Application of CALMET / CALPUFF
and MESOPUFF II to Compare
Regulatory Design Concentrations for
a Typical Long-Range Transport
Analysis

APRIL 2002

Prepared For:

U.S. Environmental Protection Agency

Submitted By:

Earth Tech

196 Baker Avenue

Concord, Massachusetts 01742

(978) 371-4000


-------
TABLE OF CONTENTS

Page

1.	INTRODUCTION	1-1

2.	SITE CHARACTERIZATION AND METEOROLOGICAL DATA	3-1

2.1	Source Description	3-1

2.2	Geophysical Data	3-1

2.3	Meteorological Data	3-2

3.4	Air Quality Monitoring Data	3-8

3.	AIR QUALITY MODELING METHODOLOGY	4-1

3.1	Meteorological Modeling Options	4-1

3.2	CALPUFF Dispersion Modeling Options	4-2
3.2 MESOPUFFII Dispersion Modeling Options	4-3

4.	RESULTS	4-1

5.	REFERENCES	5-1

i


-------
LIST OF APPENDICES

Page

Appendix A: CALMET Input Control File
Appendix B: MESOPUFF II Input Control File
Appendix C: CALPUFF Input Control File

A-l

C-l

B-l

LIST OF FIGURES

Figure 2-1

Figure 2-2

Figure 2-3

Figure 2-4
Figure 3-1

Page

Terrain contours (m MSL) plotted with a 4 km resolution for the 78 x 60	2-3

computational domain. The Class I area and the hypothetical facility site are shown.

Dominant land use categories for 4 km resolution on the 78 x 60 computational 2-7
domain. The Class I areas and the hypothetical facility are also shown.

Locations of meteorological observation sites and MM4 grid points used in the 2-9
CALMET modeling.

Locations of ozone monitoring stations.	2-10

Location of discrete receptors within Shenandoah National Park. The spacing 3-4
is every 1 kilometer.

ii


-------
LIST OF TABLES

Page

Table 2-1. Hypothetical Point Source Characteristics	3-1

Table 2-2. U.S. Geological Survey Land Use and Land Cover Classification System	3-4

Table 2-3. Default CALMET Land Use Categories and Associated Geophysical Parameters Based
on the U.S. Geological Survey Land Use Classification System (14-Category System)	3-5

Table 2-4. MESOPUFF II Land Use and Land Cover Classification System	3-6

Table 2-5. Meteorological Data Sources and Parameters Available	3-11

Table 2-6. NWS Hourly Surface Stations	3-11

Table 2-7. Upper Air Stations	3-11

Table 2-8. Hourly NWS Precipitation Stations	3-12

Table 2-9. Ozone Stations	3-14

Table 4-1. Highest and Highest Second-Highest S02 Concentrations Simulated in the Shenandoah
National Park.	4-2

m


-------
1. INTRODUCTION

The U.S. Environmental Protection Agency (EPA) has proposed to adopt the
CALPUFF modeling system (Scire et al., 2000a,b) in Appendix A of the Guideline
on Air Quality Models (Appendix W of 40 CFR Part 51) and recommend CALPUFF
for Class I impact assessments and other long range transport applications or near
field applications involving complex flows on a case-by-case basis (EPA, 2000).
CALPUFF is also recommended by both the Federal Land Managers Air Quality
Workgroup (FLAG, 2000) and the Interagency Workgroup on Air Quality Modeling
(IWAQM, 1998) for Class I impact analyses. MESOPUFF II (Scire and Insley,
1993) is the current model identified as a refined modeling technique for long-range
transport applications. As an "Appendix B" model, it is approved for use on a case-
by-case basis, and applied following the guidance established by EPA (EPA, 1992).

The purpose of this report is to characterize similarities and differences between
MESOPUFF II and CALPUFF when simulating regulatory design concentrations for
long-range (50 km and greater) transport applications. This type of comparison is
known as a consequence analysis. Its objective is to provide users of a newer
modeling technique with a simple comparisons of results obtained with an
established modeling technique for similar types of applications. Although
representative, the results of the comparison are by no means conclusive for all
potential applications.

The application chosen for this comparison is an analysis of S02 concentrations in a
Federal Class I area located more than 50 km from a hypothetical point source. The
Class I area chosen is the Shenandoah National Park. The point source is placed
approximately 90 km SSE of the park.

There is substantial terrain in this domain, with peak elevations of 1000 meters
(MSL) in the vicinity of the Shenandoah National Park. Hence, there is the potential
for significant terrain effects, both on the meteorological fields and also in terms of
plume-terrain interaction effects. Because the MESOPUFF II modeling system does
not include terrain effects, we have used the CALMET model to prepare the gridded
meteorological fields for driving both CALPUFF and MESOPUFF II. This allows us
to isolate differences between MESOPUFF II and CALPUFF from effects introduced
by the substantial differences between the MESOPAC meteorological processor and
the CALMET meteorological model. It also allows us to make use of the National
Center for Atmospheric Research / Penn State University (NCAR/PSU) Mesoscale
Model, Version 4 (MM4) meteorological fields in both simulations. Note that
CALMET offers a MESOPAC output data file option, which averages winds across
CALMET layers to produce the 2-layer system of MESOPAC.

Introduction

1-1

Report.doc


-------
The meteorological and dispersion modeling simulations are conducted for nearly a
one-year period (January 6 to December 29, 1990). This period is selected based on
the availability of the EPA MM4 dataset. Meteorological observations are used to
determine the wind field in areas where the observations are representative. Hourly
meteorological data produced by MM4 on a coarse-grid (80-km resolution) are used
by CALMET to help define the initial estimate of the wind fields. Fine scale terrain
effects (~4 km resolution) are determined by the diagnostic wind module in
CALMET. Spatial variability occurs in the wind fields over short distances due to
the forcing of the terrain.

MESOPUFF II is applied as prescribed by EPA for modeling S02 as a "relatively
inert pollutant". Neither chemical transformation nor deposition is active. Terrain
effects are not treated in the model, so MESOPUFF II results in this complex terrain
setting are most appropriate for puffs that have become mixed in the vertical, or that
are already "on the ground". CALPUFF is applied both with and without chemical
transformation and deposition, and when applied without these processes, it is run
both with and without terrain adjustments. This allows us to characterize the results
obtained when CALPUFF is applied both in its recommended mode, and also in
modes more similar to MESOPUFF II.

Section 2 provides a general description of the study area and the source
configuration, including descriptions of the site characteristics and the data bases
(meteorological, geophysical, and aerometric) used in the analysis. Section 3
includes an overview of the CALMET, MESOPUFF, and CALPUFF models.
Modeling results for Shenandoah National Park are described in Section 4.

Introduction

1-2

Report.doc


-------
2.

SITE CHARACTERIZATION AND METEOROLOGICAL DATA

2.1 Source Description

A single isolated point source that emits S02. is used for this analysis. Its
characteristics are summarized in Table 2-1.

Table 2-1. Hypothetical Point Source Characteristics

UTM-17

UTM-17

Stack

Base

Stack

Exit

Exit

so2

X (km)

Y (km)

Height

Elevation

Diameter

Velocity

Temperature

Emission





(m)

(m MSL)

(m)

(m/s)

(K)

Rate (g/s)

750.0

4150.0

100.0

100.0

8.0

26.0

430.0

6000.0

2.2 Geophysical Data

Gridded terrain elevations for the modeling domain are obtained from 3 arc-second
digital elevation model (DEM) files produced by the United States Geological Survey
(USGS). Data are provided in files covering 1 degree by 1 degree block of latitude
and longitude. The 1-degree DEMs are produced by the Defense Mapping Agency
using cartographic and photographic sources. USGS 1:250,000 scale topographic
maps are the primary source of 1-degree DEMs.

One degree DEM data consists of an array of 1201 by 1201 elevations referenced on
the geographic (latitude/longitude) coordinate system of the World Geodetic System
1972 Datum. Elevations are in meters relative to mean sea level, and the spacing of
the elevations along each profile is 3 arc-seconds, which corresponds to a spacing of
approximately 90 meters.

The modeling domain chosen for this analysis covers an area of 312 km by 240 km
over most of the northern portions of central and eastern Virginia, including the
entire length of the Shenandoah National Park. Topographical features in the area
influence the wind flow, including peak elevations of over 1300 meters, which are
significantly above the base elevation of the hypothetical source.

A resolution of 4 km in the horizontal is used to represent the variations of the terrain
elevations in the area. USGS elevation records located within each grid cell in the
domain are averaged to produce a mean elevation at each grid point. The 4 km
resolution produces a workable number of grid cells (78 x 60), but allows adequate

Site Characterization and Meteorological Data

2-1

Report.doc


-------
representation of the important terrain features associated with the Class I area and
the surrounding SW-NE oriented ridges. Figure 2-1 shows the terrain contours and
the hypothetical source location for the modeling domain.

USGS land use data in the vicinity of the facility have been used to produce a gridded
field of dominant land use categories. The land use data are obtained in Composite
Theme Grid format (CTG) from the USGS, with a resolution of 200 m and are
processed to produce a 4 km resolution gridded field of fractional land use categories.

The 38 USGS land use categories are mapped into 14 CALMET land use categories
for CALPUFF modeling, and 12 MESOPUFF categories for MESOPUFF II
modeling. Surface properties such as albedo, Bowen ratio, roughness length, and leaf
area index are computed proportionally to the fractional land use for the CALPUFF
modeling. The USGS land use categories are described in Table 2-2. Table 2-3
displays the 14 CALMET land use categories and their associated geophysical
parameters. The mapping of the USGS categories to the corresponding MESOPUFF
categories is indicated in Table 2-4. Figure 2-2 shows the terrain, dominant
CALMET land use categories, and the hypothetical source location for the modeling
domain.

2.3 Meteorological Data

The wind fields in the modeling domain are complex and highly variable. Depending
on the location, some of the observational data will be representative of a small area.
The local terrain has a strong influence on the local flow. Therefore, much of the
structure in the wind fields is determined by CALMET using its diagnostic wind field
module, rather than being driven by observations.

One of the sources of meteorological data used is output from the NCAR/PSU
Mesoscale Model Version 4 (MM4). It is used to define the CALMET initial guess
wind field. This data set consists of hourly values of wind speed, wind direction,
temperature, and pressure on an 80 km grid that covers the continental United States,
southern Canada, and northern Mexico. It was prepared by the U.S. EPA for use in
modeling studies to supplement observational data in data sparse areas and to
improve the time resolution of upper air data. The EPA MM4 dataset is available for
most of the year 1990. This is the period selected for these simulations.

Site Characterization and Meteorological Data

2-2

Report.doc


-------
Domain Terrain Elevations

B
-c

o
£

H

4300

4250

4200

4150

4100

600 650 700 750 800
UTM-17 East (km)

Domain:

X: 580 - 892 km; Y: 4100 - 4340 km
Grid Size: 4km; Grid Cells: 78x60

C ^ Class I Area

State boundary

850

Terrain
Elevation
(m MLS)

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0.1

-100

Figure 2-1. Terrain contours (m MSL) plotted with 4 km resolution for the 78 x 60 computational
domain. The Class I area and the hypothetical facility site are also shown.

Site Characterization and Meteorological Data

2-3

Report.doc


-------
Table 2-2.

U.S. Geological Survey Land Use and Land Cover Classification System

Level I

10	Urban or Built-up Land

20	Agricultural Land

30	Rangeland

40	Forest Land

50	Water

60	Wetland

70	Barren Land

80	Tundra

90	Perennial Snow or Ice

Level II

Residential

Commercial and Services
Industrial

Transportation, Communications and Utilities
Industrial and Commercial Complexes
Mixed Urban or Built-up Land
Other Urban or Built-up Land
Cropland and Pasture

Orchards, Groves, Vineyards, Nurseries, and

Ornamental Horticultural Areas
Confined Feeding Operations
Other Agricultural Land
Herbaceous Rangeland
Shrub and Brush Rangeland
Mixed Rangeland
Deciduous Forest Land
Evergreen Forest Land
Mixed Forest Land
Streams and Canals
Lakes
Reservoirs
Bays and Estuaries
Oceans and Seas
Forested Wetland
Nonforested Wetland
Dry Salt Flats
Beaches

Sandy Areas Other than Beaches

Bare Exposed Rock

Strip Mines, Quarries, and Gravel Pits

Transitional Areas

Mixed Barren Land

Shrub and Brush Tundra

Herbaceous Tundra

Bare Ground

Wet Tundra

Mixed Tundra

Perennial Snowfields

Glaciers

11

12

13

14

15

16

17

21

22

23

24

31

32

33

41

42

43

51

52

53

54

55

61

62

71

72

73

74

75

76

77

81

82

83

84

85

91

92

Site Characterization and Meteorological Data

2-4

Report.doc


-------
Table 2-3. Default CALMET Land Use Categories and Associated Geophysical Parameters Based on the U.S. Geological Survey
Land Use Classification System (14-Category System)

Land Use Type

10
20

-20*

30
40
50

54

55

60

61

62
70
80
90

Description

Urban or Built-up Land

Agricultural Land -
Unirrigated

Agricultural Land - Irrigated

Rangeland

Forest Land

Water

Small Water Body
Large Water Body
Wetland

Forested Wetland
Nonforested Wetland
Barren Land
Tundra

Perennial Snow or Ice

Surface
Roughness (m)

1.0
0.25

0.25
0.05
1.0
0.001
0.001
0.001
1.0
1.0
0.2
0.05
.20
.05

Albedo

0.18
0.15

0.15

0.25

0.10

0.10

0.10

0.10

0.10

0.1

0.1

0.30

0.30

0.70

Bowen Ratio

1.5
1.0

0.5
1.0
1.0
0.0
0.0
0.0
0.5
0.5
0.1
1.0
0.5
0.5

Soil Heat
Flux Parameter

.25
.15

.15
.15
.15
1.0
1.0
1.0
.25
0.25
0.25
.15
.15
.15

Anthropogenic
Heat Flux (W/m2)

0.0
0.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0

Leaf Area
Index

0.2

3.0

3.0
0.5
7.0
0.0
0.0
0.0
2.0
2.0
1.0
0.05
0.0
0.0

Negative values indicate "irrigated" land use

Site Characterization and Meteorological Data

2-5

Report, doc


-------
Table 2-4.

MESOPUFF II Land Use and Land Cover Classification System

MESOPUFF II

1	Cropland & Pasture	21

2	Crop, Woodland, & Grazing	23
Land 24

3	Irrigated Crops	-21

4	Grazed Forest & Woodlands	22

5	Ungrazed Forest & Woodland 41

42

43

6	Semi-arid Grazing	71

72

73

74

75
77

81

82

83

84

85

91

92

7	Open Woodland Grazed	31

32

33

8	Desert Shrubland	76

9	Swamp	62

10	Marshland	61

11	Metropolitan City	11

12

13

14

15

16

17

12 Lake or Ocean	51

52

53

54

55

Mapped USGS Level II
Cropland and Pasture
Confined Feeding Operations
Other Agricultural Land
Irrigated Cropland and Pasture
Orchards, Groves, Vineyards, Nurseries, and

Ornamental Horticultural Areas
Deciduous Forest Land
Evergreen Forest Land
Mixed Forest Land
Dry Salt Flats
Beaches

Sandy Areas Other than Beaches

Bare Exposed Rock

Strip Mines, Quarries, and Gravel Pits

Mixed Barren Land

Shrub and Brush Tundra

Herbaceous Tundra

Bare Ground

Wet Tundra

Mixed Tundra

Perennial Snowfields

Glaciers

Herbaceous Rangeland
Shrub and Brush Rangeland
Mixed Rangeland
Transitional Areas
Non-forested Wetland
Forested Wetland
Residential

Commercial and Services
Industrial

Transportation, Communications and Utilities

Industrial and Commercial Complexes

Mixed Urban or Built-up Land

Other Urban or Built-up Land

Streams and Canals

Lakes

Reservoirs

Bays and Estuaries

Oceans and Seas

Site Characterization and Meteorological Data

2-6

Report.doc


-------
Dominant Land Use Categories in Modeling Domain

100
,qj- Snow
h & Ice
-90

"85 Tundra
-80

. 75 Barren
Land

|-70

" Wetland
-60

"55 Water
50

-45 Forest
40

^ Range
I-30
25 Agricul
-ture

|-20
15 Urban
¦10

4300-

4250-

H

4200-

4150-

700	750	800	850

UTM-17 East (km)

Modeling Domain:

X: 580 - 892 km; Y: 4100 - 4340 km

Grid Size: 4km; Grid Cells: 78x60

Class I Area

4100

Figure 2-2. Dominant land use categories for 4 km resolution on the 78 x 60 computational
domain. The Class I areas and the hypothetical facility are also shown.

Site Characterization and Meteorological Data

2-7

Report.doc


-------
In addition to the optional MM4 data, CALMET requires hourly surface observations
of wind speed, wind direction, temperature, cloud cover, ceiling height, surface
pressure, relative humidity, and precipitation type (e.g., snow, rain, etc.). These
variables are routinely measured at National Weather Service (NWS) surface
stations. The upper air data required include twice-daily observations of vertical
profiles of wind speed, wind direction, temperature, and pressure. In addition, hourly
precipitation measurements are required for wet deposition calculations in
CALPUFF.

Table 2-5 is a list of the observational and modeled meteorological data available for
the analysis. There are seven surface meteorological stations within or near the
modeling domain (Table 2-6): Lynchburg, VA, Richmond, VA, Roanoke, VA,
Quantico, VA, Raleigh-Durham, NC, Greensboro, NC, and Elkin, WV. The
available upper air site on the southern side of the domain is the Greensboro, NC
station. The upper air site on the northeastern side of the domain is the Sterling, VA
station (Table 2-7). A total of 81 hourly precipitation stations are used in the
modeling (Table 2-8). These data were available from NCDC in TD3240 format.
Figure 2-3 shows the locations and spatial coverage of all of these stations.

3.4 Air Quality Monitoring Data

CALPUFF uses hourly ozone concentration measurements in the chemical
transformation rates. Here, the ambient ozone measurements are used in determining
S02 loss rates due to chemical transformation to sulfate. Ambient ozone monitoring
data for 1990 from the U.S. EPA AIRS and CASTNET networks are used to develop
the hourly ozone monitoring data file (OZONE.DAT) for the modeling analysis. The
AIRS data covers the time period from April through October while the CASTNET
dataset includes data for all 12 months. A total of 58 ozone monitoring stations,
listed in Table 2-9, are used in the modeling (see Figure 2-4).

Site Characterization and Meteorological Data

2-8

Report.doc


-------
Locations of Surface, Upper Air, and Precipitation Stations
and MM4 Grid Points Used in CALMET

UTM-17 East (km)

~
o

Modeling Domain:

X: 580 - 892 km; Y: 4100 - 4340 km

Grid Size: 4 km; Grid Cells: 78X60

A Surface Station
O Upper Air Station

0 Precipitation Station
+ MM4 Grid

Figure 2-3. Locations of meteorological observation sites and MM4 grid points used in
the CALMET modeling.

Site Characterization and Meteorological Data	2-9	Report.doc


-------
Ozone Stations Used in CALPUFF

4400-

4300J

E

-c 4200-
o

4100-

+ ^

»*

¦ Point Source

400(H

A? *

A A

400

~

500

CALMET Domain:

X: 580 - 890 km; Y: 4100 - 4340 km

Grid Size: 2 km; Grid Numbers: 156X121=18876

"1 I | I I I I | I I I I | I T

600	700	800

UTM-17 East (km)

A

AIRS Ozone Station
CASTNET Ozone Station

900

Figure 2-4. Locations of ozone monitoring stations.

Site Characterization and Meteorological Data

2-10

Report.doc


-------
Table 2-5.

Meteorological Data Sources and Parameters Available

Type of Dataset	Frequency	Source	Parameters

Surface obs. Hourly



NWS



Wind speed, wind
direction, temperature,
ceiling height, cloud
cover, relative humidity,
surface pressure,
precipitation type

Upper Air Twice-daily



NWS



Soundings of wind speed,
wind direction,
temperature, and pressure

Precipitation Hourly



NWS



Hourly precipitation
amounts

Modeled Profiles Hourly
(MM4)



US EPA
CD-ROM



Hourly, gridded fields of
winds, temperature,
pressure, and humidity on
an 80-km grid for the year
1990.

Table 2-6. NWS Hourly Surface Stations

# Station Name

UTM-17 X UTM-17 Y Latitude Longitude WBAN# Elevation



(km)

(km)

(deg)

(deg) (m)

1 Lynchburg Municipal Arp

659.466

4133.166

37.3333

79.2000 13733 94

2 Richmond R E Byrd Int'l

824.09

4158.306

37.5167

77.3333 13740 16.4

3 Roanoke Woodrum Arpt

591.562

4130.299

37.3167

79.9667 13741 114.9

4 Quantico Mcas

822.691

4267.578

38.5000

77.3000 13773 1.3

5 Raleigh-Durham

700.141

3971.229

35.8667

78.7833 13722 41.6

6 Greensboro-High Pt-Wins

594.539

3993.501

36.0833

79.9500 13723 89.7

7 Elkins-Randolph, WV

599.748

4304.251

38.8833

79.85 13729 194.8

Table 2-7. Upper Air Stations

# Station Name UTM-17 X UTM-17 Y Latitude Longitude WBAN# Elevation

(km)

(km)

(deg) (deg) (m)

1 Greensboro, NC 594.543

3993.131

36.0800 79.9500 13723 277

2 Sterling (Wash Dulles), VA 805.804

4320.279

38.9800 77.4700 93734 85

Site Characterization and Meteorological Data

2-11

Report.doc


-------
Table 2-8. Hourly NWS Precipitation Stations

#

Station Name

UTM-17 X

UTM-17 Y

Latitude

Longitude

Station ID

Elevation





(km)

(km)

(deg)

(deg)



(m)

1

ALTAVISTA, VA

651.071

4107.114

37.1

79.3

166

155.4

2

BREMO BLUFF, VA

738.044

4175.757

37.7

78.3

993

68.6

3

CAMP PICKETT, VA

771.301

4102.718

37.0333

77.95

1322

100.6

4

CHATHAM, VA

642.713

4075.526

36.8167

79.4

1614

195.1

5

COVINGTON FILTER PLT, VA

588.039

4183.891

37.8

80

2044

374.9

6

CULPEPER RIVRSIDE CG, VA

766.541

4248.847

38.35

77.95

2159

79.2

7

DALE ENTERPRISE, VA

680.347

4257.562

38.45

78.9333

2208

426.7

8

FREDERICKSBURG 2, VA

809.002

4244.805

38.3

77.4667

3200

36.6

9

GALAX WATER PLANT, VA

507.449

4055.848

36.65

80.9167

3272

719.3

10

GATHRIGHT DAM, VA

592.254

4200.581

37.95

79.95

3310

539.5

11

HOT SPRINGS, VA

602.434

4206.252

38

79.8333

4128

681.5

12

HURLEY, VA

538.608

4083.664

36.9

80.5667

4180

301.8

13

INDIAN VALLEY, VA

743.012

4053.735

36.6

78.2833

4246

823

14

JOHN FLANNAGAN LAKE, VA

659.466

4133.166

37.3333

79.2

4410

445

15

JOHN H KERR DAM, VA

612.14

4245.222

38.35

79.7167

4414

76.2

16

LYNCHBURG MUNI AP, VA

664.234

4190.609

37.85

79.1333

5120

286.5

17

MILLGAP 2 NNW, VA

618.022

4241.606

38.3167

79.65

5595

767.8

18

MONTEBELLO FISH NURS, VA

707.948

4202.704

37.95

78.6333

5690

807.1

19

MUSTOE 1 SW, VA

586.258

4071.07

36.7833

80.0333

5880

725.3

20

NORFOLK INTL ARPT, VA

752.434

4233.581

38.2167

78.1167

6139

7.3

21

NORTH GARDEN, VA

519.263

4102.086

37.0667

80.7833

6178

209

22

PAINTER 2 W, VA

824.09

4158.306

37.5167

77.3333

6475

9.1

23

PHILPOTT DAM 2, VA

591.562

4130.299

37.3167

79.9667

6692

342.3

24

PIEDMONT RESEARCH ST, VA

597.879

4095.235

37

79.9

6712

158.5

25

PULASKI, VA

525.122

4124.289

37.2667

80.7167

6955

563.9

26

RICHMOND BYRD AP, VA

722.012

4328.952

39.0833

78.4333

7201

50

27

ROANOKE WOODRUM AP, VA

668.099

4216.59

38.0833

79.0833

7285

350.2

28

ROCKY MOUNT, VA

781.859

4310.495

38.9

77.75

7338

375.5

29

STAFFORDSVILLE 3 ENE, VA

856.072

4100.305

36.9833

77

8022

594.4

30

STAR TANNERY, VA

844.273

4307.406

38.85

77.0333

8046

289.6

31

STAUNTON SEWAGE PLAN, VA

516.274

4115.023

37.1833

80.8167

8062

423.4

32

THE PLAINS 2 NNE, VA

881.194

4136.626

37.3

76.7

8396

161.5

33

TROUT DALE 3 SSE, VA

624.103

4225.049

38.1667

79.5833

8547

859.5

34

WAKEFIELD 2, VA

546.062

4078.154

36.85

80.4833

8800

27.4

35

WALLOPS FLIGHT FAC, VA

565.522

4059.793

36.6833

80.2667

8849

10

36

WASHINGTN DC NATL AP, VA

492.578

4087.277

36.9333

81.0833

8906

3

37

WHITE GATE, VA

675.029

3946.652

35.65

79.0667

9060

563.9

38

WILLIAMSBURG 2 N, VA

643.971

3999.722

36.1333

79.4

9151

21.3

39

WILLIAMSVILLE 2 S, VA

553.873

4017.189

36.3

80.4

9159

499.9

40

WILLIS, VA

523.912

4028.147

36.4

80.7333

9169

883.9

41

WISE 2 E, VA

611.926

4041.781

36.5167

79.75

9215

776.9

Site Characterization and Meteorological Data

2-12

Report.doc


-------
Table 2-8. Hourly NWS Precipitation Stations (Cont'd)

#

Station Name

UTM-17 X

UTM-17 Y

Latitude

Longitude

Station ID

Elevation





(km)

(km)

(deg)

(deg)



(m)

42

WOOLWINE 4 S, VA

728.063

3997.811

36.1

78.4667

9272

463.3

43

WYTHEVILLE 1 S, VA

594.539

3993.501

36.0833

79.95

9301

746.8

44

B EVERETT JORDAN DAM, NC

826.033

3949.054

35.6333

77.4

750

94.5

45

BURLINGTON 3 NNE, NC

566.222

3967.359

35.85

80.2667

1241

195.1

46

DALTON, NC

515.096

3939.397

35.6

80.8333

2230

307.8

47

DOBSON, NC

501.501

3992.991

36.0833

80.9833

2388

381

48

EDEN, NC

700.141

3971.229

35.8667

78.7833

2631

190.5

49

FRANKLINTON, NC

707.883

3962.158

35.7833

78.7

3232

114.3

50

GRNSBR,HGH PT,W-S AP, NC

798.64

4042.527

36.4833

77.6667

3630

273.4

51

GREENVILLE, NC

500

4028.114

36.4

81

3638

9.8

52

LEXINGTON, NC

775.976

3954.764

35.7

77.95

4970

231.6

53

MOORESVILLE 2 WNW, NC

543.491

3998.645

36.1333

80.5167

5814

265.2

54

N WILKESBORO 11 SE, NC

609.971

4296.987

38.8167

79.7333

6261

320

55

RALEIGH DURHAM AP, NC

567.848

4315.011

38.9833

80.2167

7069

126.7

56

RALEIGH STATE UNIV, NC

732.166

4375.537

39.5

78.3

7079

121.9

57

ROANOKE RAPIDS, NC

637.015

4323.31

39.05

79.4167

7319

64

58

ROARING GAP 1 NW, NC

556.075

4346.362

39.2667

80.35

7324

859.2

59

WILSON 3 SW, NC

604.337

4393.109

39.6833

79.7833

9476

33.5

60

YADKINVILLE 6 E, NC

599.748

4304.251

38.8833

79.85

9675

262.1

61

BEMIS, WV

646.453

4280.925

38.6667

79.3167

664

785.7

62

BUCKHANNON, WV

547.538

4331.509

39.1333

80.45

1220

443.5

63

CACAPON STATE PARK, WV

520.301

4279.606

38.6667

80.7667

1323

289.6

64

CANAAN VALLEY, WV

515.891

4309.187

38.9333

80.8167

1393

990.3

65

CLARKSBURG 1, WV

731.944

4382.937

39.5667

78.3

1677

301.8

66

COOPERS ROCK ST FOR, WV

576.438

4322.488

39.05

80.1167

1900

694.6

67

ELKINS RNDLPH CO AP, WV

545.725

4394.388

39.7

80.4667

2718

593.8

68

FRANKLIN 2 NE, WV

768.449

4363.743

39.3833

77.8833

3215

579.1

69

FREEMANSBURG 5 NE, WV

598.572

4396.733

39.7167

79.85

3238

310.9

70

GASSAWAY, WV

529.484

4144.643

37.45

80.6667

3361

256

71

GLENVILLE 1 ENE, WV

502.892

4299.924

38.85

80.9667

3544

219.5

72

GREAT CACAPON, WV

580.246

4230.046

38.2167

80.0833

3669

825.1

73

HALL 1 WSW, WV

685.089

4303.936

38.8667

78.8667

3820

512.1

74

HUNDRED, WV

676

4322.234

39.0333

78.9667

4369

304.8

75

KEARNEYSVILLE, WV

692.492

4355.938

39.3333

78.7667

4763

167.6

76

LAKE LYNN, WV

775.43

4369.545

39.4333

77.8

5002

274.3

77

LINDSIDE, WV

624.764

4367.51

39.45

79.55

5284

609.6

78

LOCKNEY, WV

583.335

4352.155

39.3167

80.0333

5341

219.5

79

MARLINTON, WV

541.224

4155.786

37.55

80.5333

5672

655.3

80

MATHIAS, WV

584.237

4267.078

38.55

80.0333

5739

495.3

81

MOOREFIELD 2 SSE, WV

520.121

4349.886

39.3

80.7667

6163

253

Site Characterization and Meteorological Data

2-13

Report.doc


-------
Table 2-9. Ozone Stations

#

Station Name

UTM-17

UTM-17

Latitude

Longitude

Station ID





(km)

(km)

(deg)

(deg)



1

NOT IN A CITY

508.682

4297.71

38.83

-80.9

540218001

2

MOUNDS VILLE

522.695

4418.24

39.916

-80.734

540511002

3

SHADYSIDE

522.775

4424.067

39.968

-80.733

390133002

4

BLACKSBURG

539.199

4131.493

37.331

-80.558

511218001

5

NOT IN A CITY

542.908

4185.689

37.819

-80.512

540250001

6

WINSTON-SALEM

564.521

3993.537

36.086

-80.283

370670019

7

WINSTON-SALEM

566.792

3991.304

36.066

-80.258

370670023

8

WINSTON-SALEM

568.039

3994.858

36.098

-80.244

370670018

9

NOT IN A CITY

568.63

4002.38

36.166

-80.237

370670007

10

WINSTON-SALEM

569.601

3996.288

36.111

-80.227

370670022

11

NOT IN A CITY

577.111

3989.726

36.051

-80.144

370671008

12

NOT IN A CITY

582.393

4008.138

36.216

-80.083

370670006

13

MORGANTOWN

592.588

4389.229

39.65

-79.921

540610003

14

VINTON

598.912

4126.931

37.286

-79.884

511611004

15

GREENSBORO

608.237

3994.153

36.088

-79.798

370811011

16

NOT IN A CITY

616.604

3997.065

36.113

-79.704

370810011

17

NOT IN A CITY

615.699

4327.377

39.09

-79.662

540938001

18

NOT IN A CITY

649.426

4427.164

39.983

-79.25

421118001

19

NOT IN A CITY

668.679

4157.12

37.548

-79.091

510090006

20

DURHAM

688.322

3983.917

35.983

-78.911

370630010

21

DURHAM

689.425

3985.02

35.993

-78.899

370630008

22

NOT IN A CITY

690.211

4219.575

38.106

-78.831

510150004

23

NOT IN A CITY

700.724

4001.674

36.141

-78.769

370770001

24

CUMBERLAND

691.954

4391.064

39.65

-78.763

240010006

25

RALEIGH

713.474

3961.49

35.776

-78.638

371830011

26

RALEIGH

713.729

3961.434

35.776

-78.636

371830010

27

RALEIGH

718.932

3970.504

35.856

-78.576

371830014

28

WAKE FOREST

726.253

3983.425

35.971

-78.491

371832001

29

NOT IN A CITY

723.522

4266.637

38.522

-78.436

511130003

30

NOT IN A CITY

723.52

4266.699

38.522

-78.436

511138001

31

NOT IN A CITY

739.026

4116.582

37.167

-78.308

511478001

32

NOT IN A CITY

742.898

4304.449

38.857

-78.201

511870002

33

NOT IN A CITY

755.045

3939.672

35.57

-78.186

371010099

34

NOT IN A CITY

781.98

4263.264

38.475

-77.768

510610002

35

NOT IN A CITY

801.711

4139.929

37.359

-77.594

510410004

36

NOT IN A CITY

807.741

3987.906

35.989

-77.587

370650099

37

RICHMOND

806.364

4160.165

37.539

-77.533

517600022

38

RICHMOND

812.034

4163.001

37.563

-77.468

517600021

39

NOT IN A CITY

817.992

4162.703

37.558

-77.4

510870014

Site Characterization and Meteorological Data

2-14

Report.doc


-------
Table 2-9. Ozone Stations (Cont'd)

#

Station Name

UTM-17

UTM-17

Latitude

Longitude

Station ID





(km)

(km)

(deg)

(deg)



40

NOT IN A CITY

825.058

4171.808

37.638

-77.316

510850001

41

FAIRFAX

820.108

4305.805

38.845

-77.312

516000005

42

NOT IN A CITY

815.472

4425.504

39.923

-77.309

420018001

43

NOT IN A CITY

831.271

4139.165

37.342

-77.261

510360002

44

HOPEWELL

831.557

4133.865

37.294

-77.26

516700007

45

MC LEAN

829.518

4315.891

38.932

-77.199

510595001

46

SEVEN CORNERS

834.663

4309.002

38.868

-77.143

510591004

47

ROCKVILLE

836.097

4329.67

39.053

-77.116

240311008

48

ROCKVILLE

836.625

4336.489

39.114

-77.107

240313001

49

NOT IN A CITY

840.951

4295.305

38.743

-77.077

510590018

50

ALEXANDRIA

842.01

4308.358

38.859

-77.059

515100009

51

WASHINGTON, D. C.

842.424

4313.289

38.904

-77.052

110010017

52

WASHINGTON, D. C.

842.88

4313.34

38.904

-77.046

110010023

53

NOT IN A CITY

843.532

4303.234

38.813

-77.044

510130020

54

NOT IN A CITY

840.666

4373.343

39.444

-77.042

240130001

55

WASHINGTON, D. C.

844.349

4314.486

38.914

-77.029

110010019

56

WASHINGTON, D. C.

844.582

4321.354

38.975

-77.023

110010025

57

Horton, CASTNET

539.132

4131.369

37.33

-80.557

VPI120

58

Prince Edward, CASTNET

739.14

4116.458

37.166

-78.307

PED108

Site Characterization and Meteorological Data

2-15

Report.doc


-------
3.

AIR QUALITY MODELING METHODOLOGY

3.1 Meteorological Modeling Options

CALMET is run twice, producing the "CALMET.DAT" file for use with CALPUFF,
and also producing the "PACOUT.DAT" file used with MESOPUFF II. The same
configuration is used in both, but each uses the appropriate "GEO.DAT" file. That
for CALPUFF has the 14-class CALMET land use scheme while that for
MESOPUFF II has the 12-class MESOPUFF land use scheme.

The horizontal grid is uniform, and resolves terrain and land use with a resolution of
4 km. In the vertical, a stretched grid resolves the mixed layer with a fine resolution
and uses a somewhat coarser resolution aloft. Ten vertical levels are centered at: 10,
30, 60, 120, 230, 450, 800, 1250, 1850, and 2600 meters. The full three-dimensional
gridded field of winds and temperatures from CALMET are used directly in
CALPUFF. For MESOPUFF II, the output format is equivalent to the
MESOPAC.output The horizontal grid is the same, but the vertical structure is
captured in two layers. CALMET winds are averaged within the surface boundary
layer, and above, and the resulting fields are written in the MESOPAC format.

Initial Guess Field

The EPA MM4 data base is used to define the initial guess field for the CALMET
simulations. Hourly MM4 data are available for the period January 6 through
December 29, 1990. The MM4 dataset has a horizontal resolution of 80 km at hourly
intervals. In the vertical, 20 levels of data are provided.

Step 1 Field: Terrain Effects

In developing the Step 1 wind field, CALMET adjusts the initial guess field to reflect
kinematic effects of the terrain, slope flows and blocking effects. Slope flows are a
function of the local slope and altitude of the nearest crest. The crest is defined as the
highest peak within a radius TERRAD around each grid point. The value of
TERRAD selected (12 km) was determined based on an analysis of the scale of the
terrain. The Step 1 field produces a flow field consistent with the fine-scale
CALMET terrain resolution (4km).

Air Quality Modeling Methodology

3-1

Report.doc


-------
Step 2 Field: Objective Analysis

In Step 2, observations are incorporated into the Step 1 wind field to produce a final
wind field. Each observation site influences the final wind field within a radius of
influence (parameters RMAX1 at the surface and RMAX2 aloft). Observations and
Step 1 field are weighted by means of parameters R1 at the surface and R2 aloft: at a
distance R1 from an observation site, the Step 1 wind field and the surface
observations are weighted equally. In complex terrain, channeling (blocking effects)
and slope flows contribute significantly to the wind field. Therefore, relatively small
values of R1 and R2 were selected (1 km and 2 km, respectively) to produce a large
weight of the Step 1 field.

RMAX1 and RMAX2 are set to large values (100 km). However, the large RMAX
values become irrelevant as the small R1 and R2 values limit the influence of the
surface observations.

3.2 CALPUFF Dispersion Modeling Options

The CALPUFF simulations are conducted using the following model options:
Gaussian near-field distribution
Transitional plume rise
Stack tip downwash

PG dispersion coefficients (rural areas), McElroy-Pooler coefficients
(urban areas)

Transition of ay to time-dependent (Heffter) growth rates
Partial plume path adjustment for terrain

Wet deposition, dry deposition, and chemical transformation algorithms

A second simulation is done without deposition and chemical transformation, and
without the terrain adjustment. This configuration, although not recommended for
most CALPUFF applications, is similar to the MESOPUFF II configuration and
therefore provides a useful comparison for this analysis.

The CALPUFF modeling domain includes a buffer zone south and east of the source
area and north and west beyond the borders of the Class I area. This minimizes edge
effects and allows pollutants involved in flow reversals to be brought back into the
Class I area.

Air Quality Modeling Methodology

3-2

Report.doc


-------
The partial plume path adjustment option is used in CALPUFF for this analysis
(MCTADJ=3). The CALMET wind field incorporates the effect of the terrain on the
plume trajectories. The plume path coefficient is used to characterize the local effect
on ground-level concentrations. The default plume path coefficients (PPC) are listed
below:

Stability Class A B C D E F

PPC	0.5 0.5 0.5 0.5 0.35 0.35

Deposition and chemical transformation effects are modeled using the default dry
deposition model, the scavenging coefficient wet removal module, and the default
chemical transformation mechanism. Two species are modeled with CALPUFF for
this analysis: S02 and S04. S02 is emitted and the chemical mechanism computes
transformation rates of S02 to S04. Hourly measured ozone concentrations are
provided in an external OZONE.DAT file for use with the chemical transformation
module. These ozone concentrations, along with radiation intensity, are used as
surrogates for the OH concentration during the day when the gas phase free radical
chemistry is active.

Discrete receptors are placed within Shenandoah National Park at a spacing of
approximately 1 km, as depicted in Figure 3-1.

3.2 MESOPUFF II Dispersion Modeling Options

The MESOPUFF II simulations are conducted using the following model options:

Gaussian near-field distribution

8 puffs/hour release rate

Variable sampling rate

Minimum age before sampling = 300 s

Default dispersion parameters (similar to PG coefficients)

NO wet or dry deposition, and NO chemical transformations

Discrete receptors are placed within Shenandoah National Park at a spacing of
approximately 1 km. These locations are identical to those used in CALPUFF, but
are translated to the MESOPUFF grid coordinate system.

Air Quality Modeling Methodology

Report.doc


-------
Location of receptors within
Shenandoah National Park (every 1 km)

4300-

4290-

4280

4270

%

4260-

H

4250-

4240-

4230

4220

690

700

710

720

730

740

UTM-17 East (km)

Figure 3-1. Location of discrete receptors within Shenandoah National Park. The
spacing is every 1 kilometer.

Air Quality Modeling Methodology

3-4

Report.doc


-------
4. RESULTS

Results of the CALMET/CALPUFF and the CALMET/MESOPUFF II (with the
MESOPAC output option in CALMET) simulations of the impact of a hypothetical
source of S02 on concentrations in the Shenandoah National Park Class I area are
presented in Table 4-1. S02 concentrations are listed for averaging times of 1 hour, 3
hours, 24 hours, and annual (nearly a full year). Both the peak concentration and the
highest second-highest concentrations are listed for each averaging time.

When the CALPUFF simulation is made without chemical transformation and
without a terrain adjustment, its results are very similar to the MESOPUFF II results.
This illustrates the degree of similarity in the approaches of the two models. Wind
fields provided each are from the same source (CALMET), but they are not the same
due to the way the two systems represent the vertical structure of the atmosphere.
Nonetheless, the concentrations of regulatory significance are similar.

Significantly different results are obtained when CALPUFF is applied with the
preferred modeling options, including chemical transformation, deposition, and
terrain adjustment. The larger concentrations for this simulation appear to result
from peak impact episodes in which the vertical distribution of S02 is not well-
mixed, and remains aloft at the travel distance to the Class I area. For this situation,
the high terrain of this application will promote an adjustment that leads to the larger
ground-level concentrations.

Results

4-1

Report.doc


-------
Table 4-1. Highest and Highest Second-Highest S02 Concentrations Simulated in the
Shenandoah National Park.

Averaging

Type of

MESOPUFF II

CALPUFF

CALPUFF

Period

Peak



(no terrain, no









transformation, no









removal)







(Ug/m3)

(Ug/m3)

(Ug/m3)

1 hour

H

120.2

119 5

264.2



HSH

91.9

90.9

228.5

3 hours

H

69.2

72.0

188.6



HSH

63.9

57.5

109.4

24 hours

H

21.8

18.5

47.8



HSH

20.8

17.4

41.9

Annual

H

0.48

0.60

0.76

Results

4-2

Report.doc


-------
5. REFERENCES

FLAG, 2000. Federal Land Manager's Air Quality Related Values Workgroup
(FLAG). Phase I Report. U.S. Forest Service, National Park Service, U.S.
Fish and Wildlife Service.

Scire, J.S. and E.M. Insley, 1993: A revised user's guide to MESOPUFF II (v5.1).
Earth Tech, Inc., Concord, MA.

Scire, J.S., D.G. Strimaitis, and R.J. Yamartino, 2000a: A User's Guide for the
CALPUFF Dispersion Model (Version 5). Earth Tech, Inc., Concord, MA

Scire, J.S., F.R. Robe, M.E. Fernau, and R.J. Yamartino, 2000b: A User's Guide for
the CALMET Meteorological Model (Version 5). Earth Tech, Inc., Concord,
MA.

U.S. Environmental Protection Agency (EPA), 1992. A modeling protocol for
applying MESOPUFF II to long range transport problems. EPA-454/R-92-
021, U.S. Environmental Protection Agency, Research Triangle Park, NC.

U.S. Environmental Protection Agency (EPA), 1998: Interagency Workgroup on Air
Quality Modeling (IWAQM), Phase 2 Report: Summary Report and
Recommendation for Modeling Long Range Transport and Impacts on
Regional Visibility. EPA-454/R-98-019.

U.S. Environmental Protection Agency (EPA), 2000: Federal Register Notice of
Proposed Rulemaking (65 FR 21506), April 21, 2000.

References

5-1

Report.doc


-------
APPENDIX A

CALMET INPUT CONTROL FILE

CALMET/CALPUFF Consequence Example, 78 x 60 grid cells @ 4 km grid

Class I Area: Shenandoah National Park		 ZIMAX=2695m

January 6, 1990 - January 31, 1990

	 RUn title (3 lines) 	

CALMET MODEL CONTROL FILE

INPUT GROUP: 0 -- Input and Output File Names

Subgroup (a)

Default Name

Type

File

Name

GEO.DAT

input

1 GEODAT=

..\geo.dat

SURF.DAT

input

1 SRFDAT=

..\SURF.DAT

CLOUD.DAT

input

* CLDDAT=

•k

PRECIP.DAT

input

1 PRCDAT=

..\PRECIP.DAT

MM4.DAT

input

1 MM4DAT=

. . \MM4 . DAT

WT.DAT

input

* WTDAT=

•k

CALMET.LST

output

1 METLST=

jan.LST 1

CALMET.DAT

output

1 METDAT=

jan.DAT 1

PACOUT.DAT

output

* PACDAT=

•k

All file names will be converted to lower case if LCFILES = T
Otherwise, if LCFILES = F, file names will be converted to UPPER CASE
T = lower case	1 LCFILES = T 1

F = UPPER CASE

NUMBER OF UPPER AIR & OVERWATER STATIONS:

Number of upper air stations (NUSTA) No default	1 NUSTA = 2 1

Number of overwater met stations

(NOWSTA) No default	1 NOWSTA = 0 1

I END I

Subgroup (b)

Upper air files (one per station)

Default Name Type	File Name

UP1.DAT	input	1 I UPDAT=. .\UPGSO.DAT! I END I

UP2.DAT	input	2 1 UPDAT=. .\UPIAD.DAT 1 1 END 1

Subgroup (c)

Overwater station files (one per station)

Default Name Type	File Name

Appendix A

A -1

Report.doc


-------
Subgroup (d)

Other file names

Default Name Type

File Name

DIAG.DAT
PROG.DAT

input
input

*	DIADAT=

*	PRGDAT=

TEST.PRT
TEST.OUT
TEST.KIN
TEST.FRD
TEST.SLP

output
output
output
output
output

TSTPRT=
TSTOUT=
TSTKIN=
TSTFRD=
TSTSLP=

NOTES: (1) File/path names can be up to 70 characters in length

(2)	Subgroups (a) and (d) must have ONE 'END' (surround by
delimiters) at the end of the group

(3)	Subgroups (b) and (c) must have an 'END' (surround by
delimiters) at the end of EACH LINE

I END I

INPUT GROUP: 1 -- General run control parameters

Starting date: Year

(IBYR) -

- No

default

I IBYR=

1990

Month

(IBMO) -

- No

default

1 IBMO=

1 1

Day

(IBDY) -

- No

default

1 IBDY=

6 1

Hour

(IBHR) -

- No

default

1 IBHR=

0 1

Base time zone

(IBTZ) -

- No

default

1 IBTZ=

5 1

PST = 08, MST = 07











CST = 06, EST = 05











Length of run (hours)

(IRLG) -

- No

default

1 IRLG=

624

Run type

(IRTYPE)

Default: 1

IRTYPE=

0	= Computes wind fields only

1	= Computes wind fields and micrometeorological variables

(u*, w*, L, zi, etc.)

(IRTYPE must be 1 to run CALPUFF or CALGRID)

Compute special data fields required
by CALGRID (i.e., 3-D fields of W wind
components and temperature)

in additional to regular	Default:

fields ? (LCALGRD)

(LCALGRD must be T to run CALGRID)

LCALGRD = T

Flag to stop run after

SETUP phase (ITEST)	Default: 2	1 ITEST= 2

(Used to allow checking
of the model inputs, files, etc.)

ITEST = 1 - STOPS program after SETUP phase
ITEST = 2 - Continues with execution of

COMPUTATIONAL phase after SETUP

Appendix A

A-2

Report.doc


-------
I END I

INPUT GROUP: 2 -- Grid control parameters

HORIZONTAL GRID DEFINITION:

No. X grid cells (NX)
No. Y grid cells (NY)

GRID SPACING (DGRIDKM)

No default
No default

No default
Units: km

NX = 78
NY = 6 0

DGRIDKM = 4.

REFERENCE COORDINATES

of SOUTHWEST corner of grid cell (1,1)

X coordinate (XORIGKM)
Y coordinate (YORIGKM)

Latitude (XLATO)
Longitude (XLONO)

UTM ZONE (IUTMZN)

LAMBERT CONFORMAL PARAMETERS

No default
No default
Units: km
No default
No default

Default: 0

Rotate input winds from true north to
map north using a Lambert conformal
projection? (LLCONF)	Default: F

Latitude of 1st standard parallel
Latitude of 2nd standard parallel
(XLAT1 and XLAT2; + in NH, - in SH)

Longitude (RLONO)

(used only if LLCONF = T)
(Positive = W. Hemisphere;
Negative = E. Hemisphere)

Origin Latitude (RLATO)

(used only if IPROG > 2)
(Positive = N. Hemisphere;
Negative = S. Hemisphere)

Vertical grid definition:

No. of vertical layers (NZ)

No default

XORIGKM = 580.000 I
YORIGKM = 4100.000

XLATO = 37.044
XLONO = 80.100

IUTMZN = 17

LLCONF = F

Default: 3 0.
Default: 6 0.

Default = 90.

Default = 4 0.

XLATI = 3 0.000
XLAT2 = 6 0.000

RLONO = 90.000

RLATO = 4 0.000

NZ = 10

Cell face heights in arbitrary
vertical grid (ZFACE(NZ+1)) No defaults

Units: m

1 ZFACE = 0. ,20. ,40. , 80. , 160., 300., 600., 1000., 1500.,2200., 3000.

I END I

INPUT GROUP: 3 -- Output Options

DISK OUTPUT OPTION

Save met. fields in an unformatted

Appendix A

Report.doc


-------
output file ?	(LSAVE) Default: T	I LSAVE = T I

(F = Do not save, T = Save)

Type of unformatted output file:

(IFORMO)	Default: 1 1 IFORMO =

1	= CALPUFF/CALGRID type file	(CALMET.DAT)

2	= MESOPUFF-II type file	(PACOUT.DAT)

LINE PRINTER OUTPUT OPTIONS:

Print met. fields ? (LPRINT)	Default: F	1 LPRINT = F 1

(F = Do not print, T = Print)

(NOTE: parameters below control which
met. variables are printed)

Print interval

(IPRINF) in hours	Default: 1	1 IPRINF = 1 1

(Meteorological fields are printed
every 1 hours)

Specify which layers of U, V wind component

to print (IUVOUT(NZ)) -- NOTE: NZ values must be entered

(0=Do not print, l=Print)

(used only if LPRINT=T)	Defaults: NZ*0

1 IUVOUT = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1

Specify which levels of the W wind component to print
(NOTE: W defined at TOP cell face -- 10 values)
(IWOUT(NZ)) -- NOTE: NZ values must be entered
(0=Do not print, l=Print)

(used only if LPRINT=T & LCALGRD=T)

Defaults: NZ*0

1 IWOUT =0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1

Specify which levels of the 3-D temperature field to print
(ITOUT(NZ)) -- NOTE: NZ values must be entered
(0=Do not print, l=Print)

(used only if LPRINT=T & LCALGRD=T)









Defaults: NZ*0

1 ITOUT = 0

0 ,

0 , 0

o ,

0 , 0 , 0 , 0 , 0 1

Specify which meteorological

fields



to print









(used only if

LPRINT=

=T)



Defaults: 0 (all variables)

Variable



Print ?







(0

= do not

print





1

= print)





1 STABILITY =



0



1 - PGT stability class

1 USTAR



0



1 - Friction velocity

1 MONIN



0



1 - Monin-Obukhov length

1 MIXHT



0



1 - Mixing height

1 WSTAR



0



1 - Convective velocity scale

1 PRECIP



0



1 - Precipitation rate

Appendix A	A-4	Report.doc


-------
0
0

1 - Sensible heat flux
1 - Convective mixing ht.

Testing and debug print options for micrometeorological module
Print input meteorological data and

internal variables (LDB)	Default: F	1 LDB = F 1

(F = Do not print, T = print)

(NOTE: this option produces large amounts of output)

First time step for which debug data

are printed (NN1)	Default: 1	1 NN1 = 1

Last time step for which debug data

are printed (NN2)	Default: 1	1 NN2 = 24

I END I

Testing and debug print options for wind field module
(all of the following print options control output to
wind field module's output files: TEST.PRT, TEST.OUT,
TEST.KIN, TEST.FRD, and TEST.SLP)

Control variable for writing the test/debug
wind fields to disk files (IOUTD)

(0=Do not write, l=write)	Default: 0

IOUTD =

Number of levels, starting at the surface,
to print (NZPRN2)	Default: 1

NZPRN2 =

Print the INTERPOLATED wind components ?
(IPRO) (0=no, l=yes)	Default: 0

IPRO =

Print the TERRAIN ADJUSTED surface wind
components ?

(IPR1) (0=no, l=yes)	Default: 0

IPR1 =

Print the SMOOTHED wind components and

the INITIAL DIVERGENCE fields ?

(IPR2) (0=no, l=yes)	Default: 0

IPR2 =

Print the FINAL wind speed and direction
fields ?

(IPR3) (0=no, l=yes)	Default: 0

IPR3 =

Print the FINAL DIVERGENCE fields ?
(IPR4) (0=no, l=yes)	Default: 0

IPR4 =

Print the winds after KINEMATIC effects
are added ?

(IPR5) (0=no, l=yes)	Default: 0

IPR5 =

Print the winds after the FROUDE NUMBER
adjustment is made ?

(IPR6) (0=no, l=yes)	Default: 0

IPR6 =

Print the winds after SLOPE FLOWS
are added ?

(IPR7) (0=no, l=yes)	Default: 0

IPR7 =

Print the FINAL wind field components ?
(IPR8) (0=no, l=yes)	Default: 0

IPR8 =

Appendix A

A-5

Report.doc


-------
INPUT GROUP: 4 -- Meteorological data options

NUMBER OF SURFACE & PRECIP. METEOROLOGICAL STATIONS

Number of surface stations (NSSTA) No default	1 NSSTA = 7 1

Number of precipitation stations

(NPSTA) No default	1 NPSTA = 59 1

CLOUD DATA OPTIONS

Griddid cloud fields:

(ICLOUD) Default: 0	1 ICLOUD = 0 1

ICLOUD = 0 - Gridded clouds not used
ICLOUD = 1 - Gridded CLOUD.DAT generated as OUTPUT
ICLOUD = 2 - Gridded CLOUD.DAT read as INPUT

FILE FORMATS

Surface meteorological data file format

(IFORMS) Default: 2	1 IFORMS = 2 1

(1 = unformatted (e.g., SMERGE output))

(2 = formatted (free-formatted user input))

Precipitation data file format

(IFORMP) Default: 2	1 IFORMP = 2 1

(1 = unformatted (e.g., PMERGE output))

(2 = formatted (free-formatted user input))

Cloud data file format

(IFORMC) Default: 2	1 IFORMC = 2 1

(1 = unformatted - CALMET unformatted output)

(2 = formatted - free-formatted CALMET output or user input)

I END I

INPUT GROUP: 5 -- Wind Field Options and Parameters

WIND FIELD MODEL OPTIONS

Model selection variable (IWFCOD)

0	= Objective analysis only

1	= Diagnostic wind module

Compute Froude number adjustment
effects ? (IFRADJ)

(0 = NO, 1 = YES)

Compute kinematic effects ? (IKINE)
(0 = NO, 1 = YES)

Default: 1	I IWFCOD = 1 I

Default: 1	1 IFRADJ = 1 1

Default: 0	I IKINE = 0 I

Use O'Brien procedure for adjustment

of the vertical velocity ? (IOBR)	Default: 0	1 IOBR = 0 1

(0 = NO, 1 = YES)

Compute slope flow effects ? (ISLOPE) Default: 1	1 ISLOPE = 1 1

(0 = NO, 1 = YES)

Extrapolate surface wind observations

to upper layers ? (IEXTRP)	Default: -4	1 IEXTRP = -4 1

Appendix A

A -6

Report.doc


-------
(1 = no extrapolation is done,

2	= power law extrapolation used,

3	= user input multiplicative factors

for layers 2 - NZ used (see FEXTRP array)

4	= similarity theory used

-1, -2, -3, -4 = same as above except layer 1 data
at upper air stations are ignored

Extrapolate surface winds even

if calm? (ICALM)	Default: 0	1 ICALM = 0 1

(0 = NO, 1 = YES)

Layer-dependent biases modifying the weights of
surface and upper air stations (BIAS(NZ))

-1<=BIAS<=1

Negative BIAS reduces the weight of upper air stations

(e.g. BIAS=-0.1 reduces the weight of upper air stations
by 10%; BIAS= -1, reduces their weight by 100 %)

Positive BIAS reduces the weight of surface stations

(e.g. BIAS= 0.2 reduces the weight of surface stations
by 20%; BIAS=1 reduces their weight by 100%)

Zero BIAS leaves weights unchanged (1/R**2 interpolation)

Default: NZ*0

1 BIAS =0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1

Minimum distance from nearest upper air station
to surface station for which extrapolation
of surface winds at surface station will be allowed
(RMIN2: Set to -1 for IEXTRP = 4 or other situations
where all surface stations should be extrapolated)

Default: 4. I RMIN2 = -1.0 I

Use gridded prognostic wind field model
output fields as input to the diagnostic

wind field model (IPROG)	Default: 0	1 IPROG = 4 1

[IWFCOD = 0 or 1]

use CSUMM prog, winds as Step 1 field, [IWFCOD = 0]
use CSUMM prog, winds as initial guess field [IWFCOD = 1]
use winds from MM4.DAT file as Step 1 field [IWFCOD = 0]
use winds from MM4.DAT file as initial guess field [IWFCOD = 1]
use winds from MM4.DAT file as observations [IWFCOD = 1]
, use winds from MM5.DAT file as Step 1 field [IWFCOD = 0]
, use winds from MM5.DAT file as initial guess field [IWFCOD = 1]
, use winds from MM5.DAT file as observations [IWFCOD = 1]

(0 =

No,

1 =

Yes,

2 =

Yes,

3 =

Yes,

4 =

Yes,

5 =

Yes,

13

= Yes

14

= Yes

15

= Yes

RADIUS OF INFLUENCE PARAMETERS

Use varying radius of influence	Default: F	1 LVARY = F1

(if no stations are found within RMAX1,RMAX2,
or RMAX3, then the closest station will be used)

Maximum radius of influence over
in the surface layer (RMAX1)

Maximum radius of influence over
aloft (RMAX2)

Maximum radius of influence over

(RMAX3)

land

No default	1 RMAX1 = 100. 1

Units: km

land

No default	1 RMAX2 = 100. 1

Units: km

water

No default	1 RMAX3 = 100. 1

Units: km

OTHER WIND FIELD INPUT PARAMETERS

Minimum radius of influence used in

the wind field interpolation (RMIN) Default: 0.1 1 RMIN =0.1 1

Appendix A

Report.doc


-------
Radius of influence of terrain
features (TERRAD)

Units: km
No default

I TERRAD = 12. I

Units: km

Relative weighting of the first
guess field and observations in the

SURFACE layer (Rl)	No default	1 R1 = 1. 1

(R1 is the distance from an	Units: km

observational station at which the
observation and first guess field are
equally weighted)

Relative weighting of the first
guess field and observations in the
layers ALOFT (R2)

(R2 is applied in the upper layers
in the same manner as Rl is used in
the surface layer).

Relative weighting parameter of the
prognostic wind field data (RPROG)

(Used only if IPROG = 1)

No default	1 R2 = 2.

Units: km

No default	I RPROG = 0.

Units: km

Maximum acceptable divergence in the
divergence minimization procedure
(DIVLIM)

Maximum number of iterations in the
divergence min. procedure (NITER)

Default: 5.E-6 I DIVLIM= 5.0E-06 I
Default: 50	I NITER = 50 I

Number of passes in the smoothing

procedure (NSMTH(NZ))

NOTE: NZ values must be entered

Default: 2,(mxnz-1)*4 1 NSMTH =
2, 4, 4, 4, 4, 4, 4, 4, 4, 4 1

Maximum number of stations used in
each layer for the interpolation of
data to a grid point (NINTR2(NZ))

NOTE: NZ values must be entered	Default: 99. 1 NINTR2 =

99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 1

Critical Froude number (CRITFN)	Default: 1.0 1 CRITFN =1. 1

Empirical factor controlling the
influence of kinematic effects

(ALPHA)	Default: 0.1 1 ALPHA =0.1 1

Multiplicative scaling factor for
extrapolation of surface observations

to upper layers (FEXTR2(NZ))	Default: NZ*0.0

1 FEXTR2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. 1
(Used only if IEXTRP = 3 or -3)

BARRIER INFORMATION

Number of barriers to interpolation

of the wind fields (NBAR)	Default: 0	1 NBAR = 0 1

THE FOLLOWING 4 VARIABLES ARE INCLUDED
ONLY IF NBAR > 0

NOTE: NBAR values must be entered	No defaults

for each variable	Units: km

Appendix A

A-8

Report.doc


-------
X coordinate of
of each barrier

Y	coordinate of
of each barrier

X coordinate of
of each barrier

Y	coordinate of
of each barrier

BEGINNING

(XBBAR(NBAR))
BEGINNING
(YBBAR(NBAR))

ENDING

(XEBAR(NBAR))
ENDING

(YEBAR(NBAR))

I XBBAR =0.1
1 YBBAR =0.1

1 XEBAR =0.1
1 YEBAR =0.1

DIAGNOSTIC MODULE DATA INPUT OPTIONS

Surface temperature (IDIOPT1)	Default: 0	1 IDIOPT1 = 0 1

0	= Compute internally from

hourly surface observations

1	= Read preprocessed values from

a data file (DIAG.DAT)

Surface met. station to use for

the surface temperature (ISURFT) No default	1 ISURFT = 1 1

(Must be a value from 1 to NSSTA)

(Used only if IDIOPT1 = 0)

Domain-averaged temperature lapse

rate (IDIOPT2)	Default: 0	1 IDIOPT2 = 0 1

0	= Compute internally from

twice-daily upper air observations

1	= Read hourly preprocessed values

from a data file (DIAG.DAT)

Upper air station to use for

the domain-scale lapse rate (IUPT) No default	1 IUPT = 1 1

(Must be a value from 1 to NUSTA)

(Used only if IDIOPT2 = 0)

Depth through which the domain-scale

lapse rate is computed (ZUPT)	Default: 200. 1 ZUPT = 200. 1

(Used only if IDIOPT2 = 0)	Units: meters

Domain-averaged wind components

(IDIOPT3)	Default: 0	1 IDIOPT3 = 0 1

0	= Compute internally from

twice-daily upper air observations

1	= Read hourly preprocessed values

a data file (DIAG.DAT)

Upper air station to use for

the domain-scale winds (IUPWND) Default: -1 1 IUPWND = -1 1
(Must be a value from -1 to NUSTA)

(Used only if IDIOPT3 = 0)

Bottom and top of layer through
which the domain-scale winds
are computed

(ZUPWND(1), ZUPWND(2))	Defaults: 1., 1000. 1 ZUPWND= 1., 1000. 1

(Used only if IDIOPT3 = 0) Units: meters

Observed surface wind components

for wind field module (IDIOPT4) Default: 0	1 IDIOPT4 = 0 1

Appendix A

A-9

Report.doc


-------
0	= Read WS, WD from a surface

data file (SURF.DAT)

1	= Read hourly preprocessed U, V from

a data file (DIAG.DAT)

Observed upper air wind components

for wind field module (IDI0PT5) Default: 0

0	= Read WS, WD from an upper

air data file (UP1.DAT, UP2.DAT, etc.)

1	= Read hourly preprocessed U, V from

a data file (DIAG.DAT)

LAKE BREEZE INFORMATION

Use Lake Breeze Module (LLBREZE)

Default: F
Number of lake breeze regions (NBOX)

X Grid line 1 defining the region of interest
X Grid line 2 defining the region of interest

Y	Grid line 1 defining the region of interest

Y	Grid line 2 defining the region of interest

IDI0PT5 = 0

I LLBREZE = F

1 NBOX = 0 1

XG1 = 0.	1

XG2 = 0.	1

YG1 = 0.	1

YG2 = 0.	I

X Point defining the coastline (Straight line)

(XBCST) (KM) Default: none 1 XBCST =0.1

Y	Point defining the coastline (Straight line)

(YBCST) (KM) Default: none 1 YBCST =0.1

X Point defining the coastline (Straight line)

(XECST) (KM) Default: none 1 XECST =0.1

Y	Point defining the coastline (Straight line)

(YECST) (KM) Default: none 1 YECST =0.1

Number of stations in the region	Default: none 1 NLB = *1 1 *

(Surface stations + upper air stations)

Station ID's in the region (METBXID(NLB))

(Surface stations first, then upper air stations)

1 METBXID = *0 1*

1 END 1

INPUT GROUP: 6 -- Mixing Height, Temperature and Precipitation Parameters

EMPIRICAL MIXING HEIGHT CONSTANTS

Neutral, mechanical equation

(CONSTB)

Convective mixing ht. equation

(CONSTE)

Stable mixing ht. equation

(CONSTN)

Overwater mixing ht. equation
(CONSTW)

Default:	1.41

Default:	0.15

Default:	2400.

Default:	0.16

CONSTB = 1.41
CONSTE = 0.15
CONSTN = 2400.
CONSTW = 0.16

Appendix A

A-10

Report.doc


-------
Absolute value of Coriolis
parameter (FCORIOL)

SPATIAL AVERAGING OF MIXING HEIGHTS

Conduct spatial averaging
(IAVEZI) (0=no, l=yes)

Max. search radius in averaging
process (MNMDAV)

Half-angle of upwind looking cone
for averaging (HAFANG)

Layer of winds used in upwind
averaging (ILEVZI)

(must be between 1 and NZ)

OTHER MIXING HEIGHT VARIABLES

Minimum potential temperature lapse
rate in the stable layer above the
current convective mixing ht.
(DPTMIN)

Depth of layer above current conv.
mixing height through which lapse
rate is computed (DZZI)

Minimum overland mixing height
(ZIMIN)

Maximum overland mixing height

(ZIMAX)

Minimum overwater mixing height
(ZIMINW) -- (Not used if observed
overwater mixing hts. are used)
Maximum overwater mixing height
(ZIMAXW) -- (Not used if observed
overwater mixing hts. are used)

Default: l.E-4 I FCORIOL = 1.0E-04!

Units: (1/s)

Default: 1

Default: 1
Units: Grid
cells

Default: 3 0.
Units: deg.

Default: 1

IAVEZI = 1

MNMDAV = 5

HAFANG = 30.

ILEVZI = 1

Default: 0.001 I DPTMIN = 0.001
Units: deg. K/m

Default: 200.
Units: meters

Default: 50.
Units: meters
Default: 3000.
Units: meters
Default: 50.
Units: meters

Default: 3000.
Units: meters

DZZI = 200. I

ZIMIN =50. 1
ZIMAX = 2695. !
ZIMINW =50. 1

ZIMAXW = 2695.

TEMPERATURE PARAMETERS

Interpolation type
(1 = 1/R ; 2 = 1/R**2)

Radius of influence for temperature
interpolation (TRADKM)

Conduct spatial averaging of temp-
eratures (IAVET) (0=no, l=yes)
(will use mixing ht MNMDAV,HAFANG
so make sure they are correct)

Default temperature gradient
below the mixing height over
water (K/m) (TGDEFB)

Default temperature gradient
above the mixing height over
water (K/m) (TGDEFA)

Default:1	I IRAD = 1 I

Default: 500.	1 TRADKM = 500. 1

Units: km

1 NUMTS = 5 1
Default: 1	I IAVET = 1 I

Default: -.0098 I TGDEFB = -0.0098 I

Default: -.0045 I TGDEFA = -0.0045 I

Maximum Number of stations to include
in temperature interpolation (NUMTS) Default: 5

Appendix A

A-11

Report.doc


-------
Beginning (JWAT1) and ending (JWAT2
land use categories for temperature
interpolation over water -- Make
bigger than largest land use to dis.

PRECIP INTERPOLATION PARAMETERS

Method of interpolation (NFLAGP)

(1=1/R,2=1/R**2,3=EXP/R**2)

Radius of Influence (km) (SIGMAP)
(0.0 => use half dist. btwn
nearest stns w & w/out
precip when NFLAGP = 3)

Minimum Precip. Rate Cutoff (mm/hr)
(values < CUTP = 0.0 mm/hr)

I END I

I JWAT1 = 100 I
1 JWAT2 = 100 1

.e

Default = 2 1 NFLAGP = 2 1
Default = 100.0 1 SIGMAP = 100. 1

Default =0.01 I CUTP = 0.01 I

INPUT GROUP: 7 -- Surface meteorological station parameters

SURFACE STATION VARIABLES

(One record per station -- 7 records in all)

1	2

Name ID	X coord. Y coord. Time Anem.

(km)	(km)	zone Ht.(m)

SSI

='RICH'

13740

824 . 090

4158.306

5

10

SS2

='RALE'

13722

700.141

3971.229

5

10

SS3

='QUAN'

13773

822 .691

4267.578

5

10

SS4

='ROAN'

13741

591.562

4130.299

5

10

SS5

='LYNC'

13733

659.466

4133 .166

5

10

SS6

='GREE'

13723

594.539

3993.501

5

10

SS7

='ELKI'

13729

599.748

4304 .251

5

10

1

Four character string for station name
(MUST START IN COLUMN 9)

2

Five digit integer for station ID

I END I

INPUT GROUP: 8 -- Upper air meteorological station parameters

UPPER AIR STATION VARIABLES

(One record per station -- 2	records in all)
1 2

Name ID X coord.	Y coord. Time zone

(km)	(km)

US1 ='GSO' 13723 594.543	3993.131 5 1

US2 ='STE' 93734 805.804	4320.279 5 I

Appendix A

A-12

Report.doc


-------
Four character string for station name
(MUST START IN COLUMN 9)

2

Five digit integer for station ID

I END I

INPUT GROUP: 9 -- Precipitation station parameters

PRECIPITATION STATION VARIABLES

(One record per station -- 59 records in all)
(NOT INCLUDED IF NPSTA = 0)





1

2









Name

Station

Code

X coord.

(km)

Y coord.

(km)

1 PS1



0001'

466163

520.121

4349.886 1

1 PS2

=

0002 '

465739

584 .237

4267.078 1

1 PS3

=

0003 '

465672

541.224

4155.786 1

1 PS4

=

0004 '

465341

583 .335

4352.155 1

1 PS5

=

0005 '

465284

624 .764

4367.510 1

1 PS6

=

0006 '

465002

775 .430

4369.545 1

1 PS7

=

0007 '

464763

692.492

4355.938 1

1 PS8

=

0008 '

464369

676.000

4322.234 1

1 PS9

=

0009 '

463820

685 . 089

4303.936 1

1 PS10

=

0010 '

463361

529.484

4144.643 1

1 PS11

=

0011 '

463238

598.572

4396.733 1

1 PS12

=

0012 '

463215

768 .449

4363.743 1

1 PS13

=

0013 '

462718

545.725

4394.388 1

1 PS14

=

0014 '

461900

576 .438

4322.488 1

1 PS15

=

0015 '

461677

731. 944

4382.937 1

1 PS16

=

0016 '

461393

515.891

4309.187 1

1 PS17

=

0017 '

461323

520.301

4279.606 1

1 PS18

=

0018 '

460664

646.453

4280.925 1

1 PS19

=

0019 '

319675

599.748

4304.251 1

1 PS2 0

=

0020 '

319476

604 .337

4393.109 1

1 PS21

=

0021 '

313638

500.000

4028.114 1

1 PS22

=

0022 '

313630

798.640

4042.527 1

1 PS23

=

0023 '

313232

707.883

3962.158 1

1 PS24

=

0024 '

312631

700.141

3971.229 1

1 PS25

=

0025 '

312388

501.501

3992.991 1

1 PS26

=

0026 '

312230

515 . 096

3939.397 1

1 PS27

=

0027 '

311241

566 .222

3967.359 1

1 PS28

=

0028 '

310750

826 . 033

3949.054 1

1 PS2 9

=

0029 '

449301

594 .539

3993.501 1

1 PS30

=

0030 '

449272

728 . 063

3997.811 1

1 PS31

=

0031 '

449215

611. 926

4041.781 1

1 PS32

=

0032 '

449159

553.873

4017.189 1

1 PS33

=

0033 '

449151

643.971

3999.722 1

1 PS34

=

0034 '

449060

675 . 029

3946.652 1

1 PS35

=

0035 '

448906

492 .578

4087.277 1

1 PS36

=

0036 '

448849

565.522

4059.793 1

1 PS37

=

0037 '

448800

546 . 062

4078.154 1

1 PS38

=

0038 '

448547

624.103

4225.049 1

1 PS39

=

0039 '

448396

881.194

4136.626 1

1 PS4 0

=

0040 '

448062

516.274

4115.023 1

1 PS41

=

0041 '

448046

844.273

4307.406 1

1 PS42

=

0042 '

447338

781.859

4310.495 1

1 PS43

=

0043 '

447285

668 . 099

4216.590 1

AppendixA	A -13	Report.doc


-------
PS44



1 0044 '

447201

PS45



1 0045 '

446955

PS46



1 0046 '

446712

PS47



1 0047 '

446692

PS48



10048 '

446475

PS4 9



10049 '

446178

PS50



10050 '

446139

PS51



1 0051 '

445880

PS52



1 0052 '

445690

PS53



1 0053 '

445595

PS54



1 0054 '

445120

PS55



10055 '

444414

PS56



1 0056 '

444410

PS57



1 0057 '

444246

PS58



1 0058 '

444180

PS59



1 0059 '

444128

722.012	4328.952

525.122	4124.289

597.879	4095.235

591.562	4130.299

824.090	4158.306

519.263	4102.086

752.434	4233.581

586.258	4071.070

707.948	4202.704

618.022	4241.606

664.234	4190.609

612.140	4245.222

659.466	4133.166

743.012	4053.735

538.608	4083.664

602.434	4206.252

1

Four character string for station name
(MUST START IN COLUMN 9)

2

Six digit station code composed of state
code (first 2 digits) and station ID (last
4 digits)

I END I

Appendix A

A-14

Report.doc


-------
APPENDIX B

MESOPUFF II INPUT CONTROL FILE

MESOPUFF II Consequence Run

90

006

0

8592

1

0

790

1

0

1

8

8

T

2 .

F

300 .





1

78

1

60

1

78

1

60

1

T

F

F

F

T









T

F

12

F

0

0

F

F

F

000000

42.5 12.5 100. 8. 26.0 430. 6000.0

28.125	29.625

28.375	29.625

27.625	29.875

27.875	29.875

28.125	29.875

28.375	29.875

28.625	29.875

27.625	30.125

27.875	30.125

28.125	30.125

28.375	30.125

28.625	30.125

27.625	30.375

27.875	30.375

28.125	30.375

28.375	30.375

28.625	30.375

28.875	30.375

27.875	30.625

28.125	30.625

28.375	30.625

28.625	30.625

28.875	30.625

27.875	30.875

28.125	30.875

28.375	30.875

28.625	30.875

28.875	30.875

29.125	30.875

29.375	30.875

28.375	31.125

28.625	31.125

28.875	31.125

29.125	31.125

29.375	31.125

27.875	31.375

28.125	31.375

28.375	31.375

28.625	31.375

28.875	31.375

29.125	31.375

29.375	31.375

28.125	31.625

28.375	31.625

28.625	31.625

28.875	31.625

29.125	31.625

29.375	31.625

28.125	31.875

28.375	31.875

28.625	31.875

28.875	31.875

Appendix B

B-l

Report.doc


-------
29.125
29.375
28.125
28.375
28.625
28.875
29.125
28.375
28.625
28.875
29.125
28.375
28.625
28.875
29.125
29.375
30.125
28.375
28.625
28.875
29.125
29.375
29.625
29.875
30.125
30.375
28.375
28.625
28.875
29.125
29.375
29.625
29.875
30.125
30.375
27.875
28.125
28.375
28.625
28.875
29.125
29.375
29.625
29.875
30.125
30.375
28.125
28.375
28.625
28.875
29.125
29.375
29.625
29.875
30.125
30.375
30.625
30.875
28.375
28.625
28.875
29.125
29.375
29.625
29.875
30.125

Appendix B

B-2

Report.doc


-------
APPENDIX C

CALPUFF INPUT CONTROL FILE

CALMET/CALPUFF Consequence Example, 78 x 60 grid cells @ 4 km grid

Class I Area: Shenandoah National Park		 Transformation & Removal

January 6, 1990 - December 29, 1990

	 RUn title (3 lines) 	

CALPUFF MODEL CONTROL FILE

INPUT GROUP: 0 -- Input and Output File Names

Default Name

Type



File Name

CALMET.DAT

input

k

METDAT = *

or







ISCMET.DAT

input

k

ISCDAT = *

or







PLMMET.DAT

input

k

PLMDAT = *

or







PROFILE.DAT

input

k

PRFDAT = *

SURFACE.DAT

input

k

SFCDAT = *

RESTARTB.DAT

input

k

RSTARTB= *

CALPUFF.LST

output

1

PUFLST =calpuff3.LST

CONC.DAT

output

1

CONDAT =calpuff3.CON

DFLX.DAT

output

1

DFDAT =calpuff3.DRY

WFLX.DAT

output

1

WFDAT =calpuff3.WET

VISB.DAT

output

1

VISDAT =calpuff.VIS

RESTARTE.DAT

output

1

RSTARTE=calpuff.DAT

Emission Files





PTEMARB.DAT

input

k

PTDAT = *

VOLEMARB.DAT

input

k

VOLDAT = *

BAEMARB.DAT

input

k

ARDAT = *

LNEMARB.DAT

input

k

LNDAT = *

Other Files







OZONE.DAT

input

,

OZDAT =OZONE.DAT 1

VD.DAT

input

k

VDDAT = *

CHEM.DAT

input

k

CHEMDAT= *

H202.DAT

input

k

H202DAT= *

HILL.DAT

input

k

HILDAT= *

HILLRCT.DAT

input

k

RCTDAT= *

COASTLN.DAT

input

k

CSTDAT= *

FLUXBDY.DAT

input

k

BDYDAT= *

BCON.DAT

input

k

BCNDAT= *

DEBUG.DAT

output

k

DEBUG = *

MASSFLX.DAT

output

k

FLXDAT= *

MASSBAL.DAT

output

k

BALDAT= *

FOG.DAT

output

k

FOGDAT= *

All file names will be converted to lower case if LCFILES = T
Otherwise, if LCFILES = F, file names will be converted to UPPER CASE
T = lower case	1 LCFILES = F 1

F = UPPER CASE

Appendix C

C-l

Report.doc


-------
NOTE: (1) file/path names can be up to 70 characters in length

Provision for multiple input files

Number of CALMET.DAT files for run (NMETDAT)

Default: 1	1 NMETDAT = 12

Number of PTEMARB.DAT files for run (NPTDAT)

Default: 0	1 NPTDAT = 0 1

Number of BAEMARB.DAT files for run (NARDAT)

Default: 0	1 NARDAT = 0 1

Number of VOLEMARB.DAT files for run (NVOLDAT)

Default: 0	1 NVOLDAT = 0 1

I END I

Subgroup (0a)

The following CALMET.DAT filenames are processed in sequence if NMETDAT>1

Default Name

Type

File

Name



none

input

1 METDAT=

.\calmet\cal\JAN.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\FEB.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\MAR.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\APR.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\MAY.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\JUN.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\JUL.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\AUG.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\SEP.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\OCT.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\NOV.DAT

1 1 END

none

input

1 METDAT=

.\calmet\cal\DEC.DAT

1 1 END

INPUT GROUP: 1 -- General run control parameters

Option to run all periods found

in the met. file	(METRUN) Default: 0	1 METRUN = 0 1

METRUN = 0 - Run period explicitly defined below
METRUN = 1 - Run all periods in met. file

Starting date:

Year

(IBYR) -

- No

default

I IBYR =

= 1990

(used only if

Month

(IBMO) -

- No

default

1 IBMO =

= 1 1

METRUN = 0)

Day

(IBDY) -

- No

default

1 IBDY =

= 6 1



Hour

(IBHR) -

- No

default

1 IBHR =

= 0 1

Base time zone



(XBTZ) -

- No

default

1 XBTZ =

= 5.0

PST = 8 . , MST = 7.











CST = 6., EST = 5.











Length of run

(hours)

(IRLG) -

- No

default

1 IRLG =

= 8592

Number of chemical species (NSPEC)

Default: 5	I NSPEC = 2

Number of chemical species

to be emitted (NSE)	Default: 3	1 NSE = 1

Flag to stop run after

Appendix C

C-2

Report.doc


-------
SETUP phase (ITEST)	Default: 2	I ITEST = 2

(Used to allow checking
of the model inputs, files, etc.)

ITEST = 1 - STOPS program after SETUP phase
ITEST = 2 - Continues with execution of program
after SETUP

Restart Configuration:

Control flag (MRESTART)	Default: 0	1 MRESTART = 0

0	= Do not read or write a restart file

1	= Read a restart file at the beginning of

the run

2	= Write a restart file during run

3	= Read a restart file at beginning of run

and write a restart file during run

Number of periods in Restart

output cycle (NRESPD)	Default: 0	1 NRESPD = 72 0

0 = File written only at last period
>0 = File updated every NRESPD periods

Meteorological Data Format (METFM)

Default: 1	I METFM = 1

METFM = 1 - CALMET binary file (CALMET.MET)

METFM = 2 - ISC ASCII file (ISCMET.MET)

METFM = 3 - AUSPLUME ASCII file (PLMMET.MET)

METFM = 4 - CTDM plus tower file (PROFILE.DAT) and
surface parameters file (SURFACE.DAT)

PG sigma-y is adjusted by the factor (AVET/PGTIME)**0.2
Averaging Time (minutes) (AVET)

Default: 6 0.0 1 AVET =60. 1
PG Averaging Time (minutes) (PGTIME)

Default: 6 0.0 I PGTIME = 60.

I END I

INPUT GROUP: 2 -- Technical options

Vertical distribution used in the

near field (MGAUSS)	Default: 1	1 MGAUSS = 1

0	= uniform

1	= Gaussian

Terrain adjustment method

(MCTADJ)	Default: 3	1 MCTADJ = 3

0	= no adjustment

1	= ISC-type of terrain adjustment

2	= simple, CALPUFF-type of terrain

adj ustment

3	= partial plume path adjustment

Subgrid-scale complex terrain

flag (MCTSG)	Default: 0	1 MCTSG = 0

0	= not modeled

1	= modeled

Near-field puffs modeled as

elongated 0 (MSLUG)	Default: 0	1 MSLUG = 0

0	= no

1	= yes (slug model used)

Appendix C

C-3

Report.doc


-------
Transitional plume rise modeled ?

(MTRANS)	Default: 1	1 MTRANS = 1

0	= no (i.e., final rise only)

1	= yes (i.e., transitional rise computed)

Stack tip downwash? (MTIP)	Default: 1	1 MTIP = 1 1

0	= no (i.e., no stack tip downwash)

1	= yes (i.e., use stack tip downwash)

Vertical wind shear modeled above

stack top? (MSHEAR)	Default: 0	1 MSHEAR = 0 1

0	= no (i.e., vertical wind shear not modeled)

1	= yes (i.e., vertical wind shear modeled)

Puff splitting allowed? (MSPLIT)	Default: 0	1 MSPLIT = 0 1

0	= no (i.e., puffs not split)

1	= yes (i.e., puffs are split)

Chemical mechanism flag (MCHEM)	Default: 1	1 MCHEM = 1

0	= chemical transformation not

modeled

1	= transformation rates computed

internally (MESOPUFF II scheme)

2	= user-specified transformation

rates used

3	= transformation rates computed

internally (RIVAD/ARM3 scheme)

4	= secondary organic aerosol formation

computed (MESOPUFF II scheme for OH)

Aqueous phase transformation flag (MAQCHEM)

(Used only if MCHEM = 1, or 3)	Default: 0	1 MAQCHEM = 0

0	= aqueous phase transformation

not modeled

1	= transformation rates adjusted

for aqueous phase reactions

Wet removal modeled ? (MWET)	Default: 1	1 MWET = 1 1

0	= no

1	= yes

Dry deposition modeled ? (MDRY)	Default: 1	1 MDRY = 1 1

0	= no

1	= yes

(dry deposition method specified
for each species in Input Group 3)

Method used to compute dispersion

coefficients (MDISP)	Default: 3	1 MDISP = 3

1	= dispersion coefficients computed from measured values

of turbulence, sigma v, sigma w

2	= dispersion coefficients from internally calculated

sigma v, sigma w using micrometeorological variables
(u*, w*, L, etc.)

3	= PG dispersion coefficients for RURAL areas (computed using

the ISCST multi-segment approximation) and MP coefficients in
urban areas

4	= same as 3 except PG coefficients computed using

the MESOPUFF II eqns.

5	= CTDM sigmas used for stable and neutral conditions.

For unstable conditions, sigmas are computed as in
MDISP = 3, described above. MDISP = 5 assumes that
measured values are read

Sigma-v/sigma-theta, sigma-w measurements used? (MTURBVW)

(Used only if MDISP = 1 or 5)	Default: 3	1 MTURBVW = 3 1

1 = use sigma-v or sigma-theta measurements
from PROFILE.DAT to compute sigma-y
(valid for METFM = 1, 2, 3, 4)

Appendix C

C-4

Report.doc


-------
2	= use sigma-w measurements

from PROFILE.DAT to compute sigma-z
(valid for METFM = 1, 2, 3, 4)

3	= use both sigma-(v/theta) and sigma-w

from PROFILE.DAT to compute sigma-y and sigma-z
(valid for METFM = 1, 2, 3, 4)

4	= use sigma-theta measurements

from PLMMET.DAT to compute sigma-y
(valid only if METFM = 3)

Back-up method used to compute dispersion
when measured turbulence data are

missing (MDISP2)	Default: 3	1 MDISP2 = 3 1

(used only if MDISP = 1 or 5)

2	= dispersion coefficients from internally calculated

sigma v, sigma w using micrometeorological variables
(u*, w*, L, etc.)

3	= PG dispersion coefficients for RURAL areas (computed using

the ISCST multi-segment approximation) and MP coefficients in
urban areas

4	= same as 3 except PG coefficients computed using

the MESOPUFF II eqns.

PG sigma-y,z adj. for roughness?
(MROUGH)

0	= no

1	= yes

Partial plume penetration of
elevated inversion?

(MPARTL)

0	= no

1	= yes

Default: 0	I MROUGH = 0 I

Default: 1	I MPARTL = 1 I

Strength of temperature inversion	Default: 0	1 MTINV = 0 1

provided in PROFILE.DAT extended records?

(MTINV)

0	= no (computed from measured/default gradients)

1	= yes

PDF used for dispersion under convective conditions?

Default: 0	1 MPDF = 0 1

(MPDF)

0	= no

1	= yes

Sub-Grid TIBL module used for shore line?

Default: 0	1 MSGTIBL = 0 1

(MSGTIBL)

0	= no

1	= yes

Boundary conditions (concentration) modeled?

Default: 0	1 MBCON = 0 1

(MBCON)

0	= no

1	= yes

Analyses of fogging and icing impacts due to emissions from
arrays of mechanically-forced cooling towers can be performed
using CALPUFF in conjunction with a cooling tower emissions
processor (CTEMISS) and its associated postprocessors. Hourly
emissions of water vapor and temperature from each cooling tower
cell are computed for the current cell configuration and ambient
conditions by CTEMISS. CALPUFF models the dispersion of these
emissions and provides cloud information in a specialized format
for further analysis. Output to FOG.DAT is provided in either
'plume mode' or 'receptor mode' format.

Configure for FOG Model output?

Appendix C

C-5

Report.doc


-------
Default: 0	I MFOG = 0

(MFOG)

0	= no

1	= yes - report results in PLUME Mode format

2	= yes - report results in RECEPTOR Mode format

Test options specified to see if
they conform to regulatory
values? (MREG)

Default: 1

MREG =

0	= NO checks are made

1	= Technical options must conform to USEPA values

(min)

METFM

1

AVET

60 .

MGAUSS

1

MCTADJ

3

MTRANS

1

MTIP

1

MCHEM

1 (i

MWET

1

MDRY

1

MDISP

3

MROUGH

0

MPARTL

1

SYTDEP

550 .

MHFTSZ

0

(if modeling SOx, NOx)

(m)

I END I

INPUT GROUP: 3a, 3b -- Species list

Subgroup (3a)

The following species are modeled:

I

CSPEC =

S02 I



I END I





1

CSPEC =

S04 1



1 END 1





•k

CSPEC =

NOX *



*END*





k

CSPEC =

HN03 *



*END*





k

CSPEC =

N03 *



*END*















Dry

OUTPUT GROUP



SPECIES

MODELED

EMITTED

DEPOSITED

NUMBER



NAME

(0=NO,

1=YES)

(0=NO, 1=YES)

(0=NO,

(0=NONE,



(Limit: 12







1=COMPUTED-GAS

1 = 1s t CGRUP



Characters







2 = COMPUTED-PARTICLE

2=2nd CGRUP



in length)







3=USER-SPECIFIED)

3= etc.)

1

S02

=

1,

1,

1,

0

1

S04

=

1,

0,

2,

0

•k

NOX

=

1,

1,

1,

0 *

k

HN03

=

1,

0,

1,

0 *

k

N03

=

1,

0,

2,

0 *

I END I

Subgroup (3b)

The following names are used for Species-Groups in which results
for certain species are combined (added) prior to output. The
CGRUP name will be used as the species name in output files.
Use this feature to model specific particle-size distributions

Appendix C

C-6

Report.doc


-------
by treating each size-range as a separate species.
Order must be consistent with 3(a) above.

INPUT GROUP: 4

Grid control parameters

METEOROLOGICAL grid:

No. X grid cells

(NX)

No

default

I NX =

78

No. Y grid cells

(NY)

No

default

1 NY =

60

No. vertical layers

(NZ)

No

default

1 NZ =

10

Grid spacing (DGRIDKM)

No default
Units: km

DGRIDKM = 4.

Cell face heights
(ZFACE (nz + 1))

ZFACE = 0., 20., 40., 80., 160.
3000. I

No defaults
Units: m
300., 600., 1000., 1500., 2200.

Reference Coordinates
of SOUTHWEST corner of
grid cell (1, 1) :

X coordinate (XORIGKM)
Y coordinate (YORIGKM)

No default
No default
Units: km

XORIGKM = 580.
YORIGKM = 4100.

UTM zone (IUTMZN)

Reference coordinates of CENTER
of the domain (used in the
calculation of solar elevation

angles)

No default

IUTMZN = 17

Computational grid:

The computational grid is identical to or a subset of the MET. grid.
The lower left (LL) corner of the computational grid is at grid point
(IBCOMP, JBCOMP) of the MET. grid. The upper right (UR) corner of the
computational grid is at grid point (IECOMP, JECOMP) of the MET. grid.
The grid spacing of the computational grid is the same as the MET. grid.

X index of LL corner (IBCOMP)	No default	1 IBCOMP = 1 1

(1 <= IBCOMP <= NX)

Y index of LL corner (JBCOMP)	No default	1 JBCOMP = 1 1

(1 <= JBCOMP <= NY)

X index of UR corner (IECOMP)	No default	1 IECOMP = 78

(1 <= IECOMP <= NX)

Y index of UR corner (JECOMP)	No default	1 JECOMP = 6 0

(1 <= JECOMP <= NY)

SAMPLING GRID (GRIDDED RECEPTORS):

The lower left (LL) corner of the sampling grid is at grid point
(IBSAMP, JBSAMP) of the MET. grid. The upper right (UR) corner of the

Appendix C

C-7

Report.doc


-------
sampling grid is at grid point (IESAMP, JESAMP) of the MET. grid.
The sampling grid must be identical to or a subset of the computational
grid. It may be a nested grid inside the computational grid.

The grid spacing of the sampling grid is DGRIDKM/MESHDN.

Logical flag indicating if gridded

receptors are used (LSAMP)	Default: T	1 LSAMP = F 1

(T=yes, F=no)

X index of LL corner (IBSAMP)
(IBCOMP <= IBSAMP <= IECOMP)

Y index of LL corner (JBSAMP)
(JBCOMP <= JBSAMP <= JECOMP)

No default	I IBSAMP = 0

No default	I JBSAMP = 0

X index of UR corner (IESAMP)
(IBCOMP <= IESAMP <= IECOMP)

Y index of UR corner (JESAMP)
(JBCOMP <= JESAMP <= JECOMP)

No default	I IESAMP = 0

No default	I JESAMP = 0

Nesting factor of the sampling
grid (MESHDN)	Default: 1	1 MESHDN = 1 1

(MESHDN is an integer >= 1)

I END I

INPUT GROUP: 5 -- Output Options

FILE	DEFAULT VALUE	VALUE THIS RUN

Concentrations (ICON)

1

I ICON =

1

Dry Fluxes (IDRY)

1

1 IDRY =

0

Wet Fluxes (IWET)

1

1 IWET =

0

Relative Humidity (IVIS)

1

1 IVIS =

0

(relative humidity file is







required for visibility







analysis)







Use data compression option

in output file?





(LCOMPRS)

Default: T

1 LCOMPRS



0 = Do not create file, 1 = create file

DIAGNOSTIC MASS FLUX OUTPUT OPTIONS:

Mass flux across specified boundaries
for selected species reported hourly?

(IMFLX)	Default: 0	1 IMFLX = 0 1

0	= no

1	= yes (FLUXBDY.DAT and MASSFLX.DAT filenames

are specified in Input Group 0)

Mass balance for each species

reported hourly?

(IMBAL)

0	= no

1	= yes (MASSBAL.DAT filename

specified in Input Group

Default: 0	I IMBAL = 0 I

is

0)

LINE PRINTER OUTPUT OPTIONS:

Appendix C

C-8

Report.doc


-------
Units for Line Printer Output

Print concentrations (ICPRT)	Default

Print dry fluxes (IDPRT)	Default

Print wet fluxes (IWPRT)	Default
(0 = Do not print, 1 = Print)

Concentration print interval
(ICFRQ) in hours	Default: 1

Dry flux print interval

(IDFRQ) in hours	Default: 1

Wet flux print interval

(IWFRQ) in hours	Default: 1

(IPRTU)

for

Concentration
g/m**3
mg/m**3
ug/m**3
ng/m**3
Odour Units

Default: 1
for
Deposition

g/m**2/s
mg/m**2/s
ug/m**2/s
ng/m**2/s

ICPRT
IDPRT
IWPRT

ICFRQ =
IDFRQ =
IWFRQ =

IPRTU =

Messages tracking progress of run
written to the screen ?

(IMESG)	Default: 2

0	= no

1	= yes (advection step, puff ID)

2	= yes (YYYYJJJHH, # old puffs, # emitted puffs)

IMESG =

SPECIES (or GROUP for combined species) LIST FOR OUTPUT OPTIONS

	CONCENTRATIONS	 	DRY FLUXES	 	WET FLUXES	

-- MASS FLUX --
SPECIES

/GROUP	PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK?

SAVED ON DISK?

S02 =
S04 =
NOX =
HN03 =
N03 =

1,

0,

1,
1,
1,

OPTIONS FOR PRINTING "DEBUG" QUANTITIES (much output)

Logical for debug output
(LDEBUG)

Default: F

LDEBUG = F

First puff to track
(IPFDEB)

Default: 1

IPFDEB = 1

Number of puffs to track
(NPFDEB)

Met. period to start output
(NN1)

Default: 1

Default: 1

NPFDEB = 1

NN1 = 1

Met. period to end output
(NN2)

Default: 10

NN2 = 10

I END I

Appendix C

C-9

Report.doc


-------
INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs

Subgroup (6a)

Number of terrain features (NHILL)

Number of special complex terrain
receptors (NCTREC)

Terrain and CTSG Receptor data for
CTSG hills input in CTDM format ?
(MHILL)

1	= Hill and Receptor data created

by CTDM processors & read from
HILL.DAT and HILLRCT.DAT files

2	= Hill data created by OPTHILL &

input below in Subgroup (6b);
Receptor data in Subgroup (6c)

Factor to convert horizontal dimensions Default: 1.0
to meters (MHILL=1)

Default: 0

Default: 0

No Default

Factor to convert vertical dimensions
to meters (MHILL=1)

Default: 1.0

X-origin of CTDM system relative to	No Default

CALPUFF coordinate system, in Kilometers (MHILL=1)

Y-origin of CTDM system relative to	No Default

CALPUFF coordinate system, in Kilometers (MHILL=1)

NHILL = 0

NCTREC = 0

MHILL = 0

XHILL2M = 1.

ZHILL2M = 1.

XCTDMKM = 0.0E0 0

YCTDMKM = 0.0E0 0

END

Subgroup (6b)

]_ * *

HILL information

HILL

AMAX1
NO.
(m)

AM AX 2

(m)

XC	YC	THETAH ZGRID RELIEF EXPO 1 EXPO 2 SCALE 1 SCALE 2

2

(km)	(km)	(deg.) (m)	(m)	(m)	(m)	(m)	(m)

Subgroup (6c)

COMPLEX TERRAIN RECEPTOR INFORMATION

XRCT	YRCT	ZRCT	XHH

(km)	(km)	(m)

1

Description of Complex Terrain Variables:

XC, YC = Coordinates of center of hill

THETAH = Orientation of major axis of hill (clockwise from
North)

ZGRID = Height of the 0 of the grid above mean sea

Appendix C	C-10	Report.doc


-------
level

RELIEF = Height of the crest of the hill above the grid elevation

EXPO 1 = Hill-shape exponent for the major axis

EXPO 2 = Hill-shape exponent for the major axis

SCALE 1 = Horizontal length scale along the major axis

SCALE 2 = Horizontal length scale along the minor axis

AMAX = Maximum allowed axis length for the major axis

BMAX = Maximum allowed axis length for the major axis

XRCT,
ZRCT

XHH

YRCT = Coordinates of the complex terrain receptors
= Height of the ground (MSL) at the complex terrain
Receptor

= Hill number associated with each complex terrain receptor
(NOTE: MUST BE ENTERED AS A REAL NUMBER)

NOTE: DATA for each hill and CTSG receptor are treated as a separate

input subgroup and therefore must end with an input group terminator.

INPUT GROUP: 7 -- Chemical parameters for dry deposition of gases

SPECIES	DIFFUSIVITY	ALPHA STAR	REACTIVITY MESOPHYLL RESISTANCE	HENRY'S

LAW COEFFICIENT

NAME	(cm**2/s)	(s/cm)

(dimensionless)

I	S02 =	0.1509,	1000.,	8.,	0.

0 . 04 1

*	NOX =	0.1656,	1. ,	8. ,	5.
3.5*

*	HN03 =	0.1628,	1.,	18.,	0.
0.00000008 *

! END!

INPUT GROUP: 8 -- Size parameters for dry deposition of particles

For SINGLE SPECIES, the mean and standard deviation are used to
compute a deposition velocity for NINT (see group 9) size-ranges,
and these are then averaged to obtain a mean deposition velocity.

For GROUPED SPECIES, the size distribution should be explicitly
specified (by the 'species' in the group), and the standard deviation
for each should be entered as 0. The model will then use the
deposition velocity for the stated mean diameter.

SPECIES	GEOMETRIC MASS MEAN

NAME	DIAMETER

(microns)

S04 =
N03 =

0.48,
0.48,

GEOMETRIC STANDARD
DEVIATION
(microns)

2. 1
2. *

! END!

INPUT GROUP: 9 -- Miscellaneous dry deposition parameters

Appendix C

C-ll

Report.doc


-------
Reference cuticle resistance (s/cm)

(RCUTR)	Default: 3 0 1 RCUTR = 3 0.0

Reference ground resistance (s/cm)

(RGR)	Default: 10 1 RGR =10.0

Reference pollutant reactivity

(REACTR)	Default: 8	I REACTR =8.0 I

Number of particle-size intervals used to
evaluate effective particle deposition velocity
(NINT)	Default: 9

NINT = 9

Vegetation state in unirrigated areas
(IVEG)	Default: 1

IVEG=1 for active and unstressed vegetation
IVEG=2 for active and stressed vegetation
IVEG=3 for inactive vegetation

IVEG = 1

I END I

INPUT GROUP: 10 -- Wet Deposition Parameters

Pollutant

S02 =
S04 =
HN03 =
N03 =

Scavenging Coefficient -- Units: (sec)**(-l)
Liquid Precip.	Frozen Precip.

3.0E-05,
1.0E-04,
6.0E-05,
1.0E-04,

0.0E00
3.0E-05
0.0E00
3.0E-05

I END I

INPUT GROUP: 11 -- Chemistry Parameters

Ozone data input option (MOZ)	Default: 1

(Used only if MCHEM =1, 3, or 4)

0	= use a monthly background ozone value

1	= read hourly ozone concentrations from

the OZONE.DAT data file

MOZ =

Monthly ozone concentrations
(Used only if MCHEM =1, 3, or 4 and
MOZ = 0 or MOZ = 1 and all hourly 03 data missing)

(BCK03) in ppb	Default: 12*80.

1 BCK03 = 24., 29., 32., 44., 43., 43., 38., 36., 37., 28., 32., 20.

Monthly ammonia concentrations
(Used only if MCHEM = 1, or 3)
(BCKNH3) in ppb
I BCKNH3 = 12*0.50 I

Default: 12*10.

Nighttime S02 loss rate (RNITE1)
in percent/hour	Default: 0.2

Nighttime NOx loss rate (RNITE2)
in percent/hour	Default: 2.0

Nighttime HN03 formation rate (RNITE3)

RNITE1 = .2

RNITE2 =2.0

Appendix C

C-12

Report.doc


-------
in percent/hour	Default: 2.0	1 RNITE3 = 2.0 1

H202 data input option (MH202) Default: 1	1 MH202 = 1 1

(Used only if MAQCHEM = 1)

0	= use a monthly background H202 value

1	= read hourly H202 concentrations from

the H202.DAT data file

Monthly H202 concentrations
(Used only if MQACHEM = 1 and

MH202 = 0 or MH202 = 1 and all hourly H202 data missing)
(BCKH202) in ppb	Default: 12*1.

I BCKH202 = 12*1.00 I

	 Data for SECONDARY ORGANIC AEROSOL (SOA) Option

(used only if MCHEM = 4)

The SOA module uses monthly values of:

Fine particulate concentration in ug/mA3 (BCKPMF)
Organic fraction of fine particulate	(OFRAC)

VOC / NOX ratio (after reaction)	(VCNX)

to characterize the air mass when computing
the formation of SOA from VOC emissions.

Typical values for several distinct air mass types are:

Month 123456789	10	11	12

Jan Feb Mar Apr May Jun Jul Aug Sep	Oct	Nov	Dec

Clean Continental

BCKPMF 1. 1. 1. 1. 1. 1. 1. 1. 1.	1.	1.	1.

OFRAC .15 .15 .20 .20 .20 .20 .20 .20 .20	.20	.20	.15

VCNX 50. 50. 50. 50. 50. 50. 50. 50. 50.	50.	50.	50.

Clean Marine (surface)

BCKPMF .5 .5 .5	.5	.5	.5	.5	.5	.5	.5	.5	.5

OFRAC .25 .25 .30	.30	.30	.30	.30	.30	.30	.30	.30	.25

VCNX 50. 50. 50.	50.	50.	50.	50.	50.	50.	50.	50.	50.

Urban - low biogenic (controls present)

BCKPMF 30. 30. 30. 30. 30. 30.	30.	30.	30.	30.	30. 30.

OFRAC .20 .20 .25 .25 .25 .25	.25	.25	.20	.20	.20	.20

VCNX 4. 4. 4. 4. 4. 4.	4.	4.	4.	4.	4. 4.

Urban - high biogenic (controls present)

BCKPMF 60. 60. 60. 60. 60. 60. 60. 60. 60.	60.	60.	60.

OFRAC .25 .25 .30 .30 .30 .55 .55	.55	.35	.35	.35	.25

VCNX 15. 15. 15. 15. 15. 15. 15. 15. 15.	15.	15.	15.

Regional Plume

BCKPMF 20.	20.	20.	20. 20.	20.	20. 20. 20.	20.	20. 20.

OFRAC .20	.20	.25	.35	.25	.40	.40	.40	.30	.30	.30	.20

VCNX 15.	15. 15.	15. 15.	15.	15. 15. 15.	15.	15. 15.

Urban - no controls	present

BCKPMF 100. 100.	100. 100.	100. 100.	100.	100.	100.	100.	100.	100.

OFRAC .30 .30	.35 .35	.35 .55	.55	.55	.35	.35	.35	.30

VCNX 2. 2.	2. 2.	2. 2.	2.	2.	2.	2.	2.	2.

Default: Clean Continental

1 BCKPMF = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 1
1 OFRAC = 0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15 1
1 VCNX = 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00,
50.00 I

I END I

Appendix C

C-13

Report.doc


-------
INPUT GROUP: 12 -- Misc. Dispersion and Computational Parameters

Horizontal size of puff (m) beyond which
time-dependent dispersion equations (Heffter)
are used to determine sigma-y and

sigma-z (SYTDEP)	Default: 550.

SYTDEP = 5.5E02

Switch for using Heffter equation for sigma z
as above (0 = Not use Heffter; 1 = use Heffter
(MHFTSZ)	Default: 0

MHFTSZ =

Stability class used to determine plume
growth rates for puffs above the boundary
layer (JSUP)

Default: 5

JSUP =

Vertical dispersion constant for stable

conditions (kl in Eqn. 2.7-3) (CONK1)

Default: 0.01

CONK1 = .01

Vertical dispersion constant for neutral/
unstable conditions (k2 in Eqn. 2.7-4)
(CONK2)

Default: 0.1

CONK2 = .1

Factor for determining Transition-point from
Schulman-Scire to Huber-Snyder Building Downwash
scheme (SS used for Hs < Hb + TBD * HL)

(TBD)	Default: 0.5

TBD < 0 ==> always use Huber-Snyder
TBD = 1.5 ==> always use Schulman-Scire
TBD = 0.5 ==> ISC Transition-point

TBD = .5

Range of land use categories for which
urban dispersion is assumed
(IURB1, IURB2)

Default: 10
19

IURB1 = 10
IURB2 = 19

Site characterization parameters for single-point Met data files

(needed for METFM = 2,3,4)

Land use category for modeling domain
(ILANDUIN)

Default: 20

ILANDUIN = 2 0

Roughness length (m) for modeling domain

(Z0IN)

Default: 0.25

Z0IN = .25

Leaf area index for modeling domain
(XLAIIN)

Default: 3.0

XLAIIN =3.0

Elevation above sea level (m)
(ELEVIN)

Default: 0.0

ELEVIN = .0

Latitude (degrees) for met location
(XLATIN)

Default:

XLATIN = -999.0

Longitude (degrees) for met location
(XLONIN)

Default: -9S

XLONIN = -999.0

Specialized information for interpreting single-point Met data files

Anemometer height (m) (Used only if METFM = 2,3)
(ANEMHT)	Default: 10.

ANEMHT = 10.0

Form of lateral turbulance data in PROFILE.DAT file
(Used only if METFM = 4 or MTURBVW = 1 or 3)
(ISIGMAV)	Default: 1

0	= read sigma-theta

1	= read sigma-v

ISIGMAV =

Choice of mixing heights (Used only if METFM = 4)
(IMIXCTDM)	Default: 0

IMIXCTDM =

Appendix C

C-14

Report.doc


-------
0	= read PREDICTED mixing heights

1	= read OBSERVED mixing heights

Maximum length of a slug (met. grid units)

(XMXLEN)	Default: 1.0 1 XMXLEN =1.0 1

Maximum travel distance of a puff/slug (in
grid units) during one sampling step

(XSAMLEN)	Default: 1.0 1 XSAMLEN =1.0 1

Maximum Number of slugs/puffs release from
one source during one time step

(MXNEW)	Default: 99	1 MXNEW = 99 1

Maximum Number of sampling steps for
one puff/slug during one time step

(MXSAM)	Default: 99	1 MXSAM = 99

Number of iterations used when computing
the transport wind for a sampling step
that includes gradual rise (for CALMET
and PROFILE winds)

(NCOUNT)

Minimum sigma y for a new puff/slug (m)

(SYMIN)

Minimum sigma z for a new puff/slug (m)
(SZMIN)

Default minimum turbulence velocities
sigma-v and sigma-w for each
stability class (m/s)

(SVMIN(6) and SWMIN(6))	Default SVMIN

Default SWMIN

Default: 2	I	NCOUNT = 2	I

Default: 1.0	1	SYMIN = .01 1

Default: 1.0	1	SZMIN = .01 1

: .50, .50,	.50,	.50, .50,	.50

: .20, .12,	.08,	.06, .03,	.016

Stability Class :

1 SVMIN =
I SWMIN =

BCD

0.500, 0.500, 0.500,
0.200, 0.120, 0.080,

E	F

0.500, 0.500, 0.5001
0.060, 0.030, 0.0161

A

Divergence criterion for dw/dz across puff
used to initiate adjustment for horizontal
convergence (1/s)

Partial adjustment starts at CDIV(l), and
full adjustment is reached at CDIV(2)

(CDIV(2))	Default: 0.0,0.0 1 CDIV = .0, .0 1

Minimum wind speed (m/s) allowed for
non-calm conditions. Also used as minimum
speed returned when using power-law
extrapolation toward surface

(WSCALM)	Default: 0.5 1 WSCALM =.5 1

Maximum mixing height (m)

(XMAXZI)	Default: 3000. 1 XMAXZI = 3000.0 1

Minimum mixing height (m)

(XMINZI)	Default: 50. 1 XMINZI = 50.0 1

Default wind speed classes --

5 upper bounds (m/s) are entered;

the 6th class has no upper limit

(WSCAT(5))	Default :

ISC RURAL : 1.54, 3.09, 5.14, 8.23, 10.8 (10.8+)

Wind Speed Class : 1	2	3	4	5

1 WSCAT = 1.54, 3.09, 5.14, 8.23, 10.80

Default wind speed profile power-law

Appendix C

C-15

Report.doc


-------
exponents for stabilities 1-6
(PLXO(6))	Default

ISC RURAL
ISC URBAN

ISC RURAL values

.07, .07, .10, .15, .35, .55

.15, .15, .20, .25, .30, .30

Stability Class : A	B	C	D	E	F

1 PLXO = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55

Default potential temperature gradient
for stable classes E, F (degK/m)

(PTG0(2))	Default: 0.020, 0.035

i pTGO = 0.020, 0.035

Default plume path coefficients for
each stability class (used when option
for partial plume height terrain adjustment
is selected -- MCTADJ=3)

(PPC(6))	Stability Class : A	B	C	D	E	F

Default PPC : .50, .50, .50, .50, .35, .35

1 PPC = 0.50, 0.50, 0.50, 0.50, 0.35, 0.35

Slug-to-puff transition criterion factor
equal to sigma-y/length of slug

(SL2PF)	Default: 10.	1 SL2PF = 10.0 1

Puff-splitting control variables
VERTICAL SPLIT

Number of puffs that result every time a puff
is split - nsplit=2 means that 1 puff splits
into 2

(NSPLIT)	Default: 3	1 NSPLIT = 3 1

Time(s) of a day when split puffs are eligible to

be split once again; this is typically set once

per day, around sunset before nocturnal shear develops.

24 values: 0 is midnight (00:00) and 23 is 11 PM (23:00)

0=do not re-split l=eligible for re-split

(IRESPLIT(24))	Default: Hour 17 = 1

I IRESPLIT = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 I

Split is allowed only if last hour's mixing
height (m) exceeds a minimum value

(ZISPLIT)	Default: 100.	1 ZISPLIT = 100.0 1

Split is allowed only if ratio of last hour's
mixing ht to the maximum mixing ht experienced
by the puff is less than a maximum value (this
postpones a split until a nocturnal layer develops)

(ROLDMAX)	Default: 0.25	1 ROLDMAX = 0.25 1

HORIZONTAL SPLIT

Number of puffs that result every time a puff
is split - nsplith=5 means that 1 puff splits
into 5

(NSPLITH)	Default: 5	1 NSPLITH = 5 1

Minimum sigma-y (Grid Cells Units) of puff
before it may be split

(SYSPLITH)	Default: 1.0	1 SYSPLITH =1.0 1

Minimum puff elongation rate (SYSPLITH/hr) due to
wind shear, before it may be split

(SHSPLITH)	Default: 2.	1 SHSPLITH =2.0 1

Appendix C

C-16

Report.doc


-------
Minimum concentration (g/mA3) of each
species in puff before it may be split
Enter array of NSPEC values; if a single value is
entered, it will be used for ALL species

(CNSPLITH)	Default: 1.0E-07 1 CNSPLITH = 1.0E-07 1

Integration control variables

Fractional convergence criterion for numerical SLUG
sampling integration

(EPSSLUG)	Default: 1.0e-04

EPSSLUG = 1.0E-04

Fractional convergence criterion for numerical AREA
source integration

(EPSAREA)	Default: 1.0e-06

EPSAREA = 1.0E-06

Trajectory step-length (m) used for numerical rise
integration

(DSRISE)	Default: 1.0

DSRISE =1.0

I END I

INPUT GROUPS: 13a, 13b, 13c, 13d -- Point source parameters

Subgroup (13a)

Number of point sources with
parameters provided below

Units used for point source
emissions below

1	=	g/s

2	=	kg/hr

3	=	lb/hr

4	=	tons/yr

5	=	Odour Unit * m**3/s (vol. flux of odour compound)

6	=	Odour Unit * m**3/min

7	=	metric tons/yr

(NPT1) No default I NPT1 = 1

(IPTU) Default: 1 I IPTU = 1

Number of source-species
combinations with variable
emissions scaling factors

provided below in (13d)	(NSPT1) Default: 0 1 NSPT1 = 0 1

Number of point sources with
variable emission parameters

provided in external file	(NPT2) No default 1 NPT2 = 0 1

(If NPT2 > 0, these point
source emissions are read from
the file: PTEMARB.DAT)

I END I

Subgroup (13b)

a

POINT SOURCE: CONSTANT DATA

b	c

Source	X UTM	Y UTM	Stack Base	Stack Exit Exit Bldg. Emission

No.	Coordinate Coordinate Height Elevation Diameter Vel. Temp. Dwash Rates

Appendix C

C-17

Report.doc


-------
(km)	(km)	(m)	(m)

(m) (m/s) (deg. K)

1 I SRCNAM = STACK1 I

1 1 X = 750., 4150., 100., 100.,	8.0,	26., 430., 0.0, 6.0E03, 0.0 1

1 I FMFAC =	1.0 1 I END I

Data for each source are treated as a separate input subgroup
and therefore must end with an input group terminator.

SRCNAM is a 12-character name for a source
(No default)

X	is an array holding the source data listed by the column headings

(No default)

SIGYZI is an array holding the initial sigma-y and sigma-z (m)

(Default: 0 . ,0.)

FMFAC is a vertical momentum flux factor (0. or 1.0) used to represent
the effect of rain-caps or other physical configurations that
reduce momentum rise associated with the actual exit velocity.
(Default: 1.0 -- full momentum used)

b

0. = No building downwash modeled, 1. = downwash modeled

NOTE: must be entered as a REAL number (i.e., with decimal point)

c

An emission rate must be entered for every pollutant modeled.

Enter emission rate of zero for secondary pollutants that are
modeled, but not emitted. Units are specified by IPTU
(e.g. 1 for g/s).

Subgroup (13c)

BUILDING DIMENSION DATA FOR SOURCES SUBJECT TO DOWNWASH

Source	a

No.	Effective building width and height (in meters) every 10 degrees

Each pair of width and height values is treated as a separate input
subgroup and therefore must end with an input group terminator.

Subgroup (13d)

a

POINT SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission
rates given in 13b. Factors entered multiply the rates in 13b.

Skip sources here that have constant emissions. For more elaborate
variation in source parameters, use PTEMARB.DAT and NPT2 > 0.

IVARY determines the type of variation, and is source-specific:

(IVARY)	Default: 0

0	=	Constant

1	=	Diurnal cycle (24 scaling factors: hours 1-24)

2	=	Monthly cycle (12 scaling factors: months 1-12)

3	=	Hour Sc. Season (4 groups of 24 hourly scaling factors,

where first group is DEC-JAN-FEB)

4	=	Speed & Stab. (6 groups of 6 scaling factors, where

first group is Stability Class A,

Appendix C	C-18	Report.doc


-------
and the speed classes have upper
bounds (m/s) defined in Group 12
5 =	Temperature (12 scaling factors, where temperature

classes have upper bounds (C) of:
0, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 50+)

Data for each species are treated as a separate input subgroup
and therefore must end with an input group terminator.

INPUT GROUPS: 14a, 14b, 14c, 14d -- Area source parameters

Subgroup (14a)

Number of polygon area sources with

parameters specified below (NAR1)	No default 1 NAR1 = 0 1

Units used for area source

emissions below	(IARU)	Default: 1 1 IARU = 1 1

1	=	g/m**2/s

2	=	kg/m**2/hr

3	=	lb/m**2/hr

4	=	tons/m**2/yr

5	=	Odour Unit * m/s (vol. flux/m**2 of odour compound)

6	=	Odour Unit * m/min

7	=	metric tons/m**2/yr

Number of source-species
combinations with variable
emissions scaling factors

provided below in (14d)	(NSAR1) Default: 0 1 NSAR1 = 0 1

Number of buoyant polygon area sources
with variable location and emission

parameters (NAR2)	No default 1 NAR2 = 0 1

(If NAR2 > 0, ALL parameter data for
these sources are read from the file: BAEMARB.DAT)

I END I

Subgroup (14b)

a

AREA SOURCE: CONSTANT DATA

b

Source	Effect. Base	Initial Emission

No.	Height Elevation Sigma z	Rates

(m)	(m)	(m)

Data for each source are treated as a separate input subgroup
and therefore must end with an input group terminator.

)

An emission rate must be entered for every pollutant modeled.
Enter emission rate of zero for secondary pollutants that are

Appendix C

C-19

Report.doc


-------
modeled, but not emitted. Units are specified by IARU
(e.g. 1 for g/m**2/s).

Subgroup (14c)

COORDINATES (UTM-km) FOR EACH VERTEX(4) OF EACH POLYGON

Source	a

No.	Ordered list of X followed by list of Y, grouped by source

Data for each source are treated as a separate input subgroup
and therefore must end with an input group terminator.

Subgroup (14d)

a

AREA SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission
rates given in 14b. Factors entered multiply the rates in 14b.

Skip sources here that have constant emissions. For more elaborate
variation in source parameters, use BAEMARB.DAT and NAR2 > 0.

IVARY determines the type of variation, and is source-specific:

(IVARY)

0	=

1	=

2	=

3	=

4 =

5 =

Constant
Diurnal cycle
Monthly cycle
Hour Sc. Season

Speed Sc Stab.

Temperature

Default: 0

(24 scaling factors: hours 1-24)
(12 scaling factors: months 1-12)
(4 groups of 24 hourly scaling factors,
where first group is DEC-JAN-FEB)
(6 groups of 6 scaling factors, where
first group is Stability Class A,
and the speed classes have upper
bounds (m/s) defined in Group 12
(12 scaling factors, where temperature
classes have upper bounds (C) of:
0, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 50+)

Data for each species are treated as a separate input subgroup
and therefore must end with an input group terminator.

INPUT GROUPS: 15a, 15b, 15c -- Line source parameters

Subgroup (15a)

Number of buoyant line sources
with variable location and emission

parameters (NLN2)	No default 1 NLN2 =

(If NLN2 > 0, ALL parameter data for
these sources are read from the file: LNEMARB.DAT)

Appendix C	C-20	Report.doc


-------
Number of buoyant line sources (NLINES)

No default

NLINES =

Units used for line source
emissions below

(ILNU)

Default: 1

I LNU =

1	=	g/s

2	=	kg/hr

3	=	lb/hr

4	=	tons/yr

5	=	Odour Unit * m**3/s (vol. flux of odour compound)

6	=	Odour Unit * m**3/min

7	=	metric tons/yr

Number of source-species
combinations with variable
emissions scaling factors
provided below in (15c)

(NSLN1) Default: 0

NSLN1 =

Maximum number of segments used to model
each line (MXNSEG)

Default: 7

MXNSEG =

The following variables are required only if NLINES > 0. They are
used in the buoyant line source plume rise calculations.

Number of distances at which
transitional rise is computed

Average building length (XL)
Average building height (HBL)
Average building width (WBL)
Average line source width (WML)

Default: 6

No default
(in meters)

No default
(in meters)

No default
(in meters)

No default
(in meters)

Average separation between buildings (DXL) No default

(in meters)

NLRISE =

XL = . 0

HBL = .0

WBL = .0

WML = .0

DXL = .0

Average buoyancy parameter (FPRIMEL)

No default 1

(in m**4/s**3)

FPRIMEL = .0

I END I

Subgroup (15b)

BUOYANT LINE SOURCE: CONSTANT DATA

Source	Beg. X	Beg. Y	End. X End. Y	Release Base	Emission

No.	Coordinate Coordinate Coordinate Coordinate Height Elevation	Rates

(km)	(km)	(km)	(km)	(m)	(m)

Data for each source are treated as a separate input subgroup
and therefore must end with an input group terminator.

b

An emission rate must be entered for every pollutant modeled.
Enter emission rate of zero for secondary pollutants that are
modeled, but not emitted. Units are specified by ILNTU
(e.g. 1 for g/s).

Appendix C

C-21

Report.doc


-------
Subgroup (15c)

a

BUOYANT LINE SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission
rates given in 15b. Factors entered multiply the rates in 15b.
Skip sources here that have constant emissions.

IVARY determines the type of variation, and is source-specific:

(IVARY)

0

1

2

3

4 =

5 =

Constant
Diurnal cycle
Monthly cycle
Hour Sc. Season

Speed Sc Stab.

Temperature

Default: 0

(24 scaling factors: hours 1-24)
(12 scaling factors: months 1-12)
(4 groups of 24 hourly scaling factors,
where first group is DEC-JAN-FEB)
(6 groups of 6 scaling factors, where
first group is Stability Class A,
and the speed classes have upper
bounds (m/s) defined in Group 12
(12 scaling factors, where temperature
classes have upper bounds (C) of:
0, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 50+)

Data for each species are treated as a separate input subgroup
and therefore must end with an input group terminator.

INPUT GROUPS: 16a, 16b, 16c -- Volume source parameters

Subgroup (16a)

Number of volume sources with

parameters provided in 16b,c (NVL1)	No default 1 NVL1 = 0 1

Units used for volume source

emissions below in 16b	(IVLU)	Default: 1 1 IVLU = 1 1

1	=	g/s

2	=	kg/hr

3	=	lb/hr

4	=	tons/yr

5	=	Odour Unit * m**3/s (vol. flux of odour compound)

6	=	Odour Unit * m**3/min

7	=	metric tons/yr

Number of source-species
combinations with variable
emissions scaling factors

provided below in (16c)	(NSVL1) Default: 0 1 NSVL1 = 0 1

Number of volume sources with
variable location and emission

parameters	(NVL2)	No default 1 NVL2 = 0

(If NVL2 > 0, ALL parameter data for

these sources are read from the VOLEMARB.DAT file(s) )

I END I

Appendix C

C-22

Report.doc


-------
Subgroup (16b)

a

VOLUME SOURCE: CONSTANT DATA

b

Initial Emission
Sigma z	Rates

(m)

X UTM	Y UTM	Effect. Base	Initial

Coordinate Coordinate Height Elevation Sigma y

(km)	(km)	(m)	(m)	(m)

Data for each source are treated as a separate input subgroup
and therefore must end with an input group terminator.

b

An emission rate must be entered for every pollutant modeled.
Enter emission rate of zero for secondary pollutants that are
modeled, but not emitted. Units are specified by IVLU
(e.g. 1 for g/s).

Subgroup (16c)

a

VOLUME SOURCE: VARIABLE EMISSIONS DATA

Use this subgroup to describe temporal variations in the emission
rates given in 16b. Factors entered multiply the rates in 16b.

Skip sources here that have constant emissions. For more elaborate
variation in source parameters, use VOLEMARB.DAT and NVL2 > 0.

IVARY determines the type of variation, and is source-specific:

(IVARY)

0

1

2

3

4 =

5 =

Constant
Diurnal cycle
Monthly cycle
Hour Sc. Season

Speed Sc Stab.

Temperature

Default: 0

(24 scaling factors: hours 1-24)
(12 scaling factors: months 1-12)
(4 groups of 24 hourly scaling factors,
where first group is DEC-JAN-FEB)
(6 groups of 6 scaling factors, where
first group is Stability Class A,
and the speed classes have upper
bounds (m/s) defined in Group 12
(12 scaling factors, where temperature
classes have upper bounds (C) of:
0, 5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 50+)

Data for each species are treated as a separate input subgroup
and therefore must end with an input group terminator.

INPUT GROUPS: 17a & 17b -- Non-gridded (discrete) receptor information

Subgroup (17a)

Number of non-gridded receptors (NREC) No default 1 NREC = 790

Appendix C

C-23

Report.doc


-------
I END I

Subgroup (17b)

a

NON-GRIDDED (DISCRETE) RECEPTOR DATA

X UTM	Y UTM	Ground	Height b

Receptor	Coordinate Coordinate Elevation Above Ground

No.	(km)	(km)	(m)	(m)

1238

X

=

692.500,

4218.500,

505 . 000,

0.000 I

I END I

1239

X

=

693.500,

4218.500,

550 . 000,

0.000 1

1 END 1

1240

X

=

690.500,

4219.500,

461. 000,

0.000 1

1 END 1

1241

X

=

691.500,

4219.500,

631. 000,

0.0001

1 END 1

1242

X

=

692 .500,

4219.500,

543 . 000,

0 . 000 1

1 END 1

1243

X

=

693.500,

4219.500,

575.000,

0 . 000 1

1 END 1

1244

X

=

694 .500,

4219.500,

670 . 000,

0.000 1

1 END 1

1245

X

=

690.500,

4220.500,

500 . 000,

0.0001

1 END 1

1246

X

=

691.500,

4220.500,

591. 000,

0.000 1

1 END 1

1247

X

=

692.500,

4220.500,

675 . 000,

0 . 000 1

1 END 1

1248

X

=

693 .500,

4220.500,

647 . 000,

0.0001

1 END 1

1249

X

=

694 .500,

4220.500,

687 . 000,

0 . 000 1

1 END 1

1250

X

=

690.500,

4221.500,

495 . 000,

0 . 000 1

1 END 1

1251

X

=

691.500,

4221.500,

705 . 000,

0.0001

1 END 1

1252

X

=

692.500,

4221.500,

771. 000,

0.000 1

1 END 1

1253

X

=

693.500,

4221.500,

653 . 000,

0.000 1

1 END 1

1254

X

=

694 .500,

4221.500,

653 . 000,

0.0001

1 END 1

1255

X

=

695.500,

4221.500,

465 . 000,

0 . 000 1

1 END 1

1256

X

=

691.500,

4222 .500,

559 . 000,

0 . 000 1

1 END 1

1257

X

=

692.500,

4222 .500,

715 . 000,

0.000 1

1 END 1

1258

X

=

693 .500,

4222 .500,

735 . 000,

0.0001

1 END 1

1259

X

=

694.500,

4222 .500,

763 . 000,

0.000 1

1 END 1

1260

X

=

695.500,

4222 .500,

626 . 000,

0 . 000 1

1 END 1

1261

X

=

691.500,

4223 .500,

487 . 000,

0.0001

1 END 1

1262

X

=

692.500,

4223 .500,

570 . 000,

0 . 000 1

1 END 1

1263

X

=

693.500,

4223 .500,

642 . 000,

0.000 1

1 END 1

1264

X

=

694.500,

4223 .500,

878.000,

0.0001

1 END 1

1265

X

=

695.500,

4223 .500,

762 . 000,

0.000 1

1 END 1

1266

X

=

696 .500,

4223 .500,

453.000,

0 . 000 1

1 END 1

1267

X

=

697.500,

4223 .500,

305.000,

0.0001

1 END 1

1268

X

=

693 .500,

4224 .500,

651. 000,

0 . 000 1

1 END 1

1269

X

=

694.500,

4224 .500,

797 . 000,

0 . 000 1

1 END 1

1270

X

=

695.500,

4224 .500,

785 . 000,

0.000 1

1 END 1

1271

X

=

696.500,

4224 .500,

516 . 000,

0.0001

1 END 1

1272

X

=

697.500,

4224 .500,

454.000,

0.000 1

1 END 1

1273

X

=

691.500,

4225.500,

456 . 000,

0 . 000 1

1 END 1

1274

X

=

692.500,

4225.500,

639 . 000,

0.000 1

1 END 1

1275

X

=

693.500,

4225.500,

688 . 000,

0 . 000 1

1 END 1

1276

X

=

694.500,

4225.500,

789 . 000,

0.000 1

1 END 1

1277

X

=

695.500,

4225.500,

786 . 000,

0.0001

1 END 1

1278

X

=

696.500,

4225.500,

657.000,

0.000 1

1 END 1

1279

X

=

697.500,

4225.500,

514 . 000,

0 . 000 1

1 END 1

***************** REMAINING RECEPTORS REMOVED FOR THIS LISTING ***************

Data for each receptor are treated as a separate input subgroup
and therefore must end with an input group terminator.

b

Receptor height above ground is optional. If no value is entered,
the receptor is placed on the ground.

Appendix C

C-24

Report.doc


-------