L)a
Durat
ion
(days
1
64
BCF
or
BAF
3,16
0
Reference
Klockner 1979
28 113 George &
Coombs1977
35 306 Phillips 1976
42 2,04 Pesch & Stewart
0 1980
280 2,15 Zaroogian &
0 Cheer 1976
280
1,83
0
Zaroogian 1979
-------
Table 5. (Continued)
Species Tissue
Eastern Soft
oyster, parts
Crassostrea
virginica
Soft-shell Soft
clam, parts
Mya arenaria
Pink shrimp, Whole
Penaeus body
duorarum
Grass shrimp, Whole
Pa 1eomonetes body
pugio
Grass shrimp, Whole
Pa 1eomonetes body
pugio
Grass shrimp, Whole
Pa 1eomonetes body
vulgaris
Green crab, Muscle
Carcinus
maenas
Chem i ca1
Cadmium
nitrate
Cadmium
nitrate
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Cadmium
chloride
Hardness Concentr
(mg/L as at ion Durat BCF
in water ion or Reference
CaCOi) (/ig/L)" (days BAF
1
98 1,22 Schuster &
0 Pringle 1969
70 160 Pringle et al.
1968
30 57 Nimmo et al.
1977b
42 22 Pesch & Stewart
1980
28 203 Nimmo et al
1977b
28 307 Nimmo et al
1977b
68 5 Wright 1977
-------
Table 5. (Continued)
Species
Green crab,
Carcinus
maenas
Tissue
Muscle
Chem i ca1
Cadmium
chloride
Hardness Concentr
(mg/L as at ion Durat BCF
in water ion or
CaCOi) (/ig/L)" (days BAF
1
40 7
Reference
Jennings &
Rainbow 1979a
Results are based on cadmium, not the chemical.
Bioconcentration factor was converted from dry weight to wet weight basis.
More recent information may be available for this species.
-------
Table 6. Other Data on Effects of Cadmium on Aquatic Organisms
Species Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCO-;
Effect
Result
(Total
//g/L)13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Reference
ug/L)
FRESHWATER SPECIES
Mixed
natural
fungi and
bacterial
colonies on
leaf litter
Plankton
Mixed algal
species
Cadmi
um
chlor
ide
10.7 28
S, U Cadmi
um
chlor
ide
wk Inh i b i t i on
of leaf
decomposit
32.0
ion
2 wk Reduced 1-3
crustacean
»
zooplankto
n, and
roti fers
10 Growth 50
days i nh i b i t i on
Giesy
1978
Marshal 1
et al.
1981,
1983
Lasheen
et al.
1990
-------
Phytoplankt S,
on M, T
commun i ty
Duckweed, R, U
Lemna minor
Duckweed, S,
Spirodela M, T
punctata
Water fern, S,
Salvinia M, T
minima
Cyanophycea S, U
e,
Microcystis
aeroginosa
Cyanobacter S, U
ium,
Anacystis
nidulans
Green alga, R, U
Selenastrum
capricornut
urn
Green alga, S, U
Selenastrum
capricornut
um
Cadmi - 150
um days
chlor
ide
10
days
30
days
30
days
Cadmi - 24 hr
um
chlor
ide
Cadmi - 14
um days
chlor
ide
Cadmi 24.2 72 hr
um
chlor
ide
Cadmi 24.2 72 hr
um
chlor
ide
NOEC 0.185 - - Findlay
biomas and et al.
photosynth 1996
esis
EC50 191 - - Smith and
(frond Kwan 1989
production
)
Reduced 25 - - Outridge
growth 1992
rate
Reduced 10 - - Outridge
growth 1992
rate
EC50 0.56 - - Guanzon
growth et al.
1994
No growth 50,000 - - Lee et
al. 1992
EC50 20.6 49.39 - Radetski
(eel 1 et al.
counts) 1995
EC50 42.7 102.4 - Radetski
(eel 1 et al.
counts) 1995
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Green alga, S, U Cadmi
Chlamydomon um
as chlor
reinhardi ide
Green alga, S, U Cadmi
Scenedesmus um
dimorphus nitra
te
Green alga, S, U Cadmi
Scenedesmus um
quadricauda chlor
ide
Green alga, S, Cadmi
Selenastrum M, T um
capricornut nitra
um te
72 hr
11.3 48 hr
20
days
120
hr
Effect
EC50
(growth)
LC50
(density)
LC50
LOEC
growth
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
789 - - Schafer
et al.
1994
63 378.1 - Ghosh et
al. 1990
9 - - Fargasova
1993
30 - - Thompson
and
Couture
1991
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Green alga, S, U - - 72 hr
Selenastrum
capricornut
um
Green alga, S, U
Scenedesmus
quadricauda
Green alga, S, U
Stichococcu
s
baci1laris
Cadmi - 24 hr
um
chlor
ide
Cadmi - 96 hr
um
chlor
ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
EC50 164
(eel 1
number) 97
EC50
(chlorophy
11)
EC50 1.9
growth
Reduced
growth
5,000
Van der
Heever
and
Grobbelaa
r 1996
Guanzon
et al.
1994
Skowronsk
i et al.
1985
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Green alga, S, U Cadmi - 72 hr
Chlorella um
vulgaris chlor
ide
Green alga, S, U Cadmi - 72 hr
Chlorella um
vulgaris nitra
te
Green alga, - Cadmi - 96 hr
Scenedesmus um
quadricauda chlor
ide
Bacteria, - Cadmi
Escherichia um
coli chlor
ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
Reduced
progeny
formation
100
Wi lczok
et al.
1994
EC50 50,000
growth
Wren and
McCarrol1
1990
Incipient 100
inhibition
(river
water)
Incipient 150
inhibition
Bringmann
and Kuhn
1959a,b
Bringmann
and Kuhn
1959a
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Bacteria, - Cadmi 50 8 hr
Salmonella um
typhimurium chlor
ide
Bacteria, - Cadmi - 16 hr
Pseudomonas um
putida chlor
ide
Bacteria, - Cadmi - 18 hr
(6 species) um
chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
ug/L)
EC50
(growth
nhibition
)
Incipient
nhibition
10,400
Reduced
growth
80
5,000
100,000
10,40
0
Canton
and
Slooff
1982
Bringmann
and Kuhn
1976,
1977a,
1979,
1980b
Seyfried
and
Horgan
1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Protozoan S, Cadmi 70 2
community M, T um days
chlor
ide 28
days
Protozoan S, U Cadmi - 240
community um hr
chlor
ide
Result
(Total
Effect
ug/L)b
Resul Result
t Adj ust
Adj us ed to
ted TH=50
to (Disso Referenc
TH=50 lved e
(Tota ug/L)
1
ug/L)
EC50
(number of
species)
EC20
(colonizat
ion)
Reduced
b i omas
4,600
1
3,067
Niederleh
ner et
al. 1985
Fernande
z-
Leborans
and
Novi1lo-
V i 11 aj os
1993
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Protozoan, - Cadmi - 72 hr
Entosiphon um
sulcatum nitra
te
Protozoan, - Cadmi - 28 hr
Mi croregma um
heterostoma chlor
ide
Protozoan, - Cadmi - 48 hr
Chilomonas um
paramecium nitra
te
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/L)
ug/L)
Incipient
inhibition
11
Incipient
inhibition
100
Bringmann
1978;
Bringmann
and Kuhn
1979,
1980b,
1981
Bringmann
and Kuhn
1959b
Incipient
inhibition
160
Bringmann
et al.
1980,
1981
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Protozoan, - Cadmi - 20 hr
Uronema um
parduezi nitra
te
Protozoan, S, U Cadmi 28 24 hr
Spirostomum um 250 24 hr
ambiguum chlor
ide
Protozoan, S, U Cadmi - 48 hr
Spirostomum um
ambiguum nitra
te
Ciliate, S, U Cadmi - 72 hr
Te trahymena um
pyri formis chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/U
ug/L)
Incipient 26
nhibition
LC50
LC50
LC50
78.1
5,270
168
Growth 3,372
nhibition
157.1
757.9
Bringman
and Kuhn
1980a,
1981
Nalecz-
Jawecki
et al.
1993
Nalecz-
Jawecki
and
Sawicki
1998
Krawczyns
ka et al.
1989
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Ciliate, S, U
Tetrahymena
pyriformis
Ciliate, S, U
Tetrahymena
pyriformis
Ciliate, S, U
Colpidium
campy1 urn
Ciliate, S, U
Tetrahymena
pyriformis
Cadmi - 96 hr
um
chlor
ide
Cadmi - 30
um min
aceta
te
Cadmi - 24 hr
um
sulfa
te
Cadmi - 9 hr
um
chlor
ide
Resul
t
Result Adjus
(Total ted
Effect to
uq/L)b TH=50
(Tota
1
ug~L)
EC50 1,045
growth
Complete 56,205
mortality
EC50 75
growth
Result
Adj ust
ed to
TH=50
(Disso Referenc
lved e
ug/L)
Schafer
et al.
1994
Larsen
and
Svensmark
1991
Dive et
al. 1989
IC50
growth
3,000
Sauvant
et al.
1995
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Ci1iate,
Spirostomum
teres
Hydra,
Hydra
oligactis
Hydra,
Hydra
1ittoralis
Planarian,
Dendrocoelu
m lacteum
S, U Cadmi
um
chlor
ide
Cadmi
um
ni tra
te
Cadmi
um
chlor
ide
R, Cadmi
M, T um
chlor
ide
24 hr
48 hr
70 12
days
122.8 48 hr
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/L)
ug/L)
LC50
1,950
Twagi1ima
na et al.
1998
LC50
583
Reduced
growth
20
13.3
Slooff
1983:
Slooff et
al. 1983
Santiago-
Faudino
1983
LC50 46,000 15,58 - Brown and
0 Pascoe
1988
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Planarian,
Dugesia
lugubris
Mixed macro
invertebrat
es
Rotifer, S, U
Brachionus
calycifloru
s
Cadmi - 48 hr
um
ni tra
te
Cadmi 11.1 52 wk
um
chlor
ide
Cadmi 80- 72 hr
um 100
ni tra
te
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50
>20,000
Slooff
1983
Reduced
taxa
30.7
Giesy et
al. 1979
Chronic
value
(asexual
reproducti
on)
Chronic
Value
(sexual
reproducti
on)
20
20
9.9
9.9
Snell and
Carmona
1995
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rotifer, S, U Cadmi 80- 48 hr
Brachionus um 100
calycifloru nitra
s te
Rotifer, S, U Cadmi 80- 24 hr
Brachionus um 100
calycifloru nitra
s te
Rotifer, S, U Cadmi 80- 24 hr
Brachionus um 100
ruhens chlor
ide
Rotifer, S, U Cadmi 170 35
Brach i onus um m i n
calycifloru chlor
s ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
EC50
Chronic
value
70
60
34.5
29.6
Snell and
Moffat
1992
LC50
1,300 640.3
Snell et
al. 1991a
LC50 810 398.9
N0EC 280 137.9
(survival)
Snell and
Persoone
1989a
N0EC 250
(ingestion
rate)
57.2
Juchelka
and Snell
1994
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rotifer, S, U
Brachionus
calycifloru
s
Mixed F,
zooplankton M, T
commun i ty
Cadmi 80- 48 hr
um 100
ni tra
te
14
days
Tubificid - Cadmi 224 48 hr
worm, um
Tubif ex chlor
tubif ex ide
Tubificid R, U Cadmi 245 96 hr
worm, um
Tubif ex chlor
tubif ex ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
EC50
10
4.93
Radix et
al. 1999
60%
reduced
b i omass
LC50
320,000 52,53
2
Lawrence
and
Hoioka
1987
Qureshi
et al.
1980
LC50
47,530 7,004
Khangarot
1991
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Worm,
Lumbricuius
variegatus
Worm,
Pristina
sp.
Worm,
Pristina
leidyi
Nematode,
Caenorhabdi
tis elegans
F, Cadmi
M, T um
chlor
ide
Cadmi
um
chlor
ide
S, Cadmi
M, T um
chlor
ide
S, U Cadmi
um
chlor
ide
44-47 10
days
11.1 52 wk
95 48 hr
96 hr
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
158
177.0
Phipps et
al. 1995
Population
reduction
30.7
Giesy et
al. 1979
LC50
215
99.2
Smith et
al. 1991
LC50
(fed)
61
Willi ams
and
Dusenbery
1990
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Leech (cocoon), S> M> T Cadmi - 96 hr
Nephe1 opsls obscura
um
chlor
ide
^nai1', s, m, t Cadmi 15.3 96 hr
Amnicola limosa
um
chlor
ide
Snail, - Cadmi - 48 hr
Lymnaea um
stagnalis chlor
ide
Effect
Result
(Total
//gyp13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
ug~L)
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
LC50
832.6
Wicklum
et al.
1997
LC50 6,350 26,45
(pH=3.5 0
)
3,800 15,82
(pH=4.0 8
)
2,710 1,288
(pH=4.5
)
LC50 583
Mackie
1989
Slooff
1983;
Slooff et
al. 1983
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Snai 1,
Physa
integra
Snai 1,
Vi vpara
bengal ens is
Zebra
mussel,
Dreissena
polymorpha
S, U
Mussel, S,
Utterbackia M, T
imbecilis
R,
M, T
Cadmi 44-58
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
140-
190
39
80-
100
28
days
96 hr
48 hr
48 hr
150 48 hr
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
10.4
10.2
Spehar et
al. 1978
LC50
1,550 367.8
LC50
LC50
57
137
76.9
67.5
Gadkari
and
Marathe
1983
Keller
and Zam
1991
EC50
388
103.3
Kraak et
al. 1994a
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Zebra R,
musse1, M, T
Dreissena
polymorpha
Bivalve, S, M, T
Pisidium casertanum
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
268
10 wk
11 wk
15.3 96 hr
Bivalve, S,
Pisidium compressum
T Cadmium 15.3
chloride
96 hr
Cladoceran
(<24 hr)
Ceriodaphnia dubia
R,M,
T
Cadmium
nitrate
100 48 hr
Effect
Result
(Total
//gyp13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
ug~L)
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
LOEC
1tration
rate
EC50
LC50
LC50
LC50
9
130
1 ,370
(pH=3.5)
480
(pH=4.0)
700
(pH=4.5)
2,080
(pH=3.5)
700
(pH=4.0)
360
(pH=4.5)
27.3
(High
T0C)
1.19
17.2
5,707
1,999
2,916
8,664
2,916
I,500
II.84
Kraak et
al. 1992b
Mackie 1989
Mackie 1989
Spehar and
Fiandt 1986
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Effect
Result
(Total
ug/L)b
Resul
t
Adius
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
Cladoceran, R, U
Ceriodaphni
a
Cladoceran, S, U
Ceriodaphni
a dubia
Cladoceran, S, U
Ceriodaphni
a dubia
Cladoceran S,
(<48 hr), M, T
Ceriodaphni
a dubia
Cadmi
um
sulfa
te
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
ni tra
te
169
80-
100
80-
100
280-
300
7 Chronic
days value
reproducti
<14
<3.23
1 hr
1 hr
on
EC50
feeding
inhibition
EC50
feeding
inhibition
48 hr LC50 (fed)
54
76.2
560
26.6
37.5
67.3
Masters
et al.
1991
Britton
et al.
1996
Lee et
al. 1997
Schubaue
r-Berigan
et al.
1993
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
ciadQcerati g u Cadmi 80 48 hr
(<24 hr),
Ceriodaphnia dubia UIIl
chlor
ide
91^°Peran S, U Cadmi 172 48 hr
(<24 hr),
Ceriodaphnia dubia UIIl
chlor
ide
Cladoceran S, Cadmi 160- 120
(<24 hr) , M, D um 180 min
Ceriodaphni su1fa
a dubia te
Cladoceran, R, U Cadmi 80- 7
Ceri odaphn i um 100 days
a dubia chlor
ide
Effect
Resul
t
Result Adjus
(Total ted
to
uq/L)b TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso Referenc
lved e
ug/L)
ug/L)
LC50
49.5 28.10
Hockett and
Mount 1996
LC50
221 49.9
Hockett and
Mount 1996
Reduced
mob i1i ty
2,500 572.2
Brent and
Herricks
1998
Chronic
value
1.4 0.69
Zuidervee
n and
Birge
1997
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran S, U Cadmi 80- 48 hr
(<24 hr), um 100
Ceriodaphni nitra
a dubia te
Cladoceran, R, U Cadmi 90 10
Ceriodaphni um days
a dubia sulfa
te
Cladoceran, S, M Cadmi 55-79 48 hr
Ceriodaphni um
a chlor
reticulata ide
Cladoceran S, U Cadmi 200 48 hr
(<6 hr), um
Ceriodaphni chlor
a ide
reticulata
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
ug/L)
LC50 78.2 38.51 - Nelson
(fed) and
Ro1i ne
1998
N0EC 0.5 0.25 - Winner
reproducti 1988
on
LC50
LC50
129
(High
T0C)
79.4
90.7
14.94
Spehar
and
Carlson
1984a,b
Hall et
al. 1986
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran, S, Cadmi 37.6 48 hr
Ceriodaphni M, T um
a sulfa
reticulata te
Cladoceran, S, Cadmi 37.6 48 hr
M, T um
Daphnia sulfa
carinata te
Cladoceran, - Cadmi - 22 wk
Daphnia um
galeata chlor
mendotae ide
Cladoceran, - Cadmi - 15
Daphnia um days
galeata chlor
mendotae ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
1,900 2,679
LC50
280 394.7
Reduced
b i omass
4.0
Sharma
and
Selvaraj
1994
Sharma
and
Selvaraj
1994
Marshal 1
1978a
Reduced
rate of
increase
5.0
Marshal 1
1978b
-------
Table 6. (Continued)
ess
Meth Chemi (mg/L Durat
od cal ion
CaCCK
Cladoceran, - Cadmi 48 hr
Daphnia
chlor
ide
Cladoceran, - 45 21
um
magna chlor
Cladoceran, - 163 72 hr
um
magna chlor
Cadmi
Daphnia um
magna
te
Resul Result
Adj ust
Adjus
ted TH=50
(Disso Referenc
TH=50 _
(Tota g/L)
LL
Bringmann
1959a,b
0.19 Biesinger
and
en 1972
14-17 3.71 Debelak
1975
LC50 600 - Bringmann
1977b
Result
(Total
ug/L)
EC50 100
water)
Reproducti 0.17
ve
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran - Cadmi - 72 hr
(3-5 days), um
Daphnia sulfa
magna te
Cladoceran - Cadmi - 72 hr
(adult) , um
Daphnia sulfa
magna te
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50
224
Braginskl
(10NC)
224
y and
12
Shcherban
(15NC)
0.1
1978
(25NC)
(30NC)
LC50
479
Braginskl
(10NC)
187
y and
10.2
Shcherban
(15NC)
2.4
1978
(25NC)
(30NC)
-------
Species
Meth Chemi
Hardn
ess
as
CaCO
Durat
Cladoceran,
magna
um
ni tra
200 24 hr
Cladoceran,
Daphnia
Cladoceran,
magna
Cadmi
chlor
ide
um
chlor
96 hr
200
20
Daphnia
magna
Cadmi 55-79
um
ide
Effect
Result
kL
Result
t
Adjus
ed to
TH=50
to
TH=50 lved _
ug/L)
1
g~L)
160
30.1
Bellavera
and Gorbi
EC50
1.58
Maly 1982
LC50
LC50
670
166 116.7
T0C)
Canton
Slooff
1982
Spehar
and
1984a,b
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran S, Cadmi 160- 48 hr
(<24 hr) , M, T um 180
Daphnia chlor
magna i de
Cladoceran, S, U Cadmi 200 48 hr
Daphnia um
magna chlor
ide
Cladoceran g y Cadmi ^8 4g
(<4 hr), 41
Daphnia magna Um 71
chlor It
ide
Cladoceran g y Cadmi ™ 4g
(<4 hr), 74
Daphn i a magna Um
chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
uq/L)
LC50
140
32.0
Lewis and
Weber
1985
LC50
49.0
9.22
Hall et
al. 1986
LC50
LC50
164
99
101
120
65
16
146
228.3
125.7
66.2
74.8
39.2
22.3
91.0
Nebeker
et al.
1986a
Nebeker
et al.
1986a
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Cladoceran (1 d),
Daphnia magna
Cladoceran (2 d),
Daphnia magna
Cladoceran (5 d),
Daphnia magna
Cladoceran
(5 d),
Daphnia
magna
S, U
S, U
s,
M, T
R,
M, T
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
38
71
74
76
38
71
74
76
34
48 hr
225
48 hr
48 hr
21
days
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/U
ug/L)
LC50
LC50
LC50
307
135
200
45
131
18
38
21
24
427.3
88.5
124.7
27.2
182.3
11.8
23.7
12.7
38.2
Nebeker
et al.
1986a
Nebeker
et al.
1986a
Nebeker
et al.
1986b
LOEC
reproducti
on
2.3
0.38
Enserink
et al.
1993
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran,
Daphnia
magna
Cladoceran
(14 days),
Daphnia
magna
Cladoceran
(egg),
Daphnia
magna
S, U Cadmi
um
chlor
ide
S, Cadmi
M, T um
chlor
ide
S, Cadmi
M, T um
chlor
ide
48 hr
160- 48 hr
180
150 46 hr
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
48
(fed)
Domal-
Kwiatkowska et
al. 1994
LC50
80
18.3
Allen et
al. 1995
Profound
effect on
egg
developmen
t
>1,000
>266
1
Bodar et
al. 1989
-------
Table 6. (Continued)
ess
Meth Chemi (mg/L Durat
od cal ion
CaCCK
Cladoceran, S, U
magna
Cladoceran S,
(<24 hr),
magna
250 48 hr
um
chlor
Cadmi 160- 48 hr
um
Cadmi
Daphnia um
magna
te
Result
(Total
ug/L)
Resul
Ad jus
ted
TH=50
(Tota
1
gZu
Result
ed to
TH=50
lved e
ug/L)
LC50 98 - Enserink
(smal1 et al.
294 42.3
LC50
(large
LC50
NC)
LC50
(26 C)
(fed)
8.70
9
Horning
1991
EC50
980
Sorvari
Si 1 lanpaa
1996
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran R,
(<24 hr), M, T
Daphnia
magna
Cladoceran, R, U
Daphnia
magna
Cladoceran, R, U
Daphnia
magna
Cadmi - 24 hr
um 24
chlor days
ide
Cadmi 90 10
um days
sulfa
te
Cadmi 100 25
um days
sulfa
te
Effect
Result
(Total
//gyp13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
EC50
NOEC
reproducti
on
NOEC
reproducti
1,900
0.6
2.5
1.23
Kuhn et
al. 1989
Winner
1988
on
NOEC
(20NC)
reproducti
on
NOEC
(25NC)
reproducti
on
2.25
0.75
0.98
0.33
Winner
and
Whitford
1987
-------
Species
Meth Chemi
Hardn
ess
as
CaCO
Durat
Effect
Result
kL
Result
t
Adjus
ed to
TH=50
to
TH=50 lved _
ug/L)
1
g~L)
Cladoceran,
pulex
um
chlor
57 140 Reduced 1
reproducti
0.85
Bertram
and Hart
Cladoceran,
Daphnia
Cladoceran,
Daphnia
Cladoceran,
pulex
Cadmi
chlor
ide
Cadmi
chlor
ide
um
sulfa
48 hr LC50 (fed)
58
days
44.5
100 72 hr
5-10
80-92
2.87
37.2
and
Winner
Ingersol1
and
1982
Winner
1984
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran S, U Cadmi 200 48 hr
(<24 hr), um
Daphnia chlor
pulex ide
Cladoceran S, U Cadmi 124- 48 hr
(adult), um 130
Daphnia chlor
pulex ide
Cladoceran S, Cadmi 80-90 48 hr
(<24 hr), M, T um
Daphnia chlor
pulex ide
Cladoceran S, Cadmi 80-90 48 hr
(<24 hr), M, T um
Daphnia chlor
pulex ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
100
18.81
Hall et
al. 1986
LC50
87.9
28.6
Jindal
and Verma
1990
LC50
24
12.7
Lewis and
Weber
1985
LC50
(20NC)
(fed)
LC50
(26NC)
(fed)
42
6
22.2
3.17
Lewis and
Horning
1991
-------
Hardn
ess
Species Meth Chemi Durat
* as
CaCO
Cladoceran
Daphnia
pulex
Cladoceran
M, T
Daphnia
pulex
Cladoceran,
Moina
macrocopa
Cladoceran, R,
Moina M, T
macrocopa
Cadmi 80-90
um days
ide
Cadmi 21
115 days
chlor 230 21
i de days
21
days
Cadmi 80-84 20
um days
chlor
ide
Cadmi - 240
um hr
chlor
ide
Result
t
Result Adjus ed to
TH=50
Effect to
y, _ TH=50 lved e
ug/L)
1
g~L)
N0EC
on
<0.003
al. 1993
N0EC
survival
N0EC brood
size
N0EC brood
size
Reduced
survival
Reduced
survival
3.8
7.5
7.5
0.2
10
3.17
2.75
1.19
0.11
Winner
1986
Hatakeyam
a and
Yasuno
1981b
Wong and
Wong 1990
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Cladoceran, S, Cadmi 37.6 48 hr
Moina M, T um
macrocopa su1fa
te
S, M Cadmi 55-79 48 hr
Cladoceran,
S imocepha1 us
serrulatus um
chlor
ide
cladoceran, S, M Cadmi 55-79 48 hr
5imocephalus vetulus
um
chlor
ide
Copepod, - Cadmi - 72 hr
Acanthocyc1 um
ops viridis sulfa
te
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
UQ./V)
LC50
320 451.1
LC50
LC50
LC50
123
(high
TOC)
89.3
(high
TOC)
0.5
86.4
62.76
Sharma
and
Selvaraj
1994
Spehar
and
Carlson
1984a,b
Spehar
and
Carlson
1984a,b
Braginskl
y and
Shcherban
1978
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Copepod,
Eucyclops
agi lis
Copepod,
Mesocyclops
hyalinus
Copepod,
Heliodinpto
mus vidus
Copepod,
Tropocyclop
s prasinus
mexicanus
Cadmi
um
chlor
ide
S, Cadmi
M, T um
sulfa
te
S, Cadmi
M, T um
sulfa
te
S, U Cadmi
um
chlor
ide
11.1 52 wk
37.6 48 hr
37.6 48 hr
10 48 hr
Effect
Result
(Total
ug/nb
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
ug 7n
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/U
Referenc
e
Population
reduction
5
30.7
-
Giesy et
al. 1979
LC50
870
1,227
-
Sharma
and
Selvaraj
1994
LC50
150
211.5
Sharma
and
Selvaraj
1994
LC50
149
1,036
Lalande
and
Pinel-
Alloul
1986
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Copepod, S, Cadmi 37.6 48 hr
Stenocypris M, T um
malcolmsoni sulfa
te
Amphipod, S, Cadmi - 96 hr
Diporeia M, T um
sp. chlor
ide
Amphipod, g m Cadmi 55-79 96 hr
Gammarus
pseudol imnaeus UIIl
chlor
ide
Amphipod, S, M Cadmi 217- 24 hr
Hyalella um 301
azteca chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/U
ug/L)
LC50 11,500 16,21
2
LC50 (4NC)
LC50
(10NC)
LC50
(15NC)
LC50
LC50
800
280
60
54.4
38.23
140 19.3
Sharma
and
Selvaraj
1994
Goss i aux
et al.
1992
Spehar
and
Carlson
1984a,b
McNulty
et al.
1999
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Amphipod, S, M Cadmi 55-79 96 hr
Hyalella um
azteca chlor
ide
Amphipod, S, Cadmi 15.3 96 hr
Hyalella M, T um
azteca chlor
ide
Amphipod S, Cadmi 90 96 hr
(0-2 d) , M, T um
Hyalella chlor
azteca ide
Amphipod S, Cadmi 90 96 hr
(2-4 d), M, T um
Hyalella chlor
azteca ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
LC50
285
(high
TOC)
12 (pH-5.0)
16 (pH=5.5)
33 (pH=6.0)
200.3
49.98
66.65
137.5
Spehar
and
Carlson
1984a,b
Mackie
1989
LC50
>13
= 6.4
Collyard
et al.
1994
LC50
= 7.5
= 3.7
Collyard
et al.
1994
-------
Table 6. (Continued)
Species
Hardn
ess
Meth Chemi (mg/L Durat
oda
cal
as
CaCCK
ion
Amphipod S, Cadmi 90 96 hr
(4-6 d), M, T um
Hyalella chlor
azteca ide
Amphipod S, Cadmi 90 96 hr
(10-12 d), M, T um
Hyalella chlor
azteca ide
Amphipod S, Cadmi 90 96 hr
(16-18 d), M, T um
Hyalella chlor
azteca ide
Amphipod S, Cadmi 90 96 hr
(24-26 d), M, T um
Hyalella chlor
azteca ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
= 9.5
= 4.7
Collyard
et al.
1994
LC50
= 3.4
Collyard
et al.
1994
LC50
= 11.5
= 5.7
Collyard
et al.
1994
LC50
14
= 6.9
Collyard
et al.
1994
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Amphipod,
Hyalella
azteca
Amphipod,
Hyalella
azteca
Amphipod,
Hyalella
azteca
Crayfish,
Cambarus
latimanus
R, Cadmi
M, T um
ni tra
te
F, Cadmi
M, T um
chlor
ide
S, Cadmi
M, T um
ni tra
te
Cadmi
um
chlor
ide
130 6 wk
44-47 10
days
280- 96 hr
300
11.1 5 mo
Result
(Total
Effect
ug/L)b
Resul Result
t Adj ust
Adj us ed to
ted TH=50
to (Disso Referenc
TH=50 lved e
(Tota ug/L)
1
ug/L)
EC50 0.53 0.17 - Borgmann
et al.
1991
LC50 2.8 3.14 - Phipps et
al. 1995
LC50 230 27.7 - Schubaue
(fed) r-Berigan
et al.
1993
Significan
t
mortality
5 30.7
Thorp et
al. 1979
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Crayfish,
Orconectes
immunis
Anostracan
crustacean,
Brachionus
calycifloru
s
Anostracan
crustacean,
Streptoceph
alus
rubricaudat
us
S, Cadmi
M, T um
chlor
ide
S, U Cadmi
um
sulfa
te
S, U Cadmi
um
sulfa
te
50.3 96 hr
250 24 hr
250 24 hr
Effect
LC50
EC50
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/U
ug/L)
>10,000 >9,92 - Thorp and
8 Gloss
1986
120
17.3
Crisinel
et al.
1994
EC50
250
36.0
Crisinel
et al.
1994
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Anostracan S, U Cadmi 80- 24 hr
crustacean, um 100
Thamnocepha chlor
lus ide
platyurus
Mayfly, - Cadmi - 72 hr
Cloeon um
dipterum sulfa
te
Mayfly, - Cadmi - 48 hr
Cloeon um
dipterum nitra
te
Effect
Result
(Total
//gyp13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
ug~L)
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
LC50
400
197.0
Centeno
et al.
1995
LC50
(10NC)
(15NC)
(25NC)
(30NC)
LC50
70,600
28,600
6,990
930
56,000
Braginskl
y and
Shcherban
1978
Slooff et
al. 1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Damsel fly, Enallagma g Cadmi 15.3 96 hr
sp M, T um
chlor
ide
Mayfly, - Cadmi 44-48 28
Ephemerella um days
sp. chlor
ide
nayfl,y'. S, M Cadmi 55-77 96 hr
rara1eptophlebia
praepedi ta UIIl
chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/L)
ug/L)
LC50
7,050
(pH=3.5)
8,660
(pH=4.0)
10,660
(pH=4.5)
29,36
6
36,07
2
Mackie
1989
LC50
<3.0
44,40
3
<3.3
Spehar et
al. 1978
LC50
449
315.6
Spehar
and
Carlson
1984a,b
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Mayfly,
Hexagenia
rigida
Mosquito,
Aedes
aegypti
Mosquito,
Culex
pipiens
Midge,
Chironomus
ten tans
Cadmi
um
ni tra
te
Cadmi
um
ni tra
te
Cadmi
um
ni tra
te
S, U Cadmi
um
chlor
ide
79.1 96 hr
48 hr
48 hr
25 48 hr
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
>1,000
>575.
4
Leonhard
et al.
1980
LC50
4,000
Slooff et
al. 1983
LC50
765
Slooff et
al. 1983
LC50
8,050
18,55
7
Khangarot
and Ray
1989b
-------
Table 6. (Continued)
Species
Hardn
ess
Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Midge (1st S,
instar), M, T
Chironomus
ripari us
Midge (4th S,
instar), M, T
Chironomus
ripari us
Midge (1st R,
instar), M, T
Chironomus
ripari us
100
100
98
1 hr
10 hr
1 hr
10 hr
17
days
Midge (2nd
instar),
Chironomus
ripari us
R, Cadmi
M, T um
chlor
ide
100-
110
96 hr
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
ug~L)
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
Reduced 2,100 911.0
emergence
Reduced 210 91.1
emergence
Reduced 2,000 867.6
emergence
Reduced 200 86.8
emergence
L0EC 150 66.7
survival,
developmen
t and
growth
LC50 (fed) 13,000 5,317
McCahon
and
Pascoe
1991
McCahon
and
Pascoe
1991
Pascoe et
al. 1989
Willi ams
et al.
1986
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Midge (3rd R, Cadmi 100- 96 hr
instar) , M, T um 110
Chironomus ch1or
ripari us ide
Midge (4th R, Cadmi 100- 96 hr
instar), M, T um 110
Chironomus ch1or
ripari us ide
Midge, S, U Cadmi 98 120
Chironomus um hr
ripari us chlor
ide 10
days
Effect
viabi1ity)
L0EC
(number of
eggs
ovipositio
ned)
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso
ug/L)b
TH=50
lved
(Tota
ug/L)
1
22,000
8,999
-
54,000
22,08
8
30,000
13,33
5
100,000
-
44,44
9
Referenc
Willi ams
et al.
1986
Willi ams
et al.
1986
Willi ams
et al.
1987
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Midge, - Cadmi 47 10
Tanytarsus um days
dissimi1 is chlor
ide
Coho salmon - Cadmi 22 217
(juvenile), um hr
Oncorhynchu chlor
s kisutch ide
Coho salmon - Cadmi 22 215
(adult), um hr
Oncorhynchu chlor
s kisutch ide
Coho salmon S, U Cadmi 41 96 hr
(alevin), um
Oncorhynchu chlor
s kisutch ide
Effect
LC50
LC50
LC50
LC50
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
ug/L)
3.8 4.09 - Anderson
et al.
1980
2.0 5.38 - Chapman
and
Stevens
1978
3.7 9.95 - Chapman
and
Stevens
1978
6.0 7.62 - Buhl and
Hami1 ton
1991
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Chinook
Cadmi
salmon
um
(alevin),
chlor
Oncorhynchu
c
ide
o
tshawytscha
Chinook
Cadmi
salmon
um
(swim-up),
chlor
Oncorhynchu
c
ide
o
tshawytscha
Chinook
Cadmi
salmon
um
(parr) ,
chlor
Oncorhynchu
c
ide
o
tshawytscha
23 200
hr
23 200
hr
23 200
hr
Result
(Total
Effect
ug/L)b
LC10 18-26
LC10 1.2
Resul Result
t Adj ust
Adj us ed to
ted TH=50
to (Disso Referenc
TH=50 lved e
(Tota ug/L)
1
ug~L)
55.1 - Chapman
1978
3.06 - Chapman
1978
LC10
1.3
3.31
Chapman
1978
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Chinook
salmon
(smolt),
Oncorhynchu
s
tshawytscha
Ra i nbow
trout,
Oncorhynchu
s mykiss
Ra i nbow
trout,
Oncorhynchu
s mykiss
Ra i nbow
trout,
Oncorhynchu
s mykiss
Cadmi
um
chlor
ide
Cadmi
um
stear
ate
Cadmi
um
aceta
te
Cadmi
um
chlor
ide
23
112
200
hr
96 hr
96 hr
80
min
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC10
1.5
3.82
Chapman
1978
LC50
6.0
Kumada et
al. 1980
LC50
6.2
Kumada et
al. 1980
Significan
t
avoidance
52
19.7
Black and
Birge
1980
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Ra i nbow - - 112 18 mo
trout,
Oncorhynchu
s mykiss
Rainbow - Cadmi 104 28
trout, um days
(embryo, chlor
larva) ide
Oncorhynchu
s mykiss
Rainbow - 240
trout, hr
Oncorhynchu
s mykiss
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
Reduced
survival
0.2
0.08
Birge et
al. 1981
EC50
(death and
deformity)
140
57.9
Birge
1978;
Birge et
al. 1980
LC50
7
5
Kumada et
al. 1973
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCO
.3
Rainbow - Cadmi 54 408
trout um hr
(adult), chlor
Oncorhynchu i de
s mykiss
Rainbow - Cadmi 23 186
trout um hr
(alevin), chlor
Oncorhynchu i de
s mykiss
Rainbow - Cadmi 23 200
trout um hr
(swim-up), chlor
Oncorhynchu i de
s mykiss
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
5.2
4.73
Chapman
and
Stevens
1978
LC10
>6
>15.3
Chapman
1978
LC10
1.0
2.55
Chapman
1978
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Ra i nbow
trout
(parr) ,
Oncorhynchu
s mykiss
Ra i nbow
trout
(smolt),
Oncorhynchu
s mykiss
Ra i nbow
trout,
Oncorhynchu
s mykiss
Ra i nbow
trout,
Oncorhynchu
s mykiss
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
sulfa
te
Cadmi
um
stear
ate
23
23
200
hr
200
hr
326 96 hr
10 wk
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC10
0.7
1.78
Chapman
1978
LC10
0.8
2.04
Chapman
1978
LC20
20
2.09
Davies
1976
BCF = 27
BCF = 40
Kumada et
al. 1980
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow - Cadmi - 10 wk
trout, um
Oncorhynchu aceta
s mykiss te
Rainbow - Cadmi 125 10
trout, um days
Oncorhynchu chlor
s mykiss ide
Rainbow - Cadmi 240 234
trout, um days
Oncorhynchu su1fa
s mykiss te
Rainbow - Cadmi 320 4 mo
trout, um
Oncorhynchu chlor
s mykiss ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
BCF = 63
Kumada et
al. 1980
LC50
(18NC)
(12NC)
(6NC)
Increased
gill
diffusion
10-30
30
10-30
5.74
9.95
5.74
0.30
Roch and
Maly 1979
Hughes et
al. 1979
Phys i o1og i
cal
effects
10
1.07
Arillo et
al. 1982,
1984
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow - Cadmi 98.6 47
trout, um days
Oncorhynchu chlor
s mykiss ide
Rainbow - Cadmi 100 62
trout, um days
(embryo, sulfa
larva) te
Oncorhynchu
s mykiss
Rainbow - Cadmi 89- 7
trout um 107 days
(larva), chlor
Oncorhynchu i de
s mykiss
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
Reduced 100
growth and
survival
Reduced
Survival
<5
44.1
<2.17
Woodworth
and
Pascoe
1982
Dave et
al. 1981
LC50
700
311.1
Birge et
al. 1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow - Cadmi 89- 7
trout um 107 days
(larva), chlor
Oncorhynchu i de
s mykiss
Rainbow - Cadmi - 48 hr
trout, um
Oncorhynchu n i t ra
s mykiss te
Rainbow S, M Cadmi 55-79 96 hr
trout, um
Oncorhynchu chlor
s mykiss ide
Rainbow - Cadmi 82 11
trout, um days
Oncorhynchu chlor
s mykiss ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50 after 1,590 706.7 - Birge et
24 days al. 1983
acclimated
to 5.9
Mg/L
LC50 55 - - Slooff et
al. 1983
LC50
LC50
(10NC)
10.2
(high
TOC)
16.0
7.17
8.81
Spehar
and
Carlson
1984a,b
Maj ewski
and Giles
1984
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCO
.3
Rainbow - Cadmi 82 8
trout, um days
Oncorhynchu chlor
s mykiss ide
Rainbow - Cadmi 82 178
trout, um days
Oncorhynchu chlor
s mykiss ide
Rainbow R, U Cadmi 50 96 hr
trout, um
(egg-0 hr) chlor
Oncorhynchu i de
s mykiss
Effect
LC50
(15NC)
Phys i o1og i
cal
effects
LC50
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso
ug/L)b
TH=50
lved
(Tota
ug/L)
1
16.6
9.15
-
3.6-6.4
2.65
-
13,000
13,00
0
Referenc
Maj ewski
and Giles
1984
Maj ewski
and Giles
1984
Van
Leeuwen
et al.
1985a
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Rainbow R, U Cadmi 50 96 hr
trout, um
(egg-24 hr) chlor
Oncorhynchu i de
s mykiss
Rainbow R, U Cadmi 50 96 hr
trout, um
(eyed egg- chlor
14 d) ide
Oncorhynchu
s mykiss
Rainbow R, U Cadmi 50 96 hr
trout, um
(eyed egg- chlor
28 d) ide
Oncorhynchu
s mykiss
Effect
Result
(Total
ug/L)b
LC50
13,000
LC50
7,500
LC50
9,200
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
e
ug7n
13,00
0
-
Van
Leeuwen
et al.
1985a
7,500
Van
Leeuwen
et al.
1985a
9,200
-
Van
Leeuwen
et al.
1985a
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow R, U
trout,
(sac fry-42
d)
Oncorhynchu
s mykiss
Rainbow R, U
trout,
(early fry-
77 d)
Oncorhynchu
s mykiss
Rainbow R,
trout, M, D
Oncorhynchu
s mykiss
Cadmi 50 96 hr
um
chlor
ide
Cadmi 50 96 hr
um
chlor
ide
Cadmi 63 96 hr
um 300 96 hr
chlor
ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
30
30
Van
Leeuwen
et al.
1985a
LC50 10 10 - Van
Leeuwen
et al.
1985a
LC50 (fed)
LC50 (fed)
1,300
2,600
984.0
300.2
Pascoe et
al. 1986
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow F, Cadmi 87.7 48 hr
trout, M, T um
(5 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
Rainbow F, Cadmi 87.7 48 hr
trout, M, T um
(10 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
uq/L)
LC50
>100,00
0
>50,8
12
Shazi1i
and
Pascoe
1986
LC50
3,300 1,677
Shazi1i
and
Pascoe
1986
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Rainbow F, Cadmi
trout, M, T um
(15 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
Rainbow F, Cadmi
trout, M, T um
(22 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
87.7 48 hr
87.7 48 hr
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
7,200 3,658
Shazi1i
and
Pascoe
1986
LC50
8,000 4,065
Shazi1i
and
Pascoe
1986
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Rainbow F, Cadmi
trout, M, T um
(29 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
Rainbow F, Cadmi
trout, M, T um
(36 d post chlor
fertilizati ide
on)
Oncorhynchu
s mykiss
87.7 48 hr
87.7 48 hr
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
12,500 6,352
Shazi1i
and
Pascoe
1986
LC50
16,500 8,384
Shazi1i
and
Pascoe
1986
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow F,
trout, M, T
(alevin, 2
d post
hatch)
Oncorhynchu
s mykiss
Rainbow F,
trout, M, T
(alevin, 7
d post
hatch)
Oncorhynchu
s mykiss
Rainbow S, U
trout
(alevin),
Oncorhynchu
s mykiss
Cadmi 87.7 48 hr
um
chlor
ide
Cadmi 87.7 48 hr
um
chlor
ide
Cadmi 41 96 hr
um
chlor
ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
5,800 2,947
Shazi1i
and
Pascoe
1986
LC50 8,300 4,217 - Shazili
and
Pascoe
1986
LC50
37.9
48.14
Buh1 and
Hami1 ton
1991
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Rainbow F, Cadmi 9.2 96 hr
trout M, T um
(fry), chlor
Oncorhynchu i de
s mykiss
Rainbow F, - 50 96 hr
trout M, T
(36 g),
Oncorhynchu
s mykiss
Rainbow F, - 200 96 hr
trout M, T
(36 g),
Oncorhynchu
s mykiss
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50 28 215.3 - Cusimano
(pH=4.7 5.382 - et al.
) 1986
0.7
(pH=5.7
)
LC50 2.7 2.70 - Davies et
al. 1993
LC50 3.2 0.602 - Davies et
al. 1993
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Rainbow F,
trout M, T
(36 g),
Oncorhynchu
s mykiss
Brown trout, g
Salmo trutta '
Atlantic
salmon,
Salmo salar
Atlantic R,
salmon, M, T
(alevin)
Salmo salar
400 96 hr
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
55-79 96 hr
13
28
70
days
92
days
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
7.6
0.620
Davies et
al. 1993
LC50
Reduced
growth
15.1 10.61
10.1
Spehar
and
Carlson
1984a,b
Peterson,
1983
Net water
uptake
inhibited
0.78 1.57
Rombough
and
Garside
1984
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Brook - Cadmi 10 21
trout, um days
Salvelinus chlor
fontinalis ide
Brook trout R, - 20 10
(8 months), M, T days
Salvelinus
fontinalis
Lake trout, F, Cadmi 90 8-9
Salvel inus M, T um mo
namaycush chlor
ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
Testicular 10
damage
NOEL 8
survival
69.5
24.1
Sangalang
and
0 'Hal lora
n 1972,
1973
Jop et
al. 1995
Decreased
thyroid
fol1icle
epithelial
eel 1
height
2.46
Scherer
et al.
1997
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Arctic grayling g u Cadmi 41 96 hr
(alevin),
Thymal lus arcticus UIIl
chlor
ide
Arctic grayling g u Cadmi 41 96 hr
(juveni le) ,
Thymal lus arcticus UIIl
chlor
ide
Goldfish, - Cadmi 195 7
(embryo, um days
larva), chlor
Carassius ide
auratus
Goldfish, - - - 50
Carassius days
auratus
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
LC50
6.1
(1-d
acclima
tion)
4.0
(low
D.O.)
7.748
5.081
Buh1 and
Hami1 ton
1991
Buh1 and
Hami1 ton
1991
EC50
(death and
deformity)
170
32.98
Birge
1978
Reduced
p1asma
sodium
44.5
McCarty
and
Houston
1976
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Common carp
(embryo),
Cyprinus
carpio
Common carp S, U
(fry) ,
Cyprinus
carpio
Common carp S,
(fingerling U,
) , Cyprinus
carpio
Common carp F,
(embryo, M, T
larva),
Cyprinus
carpio
Cadmi
um
sulfa
te
360
100 96 hr
100 96 hr
Cadmi
um
chlor
ide
101.6
8
days
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
EC50
(hatch)
2,094 194.1
Kapur and
Yadav
1982
LC50
4,260 1,848
Suresh et
al. 1993a
LC50
17,050 7,396
Suresh et
al. 1993a
LC50
(multiple-
species
test)
139
59.17
Birge et
al. 1985
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Common R, Cadmi 48 7
shiner M, D um days
(0.75-3.5 chlor
mg), ide
Notrop is
cornutus
Fathead - Cadmi 63 96 hr
minnow, um
Pimephales chlor
promelas ide
Fathead - Cadmi 55 96 hr
minnow, um
Pimephales chlor
promelas ide
Fathead - Cadmi 59 96 hr
minnow, um
Pimephales chlor
promelas ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
67%
reduced
growth
200
210.1
Borgmann
and Ralph
1986
LC50
80.8 61.16
Spehar
1982
LC50
40.9 36.46
Spehar
1982
LC50
64.8 53.08
Spehar
1982
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Fathead
Cadmi
66
96
hr
minnow,
um
Pimephales
promelas
chlor
ide
Fathead
Cadmi
65
96
hr
minnow,
um
Pimephales
promelas
chlor
ide
Fathead
Cadmi
74
96
hr
minnow,
um
Pimephales
promelas
chlor
ide
Fathead
Cadmi
79
96
hr
minnow,
um
Pimephales
promelas
chlor
ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
135 96.61
Spehar
1982
LC50
120 87.47
Spehar
1982
LC50
86.3 53.81
Spehar
1982
LC50
86.6 49.91
Spehar
1982
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Fathead
Cadmi
62
96 hr
minnow,
um
Pimephales
promelas
chlor
ide
Fathead
Cadmi
63
96 hr
minnow,
um
Pimephales
promelas
chlor
ide
Fathead
Cadmi
-
48 hr
minnow,
um
Pimephales
promelas
ni tra
te
Fathead
Cadmi
103
6.8
minnow,
um
hr
Pimephales
promelas
chlor
ide
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
114
87.97
Spehar
1982
LC50
80.8 61.16
Spehar
1982
LC50
2,200
Slooff et
al. 1983
LT50
6,000 2,512
Birge et
al. 1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Fathead - Cadmi 254- 3.7
minnow, um 271 hr
Pimephales chlor
promelas ide
Fathead - Cadmi 89- 7
minnow um 107 days
(larva), chlor
Pimephales ide
promelas
Fathead - Cadmi 89- 7
minnow um 107 days
(larva), chlor
Pimephales ide
promelas
Fathead - Cadmi - 4
minnow, um days
Pimephales chlor
promelas ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LT50
16,000 2,170
Birge et
al. 1983
LC50
200
88.9
Birge et
al. 1983
LC50 after
4 days
acclimated
to 5.6
Mg/L
Histologic
al effects
540
12,000
240.0
Birge et
al. 1983
Stromberg
et al.
1983
-------
Table 6. (Continued)
Species Meth Chemi
oda cal
Fathead
minnow,
Pimephales
promelas
Fathead
minnow,
Pimephales
promelas
Fathead
minnow,
Pimephales
promelas
Fathead
minnow
(1-7 d),
Pimephales
promelas
Cadmi
um
ni tra
te
S, M Cadmi
um
chlor
ide
F, M Cadmi
um
chlor
ide
R, Cadmi
M, T um
chlor
ide
Hardn
ess
(mg/L Durat
as ion
CaCCK
209 48 hr
55-79 96 hr
55-79 96 hr
70-90 48 hr
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso
ug/nb
TH=50
lved
(Tota
ug/U
Referenc
ug/L)
LC50
802 143.1
Slooff et
al. 1983
LC50
3,390 2,383
LC50
1,830 1,286
LC50
35.4 20.09
Spehar
and
Carlson
1984a,b
Spehar
and
Carlson
1984a,b
D i amond
et al.
1997
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Fathead F, Cadmi 101.6 8
minnow M, T um days
(embryo, chlor
larva), ide
Pimephales
promelas
Fathead R, Cadmi 101.6 8
minnow M, T um days
(embryo, chlor
larva), ide
Pimephales
promelas
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50 125(20. 53.19 - Birge et
al. 1985
125(20.
53.19
INC)
35.75
84
32.34
(22.8NC
37.03
)
76
(25.7NC
)
87
(27.9NC
)
LC50
NOEC
41
12
17.45
5.107
Birge et
al. 1985
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Fathead F, Cadmi 101.6 8
minnow M, T um days
(embryo, chlor
larva), ide
Pimephales
promelas
Fathead F, Cadmi 44 96 hr
minnow M, T um
(30 d), nitra
Pimephales te
promelas
Fathead S, U Cadmi 200 96 hr
minnow um
(14-30 d), chlor
Pimephales ide
promelas
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
(multiple-
species
test)
107
45.54
Birge et
al. 1985
LC50
13.2
15.40
Spehar
and
F i andt
1986
LC50
90
16.94
Hall et
al. 1986
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
White
sucker
(larva) ,
Catostomus
commersoni
Brown
bullhead,
Ictalurus
nebulosus
Channel
catfish,
Ictalurus
punctatus
Channel
catfish,
Ictalurus
punctatus
R,
M, D
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
48
7
days
2 hr
Resul
t
Result Adjus
(Total ted
Effect to
uq/L)b TH=50
(Tota
1
ug~L)
46% 36 37.8
reduced
growth
Affected 61,300
gills and
kidney
Increased 0.5
a1b i n i sm
Result
Adj ust
ed to
TH=50
(Disso Referenc
lved e
ug/L)
Borgmann
and Ralph
1986
B1ickens
1978;
Garofano
1979
Westerman
and Birge
1978
BCF =4.0-
6.7
Birge et
al. 1979
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Channel S, M
catfish,
Ictalurus
punctatus
Walking S, U
catfish,
CI arias
batrachus
Mummichog, S, U
Fundulus
heteroclitu
s
Mosquitofis
h,
Gambusia
affinis
Cadmi 55-79 96 hr
um
chlor
ide
Cadmi - 14
um days
chlor
ide
Cadmi 5 96 hr
um
chlor
ide
Cadmi - 8 wk
um
chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/nb
TH=50
lved e
(Tota
ug/L)
ug/L)
LC50
7,940 5,581
60%
mortality
8,993
Spehar
and
Carlson
1984a,b
Jana and
Sahana
1989
TL50 12.2 195.6 - Gill and
Epple
1992
Willi ams
and Giesy
1978
& 1.13 ppm
added to
food
BCF =
6,100 at
0.02 //g/L
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Mosquitofis
h,
Gambusia
affinis
Mosquitofis
h, Gambusia
af finis
Guppy,
Poeci11a
reticulata
Cadmi
um
chlor
ide
R, Cadmi
M, T um
sulfa
te
Cadmi
um
ni tra
te
29 8 wk
45 48 hr
209 48 hr
Effect
Result
(Total
ug/V)h
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
BCF =
1,430 at
10 //g/L &
1.13 ppm
added to
food
LC50
LC50
7,260 8,243
41,900 7,478
Willi ams
and Giesy
1978
Chagnon
and
Guttman
1989
Slooff et
al. 1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Guppy, S, U Cadmi 140- 96 hr
Lebistes um 190
reticulatus chlor
ide
Threespine F, Cadmi 299 18
stickleback M, T um days
sulfa
Gasterosteu te
s aculeatus
Bluegill, - Cadmi 112 80
Lepomis um min
macrochirus chlor
ide
Bluegill, - Cadmi 340- 3
Lepomis um 360 days
macrochirus chlor
ide
Effect
Resul
Result
t
Adj ust
Result
Ad jus
ed to
(Total
ted
TH=50
to
(Disso Referenc
ug/L)b
TH=50
lved e
(Tota
ug/L)
ug/L)
LC50 (fry)
LC50
(male)
LC50
(female)
Kidney
eel 1
tissue
breakdown
2,500
12,750
16,000
593.2
3,025
3,796
6,000 695.5
Gadkaic
and
Marathe
1983
Oronsaye
1989
Significan >41.1 >15.5
t 5
avoidance
Black and
Birge
1980
Increased
cough rate
50
4.79
Bishop
and
Mcintosh
1981
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Bluegill, S, M Cadmi 55-79 96 hr
Lepomis um
macrochirus chlor
ide
Bluegill F, Cadmi 174 22
(31.1 ±1.3 M,T um days
mm) chlor
Lepomis ide
macrochirus
Largemouth - Cadmi 112 80
bass, um min
Micropterus chlor
salmo ides ide
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
8,810 6,192
LOEC prey
attack
rate
37.3
8.30
Spehar
and
Carlson
1984a,b
Bryan et
al. 1995
Significan 8.83
t
avoidance
3.34
Black and
Birge
1980
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Largemouth - Cadmi 99 8
bass, um days
(embryo, chlor
larva) ide
Micropterus
salmo ides
Largemouth - - 24 hr
bass,
Micropterus
salmo ides
Largemouth F, Cadmi 101.6 8
bass, M, T um days
(embryo, chlor
larva), ide
Micropterus
salmo ides
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
EC50 1,640 720.1 - Birge et
(death and al. 1978
deformity)
Affected 150 - - Morgan
opercular 1979
activity
LC50 244 103.8 - Birge et
(multiple- al. 1985
species
test)
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Orangethroa R, Cadmi
t darter M, T um
(embryo), chlor
Etheostoma i de
spectabile
Tilapia S,U Cadmi
(1arva <1 um
d), chlor
Oreochromis i de
mossambica
Tilapia S,U Cadmi
(1arva, 1 um
d), chlor
Oreochromis i de
mossambica
180 96 hr
96 hr
96 hr
Effect
LC50
LC50
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
>500
>106.
8
Sharp and
Kaszubski
1989
205 - - Hwang et
al. 1995
LC50
83
Hwang et
al. 1995
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Tilapia S,U Cadmi - 96 hr
(1arva, 2 um
d) , chlor
Oreochromis i de
mossambica
Tilapia S,U Cadmi - 96 hr
(1arva, 3 um
d), chlor
Oreochromis i de
mossambica
Tilapia S,U Cadmi - 96 hr
(1arva, 7 um
d) , chlor
Oreochromis i de
mossambica
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
LC50 33 - - Hwang et
al. 1995
LC50 22 Hwang et
al. 1995
LC50
29
Hwang et
al. 1995
-------
Table 6. (Continued)
Species Meth
oda
Tilapia (72 S, U
hr) ,
Oreochromis
mossambica
Narrow-
mouthed
toad
(embryo,
larva),
Gastrophyry
ne
carolinensi
s
African
c1awed
frog,
Xenopus
laevis
Hardn
ess
Chemi (mg/L Durat
cal as ion
CaCCK
Cadmi 28 96 hr
um
chlor
ide
Cadmi 195 7
um days
chlor
ide
Cadmi 209 48 hr
um
ni tra
te
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
21.4
43.04
Chang et
al. 1998
EC50
(death and
deformity)
40
7.76
Birge
1978
LC50
11,700 2,088
Slooff
and
Baerselma
n 1980;
Slooff et
al. 1983
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
African - - 170 48 hr
c1awed
frog,
Xenopus
laevis
African - - 170 100
c1awed days
frog,
Xenopus
laevis
African S, U Cadmi - 24 hr
c1awed um
frog, chlor
Xenopus i de
laevis
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
3,200 732.4
Canton
and
Slooff
1982
Inhibited 650 148.8 - Canton
developmen and
t Slooff
1982
LC50
(stage 40)
1,000
Herkovits
et al.
1997
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
African S, U Cadmi
c1awed um
frog, chlor
Xenopus i de
laevis
Northwester F, Cadmi
n M, T um
salamander, chlor
(3 mo ide
larva)
Ambystoma
gracile
Northwester F, Cadmi
n M, T um
salamander, chlor
Ambystoma i de
gracile
72 hr
45
10
days
45
10
days
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
LC50
(stage 40)
LC50
(stage 47)
0.2
1.6
Herkovits
et al.
1998
LOAEC
(1 imb
regenerati
on)
44.6
50.6
Nebeker
et al.
1994
L0AEL
growth
227
257.7
Nebeker
et al.
1995
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Hardn
ess
(mg/L Durat
as ion
CaCCK
Marbled
salamander
(embryo,
larva),
Ambystoma
opacum
Cadmi
um
chlor
ide
99
8
days
Effect
Result
(Total
ug/L)b
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
ug/L)
EC50
(death and
deformity)
150
65.9
Birge et
al. 1978
-------
Table 6. (Continued)
Hardn
ess
Species Meth Chemi (mg/L Durat
oda cal as ion
CaCCK
Lake study, S, Cadmi - 120
Periphyton M, T um days
and chlor
amphipods ide
Stream F, Cadmi - 21
microcosm M, T um days
ni tra
te
Effect
Result
(Total
//gyp13
Resul
t
Ad jus
ted
to
TH=50
(Tota
1
Result
Adj ust
ed to
TH=50
(Disso
lved
ug/L)
Referenc
uq/L)
BCF =
64,000
(periphyto
n)
BCF =
24,000
(Hyalella
azteca)
No effect
on
periphyton
structure,
but
adverse
effect on
invertebra
te grazers
and
col lectors
22
Stephenso
n and
Turner
1993
Selby et
al. 1985
-------
Table 6.
(Continued)
Sal in
Species Meth Chemi i ty
oda cal
(g/kg
Bacterium S, U Cadmi 35
(Microtoxd) um
nitra
Vibrio te
fischeri
Natural - Cadmi
phytoplankt um
on chlor
population ide
Green alga, S, U Cadmi
Acetabulari um
a chlor
acetabulum ide
Resu
It
Durat Effect (Tot
ion al
ug/L
SALTWATER SPECIES
22 hr EC50 214
4 Reduced 112
days b i omass
3 wk Morpholo 100
gical
deformit 1
ies
Decrease
d eel 1
elongati
on
Result
Adjuste Result
d to TH (Disso
= 50 lved Reference
(Total ug/L)
ug/L)
Radix et
al. 1999
Hoi 1ibaugh
et al. 1980
Karez et
al. 1989
-------
Phytoflagel S,
late, M, T
01isthodisc
us luteus
Red alga, R, U
Champia
parvula
Alga, S, U
Tetraselmis
gracilis
Diatom, S, U
Minutocellu
s
polymorphus
Diatom, S, U
Skeletonema
costatum
Diatom, S, U
Skeletonema
costatum
Cadmi - 192
um hr
chlor
ide
Cadmi 28-30 2
um days
chlor
ide
96 hr
Cadmi - 48 hr
um
chlor
ide
10
days
Cadmi - 72 hr
um
chlor
ide
27% 500
biovolum
e
reductio
n
NOEC >100
sexual
reproduc
tion
LC50 1,80
0
EC50 66
EC50 450
growth
EC50 144
Fernandez-
Leborans
and Novillo
1996
Thursby and
Steele 1986
Okamoto et
al. 1996
Walsh et
al. 1988
Govindaraj a
n et al.
1993
Walsh et
al. 1988
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Hydroid,
Campanulari
a flexuosa
Hydroid,
Campanulari
a flexuosa
Rotifer, S, U
Brachionus
piicati1 is
Rotifer, S, U
Brachionus
piicati1 is
Rotifer, S, U
Brachionus
piicati1 is
11
days
Cadmi 15 24 hr
um
chlor
ide
Cadmi 30 24 hr
um
chlor
ide
Cadmi 15 24 hr
um
ni tra
te
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
Enzyme
i nh i b i t i
on
Growth
rate
40-
75
110-
280
Moore and
Stebbing
1976
Stebbing
1976
LC50
54,9
00
Snell and
Personne
1989b
LC50
56,8
00
Snell and
Personne
1989b
LC50
>39,
000
Snell et
al. 1991b
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Polychaete
Cadmi
28
worm,
um
days
Neanthes
chlor
arenaceoden
ide
tata
Polychaete
Cadmi
28
worm,
um
days
Capitella
chlor
capitata
ide
Polychaete
Cadmi
28
worm,
um
days
Capitella
chlor
capitata
ide
Polychaete
R, M Cadmi
144
worm,
um
hr
Nereis
chlor
virens
ide
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved
al (Total ug/V)
ug/h ug/L)
Reference
LC50
3,00
0
Reish et
al. 1976
LC50
630
Reish et
al. 1976
LC50
700
Reish et
al. 1976
LC50
170
McLeese and
Ray 1986
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Clam,
Macoma
balthica
Blue
mussel,
Mytilus
edulis
Blue
mussel,
Mytilus
edulis
Blue
mussel,
Mytilus
edulis
Blue
mussel,
Mytilus
edulis
R, M Cadmi
um
chlor
ide
Cadmi
um
EDTA
Cadmi
um
algin
ate
Cadmi
um
humat
e
Cadmi
um
pecta
te
144
hr
28
days
28
days
28
days
28
days
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved Reference
al (Total ug/V)
ug/L ug/L)
LC50 1,71 - - McLeese and
0 Ray 1986
BCF = - - - George and
252 Coombs 1977
BCF = - - - George and
252 Coombs 1977
BCF = - - - George and
252 Coombs 1977
BCF = - - - George and
252 Coombs 1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Blue
mussel,
Mytilus
edulis
Blue F,
musse1, M, T
Mytilus
edulis
Bay
seal lop,
Argopecten
irradians
Bay
seal lop,
Argopecten
irradians
Cadmi - 21
um days
chlor
ide
Cadmi 28 2 wk
um
chlor
ide
Cadmi - 42
um days
chlor
ide
Cadmi - 21
um days
chlor
ide
Resu
It
Effect (Tot
al
ug/L
BCF =
710
LT50 = 47
9.5 days
(anoxic
conditio
ns)
EC50 78
(growth
reductio
n)
Result
Adjuste Result
d to TH (Disso
= 50 lved Reference
(Total ug/L)
ug/L)
Janssen and
Scholz 1979
Veldhuizen-
Tsoerkan et
al. 1991
Pesch and
Stewart
1980
BCF =
168
Eisler et
al. 1972
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Eastern - Cadmi - 40
oyster, um days
Crassostrea iodid
virginica e
Eastern - Cadmi - 21
oyster, um days
Crassostrea chlor
virginica ide
Eastern - Cadmi - 2
oyster, um days
Crassostrea chlor
virginica ide
Pacific - Cadmi - 6
oyster, um days
Crassostrea chlor
gigas ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
BCF =
677
Kerfoot and
Jacobs 1976
BCF =
149
Eisler et
al. 1972
Reductio
n in
embryoni
c
developm
ent
50%
reductio
n in
settleme
nt
15
20-
25
Zaroogian
and
Morrison
1981
Watling
1983b
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Pacific - Cadmi - 14
oyster, um days
Crassostrea chlor
gigas ide
Pacific - Cadmi - 23
oyster, um days
Crassostrea chlor
gigas ide
Soft-shell - Cadmi - 7
c 1 am, um days
Mya chlor
arenaria ide
Soft-shell - Cadmi - 7
c 1 am, um days
Mya chlor
arenaria ide
Copepod - Cadmi - 1 day
(nauplius), um
Eurytemora chlor
affinis ide
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved Reference
al (Total ug/V)
ug/L ug/L)
Growth
reductio
n
10
LC50
50
LC50
150
LC50
700
Reductio
n in
swimming
speed
130
Watling
1983b
Watling
1983b
Eisler 1977
Eisler and
Hennekey
1977
Sullivan et
al. 1983
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Copepod - Cadmi - 2
(nauplius), um days
Eurytemora chlor
affinis ide
Copepod, S, Cadmi 5 96 hr
Eurytemora M, T um 15 96 hr
af finis chlor
ide
Copepod, - Cadmi - 48 hr
Tisbe um
holothurlae chlor
ide
Mysid, - - 15-23 17
Americamysi days
s bahia
Mysid, - Cadmi 30 16
Amer i camys i um days
s bahia chlor
ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
Reductio
n in
developm
ent rate
LC50
(fed)
LC50
(fed)
LC50
116
LC50
51.6
213
970
11
Sullivan et
al. 1983
Hall
1995
et al.
Moraitou-
Apostolopou
lou and
Verriopoulo
s 1982
Nimmo et
al. 1977a
LC50
28
Gentile et
al. 1982
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Mysid, - Cadmi - 8
Americamysi um days
s bahia chlor
ide
Mysid, F, - 13-29 28
Americamysi M, T days
s bahia
Mysid, S, - 12 24 hr
Americamysi M, T
s bahia
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
60
Gentile et
al. 1982
NOEC
survival
, growth
and
reproduc
tion
Reduced
serum
osmo1a1i
ty
4-5
3.62
Voyer and
McGovern
1991
DeLisle and
Roberts
1994
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Mysid (8 R, U Cadmi 25 96 hr
d) , um
Americamysi ch1or 7
s bahia ide days
Mysid (<72 F, - 10 96 hr
hr), M, T
Americamysi
s bahia
Mysid (<72 F, - 20 96 hr
hr), M, T
Americamysi
s bahia
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
NOEC
survival
and
growth
NOEC
survival
and
growth
LC50
LC50
5
5
47.0
(20°
C)
15.5
(25°
C)
73.0
(20°
C)
20.5
(25°
C)
Khan et al.
1992
Voyer and
Modica 1990
Voyer and
Modica 1990
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Mysid (<72 F, - 30 96 hr
hr), M, T
Americamysi
s bahia
Mysid, - Cadmi - 8
Mysidopsis um days
bigelowi chlor
ide
Mysid, - Cadmi - 28
Mysidopsis um days
bigelowi chlor
ide
Isopod, - Cadmi 3 5
I do tea um days
baltica sulfa
te
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
LC50
85.0
(20°
C)
28.0
(25°
C)
70
Voyer and
Modica 1990
Gentile et
al. 1982
LC50
18
Gentile et
al. 1982
LC50
10,0
00
Jones 1975
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Isopod, - Cadmi 21 3
I do tea um days
baltica sulfa
te
Isopod, - Cadmi 14 1.5
I do tea um days
baltica sulfa
te
Sand R, M Cadmi - 144
shrimp, um hr
Crangon chlor
septemspino ide
sa
Pink R, M Cadmi - 144
shrimp, um hr
Panda 1 us chlor
montagui ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
10,0
00
Jones 1975
LC50
10,0
00
Jones 1975
LC50
1,16
0
McLeese and
Ray 1986
LC50
1,28
0
McLeese and
Ray 1986
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Pink - Cadmi - 30
shrimp, um days
Penaeus chlor
duorarum i de
White S, Cadmi 11 96 hr
shrimp, M, T um
Penaeus chlor
setiferus ide
Grass - Cadmi - 42
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi 5 21
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi 10 21
shrimp, um days
Palaemonete chlor
s pugi o i de
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
720
Nimmo et
al. 1977b
LC50
990
Vanegas et
al. 1997
LC50
300
Pesch and
Stewart
1980
LC25
50
Vernberg et
al. 1977
LC10
50
Vernberg et
al. 1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Grass - Cadmi 20 21
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi 10 6
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi 15 6
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi 30 6
shrimp, um days
Palaemonete chlor
s pugi o i de
Grass - Cadmi - 21
shrimp, um days
Palaemonete chlor
s pugi o i de
Effect
Result
Resu
Adj uste
Result
It
d to TH
(Disso
(Tot
= 50
lved
al
(Total
ug/n
Mg/L
ug/U
Reference
LC5
50
Vernberg et
al. 1977
LC75
300
Middaugh
and Floyd
1978
LC50
300
Middaugh
and Floyd
1978
LC25
300
Middaugh
and Floyd
1978
BCF =
140
Vernberg et
al. 1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Grass - Cadmi - 29
shrimp, um days
Palaemonete chlor
s pugi o i de
American - Cadmi - 21
lobster, um days
Homarus chlor
americanus ide
American - Cadmi - 30
lobster, um days
Homarus chlor
americanus ide
Hermit - Cadmi - 7
crab, um days
Pagurus chlor
1 ongi carpus i de
Hermit - Cadmi - 60
crab, um days
Pagurus chlor
1 ongi carpus i de
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved Reference
al (Total ug/V)
ug/L ug/L)
LC50
120
BCF = 25
Increase
in
ATPase
activity
25%
mortal it
y
6
270
LC56
70
Nimmo et
al. 1977b
Eisler et
al. 1972
Tucker 1979
Eisler and
Hennekey
1977
Pesch and
Stewart
1980
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Ye1 low
R, U Cadmi
34
crab,
um
Cancer
chlor
anthonyi
ide
Rock crab,
Cadmi
_
Cancer
um
irroratus
chlor
ide
Rock crab
Cadmi
_
(larva) ,
um
Cancer
chlor
irroratus
ide
Blue crab,
Cadmi
10
Callinectes
um
sapidus
ni tra
te
Blue crab,
Cadmi
30
Callinectes
um
sapidus
ni tra
te
7
days
96 hr
28
days
7
days
7
days
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved Reference
al (Total ug/L)
ug/h ug/L)
28% 1,00
mortal it 0
y
Enzyme 1,00
activity 0
Delayed 50
developm
ent
LC50 50
LC50 150
Macdonald
et al. 1988
Gould et
al. 1976
Johns and
Miller 1982
Rosenberg
and Costlow
1976
Rosenberg
and Costlow
1976
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Blue crab
(juveni le) ,
Callinectes
sapidus
Blue crab, R,
Cal1inectes M, T
sapidus
Blue crab, S,
Cal1inectes M, T
sapidus
Mud crab
(larva) ,
Eurypanopeu
s depressus
Mud crab
(larva) ,
Eurypanopeu
s depressus
Cadmi 1 4
um days
chlor
ide
Cadmi 2.5 21
um 25 days
chlor 21
i de days
Cadmi 28 6-8
um days
chlor
ide
Cadmi - 8
um days
chlor
ide
Cadmi - 44
um days
chlor
ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
320
Frank and
Robertson
1979
LC50 19
LC50 186
Guerin and
Stickle
1995
EC50 0.25
hatching
Lee et al.
1996
LC50
10
Mirkes et
al. 1978
Delay in 10
metamorp
hysis
Mirkes et
al. 1978
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
11
days
Mud crab,
Cadmi
10
Rhithropano
um
peus
ni tra
harasi1
te
Mud crab,
Cadmi
20
Rhithropano
um
peus
ni tra
harasi1
te
Mud crab,
Cadmi
30
Rhithropano
um
peus
ni tra
harasi1
te
Fiddler
_
_
crab,
Uca
pugi la tor
Fiddler
Cadmi
_
crab,
um
Uca
chlor
pugi la tor
ide
11
days
11
days
10
days
Effect
Resu
It
(Tot
al
ug/h
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC80
50
Rosenberg
and Costlow
1976
LC75
50
Rosenberg
and Costlow
1976
LC40
50
Rosenberg
and Costlow
1976
LC50 2,90
0
0 'Hara
1973a
Effect 1.0
on
respirat
ion
Vernberg et
al. 1974
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Starfish, - Cadmi - 7
Asterias um days
forbesi chlor
ide
Sea urchin, S, U Cadmi 30 1 hr
Arbacia um
punctulata chlor 4 hr
ide
Green sea S, Cadmi 30 80
urchin, M, T um min
Strongyloce chlor
ntrotus ide
droebachien
sis
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
25%
mortal it
y
270
Eisler and
Hennekey
1977
EC50
(sperm
eel 1)
EC50
(embryo
growth
EC50
(sperm-
fert.)
38,0
00
13,9
00
26,0
00
Nacci et
al. 1986
Dinnel et
al. 1989
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Red sea S, Cadmi 30 80
urchin, M, T um min
Strongyloce chlor
ntrotus ide
franciscanu
s
Purple sea S, Cadmi 30 80
urchin, M, T um min
Strongyloce chlor
ntrotus ide
purpuratus
Purple sea S, U Cadmi 30 40
urchin, um min
Strongyloce chlor
ntrotus ide
purpuratus
Sand S, Cadmi 30 80
dollar, M, T um min
Dendraster chlor
excen tricus ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
EC50
(sperm-
fert.)
12,0
00
Dinnel et
al. 1989
EC50
(sperm-
fert.)
18,0
00
Dinnel et
al. 1989
N0EC
sperm-
ferti1iz
at ion
>67
Bailey et
al. 1995
EC50 8,00 - - Dinnel et
(sperm- 0 al. 1989
fert.)
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Sand
S, U Cadmi 30
40
dollar,
um
min
Dendraster
chlor
excentricus
ide
Herring
Cadmi
_
(larva) ,
um
Clupea
chlor
harengus
ide
Pacific
Cadmi
<24
herring
um
hr
(embryo),
chlor
Clupea
ide
harengus
pallasi
Pacific
Cadmi
96 hr
herring
um
(embryo),
chlor
Clupea
ide
harengus
pallasi
Effect
Resu
It
(Tot
al
ug/h
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
NOEC
sperm-
ferti1iz
at ion
100%
embryoni
c
survival
17%
reductio
n in
volume
>67
5,00
0
10,0
00
Bailey et
al. 1995
Westernhage
n et al.
1979a
Alderdice
et al.
1979a
Decrease
in
capsule
strength
1,00
0
Alderdice
et al.
1979b
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Pacific - Cadmi - 48 hr
herring um
(embryo), chlor
Clupea ide
harengus
pallasi
Sheepshead R, Cadmi 34-35 96 hr
minnow, M, T um 7
Cyprinodon chlor days
variegatus ide
Sheepshead
minnow,
Cyprinodon
variegatus
s,
Cadmi
5
96
hr
M,
um
15
96
hr
T, D
chlor
25
96
hr
ide
Result
Resu
Adj uste
Result
It
d to TH
(Disso
Effect
(Tot
= 50
lved
Reference
al
(Total
ug/L)
Mg/L
ug/L)
Reduced
1,00
Alderdice
osmo1a1i
0
et al.
ty of
1979c
perivite
1 ine
fluid
LC50
1,23
_
_
Hutchinson
(fed)
0
-
-
et al. 1994
NOEC
560
survival
and
growth
LC50
180
_
_
Hal 1 et al.
(fed)
312
-
-
1995
LC50
496
-
-
(fed)
LC50
(fed)
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Mummichog - Cadmi 20 48 hr
(adult), um
Fundulus chlor
heteroclitu ide
Mummichog - Cadmi 30 48 hr
(adult), um
Fundulus chlor
heteroclitu ide
Mummichog, - Cadmi - 21
Fundulus um days
heteroclitu chlor
s ide
Mummichog - Cadmi 20 48 hr
(larva), um
Fundulus chlor
heteroclitu ide
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50 60,0
00
Middaugh
and Dean
1977
LC50 43,0
00
Middaugh
and Dean
1977
BCF = 48
Eisler et
al. 1972
LC50 32,0
00
Middaugh
and Dean
1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Mummichog - Cadmi 30 48 hr
(larva), um
Fundulus chlor
heteroclitu ide
Mummichog S, Cadmi 10 48 hr
(<23 d), M, T um
Fundulus chlor
heteroclitu ide
Atlantic - Cadmi 20 48 hr
silverside um
(adult), chlor
Menidia ide
menidia
Atlantic - Cadmi 30 48 hr
silverside um
(adult), chlor
Menidia ide
menidia
Result
Resu Adjuste Result
It d to TH (Disso
Effect (Tot = 50 lved Reference
al (Total ug/L)
ug/L ug/L)
LC50 7,80 - - Middaugh
0 and Dean
1977
LC50 44,4 - - Burton and
00 Fisher 1990
LC50 13,0 - - Middaugh
00 and Dean
1977
LC50 12,0 - - Middaugh
00 and Dean
1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Atlantic - Cadmi 12 19
silverside, um days
Menidia chlor
menidia ide
Atlantic - Cadmi 20 19
silverside, um days
Menidia chlor
menidia ide
Atlantic - Cadmi 30 19
silverside, um days
Menidia chlor
menidia ide
Atlantic - Cadmi 20 48 hr
silverside um
(larva), chlor
Menidia ide
menidia
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
<160
Voyer et
al. 1979
LC50
540
Voyer et
al. 1979
LC50
>970
Voyer et
al. 1979
LC50
2,20
0
Middaugh
and Dean
1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Atlantic - Cadmi 30 48 hr
silverside um
(larva), chlor
Menidia ide
menidia
Striped - Cadmi - 90
bass um days
(juvenile), chlor
Morone i de
saxati1 is
Striped - Cadmi - 30
bass um days
(juvenile), chlor
Morone i de
saxati1 is
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
LC50
1,60
0
Middaugh
and Dean
1977
S i gn i f i c
ant
decrease
in
enzyme
activity
S i gn i f i c
ant
decrease
in
oxygen
consumpt
ion
0.5-
5.0
Dawson et
al. 1977
Dawson et
al. 1977
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Spot - Cadmi - 9
(larva), um days
Leiostomus chlor
xanthurus ide
Cunner - Cadmi - 60
(adult), um days
Tautogolabr chlor
us ide
adspersus
Cunner - Cadmi - 30
(adult), um days
Tautogolabr chlor
us ide
adspersus
Cunner - Cadmi - 96 hr
(adult), um
Tautogolabr chlor
us ide
adspersus
Effect
Resu
It
(Tot
al
ug/L
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
Incipien
t LC50
200
Middaugh
and Dean
1977
37.5%
mortal it
y
100
Maclnnes et
al. 1977
Depresse
d gill
tissue
oxygen
consumpt
ion
Decrease
d enzyme
activity
50
3,00
0
Maclnnes et
al. 1977
Gould and
Karolus
1974
-------
Table 6. (Continued)
Species
Meth Chemi
oda
cal
Sal in
ity
(g/kg
Durat Effect
ion
Resu
It
(Tot
al
ug/h
Result
Adj uste
d to TH
= 50
(Total
ug/L)
Result
(Disso
lved
ug/L)
Reference
Winter
flounder,
Pseodopleur
onectes
americanus
Winter
flounder,
Pseodopleur
onectes
americanus
Winter
flounder,
Pseodopleur
onectes
americanus
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
Cadmi
um
chlor
ide
8
days
60
days
17
days
50%
viable
hatch
Increase
d gill
tissue
respirat
ion
Reductio
n of
viable
hatch
300
Voyer et
al. 1977
Calabrese
et al. 1975
586
Voyer et
al. 1982
a S= static, R= renewal, F= flow-through, M= measured, U= unmeasured, T= total
measured concentration, D=dissolved metal concentration measured.
b Results are expressed as cadmium, not as the chemical.
-------
Table 6. (Continued)
Sal in
Species Meth Chemi i ty Durat
oda cal ion
(g/kg
Result
Resu
Adj uste
Result
It
d to TH
(Disso
(Tot
= 50
lved
al
(Total
ug/U
li g/L
ug/L)
Effect (Tot = 50 lved Reference
-------
REFERENCES
Abbasi, S.A. and R. Soni. 1986. An examination of environmentally safe levels
of zinc (II), Cadmium (II) and lead (II) with reference to impact on
channelfish Nuria denricus. Environ. Pollut. (Series A) 40(1): 37-51.
Abbasi, S.A. and R. Soni. 1989. Relative toxicity of seven heavy metals with
respect to impact towards larvae of amphibian Rana tigrina. Intern. J.
Environ. Stud. 35: 121-122.
Abel, P.D. and S.M. Garner. 1986. Comparisons of median survival times and
median lethal exposure times for Gammarus pulex exposed to cadmium, permethrin
and cyanide. Water Res. 20(5): 579-582.
Abel, P.D. and S.E. Papoutsoglou. 1986. Lethal toxicity of cadmium to Cyprinus
carpio and Tilapia aurea. Bull. Environ. Contam. Toxicol. 37: 382-386.
Abel, T. and F. Barlocher. 1988. Uptake of cadmium by Gammarus fossarum
(amphipoda) from food and water. J. Appl. Ecol. 25: 223-231.
Ahsanullah, M. 197 6. Acute toxicity of cadmium and zinc to seven invertebrate
species from Western Port, Victoria. Aust. Jour. Mar. Freshwater Res. 27:
187 .
Ahsanullah, M. and A.R. Williams. 1991. Sublethal effects and bioaccumulation
of cadmium, chromium, copper and zinc in the marine amphipod Allorchestes
compressa. Mar. Biol. 108: 59-65.
Ahsanullah, M.D., et al. 1981. Toxicity of zinc, cadmium, and copper to the
shrimp Callianassa australiensis. I. Effects of individual metals. Mar. Biol.
64: 299.
Al-atia, G.R. 1978. The uptake and toxicity of cadmium in Amoeba proteus.
Jour. Protozool. 25: 5B.
Al-atia, G.R. 1980. Toxicity of cadmium to Amoeba proteus: a biochemical
approach. Jour. Protozool. 27: 128.
138
-------
Alderdice, D.F., et al. 1979a. Influence of salinity and cadmium on the
volume of Pacific herring eggs. Helgol. Wiss. Meeresunters. 32:163.
Alderdice, D.F., et al. 1979b. Influence of salinity and cadmium on capsule
strength in Pacific herring eggs. Helgol. Wiss. Meeresunters. 32: 149.
Alderdice, D.F., et al. 1979c. Osmotic responses of eggs and larvae of the
Pacific herring to salinity and cadmium. Helgol. Wiss. Meeresunters. 32: 508.
Allen, P. 1994. Accumulation profiles of lead and the influence of cadmium and
mercury in Oreochromis aureus (Steindachner) during chronic exposure. Toxicol.
Environ. Chem. 44: 101-112.
Allen, P. 1995a. Soft-tissue accumulation of lead in the blue tilapia,
Oreochromis aureus (Steindachner), and the modifying effects of cadmium and
mercury. Biological Trace Element Research. 50: 193-208.
Allen, P. 1995b. Accumulation profiles of lead and cadmium in the edible
tissues of Oreochromis aureus during acute exposure. J. Fish Biol. 47: 559-
568 .
Allen, Y., P. Calow and D.J. Baird. 1995. A mechanistic model of contaminant-
induced feeding inhibition on Daphnia magna. Environmental Toxicology and
Chemistry. 14(9): 1625-1630.
Amiard, J.C., C. Metayer, J.P. Baud and F. Ribeyre. 1994. Influence of some
ecological and biological factors on metal bioaccumulation in young oysters
(Crassostrea gigas Thunberg) during their spat rearing. 28(1): 219-231.
Amiard-Triquet, C., B. Berthet, C. Metayer and J.C. Amiard. 1986. Contribution
to the ecotoxicological study of cadmium, copper and zinc in the mussel
Mytilus edulis. Mar. Biol. 92: 7-13.
Amiard-Triquet, C, C. Metayer and J.C. Amiard. 1987. Etudes in situ et
experimentales de 1'eotoxicologie de quatre metaux (Cd, Pb, Cu, Zn) chez des
algues et des mollusques gasteropodes brouteurs. Water, Air, Soil Pollut. 34:
11-30.
Amiard-Triquet, C., J.C. Amiard, B. Berthet and C. Metayer. 1988. Field and
experimental study of the bioaccumulation of some trace metals in a coastal
139
-------
food chain: seston, oyster (Crassostrea gigas), drill (Ocenebra erinacea).
Water Sci. Tech. 20(6/7): 13-21.
Anadu, D.I., G.A. Chapman, L.R. Curtis and R.A. Tubb. 1989. Effect of zinc
exposure on subsequent acute tolerance to heavy metals in rainbow trout. Bull.
Environ. Contam. Toxicol. 43: 329-336.
Anderson, B.G. 1948. The apparent thresholds of toxicity to Daphnia magna for
chlorides of various metals when added to Lake Erie water. Trans. Am. Fish.
Soc. 78: 96.
Anderson, R.L., et al. 1980. Survival and growth of Tanytarsus dissimilis
(Chironomidae) exposed to copper, cadmium, zinc, and lead. Arch. Environ.
Contam. Toxicol. 9: 329.
Anderson, R.V., et al. 1978. The distribution of Cd, Cu, Pb and Zn in the
biota of two freshwater sites with different trace metal inputs. Holartic
Ecol. 1: 377.
Andres, S., M. Baudrimont, Y. Lapaquellerie, F. Ribeyre, N. Maillet, C.
Latouche and A. Boudou. 1999. Field transplantation of the freshwater bivalve
Corbicula fluminea along a polymetallic contamination gradient (River Lot,
France): I. Geochemical characteristics of sampling sites and cadmium and zinc
bioaccumulation kinetics. Environ. Toxicol. Chem. 18(11): 2462-2471.
Andros, J.D. and R.R. Garton. 1980. Acute lethality of copper, cadmium, and
zinc to northern squawfish. Trans. Am. Fish. Soc. 109: 235.
Annune, P.A., S.O. Ebele and A.A. Oladimeji. 1994. Acute toxicity of cadmium
to juveniles of Clarias gariepinus (Teugels) and Oreochromis niloticus
(Trewavas). J. Environ. Sci. Health. A29(7): 1357-1365.
Anonymous. 1950. Ohio River Valley Water Sanitation Commission, Subcommittee
on Toxicities, Metal Finishing Industries Action Committee Report No. 3.
Arillo, A., et al. 1982. Biochemical effects of long-term exposure to Cr, Cd,
Ni on rainbow trout (Salmo gairdneri Rich.): influence of sex and season.
Chemosphere 11: 47.
140
-------
Arillo, A., et al. 1984. Biochemical effects of long-term exposure to cadmium
and copper on rainbow trout (Salmo gairdneri) : validation of water quality
criteria. Ecotoxicol. Environ. Safety 8: 106.
Arnac, M. and C. Lassus. 1985. Heavy metal accumulation (Cd, Cu, Pb and Zn) by
smelt (Osmerus mordax) from the north shore of the St. Lawrence estuary. Water
Res. 19(6): 725-734 .
Arshaduddin, M., R. Yasmeen, M.M. Hussain and M.A. Khan. 1989. Effect of two
heavy metals (lead and cadmium) on growth in the rotifer Asplanchna
intermedia. Pollut. Res. 8(3): 129-128.
Asato, S.L. and D.J. Reish. 1988. The effects of heavy metals on the survival
and feeding of Holmesimysis costata (Crustacea: Mysidacea). In: Proc. 7th Int.
Symp. on Mar. Biol., California State University, Long Beach, CA: 113-120.
Attar, E.N. and E.J. Maly. 1982. Acute toxicity of cadmium, zinc, and cadmium-
zinc mixtures to Daphnia magna. Arch. Environ. Contam. Toxicol. 11: 291.
Austen, M.C. and A.J. McEvoy. 1997. The use of offshore meiobenthic
communities in laboratory microcosm experiments: response to heavy metal
contamination. J. Exp. Mar. Biol. Ecol. 211: 247-261.
Avery, E.L., R.H. Dunstan and J.A. Nell. 1996. The detection of pollutant
impact in marine environments: condition index, oxidative DNA damage, and
their associations with metal bioaccumulation in the Sydney rock oyster
Saccostrea commercialis. Arch. Environ. Contam. Toxicol. 31: 192-198.
Azeez, P.A. and D.K. Banerjee. 1987. Influence of light on chlorophyll, a
content of blue-green algae treated with heavy metals. Bull. Environ. Contam.
Toxicol. 38: 1062-1069.
Babich, H. and G. Stotzky. 1978. Effects of cadmium on the biota: influence of
environmental factors. Adv. Appl. Microbiol. 23: 55-117.
141
-------
Babich, H. and G. Stotzky. 1982. Influence of chloride ions on the toxicity of
cadmium to fungi. Zbl. Bakt. Hyg., I. Abt. Orig. C. 3: 421.
Baby, K.V. and N.R. Menon. 1987. Salt forms of metals and their toxicity in
the brown mussel Perna indica (Kuriakose and Nair). Indian J. Mar. Sci. 16(2):
107-109.
Bailey, H.C., J.L. Miller, M.J. Miller and B.S. Dhaliwal. 1995. Application
of toxicity identification procedures to the echinoderm fertilization assay to
identify toxicity in a municipal effluent. Environmental Toxicology and
Chemistry. 14(12): 2181-2186.
Baillieul, M. and R. Blust. 1999. Analysis of the swimming velocity of
cadmium-stressed Daphnia magna. Aquat. Toxicol. 44: 245-254.
Baird, D.J., I. Barber and P. Calow. 1990. Clonal variation in general
responses of Daphnia magna Straus to toxic stress. I. Chronic life-history
effects. Functional Ecology. 4(3): 399-407.
Baird, D.J., I. Barber, M. Bradley, A.M.V.M. Soares and P. Calow. 1991. A
comparative study of genotype sensitivity to acute toxic stress using clones
of Daphnia magna Straus. Ecotoxicology and Environmental Safety. 21: 257-265.
Ball, I.R. 1967. The toxicity of cadmium to rainbow trout (Salmo gairdnerii
Richardson). Water Res. 1: 805.
Balogh, K.V. and J. Salanki. 1984. The dynamics of mercury and cadmium uptake
into different organs of Anodonta cygnea L. Water Res. 18(11): 1381-1387.
Bambang, Y., G. Charmantier, P. Thuet and J.P. Trilles. 1994. Effect of
cadmium on survival and osmoregulation of various developmental stages of the
shrimp Penaeus japonicus (Crustacea: Decapoda). Mar. Biol. 123: 443-450.
Barata, C., D.J. Baird and S.J. Markich. 1998. Influence of genetic and
environmental factors on the tolerance of Daphnia magna Straus to essential
and non-essential metals. Aquatic Toxicology. 42: 115-137.
142
-------
Barnthouse, L.W., G.W. Suter II, A.E. Rosen and J.J. Beauchamp. 1987.
Estimating responses of fish populations to toxic contaminants. Environ.
Toxicol. Chem. 6: 811-824.
Barque, J. Ph., A. Abahamid, Y. Bourezgui, H. Chacun and J. Bonaly. 1995.
Growth responses of achlorophyllous Euglena gracilis to selected
concentrations of cadmium and pentachlorophenol. Arch. Environ. Contam.
Toxicol. 28: 8-12.
Bartlett, L., et al. 1974. Effects of copper, zinc and cadmium on Selenastrum
capricornutum. Water Res. 8: 17 9.
Bartsch, M.R., W.G. Cope and R.G. Rada. 1999. Effects of cadmium-spiked
sediment on cadmium accumulation and bioturbation by nymphs of the burrowing
mayfly Hexagenia bilineata. Water, Air, Soil Pollut. 109: 277-292.
Battaglini, P., G. Andreozzi, R. Antonucci, N. Arcamone, P. De Giroloamo, L.
Ferrara and G. Gargiulo. 1993. The effects of cadmium on the gills of the
goldfish Carassius auratus L.: metal uptake and histochemical changes. Comp.
Biochem. Physiol. 104C(2): 239-247.
Baudrimont, M., J. Metivaud, R. Maury-Brachet, F. Ribeyre and A. Boudou. 1997.
Bioaccumulation and metallothionein response in the asiatic clam (Corbicula
fluminea) after experimental exposure to cadmium and inorganic mercury.
Environmental Toxicology and Chemistry. 16(10): 2096-2105.
Bay, S, R. Burgess and D. Nacci. 1993. Status and applications of echinoid
(Phylum echinodermata) toxicity test methods. Environ. Toxicol. Risk. Assess.,
ASTM STP 1179, W.G. Landis, J.S. Hughes and M.A. Lewis (eds.), American
Society for Testing and Materials, Philadelphia, pp. 281-302.
Beattie, J.H. and D. Pascoe. 1978. Cadmium uptake by rainbow trout, Salmo
gairdneri eggs and alevins. Jour. Fish Biol. 13: 631.
143
-------
Bednarz, T. and H. Warkowska-Dratnal. 1983/1984. Toxicity of zinc, cadmium,
lead, copper, and their mixture for Chlorella pyrenoidosa Chick. Acta
Hydrobiol. 25/26(3/4): 389-400.
Beiras, R. , E. His and M.N.L. Seaman. 1998. Effects of storage temperature and
duration on toxicity of sediments assessed by Crassostrea gigas oyster embryo
bioassay. Environ. Toxicol. Chem. 17(10): 2100-2105.
Belabed, W., N. Kestali, S. Semsari and A. Gaid. 1994. Toxicity study of some
heavy metals with daphnia test. Tech. Sci. Methods. 6: 331-336.
Belanger, S.E. and D.S. Cherry. 1990. Interacting effects of pH acclimation,
pH, and heavy metals on acute and chronic toxicity to Ceriodaphnia dubia
(cladocera). J. Crustacean Biol. 10(2): 225-235.
Bellavere, C. and J. Gorbi. 1981. A comparative analysis of acute toxicity of
chromium, copper and cadmium to Daphnia magna, Biomphalaria glabrata, and
Brachydanio rerio. Environ. Technol. Letters 2: 119.
Bendell-Young, L.I. 1994. Comparison of metal concentrations in the fore and
hindguts of the crayfish Cambarus bartoni and Orconectes virilis and
implications regarding metal absorption efficiencies. Bull. Environ. Contam.
Toxicol. 53: 844-851.
Bendell-Young, L.I. 1999. Application of a kinetic model of bioaccumulation
across a pH and salinity gradient for the prediction of cadmium uptake by the
sediment dwelling chironomidae. Environ. Sci. Technol. 33: 1501-1508.
Bendell-Young, L.I., H.H. Harvey and J.F. Young. 1986. Accumulation of cadmium
by white suckers (Catostomus commersoni) in relation to fish growth and lake
acidification. Can. J. Fish. Aquat. Sci. 43: 806-811.
Bengtsson, B. 1978. Use of harpacticoid copepod in toxicity tests. Mar.
Pollut. Bull. 9: 238.
Bengtsson, B.E. and B. Bergstrom. 1987. A flow-through fecundity test with
Nitocra spinipes (Harpacticoidea Crustacea) for aquatic toxicity.
Ecotoxicology and Environmental Safety. 14: 260-268.
144
-------
Benoit, D.A., et al. 1976. Toxic effects of cadmium on three generations of
brook trout (Salvelinus fontinalis). Trans. Am. Fish. Soc. 105:550.
Bentley, P.J. 1991. Accumulation of cadmium by channel catfish (Ictalurus
punctatus): influx from environmental solutions. Comp. Biochem. Physiol. 99C:
527-529.
Berglind, R. 1985. The effects of cadmium on ala-d activity, growth and
haemoglobin content in the water flea, Daphnia magna. Comp. Biochem. Physiol.
8 0C(2) : 407-410.
Berglind, R. 1986. Combined and separate effects of cadmium, lead and zinc on
ala-d activity, growth and hemoglobin content in Daphnia magna. Environ.
Toxicol. Chem. 5: 989-995.
Bernds, D, D. Wubben and G.P. Zauke. 1998. Bioaccumulation of trace metals in
polychaetes from the German Wadden Sea: evaluation and verification of
toxicokinetic models. Chemosphere. 37(13): 2573-2587.
Bertram, P.E. and B.A. Hart. 197 9. Longevity and reproduction of Daphnia pulex
(deGeer) exposed to cadmium-contaminated food or water. Environ. Pollut. 19:
295.
Bervoets, L., R. Blust and R. Verheyen. 1995. The uptake of cadmium by the
midge larvae Chironomus riparius as a function of salinity. Aquat. Toxicol.
33: 227-243.
Bervoets, L, R. Blust and R. Verheyen. 1996. Effect of temperature on cadmium
and zinc uptake by the midge larvae Chironomus riparius. Arch. Environ.
Contam. Toxicol. 31: 502-511.
Besser, J.M. and C.F. Rabeni. 1987. Bioavailability and toxicity of metals
leached from lead-mine tailings to aquatic invertebrates. Environ. Toxicol.
Chem. 6: 879-890.
Biesinger, K.E. and G.M. Christensen. 1972. Effects of various metals on
survival, growth, reproduction, and metabolism of Daphnia magna. Jour. Fish.
Res. Board Can. 29: 1691.
145
-------
Biesinger, K.E., G.M. Christensen and J.T. Fiandt. 1986. Effects of metal salt
mixtures on Daphnia magna reproduction. Ecotoxicol. Environ. Safety. 11: 9-14.
Bigelow, L.K. and D.C. Lasenby. 1991. Particle size selection in cadmium
uptake by the opossum shrimp, Mysis relicta. Bull. Environ. Contam. Toxicol.
47: 790-796.
Birge, W.J. 1978. Aquatic toxicology of trace elements of coal and fly ash.
In: J.H. Thorp and J.W. Gibbons (eds.), Energy and Environmental Stress in
Aquatic Systems. CONF-771114. National Technical Information Service,
Springfield, Virginia, p. 219.
Birge, W.J., et al. 1978. Embryo-larval bioassay on inorganic coal elements
and in situ biomonitoring of coal-waste effluents. In: D.E. Samuel, et al.
(eds.), Surface Mining and Fish/Wildlife Needs in the Eastern United States.
PB 298353. National Technical Information Service, Springfield, Virginia, p.
97 .
Birge, W.J., et al. 1979. The effects of mercury on reproduction of fish and
amphibians. In: J.O. Nriagu (ed.), The Biochemistry of Mercury in the
Environment. Elsevier/North-Holland, New York. p. 629.
Birge, W.J., et al. 1980. Aquatic toxicity tests on inorganic elements
occurring in oil shale, In: C. Gale (ed.), Oil Shale Symposium: Sampling,
Analysis and Quality Assurance. EPA-600/9-80-022. National Technical
Information Service, Springfield, Virginia, p. 519.
Birge, W.J., et al. 1981. The reproductive toxicology of aquatic contaminants.
In: J. Saxena and F. Fisher (eds.), Hazard Assessment of Chemicals: Current
Developments. Vol. 1. Academic Press, New York. p. 59.
Birge, W.J., et al. 1983. Induction of tolerance to heavy metals in natural
and laboratory populations of fish. PB84-111756. National Technical
Information Service, Springfield, Virginia.
Birge, W.J., J.A. Black and A.G. Westerman. 1985. Short-term fish and
amphibian embryo-larval tests for determining the effects of toxicant stress
146
-------
on early life stages and estimating chronic values for single compounds and
complex effluents. Environmental Toxicology and Chemistry. 4: 807-821.
Birmelin, C., J. Cuzin-Roudy, M. Romeo, M. Gnassia-Barelli and S. Puiseux-Dao.
1995. The mysid Siriella armata as a test organisms in toxicology: effects of
cadmium. Mar. Environ. Res. 39: 317- 320.
Bishop, W.E. and A.W. Mcintosh. 1981. Acute lethality and effects of sublethal
cadmium exposure on ventilation frequency and cough rate of bluegill (Lepomis
macrochirus) . Arch. Environ. Contam. Toxicol. 10: 519.
Bitton, G., K. Jung and B. Koopman. 1994. Evaluation of a microplate assay
specific for heavy metal toxicity. Arch. Environ. Contam. Toxicol. 27: 25-28.
Bitton, G., K. Rhodes, B. Koopman and M. Cornejo. 1995. Short-term toxicity
assay based on daphnid feeding behavior. Water Environ. Res. 67(3): 290-293.
Bitton, G., K. Rhodes and B. Koopman. 1996. Ceriofast™: an acute toxicity test
based on Ceriodaphnia dubia feeding behavior. Environmental Toxicology and
Chemistry. 15(2): 123-125.
Bjerregaard, P. 1982. Accumulation of cadmium and selenium and their mutual
interaction in the shore crab Carcinus maenas. Aquat. Toxicol. 2: 113.
Bjerregaard, P. 1985. Effect of selenium on cadmium uptake in the shore crab
Carcinus maenas (L.). Aquat. Toxicol. 7: 177-189.
Bjerregaard, P. 1991. Relationship between physiological condition and cadmium
accumulation in Carcinus maenas (L.). Comp. Biochem. Physiol. 99A(l/2): 75-83.
Bjerregaard, P. and M.H. Depledge. 1994. Cadmium accumulation in Littorina
littorea, Mytilus edulis and Carcinus maenas: the influence of salinity and
calcium ion concentrations. Mar. Bio. 119: 385-395.
Black, J.A. and W.J. Birge. 1980. An avoidance response bioassay for aquatic
pollutants. PB80-180490. National Technical Information Service, Springfield,
Virginia.
147
-------
Blickens, E.A.M. 1978. Cadmium induced histopathological changes in the gills
of the brown bullhead Ictalurus nebulosus (Lesueur). Ph.D. Thesis. New York
University.
Block, M. and A.W. Glynn. 1992. Influence of xanthates on the uptake of 109Cd
by Eurasian dace (Phoxinus phoxinus) and rainbow trout (Oncorhynchus mykiss).
Environ. Toxicol. Chem. 11: 873-879.
Block, M. and P. Part. 1992. Uptake of 109Cd by cultured gill epithelial cells
from rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 23: 137-151.
Block, M, A.W. Glynn and P. Part. 1991. Xanthate effects on cadmium uptake and
intracellular distribution in rainbow trout (Oncorhynchus mykiss) gills.
Aquat. Toxicol. 20: 267-284.
Blondin, G.A., L.M. Knobeloch, H.W. Read and J.M. Harkin. 1989. An in vitro
submitochondrial bioassay for predicting acute toxicity in fish. Aquat.
Toxicol. Environ. Fate. ASTM STP 1007, G.W. Suter II and M.A. Lewis (eds.),
American Society for Testing and Materials, Philadelphia. 11: 551-563.
Bodar, C.W.M., I. Van der Sluis, P.A. Voogt and D.I. Zandee. 1988a. Effects of
cadmium on consumption, assimilation and biochemical parameters of Daphnia
magna: possible implications for reproduction. Comp. Biochem. Physiol. 90C(2):
341-346.
Bodar, C.W.M., C.J. Van Leeuwen, P.A. Voogt and D.I. Zandee. 1988b. Effect of
cadmium on the reproduction strategy of Daphnia magna. Aquatic Toxicology. 12:
301-310.
Bodar, C.W.M., A.V.D. Zee, P.A. Voogt, H. Wynne and D.I. Zandee. 1989.
Toxicity of heavy metals to early life stages of Daphnia magna. Ecotoxicology
and Environmental Safety. 17: 333-338.
Bodar, C.W.M., P.A. Voogt and D.I. Zandee. 1990a. Ecdysteroids in Daphnia
magna: their role in moulting and reproduction and their levels upon exposure
to cadmium. Aquat. Toxicol. 17: 339-350.
148
-------
Bodar, C.W.M., I. Van der Sluis, J.C.P., Van Montfort, P.A. Voogt and D.I.
Zandee. 1990b. Cadmium resistance in Daphnia magna. Aquat. Toxicol. 16: 5633-
40.
Bolanos, L., M. Garcia-Gonzalez, P. Mateo and I. Bonilla. 1992. Differential
toxicological response to cadmium in Anabaena strain PCC 7119 grown with N03~
or NH4+ as nitrogen source. J. Plant Physiol. 140: 345-349.
Borchardt., T. 1983. Influence of food quantity on the kinetics of cadmium
uptake and loss via food and seawater in Mytilus edulis. Mar. Biol. 76: 67-76.
Borgmann, U., W.P. Norwood and I.M. Babirad. 1991. Relationship between
chronic toxicity and bioaccumulation of cadmium in Hyalella azteca. Can. J.
Fish. Aquat. Sci. 48: 1055-1060.
Borgmann, U. and K.M. Ralph. 1986. Effects of cadmium, 2,4-dichlorophenol, and
pentachlorophenol on feeding, growth, and particle-size-conversion efficiency
of white sucker larvae and young common shiners. Arch. Environ. Contam.
Toxicol. 15: 473-480.
Borgmann, U., K.M. Ralph and W.P. Norwood. 1989. Toxicity test procedures for
Hyalella azteca, and chronic toxicity of cadmium and pentachlorophenol to H.
azteca, Gammarus fasciatus, and Daphnia magna. Arch. Environ. Contam. Toxicol.
18: 756-764.
Bosnak, A.D. and E.L. Morgan. 1981. Acute toxicity of cadmium, zinc, and total
residual chlorine to epigean and hypogean isopods (Asellidae). Natl.
Speleological Soc. Bull. 43: 12.
Bouquegneau, J.M. and M. Martoja. 1982. La teneur en cuivre et son degre de
complexation chez quatre gasteropodes marins. Donnees sur le cadmium et zinc.
Oceanologica Acta 5: 219.
Boutet, C. And C. Chaisemartin. 1973. Specific toxic properties of metallic
salts in Austropotamobius pallipes pallipes and Orconectes limosus. C.R. Soc.
Biol. 167: 1933.
149
-------
Bowen, W.J., III and D.W. Engel. 1996. Effects of protracted cadmium exposure
on gametes of the purple sea urchin, Arbacia punctulata. Bull. Environ.
Contam. Toxicol. 56: 493-499.
Boyden, C.R. 1977. Effect of size upon metal content of shellfish. Jour. Mar.
Biol. Assoc. U.K. 57: 675.
Bozeman, J., B. Koopman and G. Bitton. 1989. Toxicity testing using
immobilized algae. Aquatic Toxicology. 14: 345-352.
Braginskiy, L.P. and E.P. Shcherban. 1978. Acute toxicity of heavy metals to
aquatic invertebrates at different temperatures. Hydrobiol. Jour. 14(6) : 78.
Brand, L.E., W.G. Sunda and R.R.L. Guillard. 1986. Reduction of marine
phytoplankton reproduction rates by copper and cadmium. J. Exp. Mar. Biol.
Ecol. 96: 225-250.
Brent, R.N. and E.E. Herricks. 1998. Postexposure effects of brief cadmium,
zinc, and phenol exposures on freshwater organisms. Environmental Toxicology
and Chemistry. 17(10): 2091-2099.
Bresler, V. and V. Yanko. 1995. Acute toxicity of heavy metals for benthic
epiphytic foraminifera Pararotalia spinigera (Le Calvez) and influence of
seaweed-derived doc. Environ. Toxicol. Chem. 14(10): 1687-1695.
Bressan, M. and R. Brunetti. 1988. The effects of nitriloacetic acid, Cd and
Hg on the marine algae Dunaliella tertiolecta and Isochrysis galbana. Water
Res. 22(5): 553-556.
Bringmann, G. 1975. Determination of the biologically harmful effect of water
pollutants by means of the retardation of cell proliferation of the blue algae
Microcystis. Gesundheits-Ing. 96: 238.
Bringmann, G. 1978. Determination of the biological toxicity of waterbound
substances towards protozoa. I. bacteriovorous flagellates (model organism:
Entosiphon sulcatum Stein). Z. Wasser Abwasser Forsch. 11: 210.
150
-------
Bringmann, G. and R. Kuhn. 1959a. The toxic effects of waste water on aquatic
bacteria, algae, and small crustaceans. Gesundheits-Ing. 80: 115.
Bringmann, G. and R. Kuhn. 1959b. Water toxicology studies with protozoans as
test organisms. Gesundheits-Ing. 80: 239.
Bringmann, G. and R. Kuhn. 1976. Comparative results of the damaging effects
of water pollutants against bacteria (Pseudomonas putida) and blue algae
(Microcystis aeruginosa). Gas-Wasserfach, Wasser-Abwasser 117: 410.
Bringmann, G. and R. Kuhn. 1977a. Limiting values for the damaging action of
water pollutants to bacteria (Pseudomonas putida) and green algae (Scenedesmus
quadricauda) in the cell multiplication inhibition test. Z. Wasser Abwasser
Forsch. 10: 87.
Bringmann, G. and R. Kuhn. 1977b. Results of damaging effect of water
pollutants on Daphnia magna. Z. Wasser Abwasser Forsch. 10: 161.
Bringmann, G. and R. Kuhn. 1978a. Limiting values for the noxious effects of
water pollutant material to blue algae (Microcystis aeruginosa) and green
algae (Scenedesmus quadricauda) in cell propagation inhibition test. Vom
Wasser 50: 45.
Bringmann, G. and R. Kuhn. 1978b. Testing of substances for their toxicity
threshold: model organisms Microcystis (Diplocystis) aeruginosa and
Scenedesmus quadricauda. Mitt. Int. Ver. Theor. Angew. Limnol. 21: 275.
Bringmann, G. and R. Kuhn. 1979. Comparison of toxic limiting concentrations
of water contaminants toward bacteria, algae, and protozoa in the cell-growth
inhibition test. Haustech. Bauphys. Umwelttech. 100: 249.
Bringmann, G. and R. Kuhn. 1980a. Determination of the harmful biological
effect of water pollutants on protozoa. II. bacteriovorous ciliates. Z. Wasser
Abwasser Forsch. 13: 26.
Bringmann, G. and R. Kuhn. 1980b. Comparison of the toxicity thresholds of
water pollutants to bacteria, algae, and protozoa in the cell multiplication
inhibition test. Water Res. 14: 231.
151
-------
Bringmann, G. and R. Kuhn. 1981. Comparison of the effects of harmful
substances on flagellates as well as ciliates and on halozoic bacteriophagous
and saprozoic protozoa. Gas-Wasserfach, Wasser-Abwasser 122: 308.
Bringmann, G. and R Kuhn. 1982. Results of toxic action of water pollutants on
Daphnia magna Straus tested by an improved standardized procedure. Z. Wasser
Abwasser Forsch. 15: 1.
Bringmann, G., et al. 1980. Determination of biological damage from water
pollutants to protozoa. III. saprozoic flagellates. Z. Wasser Abwasser Forsch.
13: 170.
Brkovic-Popovic, I. and M. Popovic. 1977a. Effects of heavy metals on survival
and respiration rate of tubificid worms: Part I-effects on survival. Environ.
Pollut. 13:65.
Brkovic-Popovic, I. and M. Popovic. 1977b. Effects of heavy metals on survival
and respiration rate of tubificid worms: Part II-effects on respiration rate.
Environ. Pollut. 13: 93.
Brooks, A.W., L. Maltby, A.J. Saul and P. Calow. 1996. A simple indoor
artificial stream system designed to study the effects of toxicant pulses on
aquatic organisms. Wat. Res. 30(2) : 285-290.
Brouwer, M, D.W. Engel, J. Bonaventura and G.A. Johnson. 1992. In vivo
magnetic resonance imaging of the blue crab, Callinectes sapidus: effect of
cadmium accumulation in tissues on proton relaxation properties. J. Exp. Zool.
263: 32-40.
Brown, B. and M. Ahsanullah. 1971. Effect of heavy metals on mortality and
growth. Mar. Pollut. Bull. 2: 182.
Brown, A.F. and D. Pascoe. 1988. Studies on the acute toxicity of pollutants
to freshwater macroinvertebrates 5. The acute toxicity of cadmium to twelve
species of predatory macroinvertebrates. Arch. Hydrobiol. 114(2): 311-319.
152
-------
Brown, D.A., et al. 1984. Detoxification/toxification of cadmium in
scorpionfish (Scorpaena quttata) : acute exposure. Aquat. Toxicol. 5: 93.
Brown, M.W., D.G. Thomas, D. Shurben, J.F. De L.G. Solbe, J. Kay and A. Cryer.
1986. A comparison of the differential accumulation of cadmium in the tissues
of three species of freshwater fish, Salmo Gairdneri, Rutilus rutilus and
Noemacheilus barbatulus. Comp. Biochem. Physiol. 84C(2) : 213-217.
Brown, V. , D. Shurben, W. Miller and M. Crane. 1994. Cadmium toxicity to
rainbow trout Oncorhynchus mykiss Walbaum and brown trout Salmo trutta L. over
extended exposure periods. Ecotoxicology and Environmental Safety. 29: 38-46.
Brunetti, R., M. Marin, M. Bressan, M. Zordan and A. Soggia. 1991. Effects of
the chelating agent nitrilotriacetic acid (NTA) on the toxicity of metals (Cd,
Cu, Zn and Pb) in the sea urchin Paracentrotus lividus LMK. Vie Milieu. 41(1):
39-43.
Bryan, G.W. 1971. The effects of heavy metals (other than mercury) on marine
and estuarine organisms. Proc. R. Soc. London B. 177: 389.
Bryan, G.W., et al. 1983. An assessment of the gastropod, Littorina littorea,
as an indicator of heavy metal contamination in United Kingdom estuaries.
Jour. Mar. Biol. Assoc. U.K. 63: 327.
Bryan, M.D., G.J. Atchison and M.B. Sandheinrich. 1995. Effects of cadmium on
the foraging behavior and growth of juvenile bluegill, Lepomis macrochirus.
Can. J. Fish. Aquat. Sci. 53: 1630-1638.
Buckley, J.A., G.A. Yoshida, N.R. Wells and R.T. Aquino. 1985. Toxicities of
total and chelex-labile cadmium to salmon in solutions of natural water and
diluted sewage with potentially different cadmium complexing capacities. Water
Res. 19 (12) : 1549-1554 .
Buhl, K.J. 1997. Relative sensitivity of three endangered fishes, Colorado
squawfish, bonytail, and razorback sucker, to selected metal pollutants.
Ecotoxicology and Environmental Safety. 37: 186-192.
153
-------
Buhl, K.J. and S.J. Hamilton. 1991. Relative sensitivity of early life stages
of arctic grayling, coho salmon, and rainbow trout to nine inorganics.
Ecotoxicology and Environmental Safety. 22: 184-197.
Buikema, A.L., Jr., et al. 1974a. Rotifers as monitors of heavy metal
pollution in water. Bulletin 71. Virginia Water Resources Research Center,
Blacksburg, Virginia.
Buikema, A.L., Jr., et al. 1974b. Evaluation of Philodina acuticornis
(Rotifera) as a bioassay organism for heavy metals. Water Resources Bull. 10:
648 .
Buikema, A.L., Jr., et al. 1977. Rotifer sensitivity to combinations of
inorganic water pollutants. Bulletin 92. Virginia Water Resources Research
Center, Blacksburg, Virginia.
Burdin, K.S. and K.T. Bird. 1994. Heavy metal accumulation by carrageenan and
agar producing algae. Bot. Mar. 37: 467-470.
Burnison, G., et al. 1975. Toxicity of cadmium to freshwater algae. Proc. Can.
Fed. Biol. Soc. 18: 46.
Burrell, D.C. and D. Weihs. 1983. Uptake of cadmium by marine bacteria and
transfer to a deposit feeding clam. Sea Grant Report 83-5. University of
Alaska, Fairbanks, Alaska.
Burton, D.T. and D.J. Fisher. 1990. Acute toxicity of cadmium, copper, zinc,
ammonia, 3,3'-dichlorobenzidine, 2,6-dichloro-4-nitroaniline, methylene
chloride, and 2,4,6-trichlorophenol to juvenile grass shrimp and killifish.
Bull. Environ. Contam. Toxicol. 44: 776-783.
Busch, D, T. Lucker and W. Wosniok. 1998. Effects of changing salt
concentrations and other physical-chemical parameters on bioavailability and
bioaccumulation of heavy metals in expose Dreissena polymorpha (Pallas, 1771).
Limnol. 28(3): 263-274.
154
-------
Cairns, J. Jr., J.R. Pratt, B.R. Niederlehner and P.V. McCormick. 1986. A
simple, cost-effective multispecies toxicity test using organisms with a
cosmopolitan distribution. Environ. Monit. Assess. 6: 207-220.
Calabrese, A., et al. 1973. The toxicity of heavy metals to embryos of the
American oyster Crassostrea virginica. Mar. Biol. 18: 162.
Calabrese, A., et al. 1975. Sublethal physiological stress induced by cadmium
and mercury in the winter flounder, Pseudopleuronectes americanus. In: J.H.
Koeman and J.J.T.W.A. Strik (eds.), Sublethal Effects of Toxic Chemicals in
Aquatic animals. Elsevier, New York. p. 15.
Calevro, F., S. Campani, M. Ragghianti, S. Bucci and G. Mancino. 1998a. Tests
of toxicity and teratogenicity in biphasic vertebrates treated with heavy
metals (Cr3+, Al3+, Cd2+) . Chemosphere. 37(14-15) : 3011-3017
Calevro, F, C. Filippi, P. Deri, C. Albertosi, R. Batistoni. 1998b. Toxic
effects of aluminum, chromium and cadmium in intact and regenerating
freshwater planarians. Chemosphere. 37(4): 651-659.
Callahan, M.A., et al. 1979. Water-related environmental fate of 129 priority
pollutants. Vol. I. EPA-4 40/4-79-029a. National Technical Information Service,
Springfield, Virginia.
Campbell, J. and R.D. Evans. 1991. Cadmium concentrations in the freshwater
mussel (Elliptio complanata) and their relationship to water chemistry. Arch.
Environ. Contam. Toxicol. 20: 125-131.
Camusso, M., L. Vigano and R. Balestrini. 1995. Bioconcentration of trace
metals in rainbow trout: a field study. Ecotoxicol. Environ. Safety. 31: 133-
141.
Canli, M. and R.W. Furness. 1993. Toxicity of heavy metals dissolved in sea
water and influences of sex and size on metal accumulation and tissue
distribution in the Norway lobster Nephrops norvegicus. Mar. Environ. Res. 36:
217-236.
155
-------
Canli, M. and R.W. Furness. 1995. Mercury and cadmium uptake from seawater and
from food by the Norway lobster Nephrops norvegicus. Environ. Toxicol. Chem.
14(5) : 819-828 .
Canterford, G.S. and D.R. Canterford. 1980. Toxicity of heavy metals to the
marine diatom Ditylum brightwellii (West) Grunow: correlation between toxicity
and metal speciation. Jour. Mar. Biol. Assoc. U.K. 60: 227.
Canton, J.H. and D.M.M. Adema. 1978. Reproducibility of short-term and re-
production toxicity experiments with Daphnia magna and comparison of the
sensitivity of Daphnia magna with Daphnia pulex and Daphnia cucullata in
short-term experiment. Hydrobiologia 59: 135.
Canton, J.H. and W. Slooff. 1979. A proposal to classify compounds and to
establish water quality based on laboratory data. Ecotoxicol. Environ. Safety
3: 126.
Canton, J.H. and W. Slooff. 1982. Toxicity and accumulation studies of cadmium
(Cd2+) with freshwater organisms of different trophic levels. Ecotoxicol.
Environ. Safety 6: 113.
Cardin, J.A. 1982. Memorandum to J.H. Gentile. U.S. EPA, Narragansett, Rhode
Island.
Carlisle, D.M. and W.H. Clements. 1999. Sensitivity and variability of metrics
used in biological assessments of running waters. Environ. Toxicol. Chem.
18(2): 285-291.
Carlson, A.R., et al. 1982. Cadmium and endrin toxicity to fish in waters
containing mineral fibers. EPA-600/3-82-053. National Technical Information
Service, Springfield, Virginia.
Carmichael, N.G. and B.A. Fowler. 1981. Cadmium accumulation and toxicity in
the kidney of the bay scallop Argopecten irradians. Mar. Biol. 65: 35.
Carpene, E. and L. Boni. 1992. Effects of heavy metals on the algae Nitzschia
closterium and Prorocentrum micans. Sci. Total Environ, pp. 921-927.
156
-------
Carr, R.S. and J.M. Neff. 1982. Biochemical indices of stress in the sandworm
Neanthes virens (Sars). II. sublethal responses to cadmium. Aquat. Toxicol. 2:
319.
Carr, R.S., J.W. Williams, F.I. Saksa, R.L. Buhl and J.M. Neff. 1985.
Bioenergetic alterations correlated with growth, fecundity and body burden of
cadmium for mysids (Mysidopsis bahia) . Environ. Toxicol. Chem. 4: 181-188.
Carrier, R. and T.L. Beitinger. 1988a. Reduction in thermal tolerance of
Notropis lutrensis and Pimephales promelas exposed to cadmium. Water Res.
22(4): 511-515.
Carrier, R. and T.L. Beitinger. 1988b. Resistance of temperature tolerance
ability of green sunfish to cadmium exposure. Bull. Environ. Contam. Toxicol.
40: 475-480.
Carroll, J.J., et al. 1979. Influences of hardness constituents on the acute
toxicity of cadmium to brook trout (Salvelinus fontinalis). Bull. Environ.
Contam. Toxicol. 22:575.
Casini, S. and M.H. Depledge. 1997. Influence of copper, zinc, and iron on
cadmium accumulation in the Talitrid amphipod, Platorchestia platensis. Bull.
Environ. Contam. Toxicol. 59: 500-506.
Cassini, A, L. Tallandini, N. Favero and V. Albergoni. 1986. Cadmium
bioaccumulation studies in the freshwater molluscs Anodonta cygnea and Unio
elongatulus. Comp. Biochem. Physiol. 8 4 C(1) : 35-41.
Castano, A., M.J. Cantarino, P. Castillo and J.V. Tarazona. 1996. Correlations
between the RTG-2 cytotoxicity test EC50 and in vivo LC50 rainbow trout
bioassay. Chemosphere. 32(11): 2141-2157.
Castille, F.L., Jr., and A.L. Lawrence. 1981. The effects of EDTA (ethylene-
dinitrotetraacetic acid) on the survival and development of shrimp nauplii
(Penaeus stylirostris Stimpson) and the interactions of EDTA and the
toxicities of cadmium, calcium, and phenol. Jour. World Maricul. Soc. 12: 292.
157
-------
Cearley, J.E. and R.L. Coleman. 1973. Cadmium toxicity and accumulation in
southern naiad. Bull. Environ. Contam. Toxicol. 9: 100.
Cearley, J.E. and R.L. Coleman. 1974. Cadmium toxicity and bioconcentration in
largemouth bass and bluegill. Bull. Environ. Contam. Toxicol. 11: 146.
Centeno, M.D., L. Brendonck and G. Persoone. 1993. Cyst-based toxicity tests.
III. Development and standardization of an acute toxicity test with the
freshwater anostracan crustacean Streptocephalus proboscideus. In: A.M.V.M.
Soares and P. Calo (eds.). Progress in Standardization of Aquatic Toxicity
Tests. Lewis Publishers, pp 37-55.
Centeno, M.D.F., G. Persoone and M.P.Goyvaerts. 1995. Cyst-based toxicity
tests. IX. The potential of Thamnocephalus platyurus as test species in
comparison with Streptocephalus proboscideus (Crustacea: branchiopoda:
anostraca). Environ. Toxicol. Water Qual.: an International Journal. 10(4):
275-282 .
Chagnon, N.L. and S.I. Guttman. 1989. Differential survivorship of allozyme
genotypes in mosquitofish populations exposed to copper or cadmium.
Environmental Toxicology and Chemistry. 8: 319-326.
Chan, H.M. 1988. Accumulation and tolerance to cadmium, copper, lead and zinc
by the green mussel Perna viridis. Mar. Ecol. Prog. Ser. 48: 295-303.
Chan, H.M., P. Bjerregaard, P.S. Rainbow, M.H. Depledge. 1992. Uptake of zinc
and cadmium by two populations of shore crabs Carcinus maenas at different
salinities. Mar. Ecol. Prog. Ser. 86: 91-97.
Chan, K., et al. 1981. Effects of polyethylene glycol on growth and cadmium
accumulation of Chlorella salina CU-1. Chemosphere 10: 985.
Chander, G.P., N.V. Madhav and Vidyavati. 1991. Response of Pithophora
oedogonia to cadmium. Acta Botanica Indica. 19: 240-242.
Chandini, T. 1988a. Changes in food (Chlorella) levels and the acute toxicity
of cadmium to Daphnia carinata (daphnidae) and Echinisca triserialis
158
-------
(macrothricidae) (Crustacea: cladocera). Bull. Environ. Contam. Toxicol. 41:
398-403.
Chandini, T. 1988b. Effects of different food (Chlorella) concentrations on
the chronic toxicity of cadmium to survivorship, growth and reproduction of
Echinisca triserialis (crustacea: cladocera). Environ. Pollut. 54: 139-154.
Chandini, T. 1989. Survival, growth and reproduction of Daphnia carinata
(crustacea: cladocera) exposed to chronic cadmium stress at different food
(Chlorella) levels. Environ. Pollut. 60: 29-45.
Chandini, T. 1991. Reproductive value and the cost of reproduction in Daphnia
carinata and Echinisca triserialis (crustacea: cladocera) exposed to food and
cadmium stress. Bull. Environ. Contam. Toxicol. 47: 76-83.
Chandra, P. and P. Garg. 1992. Absorption and toxicity of chromium and cadmium
in Limnanthemum cristatum Griseb. Sci. Total Environ. 125: 175-183.
Chang, M., H.C. Lin and P. Hwang. 1998. Ca2+ uptake and Cd2+ accumulation in
larval tilapia (Oreochromis mossambicus) acclimated to waterborne Cd2. Am. J.
Physiol. 27(6): 1570-1577.
Chapman, G.A. 1975. Toxicity of copper, cadmium and zinc to Pacific Northwest
salmoides. U.S. EPA, Corvallis, Oregon.
Chapman, G.A. 1978. Toxicities of cadmium, copper, and zinc to four juvenile
stages of chinook salmon and steelhead. Trans. Am. Fish. Soc. 107: 841.
Chapman, G.A. 1982. Letter to C.E. Stephan. U.S. EPA, Corvallis, Oregon.
December 6.
Chapman, G.A. and D.G. Stevens. 1978. Acutely lethal levels of cadmium,
copper, and zinc to adult male coho salmon and steelhead. Trans. Am. Fish.
Soc. 107: 837 .
Chapman, G.A., et al. Manuscript. Effects of water hardness on the toxicity of
metals to Daphnia magna. U.S. EPA, Corvallis, Oregon.
159
-------
Chapman, P.M., et al. 1982. Relative tolerances of selected aquatic
oligochaetes to individual pollutants and environmental factors. Aquat.
Toxicol. 2: 47.
Chapman, W.H., et al. 1968. Concentration factors of chemical elements in
edible aquatic organisms. UCRL-50564. National Technical Information Service,
Springfield, Virginia.
Charpentier, S., J. Garnier and R. Flaugnatti. 1987. Toxicity and
bioaccumulation of cadmium in experimental cultures of duckweed, Lemna
polyrrhiza L. Bull. Environ. Contam. Toxicol. 38: 1055-1061.
Chattopadhyay, S. K. Anam and A.K. Aditya. 1995. Bioassay evaluation of acute
toxicity levels of mercuric chloride and cadmium chloride on the early growing
stages of Labeo rohita. J. Ecobiol. 7(1): 41-47.
Chawla, G., J. Singh and P.N. Viswanathan. 1991. Effect of pH and temperature
on the uptake of cadmium by Lemna minor L. Bull. Environ. Contam. Toxicol. 47:
84-90.
Chen, C.Y., K.C. Lin and D.T. Yang. 1997. Comparison of the relative toxicity
relationships based on batch and continuous algal toxicity tests. Chemosphere.
35(9): 1959-1965.
Cheung, C.C.C. and P.K.S. Lam. 1998. Effect of cadmium on the embryos and
juveniles of a tropical freshwater snail, Physa acuta (Draparnaud, 1805).
Water Sci. Tech. 38(7): 263-270.
Chitguppa, R., K.H. Chu and M.A. Hashim. 1997. Reusability of seaweed
biosorbent in multiple cycles of cadmium adsorption and desorption. Biotech.
Techniques 11(6): 371-373.
Chou, C.L. and J.F. Uthe. 1991. Effect of starvation on trace metal levels in
blue mussels (Mytilus edulis). Bull. Environ. Contam. Toxicol. 46: 473-478.
Chou, C.L., J.F. Uthe, J.D. Castell and J.C. Kean. 1987. Effect of dietary
cadmium on growth, survival, and tissue concentrations of cadmium, zinc,
160
-------
copper, and silver in juvenile american lobster (Homarus americanus). Can. J.
Fish. Aquat. Sci. 44: 1443-1450.
Christoffers, D. and D.E.W. Ernst. 1983. The in-vivo fluorescence of Chlorella
fusca as a biological test for the inhibition of photosynthesis. Toxicol.
Environ. Chem. 7: 61-71.
Clausen, P.S., P. Bjerregaard and M.H. Depledge. 1993. Passive and active
cadmium uptake in the isolated gills of the shore crab, Carcinus maenas (L.).
Chemosphere. 26(12): 2209-2219.
Clubb, R.W., et al. 1975. Acute cadmium toxicity studies upon nine species of
aquatic insects. Environ. Res. 9: 332.
Collard, J.M. and R.F. Matagne. 1994. Cd2+ resistance in wild-type and mutant
strains of Chlamydomonas reinhardtii. Environ. Exp. Bot. 34(2) : 235-244.
Collyard, S.A., G.T. Ankley, R.A. Hoke and T. Goldenstein. 1994. Influence of
age on the relative sensitivity of Hyalella azteca to diazinon, alkylphenol
ethoxylates, copper, cadmium, and zinc. Arch. Environ. Contam. Toxicol. 26:
110-113.
Conway, H.L. 1978. Sorption of arsenic and cadmium and their effects on
growth, micronutrient utilization, and photosynthetic pigment composition of
Asterionella formosa. Jour. Fish. Res. Board Can. 35: 286.
Cope, W.G., J.G. Wiener and G.J. Atchison. 1994. Hepatic cadmium, metal-
binding proteins and bioaccumulation in bluegills exposed to aqueous cadmium.
Environmental Toxicology and Chemistry. 13(4): 553-562.
Coppellotti, 0. 1994. Effects of cadmium on Uronema marinum (ciliophora,
scuticociliatida) from Antarctica. Acta Protozool. 33: 159-167.
Couillard, Y., P. Ross and B. Rinel-Alloul. 1989. Acute toxicity of six metals
to the rotifer Brachionus calyciflorus, with comparisons to other freshwaer
organisms. Toxic. Assess. 4(4): 451-462.
161
-------
Craig, A., L. Hare, P.M. Charest and A. Tessier. 1998. Effect of exposure
regime on the internal distribution of cadmium in Chironomus staegeri larvae
(insecta, diptera). Aquat. Toxicol. 41: 265-275.
Craig, A., L. Hare and A. Tessier. 1999. Experimental evidence for cadmium
uptake via calcium channels in the aquatic insect Chironomus staegeri. Aquat.
Toxicol. 44: 255-262.
Cripe, G.M. 1994. Comparative acute toxicities of several pesticides and
metals to Mysidopsis bahia and postlarval Penaeus duorarum. Environmental
Toxicology and Chemistry. 13(11): 1867-1872.
Crisinel, A., L. Delaunay, D. Rossel, J. Tarradellas, H. Meyer, H. Saiah, P.
Vogel, C. Delisle and C. Blaise. 1994. Cyst-based ecotoxicological tests using
anostracans: comparison of two species of Streptocephalus. Environ. Toxicol.
Water Qual. 9(4): 317-326.
Currie, R.S., D.C.G. Muir, W.L. Fairchild, M.H. Holoka and R.E. Hecky. 1998.
Influence of nutrient additions on cadmium bioaccumulation by aquatic
invertebrates in littoral enclosures. Environ. Toxicol. Chem. 17(12): 2435-
2443.
Cusimano, R.F., D.F. Brakke and G.A. Chapman. 1986. Effects of pH on the
toxicities of cadmium, copper, and zinc to steelhead trout (Salmo gairdneri).
Can. J. Fish. Aquat. Sci. 43: 1497-1503.
D'Agostino, A. and C. Finney. 1974. The effect of copper and cadmium on the
development of Tigriopus japonicus. In: F.J. Vernberg and W.B. Vernberg
(eds.), Pollution and Physiology of Marine Organisms. Academic Press, New
York. p. 445.
D'Aniello, A., M. Pischetola, F. Vanacore, M. De Nicola and M. Denuce. 1990.
Effect of mercury, cadmium and copper on the development and viability of
Loligo vulgaris and Sepia officinalis embryos. Ital. J. Biochem. 39(2): 130A-
132A (ABS).
162
-------
Dallinger, R. , E. Carpene, G.J. Dalla Via and P. Cortesi. 1989. Effects of
cadmium on Murex trunculus from the Adriatic Sea. I. Accumulation of metal and
binding to a metallothionein-like protein. Arch. Environ. Contam. Toxicol. 18:
554-561.
Dallinger, R., M. Egg, G. Kock and R. Hofer. 1997. The role of metallothionein
in cadmium accumulation of Arctic char (Salvelinus alpinus) from high alpine
lakes. Aquat. Toxicol. 38: 47-66.
Darmono, D. 1990. Uptake of cadmium and nickel in banana prawn (Penaeus
merguiensis de Man). Bull. Environ. Contam. Toxicol. 45: 320-328.
Darmono, G.R.W. Denton, R.S.F. Campbell. 1990. The pathology of cadmium and
nickel toxicity in the banana shrimp (Penaeus merguiensis de Man). Asian Fish.
Sci. 3(3): 287-297.
Datta, D.K and Sinha. 1987. Estimation of acute toxicity of cadmium, a heavy
metal, in a carnivorous freshwater teleost, Mystus vittatus (Bloch). In: Proc.
Indian Natl. Sci. Acad. Part B 53(1) : 43-45.
Dave, G., et al. 1981. Toxicity of eight solvent extraction chemicals and of
cadmium to water fleas, Daphnia magna, rainbow trout, Salmo gairdneri, and
zebrafish, Brachydanio rerio. Comp. Biochem. Physiol. 69C: 83.
Davies, I.M., et al. 1981. Field and experimental studies on cadmium in the
edible crab Cancer pagurus. Mar. Biol. 64: 291.
Davies, N.A., M.G. Taylor and K. Simkiss. 1997. The influence of particle
surface characteristics on pollutant metal uptake by cells. Environ. Pollut.
96(2) : 179-184 .
Davies, P.H. 1976. Use of dialysis tubing in defining the toxic fractions of
heavy metals in natural water. In: R.W. Andrew, et al. (eds.), Toxicity to
Biota of Metal Forms in Natural Water. International Joint Commission,
Windsor, Ontario, p. 110.
163
-------
Davies, P.H. and W.C. Gorman. 1987. Effects of chemical equilibria and
kinetics on the bioavailability and toxicity of cadmium to rainbow trout. Am.
Chem. Soc. Natl. Meeting. 194: 646-650.
Davies, P.H., W.C. Gorman, C.A. Carlson and S.F. Brinkman. 1993. Effect of
hardness on bioavailability and toxicity of cadmium to rainbow trout. Chemical
Speciation and Bioavailability. 5(2): 67-77.
Davies, R.W., R.N. Singhal and D.D. Wicklum. 1995. Changes in reproductive
potential of the leech Nephelopsis obscura (Erpobdellidae) as biomarkers for
cadmium stress. Can. J. Zool. 73: 2192-2196.
Dawson, M.A., et al. 1977. Physiological response of juvenile striped bass,
Morone saxatilis, to low levels of cadmium and mercury. Chesapeake Sci. 18:
353.
De Conto Cinier, C., M. Petit-Ramel, R. Faure and D. Garin. 1997. Cadmium
bioaccumulation in carp (Cyprinus carpio) tissues during long-term high
exposure: analysis by inductively coupled plasma-mass spectrometry.
Ecotoxicology and Environmental Safety. 38: 137-143.
De Conto Cinier, C, M. Petit-Ramel, R. Faure and M. Bortolato. 1998. Cadmium
accumulation and metallothionein biosynthesis in Cyprinus carpio tissues.
Bull. Environ. Contam. Toxicol. 61: 793-799.
De Lisle, P.F. and M.H. Roberts, Jr. 1988. The effect of salinity on cadmium
toxicity to the estuarine mysid Mysidopsis bahia: role of chemical speciation.
Aquatic Toxicology. 12: 357-370.
De Lisle, P.F. and M.H. Roberts, Jr. 1994. The effect of salinity on cadmium
toxicity in the estuarine mysid Mysidopsis bahia: roles of osmoregulation and
calcium. Marine Environmental Research. 37: 47-62.
De March, B.G.E. 1988. Acute toxicity of binary mixtures of five cations
(Cu 2+, Cd 2+, Zn2+, Mg2+, and K+) to the freshwater amphipod Gammarus lacustris
(Sars): alternative descriptive models. Can. J. Fish. Aquat. Sci. 45: 625-633.
164
-------
De Nicola Giudici, M. and S.M. Guarino. 1989. Effects of chronic exposure to
cadmium or copper on Idothea baltica (crustacea, isopoda). Mar. Pollut. Bull.
20(2): 69-73.
De Nicloa Guidici, M. and L. Migliore. 1988. Long term effect of cadmium of
copper on Asellus aquaticus (L.) (Crustacea, isopoda). Verh.- Int. Ver. Theor.
Angew. Limnol. 23: 1660-1662.
De Nicola, M., N. Cardellicchio, C. Gambardella, S.M. Guarino and C. Marra.
1993. Effects of cadmium on survival, bioaccumulation, histopathology, and PGM
polymorphism in the marine isopod Idotea baltica. Ecotoxicol. Met. Invert.
Proc. Sess. 1993. 1st Meet.: 103-116.
Debelak, R.W. 1975. Acute toxicity of mixtures of copper, chromium, and
cadmium to Daphnia magna. Thesis. Miami University, Oxford, Ohio.
Decho, A.W. and S.N. Luoma. 1994. Humic and fulvic acids: ink or source in the
availability of metals to the marine bivalves Macoma balthica and
Potamocorbula amurensis? Mar. Ecol. Prog. Ser. 108: 133-145.
DeFilippis, L.F., et al. 1981. The effects of sublethal concentrations of
zinc, cadmium and mercury on Euglena. II. respiration, photosynthesis and
photochemical activities. Arch. Microbiol. 128: 407.
Del Ramo, J, J. Diaz-Mayans, A Torreblanca and A Nunez. 1987. Effects of
temperature on the acute toxicity of heavy metals (Cr, Cd, and Hg) to the
freshwater crayfish, Procambarus clarkii (Girard). Bull. Environ. Contam.
Toxicol. 38: 736-741.
Demon, A., M. De Bruin and H. TH. Wolterbeek. 1988. The influence of pH on
trace element uptake by an alga (Scenedesmus pannonicus subsp. Berlin) and
fungus (Aureobasidium pullulans). Environ. Monit. Assess. 10-2: 165-173.
Demon, A., M. De Bruin and H. TH. Wolterbeek. 1989. The influence of pre-
treatment, temperature and calcium ions on trace element uptake by an alga
(Scenedesmus pannonicus subsp. Berlin) and fungus (Aureobasidium pullulans).
Environ. Monit. Assess. 13: 21-33.
165
-------
Den Besten, P.J., H.J. Herwig, D.I. Zandee and P.A. Voogt. 1989. Effects of
cadmium and PCBs on reproduction of the sea star Asterias rubens: aberrations
in the early development. Ecotoxicol. Environ. Safety. 18(2): 173-180.
Den Besten, P.J., E.G. van Donselaar, H.J. Herwig, D.I. Zandee and P.A. Voogt.
1991. Effects of cadmium on gametogenesis in the sea star Asterias rubens L.
Aquat. Toxicol. 20: 83-94.
Denton, G.R.W. and C. Burdon-Jones. 1981. Influence of temperature and
salinity on the uptake, distribution, and depuration of mercury, cadmium, and
lead by the black-lip oyster Saccostrea echinata. Mar. Biol. 64: 317.
Denton, G.R.W. and C. Burdon-Jones. 1986. Environmental effects on toxicity of
heavy metals to two species of tropical marine fish from northern Australia.
Chem. Ecol. 2: 233-249.
Department of the Environment. 1973. Water Pollution Research 1972. London,
p. 37 .
Devi, M., D.A. Thomas, J.T. Barber and M. Fingerman. 1996. Accumulation and
physiological and biochemical effects of cadmium in a simple aquatic food
chain. Ecotoxicology and Environmental Safety. 33: 38-43.
Devi, V.U. 1987. Heavy metal toxicity to fiddler crabs, Uca annulipes
Latreille and Uca triangularis (Milne Edwards): tolerance to copper, mercury,
cadmium, and zinc. Bull. Environ. Contam. Toxicol. 39: 1020-1027.
Devi, V.U. 1996. Bioaccumulation and metabolic effects of cadmium on marine
fouling dressinid bivalve, Mytilopsis sallei (Recluz). Arch. Environ. Contam.
Toxicol. 31: 47-53.
Devi, V.U. and Y.P. Rao. 1989. Cadmium accumulation in fiddler crabs Uca
annulipes latelle and Uca triangularis (Milne Edwards). Water, Air, Soil
Pollut. 43: 309-321.
Devi Prasad, P.V. and P.S. Devi Prasad. 1982. Effect of cadmium, lead and
nickel on three freshwater green algae. Water Air Soil Pollut. 17: 263.
166
-------
Devineau, J. and C.A. Triquet. 1985. Patterns of bioaccumulation of an
essential trace element (zinc) and a pollutant metal (cadmium) in larvae of
the prawn Palaemon serratus. Mar. Biol. 86: 139-143.
Di Giulio, R.T. and R.F. Scanlon. 1984. Sublethal effects of cadmium ingestion
on mallard ducks. Arch. Environ. Contam. Toxicol. 13: 7 65.
Diamond, J.M., D.E. Koplish, J. McMahon III and R. Rost. 1997. Evaluation of
the water-effect ratio procedure for metals in a riverine system.
Environmental Toxicology and Chemistry. 16(3): 509-520.
Dickson, G.W., et al. 1982. The effect of chronic cadmium exposure on
phosphoadenylate concentrations and adenylate energy charge of gills and
dorsal muscle tissue of crayfish. Environ. Toxicol. Chem. 1: 147.
Dierickx, P.J. and E. Bredael-Rozen. 1996. Correlation between the in vitro
cytotoxicity of inorganic metal compounds to cultured fathead minnow fish
cells and the toxicity to Daphnia magna. Bull. Environ. Contam. Toxicol. 57:
107-110.
Dillon, T.M. and B.C. Suedel. 1986. The relationship between cadmium
bioaccumulation and survival, growth, and reproduction in the freshwater
crustacean, Daphnia magna. Environ. Contam., 2nd Conf., CEP Consult.,
Edinburgh, U.K.: 21-23.
Dinnel, P.A., J.M. Link, Q.J. Stober, M.W. Letourneau and W.E. Roberts. 1989.
Comparative sensitivity of sea urchin sperm bioassays to metals and
pesticides. Arch. Environ. Contam. Toxicol. 18: 748-755.
Dive, D., S. Robert, E. Angrand, C. Bel, H. Bonnemain, L. Brun, Y. Demarque,
A. Le Du, R. El Bouhouti, M.N. Fourmaux, L. Guery, 0. Hanssens and M. Murat.
1989. A bioassay using the measurement of the growth inhibition of a ciliate
protozoan: Colpidium campylum Stokes. Hydrobiologia. 188/189: 181-188.
Dixon, W.J. and M.B. Brown, eds. 1979. BMDP Biomedical Computer Programs, P-
series. University of California, Berkeley, California, p. 521.
167
-------
Domal-Kwiatkowska, D., B. Sosak-Swiderska, U. Mazurek and D. Tyrawska. 1994.
The effect of cadmium on the survival and filtering rate of Daphnia Magna,
Straus 1820. Pol. Arch. Hydrobiol. 41(4) : 465-473.
Dorfman, D. 1977. Tolerance of Fundulus heteroclitus to different metals in
salt waters. Bull. New Jersey Acad. Sci. 22: 21.
Dorgelo, J., H. Meester and C. van Velzen. 1995. Effects of diet and heavy
metals on growth rate and fertility in the deposit-feeding snail Potamopyrgus
jenkinsi (Smith) (gastropoda: hydrobiidae). Hydrobiol. 316: 199-210.
Douben, P.E.T. 1989. Uptake and elimination of waterborne cadmium by the fish
Noemacheilus barbatulus L. (Stone Loach). Arch. Environ. Contam. Toxicol. 18:
576-586.
Drbal, K., K. Veber and J. Zahradnik. 1985. Toxicity and accumulation of
copper and cadmium in the alga Scenedesmus obliquus LH. Bull. Environ. Contam.
Toxicol. 34: 904-908.
Dressing, et al. 1982. Effect of chemical speciation on the accumulation of
cadmium by the caddis fly, Hydropsyche sp. Bull. Environ. Contam. Toxicol. 28:
172 .
Drummond, R.A. and D.A. Benoit. Manuscript. Toxicity of cadmium to fish: some
observations on the influence of experimental procedures. U.S. EPA, Duluth,
Minnesota.
Duncan, D.A. and J.F. Klaverkamp. 1983. Tolerance and resistance to cadmium in
white suckers (Catostomus commersoni) previously exposed to cadmium, mercury,
zinc, or selenium. Can. Jour. Fish. Aquat. Sci. 40: 128.
Duquesne, S.J. and J.C. Coll. 1995. Metal accumulation in the clam Tridacna
crocea under natural and experimental conditions. Aquat. Toxicol. 32: 239-253.
Dyer, S.D., S.E. Belanger and G.J. Carr. 1997. An initial evaluation of the
use of Euro/North American fish species for tropical effects assessments.
Chemosphere. 35(11): 2767-2781.
168
-------
Eaton, J.G. 1974. Chronic cadmium toxicity to the bluegill (Lepomis macro-
chirus Rafinesque). Trans. Am. Fish. Soc. 4: 729.
Eaton, J.G. 1980. Memorandum to C.E. Stephan. U.S. EPA, Duluth, Minnesota.
August 5.
Eaton, J.G., et al. 1978. Metal toxicity to embryos and larvae of seven
freshwater fish species-I. cadmium. Bull. Environ. Contam. Toxicol. 19: 95.
Eisler, R. 1971. Cadmium poisoning in Fundulus heteroclitus (Pisces:
Cyprinodontidae) and other marine organisms. Jour. Fish. Res. Board Can. 28:
1225.
Eisler, R. 1974. Radio cadmium exchange with seawater by Fundulus heteroclitus
(L.) (Pisces: Cyprinodontidae). Jour. Fish Biol. 6: 601.
Eisler, R. 1977. Acute toxicities of selected heavy metals to the soft-shell
clam, Mya arenaria. Bull. Environ. Contam. Toxicol. 17: 137.
Eisler, R. 1981. Trace Metal Concentrations in Marine Organisms. Pergamon
Press, New York.
Eisler, R. and G.R. Gardner. 1973. Acute toxicology to an estuarine teleost of
mixtures of cadmium, copper, and zinc salts. Jour. Fish Biol. 5: 131.
Eisler, R. and R. Hennekey. 1977. Acute toxicities of Cd+2, Cr+6, Hg+2, Ni+2, and
Zn+2 to estuarine macrofauna. Arch. Environ. Contam. Toxicol. 6: 315.
Eisler, R., et al. 1972. Cadmium uptake by marine organisms. Jour. Fish. Res.
Board Can. 29: 1367.
Eisler, R., et al. 1979. Fourth annotated bibliography on biological effects
of metals in aquatic environments. EPA-600/3-7 9-084. National Technical
Information Service, Springfield, Virginia.
169
-------
Elliott, N.G., R. Swain and D.A. Ritz. 1985. The influence of cyclic exposure
on the accumulation of heavy metals by Mytilus edulis planulatus (Lamarck).
Mar. Environ. Res. 15: 17-30.
Elliott, N.G., R. Swain and D.A. Ritz. 1986. Metal interaction during
accumulation by the mussel Mytilus edulis planulatus. Mar. Biol. 395-399.
Elnabarawy, M.T., A.N. Welter and R.R. Robideau. 1986. Relative sensitivity of
three daphnid species to selected organic and inorganic chemicals.
Environmental Toxicology and Chemistry. 5: 393-398.
Engel, D.W. 1999. Accumulation and cytosolic partitioning of metals in the
american oyster Crassostrea virginica. Mar. Environ. Res. 47: 89-102.
Enserink, L., W. Luttmer and H. Maas-Diepeveen. 1990. Reproductive strategy of
Daphnia magna affects the sensitivity of its progeny in acute toxicity tests.
Aquatic Toxicology. 17: 15-26.
Enserink, E.L., J.L. Maas-Diepeveen and C.J. Van Leeuwen. 1991. Combined
effects of metals; an ecotoxicological evaluation. Water Res. 25(6): 679-687.
Enserink, L., M. De la Haye and H. Maas. 1993. Reproductive strategy of
Daphnia magna: implications for chronic toxicity test. Aquatic Toxicology. 25:
111-124 .
Errecalde, 0. M. Seidl and P.G.C. Campbell. 1998. Influence of a low molecular
weight metabolite (citrate) on the toxicity of cadmium and zinc to the
unicellular green alga Selenastrum capricornutum: and exception to the free-
ion model. Water Res. 32(2): 419-429.
Everaarts, J.M. 1990. Uptake and release of cadmium in various organs of the
common mussel, Mytilus edulis (L.). Bull. Environ. Contam. Toxicol. 45: 560-
567 .
Evtushenko, Z.S., N.N. Belcheva, O.N. Lukyanova. 1986. Cadmium accumulation in
organs of the scallop Mizuhopecten yessoensis - I. activities of phosphatases
and composition and amount of lipids. Comp. Biochem. Physiol. 83C: 371-376.
170
-------
Evtushenko, Z.S., O.N. Lukyanova, N.N. Belcheva. 1990. Cadmium bioaccumulatio
in organs of the scallop Mizuhopecten yessoensis. Mar. Biol. 104: 247-250.
Fair, P.A. and L.V. Sick. 1983. Accumulations of naphthalene and cadmium afte
simultaneous ingestion by the Black Sea Bass, Centropristis striata. Arch.
Environ. Contam. Toxicol. 12: 551.
Faraday. W.E. and A.C. Churchill. 1979. Uptake of cadmium by the eelgrass
Zostera marina. Mar. Biol. 53: 293.
Farag, A.M., C.J. Boese, D.F. Woodward and H.L. Bergman. 1994. Physiological
changes and tissue metal accumulation in rainbow trout exposed to foodborne
and waterborne metals. Environ. Toxicol. Chem. 13(12): 2021-2029.
Farag, A.M., D.F. Woodward, J.N. Goldstein, W. Brumbaugh and J.S. Meyer. 1998
Concentrations of metals associated with mining waste in sediments, biofilm,
benthic macroinvertebrates, and fish from the Coeur d'Alene River basin,
Idaho. Arch. Environ. Contam. Toxicol. 34: 19-127.
Fargasova, A. 1993. Effect of five toxic metals on the alga Scenedesmus
quadricauda. Biologia, Bratislava. 48(3): 301-304.
Fargasova, A. 1994a. Toxicity of metals on Daphnia magna and Tubifex tubifex.
Ecotoxicology and Environmental Safety. 27: 210-213.
Fargasova, A. 1994b. Comparative toxicity of five metals on various biologica
subjects. Bull. Environ. Contam. Toxicol. 53: 317-324.
Fennikoh, K.B., et al. 1978. Cadmium toxicity in planktonic organisms of a
freshwater food web. Environ. Res. 15: 357.
Fernandez-Leborans, G. and M.T. Antonio-Garcia. 1988. Effects of lead and
cadmium in a community of protozoans. Acta Protozool. 27(2): 141-159.
171
-------
Fernandez-Leborans, G. and A. Novillo-Villajos. 1993. Changes in trophic
structure of a freshwater protozoan community subjected to cadmium.
Ecotoxicology and Environmental Safety. 25: 271-279.
Fernandez-Leborans, G. and A. Novillo. 1996. Toxicity and bioaccumulation of
cadmium in Olisthodiscus Leteus. Wat. Res. 30(1): 57-62.
Fernandez-Pinas, F, P. Mateo and I. Bonilla. 1995. Cadmium toxicity in Nostoc
UAM208: protection by calcium. New Phytol. 131: 403-407.
Ferrari, L, A. Salibian and C.V. Muino. 1993. Selective protection of
temperature against cadmium acute toxicity to Bufo arenarum tadpoles. Bull.
Environ. Contam. Toxicol. 50: 212-218.
Findlay, D.L., S.E.M. Kasian, and E.U. Schindler. 1996. Long-term effects of
low cadmium concentrations on a natural phytoplankton community. Can. J. Fish.
Aquat. Sci. 53: 1903-1912.
Finlayson, B.J. and K.M. Verrue. 1982. Toxicities of copper, zinc, and cadmium
mixtures to juvenile chinook salmon. Trans. Am. Fish. Soc. Ill: 645.
Fisher, N.S. and J.G. Fabris. 1982. Complexation of Cu, Zn and Cd by
metabolites excreted from marine diatoms. Mar. Chem. 11: 245.
Fisher, N.F. and G.J. Jones. 1981. Heavy metals and marine phytoplankton:
correlation of toxicity and sulfhydryl-binding. Jour. Phycol. 17: 108.
Fisher, N.S., J.L. Teyssie, S.W. Fowler and W.X. Wang. 1996. Accumulation and
retention of metals in mussels from food and water: a comparison under field
and laboratory conditions. Environ. Sci. Technol. 30(11): 3232-3242.
Florence, T.M., G.M. Morrison and J.L. Stauber. 1992. Determination of trace
element speciation and the role of speciation in aquatic toxicity. Sci. Total
Environ. 125: 1-13.
Forbes, V.E. 1991. Response of Hydrobia ventrosa (Montagu) to environmental
stress: effects of salinity fluctuations and cadmium exposure on growth.
Funet. Ecol. 5(5): 642-648.
172
-------
Forget, J., J.F. Pavilion, M.R. Menasria and G. Bocquene. 1998. Mortality and
LC50 values for several stages of the marine copepod Tigriopus brevicornis
(Muller) exposed to the metals arsenic and cadmium and the pesticides
atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicol. Environ. Safety.
40: 239-244.
Foster, P.L. 1982. Metal resistances of chlorophyta from rivers polluted by
heavy metals. Freshwater Biol. 12: 41.
Francesconi, D.A. 1989. Distribution of cadmium in the pearl oyster, Pinctada
albina albina (Lamarck), following exposure to cadmium in seawater. Bull.
Environ. Contam. Toxicol. 43: 321-328.
Francesconi, K.A., E.J. Moore, J.S. Edmonds. 1994. Cadmium uptake from
seawater and food by the western rock lobster Panulirus cygnus. Bull. Environ.
Contam. Toxicol. 53: 219-223.
Frank, P.M. and P.B. Robertson. 1979. The influence of salinity on toxicity of
cadmium and chromium to the blue crab, Callinectes sapidus. Bull. Environ.
Contam. Toxicol. 21: 74.
Frazier, J.M. 1979. Bioaccumulation of cadmium in marine organisms. Environ.
Health Perspect. 28: 75.
Frazier, J.M. and S.G. George. 1983. Cadmium kinetics in oyster - a
comparative study of Crassostrea gigas and Ostrea edulis. Mar. Biol. 76: 55.
Freeman, B.J. 1978. Accumulation of cadmium, chromium, and lead by bluegill
sunfish (Lepomis macrochirus Rafinesque) under temperature and oxygen stress.
SRO-757-6. National Technical Information Service, Springfield, Virginia.
Freeman, B.J. 1980. Accumulation of cadmium, chromium, and lead by bluegill
sunfish (Lepomis macrochirus Rafinesque) under temperature and oxygen stress.
Thesis. University of Georgia, Athens, Georgia.
Gadkari, A.S. and V.B. Marathe. 1983. Toxicity of cadmium and lead to a fish
and a snail from two different habitats. IAWPC Tech. Annual. X: 141-148.
173
-------
Gaikwad, S.A. 1989. Effects of mixture and three individual heavy metals on
susceptibility of three fresh water fishes. Poll. Res. 8(1): 33-35.
Galic, M., L. Sipos and B. Raspor. 1987. Toxicity of cadmium and
nitrilotriacetic acid in sea water to the photobacteria Vibrio fisheri. Sci.
Total Environ. 60: 173-184.
Gargiulo, G., P. De Girolamo, L. Ferrara, 0. Soppelsa, G. Andreozzi, R.
Antonucci and P. Battaglini. 1996. Action of cadmium on the gills of Carassius
auratus L. In the presence of catabolic NH3. Arch. Environ. Contam. Toxicol.
30: 235-240.
Garofano, J.S. 1979. The effects of cadmium on the peripheral blood and head
kidney of the brown bullhead Ictalurus nebulosus (Lesueur). Thesis. New York
University.
Gaur, J.P., N. Noraho, Y.S. Chauhan. 1994. Relationship between heavy metal
accumulation and toxicity in Spirodela polyrhiza (L.) Schleid. and Azolla
pinnata R. Br. Aquat. Bot. 49(2/3) : 183-192.
Gentile, J.H. and M. Johnson. 1982. Memorandum to John H. Gentile. U.S. EPA,
Narragansett, Rhode Island.
Gentile, S.M. 1982. Memorandum to John H. Gentile. U.S. EPA, Narragansett,
Rhode Island.
Gentile, S.M., et al. 1982. Chronic effects of cadmium on two species of mysid
shrimp: Mysidopsis bahia and Mysidopsis bigelowi. Hydrobiologia 93: 195.
George, S.G. and T.L. Coombs. 1977. The effects of chelating agents on the
uptake and accumulation of cadmium by Mytilus edulis. Mar. Biol. 39: 261.
George, S.G., B.J.S. Pirie and J.M. Frazier. 1983. Effects of cadmium exposure
on metal-containing amoebocytes of the oyster Ostrea edulis. Mar. Biol. 76:
63-66.
Gerhardt, A. 1992. Acute toxicity of Cd in stream invertebrates in relation to
pH and test design. Hydrobiologia. 239: 93-100.
174
-------
Gerhardt, A. 1995. Joint and single toxicity of Cd and Fe related to metal
uptake in the mayfly Leptophlebia marginata (L.) (Insecta). Hydrobiologia.
306: 229-240.
Ghosh, A.R. and P. Chakrabarti. 1990. Toxicity of arsenic and cadmium to a
freshwater fish. Environ. Ecol. 8(2): 576-579.
Ghosh, T.K., J.P. Kotangale and K.P. Krishnamoorthi. 1990. Toxicity of
selective metals to freshwater algae, ciliated protozoa and planktonic
crustaceans. Environmental and Ecology. 8 (1):356-360.]
Giesy, J.P., Jr. 1978. Cadmium inhibition of leaf decomposition in an aquati
microcosm. Chemosphere 6: 467.
Giesy, J.P., Jr., et al. 1977. Effects of naturally occurring aquatic organi
fractions on cadmium toxicity to Simocephalus serrulatus (Daphnidae) and
Gambusia affinis (Poeciliidae). Water Res. 11: 1013.
Giesy, J.P., Jr., et al. 1979. Fate and biological effects of cadmium
introduced into channel microcosms. EPA-600/3-7 9-039. National Technical
Information Service, Springfield, Virginia.
Giles, M.A. 1988. Accumulation of cadmium by rainbow trout, Salmo gairdneri,
during extended exposure. Can. J. Fish. Aquat. Sci. 45: 1045-1053.
Gill, T.S. and A. Epple. 1992. Impact of cadmium on the mummichog Fundulus
heteroclitus and the role of calcium in suppressing heavy metal toxicity.
Comp. Biochem. Physiol. 101C(3): 519-523.
Gillespie, R. , et al. 1977. Cadmium uptake by the crayfish, Orconectes
propinquus propinquus (Girard). Environ. Res. 13: 364.
Glubokov, A.I. 1990. Growth of three species of fish during early ontogeny
under normal and toxic conditions. Voprosy Ikhtiologii. 30(1): 137-143.
Glynn, A.W. 1996. The concentration dependency of branchial intracellular
cadmium distribution and influx in the zebrafish (Brachydanio rerio) . Aquat.
Toxicol. 35: 47-58.
175
-------
Glynn, A.W., C. Haux and C. Hogstrand. 1992. Chronic toxicity and metabolism
of Cd and Zn in juvenile minnows (Phoxinus phoxinus) exposed to a Cd and Zn
mixture. Can. J. Fish. Aquat. Sci. 49: 2070-2079.
Glynn, A.W., L. Norrgren, A. Mussener. 1994. Differences in uptake of
inorganic mercury and cadmium in the gills of the zebrafish, Brachydanio
rerio. Aquatic Toxicol. 30: 13-26.
Gomot, A. 1997. Dose-Dependent effects of cadmium on the growth of snails in
toxicity bioassays. Arch. Environ. Contam. Toxicol. 33: 209-216.
Gomot, A. 1998. Toxic effects of cadmium on reproduction, development, and
hatching in the freshwater snail Lymnaea stagnalis for water quality
monitoring. Ecotoxicol. Environ. Safety. 41: 288-297.
Gopal, V. and K.M. Devi. 1991. Influence of nutritional status on the median
tolerance limits (LC50) of Ophiocephalus striatus for certain heavy metal and
pesticide toxicants. Indian. J. Environ. Health. 33: 393-394.
Gordon, M., et al. 1980. Mytilus californianus as a bioindicator of trace
metal pollution: variability and statistical considerations. Mar. Pollut.
Bull. 11: 195.
Gorman, W.C. Jr. and R.K. Skogerboe. 1987. Speciation of cadmium in natural
waters and their effect on rainbow trout. Preprint extended abstract,
presented before the Division of Environ. Chem., Am. Chem. Soc. , Aug. 30 -
Sept. 4, 1987. New Orleans, La: 664-645.
Gossiaux, D.C., P.F. Landrum and V.N. Tsymbal. 1992. Response of the amphipod
Diporeia spp. To various stressors: cadmium, salinity, and temperature. J.
Great Lakes Res. 18(3): 364-371.
Gottofrey, J. and H. Tjalve. 1991. Axonal transport of cadmium in the
olfactory nerve of the pike. Pharmacol. Toxicol. 19: 242-252.
Gottofrey, J., I. Bjorklund and H. Tjalve. 1986. Effect of sodium
isopropylxanthate, potassium amylxanthate and sodium diethyldithiocarbamate or
176
-------
the uptake and distribution of cadmium in the brown trout (Salmo trutta) .
Aquat. Toxicol. 12: 171-184.
Gould, E. and J. Karolus. 1974. Physiological response of the cunner,
Tautogolabrus adspersus, to cadmium. Observations on the biochemistry. NOAA
Technical Report SSRF-681, Part V.
Gould, E., et al. 1976. Heart transaminase in the rock crab, Cancer irroratus,
exposed to cadmium salts. Bull. Environ. Contam. Toxicol. 15: 635.
Govindarajan, S., C.P. Valsaraj, R. Mohan, V. Hariprasad and R.
Ramasubramanian. 1993. Toxicity of heavy metals in aquaculture organisms:
Penaeus indicus, Perna viridis, Artemia salina and Skeletonema costatum.
Pollut. Res. 12(3): 187-189.
Graney, R.L., Jr., et al. 1983. Heavy metal indicator potential of the Asiatic
clam (Corbicula fluminea) in artificial stream systems. Hydrobiologia 102: 81.
Graney, R.L., Jr., D.S. Cherry and J. Cairns Jr. 1984. The influence of
substrate, pH, diet and temperature upon cadmium accumulation in the asiatic
clam (Corbicula fluminea) in laboratory artificial streams. Water Res. 18:
833-842 .
Green, A.S., G.T. Chandler and E.R. Blood. 1993. Aqueous-, pore-water-, and
sediment-phase cadmium: toxicity relationships for a meiobenthic copepod.
Environmental Toxicology and Chemistry. 12: 1497-1506.
Green, D.W.J., K.A. Williams and D. Pascoe. 1986. The acute and chronic
toxicity of cadmium to different life history stages of the freshwater
crustacean Asellus aquaticus (L). Arch. Environ. Contam. Toxicol. 15(5): 465-
471.
Greenwood, J.G. and D.R. Fielder. 1983. Acute toxicity of zinc and cadmium to
zoeae of three species of portnid crabs (Crustacea: Brachyura). Comp. Biochem.
Physiol. 75C: 141.
Greig, R.A. 1979. Trace metal uptake by three species of mollusks. Bull.
Environ. Contam. Toxicol. 22: 643.
177
-------
Greig, R.A. and D.R. Wenzloff. 1978. Metal accumulation and depuration by the
american oyster, Crassostrea virginica. Bull. Environ. Contam. Toxicol. 20:
499.
Guanzon, N.G., Jr., H. Nakahara and Y. Yoshida. 1994. Inhibitory effects of
heavy metals on growth and photosynthesis of three freshwater microalgae.
Fish. Sci. 60 (4) : 379-384.
Guerin, J.L. and W.B. Stickle. 1995. Effects of cadmium on survival,
osmoregulatory ability and bioenergetics of juvenile blue crabs Callinectes
sapidus at different salinities. Marine Environmental Research. 40(3) : 227-
246.
Guerin, C., N. Giani and M. Sire. 1994. A study of the sensitivity of
Enchytraeus variatus (Oligochaeta, Enchytraeidae) to certain salts of heavy
metals in relation to its use as a test organism. Ann. Limnol. 30(3) : 167-178.
Guilhermino, L., M.C. Lopes, A.P. Carvalho and A.M.V.M. Soares. 1996.
Inhibition of acetylcholinesterase activity as effect criterion in acute tests
with juvenile Daphnia magna. Chemosphere. 32(4): 727-738.
Guilhermino, L., T.C. Diamantino, R. Ribeiro, F. Goncalves and A.M.V.M.
Soares. 1997. Suitability of test media containing EDTA for the evaluation of
acute metal toxicity to Daphnia magna Straus. Ecotoxicology and Environmental
Safety. 38: 292-295.
Gully, J.R. and A.Z. Mason. 1993. Cytosolic redistribution and enhanced
accumulation of Cu in gill tissue of Littorina littorea as a result of Cd
exposure. Mar. Environ. Res. 35: 53-57.
Gupta, A.K. and V.K. Rajbanshi. 1991. Toxicity of copper and cadmium to
Heteropneustes fossilis (Bloch) Acta Hydrochim. Hydrobiol. 19(3): 331-340.
Gupta, M. and S. Devi. 1995. Uptake and toxicity of cadmium in aquatic ferns.
J. Environ. Biol. 16(2): 131-136.
178
-------
Gupta, M., S. Devi and J. Singh. 1992. Effects of long-term low-dose exposure
to cadmium during the entire life cycle of Ceratopteris thalictroides, a water
fern. Arch. Environ. Contam. Toxicol. 23(2): 184-189.
Hader, D.P., M. Lebert, H. Tahedl and P. Richter. 1997. The Erlanger
flagellate test (EFT): photosynthetic flagellates in biological dosimeters. J.
Photochem. Photobiol, B: Biol. 40: 23-28.
Haines, T.A. and W.G. Brumaugh. 1994. Metal concentration in the gill,
gastrointestinal tract, and carcass of white suckers (Catostomus commersoni)
in relation to lake acidity. Water, Air, Soil Pollut. 73: 265-274.
Hale, J.G. 1977. Toxicity of metal mining wastes. Bull. Environ. Contam.
Toxicol. 17: 66.
Hall, L.W., Jr., L.O. Horseman and S. Zeger. 1984. Effects of organic and
inorganic chemical contaminants on fertilization, hatching success, and
prolarval survival of striped bass. Arch. Environ. Contam. Toxicol. 13: 723-
729.
Hall, W.S., R.L. Paulson, L.W. Hall, Jr. and D.T. Burton. 1986. Acute toxicity
of cadmium and sodium pentachlorophenate to daphnids and fish. Bull. Environ.
Contam. Toxicol. 37: 308-316.
Hall, L.W., Jr., W.S. Hall, S.J. Bushong and R.L. Herman. 1987. In situ
striped bass (Morone saxatilis) contaminant and water quality studies in the
Potomac River. Aquat. Toxicol. 19: 73-99.
Hall, L.W., Jr., S.J. Bushong, M.C. Ziegenfuss, W.S. Hall and R.L. Herman.
1988. Concurrent mobile on-site and in situ striped bass contaminant and water
quality studies in the Choptank River and upper Chesapeake Bay. Environ.
Toxicol. Chem. 7: 815-830.
Hall. L.W., Jr., M.C. Ziegenfuss, R.D. Anderson and B.L. Lewis. 1995. The
effect of salinity on the acute toxicity of total and free cadmium to a
Chesapeake Bay copepod and fish. Mar. Pollut. Bull. 30(6): 376-384.
179
-------
Ham, L., R. Quinn and D. Pascoe. 1995. Effects of cadmium on the predator-prey
interaction between the Turbellarian Dendrocoelum lacteum (Muller, 1774) and
the isopod crustacean Asellus aquaticus (L.). Arch. Environ. Contam. Toxicol.
29: 358-365.
Hamilton, S.J. and K.J. Buhl. 1990. Safety assessment of selected inorganic
elements to fry of chinook salmon (Oncorhynchus tshawytscha). Ecotoxicology
and Environmental Safety. 20: 307-324.
Handy, R.D. 1993. The effect of acute exposure to dietary Cd and Cu organ
toxicant concentrations in rainbow trout, Oncorhynchus mykiss. Aquat. Toxicol.
27: 1-14.
Hansen, I.V., J.M. Weeks and M.H. Depledge. 1995 Accumulation of copper, zinc,
cadmium and chromium by the marine sponge Halichondria panicea Pallas and the
implications for biomonitoring. Mar. Pollut. Bull. 31(3-1) : 133-138.
Hansten, C., M. Heino and K. Pynnonen. 1996. Viability of glochidia of
Anodonta anatina (Unionidae) exposed to selected metals and chelating agents.
Aquat. Toxicol. 34: 1-12.
Hardy, J.K. and D.H. O'Keeffe. 1985. Cadmium uptake by the water hyacinth:
effects of root mass, solution volume, complexers and other metal ions.
Chemosphere. 14(5): 417-426.
Hardy, J.K. and N.B. Raber. 1985. Zinc uptake by the water hyacinth: effect of
solution factors. Chemosphere. 14(9): 1155-1166.
Hare, L. 1992. Aquatic insects and trace metals: bioavailability,
bioaccumulation, and toxicity. Critic. Rev. Toxicol. 22(5/6): 327-369.
Hare, L, E. Saouter, P.G.C. Campbell, A. Tessier, F. Ribeyre and A. Boudou.
1991. Dynamics of cadmium, lead, and zinc exchange between nymphs of the
burrowing mayfly Hexagenia rigida (Ephemeroptera) and the environment. Can. J.
Fish. Aquat. Sci. 48: 39-47.
180
-------
Hare, L., R. Carignan and MA. Huerta-Diaz. 1994. A field study of metal
toxicity and accumulation by benthic invertebrates; implications for the acid-
volatile sulfide (AVS) model. Limnol. Oceanogr. 39(7) : 1653-1668.
Haritonidis, S., J.W. Rijstenbil, P. Malea, J. van Drie and J.A. Wijnholds.
1994. Trace metal interactions in the macroalga Enteromorpha prolifera (O.F.
Muller) J. Ag., grown in water of the Scheldt estuary (Belgium and SW
Netherlands), in response to cadmium exposure. BioMetals. 7: 61-66.
Harrison, S.E. and J.F. Klaverkamp. 1989. Uptake, elimination and tissue
distribution of dietary and aqueous cadmium by rainbow trout (Salmo gairdneri
Richardson) and lake whitefish (Coregonus clupeaformis Mitchell).
Environmental Toxicology and Chemistry. 8: 87-97.
Hart, B.A. and B.D. Schaife. 1977. Toxicity and bioaccumulation of cadmium in
Chlorella pyrenoidosa. Environ. Res. 14: 401.
Hartwell, S.I. 1997. Demonstration of a toxicological risk ranking method to
correlate measures of ambient toxicity and fish community diversity. Environ.
Toxicol. Chem. 16(2): 361-371.
Harvey, R.W. and S.N. Luoma. 1985. Separation of solute and particulate
vectors of heavy metal uptake in controlled suspension-feeding experiments
with Macoma balthica. Hydrobiologia. 21: 97-102.
Hashim, M.A., K.H. Chu, S.M. Phang and G.S. Ong. 1997. Adsorption equilibria
of cadmium on algal biomass. Adsorpt. Sci. Technol. 15(6) : 445-453.
Hatakeyama, S. 1987. Chronic effects of Cd on reproduction of Polypedilum
nubifer (chironomidae) through water and food. Environ. Pollut. 48: 249-261.
Hatakeyama, S. and M. Yasuno. 1981a. The effects of cadmium-accumulated
chlorella on the reproduction of Moina macrocopa (Cladocera). Ecotoxicol.
Environ. Safety 5: 341.
Hatakeyama, S. and M. Yasuno. 1981b. Effects of cadmium on the periodicity of
parturation and brook size of Moina macrocopa (Cladocera). Environ. Pollut.
(Series A) 26: 111.
181
-------
Haynes, G.J., A.J. Stewart and B.C. Harvey. 1989. Gender-dependent problems in
toxicity tests with Ceriodaphnia dubia. Bull. Environ. Contam Toxicol. 43:
271-279.
Hazen, R.E. and T.J. Kneip. 1980. Biogeochemical cycling of cadmium in a marsh
ecosystem. In: J.O. Nriagu (ed.), Cadmium in the Environment, Part I. Wiley,
New York. p. 399.
Heinis, F., K.R. Timmermans and W.R. Swain. 1990. Short-term sublethal effects
of cadmium on the filter feeding chironomid larva Glyptotendipes pallens
(Meigen) (Diptera). Aquatic Toxicology. 16: 73-86.
Hendriks, J.A. 1995. Modelling equilibrium concentrations of microcontaminants
in organisms of the Rhine delta: Can average field residues in the aquatic
foodchain be predicted from laboratory accumulation? Aquat. Toxicol. 31: 1-25.
Herkovits, J. and C.S. Perez-Coll. 1993. Stage-dependent susceptibility of
Bufo arenarum embryos to cadmium. Bull. Environ. Contam. Toxicol. 50: 608-611.
Herkovits, J. and C.S. Perez-Coll. 1995. Increased resistance against cadmium
toxicity by means of pretreatment with low cadmium-zinc concentrations in Bufo
arenarum embryos. Biol. Trace Elem. Res. 49: 171-175.
Herkovits, J., P. Cardellini, C. Pavanati and C.S. Perez-Coll. 1997.
Susceptibility of early life stages of Xenopus laevis to cadmium.
Environmental Toxicology and Chemistry. 16(2): 312-316.
Herkovits, J., P. Cardellini, C. Pavanati and C.S. Perez-Coll. 1998. Cadmium
uptake and bioaccumulation in Xenopus laevis embryos at different
developmental stages. Ecotoxicology and Environmental Safety. 39: 21-26.
Herwig, H.J., F. Brands, E. Kruitwagen and D.I. Zandee. 1989. Bioaccumulation
and histochemical localization of cadmium in Dreissena polymorpha exposed to
cadmium chloride. Aquat. Toxicol. 15: 269-286.
Heumann, H.G. 1987. Effects of heavy metals on growth and ultrastructure of
Chara vulgaris. Protoplasma. 136: 37-48.
182
-------
Hickey, C.W. and W.H. Clements. 1998. Effects of heavy metals on benthic
macroinvertebrate communities in New Zealand streams. Environ. Toxicol. Chem.
17(11): 2338-2346.
Hickey, C.W. and M.L. Martin. 1995. Relative sensitivity of five benthic
invertebrate species to reference toxicants and resin-acid contaminated
sediments. Environ. Toxicol. Chem. 14(8): 1401-1409.
Hickey, C.W. and D.S. Roper. 1992. Acute toxicity of cadmium to two species of
infaunal marine amphipods (tube-dwelling and burrowing) from New Zealand.
Bull. Environ. Contam. Toxicol. 49: 165-170.
Hickey, C.W. and M.L. Vickers. 1992. Comparison of the sensitivity to heavy
metals and pentachlorophenol of the mayflies Deleatidium spp. and the
cladoceran Daphnia magna. New Zealand Journal of Marine and Freshwater
Research. 26: 87-93.
Hilmy, A.M., M.B. Shabana and A.Y. Daabees. 1985. Bioaccumulation of cadmium:
toxicity in Mugil cephalus. Comp. Biochem. Physiol. 81(1): 139-143.
Hiraoka, Y. 1985. Acute toxicity of 14 different kinds of metals affecting
medaka (Oryzias latipes) fry. Hiroshima J. Med. Sci. 34: 327-30.
Hockett, J. R and D.R. Mount. 1996. Use of metal chelating agents to
differentiate among sources of acute aquatic toxicity. Environ. Toxicol. Chem.
15: 1687-1693.
Hofslagare, 0., G. Samuelsson and S. Sjoberg. 1985. Cadmium effects on
photosynthesis and nitrate assimilation in Scenedesmus obliquus. A
potentiometric study in an open C02-system. Environ. Exp. Bot. 25(1) : 75-82.
Hogstrand, C., L. Goran and C. Haux. 1991. The importance of metallothionein
for the accumulation of copper, zinc and cadmium in environmentally exposed
perch, Perca fluviatilis. Pharmacol. Toxicol. 68: 492-501.
Holcombe, G.W., et al. 1983. Toxicity of selected priority pollutants to
various aquatic organisms. Ecotoxicol. Environ. Safety 7: 400.
183
-------
Holcombe, G.W., et al. 1984. Methods for conducting snail (Aplexa hypnorum)
embryo through adult exposures: effects of cadmium and reduced pH levels.
Arch. Environ. Contam. Toxicol. 13: 627.
Hollibaugh, D.L., et al. 1980. A comparison of the acute toxicities of ten
heavy metals to the plankton from Sasnick Inlet, B.C., Canada. Estuarine
Coastal Mar. Sci. 10: 93.
Hollis, L, K. Burnison and R.C. Playle. 1996. Does the age of metal-dissolved
organic carbon complexes influence binding of metals to fish gills? Aquat.
Toxicol. 35: 253-264.
Hollis, L., L. Muench and R.C. Playle. 1997. Influence of dissolved organic
matter on copper binding, and calcium on cadmium binding, by gills of rainbow
trout. J. Fish Biol. 50: 703-720.
Hong, J.S. and D.J. Reish. 1987. Acute
marine amphipod and isopod crustaceans
Environ. Contam. Toxicol. 39: 884-888.
toxicity of cadmium to eight species of
from southern California. Bull.
Hooten, R.L. and R.S. Carr. 1997. Development and application of a marine
sediment pore-water toxicity test using Ulva fasciata zoospores. Environ.
Toxicol. Chem. 17(5): 932-940.
Hornstrom, E. 1990. Toxicity test with algae - a discussion on the batch
method. Ecotoxicol. Environ. Safety. 20: 343-353.
Hu, S., C.H. Tang and M. Wu. 1996. Cadmium accumulation by several seaweeds.
Sci. Total Environ. 187: 65-71.
Huebert, D.B. and J.M. Shay. 1991. The effect of cadmium and its interaction
with external calcium in the submerged aquatic macrophyte Lemna trisulca L.
Aquat. Toxicol. 20: 57-72.
Huebert, D.B. and J.M. Shay. 1992. Zinc toxicity and its interaction with
cadmium in the submerged aquatic macrophyte Lemna trisulca L. Environ.
Toxicol. Chem. 11: 715-720.
184
-------
Huebert, D.B. and J.M. Shay. 1993. The response of Lemna trisulca L. To
cadmium. Environ. Pollut. 80: 247-253.
Huebert, D.B., B.S. Dyck and J.M. Shay. 1993. The effect of EDTA on the
assessment of Cu toxicity in the submerged aquatic macrophyte, Lemna trisulca
L. Aquat. Toxicol. 24: 183-194.
Huebner, J.D. and K.S. Pynnonen. 1992. Viability of glochidia of two species
of Anodonta exposed to low pH and selected metals. Can. J. Zool. 70: 2348-
2355.
Hughes, G.M., et al. 1979. A morphometric study of effects of nickel, chromium
and cadmium on the secondary lamellae of rainbow trout gills. Water Res. 13:
665.
Hughes, J.S. 1973. Acute toxicity to thirty chemicals to striped bass (Morone
saxatilis) . Western Assoc. State Game Fish Comm., Salt Lake City, Utah. July.
Hung, Y. 1982. Effects of temperature and chelating agents on cadmium uptake
in the American oyster. Bull. Environ. Contam. Toxicol. 28: 546.
Husaini, Y., A.K. Singh and L.C. Rai. 1991. Cadmium toxicity to photosynthesis
and associated electron transport system of Nostoc linckia. Bull. Environ.
Contam. Toxicol. 46: 146-150.
Hutcheson, M.S. 1975. The effects of temperature and salinity on cadmium
uptake by the blue crab, Callinectes sapidus. Chesapeake Sci. 15: 237.
Hutchinson, T.C. and H. Czyrska. 1972. Cadmium and zinc toxicity and synergism
to floating aquatic plants. In: Water Pollution Research in Canada 1972.
Proc. 7th Canadian Symp. Water Pollut. Res., Inst. Environ. Sci. Eng. Publ.
No. EI-3. p. 59.
Hutchinson, T.C. and P.M. Stokes. 1975. Heavy metal toxicity and algal
bioassays. In: S. Barabos (ed.), Water Quality Parameters. ASTM STP 573.
American Society for Testing and Materials, Philadelphia, Pennsylvania, p.
320.
185
-------
Hutchinson, T.H., T.D. Williams and G.J. Eales. 1994. Toxicity of cadmium,
hexavalent chromium and copper to marine fish larvae (Cyprinodon variegatus)
and copepods (Tisbe battagliai) . Marine Environmental Research. 38: 275-290.
Hutton, M. 1983. Sources of cadmium in the environment. Ecotoxicol. Environ.
Saf. 7: 9-24.
Hwang, P.P., S.W. Lin and H.C. Lin. 1995. Different sensitivities to cadmium
in Tilapia larvae (Oreochromis mossambicus; Teleostei). Arch. Environ.
Contam. Toxicol. 29:1-7.
Hylland, K., M. Skold, J.S. Gunnarsson and J. Skei. 1997. Interactions between
eutrophication and contaminants. IV. Effects on sediment-dwelling organisms.
Mar. Pollut. Bull. 33(1-6) : 90-99
Iftode, F, J.J. Curgy, A. Fleury and G. Fryd-Versavel. 1985. Action of a heavy
ion, Cd2+, and the antagonistic effect of Ca2+, on two ciliates Tetrahymena
pyriformis and Euplotes vannus. Acta Protozool. 24(3-4): 273-279.
Ikuta, K. 1987. Cadmium accumulation by a top shell Batillus cornutus. Nippon
Suisan Gakkaishi. 53(7): 1237-1242.
Ilangovan, K., R.O. Canizares-Villanueva, S. Gonzalez Moreno and D. Voltolina.
1998. Effect of cadmium and zinc on respiration and photosynthesis in
suspended and immobilized cultures of Chlorella vulgaris and Scenedesmus
acutus. Bull. Environ. Contam. Toxicol. 60: 936-943.
Ingersoll, C.G. and N. Kemble. 2000. Unpublished. Methods development for
long-term sediment toxicity tests with the amphipod Hyalella azteca and the
midge Chironomus tentans.
Ingersoll, C.G. and R.W. Winner. 1982. Effect on Daphnia pulex (De Geer) of
daily pulse exposures to copper or cadmium. Environ. Toxicol. Chem. 1: 321.
Inza, B., F. Ribeyre and A. Boudou. 1998. Dynamics of cadmium and mercury
compounds (inorganic mercury or methylmercury): uptake and depuration in
186
-------
Corbicula fluminea. Effects of temperature and pH. Aquat. Toxicol. 43: 273-285.
Irato, P. and Piccinni, E. 1996. Effects of cadmium and copper on Astasia
longa: metal uptake and glutathione levels. Acta Protozool. 35: 281-285.
Issa, A.A., R. Abdel-Basset and M.S. Adam. 1995. Abolition of heavy metal
toxicity on Kirchneriella lunaris (Chlorophyta) by calcium. Ann. Bot. 75: 189-
192 .
Jak, R.G., J.L. Maas and M.C.Th. Scholten. 1996. Evaluation of laboratory
derived toxic effect concentrations of a mixture of metals by testing fresh
water plankton communities in enclosure. Water Res. 30(5): 1215-1227.
Jana, S. and S.S. Sahana. 1988. Effects of copper, cadmium and chromium
cations on the freshwater fish Clarias batrachus L. Physiol. Bohemoslov.
37(1) : 79-82 .
Jana, S. and S.S. Sahana. 1989. Sensitivity of the freshwater fishes Clarias
batrachus and Anabas testudineus to heavy metals. Environ. Ecol. 7(2): 265-
270.
Janssen, C.R. and G. Persoone. 1993. Rapid toxicity screening tests for
aquatic biota. I. Methodology and experiments with Daphnia magna. Environ.
Toxicol. Chem. 12:711-717.
Janssen, H.H. and N. Scholz. 1979. Uptake and cellular distribution of cadmium
in Mytilus edulis. Mar. Biol. 55: 133.
Janssen, M.P.M., C. Oosterhoff, G.J.S.M. Heijmans, H. Van der Voet. 1995. The
toxicity of metal salts and the population growth of the Ciliate Colpoda
cucculus. Bull. Environ. Contam. Toxicol. 54: 597-605.
Janssens de Bisthoven, L.G., K.R. Timmerans and F. Ollevier. 1992. The
concentration of cadmium, lead, copper and zinc in Chironomus gr. thummi
larvae (Diptera, chironomidae) with deformed versus normal menta. Hydrobiol.
239: 141-149.
Jaworska, M, A. Gorczyca, J. Sepiol and P. Tomasik. 1997. Effect of metal ions
on the entomopathogenic nematode Heterorhabditis bacteriophora poinar
187
-------
(Nematoda: Heterohabditidae) under laboratory conditions. Water, Air, Soil
Pollut. 93: 157-166.
Jenkins, K.D. and A.Z. Mason. 1988. Relationships between subcellular
distributions of cadmium and perturbations in reproduction in the polychaete
Neanthes arenaceodentata. Aquat. Toxicol. 12: 229-244.
Jenkins, K.D. and B.M. Sanders. 1986. Relationships between free cadmium ion
activity in seawater, cadmium accumulation and subcellular distibution, and
growth in polychaetes. Environ. Health Perspect. 65: 205-210.
Jenner, H.A. and J.P.M. Janssen-mommen. 1993. Duckweed Lemna minor as a tool
for testing toxicity of coal residues and polluted sediments. Arch. Environ.
Contam. Toxicol. 25: 3-11.
Jennings, J.R. and P.S. Rainbow. 1979a. Studies on the uptake of cadmium by
the crab Carcinus maenas in the laboratory. I. Accumulation from seawater and
a food source. Mar. Biol. 50: 131.
Jennings, J.R. and P.S. Rainbow. 1979b. Accumulation of cadmium by Dunaliella
tertiolecta Butcher. Jour. Plankton Res. 1: 67.
Jindal, R. and A. Verma. 1990. Heavy metal toxicity to Daphnia pulex. Indian
J. Environ. Hlth. 32(3): 289-292.
John, J., E.T. Gjessing, M. Grande and B. Salbu. 1987. Influence of aquatic
humus and pH on the uptake and depuration of cadmium by the atlantic salmon
(Salmo salar L.). Sci. Total Environ. 62: 253-265.
Johns, D.M. and D.C. Miller. 1982. The use of bioenergetics to investigate the
mechanisms of pollutant toxicity in crustacean larvae. In: W.B. Vernberg, et
al. (eds.), Physiological Mechanisms of Marine Pollutant Toxicity. Academic
Press, New York. p. 261.
Johnson, M. and J. Gentile. 1979. Acute toxicity of cadmium, copper, and
mercury to larval American lobster (Homarus americanus). Bull. Environ.
Contam. Toxicol. 22: 258.
188
-------
Jones, M.B. 1975. Synergistic effects of salinity, temperature and heavy
metals on mortality and osmoregulation in marine and estuarine isopods
(Crustacea). Mar. Biol. 30: 13.
Jonnalagadda, S.B. and P.V.V.P. Rao. 1993. Toxicity, bioavailability and metal
speciation. Comp. Biochem. Physiol. 106C(3): 585-595.
Jop, K.M. 1991. Concentration of metals in various larval stages of four
Ephemeroptera species. Bull. Environ. Contam. Toxicol. 46: 901-905.
Jop, K.M., A.M. Askew and R.B. Foster. 1995. Development of a water-effect
ratio for copper, cadmium, and lead for the Great Works River in Maine using
Ceriodaphnia dubia and Salvelinus fontinalis. Bull. Environ. Contam. Toxicol.
54: 29-33.
Juchelka, C.M. and T.W. Snell. 1994. Rapid toxicity assessment using rotifer
ingestion rate. Arch. Environ. Contam. Toxicol. 26: 549-554.
Jude, D.J. 1973. Sublethal effects of ammonia and cadmium on growth of green
sunfish. Ph.D. Thesis. Michigan State University.
Kaplan, D, Y.M. Heimer, A Abeliovich, P.B. Goldsbrough. 1995. Cadmium toxicity
and resistance in Chlorella sp. Plant Sci. 109: 129-137.
Karlsson-Norrgren, L. And P. Runn. 1985. Cadmium dynamics in fish: pulse
studies with 109Cd in female zebrafish, Brachydanio rerio. J. Fish Biol. 27:
571-581.
Kapur, K. and N.A. Yadav. 1982. The effects of certain heavy metal salts on
the development of eggs in common carp, Cyprinus carpio var. communis. Acta
Hydrochim. Hydrobiol. 10: 517.
Karez, C.S., S. Bonotto and S. Puiseux-Dao. 1989. Response of the unicellular
giant alga Acetabularia acetabulum to cadmium toxicity and accumulation.
Toxicological and Environmental Chemistry. 19: 223-232.
189
-------
Kasuga, S. 1980. Sexual Differences of medaka, Oryzias latipes in the acute
toxicity test of cadmium. Bull. Jap. Soc. Sci. Fish. 46(9): 1073-1076.
Katti, S.R. and A.G. Sathyanesan. 1985. Chronic effects of lead and cadmium on
the testis of the catfish Clarias batrachus. Environ. Ecol. 3(4): 596-598.
Kay, J., D.G. Thomas, M.W. Brown, A. Cryer, D. Shurben, J.F. deL.G. Solbe and
J.S. Garvey. 1986. Cadmium accumulation and protein binding patterns in
tissues of the rainbow trout, Salmo gairdneri. Environ. Health Perspect. 65:
133-139.
Keduo, C. L. Yumei and H. Lanying. 1987. Effects os six heavy metals on
hatching eggs and survival of larval of marine fish. Oceanol. Limol. Sin.
(Haiyang Yu Huzhao). 18(2): 138-144.
Keenan, S. and M.A. Alikhan. 1991. Comparative study of cadmium and lead
accumulations in Cambarus bartoni (Fab.) (Decapoda, Crustacea) from an acidic
and a neutral lake. Bull. Environ. Contam. Toxicol. 47: 91-96.
Keller, A.E. and S.G. Zam. 1991. The acute toxicity of selected metals to the
freshwater mussel, Anodonta imbecilis. Environ. Toxicol. Chem. 10: 539-546.
Kelly, M.G. and B.A. Whitton. 1989. Interspecific differences in Zn, Cd and Pb
accumulation by freshwater algae and bryophytes. Hydrobiol. 17: 1-11.
Kerfoot, W.B. and S.A. Jacobs. 1976. Cadmium accrual in combined waste-
treatment aquaculture system. Environ. Sci. Technol. 10: 662.
Kessler, E. 1985. An extremely cadmium-sensitive strain of Chlorella.
Experientia. 41: 1621.
Kessler, E. 1986. Limits of growth of five Chlorella species in the presence
of toxic heavy metals. Arch. Hydrobiol. 71(1) : 123-128.
Kettle, W.D. and F. deNoyelles, Jr. 1986. Effects of cadmium stress on the
plankton communities of experimental ponds. Journal of Freshwater Ecology.
3(4): 433-443.
190
-------
Khan, A.T. and J.S. Weis. 1993. Bioaccumulation of heavy metals in two
populations of mummichog (Fundulus heteroclitus) . Bull. Environ. Contam.
Toxicol. 51: 1-5.
Khan, A.T., J.S. Weis and L. D'Andrea. 1988. Studies of cadmium tolerance in
two populations of grass shrimp, Palaemonetes pugio. Bull. Environ. Contam.
Toxicol. 40: 30-34.
Khan, A.T., J.S. Weis and L. D'Andrea. 1989. Bioaccumulation of four heavy
metals in tow populations of grass shrimp, Palaemonetes pugio. Bull. Environ.
Contam. Toxicol. 42: 339-343.
Khan, A.T., J. Barbieri, S. Khan and F. Sweeney. 1992. A new short-term mysid
toxicity test using sexual maturity as an endpoint. Aquatic Toxicology. 23:
97-105.
Khangarot, B.S. 1991. Toxicity of metals to a freshwater tubificid worm,
Tubifex tubifex (Muller). Bull. Environ. Contam. Toxicol. 46: 906-912.
Khangarot, B.S. and P.K. Ray. 1987a. Correlation between heavy metal acute
toxicity values in Daphnia magna and fish. Bull. Environ. Contam. Toxicol. 38:
722-726.
Khangarot, B.S. and P.K. Ray. 1987b. Sensitivity of toad tadpoles, Bufo
melanostictus (Schneider), to heavy metals. Bull. Environ. Contam. Toxicol.
38(3) : 523-527.
Khangarot, B.S. and P.K. Ray. 1989a. Investigation of correlation between
physicochemical properties of metals and their toxicity to the water flea
Daphnia magna Straus. Ecotoxicol. Environ. Safety. 18: 109-120.
Khangarot, B.S. and P.K. Ray. 1989b. Sensitivity of midge larvae of Chironomus
tentans Fabricius (diptera chironomidea) to heavy metals. Bull. Environ.
Contam. Toxicol. 1989. 42: 325-330.
Khangarot, B.S., P.K. Ray and H. Chandra. 1987. Daphnia magna as a model to
assess heavy metal toxicity: comparative assessment with mouse system. Acta
Hydrochim. Hydrobiol. 15(4): 427-432.
191
-------
Khoshmanesh, A., F. Lawson and I.G. Prince. 1996. Cadmium uptake by
unicellular green microalgae. Chem. Eng. J. 62: 81-88.
Khoshmanesh, A., F. Lawson and I.G. Prince. 1997. Cell surface area as a major
parameter in the uptake of cadmium by unicellular green microalgae. Chem. Eng.
J. 65: 13-19.
Khristoforova, N.K., S.M. Gnezdilova and G.A. Vlasova. 1984. Effect of cadmium
on gametogenesis and offspring of the sea urchin Strongylocentrotus
intermedius. Mar. Ecol. Prog. Ser. 17: 9-14.
Kiffney, P.M. and W.H. Clements. 1996. Size-dependent response of
macroinvertebrates to metals in experimental streams. Environ. Toxicol. Chem.
15(8): 1352-1356.
Klass, E., et al. 1974. The effect of cadmium on population growth of the
green alga Scenedesmus quadricauda. Bull. Environ. Contam. Toxicol. 12: 442.
Klaverkamp, J.F. and D.A. Duncan.1987. Acclimation to cadmium toxicity by
white suckers: cadmium binding capacity and metal distribution in gill and
liver cytosol. Environ. Toxicol. Chem. 6: 275-289.
Klerks, P.J. and P.R. Bartholomew. 1991. Cadmium accumulation and
detoxification in a Cd-resistant population of the oligochaete Limnodrilus
hoffmeisteri. Aquat. Toxicol. 19: 97-112.
Klockner, K. 1979. Uptake and accumulation of cadmium by Ophryotrocha diadema
(Polychaeta). Mar. Ecol. Progress Series 1: 71.
Kluttgen, B. and H.T. Ratte. 1994. Effects of different food doses on cadmium
toxicity to Daphnia magna. Environ. Toxicol. Chem. 13(10): 1619-1627.
Kluytmand, J.H., D.I. Zandee and E.L. Enserink. Effects of cadmium on the
reproduction of Mytilus edulis L. University of Utrecht, Department of
Experimental Zoology, 8 Padualan, 3584 CH Utrecht, The Netherlands.
Kneip, T.J. and R.E. Hazen. 1979. Deposit and mobility of cadmium in marsh-
cove ecosystem and the relation to cadmium concentration in biota. Environ.
Health Perspect. 28: 67.
192
-------
Kobayashi, N. 1971. Fertilized sea urchin eggs as an indicator material for
marine pollution bioassay, preliminary experiments. Publ. Seto Mar. Biol. Lab.
18: 379.
Kock, G., R. Hofer and S. Wograth. 1995. Accumulation of trace metals (Cd, Pb,
Cu, Zn) in arctic char (Salvelinus alpinus) from oligotrophic alpine lakes:
relation to alkalinity. Can. J. Fish. Aquat. Sci. 52: 2367-2376.
Koelmans, A.A., F. Gillissen and L. Lijklema. 1996. Influence of salinity and
mineralization on trace metal sorption to cyanobacteria in natural waters.
Water Res. 30(4): 853-864.
Kohler, K. and H.U. Riisgard. 1982. Formation of metallothioneins in relation
to accumulation of cadmium in the common mussel Mytilus edulis. Mar. Biol. 66:
53.
Koivisto, S., M. Arner and N. Kautsky. 1997. Does cadmium pollution change
trophic interactions in rockpool food webs? Environmental Toxicology and
Chemistry. 16(6): 1330-1336.
Kolok, A.S., E.P. Plaisance and A. Abdelghani. 1998. Individual variation in
the swimming performance of fishes: an overlooked source of variation in
toxicity studies. Environ. Toxicol. Chem. 17(2): 282-285.
Kooijman, S.A.L.M. and J.J.M. Bedaux. 1996. Analysis of toxicity tests on
Daphnia survival and reproduction. Water Res. 30(7): 1711-1723.
Kosakowska, A., L. Falkowski and J. Lewandowska. 1988. Effect of amino acids
on the toxicity of heavy metals to phytoplankton. Bull. Environ. Contam.
Toxicol. 40: 532-538.
Koyama, J, R. Kuroshima and A. Ishimatsu. 1992. The seawater fish for
evaluation of the toxicity of pollutants. Mizu Kankyo Gakkaishi. 15(11): 804-
813.
193
-------
Kraak, M.H.S., M. Toussaint, D. Lavy and C. Davids. 1992a. Short-term effects
of metals on the filtration rate of the zebra mussel Dreissena polymorphs.
Environ. Pollut. pp.139-143.
Kraak, M.H.S., D. Lavy, W.H.M. Peeters and C. Davids. 1992b Chronic
ecotoxicity of copper and cadmium to the zebra mussel Dreissena polymorphs.
Arch. Environ. Contam. Toxicol. 23: 363-369.
Kraak, M.H.S., H. Schoon, W.H.M. Peeters and N.M. Van Straalen. 1993a. Chronic
ecotoxicity of mixtures of Cu, Zn, and Cd to the zebra mussel Dreissena
polymorpha. Ecotoxicol. Environ. Safety. 25: 315-327.
Kraak, M.H.S., D. Lavy, M. Toussaint, H. Schoon, W.H.M. Peeters and C. Davids.
1993b. Toxicity of heavy metals to the zebra mussel (Dreissena polymorpha).
In: T.F. Nalepa and D.W. Schloessen (eds.), zebra mussels - biology, impacts,
and control, chapter 29, Lewis Publishers, Boca Raton. 8: 491-502.
Kraak, M.H.S., M. Toussaint, D. Lavy and C. Davids. 1994a. Short-term effects
of metals on the filtration rate of the zebra mussel Dreissena polymorpha.
Environ. Pollut. 84(2): 139-143.
Kraak, M.H.S., D. Lavy, H. Schoon, M. Toussaint, W.H.M. Peeters and N.M. Van
Straalen. 1994b. Ecotoxicity of mixtures of metals to the zebra mussel
Dreissena polymorpha. Environ. Toxicol. Chem. 13: 109-114.
Kraak, M.H.S., Y.A. Wink, S.C. Stuijfzand, M.C. Buckert-de Jong, C.J. de
Groot, W. Admiraal. 1994c. Chronic ecotoxicity of Zn and Pb to the zebra
mussel Dreissena polymorpha. Aquatic Toxicology. 30: 77-89.
Kraal, M.H., M.H.S. Kraak, C.J. De Groot and C. Davids. 1995. Uptake and
tissue distribution of dietary and aqueous cadmium by carp (Cyprinus carpio) .
Ecotoxicol. Environ. Safety. 31: 179-183.
Krantzberg, G. 1989a. Accumulation of essential and nonessential metals by
chironomid larvae in relation to physical and chemical properties of the
elements. Can. J. Fish. Aquat. Sci. 46: 1755-1761.
Krantzberg, G. 1989b. Metal accumulation by chironomid larvae: the effects of
age and body weight on metal body burdens. Hydrobiol. 188/189: 497-506.
194
-------
Krantzberg, G. and P.M. Stokes. 1988. The importance of surface adsorption and
pH in metal accumulation by chironomids. Environ. Toxicol. Chem. 7: 653-67 0.
Krantzberg, G. and P.M. Stokes. 1989. Metal regulation, tolerance, and body
burdens in the larvae of the genus Chironomus. Can. J. Fish. Aquat. Sci. 46:
389-398 .
Krassoi, F.R., M. Julli. 1994. Chemical batch as a factor affecting the acute
toxicity of the reference toxicant potassium dichromate to the cladoceran
Moina australiensis (Sars). Bull. Environ. Contam. Toxicol. 53: 153-157.
Krawczynska, W., N.N. Pivovarova and A. Sobota. 1989. Effects of cadmium on
growth, ultrastructure and content of chemical elements in Tetrahymena
pyriformis and Acanthamoeba castellanii. Acta Protozoologica. 28:(3-4): 245-
252 .
Krishnaja, A.P., M.S. Rege and A.G. Joshi. 1987. Toxic effects of certain
heavy metals (Hg, Cd, Pb, As and Se) on the intertidal crab Scylla serrata.
Environ. Res. 21: 109-119.
Kuhn, R. and M. Pattard. 1990. Results of the harmful effects of water
pollutants to green algae (Scenedesmus subspicatus) in the cell multiplication
inhibition test. Water Res. 24(1): 31-38.
Kuhn, R., M. Pattard, K.D. Pernak and A. Winter. 1989. Results of the harmful
effects of water pollutants to Daphnia magna in the 21 day reproduction test.
Wat. Res. 23(4): 501-510.
Kumada, H., et al. 1973. Acute and chronic toxicity, uptake and retention of
cadmium in freshwater organisms. Bull. Freshwater Fish. Res. Lab. 22: 157.
Kumada, H., et al. 1980. Accumulation and biological effects of cadmium in
rainbow trout. Bull. Jap. Soc. Sci. Fish. 46: 97.
Kumar, M. 1991. Accumulation of Pb, Cd, and Zn in aquatic snails from four
freshwater sites in Steuben County, Indiana. Bios. 62(1) : 2-8.
195
-------
Kuroshima, R. 1987. Cadmium accumulation and it effect on calcium metabolism
in the girella Girella punctata during a long term exposure. Bull. Jpn. Soc.
Sci. Fish. 53 (3) : 445-450.
Kuroshima, R. 1992. Cadmium accumulation in the mummichog, Fundulus
heteroclitus, adapted to various salinities. Bull. Environ. Contam. Toxicol.
49: 680-685.
Kuroshima, R., S. Kimura. 1990. Changes in toxicity of Cd and its accumulation
in girella and goby with their growth. Bull. Jpn. Soc. Sci. Fish. 56(3) : 431-
453.
Kuroshima, R., S. Kimura, K. Date and Y. Yamamoto. 1993. Kinetic analysis of
cadmium toxicity to red sea bream, Pagrus major. Ecotoxicol. Environ. Safety.
25: 300-314.
Kwan, K.H.M. and S. Smith. 1991. Some aspects of the kinetics of cadmium and
thallium uptake by fronds of Lemna minor L. New Phytologist. 117(1): 91-102.
Laegreid, M., et al. 1983. Seasonal variation of cadmium toxicity toward the
alga Selenastrum capricornutum Printz in two lakes with different humus
content. Environ. Sci. Technol. 17: 357.
Lagerwerff, J.V. and A.W. Specht. 1970. Contamination of roadside soil and
vegetation with cadmium, nickel, lead and zinc. Environ. Sci. Technol. 4: 583-
586.
Lalande, M. and B. Pinel-Alloul. 1986. Acute toxicity of cadmium, copper,
mercury and zinc to Tropocyclops Prasinus Mexicanus (Cyclopoida, copepoda)
from three Quebec lakes. Environmental Toxicology and Chemistry. 5:95-102.
Lam, P.K.S. 1996a. Effects of cadmium on the consumption and absorption rates
of a tropical freshwater snail, Radix plicatulus. Chemosphere. 32(11): 2127-
2132 .
Lam, P.K.S. 1996b. Interpopulation differences in acute response of Brotia
hainanensis (gastropoda, prosobranchia) to cadmium: genetic or environmental
variance? Environ. Pollut. 94(1): 1-7.
196
-------
Lam. P.K.S., K.N. Yu, K.P. Ng and M.W.K. Chong. 1997. Cadmium uptake and
depuration in the soft tissues of Brotia hainanensis (gastropoda:
prosobranchia: thiaridae) : a dynamic model. Chemosphere. 35(11) : 2449-2461.
Landner, L. and A. Jernelov. 1969. Cadmium in aquatic systems. Metals and
Ecology Symposium. Bulletin No. 5. Ecology Research Committee, Stockholm,
Sweden. p. 47 .
Langston, W.J. and M. Zhou. 1987. Cadmium accumulation, distribution and
metabolism in the gastropod Littorina littorea: the role of metal-binding
proteins. J. Mar. Biol. Assoc. U.K. 67: 585-601.
Larsen, J. and B. Svensmark. 1991. Labile species of Pb, Zn and Cd determined
by anodic stripping staircase voltammetry and their toxicity to Tetrahymena.
Talanta. 38(9) : 981-988 .
Lasenby, D.C. and J. Van Duyn. 1992. Zinc and cadmium accumulation by the
opossum shrimp Mysis relicta. Arch. Environ. Contam. Toxicol. 23: 179-183.
Lasheen, M.R., S.A. Shehata and G.H. Ali. 1990. Effect of cadmium, copper and
chromium (VI) on the growth of nile water algae. Water, Air, and Soil
Pollution. 50: 19-30.
Laube, V.M., et al. 1980. Strategies of response to copper, cadmium, and lead
by a blue-green and a green alga. Can. Jour. Microbiol. 26: 1300.
Lawrence, S.G. and M.H. Holoka. 1987. Effects of low concentrations of cadmium
on the crustacean zooplankton community of an artificially acidified lake.
Can. J. Fish. Aquat. Sci. 44: 163-172.
Lawrence, S.G. and M.H. Holoka. 1991. Response of crustacean zooplankton
impounded in situ to cadmium at low environmental concentrations. Verh.
Internat. Verein. Limnol. 24: 2254-2259.
LeBlanc, G.A. 1984. Interspecies relationships in acute toxicity of chemicals
to aquatic organisms. Environ. Toxicol. Chem. 3: 47-60.
197
-------
Lee, B.G. and S.N. Luoma. 1998. Influence of microalgal biomass on absorption
efficiency of Cd, Cr, and Zn by two bivalves from San Francisco Bay. Limnol.
Oceanogr. 43(7): 1455-1466.
Lee, H.H. and C.H. Xu. 1984. Differential response of marine organisms to
certain metal and agrichemical pollutants. Bull. Environ. Contam. Toxicol. 33:
460-467 .
Lee, H.L., B. Lustigman, V. Schwinge, I.Y. Chiu and S. Hsu. 1992. Effects of
mercury and cadmium on the growth of Anacystis nidulans. Bull. Environ.
Contam. Toxicol. 49: 272-278.
Lee, J.G. 1995. Cadmium; a toxin and a nutrient for marine phytoplankton.
Environ. Sci. pp.1.
Lee, R. and Y. Oshima. 1998. Effects of selected pesticides, metals and
organometallics on development of blue crab (Callinectes sapidus) embryos.
Mar. Environ. Res. 46(1-5) : 479-482.
Lee, R.F., K. O'Malley and Y. Oshima. 1996. Effects of toxicants on developing
oocytes and embryos of the blue crab, Callinectes sapidus. Marine
Environmental Research. 42(1-4): 125-128.
Lee, S. Ill, E.J. Na, Y.O. Cho, B. Koopman and G. Bitton. 1997. Short-term
toxicity test based on algal uptake by Ceriodaphnia dubia. Water Environment
Research. 69(7): 1207-1210.
Leonhard, S.L., et al. 1980. Evaluation of the acute toxicity of the heavy
metal cadmium to nymphs of the burrowing mayfly, Hexagenia rigida. In: J.F.
Flannagan and K.E. Marshall (eds.), Advances in Ephemeroptera Biology. Plenum
Publishing Corp., New York. p. 457.
Les, A. And R.W. Walter. 1984. Toxicity and binding of copper, zinc and
cadmium by the blue-green alga, Chroococcus paris. Water, Air, Soil Pollut.
23: 129-130.
198
-------
Lewis, P.A. and W.B. Horning II. 1991. Differences in acute toxicity test
results of three reference toxicants on Daphnia at two temperatures.
Environmental Toxicology and Chemistry. 10: 1351-1357.
Lewis, P.A. and C.I. Weber. 1985. A study of the reliability of Daphnia acute
toxicity tests. Aquatic Toxicology and Hazard Assessment: Seventh Symposium.
ASTM STP 854, R.D. Cardwell, R. Purdy and R.C. Bahner (eds.), American Society
for Testing and Materials, Philadelphia, pp. 73-86.
Liao, I.C. and C.S. Hsieh. 1990. Toxicity of three heavy metals to
Macrobrachium rosenbergii. In: Proc. of the 2nd Asian Fisheries Forum, April
17 - 22, 1989, Tokyo, Japan, Asian Fish. Soc., Manila, Philippines: 923-926.
Lin, H.C. and W.A. Dunson. 1993. The effect of salinity on the acute toxicity
of cadmium to the tropical, estuarine, hermaphroditic fish, Rivulus
marmoratus: a comparison of Cd, Cu, and Zn tolerance with Fundulus
heteroclitus. Arch. Environ. Contam. Toxicol. 25: 41-47.
Lithner, G, K. Holm and H. Borg. 1995. Bioconcentration factors for metals in
humic waters at different pH in the Ronnskar area (N. Sweden). Water, Air Soil
Pollut. 85: 785-790.
Lomagin, A.G. and L.V. Ul'yanova. 1993. A new bioassay on water pollution
using duckweed Lemna minor L. Sov. Plant Physiol./Fiziol. Rast. 49(2): 327.
Lorz, H.W., et al. 1978. Effects of several metals on smolting of coho salmon.
EPA-600/3-7 8-090. National Technical Information Service, Springfield,
Virginia.
Loumbourdis, N.S., P. Kyriakopoulou-Sklavounou and G. Zachariadis. 1999.
Effects of cadmium exposure on bioaccumulation and larval growth in the frog
Rana ridibunda. Environ. Pollut. 104: 429-433.
Lourdes, M. 1994. Survival and heavy metal accumulation of two Oreochromis
niloticus (L.) Strains exposed to mixtures of zinc, cadmium and mercury. Sci.
Total Environ. 148: 31-38.
199
-------
Lourdes, M. and E.V. Aralar. 1993. Effects of long-term exposure to a mixture
of cadmium, zinc, and inorganic mercury on two strains of tilapia Oreochromis
niloticus (L.). Bull. Environ. Contam. Toxicol. 50: 891-897.
Lucker, T., D. Busch and W. Wosniok. 1997. Experiments to determine the impact
of salinity on the heavy metal accumulation of Dreissena polymorphs (Pallas
1771). Limnol. 27(10: 91-101.
Lue-Kim, H., et al. 1980. Cadmium toxicity on synchronous populations of
Chlorella ellipsoidea. Can. Jour. Biol. 58: 1780.
Lussier, S.M., W.S. Boothman, S. Poucher, D. Champlin and A. Helmstetten.
1999. Comparison of dissolved and total metals concentrations from acute tests
with saltwater organisms. Environ. Toxicol. Chem. 18(5): 889-898
Lussier, S.M., et al. Manuscript. Acute and chronic effects of heavy metals
and cyanide on Mysidopsis bahia (Crustacea: Mysidacea). U.S. EPA,
Narragansett, Rhode Island.
McCahon, C.P. and D. Pascoe. 1988a. Cadmium toxicity to the freshwater
amphipod Gammarus pulex (L.) During the moult cycle. Freshwater Biol. 19: 197-
203.
McCahon, C.P. and D. Pascoe. 1988b. Increased sensitivity to cadmium of the
freshwater amphipod Gammarus pulex (L.) during the reproductive period. Aquat.
Toxicol. 13: 183-194.
McCahon, C.P. and D. Pascoe. 1988c. Use of Gammarus pulex (L.) In safety
evaluation tests: culture and selection of a sensitive life stage. Ecotoxicol.
Environ. Safety. 15: 245-252.
McCahon, C.P. and D. Pascoe. 1991. Brief-exposure of first and fourth instar
Chironomus riparius larvae to equivalent assumed doses of cadmium: effects on
adult emergence. Water, Air, and Soil Pollution. 60: 395-403.
McCahon, C.P., A.F. Brown and D. Pascoe. 1988. The effect of the
acanthocephalan Pomphorhynchus laevis (Muller 1776) on the acute toxicity of
cadmium to its intermediate host, the amphipod Gammarus pulex (L.). Arch.
Environ. Contam. Toxicol 17: 239-243.
200
-------
McCahon, C.P., A.J. Whiles and D. Pascoe. 1989. The toxicity of cadmium to
different larval instars of the trichopteran larvae Agapetus fuscipes Curtis
and the importance of life cycle information to the design of toxicity tests.
Hydrobiol. 185: 153-162.
McCarty, L.S. and A.H. Houston. 1976. Effects of exposure to sublethal levels
of cadmium upon water-electrolyte status in the goldfish (Carassius auratus) .
Jour. Fish Biol. 9: 11.
McCarty, L.S., et al. 1978. Toxicity of cadmium to goldfish, Carassius
auratus, in hard and soft water. Jour. Fish. Res. Board Can. 35: 35.
McClurg, T.P. 1984. Effects of fluoride, cadmium and mercury on the estuarine
prawn Penaeus indicus. Water SA 10: 40.
McGee, B.L., D.A. Wright and D.J. Fisher. 1998. Biotic factors modifying acute
toxicity of aqueous cadmium to estuarine amphipod Leptocheirus plumulosus.
Arch. Environ. Contam. Toxicol. 34: 34-40.
McLeese, D.W. and S. Ray. 1984. Uptake and excretion of cadmium, CdEDTA, and
zinc by Macoma balthica. Bull. Environ. Contam. Toxicol. 32: 85.
McLeese, D.W. and S. Ray. 1986. Toxicity of CdCl2, CdEDTA, CuCl2, and CuEDTA
to Marine Invertebrates. Bull. Environ. Contam. Toxicol. 36: 749-755.
McLeese, D.W., et al. 1981. Lack of excretion of cadmium from lobsters.
Chemosphere 10: 775.
McNicol, R.E. and E. Scherer. 1993. Influence of cadmium pre-exposure on the
preference-avoidance responses of Lake Whitefish (Coregonus clupeaformis) to
cadmium. Arch. Environ. Contam. Toxicol. 25: 36-40.
McNulty, E.W., F.J. Dwyer, M.R. Ellersieck, E.I. Greer, C.G. Ingersoll and
C.F. Rabeni. 1999. Evaluation of ability of reference toxicity tests to
identify stress in laboratory populations of the amphipod Hyalella azteca.
Environmental Toxicology and Chemistry. 18(3): 544-548.
201
-------
Ma, M., Z. Tong, Z. Wang, W. Zhu. 1999. Acute toxicity bioassay using the
freshwater luminescent bacterium Vibrio-qinghaiensis sp. Nov.-Q67. Bull.
Environ. Contam. Toxicol. 62: 247-253.
Maas, R.P. 1978. A field study of the relationship between heavy metal
concentrations in stream water and selected benthic macroinvertebrate species.
PB 297284. National Technical Information Service, Springfield, Virginia.
Macdonald, C.R. and J.B. Sprague. 1998. Cadmium in marine invertebrates and
arctic cod in the Canadian Arctic. Distibution and ecological implications.
Mar. Ecol. Prog. Ser. 47: 17-30.
Macdonald, J.M., J.D. Shields and R.K. Zimmer-Faust. 1988. Acute toxicities of
eleven metals to early life-history stages of the yellow crab Cancer anthonyi.
Marine Biology. 98: 201-207.
Macfie, S.M., Y. Tarmohamed and P.M. Welbourn. 1994. Effects of cadmium,
cobalt, copper, and nickel on growth of the green alga Chlamydomonas
reinhardtii: the influences of the cell wall and pH. Arch. Environ. Contam.
Toxicol. 27: 454-458.
Maclnnes, J.R., et al. 1977. Long-term cadmium stress in the cunner
Tautogolabrus adspersus. Fish. Bull. 75: 199.
Mackie, G.L. 1989. Tolerances of five benthic invertebrates to hydrogen ions
and metals (Cd, Pb, Al). Arch. Environ. Contam. Toxicol. 18: 215-223.
Madoni, P., D. Davoli and G. Gorbi. 1994. Acute toxicity of lead, chromium,
and other heavy metals to ciliates from activated sludge plants. Bull.
Environ. Contam. Toxicol. 53: 420-425.
Maeda, S., M. Mizoguchi, A. Ohki and J. Inanaga. 1990. A bioaccumulation of
zinc and cadmium in freshwater alga, Chlorella vulgaris. Part II. Association
mode of the metals and cell tissue. Chemosphere. 21(8): 965-973.
Majewski, H.S. and M.A. Giles. 1984. Cardio vascular-respiratory responses of
rainbow trout (Salmo gairdneri) during chronic exposure to sublethal
concentrations of cadmium. Water Res. 15: 1211.
202
-------
Malea, P. 1994. Uptake of cadmium and the effect on viability of leaf cells in
the seagrass Halophila stipulacea (Forsk.) Aschers. Bot. Mar. 37: 67-73.
Malley, D.F. and P.S.S. Chang. 1991. Early observations on the zooplankton
community of a precambrian shield lake receiving experimental additions of
cadmium. Verh.-Int. Ver. Theor. Angew. Limnol. 24: 2248-2253.
Malley, D.F., P.S.S. Chang and R.H. Hesslein. 1989. Whole lake addition of
cadmium-109: radiotracer accumulation in the mussel population in the first
season. The Science of the Total Environment. 87/88: 397-417.
Maloney, J. 1996. Influence of organic enrichment on the partitioning and
bioavailability of cadmium in a microcosm study. Mar. Ecol. Prog. Ser. 144:
147-161.
Mansour, G.M.M. 1993. Effects on fish of cadmium concentrations in water.
Oceanologia. 34: 91.
Manz, W., M. Wagner, R. A. and D.H. Schleifer. In situ characterization of the
microbial consortia active in two wastewater treatment plants. Water Res.
28(8) : 1715-1732 .
Maranhao, P., J.C. Marques and V.M.C. Madeira. 1999. Zinc and cadmium
concentrations in soft tissues of the red swamp crayfish Procambarus clarkii
(Girard, 1852) after exposure to zinc and cadmium. Environ. Toxicol. Chem.
18(8): 1769-1771.
Mark, U. and J. Solbe. 1998. Analysis of the ecetoc aquatic toxicity (EAT)
database V- the relevance of Daphnia magna as a representative test species.
Chemosphere. 36(1): 155-166.
Markham, J.W., et al. 1980. Effects of cadmium on Laminaria saccharina in
culture. Mar. Ecol. Progress Series 3: 31.
Markich, S.J. and R.A. Jeffree. 1994. Absorption of divalent trace metals as
analogues of calcium by Australian freshwater bivalves: an explanation of how
water hardness reduces metal toxicity. Aquat. Toxicol. 29: 257-290.
203
-------
Marr, J.C.A., H.L. Bergman, J. Lipton and C. Hogstrand. 1995a. Differences in
relative sensitivity of naive and metals-acclimated brown and rainbow trout
exposed to metals representative of the Clark Fork River, Montana. Can J.
Aquat. Sci. 52: 2016-2030.
Marr, J.C.A., H.L. Bergman, M. Parker, J. Lipton, D. Cacela, W. Erickson and
G.R Phillips. 1995b. Relative sensitivity of brown and rainbow trout to pulsed
exposures of an acutely lethal mixture of metals typical of the Clark Fork
River, Montana. Can. J. Aquat. Sci. 52: 2005-2015.
Marshall, J.S. 1978a. Population dynamics of Daphnia galeata mendotae as
modified by chronic cadmium stress. Jour. Fish. Res. Board Can. 35: 461.
Marshall, J.S. 1978b. Field verification of cadmium toxicity to laboratory
Daphnia populations. Bull. Environ. Contam. Toxicol. 20: 387.
Marshall, J.S., et al. 1981. An in situ study of cadmium and mercury stress in
the plankton community of lake 382, Experimental Lakes Area, northwestern
Ontario. Can. Jour. Fish. Aquat. Sci. 38: 1209.
Marshall, J.S., et al. 1983. Bioaccumulation and effects of cadmium and zinc
in a Lake Michigan plankton community. Can. Jour. Fish. Aquat. Sci. 40: 1469.
Martin, T.R. and D.M. Holdich. 1986. The acute lethal toxicity of heavy metals
to peracarid crustaceans (with particular reference to fresh-water asellids
and gammarids) . Wat. Res. 20(9) : 1137-1147.
Martin, M., et al. 1981. Toxicities of ten metals to Crassostrea gigas and
Mytilus edulis embryos and Cancer magister larvae. Mar. Pollut. Bull. 12: 305.
Martinez, M., J. Del Ramo, A. Torreblanca, A. Pastor and J. Diaz-Mayans. 1996.
Cadmium toxicity, accumulation and metallothionein induction in Echinogammarus
echinosetosus. J. Environ. Sci. Health. A31(7): 1605-1617.
204
-------
Masters, J.A., M.A. Lewis and D.H. Davidson. 1991. Validation of a four-day
Ceriodaphnia toxicity test and statistical considerations in data analysis.
Environmental Toxicology and Chemistry. 10: 47-55.
Mateo, P., F Fernandez-Pinas and I. Bonilla. 1994. 02-induced inactivation of
nitrogenase as a mechanism for the toxic action of Cd2+ on Nostoc UAM 208. New
Phytologist. 126(2): 267-272.
Mathew, P. and N.R. Menon. 1992. Toxic responses of bivalves to metal
mixtures. Bull. Environ. Contam. Toxicol. 48: 185-193.
Meador, J.P. 1993. The effect of laboratory holding on the toxicity response
of marine infaunal amphipods to cadmium and tributyltin. Exp. Mar. Biol. Ecol.
174: 227-242.
Melgar, M.J., M. Perez, M.A. Garcia, J. Alonso and B. Miguez. 1997.
Accumulation profiles in rainbow trout (Oncorhynchus mykiss) after short-term
exposure to cadmium. J. Environ. Sci. Health. A32(3): 621-631.
Mersch, J., E. Morhain and C. Mouvet. 1993. Laboratory accumulation and
depuration of copper and cadmium in the freshwater mussel Dreissena polymorpha
and the aquatic moss Rhynchostegium riparioides. Chemosphere. 27(8): 1475-
1485.
Mersch, J., P. Wagner and J.C. Pihan. 1996. Copper in indigenous and
transplanted zebra mussels in relation to changing water concentrations and
body weight. Environ. Toxicol. Chem. 15(6): 886-893.
Metayer, C., et al. 1982. Accumulation of some trace metals (cadmium, lead,
copper and zinc) in sole (Solea solea) and flounder (Platichthus flesus):
changes as a function of age and organotropism. Rev. Int. Oceanogr. Med. 66-
67: 33.
Meteyer, M.J., D.A. Wright and F.D. Martin. 1988. Effect of cadmium on early
developmental stages of the sheepshead minnow (Cyprinodon variegatus) .
Environ. Toxicol. Chem. 7:321-328.
205
-------
Meyer, J.S. 1999. A mechanistic explanation for the ln(LC50) vs ln(hardness)
adjustment equation for metals. Environ. Sci. Technol. 33: 908-912.
Michibata, H., S Sahara and M.K. Kojima. 1986. Effects of calcium and
magnesium ions on the toxicity of cadmium to the egg of the teleost, Oryzias
latipes. Environ. Res. 40: 110-114.
Michibata, H., Y. Nojima and M.K. Kojima. 1987. Stage sensitivity of eggs of
the teleost Oryzias latipes to cadmium exposure. Environmental Research. 42:
321-327 .
Middaugh, D.P. and J.M. Dean. 1977. Comparative sensitivity of eggs, larvae
and adults of the estuarine teleosts, Fundulus heteroclitus and Menidia
menidia to cadmium. Bull. Environ. Contam. Toxicol. 17: 645.
Middaugh, D.P. and G. Floyd. 1978. The effect of prehatch and posthatch
exposure to cadmium on salinity tolerance of larval grass shrimp, Palaemonetes
pugio. Estuaries 1: 123.
Middaugh, D.P., et al. 1975. The response of larval fish Leiostomus xanthurus
to environmental stress following sublethal cadmium exposure. Contrib. Mar.
Sci. 19.
Migliore, J. And M. De Nicola Giudici. 1988. Effect of heavy metals (Hg, Cd,
Cu and Fe) on two species of crustacean isopods, Asellus aquaticus (L.) And
Proasellus coxalis Dollf. Verh.-Int. Ver. Theor. Angew. Limnol. 23: 1655-1659.
Ministry of Technology. 1967. Water Pollution Research 1966. London, p. 50
Mirenda, R.J. 1986. Toxicity and accumulation of cadmium in the crayfish,
Orconectes virilis (Hagen). Arch. Environ. Contam. Toxicol. 15: 401-407.
Mirkes, D.Z., et al. 197 8. Effects of cadmium and mercury on the behavioral
responses and development of Eurypanopeus depressus larvae. Mar. Biol. 47:
143.
206
-------
Mizutani, A., E. Ifune, A. Zanella and C. Eriksen. 1991. Uptake of lead,
cadmium and zinc by the fairy shrimp, Branchinecta longiantenna (crustacea:
anostraca). Hydrobiol. 212: 145-149.
Moller, V., V.E. Forbes and M.H. Depledge. 1994. Influence of acclimation and
exposure temperature on the acute toxicity of cadmium to the freshwater snail
Potamopyrgus antipodarum (Hydrobiidae) . Environ. Toxicol. Chem. 13(9) : 1519-
1524 .
Moore, M.N. and A.R.D. Stebbing. 1976. The quantitative cytochemical effects
of three metal ions on a lysosomal hydrolase of a hydroid. Jour. Mar. Biol.
Assoc. U.K. 56: 9 95.
Moraitou-Apostolopoulou, M. and G. Verriopoulos. 1982. Individual and combined
effects of three heavy metals, Cu, Cd and Cr for the marine copepod Tisbe
holothuriae. Hydrobiologia 87: 83.
Moraitou-Apostolopoulou, M., et al. 1979. Effects of sublethal concentrations
of cadmium pollution for two populations of Acartis clausi (Copepoda) living
at two differently polluted areas. Bull. Environ. Contam. Toxicol. 23: 642.
Morgan, W.S.G. 1979. Fish locomotor behavior patterns as a monitoring tool.
Jour. Water Pollut. Control Fed. 51: 580.
Mostafa, L.Y. and Z. Khalil. 1986. Uptake, release and incorporation of radio
active cadmium and mercury by the fresh water alga Phormidium fragile. Isot.
Rad. Res. 18(1): 57-62.
Mount, D.I. and T.J. Norberg. 1984. A seven-day life-cycle cladoceran toxicity
test. Environ. Toxicol. Chem. 3: 425.
Mount, D.R., A.K. Barth, T.D. Garrison, D.A. Barten and J.R. Hockett. 1994.
Dietary and waterborne exposure of rainbow trout (Oncorhynchus mykiss) to
copper, cadmium, lead and zinc using a live diet. Environ. Toxicol. Chem.
13(12): 2031-2041.
Moza, U., S.S. De Solva and B.M. Mitchell. 1995. Effect of sub-lethal
concentrations of cadmium on food intake, growth and digestibility in the gold
fish, Carassius auratus L. J. Environ. Biol. 16(3): 253-264.
207
-------
Muino, C.V., L. Ferrari and A. Salibian. 1990. Protective action of ions
against cadmium toxicity to young Bufo arenarum tadpoles. Bull. Environ.
Contam. Toxicol. 45: 313-319.
Muller, K.W. and H.D. Payer. 1979. The influence of pH on the cadmium-
repressed growth of the alga Coelostrum proboscideum. Physiol. Plant. 45: 415.
Muller, K.W. and H.D. Payer. 1980. The influence of zinc and light conditions
on the cadmium-repressed growth of the green alga Coelostrum proboscideum.
Physiol. Plant. 50: 265.
Munger, C. and L. Hare. 1997. Relative importance of water and food as cadmium
sources to an aquatic insect (Chaoborus punctipennis): implications for
predicting Cd bioaccumulation in nature. Environ. Sci. Technol. 31: 891-895.
Munger, C., et al. 1999. Influence of exposure time on the distribution of
cadmium within the cladoceran Ceriodaphnia dubia. Aquat. Toxicol. 44: 195-200.
Muramoto, S. 1980. Decrease in cadmium concentration in a Cd-contaminated fish
by short-term exposure to EDTA. Bull. Environ. Contam. Toxicol. 25: 828.
Musko, I.B., W. Meinel, R. Krause and M. Barlas. 1990. The impact of Cd and
different pH on the amphipod Gammarus fossarum Koch (Crustacea: amphipoda).
Comp. Biochem. Physiol. 96C(1): 11-16.
Mwangi, S.M. and M.A. Alikhan. 1993. Cadmium and nickel uptake by tissues of
Cambarus bartoni (astacidae, decapoda, Crustacea): effects on copper and zinc
stores. Water Res. 27(5): 921-927.
Nacci, D., E. Jackim and R. Walsh. 1986. Comparative evaluation of three rapid
marine toxicity tests: sea urchin early embryo growth test, sea urchin sperm
cell toxicity test and microtox. Environmental Toxicology and Chemistry. 5:
521-525.
Nagel, K. And J. Voigt. 1995. Impaired photosynthesis in a cadmium-tolerant
Chlamydomonas mutant strain. Microbiol. Res. 150: 105-110.
208
-------
Nakagawa, H. and S. Ishio. 1988. Aspects of accumulation of cadmium ion in the
egg of medaka Oryzias latipes. Bull. Jpn. Soc. Sci. Fish. (JPN)(ENG ABS).
54 (12) : 2159-2164 .
Nakagawa, H. and S. Ishio. 1989. Effects of water hardness on the toxicity and
accumulation of cadmium in eggs and larvae of medaka Oryzias latipes. Bull.
Jpn. Soc. Sci. Fish. (JPN)(ENG ABS). 55(2): 327-331.
Nakano, Y. 1980. Chloroplast replication in Euglena gracilis grown in cadmium
ion containing media. Agric. Biol. Chem. 44: 2733.
Nakano, Y., et al. 1980. Morphological observation of Euglena gracilis grown
in zinc-sufficient media containing cadmium ions. Agric. Biol. Chem. 44: 2305.
Nalecz-Jawecki, G. and J. Sawicki. 1998. Toxicity of inorganic compounds in
the spirotox test: a miniaturized version of the Spirostomum ambiguum test.
Arch. Environ. Contam. Toxicol. 34: 1-5.
Nalecz-Jawecki, G., K. Demkowicz-Dobrzanski and J. Sawicki. 1993. Protozoan
Spirostomum ambiguum as a highly sensitive bioindicator for rapid and easy
determination of water quality. The Science of the Total Environment, pp.
1227-1234 .
Nalewajko, C. 1995. Effects of cadmium and metal-contaminated sediments on
photosynthesis heterotrophy, and phosphate uptake in Mackenzie River delta
phytoplankton. Chemosphere. 30(7): 1401-1414.
Naqvi, S.M. and R.D. Howell. 1993. Toxicity of cadmium and lead to juvenile
red swamp crayfish, Procambarus clarkii, and effects on fecundity of adults.
Bull. Environ. Contam. Toxicol. 51: 303-308.
Nassiri, Y., J. Wery, J.L. Mansot, T. Ginsburger-Vogel. 1997. Cadmium
bioaccumulation in Tetraselmis suecica: and electron energy loss spectroscopy
(EELS) study. Arch. Environ. Contam. Toxicol. 33: 156-161.
Nasu, Y., K. Hirabayashi and M. Kugimoto. 1988. The toxicity of some water
pollutants for lemnaceae (duckweed) plant. Proc. ICMR Semin. 8: 485-491.
209
-------
Nasu, Y., et al. 1983. Comparative studies on the absorption of cadmium and
copper in Lemna paucicostata. Environ. Pollut. (Series A) 32: 201.
Naylor, C. E.J. Cox, M.C. Bradley and P. Calow. 1992. Effect of differing
maternal food ration on susceptibility of Daphnia magna Straus neonates to
toxic substances. Aquat. Toxicol. 24: 75-82.
Nebeker, A.V., M.A. Cairns, S.T. Onjukka and R.H. Titus. 1986a. Effect of age
on sensitivity of Daphnia magna to cadmium, copper and cyanazine. Environ.
Toxicol. Chem. 5: 527-530.
Nebeker, A.V., S.T. Onjukka, M.A. Cairns and D.F. Krawczyk. 1986b. Survival of
Daphnia magna and Hyalella azteca in cadmium-spiked water and sediment.
Environ. Toxicol. Chem. 5: 933-938.
Nebeker, A.V., G.S. Schuytema and S.L. Ott. 1994. Effects of cadmium on limb
regeneration in the northwestern salamander Ambystoma gracile. Arch. Environ.
Contam. Toxicol. 27: 318-322.
Nebeker, A.V., G.S. Schuytema and S.L. Ott. 1995. Effects of cadmium on growth
and bioaccumulation in the northwestern salamander Ambystoma gracile. Arch.
Environ. Contam. Toxicol. 29: 492-499.
Negilski, D.S. 1976. Acute toxicity of zinc, cadmium and chromium to the
marine fishes, yellow-eye mullet (Aldrichetta forsteri C. and V.) and
smallmouth hardy head (Atherinasoma microstoma Whitley). Aust. Jour. Mar.
Freshwater Res. 27: 137.
Nelson, D.A., et al. 1976. Biological effects of heavy metals on juvenile bay
scallops, Argopenten irradians, in short-term exposures. Bull. Environ.
Contam. Toxicol. 16: 275.
Nelson, D.A., J.E. Miller and A. Calabrese. 1988. Effect of heavy metals on
bay scallops, surf clams, and blue mussels in acute and long-term exposures.
Arch. Environ. Contam. Toxicol. 17: 595-600.
210
-------
Nelson, S.M. 1994. Observed field tolerance of caddisfly larvae (Hesperophylax
sp. to fish metal concentrations and low pH. J. Freshwater Ecol. 9(2): 169-170.
Nelson, S.M. and R.A. Roline. 1998. Evaluation of the sensitivity of rapid
toxicity tests relative to daphnid acute lethality tests. Bull. Environ.
Contam. Toxicol. 60: 292-299.
Nendza, M., T. Herbst, C. Kussatz and A. Gies. 1997. Potential for secondary
poisoning and biomagnification in marine organisms. Chemosphere. 35(9): 1875-
1885.
Neter, J. and W. Wasserman. 1974. Applied Linear Statistical Models. Irwin,
Inc., Homewood, Illinois.
Niederlehner, B. 1984. A comparison of techniques for estimating the hazard of
chemicals in the aquatic environment. M.S. thesis. Virginia Polytechnic
Institute and State University.
Niederlehner, B.R., et al. 1985. Laboratory test evaluating the effects of
cadmium on freshwater protozoan communities. Environmental Toxicology and
Chemistry. 4: 155-165.
Nimmo, D.R., et al. 1977a. Mysidopsis bahia: an estuarine species suitable for
life-cycle toxicity tests to determine the effects of a pollutant. In: F.L.
Mayer and J.L. Hamelink (eds.), Aquatic Toxicology and Hazard Evaluation. ASTM
STP 634. American Society for Testing and Materials, Philadelphia,
Pennsylvania, p. 109.
Nimmo, D.R., et al. 1977b. Effects of cadmium on the shrimps Penaeus duorarum,
Palaemonetes pugio, and Palaemonetes vulgaris. In: F.J. Vernberg, et al.
(eds.), Physiological Responses of Marine Biota to Pollutants. Academic Press,
New York. p. 131.
Nir, R., A. Gasith and A.S. Perry. 1990. Cadmium uptake and toxicity to water
hyacinth: effect of repeated exposures under controlled conditions. Bull.
Environ. Contam. Toxicol. 44: 149-157.
211
-------
Noel-Lambot, F., et al. 1980. Cadmium, zinc, and copper accumulation in
limpets (Patella vulgata) from the British channel and special reference to
metallothioneins. Mar. Ecol. Progress Series 2: 81.
Nolan, C.V. and E.J. Duke. 1983. Cadmium accumulation and toxicity in Mytilus
edulis: involvement of metallothioneins and heavy molecular weight protein.
Aquat. Toxicol. 4: 153.
Noraho, N. and J.P. Gaur. 1995. Effect of cations, including heavy metals, on
cadmium uptake by Lemna polyrhiza L. BioMetals. 8: 95-98.
Norey, C.G., M.W. Brown, A. Cryer and J. Kay. 1990a. A comparison of the
accumulation, tissue distribution and secretion of cadmium in different
species of freshwater fish. Comp. Biochem. Physiol. 96C(1): 181-184.
Norey, C.G., A. Cryer and J. Kay. 1990b. Cadmium uptake and sequestration in
the pike (Esox lucius) Comp. Biochem. Physiol. 95C(2): 217-221.
Notenboom, J., K. Cruys, J. Hoekstra and P. Van Beelen. 1992. Effect of
ambient oxygen concentration upon the acute toxicity of chlorophenols and
heavy metals to the groundwater copepod Parastenocaris germanica (crustacea).
Ecotoxicol. Environ. Safe. 24: 131-143.
Nott, J.A. and A. Nicolaidou. 1994. Variable transfer of detoxified metals
from snails to hermit crabs in marine food chains. Mar. Biol. 120: 369-377.
Nugegoda, D. and P.S. Rainbow. 1995. The uptake of dissolved zinc and cadmium
by the decapod crustacean Palaemon elegans. Mar. Pollut. Bull. 31(4-12) : 460-
463.
O'Hara, J. 1973a. The influence of temperature and salinity on the toxicity of
cadmium to the fiddler crab, Uca pugilator. Fish. Bull. 71: 149.
O'Hara, J. 1973b. Cadmium uptake by fiddler crabs exposed to temperature and
salinity stress. Jour. Fish. Res. Board Can. 30: 846.
212
-------
O'Neill, J.G. 1981. Effects of intraperitoneal lead and cadmium on the humoral
immune response of Salmo trutta. Bull. Environ. Contam. Toxicol. 27: 42.
Oakley, S.M., et al. 1983. Accumulation of cadmium by Abarenicola pacifica.
Sci. Total Environ. 28: 105.
Odin, M., F. Ribeyre and A. Boudou. 1996. Temperature and pH effects on
cadmium and methylmercury bioaccumulation by nymphs of the burrowing mayfly
Hexagenia rigida, from water column or sediment source. Arch. Environ. Contam.
Toxicol. 31: 339-349.
Odin, M., F. Ribeyre and A. Boudou. 1997. Depuration processes after exposure
of burrowing mayfly nymphs (Hexagenia rigida) to methylmercury and cadmium
from water column or sediment: effects of temperature and pH. Aquat. Toxicol.
37: 125-137.
Oikari, A., J. Kukkonen and V. Virtanen. 1992. Acute toxicity of chemicals to
Daphnia magna in humic water. Sci. Total Environ. 117/118: 367-377.
Ojaveer, E., et al. 1980. On the effect of copper, cadmium and zinc on the
embryonic development of Baltic spring spawning herring. Finnish Mar. Res.
247: 135.
Okamoto, O.K., C.S. Asano, E. Aidar and P. Colepicolo. 1996. Effects of
cadmium on growth and superoxide dismutase activity of the marine microalga
Tetraselmis gracilis (Prasinophyceae) J. Physiol. 32: 74-79.
Olesen, T.M.E. and J.M. Weeks. 1994. Accumulation of Cd by the marine sponge
Halichondria panicea Pallas: effects upon filtration rate and its relevance
for biomonitoring. Bull. Environ. Contam. Toxicol. 52: 722-728.
Onuoha, G.C., F.O. Nwadukwe and E.S. Erondu. 1996. Comparative toxicity of
cadmium to crustacean zooplankton (copepods and ostracods) Environ. Ecol.
14(3) ; 557-562 .
Oronsaye, J.A.O. 1989. Histological changes in the kidneys and gills of the
stickleback, Gasterosteus aculeatus L, exposed to dissolved cadmium in hard
water. Ecotoxicology and Environmental Safety. 17: 279-290.
213
-------
Outridge, P.M. 1992. Comparing Cd toxicity tests with plants in monocultures
and species mixtures. Bull. Environ. Contam. Toxicol. 48: 344-351.
Palackova, J., D. Pravda, K. Fasaic and 0. Celechovska. 1994. Sublethal
effects of cadmium on carp (Cyprinus carpio) fingerlings. In: R. Muller and R.
Lloyd (eds.), Sublethal and chronic effects of pollutants on freshwater fish,
chapter 5, Fishing News Books, London: 53-61.
Palawski, D., J.B. Hunn and F.J. Dwyer. 1985. Sensitivity of young striped
bass to organic and inorganic contaminants in fresh and saline water. Trans.
Am. Fish. Soc. 114: 748-753.
Pantani, C., G. Pannunzio, M. De Cristofaro, A.A. Novelli and M. Salvatori.
1997. Comparative acute toxicity of some pesticides, metals, and surfactants
to Gammarus italicus Goedm. and Echinogammarus tibaldii Pink, and stock
(crustacea: amphipoda). Bull. Environ. Contam. Toxicol. 59(6): 963-967.
Papathanassiou, E. 1983. Effects of cadmium and mercury ions on respiration
and survival of the common prawn Palaemon serratus (pennant). Rev. Int.
Oceanogr. Med. 72: 21-35.
Papathanassiou, E. 1986. Cadmium Accumulation and ultrastructural alterations
in oogenesis of the prawn Palaemon serratus (pennant). Bull. Environ. Contam.
Toxicol. 36: 192-198.
Papoutsoglou, S.E. and P.D. Abel. 1988. Sublethal toxicity and accumulation of
cadmium in Tilapia aurea. Bull. Environ. Contam. Toxicol. 41: 404-411.
Papoutsoglou, S.E. and D. Abel. 1993. Studies on the lethal and sublethal
effects of cadmium on some commercially cultured species of the Mediterranean.
In: Final Reports on Projects (activity G), UNEP Mediterranean Action Plan,
Athens, Greece. MAP Tech. Rep. Ser. No. 48: 33-43.
Pardue, W.J. and T.S. Wood. 1980. Baseline toxicity data for freshwater bryoza
exposed to copper, cadmium, chromium, and zinc. Jour. Tennessee Acad. Sci. 55:
27 .
Park, E.H., H.H. Chang, W.N. Joo, H.S. Chung and H.S. Kwak. 1994. Assessment
of the estuarine hermaphroditic fish Rivulus marmoratus as a useful euryhaline
214
-------
species for acute toxicity tests as shown using cadmium. Can. J. Fish. Aquat.
Sci. 51: 280-285.
Parker, J.G. 1984. The effects of selected chemicals and water quality on the
marine polychaete Ophryotrocha diadema. Water Res. 18: 865.
Pascoe, D. and P. Cram. 1977. The effect of parasitism on the toxicity of
cadmium to the three-spined stickleback, Gasterosteus aculeatus L. Jour. Fish.
Biol. 10: 467.
Pascoe, D. and D.L. Mattey. 1977. Studies on the toxicity of cadmium to the
three-spined stickleback Gasterosteus aculeatus L. Jour. Fish. Biol. 11: 207.
Pascoe, D. and N.A.M. Shazili. 1986. Episodic pollution - a comparison of
brief and continuous exposure of rainbow trout to cadmium. Ecotoxicol.
Environ. Safety. 12: 189-198.
Pascoe, D., S.A. Evans and J. Woodworth. 1986. Heavy metal toxicity to fish
and the influence of water hardness. Arch. Environ. Contam. Toxicol. 15: 481-
487 .
Pascoe, D., K.A. Williams and D.W.J. Green. 1989. Chronic toxicity of cadmium
to Chironomus riparius Meigen - effects upon larval development and adult
emergence. Hydrobiologia. 175: 109-115.
Pascoe, D., A.F. Brown, B.M.J. Evans and C. McKavanagh. 1990. Effects and fate
of cadmium during toxicity tests with Chironomus riparius - the influence of
food and artificial sediment. Arch. Environ. Contam. Toxicol. 19: 872-877.
Pauli, W. and S. Berger. 1997. Toxicological comparisons of Tetrahymena
species, end points and growth media: supplementary investigations to the
pilot ring test. Chemosphere. 35(5) : 1043-1052.
Pavicic, J., M. Skreblin, I. Kregar, M. Tusek-Znidaric and P. Stegnar. 1994.
Embryo-larval tolerance of Mytilus galloprovincialis, exposed to the elevated
sea water metal concentrations - I. Toxic effects of Cd, Zn and Hg in relation
to the metallothionein level. Comp. Biochem. Physiol. 107C(2): 249-257.
215
-------
Pawlik, B. and T. Skowronski. 1994. Transport and toxicity of cadmium: its
regulation in the cyanobacterium Synechocystis aquatilis. Environ. Exp. Bot.
34(2): 225-233.
Pawlik, B., T. Skowronski, Z. Ramazanow, P. Gardestrom and G. Samuelsson.
1993. pH-dependent cadmium transport inhibits photosynthesis in the
cyanobacterium Synechocystis aquatilis. Environ. Exp. Bot. 33(2): 331-337.
Pecon, J. and E.N. Powell. 1981. Effect of the amino acid histidine on the
uptake of cadmium from the digestive system of the blue crab, Callinectes
sapidus. Bull. Environ. Contam. Toxicol. 27: 34.
Pedersen, F. and G.I. Petersen. 1996. Variability of species sensitivity to
complex mixtures. Water Sci. Tech. 33(6): 109-119.
Pelgrom, S.M.G.J., L.P.M. Lamers, J.A.M. Garritsen, B.M. Pels, R.A.C. Lock,
P.H.M. Balm and S.E.W. Bonga. 1994. Interactions between copper and cadmium
during single and combined exposure in juvenile tilapia Oreochromis
mossambicus: influence of feeding condition on whole body metal accumulation
and the effect of the metals on tissue water and ion content. Aquat. Toxicol.
30: 117-135.
Pelgrom, S.M.G.J., R.A.C. Lock, P.H.M. Balm and S.E.W. Bonga. 1997. Calcium
fluxes in juvenile tilapia, Oreochromis mossambicus, exposed to sublethal
waterborne Cd, Cu or mixtures of these metals. Environ. Toxicol Chem. 16(4):
770-774 .
Pellegrini, M., An. Laugier, M. Sergent., R. Phan-Tan-Luu, R. Vails and L.
Pellegrini. 1993. Interactions between the toxicity of the heavy metals
cadmium, copper, zinc in combinations and the detoxifying role of calcium in
the brown alga Cystoseira barbata. J. Appl. Phycol. 5: 351-361.
Pennington, C.H., et al. 1982. Contaminant levels in fishes from Brown's Lake,
Mississippi. Jour. Mississippi Acad. Sci. 27: 139.
Penttinen, S., J. Kukkonen and A. Oikari. 1995. The kinetics of cadmium in
Daphnia magna as affected by humic substances and water hardness. Ecotoxicol.
Environ. Safety. 30: 72-76.
216
-------
Penttinen, S., A. Kostamo and J.V.K. Kukkonen. 1998. Combined effects of
dissolved organic material and water hardness on toxicity of cadmium to
Daphnia magna. Environ. Toxicol. Chem. 17(12): 2498-2503.
Pereira, J.J., R. Mercaldo-Allen, C. Kuropat, D. Luedke and G. Sennefelder.
1993. Effect of cadmium accumulation on serum vitellogenin levels and
hepatosomatic and gonadosomatic indices of winter flounder (Pleuronectes
americanus). Arch. Environ. Contam. Toxicol. 24: 427-431.
Perez-Coll, C.S. and J. Herkovits. 1996. Stage-dependent uptake of cadmium by
Bufo arenarum embryos. Bull. Environ. Contam. Toxicol. 56: 663-669.
Pesch, G.G. and N.E. Stewart. 1980. Cadmium toxicity to three species of
estuarine invertebrates. Mar. Environ. Res. 3: 145.
Pesonen, M. And T.B. Andersson. 1997. Fish primary hepatocyte culture; and
important model for xenobiotic metabolism and toxicity studies. Aquat.
Toxicol. 37: 253-267.
Peterson, H.G. 1991. Toxicity testing using a chemostat-grown green alga,
Selenastrum capricornutum. In: J.W. Garoch, W.K. Lower, W. Wang and M.A. Lewis
(eds.), Plants for toxic assessment, 2nd Volume, ASTM STP 1115, Philadelphia,
PA: 107-117.
Peterson, H.G., F.P. Healey and R. Wagemann. 1984. Metal toxicity to algae: a
highly pH dependent phenomenon. Can. J. Fish. Aquat. Sci. 41: 974-979.
Peterson, R.H., et al. 1983. Effects of cadmium on yolk utilization, growth,
and survival of atlantic salmon alevins on newly feeding fry. Arch. Environ.
Contam. Toxicol. 12: 37.
Peterson, R.H., J.L. Metcalfe and S. Ray. 1985. Uptake of cadmium by eggs and
alevins of atlantic salmon (Salmo salar) as influenced by acidic conditions.
Bull. Environ. Contam. Toxicol. 34: 359-368.
Phelps, H.L. 197 9. Cadmium sorption in estuarine mud-type sediment and the
accumulation of cadmium in the soft-shell clam, Mya arenaria. Estuaries 2: 40.
217
-------
Phillips, D.J.H. 1976. The common mussel Mytilus edulis as an indicator of
pollution by zinc, cadmium, lead and copper. I. effects of environmental
variables on uptake of metals. Mar. Biol. 38: 59.
Phillips, G.R. and R.C. Russo. 1978. Metal bioaccumulation in fishes and
aquatic invertebrates: a literature review. EPA-600/3-7 8-103. National
Technical Information Service, Springfield, Virginia.
Phipps, G.L. and G.W. Holcombe. 1985. A method for aquatic multiple species
toxicant testing: acute toxicity of 10 chemicals to 5 vertebrates and 2
invertebrates. Environmental Pollution (Series A). 38: 141-157.
Phipps, G.L., V.R. Mattson, G.T. Ankley. 1995. Relative sensitivity of three
freshwater benthic macroinvertebrates to ten contaminants. Arch. Environ.
Contam. Toxicol. 28: 281-286.
Pickering, Q.H. and M.H. Gast. 1972. Acute and chronic toxicity of cadmium to
the fathead minnow (Pimephales promelas) Jour. Fish. Res. Board Can. 29: 1099.
Pickering, Q.H. and C. Henderson. 1966. The acute toxicity of some heavy
metals to different species of warmwater fishes. Air Water Pollut. Int. Jour.
10: 453.
Playle, R.C., D.G. Dixon and K. Burnison. 1993a. Copper and cadmium binding to
fish gills: estimates of metal-gill stability constants and modelling of metal
accumulation. Can. J. Fish. Aquat. Sci. 50: 2678-2687.
Playle, R.C., D.G. Dixon and K. Burnison. 1993b. Copper and cadmium binding to
fish gills: modification by dissolved organic carbon and synthetic ligands.
Can. J. Fish. Aquat. Sci. 50: 2667-2677.
Polar, E. And R. Kucukcezzar. 1986. Influence of some metal chelators and
light regimes on bioaccumulation and toxicity of Cd2+ in duckweed (Lemna
gibba) . Physiol. Plant 66: 87-93.
Poldoski, J.E. 1979. Cadmium bioaccumulation assays. Their relationship to
various ionic equilibria in Lake Superior water. Environ. Sci. Technol. 13:
701.
218
-------
Postma, J.F. and C. Davids. 1995. Tolerance induction and life cycle changes
in cadmium-exposed Chironomus riparius (diptera) during consecutive
generation. Ecotoxicol. Environ. Safety. 30: 195-202.
Postma, J.F., M.C. Buckert-de Jong, N. Staats and C. Davids. 1994. Chronic
toxicity of cadmium to Chironomus reparius (diptera: chironomidae) at
different food levels. Arch. Environ. Contam. Toxicol. 26: 143-148.
Postma. J.F., P. Van Nugteren and M.B. Buckert-De Jong. 1996. Increased
cadmium excretion in metal-adapted populations of the midge Chironomus
riparius (Diptera). Environ. Toxicol Chem. 15(3): 332-339.
Poulsen, E., et al. 1982. Accumulation of cadmium and bioenergetics in the
mussel Mytilus edulis. Mar. Biol. 68: 25.
Poulton. B.C., D.P. Monda, D.F. Woodward, M.L.Wildhaber and W.G. Brumbaugh.
1995. Relations between benthic community structure and metals concentrations
in aquatic macroinvertebrates: Clark Fork River, Montana. J. Freshwater Ecol.
10(3): 277-293.
Prasad, M.N.V., K. Drej, A. Skawinska and K. Stralka. 1998. Toxicity of
cadmium and copper in Chlamydomonas reinhardtii wild-type (WT2137) and cell
wall deficient mutant strain (CW15). Bull. Environ. Contam. Toxicol. 60: 306-
311.
Presing, M., K.V. Balogh and J. Salanki. 1993. Cadmium uptake and depuration
in different organs of Lymnaea stagnalis L. And the effect of cadmium on the
natural zinc level. Arch. Environ. Contam. Toxicol. 24: 28-34.
Prevot, P. and M.O. Soyer-Gobillard. 1986. Combined action of cadmium and
selenium on two marine dinoflagellates in culture, Prorocentrum micans Ehrbg.
and Crypthecodinium cohnii Biecheler. J. Protozool. 33(1): 42-47.
Pringle, B.H., et al. 1968. Trace metal accumulation by estuarine mollusks.
Am. Soc. Civil Eng., Jour. Sanit. Eng. Div. 94: 455.
219
-------
Pynnonen, K. 1995. Effect of pH, hardness and maternal pre-exposure on the
toxicity of Cd, Cu and Zn to the glochidial larvae of a freshwater clam
Anodonta cygnea. Water Res. 29(1) : 247-254.
Qichen, C., Z. Kejien and Z. Guanwen. 1988. A comprehensive investigation of
the toxic effects of heavy metals on fish. J. Fish. China/Shuichan Xuebao
(Chi.) (Eng. Trans.) (Author communication used). 12(1): 21-33.
Qureshi, S.A., et al. 1980. Acute toxicity of four heavy metals to benthic
fish food organisms from the river Khan, Ujjain. Int. Jour. Environ. Studies
15: 59.
Rachlin, J.W. and A. Grosso. 1991. The effects of pH on the growth of
Chlorella vulgaris and its interactions with cadmium toxicity. Arch. Environ.
Contam. Toxicol. 20: 505-508.
Rachlin, J.W. and A. Grosso. 1993. The growth response of the green alga
Chlorella vulgaris to combined divalent cation exposure. Arch. Environ.
Contam. Toxicol. 24:16-20.
Rachlin, J.W., et al. 1982. The growth responses of Chlorella saccharophila,
Navicula incerta and Nitzschia closterium to selected concentrations of
cadmium. Bull. Torrey Bot. Club 109: 129.
Rachlin, J.W., et al. 1984. The toxicological response of the algae Anabaena
flos-aquae (Cyanophyceae) to cadmium. Arch. Environ. Contam. Toxicol. 13: 143.
Radetski, C.M., J.F. Ferard and C. Blaise. 1995. A semistatic microplate-based
phytotoxicity test. Environmental Toxicology and Chemistry. 14(2): 299-302.
Radix, P., M. Leonard, C. Papantoniou, G. Roman, E. Saouter, S. Gallotti-
Schmitt, H. Threbaud and P. Vasseur. 1999. Comparison of Brachionus
calyciflorus 2-D and microtox® chronic 22-h tests with Daphnia magna 21-D test
for chronic toxicity assessment of chemicals. Environ. Toxicol. Chem. 18(10):
2178-2185.
Rai, U.N., R.D. Tripathi, S. Sinha and P. Chandra. 1995. Chromium and cadmium
bioaccumulation and toxicity in Hydrilla verticillata (l.f.) Royle and Chara
corallina Wildenow. J. Environ. Sci. Health. A30: 537-551.
220
-------
Rainbow, P.S. 1985. Accumulation of Zn, Cu and Cd by crabs and barnacles.
Estuarine Coastal Shelf Sci. 21: 669-686.
Rainbow, P.S. and M.K.H Kwan. 1995. Physiological responses and the uptake of
cadmium and zinc by the amphipod crustacean Orchestia gammarellus. Mar. Ecol.
Prog. Ser. 127: 87-102.
Rainbow, P.S. and S.L. White. 1989. Comparative strategies of heavy metal
accumulation by crustaceans: zinc, copper and cadmium in a decapod, and
amphipod and a barnacle. Hydrobiol. 174: 245-262.
Rainbow, P.S., et al. 1980. Effects of chelating agents on the accumulation of
cadmium by the barnacle Semibalanus balanoides, and the complexation of
soluble Cd, Zn and Cu. Mar. Ecol. Progress Series 2: 143.
Ralph, P.J. and M.D. Burchett. 1998. Photosynthetic response of Halophila
ovalis to heavy metal stress. Environ. Pollut. 103: 91-101.
Ramachandran, S., T.R. Patel and M.H. Colbo. 1997. Effect of copper and
cadmium on three Malaysian tropical estuarine invertebrate larvae. Ecotoxicol.
Environ. Safety. 36: 183-188.
Ramamoorthy, S. and K. Blumhagen. 1984. Uptake of Zn, Cd, and Hg by fish in
the presence of competing compartments. Can. Jour. Fish. Aquat. Sci. 41: 750.
Ramesha, A.M., T.R.C. Guptha, R.J. Katti, G. Gowda and C. Lingdhal. 1996.
Toxicity of cadmium to common carp Cyprinus carpio (Linn.). Environ. Ecol.
14(2): 329-333.
Ramesha, A.M., T.R.C. Gupta, C. Lingdhal, K.V.B. Kumar, G. Gowda and K.S.
Udupa. 1997. Combined toxicity of mercury and cadmium to the common carp
Cyprinus carpio (Linn.) Environ. Ecol. 15(1): 194-198.
Ramirez, P., G. Barrera and C. Rosas. 1989. Effects of chromium and cadmium
upon respiration and survival of Callinectes similis. Bull. Environ. Contam.
Toxicol. 43: 850-857.
221
-------
Rao, J.I. and M.N. Madhyastha. 1987. Toxicities of some heavy metals to the
tadpoles of frog, Microhyla ornata (Dumeril and Bibron). Toxicol. Lett. 36:
205-208 .
Ray, S., et al. 1981. Accumulation of copper, zinc, cadmium and lead from two
contaminated sediments by three marine invertebrates - a laboratory study.
Bull. Environ. Contam. Toxicol. 25: 315.
Rayms-Keller, A., K.E. Olson, M. McGaw, C. Oray, J.O. Carlson and B.J. Beaty.
1998. Effect of heavy metals on Aedes aegypti (diptera: culicidae) larvae.
Ecotoxicol. Environ. Safety. 39: 41-17.
Reader, J.P., N.C. Everall, M.D.J. Sayer and R. Morris. 1989. The effects of
eight trace metals in acid soft water on survival, mineral uptake and skeletal
calcium deposition in yolk-sac fry of brown trout, Salmo trutta L. J. Fish
Biol. 35: 187-198.
Rebhun, S. and A. Ben-Amotz. 1984. The distribution of cadmium between the
marine alga Chlorella stigmatophora and sea water medium. Water Res. 18(2):
173-179.
Rebhun, S. and A. Ben-Amotz. 1986. Effect of NaCl concentration on cadmium
uptake by the halophilic alga Dunaliella salina. Mar. Ecol. Prog. Ser. 30:
215-219.
Rebhun, S. and A. Ben-Amotz. 1988. Antagonistic effect of maganese to cadmium
toxicity in the alga Dunaliella salina. Mar. Ecol. Prog Ser. 42: 97-104.
Reddy, P.S. and M. Fingerman. 1994. Effect of cadmium chloride on amylase
activity in the red swamp crayfish, Procambarus clarkii. Comp. Biochem.
Physiol. 109C(3): 309-314.
Reddy, P.S., S.R. Tuberty and M. Fingerman. 1997. Effects of cadmium and
mercury on ovarian maturation in the red swamp crayfish, Procambarus clarkii.
Ecotoxicol. Environ. Safety. 37: 62-65.
Redmond, M.S., K H. Scott, R.C. Swartz and J.K.P. Jones. 1994. Preliminary
culture and life-cycle experiments with the benthic amphipod Ampelisca abdita.
Environ. Toxicol. Chem. 13(8): 1355-1365.
222
-------
Rehwoldt, R., et al. 1972. The effect of increased temperature upon the acute
toxicity of some heavy metal ions. Bull. Environ. Contam. Toxicol. 8: 91.
Rehwoldt, R., et al. 1973. The acute toxicity of some heavy metals ions toward
benthic organisms. Bull. Environ. Contam. Toxicol. 10: 291.
Reichert, W.L., et al. 1979. Uptake and metabolism of lead and cadmium in coho
salmon (Oncorhynchus kisutch) . Comp. Biochem. Physiol. 63C: 229.
Reid, S.D. and D.G. McDonald. 1991. Metal binding activity of the gills of
rainbow trout (Oncorhynchus mykiss). Can. J. Fish. Aquat. Sci. 48: 1061-1068.
Reinfelder, J.R. and N.S. Fisher. 1994a. The assimilation of elements ingested
by marine planktonic bivalve larvae. Limnol. Oceanogr. 39(1): 12-20.
Reinfelder, J.R. and N.S. Fisher. 1994b. Retention of elements absorbed by
juvenile fish (Menidia menidia, Menidia beryllina) from zooplankton prey.
Limnol. Oceanogr. 39(8): 1783-1789.
Reinfelder, J.R., W.X. Wang, S.N. Luoma and N.S. Fisher. 1997. Assimilation
efficiencies and turnover rates of trace elements in marine bivalves: a
comparison of oysters, clams and mussels. Mar. Biol. 129: 443-452.
Reish, D.J. 1993. Effects of metals and organic compounds on survival and
bioaccumulation in two species of marine gammaridean amphipod, together with a
summary of toxicological research on this group. Journal of Natural History.
27: 781-794.
Reish, D.J. and J.A. LeMay. 1991. Toxicity and bioconcentration of metals and
organic compounds by polychaeta. Ophelia Suppl. 5: 653-660.
Reish, D.J., et al. 1976. The effect of heavy metals on laboratory populations
of two polychaetes with comparisons to the water quality conditions and
standards in Southern California marine waters. Water Res. 10: 299.
Reish, D.J., et al. 1978. Interlaboratory calibration experiments using the
Polychaetous annelid Capitella capitata. Mar. Environ. Res. 1: 109.
223
-------
Reish, D.J., S.L. Asato and J.A. Lemay. 1988. The effect of cadmium and DDT on
the survival and regeneration in the amphinomid polychaete Eurythoe
complanata. In: Proc. 7th Symp. Mar. Biol., June 1, 1988, LaPaz BCS, Mexico:
107-111.
Remacle, J., et al. 1982. Cadmium fate in bacterial microcosms. Water Air Soil
Pollut. 18: 455.
Reynoldson, T.B., P.. Rodriguez and M.M Madrid. 1996. A comparison of
reproduction, growth and acute toxicity in two populations of Tubifex tubifex
(Muller, 1774) from the North American great lakes and Northern Spain.
Hydrobiol. 334: 199-206.
Rhodes, L., E. Casillas, B. McKnight, W. Gronlund, M. Myers, O.P. Olson and B.
McCain. 1985. Interactive effects of cadmium, polychlorinated biphenyls, and
fuel oil on experimentally exposed English sole (Parophrys vetulus). Can J.
Fish. Aquat. Sci. 42: 1870-1880.
Ribo, J.M. 1997. Interlaboratory comparison studies of the luminescent
bacteria toxicity bioassay. pp. 283-294.
Rice, D.L. 1984. A simple mass transport model for metal uptake by marine
macroalgae growing at different rates. Exp. Mar. Biol. Ecol. 82: 175-182.
Richelle, E., Y. Degoudenne, L. Dejonghe and G. Van de Vyver. 1995.
Experimental and field studies on the effect of selected heavy metals on three
freshwater sponge species: Ephydatia fluviatilis, Ephydatia muelleri and
Spongilla lacustris. Arch. Hydrobiol. 135(2): 209-231.
Ridlington, J.W., et al. 1981. Metallothionein and Cu-chelation:
characterization of metal-binding proteins from the tissues of four marine
animals. Comp. Biochem. Physiol. 70B: 93.
Rifici, L.M., D.S. Cherry. J.L. Farris and J. Cairns, Jr. 1996. Acute and
subchronic toxicity of methylene blue to larval fathead minnows (Pimephales
promelas) : implications for aquatic toxicity testing. Environmental Toxicology
and Chemistry. 15(8) : 1304- 1308.
224
-------
Riisgard, H.V., E. Bjornestad and F. Mohlenberg. 1987. Accumulation of cadmium
in the mussel Mytilus edulis: kinetics and importance of uptake via food and
sea water. Mar. Biol. 96: 349-353.
Ringwood, A.H. 1989. Accumulation of cadmium by larvae and adults of an
Hawaiian bivalve, Isognomon californicum, during chronic exposure. Mar. Biol.
102: 499-504.
Ringwood, A.H. 1990. The relative sensitivities of different life stages of
Isognomon californicum to cadmium toxicity. Arch. Environ. Contam. Toxicol.
19: 338-340.
Ringwood, A.H. 1992a. Comparative sensitivity of gametes and early
developmental stages of a sea urchin species (Echinometra mathaei) and a
bivalve species (Isognomon californicum) during metal exposures. Arch.
Environ. Contam. Toxicol. 22: 288-295.
Ringwood, A.H. 1992b. Effects of chronic cadmium exposures on growth of larvae
of an Hawaiian bivalve, Isognomon californicum. 1992. Mar. Ecol. Prog. Ser.
83: 63-70.
Ringwood, A.H. 1993. Age-specific differences in cadmium sensitivity and
bioaccumulation in bivalve molluscs. Mar. Environ. Res. 35: 35-39.
Ritterhoff, J., G.P. Zauke and R. Dallinger. 1996. Calibration of the
estuarine amphipods, Gammarus zaddachi Sexton (1912), as biomonitors:
toxicokinetics of cadmium and possible role of inducible metal-binding
proteins in Cd detoxification. Aquat. Toxicol. 34: 351-369.
Roberts, K.S., et al. 1979. A high molecular-weight cadmium-binding fraction
isolated from the liver cytosol of trout exposed to environmentally relevant
concentrations of the metal. Trans. Biochem. Soc. London. 7: 650.
Roch, M. and J.A. McCarter. 1984. Metallothionein induction, growth, and
survival of chinook salmon exposed to zinc, copper, and cadmium. Bull.
Environ. Contam. Toxicol. 32: 478-485.
225
-------
Roch, M. and E.J. Maly. 1979. Relationship of cadmium-induced hypocalcemia
with mortality in rainbow trout (Salmo gairdneri) and the influence of
temperature on toxicity. Jour. Fish. Res. Board Can. 36: 1297.
Roesijadi, G. And G.W. Fellingham. 1987. Influence of Cu, Cd, and Zn
preexposure on Hg toxicity in the mussel Mytilus edulis. Can. J. Fish. Aquat.
Sci. 44: 680-684.
Rombough, P.J. 1985. The influence of the zona radiata on the toxicities of
inc, lead, mercury, copper and silver ions to embryos of steelhead trout Salmo
gairdneri. Comp. Biochem. Physiol. 82C(1): 115-117.
Rombough, P.J. and E.T. Garside. 1982. Cadmium toxicity and accumulation in
eggs and alevins of Atlantic salmon Salmo salar. Can. Jour. Zool. 60: 2006.
Rombough, P.J. and E.T. Garside. 1984. Disturbed ion balance in alevins of
Atlantic salmon Salmo salar chronically exposed to sublethal concentrations of
cadmium. Can. J. Zool. 62: 1443-1450.
Romeo, M. and M. Gnassia-Barelli. 1995. Metal distribution in different
tissues and in subcellular fractions of the Mediterranean clam Ruditapes
decussatus treated with cadmium, copper, or zinc. Comp. Biochem. Physiol.
111C: 457-463.
Rosas, C. And P. Ramirez. 1993. Effect of chromium and cadmium on the thermal
tolerance of the prawn Macrobrachium rosenbergii expose to hard and soft
water. Bull. Environ. Contam. Toxicol. 51: 568-574.
Roseman, E.F., E.L. Mills, M. Rutzke, W.H. Gutenmann and D.J. Lisk. 1994.
Absorption of cadmium from water by north American zebra and quagga mussels
(Bivalvia: dreissenidae) . Chemosphere. 28(4) : 737-743.
Rosenberg, R. and J.D. Costlow. 1976. Synergistic effects of cadmium and
salinity combined with constant and cycling temperatures on the larval
development of two estuarine crab species. Mar. Biol. 38: 291.
Rosko, J.J. and J.W. Rachlin. 1977. The effect of cadmium, copper, mercury,
zinc and lead on cell division, growth, and chloropyll a content of the
chlorophyte Chlorella vulgaris. Bull. Torrey Bot. Club 104: 226.
226
-------
Rouleau, C, M. Block and H. Tjalve. 1998. Kinetics and body distribution of
waterborne 65Zn(II), 109Cd(II), 203Hg(II), and CH3203Hg(II) in phantom midge
larvae (Chaoborus americanus) and effects of complexing agents. Environ. Sci.
Technol. 32: 1230-1236.
Roux, D.J., P.L. Kempster, E. Truter and L. van der Merwe. 1993. Effect of
cadmium and copper on survival and reproduction of Daphnia pulex. Water SA.
19(4) : 269-274 .
Rubinstein, N.I., et al. 1983. Accumulation of PCBs, mercury and cadmium by
Nereis virens, Mercenaria mercenaria and Palaemontes pugio from contaminated
harbor sediments. Aquat. Toxicol. 3: 249.
Safadi, R.S. 1998. The use of freshwater planarians in acute toxicity test
with heavy metals. Verh. Internat. Verein. Limnol. 26: 2391-2392
Sajwan, K.S. and W.H. Ornes. 1994. Phytoavailability and bioaccumulation of
cadmium in duckweed plants (Spirodela polyrhiza L. Schleid). J. Environ. Sci.
Health. A29(5): 1035-1044.
Sanchiz, C., A.M. Garcia-Carrascosa and A. Pastor. 1999. Bioaccumulation of
Hg, Cd, Pb and Zn in four marine phanerogams and the alga Caulerpa prolifera
(Forsskal) Lamouroux from the east coast of Spain. Bot. Mar. 42(2): 157-164.
Sandau, E., P. Sandau and 0. Pulz. 1996. Heavy metal sorption by microalagae.
Acta Biotechnol. 16(4): 227-235.
Sangalang, G.B. and H.C. Freeman. 1979. Tissue uptake of cadmium in brook
trout during chronic sublethal exposure. Arch. Environ. Contam. Toxicol. 8:
77 .
Sangalang, G.B. and M.J. O'Halloran. 1972. Cadmium-induced testicular injury
and alterations of androgen synthesis in brook trout. Nature 240: 470.
Sangalang, G.B. and M.J. O'Halloran. 1973. Adverse effects of cadmium on brook
trout testis and on in vitro testicular androgen synthesis. Biol. Reprod.
9:394.
227
-------
Santiago-Fandino, V.J.R. 1983. The effects of nickel and cadmium on the growth
rate of Hydra littoralis and an assessment of the rate of uptake of 63Ni and
14C by the same organism. Water Res. 17: 917.
Santojanni, A., G. Gorbi and F. Sartore. 1998. Prediction of fecundity in
chronic toxicity tests on Daphnia magna. Water Res. 32(1): 3146-3156.
Sastry, K.V. and V. Shukla. 1994. Influence of protective agents in the
toxicity of cadmium to a freshwater fish (Channa punctatus). Bull. Environ.
Contam. Toxicol. 53: 711-717.
Sastry, K.V. and K. Sunita. 1982. Effect of cadmium and chromium on the
intestinal absorption of glucose in the snakehead fish, Channa punctatus.
Toxicol. Letters. 10: 293.
Sauter, S., et al. 1976. Effects of exposure to heavy metals on selected
freshwater fish. Toxicity of copper, cadmium, chromium and lead to eggs and
fry of seven fish species. EPA-600/3-7 6-105. National Technical Information
Service, Springfield, Virginia.
Sauvant, M.P., D. Pepin, C.A. Groliere and J. Bohatier. 1995. Effects of
organic and inorganic substances on the cell proliferation of L-929
Fibroblasts and Tetrahymena toxicological bioassays. Bull. Environ. Contam.
Toxicol. 55: 171-178.
Sauvant, M.P., D. Pepin, J. Bohatier, C.A. Groliere and J. Guillot. 1997.
Toxicity assessment of 16 inorganic environmental pollutants by six bioassays.
Ecotoxicol. Environ. Safety. 37: 131-140.
Saxena, K.K., A.K. Dubey and R.R.S. Chauhan. 1993. Experimental studies on
toxicity of zinc and cadmium to Heteropneustes fossilis (Bl.) J. Freshwater
Biol. 5(4): 343-346.
Schaeffer, D.J., M. Goehner, E. Grebe, L.G. Hansen, K. Hankenson, E.E.
Herricks, G. Matheus, A. Miz, R. Reddy and K. Trommater. 1991. Evaluation of
the "reference toxicant" addition procedure for testing the toxicity of
environmental samples. Bull. Environ. Contam. Toxicol. 47: 540-546.
228
-------
Schafer, H., A. Wenzel, U. Fritsche, G. Roderer and W. Traunspurger. 1993.
Long-term effects of selected xenobiotica on freshwater green algae:
development of a flow-through test system. The Science of the Total
Environment, Supplement, pp. 735-740.
Schafer, H., H. Hettler, U. Fritsche, G. Pitzen, G. Roderer and A Wenzel.
1994. Biotests using unicellular algae and ciliates for predicting long-term
effects of toxicants. Ecotoxicol. Environ. Safety. 27: 64-81.
Scherer, E., R.E. McNicol and R.E. Evans. 1997. Impairment of lake trout
foraging by chronic exposure to cadmium: a black-box experiment. Aquatic
Toxicology. 37: 1-7.
Schubauer-Berigan, M.K., J.R. Dierkes, P.D. Monson and G.T. Ankley. 1993. pH-
dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales
promelas, Hyalella azteca and Lumbriculus variegatus. Environmental Toxicology
and Chemistry. 12: 1261-1266.
Schuster, C.N. and B.H. Pringle. 1969. Trace metal accumulation by the
American oyster, Crassostrea virginica. Proc. Natl. Shellfish Assoc. 59: 91.
Scott, K.J., et al. Manuscript. Toxicological methods using the benthic
amphipod Ampelisca abdita Mills. U.S. EPA, Narragansett, Rhode Island.
Sedlacek, J., E.T. Gjessing and T Kallqvist. 1989. Influence of different
aquatic humus fractions on uptake of cadmium to alga Selenastrum capriconutum
Printz. Sci. Total Environ. 81/82: 711-718.
Sehgal, R. and A.B. Saxena. 1987. Determination of acute toxicity levels of
cadmium and lead to the fish Lebistes reticulatus (Peters). Int. J. Environ.
Stud. 29: 157-161.
Sekkat, N., A. Le Du, J.M. Jouany and M. Guerbet. 1992. Study of the
interactions between copper, cadmium, and ferbam using the protozoan Colpidium
campylum bioassay. Ecotoxicol. Environ. Safety. 24: 294-300.
229
-------
Selby, D.A., J.M. Ihnat and J.J. Messer. 1985. Effects of subacute cadmium
exposure on a hardwater mountain stream microcosm. Water Res. 19(5): 645-655.
Seyfreid, P.L. and C.B.L. Horgan. 1983. Effect of cadmium on lade water
bacteria as determined by the luciferase assay of adenosine triphosphate. In:
W.E. Bishop, et al. (eds.), Aquatic Toxicology and Hazard Assessment: Sixth
Symposium. ASTM STP 802, American Society for Testing and Materials,
Philadelphia, Pennsylvania, p. 425.
Shanmukhappa, H. and K. Neelakantan. 1990. Influence of humic acid on the
toxicity of copper, cadmium and lead to the unicellular alga, Synechosystis
aquatilis. Bull. Environ. Contam. Toxicol. 44: 840-843.
Sharma, M.S. and C.S. Selvaraj. 1994. Zinc, lead and cadmium toxicity to
selected freshwater zooplankters. Poll. Res. 13(2): 191-201.
Sharp, J.R. and J.L. Kaszubski. 1989. The influence of exposure duration on
the embryotoxicity of cadmium to the freshwater teleost, Etheostoma
spectabile. Trace Subst. Environ. Health. 23: 277-289.
Shazili, N.A.M. and D. Pascoe. 1986. Variable sensitivity of rainbow trout
(Salmo gairdneri) eggs and alevins to heavy metals. Bull. Environ. Contam.
Toxicol. 36: 468-474.
Shcherban, E.P. 1977. Toxicity of some heavy metals for Daphnia magna Strauss,
as a function of temperature. Hydrobiol. Jour. 13(4) : 75.
Sheela, M., G. Mallika and S. Muniandy. 1995. Impact of cadmium on food
utilization, growth and body composition in the fish Oreochromis mossambicus.
Environ. Ecol. 13(2): 410-414.
Sherman, R.E., S.P. Gloss and L.W. Lion. 1987. A comparison of toxicity test
conducted in the laboratory and in experimental ponds using cadmium and the
fathead minnow (Pimephales promelas) . Wat. Res. 21(3): 317-323.
Shivaraj, K.M. and H.S. Patil. 1988. Toxicity of cadmium and copper to a
freshwater fish Puntius arulius. Environ. Ecol. 6(1): 5-8
230
-------
Shukla, J.P. and K. Pandey. 1988. Toxicity and long term effects of a
sublethal concentration of cadmium on the growth of the fingerlings of
Ophiocephalus punctatus (Bl.). Acta Hydrochim. Hydrobiol. 16(5): 537-540.
Sick, L.V. and G. Baptist. 1979. Cadmium incorporation by the marine copepod
Pseudodiaptomous coronatus. Limnol. Oceanogr. 24: 453.
Sidoumou, Z., M. Gnassia-Barelli and M. Romeo. 1997. Cadmium and calcium
uptake in the mollusc Donax rugosus and effect of a calcium channel blocker.
Bull. Environ. Contam. Toxicol. 58: 318-325.
Simoes-Goncalves, M.L.S., M.F.C. Vilhena and M.A. Sampayo. 1988. Effect of
nutrients, temperature and light on uptake of cadmium by Selenastrum
capricornutum Printz. Water Res. 22(11): 1429-1435.
Simoes-Goncalves, M.L.S., M.F.C. Vilhena, L.M.V.F. Machado, C.M.R. Pescada and
M.L. de Moura. 1989. Effect of speciation on uptake and toxicity of cadmium to
shrimp Crangon crangon (L.). Bull. Environ. Contam. Toxicol. 43: 287-294.
Sinha, S, M. Gupta and P. Chandra. 1994. Bioaccumulation and toxicity of Cu
and Cd in Vallisneria spiralis (L.). Environ. Monit. Assess. 33(1): 75-84.
Skowronski, T. and M. Przytocka-Jusiak. 1986. Cadmium removal by green alga
Stichococcus bacillaris. Chemosphere. 15(1): 77-79.
Skowronski, T., M. Jakubowski and B. Pawlik. 1985. Cadmium toxicity to green
alga Stichococcus bacillaris. Acta Microbiologica Polonica. 34(3/4): 309.
Skowronski, T., B. Pawlik and M. Jakubowski. 1988. Reduction of cadmium
toxicity to green microalga Stichococcus bacillaris by manganese. Bull.
Environ. Contam. Toxicol. 41: 915-920.
Skowronski, T., S. Szubinska, B. Pawlik, M. Jakubowski, R. Bilewicz and E.
Cukrowsak. 1991. The influence of pH on cadmium toxicity to the green alga
Stichococcus bacillaris and on the cadmium forms present in the culture
medium. Environ. Pollut. 74: 89-100.
Sloof, J.E., A. Viragh and B. Van der Veer. 1995. Kinetics of cadmium uptake
by green algae. Water, Air Soil Pollut. 83: 105-122.
231
-------
Slooff, W. 1983. Benthic macroinvertebrates and water quality assessment: some
toxicological considerations. Aquat. Toxicol. 4: 73.
Slooff, W. and R. Baerselman. 1980. Comparison of the usefulness of the
Mexican axoloth (Ambystoma mexicanum) and the clawed toad (Xenopus laevis) in
toxicological bioassays. Bull. Environ. Contam. Toxicol. 24: 439.
Slooff, W.J., et al. 1983. Comparison of the susceptibility of 22 freshwater
species to 15 chemical compounds. I. (sub)acute toxicity tests. Aquat.
Toxicol. 4: 113.
Smith, D.P., J.H. Kennedy and K.L. Dickson. 1991. An evaluation of a naidid
oligochaete as a toxicity test organism. Environmental Toxicology and
Chemistry. 10: 1459-1465.
Smith, J.D., et al. 1981. Distribution and significance of copper, lead, zinc
and cadmium in the Corio Bay ecosystem. Aust. Jour. Mar. Freshwater Res. 32:
151.
Smith, S. and M.K.H. Kwan. 1989. Use of aquatic macrophytes as a bioassay
method to assess relative toxicity, uptake and accumulated forms of trace
metals. Hydrobiologia. 188/189: 345-351.
Smokorowski, K.E., D.C. Lasenby and R.D. Evans. 1998. Quantifying the uptake
and release of cadmium and copper by the opossum shrimp Mysis relicta preying
upon the cladoceran Daphnia magna using stable isotope tracers. Can. J. Fish.
Aquat. Sci. 55: 909-915.
Snell, T.W. and M.J. Carmona. 1995. Comparative toxicant sensitivity of sexual
and asexual reproduction in the rotifer Brachionus calyciflorus. Environmental
Toxicology and Chemistry. 14: 415-420.
Snell, T.W. and B.D. Moffat. 1992. A 2-d life cycle test with the rotifer
Brachionus calyciflorus. Environmental Toxicology and Chemistry. 11: 1249-
1257 .
232
-------
Snell, T.W. and G. Persoone. 1989a. Acute toxicity bioassays using rotifers.
I. A test for brackish and marine environments with Brachionus plicatilis.
Aquatic Toxicology. 14: 65-80.
Snell, T.W. and G. Persoone. 1989b. Acute toxicity bioassays using rotifers.
II. A freshwater test with Brachionus rubens. Aquatic Toxicology. 14: 81-92.
Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991a. Acute toxicity
test using rotifers. III. Effects of temperature, strain and exposure time on
the sensitivity of Brachionus plicatilis. Environmental Toxicology and Water
Quality: An International Journal. 6: 63-75.
Snell, T.W., B.D. Moffat, C. Janssen and G. Persoone. 1991b. Acute toxicity
tests using rotifers. Ecotoxicology and Environmental Safety. 21: 308-317.
Sobahn, R. and S.P.K. Sternberg. 1999. Cadmium removal using cladophora. J.
Environ. Sci. Health. A34(l): 53-72.
Sorvari, J. and M. Sillanpaa. 1996. Influence of metal complex formation on
heavy metal and free EDTA and DTPA acute toxicity determined by Daphnia magna.
Chemosphere. 33(6): 1119-1127.
Sosnowski, S. and J. Gentile. 1978. Toxicological comparison of natural and
cultured populations of Acartia tonsa to cadmium, copper and mercury. Jour.
Fish. Res. Board Can. 35: 1366.
Sovenyi, J. and J. Szakolczai. 1993. Studies on the toxic and
immunosuppressive effects of cadmium on the common carp. Acta Veterinaria
Hungarica. 41(3-4): 415-426.
Spehar, R.L. 1976a. Cadmium and zinc toxicity to flagfish, Jordanella
floridae. Jour. Fish. Res. Board Can. 33: 1939.
Spehar, R.L. 1976b. Cadmium and zinc toxicity to Jordanella floridae. EPA-
600/3-7 6-096. National Technical Information Service, Springfield, Virginia.
Spehar, R.L. 1982. Memorandum to J.G. Eaton. U.S. EPA, Duluth, Minnesota.
February 24.
233
-------
Spehar, R.L. and A.R. Carlson. 1984a. Derivation of site-specific water
quality criteria for cadmium and the St. Louis River Basin, Duluth, Minnesota.
PB84-153196. National Technical Information Service, Springfield, Virginia.
Spehar, R.L. and A.R. Carlson. 1984b. Derivation of site-specific water
quality criteria for cadmium and the St. Louis River Basin, Duluth, Minnesota.
Environ. Toxicol. Chem. 3: 651.
Spehar, R.L. and J.T. Fiandt. 1986. Acute and chronic effects of water quality
criteria-based metal mixtures on three aquatic species. Environmental
Toxicology and Chemistry. 5: 917-931.
Spehar, R.L., et al. 1978. Toxicity and bioaccumulation of cadmium and lead in
aquatic invertebrates. Environ. Pollut. 15: 195.
Sprague, J.B. 1985. Factors that modify toxicity. In: Fundamentals of aquatic
toxicology. Rand, G.M. and S.R. Petrocelli (eds.). Hemisphere Publishing
Company, New York, N.Y. pp.124-163.
Spry, D.J. and J.G. Wiener. 1991. Metal bioavailability and toxicity to fish
in low-alkalinity lakes: a critical review. Environ. Pollut. 243-304.
Srivastava, A. and K.J. Appenroth. 1995. Interaction of EDTA and iron on the
accumulation of Cd2+ in duckweeds (Lemnaceae). J. Plant Physiol. 146: 173-176.
Stackhouse, R.A. and W.H. Benson. 1988. The influence of humic acid on the
toxicity and bioavailability of selected trace metals. Aquatic Toxicology. 13:
99-108.
Stanley, R.A. 1974. Toxicity of heavy metals and salts to Eurasian water-
milfoil (Myriophyllum spicatum L.). Arch. Environ. Contam. Toxicol. 2: 331.
Stary, J. and K. Kratzer. 1982. The cumulation of toxic metals on alga. Int.
Jour. Environ. Anal. Chem. 12: 65.
Stary, J., et al. 1982. The cumulation of zinc and cadmium in fish (Poecilia
reticulata). Int. Jour. Environ. Anal. Chem. 11: 117.
234
-------
Stary, J., et al. 1983. Cumulation of zinc, cadmium and mercury on the alga
Scenedesmus obliquus. Acta. Hydrochim. Hydrobiol. 11: 401.
Stebbing, A.R.D. 1976. The effects of low metal levels on a colonial hydroid.
Jour. Mar. Biol. Assoc. U.K. 56: 1977.
Steele, R.L. and G.B. Thursby. 1983. A toxicity test using life stages of
Champia parvula (Rhodophyta). In: W.E. Bishop, et al. (eds.), Aquatic
Toxicology and Hazard Assessment: Sixth Symposium. ASTM STP 802. American
Society for Testing and Materials, Philadelphia, Pennsylvania, p. 73.
Stephan, C.E., et al. 1985. Guidelines for deriving numerical national water
quality criteria for the protection of aquatic organisms and their uses.
National Technical Information Service, Springfield, Virginia.
Stephenson, M. and G.L. Macki. 1989. Net cadmium flux in Hyalella azteca
(crustacea: amphipoda) populations from five central Ontario lakes. Sci. Total
Environ. 87/88: 463-475.
Stephenson, M. and M.A. Turner. 1993. A field study of cadmium dynamics in
periphyton and in Hyalella azteca (Crustacea: amphipoda). Water, Air, and Soil
Pollution 68: 341-361.
Stern, M.S. and D.H. Stern. 1980. Effects of fly ash heavy metals on Daphnia
magna. PB81-198327. National Technical Information Service, Springfield,
Virginia.
Stom, D.I. and L.D. Zubareva. 1994. Comparative resistance of Daphnia and
Epischura to toxic substances in acute exposure. Hydrobiol. J. 30(3): 35-38.
Stromberg, P.C., et al. 1983. Pathology of lethal and sublethal exposure of
fathead minnows, Pimephales promelas, to cadmium: a model for aquatic toxicity
assessment. Jour. Toxicol. Environ. Health 11: 247.
Stuhlbacher, A. and L. Maltby. 1992. Cadmium resistance in Gammarus pulex
(1.). Arch. Environ. Contam. Toxicol. 22: 319-324.
235
-------
Stuhlbacher, A., M.C. Bradley, C. Naylor and P. Calow. 1992. Induction of
cadmium tolerance in two clones of Daphnia magna Straus. Comp. Biochem.
Physiol. 101C(3): 571-577.
Stuhlbacher, A., M.C. Bradley, C. Naylor and P. Calow. 1993. Variation in the
development of cadmium resistance in Daphnia magna Straus; effect of
temperature, nutrition, age and genotype. Environ. Pollut. 80(2): 153-158.
Sullivan, B.K., et al. 1983. Effects of copper and cadmium on growth, swimming
and predator avoidance in Eurytemora affinis (Copepoda). Mar. Biol. 77: 299.
Sunda, W.G. and S.A. Huntsman. 1996. Antagonisms between cadmium and zinc
toxicity and manganese limitation in a coastal diatom. Limnol. Oceanogr.
41(3) : 373-387 .
Sunda, W.G., et al. 1978. Effect of chemical speciation on toxicity of cadmium
to grass shrimp, Palaemonetes pugio: importance of free cadmium ion. Environ.
Sci. Technol. 12: 409.
Sunderman, F.W., Jr., M.C. Plowman and S.M. Hopfer. 1991. Embryotoxicity and
teratogenicity of cadmium chloride in Xenopus laevis, assayed by the FETAX
procedure. Annals of Clinical and Laboratory Science. 21(6): 381-391.
Sunil, P.P.G, N. Siriwardena, K.J. Rana and D.J. Baird. 1995. A method for
partitioning cadmium bioaccumulated in small aquatic organisms. Environ.
Toxicol. Chem. 14(9): 1575-1577.
Sunila, I. and R. Lindstrom. 1985. Survival, growth and shell deformities of
copper- and cadmium-exposed mussels (Mytilus edulis L.) In brackish water.
Estuarine Coastal Shelf Sci. 21(4) : 555-565.
Suresh, A., B. Sivaramakrishna and K. Radhakrishnaiah. 1993a. Effect of lethal
and sublethal concentrations of cadmium on energetics in the gills of fry and
fingerlings of Cyprinus carpio. Bull. Environ. Contam. Toxicol. 51: 920-926.
Suresh, A., B. Sivaramakrishna and K. Radhakrishnaiah. 1993b. Patterns of
cadmium accumulation in the organs of fry and fingerlings of freshwater fish
Cyprinus carpio following cadmium exposure. Chemosphere. 26(5): 945-953.
236
-------
Suzuki, K.T., H. Sunaga, E. Kobayashi and S. Hatakeyama. 1987. Environmental
and injected cadmium are sequestered by two major isoforms of basal copper,
zinc-metallothionein in gibel (Carassius auratus langsdorfi) liver. Comp.
Biochem. Physiol. 87C (1) : 87-93.
Swinehart, J.H. 1990. Final Technical report for U.S.G.S. grant: the effects
of humic substances on the interactions of metal ions with organisms and
liposomes. Department of chemistry, University of California, Davis, CA 95616:
103.
Takamura, N., F. Kasai and M.M. Watanabe. 1989. Effects of Cu, Cd and Zn on
photosynthesis of freshwater benthic algae. J. Appl. Phycol. 1: 39-52.
Talbot, V. 1985. Relationship between cadmium concentrations in seawater and
those in the mussel Mytilus edulis. Mar. Biol. 85: 51-54.
Talbot, V. 1987. Relationship between lead concentrations in seawater and in
the mussel Mytilus edulis: a water-quality criterion. Mar. Biol. 94: 557-560.
Taraldsen, J.E. and T.J. Norberg-King. 1990. New method for determining
effluent toxicity using duckweed (Lemna minor). Environ. Toxicol. Chem. 9:
761-767 .
Tarzwell, C.M. and C. Henderson. 1960. Toxicity of less common metals to
fishes. Ind. Wastes 5: 12.
Taylor, G., D.J. Baird and A.M.V.M. Soares. 1998. Surface binding of
contaminants by algae: consequences for lethal toxicity and feeding to Daphnia
magna Straus. Environ. Toxicol. Chem. 17(3): 412-419.
Temara, A., G. Ledent, M. Warnau, H. Paucot, M. Jangoux and P. Dubois. 1996a.
Experimental cadmium contamination of Asterias rubens (Echinodermata). Mar.
Ecol. Prog. Ser. 140: 83-90.
Temara, A., M. Warnau, G. Ledent, M. Jangoux and P. Dubois. 1996b. Allometric
variations in heavy metal bioconcentration in the asteroid Asterias rubens
(Echinodermata). Bull. Environ. Contam. Toxicol. 56: 98-105.
237
-------
Ten Hoopen, H.J.G., P.J. Nobel, A. Schaap, A. Fuchs and J.A. Roels. 1985.
Effects of temperature on cadmium toxicity to the green alga Scenedesmus
acutus. I. Development of cadmium tolerance in batch cultures. Antonie van
Leeuwenhoek. 51: 344-346.
Tessier, A., Y. Couillard, P.G.C. Campbell and J.C. Auclair. 1993. Modeling Cd
partitioning in oxic lake sediments and Cd concentrations in the freshwater
bivalve Anodonta grandis. Limnol Oceanogr. 38(1): 1-17.
Tessier, L., G. Vaillancourt and L. Pazdernik. 1994a. Comparative study of the
cadmium and mercury kinetics between the short-lived gastropod Viviparus
georgianus (lea) and pelecypod Elliptio complanata (lightfoot), under
laboratory conditions. Environ. Pollut. 271-282.
Tessier, L., G. Vaillancourt and L. Pazdernik. 1994b. Temperature effects on
cadmium and mercury kinetics in freshwater molluscs under laboratory
conditions. Arch. Environ. Contam. Toxicol. 26:179-184.
Tessier, L. G. Vaillancourt and L. Pazdernik. 1996. Laboratory study of Cd and
Hg uptake by two freshwater molluscs in relation to concentration, age and
exposure time. Water, Air Soil Pollut. 86: 347-357.
Thaker, A.A. and A.A. Haritos. 1989. Cadmium bioaccumulation and effects on
soluble peptides, proteins and enzymes in the hepatopancreas of the shrimp
Callianassa tyrrhena. Comp. Biochem. Physiol. 94C(1): 63-7 0.
Thebault, M.T., A. Biegniewska, J.P. Raffin and E.F. Skorkowski. 1996. Short
term cadmium intoxication of the shrimp Palaemon serratus: effect on adenylate
metabolism. Comp. Biochem. Physiol. 113C(3): 345-348.
Theede, H., et al. 1979. Temperature and salinity effects on the acute
toxicity of cadmium to Laomedea loveni (Hydrozoa). Mar. Ecol. Progress Series
1: 13.
Thellen, C., C. Blaise, Y. Roy and C. Hickey. 1989. Round robin testing with
the Selenastrum capricornutum microplate toxicity assay. Hydrobiologia.
188/189: 259-268.
238
-------
Thomann, R.V., F. Shkreli and S. Harrison. 1997. A pharmacokinetic model of
cadmium in rainbow trout. Environ. Toxicol. Chem. 16(11): 2268-2274.
Thomas, D.G., A. Cryer, J.F. De L.G. Solbe and J. Kay. 1983. A comparison of
the accumulation and protein binding of environmental cadmium in the gills,
kidney and liver of rainbow trout (Salmo gairdneri Richardson). Comp. Biochem.
Physiol. 7 6C(2) : 241-246.
Thomas, D.G., M.W. Brown, D. Shurben, J.F. Del G. Solbe, A. Cryer and J. Kay.
1985. A comparison of the sequestration of cadmium and zinc in the tissues of
rainbow trout (Salmo gairdneri) following exposure to the metals singly or in
combination. Comp. Biochem. Physiol. 82C(1): 55-62.
Thompson, P.A. and P. Couture. 1991. Short- and long-term changes in growth
and biochemical composition of Selenastrum capricornutum populations exposed
to cadmium. Aquatic Toxicology. 21: 135-144.
Thompson, S.E., et al. 1972. Concentration factors of the chemical elements in
edible aquatic organisms. UCRL-50564. Rev. 1. National Technical Information
Service, Springfield, Virginia.
Thongra-ar, W. and 0. Matsuda. 1995. Effects of cadmium and zinc on growth of
Thalassiosira weissflogii and Heterosigma akiashiwo. In: A. Snidvongs, W.
Utoomprukporn and M. Hungspreugs (eds.), 1995, Proceedings of the NRCT-JSPS
Joint Seminar on Marine Science, December 2-3, 1993, Chulalongkorn University,
Songkhla, Thailand. Bangkok: Department of Marine Science: 90-96.
Thorp, J.H. and S.P. Gloss. 1986. Field and laboratory tests on acute
toxicity of cadmium to freshwater crayfish. Bull. Environ. Contam. Toxicol.
37: 355-361.
Thorp, J.H., et al. 1979. Effects of chronic cadmium exposure on crayfish
survival, growth, and tolerance to elevated temperatures. Arch. Environ.
Contam. Toxicol. 8: 449.
Thorpe, G.J. and J.D. Costlow. 1989. The relation of the acute (96-h) uptake
and subcellular distribution of cadmium and zinc to cadmium toxicity in larvae
of Rhithropanopeus harrisii and a Palaemonetes pugio. In: U.M. Cowgill and
239
-------
L.R. Williams (eds.), Aquatic Toxicology and Hazard Assessment, ASTM STP 1027,
Philadelphia, PA. 12: 82-94.
Thursby, G.B. and R.L. Steele. 1986. Comparison of short- and long-term sexual
reproduction tests with the marine red alga Champia Parvula. Environmental
Toxicology and Chemistry. 5: 1013-1018.
Timmermans, K.R., W. Peeters and M. Tonkes. 1992. Cadmium, zinc, lead and
copper in Chironomus riparius (Meigen) larvae (Diptera, Chironomidae): uptake
and effects. Hydrobiologia. 241: 119-134.
Tomasik, P., C.M. Magadza, S. Mhizha and A. Chirume. 1995a The metal-metal
interactions in biological systems. Part III. Daphnia magna. Water, Air Soil
Pollut. 82: 695-711.
Tomasik, P, C.M. Magadza, S. Mhizha, A. Chirume, M.F. Zaranyika and S.
Muchiriri. 1995b Metal-metal interaction in biological systems. Part IV.
Freshwater snail Bulinus globosus. Water, Air Soil Pollut. 83: 123-145.
Torres, E., A. Cid, C. Herrero and J. Abalde. 1998. Removal of cadmium ions by
the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term
kinetics of uptake. Bioresource Technology. 63: 213-220.
Tortell, P.D. and N.M. Price. 1996. Cadmium toxicity and zinc limitation in
centric diatoms of the genus Thalassiosira. Mar. Ecol. Prog. Ser. 138: 245-
254 .
Toudal, K. and H.U. Riisgard. 1987. Acute and sublethal effects of cadmium on
ingestion, egg production and life-cycle development in the copepod Acartia
tonsa. Mar. Ecol. Prog. Ser. 37: 141-146.
Toussaint, M.W., T.R. Shedd, W.H. Van der Schalie and G.R. Leather. 1995. A
comparison of standard acute toxicity test with rapid-screening toxicity test.
Environ. Toxicol. Chem. 14(5): 907-915.
Trehan, K. And Maneesha. 1994. Cadmium mediated control of nitrogenase
activity and other enzymes in a nitrogen fixing cyanobacterium. Acta
Microbiol. Hungarica. 41(4): 441-449.
240
-------
Trevors, J.T., G.W. Stratton and G.M. Gadd. 1986. Cadmium transport,
resistance, and toxicity in bacteria, algae, and fungi. Can. J. Microbiol. 32:
447-464 .
Tucker, R.K. 1979. Effects of in vivo cadmium exposure on ATPases in gill of
the lobster, Homarus americanus. Bull. Environ. Contam. Toxicol. 23: 33.
Tucker, R.K. and A. Matte. 1980. In vitro effects of cadmium and lead on
ATPases in the gill of the rock crab, Cancer irroratus. Bull. Environ. Contam.
Toxicol. 24: 847.
Twagilimana, L., J. Bohatier, C-A. Groliere, F. Bonnemoy and D. Sargos. 1998.
A new low-cost microbiotest with the protozoan Spirostomum teres: culture
conditions and assessment of sensitivity of the ciliate to 14 pure chemicals.
Ecotoxicology and Environmental Safety. 41: 231-244.
Tyurin, A.N. and N.K. Khristoforova. 1993. Effect of toxicants on the
development of the chiton Ischnochiton hakodadensis. Russ. Mar. Biol. 29(5/6):
100-106.
U.S. EPA. 1976. Quality criteria for water. EPA-440/9-76-023. National
Technical Information Service, Springfield, Virginia.
U.S. EPA. 1980. Ambient water quality criteria for cadmium. EPA-440/5-80-025.
National Technical Information Service, Springfield, Virginia.
U.S. EPA. 1983a. Methods for chemical analysis of water and wastes. EPA-600/4-
79-020 (Revised March 1983). National Technical Information Service,
Springfield, Virginia.
U.S. EPA. 1983b. Water quality standards regulation. Federal Register 48:
51400. November 8.
U.S. EPA. 1983c. Water quality standards handbook. Office of Water Regulations
and Standards, Washington, D.C.
U.S. EPA. 1985. Ambient water quality criteria for cadmium. EPA-440/5-84-032
(Revised late 1984). National Technical Information Service, Springfield , VA.
241
-------
U.S. EPA. 1991. Technical support document for water quality-based toxics
control. EPA-505/2-90-001. Office of Water, Washington, D.C.
U.S. EPA. 1994a. Water quality standards handbook, second ed. EPA-823-B-94-
005b. Office of Water, Washington, D.C.
U.S. EPA. 1994b. Interim guidance on determination and use of water-effect
ratios for metals. U.S. Environmental Protection Agency, Office of Water,
Washington, D.C. EPA-823-B-94-001
U.S. EPA. 1999a. National Recommended Water Quality Criteria -- Correction.
EPA-822-Z-99-001. Office of Water, Washington, D.C.
U.S. EPA. 1999b. Integrated approach to assessing the bioavailability and
toxicity of metals in surface water and sediments. EPA-822-E-99-001. Office of
Water, Washington, D.C.
Udoidiong, O.M., P.M. Akpan. 1991. Toxicity of cadmium, lead and lindane to
Egeria radiata Lamarck (Lamellibranchia, Donacidae). Rev. Hydrobiol. Trap.
24(2): 111-117 .
Uthe, J.F., et al. 1982. Cadmium in American lobster (Homarus americanus) from
the area of a lead smelter. Can. Tech. Rept. Fish. Aquat. Sci. No. 1163.
Valencia, R., M. Gerpe, J. Trimmer, T. Buckman, A.Z. Mason and P.E. Olsson.
1998. The effect of estrogen on cadmium distribution in rainbow trout
(Oncorhynchus mykiss). Mar. Environ. Res. 46(1-5): 167-171.
Van den Hurk, P., M. Faisal and M.H. Roberts Jr. 1998. Interaction of cadmium
and benzo[a]pyrene in mummichog (Fundulus heteroclitus) : effects on acute
mortality. Mar. Environ. Res. 46(1-5) : 525-528.
Van der Heever, J.A. and J.U. Grobbelaar. 1996. The use of Selenastrum
capricornutum growth potential as a measure of toxicity of a few selected
compounds. Water SA 22(2): 183-191.
Van Gemert, J.M, H.J.G. Ten Hoopen, J.A. Roels and A. Fuchs. 1985. Effects of
temperature on cadmium toxicity to the green alga Scenedesmus acutus. II.
242
-------
Light-limited growth in continuous culture. Antonie van Leeuwenhoek. 51: 347-351.
Van Ginneken, L., M.J. Chowdhury and R. Blust. 1999. Bioavailability of
cadmium and zinc to the common carp, Cyprinus carpio, in complexing
environments: A test for the validity of the free ion activity model. Environ.
Toxicol. Chem. 18(10): 2295-2304.
Van Leeuwen, C.J., P.S. Griffioen, W.H.A. Vergouw and J.L. Maas-Diepeveen.
1985a. Differences in susceptibility of early life stages of rainbow trout
(Salmo gairdneri) to environmental pollutants. Aquatic Toxicology. 7: 59-78.
Van Leeuwen, C.J., W.J. Luttmer and P.S. Griffioen. 1985b. The use of cohorts
and populations in chronic toxicity studies with Daphnia magna: a cadmium
example. Ecotoxicol. Environ. Safety. 9: 26-39.
Van Leeuwen, C.J., G. Niebeek and M. Rijkeboer. 1987. Effects of chemical
stress on the population dynamics of Daphnia magna: a comparison of two test
procedures. Ecotoxicol. Environ. Safety. 14:1-11.
Van Steveninck, R.F.M., M.E. Van Steveninck and D.R. Fernando. 1992. Heavy-
metal (Zn, Cd) tolerance in selected clones of duck weed (Lemna minor). Plant
Soil. 146: 271-280.
Vanegas, C., S. Espina, A.V. Botello and S. Villanueva. 1997. Acute toxicity
and synergism of cadmium and zinc in white shrimp, Penaeus setiferus,
juveniles. Bull. Environ. Contam. Toxicol. 58: 87-92.
Vashchenko, M.A. and P.M. Zhadan. 1993. Ecological assessment of marine
environment using two sea urchin tests, disturbance of reproduction and
sediment embryotoxicity. Sci. Total Environ. ppl235-1245.
Vasseur, P and P. Pandard. 1988. Influence of some experimental factors o
metals toxicity to Selenastrum capricornutum. Toxic. Assess. 3: 331-343.
Veldhuizen-Tsoerkan, M.B., D.A. Holwerda and D.I. Zandee. 1991. Anoxic
survival time and metabolic parameters as stress indices in sea mussels
243
-------
exposed to cadmium or polychlorinated biphenyls. Arch. Environ. Contam.
Toxicol. 20: 259-265.
Verbost, P.M., G. Flik, R.A.C. Lock and S.E.W. Bonga. 1987. Cadmium inhibition
of Ca2+ uptake in rainbow trout gills. Am. J. Physiol. 253 (Regulatory
Integrative Comp. Physiol. 22): R216-R221.
Verma, S.R., et al. 1980. Short term toxicity tests with heavy metals for
predicting safe concentrations. Toxicol. Letters 1: 113.
Vernberg, W.B., et al. 1974. Multiple environmental factor effects on
physiology and behavior of the fiddler crab, Uca pugilator. In: F.J. Vernberg
and W.B. Vernberg (eds.), Pollution and Physiology of Marine Organisms.
Academic Press, New York. p. 381.
Vernberg, W.B., et al. 1977. Effects of sublethal concentrations of cadmium on
adult Paleomonetes pugio under static and flow-through conditions. Bull.
Environ. Contam. Toxicol. 17: 16.
Verriopoulos, G. and M. Moraitou-Apostolopoulou. 1981. Effects of some
environmental factors on the toxicity of cadmium to the copepod Tisbe
holothuriae. Arch. Hydrobiol. 91: 287.
Verriopoulos, G. and M. Moraitou-Apostolopoulou. 1982. Differentiation of the
sensitivity to copper and cadmium in different life stages of a copepod. Mar.
Pollut. Bull. 13: 123.
Versteeg, D.J. 1990. Comparison of short- and long- term toxicity test results
for the green alga, Selenastrum capricornutum. Plants for Toxicity Assessment.
ASTM STP 1091. W. Wang, J.W. Gorsuch and W.R. Lower (eds), American Society
for Testing and Materials, Philadelphia, pp. 40-48.
Visviki, I. and J.W. Rachlin. 1991. The toxic action and interactions of
copper and cadmium to the marine alga Dunaliella minuta, in both acute and
chronic exposure. Arch. Environ. Contam. Toxicol. 20: 271-275.
Visviki, I. and J.W. Rachlin. 1994. Acute and chronic exposure of Dunaliella
salina and Chlamydomonas bullosa to Copper and cadmium: effects on growth.
Arch. Environ. Contam. Toxicol. 26: 149-153.
244
-------
Vogiatzis, A.K. and N.S. Loumbourdis. 1998. Cadmium accumulation in liver and
kidneys and hepatic metallothionein and glutathione levels in Rana ridibunda,
after exposure to CdCl2. Arch. Environ. Contam. Toxicol. 34: 64-68.
Voyer, R.A. 1975. Effect of dissolved oxygen concentration on the acute
toxicity of cadmium to the mummichog, Fundulus heteroclitus. Trans. Am. Fish.
Soc. 104: 129.
Voyer, R.A. and D.G. McGovern. 1991. Influence of constant and fluctuating
salinity on responses of Mysidopsis bahia exposed to cadmium in a life-cycle
test. Aquatic Toxicology. 19: 215-230.
Voyer, R.A. and G. Modica. 1990. Influence of salinity and temperature on
acute toxicity of cadmium to Mysidopsis bahia Molenock. Arch. Environ. Contam.
Toxicol. 19: 124-131.
Voyer, R.A., et al. 1977. Viability of embryos of the winter flounder
Pseudopleuronectes americanus exposed to combinations of cadmium and salinity
at selected temperatures. Mar. Biol. 44: 117.
Voyer, R.A., et al. 1979. Hatching success and larval mortality in an
estuarine teleost, Menidia menidia (Linnaeus), exposed to cadmium in constant
and fluctuating salinity regimes. Bull. Environ. Contam. Toxicol. 23: 475.
Voyer, R.A., et al. 1982. Viability of embryos of the winter flounder
Pseudopleuronectes americanus exposed to mixtures of cadmium and silver in
combination with selected fixed salinities. Aquat. Toxicol. 2: 223.
Vranken, G, R. Vanderhaeghen and C. Heip. 1985. Toxicity of cadmium to free-
living marine and brackish water nematodes (Monhystera microphthalma,
Monhystera disjuncta, Pellioditis marina). Dis. Aquat. Org. 1: 49-58.
Vuori, K.M. 1993. Influence of water quality and feeding habits on the whole-
body metal concentrations in lotic trichopteran larvae. Limnol. 23(4): 301-
308 .
245
-------
Vuori, K.M. 1994. Rapid behavioural and morphological responses of
hydropsychid larvae (Trichoptera, Hydropsychidae) to sublethal cadmium
exposure. Environ. Pollut. 84: 291-299.
Vykusova, B., Z. Svobodova. 1987. Comparison of the sensitivity of male and
female guppies (Poecilia reticulata Peters) to toxic substances. Bull. Vurh
Vodnany. (CZE)(ENG ABS). 23(3): 20-23.
Vymazal, J. 1984. Short-term uptake of heavy metals by periphyton algae.
Hydrobiol. 119: 171-179.
Vymazal, J. 1990a. Toxicity and accumulation of lead with respect to algae and
cyanobacteria: a review. Acta Hydrochim. Hydrobiol. 18(5) : 513-535.
Vymazal, J. 1990b. Uptake of lead, chromium, cadmium and cobalt by Cladophora
glomerata. Bull. Environ. Contam. Toxicol. 44: 468-472.
Vymazal, J. 1995. Influence of pH on heavy metals uptake by Cladophora
glomerata. Pol. Arch. Hydrobiol. 42(3): 231-237.
Wall, S.B., J.J. Isley and T.W. La Point. 1996. Fish Bioturbation of cadmium-
contaminated sediments: factors affecting Cd availability to Daphnia magna.
Environ. Toxicol. Chem. 15(3) : 294-298.
Wallace, W.G. and G.R. Lopez. 1997. Bioavailability of biologically
sequestered cadmium and the implications of metal detoxification. Mar. Ecol.
Prog. Ser. 147: 149-157.
Walsh, G.E., L.L. McLaughlin, M.J. Yoder, P.H. Moody, E.M. Lores, J. Forester
and P.B. Wessinger-Duvall. 1988. Minutocellus polymorphus: a new marine diatom
for use in algal toxicity tests. Environmental Toxicology and Chemistry. 7:
925-929.
Walsh, K., R.H. Dunstan, R.N. Murdoch. 1995. Differential Bioaccumulation of
heavy metals and organopollutants in the soft tissue and shell of the marine
gastropod, Austrocochlea constricta. Arch. Environ. Contam. Toxicol. 28: 35-
39.
246
-------
Walsh, R.S. and K.A. Hunter. 1992. Influence of phosphorus storage on the
uptake of cadmium by the marine alga Macrocystis pyrifera. Limnol. Oceanogr.
37(7): 1361-1369.
Wang, J., M. Zhang, J. Xu and Y, Wang. 1995. Reciprocal effect of Cu, Cd, Zn
on a kind of marine alga. Water Res. 29(1) : 209-214.
Wang, W. 1986. Toxicity tests of aquatic pollutants by using common duckweed.
Environmental Pollution (Series B). 11: 1-14.
Wang, W.X. and N.S. Fisher. 1996. Assimilation of trace elements and carbon by
the mussel Mytilus edulis: effects of food composition. Limnol. Oceanogr.
41(2) : 197-207 .
Wang, W.X. and N.S. Fisher. 1998. Accumulation of trace elements in a marine
copepod. Limnol. Oceanogr. 43(2): 273-283.
Wang, W.X., N.S. Fisher and S.N. Luoma. 1996. Kinetic determinations of trace
element bioaccumulation in the mussel Mytilus edulis. Mar. Ecol. Prog. Ser.
140: 91-113.
Wani, G.P. 1986. Toxicity of heavy metals to embryonic stages of Cyprinus
carpio communis Pollut. Res. 5(2): 47-51.
Warnau, M., G. Ledent, A. Temara, V. Alva, M. Jangoux and P. Dubois. 1995a.
Allometry of heavy metal bioconcentration in the echinoid Paracentrotus
lividus. Arch. Environ. Contam. Toxicol. 29: 393-399.
Warnau, M., G. Ledent, A. Temara, M Jangoux and P. Dubois. 1995b. Experimental
cadmium contamination of the echinoid Paracentrotus lividus: influence of
exposure mode and distribution of the metal in the organism. 116: 117-124.
Warnau, M., J.L. Teyssie and S.W. Fowler. 1995c. Effect of feeding on cadmium
bioaccumulation in the echinoid Paracentrotus lividus (Echinodermata). Mar.
Ecol. Prog. Ser. 126: 305-309.
Warnau, M., S.W. Fowler and J.L. Teyssie. 1996a. Biokinetics of selected heavy
metals and radionuclides in two marine macrophytes: the seagrass Posidonia
oceanica and the alga Caulerpa taxifolia. Mar. Environ. Res. 41(4) : 343-362.
247
-------
Warnau, M., M. Iaccarino, A. De Biase, A. Temara, M Jangoux, P. Dubois and G.
Pagano. 1996b. Spermiotoxicity and embryotoxicity of heavy metals in the
echinoid Paracentrotus lividus. Environ. Toxicol Chem. 15(11): 1931-1936.
Warnau, M., J.L., Teyssie and S.W. Fowler, 1997. Cadmium bioconcentration in
the echinoid Paracentrotus lividus: influence of the cadmium concentration in
seawater. Mar. Environ. Res. 43(4) : 303-314.
Warnick, S.L. and H.L. Bell. 1969. The acute toxicity of some heavy metals to
different species of aquatic insects. Jour. Water Pollut. Control Fed. 41:
280.
Warren, L.A., A. Tessier and L. Hare. 1998. Modelling cadmium accumulation by
benthic invertebrates in situ: the relative contributions of sediment and
overlying water reservoirs to organism cadmium concentrations. Limnol.
Oceanogr. 43(7): 1442-1454.
Watling, H.R. 1981. Effects of metals on the development of oyster embryos.
South African Jour. Sci. 77: 134.
Watling, H.R. 1982. Comparative study on the effects of zinc, cadmium, and
copper on the larval growth of three oyster species. Bull. Environ. Contam.
Toxicol. 28: 195.
Watling, H.R. 1983a. Accumulation of seven metals by Crassostrea gigas,
Crassostrea margaritacea, Perna perna, and Choromytilus meridionalis. Bull.
Environ. Contam. Toxicol. 30: 317.
Watling, H.R. 1983b. Comparative study on the effects of metals on the
settlement of Crassostrea gigas. Bull. Environ. Contam. Toxicol. 31: 344.
Watson, C.F. 1988. Sublethal effects of cadmium exposure on freshwater
teleosts. Northeast Louisiana University, pp. 136.
Weber, W.J., Jr. and W. Stumm. 1963. Mechanism of hydrogen ion buffering in
natural waters. Jour. Am. Water Works Assoc. 55: 1553.
Weimin, Y., G.E. Batley and M. Ahsanuullah. 1994. Metal bioavailability to the
soldier crab Mictyris longicarpus. Sci. Total Environ. 141: 27-44.
248
-------
Weis, J.S., et al. 1981. Effects of cadmium, zinc, salinity, and temperature
on the teratogenicity of methylmercury to the killifish (Fundulus
heteroclitus) . Rapp. P. v. Reun. Cons. Int. Explor. Mer. 178: 64.
Westerman, A.G. and W.J. Birge. 1978. Accelerated rate of albinism in channel
catfish exposed to metals. Prog. Fish-Cult. 40: 143.
Westernhagen, H.V. and V. Dethlefsen. 1975. Combined effects of cadmium and
salinity on development and survival of flounder eggs. Jour. Mar. Biol. Assoc.
U.K. 55: 945.
Westernhagen, H.V., et al. 1975. Combined effects of cadmium and salinity on
development and survival of garpike eggs. Helgol. Wiss. Meeresunters. 27: 268.
Westernhagen, H.V., et al. 1978. Fate and effects of cadmium in an
experimental marine ecosystem. Helgol. Wiss. Meeresunters. 31: 471.
Westernhagen, H.V., et al. 1979. Combined effects of cadmium, copper and lead
on developing herring eggs and larvae. Helgol. Wiss. Meeresunters. 32: 257.
White, D.H. and M.T. Finley. 1978a. Effects of dietary cadmium in mallard
ducks. In: D.D. Hemphill (ed.), Trace Substances in Environmental Health-XII.
University of Missouri, Columbia, Missouri, p. 220.
White, D.H. and M.T. Finley. 1978b. Uptake and retention of dietary cadmium in
mallard ducks. Environ. Res. 17: 53.
White, D.H., et al. 1978. Histopathologic effects of dietary cadmium on
kidneys and testes of mallard ducks. Jour. Toxicol. Environ. Health 4: 551.
White, S.L. and P.S. Rainbow. 1982. Regulation and accumulation of copper,
zinc and cadmium by the shrimp Palaemon elegans. Mar. Ecol. Progress Series 8:
95.
White, S.L. and P.S. Rainbow. 1986. Accumulation of cadmium by Palaemon
elegans (crustacea: decapoda). Mar. Ecol. Prog. Ser. 32: 17-25.
249
-------
Wicklum, D. and R.W. Davies. 1996. The effects of chronic cadmium stress on
energy acquisition and allocation in a freshwater benthic invertebrate
predator. Aquatic Toxicology. 35: 237-252.
Wicklum, D., D.E.C. Smith and R.W. Davies. 1997. Mortality, preference,
avoidance, and activity of a predatory leech exposed to cadmium. Arch.
Environ. Contam. Toxicol. 32: 178-183.
Wicklund, A. and P. Runn. 1988. Calcium effects on cadmium uptake,
redistribution, and elimination in minnows, Phoxinus phoxinus, acclimated to
different calcium concentrations. Aquat. Toxicol. 13: 109-122.
Wicklund, A., P. Runn and L. Norrgren. 1988. Cadmium and zinc interactions in
fish: effects of zinc on the uptake, organ distribution, and elimination of
109Cd in the zebrafish, Brachydanio rerio. Arch. Environ. Contam. Toxicol. 17:
345-354 .
Wier, C.F. and W.M. Walter. 1976. Toxicity of cadmium in the freshwater snail,
Physa gyrina Say. Jour. Environ. Qual. 5: 359.
Wikfors, G.H. and R. Ukeles. 1982. Growth and adaptation of estuarine
unicellular algae in media with excess copper, cadmium or zinc, and effects of
metal-contaminated algal food on Crassostrea virginica larvae. Mar. Ecol.
Progress Series 7: 191.
Wilczok, A., U. Mazurek, D. Tyrawska, B. Sosak-Swiderska. 1994. Effect of
cadmium on the cell division of Chlorella vulgaris Beij. 1890, strain A-8.
Pol. Arch. Hydrobiol. 41(1) : 123-131.
Wildgust, M.A. and M.B. Jones. 1998. Salinity change and the toxicity of the
free cadmium ion [Cd2+(aq)] to Neomysis integer (Crustacea: Mysidacea) . Aquatic
Toxicology. 41: 187-192.
Williams, C.J., D. Aderhold and R.G.J. Edyvean. 1998. Comparison between
biosorbents for the removal of metal ions from aqueous solutions.
Williams, D.R. and J.P. Giesy, Jr. 1978. Relative importance of food and water
sources to cadmium uptake by Gambusia affinis (Poeciliidae). Environ. Res. 16:
326.
250
-------
Williams, K.A., D.W.J. Green and D. Pascoe. 1985. Studies on the acute
toxicity of pollutants to freshwater macroinvertebrates 1. Cadmium. Arch.
Hydrobiol. 102(4): 461-471.
Williams, K.A., D.W.J. Green, D. Pascoe and D.E. Gower. 1986. The acute
toxicity of cadmium to different larval stages of Chironomus riparius
(diptera: chironomidae) and its ecological significance for pollution
regulation. Oecologia. 70(3): 362-366.
Williams, K.A., D.W.J. Green, D. Pascoe and D.E. Gower. 1987. Effect of
cadmium on oviposition and egg viability in Chironomus riparius (diptera:
chironomidae). Bull. Environ. Contam. Toxicol. 38: 86-90.
Williams, P.L and D.B. Dusenbery. 1990. Aquatic toxicity testing using the
nematode, Caenorhabditis elegans. Environmental Toxicology and Chemistry.
9:1285-1290.
Windom, H.L., et al. 1982. Metal accumulation by the polychaete Capitella
capitata: influences of metal content and nutritional quality of detritus.
Can. Jour. Fish. Aquat. Sci. 39: 191.
Winner, R.W. 1984. The toxicity and biaccumulation of cadmium and copper as
affected by humic acid. Aquat. Toxicol. 5: 267.
Winner, R.W. 1986. Interactive effects of water hardness and humic acid on the
chronic toxicity of cadmium to Daphnia pulex. Aquatic Toxicology. 8: 281-293.
Winner. R.W. 1988. Evaluation of the relative sensitivities of 7-d Daphnia
magna and Ceriodaphnia dubia toxicity tests for cadmium and sodium
pentachlorophenate. Environmental Toxicology and Chemistry. 7: 153-159.
Winner, R.W. and J.D. Gauss. 1986. Relationship between chronic toxicity and
bioaccumulation of copper, cadmium and zinc as affected by water hardness and
humic acid. Aquat. Toxicol. 8: 149-161.
Winner, R.W. and T.C. Whitford. 1987. The interactive effects of a cadmium
stress, a selenium deficiency and water temperature on the survival and
reproduction of Daphnia magna Straus. Aquatic Toxicology. 10: 217-224.
251
-------
Winter, S. 1996. Cadmium uptake kinetics by freshwater mollusc soft body under
hard and soft water conditions. Chemosphere. 32(10): 1937-1948.
Witeska, M., B. Jezierska and J. Chaber. 1995. The influence of cadmium on
common carp embryos and larvae. Aquaculture. 129: 129-132.
Witzel, B. 1998. Uptake, storage and loss of cadmium and lead in the woodlouse
Porcellio scaber (crustacea, isopoda). Water, Air, Soil Pollut. 108: 51-68.
Wong, C.K. 1989. Effects of cadmium on the feeding behavior of the freshwater
cladoceran Moina macrocopa. 1989. Chemosphere. 18(7/8): 1681-1687.
Wong, C.K. and P.K. Wong. 1990. Life table evaluation of the effects of
cadmium exposure on the freshwater cladoceran, Moina macrocopa. Bull. Environ.
Contam. Toxicol. 44: 135-141.
Wong, P.T.S. 1987. Toxicity of cadmium to freshwater microorganisms,
phytoplankton, and invertebrates.
Wong, P.T.S., et al. 1982. Physiological and biochemical responses of several
freshwater algae to a mixture of metals. Chemosphere 11: 367.
Woodall, C, N. Maclean and F. Crossley. 1988. Responses of trout fry (Salmo
gairdneri) and Xenopus laevis tadpoles to cadmium and zinc. Comp. Biochem.
Physiol. 8 9C(1) : 93-99.
Woodling, J.D. 1993. Survival and mortality of brown trout (Salmo trutta)
exposed to in situ acute toxic concentrations of cadmium and zinc. University
of Colorado at Boulder, pp. 130.
Woodward, D.F., A.M. Farag, H.L. Bergman, A.J. DeLonay, E.E. little, C.E.
Smith and F.T. Barrow. 1995. Metals-contaminated benthic invertebrates in the
Clark Fork River, Montana: effects on age-0 brown trout and rainbow trout.
Can. J. Fish. Aquat. Sci. 52: 1994-2004.
Woodworth, J. and D. Pascoe. 1982. Cadmium toxicity to rainbow trout, Salmo
gairdneri Richardson: a study of eggs and alevins. Jour. Fish Biol. 21: 47.
252
-------
Woodworth, J. and D. Pascoe. 1983. Cadmium uptake and distribution in
sticklebacks related to the concentration and method of exposure. Ecotoxicol.
Environ. Safe. 7: 525-530.
Wren, M.J. and D. McCarroll. 1990. A simple and sensitive bioassay for the
detection of toxic materials using a unicellular green alga. Environmental
Pollution. 64: 87-91.
Wright, D.A. 1977. The effect of salinity on cadmium uptake by the tissues of
the shore crab, Carcinus maenas. Exp. Biol. 67: 137.
Wright, D.A. 1988. Dose-related toxicity of copper and cadmium in striped bass
larvae from the Chespeake Bay: field considerations. Wat. Sci. Tech. 20(6/7):
39-48 .
Wright, D.A. and J.W. Frain. 1981. Cadmium toxicity in Marinogammarus
obtusatus: effect of external calcium. Environ. Res. 24: 338.
Wright, D.A. and P.M. Welbourn. 1994. Cadmium in the aquatic environment: a
review of ecological, physiological, and toxicological effects on biota.
Environ. Reviews 2: 187-214.
Wright, D.A., M.J. Meteyer and F.D. Martin. 1985. Effect of calcium on cadmium
uptake and toxicity in larvae and juveniles of striped bass (Morone
saxatilis). Bull. Environ. Contam. Toxicol. 34(2): 196-204.
Wu, R.S.S., P.K.S. Lam and B. Zhou. 1997. A settlement inhibition assay with
cyprid larvae of the barnacle Balanus amphitrite. Chemosphere. 35(9): 1867-
1874 .
Wundram, M., D. Selmar and M. Bahadir. 1996. The Chlamydomonas test: a new
phytotoxicity test based on the inhibition of algal photosynthesis enables the
assessment of hazardous leachates from waste disposals in salt mines.
Chemosphere. 32(8): 1623-1632.
253
-------
Xiaorong, W. J. Mei, S. Hao and X. Ouyong. 1997. Effects of chelation on the
bioconcentration of cadmium and copper by carp (Cyprinus carpio L.). Bull.
Environ. Contam. Toxicol. 59: 120-124.
Xue, H. and L. Sigg. 1998. Cadmium speciation and complexation by natural
organic ligands in freshwater. Analytica Chemica Acta. 363: 249-259.
Yager, C.M. and H.W. Harry. 1964. The uptake of radioactive zinc, cadmium and
copper by the freshwater snail, Taphius glabratus. Malacologia 1: 339.
Yamamoto, Y and M. Inoue. 1985. Lethal tolerance of acute cadmium toxicity in
rainbow trout previously exposed to cadmium. Bull. Jpn. Soc. Sci. Fish.
51(10): 1733-1735.
Zanders, I.P. and W.E. Rojas. 1996. Salinity effects on cadmium accumulation
in various tissues of the tropical fiddler crab Uca rapax. Environ. Pollut.
94(3): 293-299.
Zaroogian, G.E. 1979. Studies on the depuration of cadmium and copper by the
American oyster Crassostrea virginica. Bull. Environ. Contam. Toxicol. 23:
117 .
Zaroogian, G.E. 1980. Crassostrea virginica as an indicator of cadmium
pollution. Mar. Biol. (Berl.). 58(4): 275-284.
Zaroogian, G.E. and S. Cheer. 1976. Cadmium accumulation by the American
oyster, Crassostrea virginica. Nature. 261: 408.
Zaroogian, G.E. and G. Morrison. 1981.
Crassostrea virginica on fecundity and
Contam. Toxicol. 27: 344.
Effect of cadmium body burdens in adult
viability of larvae. Bull. Environ.
Zauke, G.P., R. Von Lemm, H.G. Meurs and W. Butte. 1995. Validation of
estuarine gammarid collectives (amphipoda: Crustacea) as biomonitors for
cadmium in semi-controlled toxicokinetic flow-through experiments. Environ.
Pollut. 90(2): 209-219.
254
-------
Zhang, M., J. Wang and J. Bao. 1992. Study on the relationship between
speciation of heavy metals and their ecotoxicity. Chin. J. Oceanol. Limnol.
10(3): 215-222.
Zia, S. and D.G. McDonald. 1994. Role of the gills and gill chloride cells in
metal uptake in the freshwater-adapted rainbow trout, Oncorhynchus mykiss.
Can. J. Fish. Aquat. Sci. 51: 2482-2492.
Zou, E. And S. Bu. 1994. Acute toxicity of copper, cadmium, and zinc to the
water flea, Moina irrasa (cladocera). Bull. Environ. Contam. Toxicol. 52: 742-
748 .
Zuiderveen, J.A. and W.J. Birge. 1997. The relationship between chronic values
in toxicity tests with Ceriodaphnia dubia. Environmental Toxicology and Risk
Assessment: Modeling and Risk Assessment (sixth volume), ASTM STP 1317, F.J.
Dwyer, T.R. Doane and M.L. Hinman (eds), American Society for Testing and
Materials, pp. 551-556.
255
------- |