Application of CALMET / CALPUFF and MESOPUFF II to Compare Regulatory Design Concentrations for a Typical Long-Range Transport Analysis APRIL 2002 Prepared For: U.S. Environmental Protection Agency Submitted By: Earth Tech 196 Baker Avenue Concord, Massachusetts 01742 (978) 371-4000 ------- TABLE OF CONTENTS Page 1. INTRODUCTION 1-1 2. SITE CHARACTERIZATION AND METEOROLOGICAL DATA 3-1 2.1 Source Description 3-1 2.2 Geophysical Data 3-1 2.3 Meteorological Data 3-2 3.4 Air Quality Monitoring Data 3-8 3. AIR QUALITY MODELING METHODOLOGY 4-1 3.1 Meteorological Modeling Options 4-1 3.2 CALPUFF Dispersion Modeling Options 4-2 3.2 MESOPUFFII Dispersion Modeling Options 4-3 4. RESULTS 4-1 5. REFERENCES 5-1 i ------- LIST OF APPENDICES Page Appendix A: CALMET Input Control File Appendix B: MESOPUFF II Input Control File Appendix C: CALPUFF Input Control File A-l C-l B-l LIST OF FIGURES Figure 2-1 Figure 2-2 Figure 2-3 Figure 2-4 Figure 3-1 Page Terrain contours (m MSL) plotted with a 4 km resolution for the 78 x 60 2-3 computational domain. The Class I area and the hypothetical facility site are shown. Dominant land use categories for 4 km resolution on the 78 x 60 computational 2-7 domain. The Class I areas and the hypothetical facility are also shown. Locations of meteorological observation sites and MM4 grid points used in the 2-9 CALMET modeling. Locations of ozone monitoring stations. 2-10 Location of discrete receptors within Shenandoah National Park. The spacing 3-4 is every 1 kilometer. ii ------- LIST OF TABLES Page Table 2-1. Hypothetical Point Source Characteristics 3-1 Table 2-2. U.S. Geological Survey Land Use and Land Cover Classification System 3-4 Table 2-3. Default CALMET Land Use Categories and Associated Geophysical Parameters Based on the U.S. Geological Survey Land Use Classification System (14-Category System) 3-5 Table 2-4. MESOPUFF II Land Use and Land Cover Classification System 3-6 Table 2-5. Meteorological Data Sources and Parameters Available 3-11 Table 2-6. NWS Hourly Surface Stations 3-11 Table 2-7. Upper Air Stations 3-11 Table 2-8. Hourly NWS Precipitation Stations 3-12 Table 2-9. Ozone Stations 3-14 Table 4-1. Highest and Highest Second-Highest S02 Concentrations Simulated in the Shenandoah National Park. 4-2 m ------- 1. INTRODUCTION The U.S. Environmental Protection Agency (EPA) has proposed to adopt the CALPUFF modeling system (Scire et al., 2000a,b) in Appendix A of the Guideline on Air Quality Models (Appendix W of 40 CFR Part 51) and recommend CALPUFF for Class I impact assessments and other long range transport applications or near field applications involving complex flows on a case-by-case basis (EPA, 2000). CALPUFF is also recommended by both the Federal Land Managers Air Quality Workgroup (FLAG, 2000) and the Interagency Workgroup on Air Quality Modeling (IWAQM, 1998) for Class I impact analyses. MESOPUFF II (Scire and Insley, 1993) is the current model identified as a refined modeling technique for long-range transport applications. As an "Appendix B" model, it is approved for use on a case- by-case basis, and applied following the guidance established by EPA (EPA, 1992). The purpose of this report is to characterize similarities and differences between MESOPUFF II and CALPUFF when simulating regulatory design concentrations for long-range (50 km and greater) transport applications. This type of comparison is known as a consequence analysis. Its objective is to provide users of a newer modeling technique with a simple comparisons of results obtained with an established modeling technique for similar types of applications. Although representative, the results of the comparison are by no means conclusive for all potential applications. The application chosen for this comparison is an analysis of S02 concentrations in a Federal Class I area located more than 50 km from a hypothetical point source. The Class I area chosen is the Shenandoah National Park. The point source is placed approximately 90 km SSE of the park. There is substantial terrain in this domain, with peak elevations of 1000 meters (MSL) in the vicinity of the Shenandoah National Park. Hence, there is the potential for significant terrain effects, both on the meteorological fields and also in terms of plume-terrain interaction effects. Because the MESOPUFF II modeling system does not include terrain effects, we have used the CALMET model to prepare the gridded meteorological fields for driving both CALPUFF and MESOPUFF II. This allows us to isolate differences between MESOPUFF II and CALPUFF from effects introduced by the substantial differences between the MESOPAC meteorological processor and the CALMET meteorological model. It also allows us to make use of the National Center for Atmospheric Research / Penn State University (NCAR/PSU) Mesoscale Model, Version 4 (MM4) meteorological fields in both simulations. Note that CALMET offers a MESOPAC output data file option, which averages winds across CALMET layers to produce the 2-layer system of MESOPAC. Introduction 1-1 Report.doc ------- The meteorological and dispersion modeling simulations are conducted for nearly a one-year period (January 6 to December 29, 1990). This period is selected based on the availability of the EPA MM4 dataset. Meteorological observations are used to determine the wind field in areas where the observations are representative. Hourly meteorological data produced by MM4 on a coarse-grid (80-km resolution) are used by CALMET to help define the initial estimate of the wind fields. Fine scale terrain effects (~4 km resolution) are determined by the diagnostic wind module in CALMET. Spatial variability occurs in the wind fields over short distances due to the forcing of the terrain. MESOPUFF II is applied as prescribed by EPA for modeling S02 as a "relatively inert pollutant". Neither chemical transformation nor deposition is active. Terrain effects are not treated in the model, so MESOPUFF II results in this complex terrain setting are most appropriate for puffs that have become mixed in the vertical, or that are already "on the ground". CALPUFF is applied both with and without chemical transformation and deposition, and when applied without these processes, it is run both with and without terrain adjustments. This allows us to characterize the results obtained when CALPUFF is applied both in its recommended mode, and also in modes more similar to MESOPUFF II. Section 2 provides a general description of the study area and the source configuration, including descriptions of the site characteristics and the data bases (meteorological, geophysical, and aerometric) used in the analysis. Section 3 includes an overview of the CALMET, MESOPUFF, and CALPUFF models. Modeling results for Shenandoah National Park are described in Section 4. Introduction 1-2 Report.doc ------- 2. SITE CHARACTERIZATION AND METEOROLOGICAL DATA 2.1 Source Description A single isolated point source that emits S02. is used for this analysis. Its characteristics are summarized in Table 2-1. Table 2-1. Hypothetical Point Source Characteristics UTM-17 UTM-17 Stack Base Stack Exit Exit so2 X (km) Y (km) Height Elevation Diameter Velocity Temperature Emission (m) (m MSL) (m) (m/s) (K) Rate (g/s) 750.0 4150.0 100.0 100.0 8.0 26.0 430.0 6000.0 2.2 Geophysical Data Gridded terrain elevations for the modeling domain are obtained from 3 arc-second digital elevation model (DEM) files produced by the United States Geological Survey (USGS). Data are provided in files covering 1 degree by 1 degree block of latitude and longitude. The 1-degree DEMs are produced by the Defense Mapping Agency using cartographic and photographic sources. USGS 1:250,000 scale topographic maps are the primary source of 1-degree DEMs. One degree DEM data consists of an array of 1201 by 1201 elevations referenced on the geographic (latitude/longitude) coordinate system of the World Geodetic System 1972 Datum. Elevations are in meters relative to mean sea level, and the spacing of the elevations along each profile is 3 arc-seconds, which corresponds to a spacing of approximately 90 meters. The modeling domain chosen for this analysis covers an area of 312 km by 240 km over most of the northern portions of central and eastern Virginia, including the entire length of the Shenandoah National Park. Topographical features in the area influence the wind flow, including peak elevations of over 1300 meters, which are significantly above the base elevation of the hypothetical source. A resolution of 4 km in the horizontal is used to represent the variations of the terrain elevations in the area. USGS elevation records located within each grid cell in the domain are averaged to produce a mean elevation at each grid point. The 4 km resolution produces a workable number of grid cells (78 x 60), but allows adequate Site Characterization and Meteorological Data 2-1 Report.doc ------- representation of the important terrain features associated with the Class I area and the surrounding SW-NE oriented ridges. Figure 2-1 shows the terrain contours and the hypothetical source location for the modeling domain. USGS land use data in the vicinity of the facility have been used to produce a gridded field of dominant land use categories. The land use data are obtained in Composite Theme Grid format (CTG) from the USGS, with a resolution of 200 m and are processed to produce a 4 km resolution gridded field of fractional land use categories. The 38 USGS land use categories are mapped into 14 CALMET land use categories for CALPUFF modeling, and 12 MESOPUFF categories for MESOPUFF II modeling. Surface properties such as albedo, Bowen ratio, roughness length, and leaf area index are computed proportionally to the fractional land use for the CALPUFF modeling. The USGS land use categories are described in Table 2-2. Table 2-3 displays the 14 CALMET land use categories and their associated geophysical parameters. The mapping of the USGS categories to the corresponding MESOPUFF categories is indicated in Table 2-4. Figure 2-2 shows the terrain, dominant CALMET land use categories, and the hypothetical source location for the modeling domain. 2.3 Meteorological Data The wind fields in the modeling domain are complex and highly variable. Depending on the location, some of the observational data will be representative of a small area. The local terrain has a strong influence on the local flow. Therefore, much of the structure in the wind fields is determined by CALMET using its diagnostic wind field module, rather than being driven by observations. One of the sources of meteorological data used is output from the NCAR/PSU Mesoscale Model Version 4 (MM4). It is used to define the CALMET initial guess wind field. This data set consists of hourly values of wind speed, wind direction, temperature, and pressure on an 80 km grid that covers the continental United States, southern Canada, and northern Mexico. It was prepared by the U.S. EPA for use in modeling studies to supplement observational data in data sparse areas and to improve the time resolution of upper air data. The EPA MM4 dataset is available for most of the year 1990. This is the period selected for these simulations. Site Characterization and Meteorological Data 2-2 Report.doc ------- Domain Terrain Elevations B -c o £ H 4300 4250 4200 4150 4100 600 650 700 750 800 UTM-17 East (km) Domain: X: 580 - 892 km; Y: 4100 - 4340 km Grid Size: 4km; Grid Cells: 78x60 C ^ Class I Area State boundary 850 Terrain Elevation (m MLS) 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0.1 -100 Figure 2-1. Terrain contours (m MSL) plotted with 4 km resolution for the 78 x 60 computational domain. The Class I area and the hypothetical facility site are also shown. Site Characterization and Meteorological Data 2-3 Report.doc ------- Table 2-2. U.S. Geological Survey Land Use and Land Cover Classification System Level I 10 Urban or Built-up Land 20 Agricultural Land 30 Rangeland 40 Forest Land 50 Water 60 Wetland 70 Barren Land 80 Tundra 90 Perennial Snow or Ice Level II Residential Commercial and Services Industrial Transportation, Communications and Utilities Industrial and Commercial Complexes Mixed Urban or Built-up Land Other Urban or Built-up Land Cropland and Pasture Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultural Areas Confined Feeding Operations Other Agricultural Land Herbaceous Rangeland Shrub and Brush Rangeland Mixed Rangeland Deciduous Forest Land Evergreen Forest Land Mixed Forest Land Streams and Canals Lakes Reservoirs Bays and Estuaries Oceans and Seas Forested Wetland Nonforested Wetland Dry Salt Flats Beaches Sandy Areas Other than Beaches Bare Exposed Rock Strip Mines, Quarries, and Gravel Pits Transitional Areas Mixed Barren Land Shrub and Brush Tundra Herbaceous Tundra Bare Ground Wet Tundra Mixed Tundra Perennial Snowfields Glaciers 11 12 13 14 15 16 17 21 22 23 24 31 32 33 41 42 43 51 52 53 54 55 61 62 71 72 73 74 75 76 77 81 82 83 84 85 91 92 Site Characterization and Meteorological Data 2-4 Report.doc ------- Table 2-3. Default CALMET Land Use Categories and Associated Geophysical Parameters Based on the U.S. Geological Survey Land Use Classification System (14-Category System) Land Use Type 10 20 -20* 30 40 50 54 55 60 61 62 70 80 90 Description Urban or Built-up Land Agricultural Land - Unirrigated Agricultural Land - Irrigated Rangeland Forest Land Water Small Water Body Large Water Body Wetland Forested Wetland Nonforested Wetland Barren Land Tundra Perennial Snow or Ice Surface Roughness (m) 1.0 0.25 0.25 0.05 1.0 0.001 0.001 0.001 1.0 1.0 0.2 0.05 .20 .05 Albedo 0.18 0.15 0.15 0.25 0.10 0.10 0.10 0.10 0.10 0.1 0.1 0.30 0.30 0.70 Bowen Ratio 1.5 1.0 0.5 1.0 1.0 0.0 0.0 0.0 0.5 0.5 0.1 1.0 0.5 0.5 Soil Heat Flux Parameter .25 .15 .15 .15 .15 1.0 1.0 1.0 .25 0.25 0.25 .15 .15 .15 Anthropogenic Heat Flux (W/m2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Leaf Area Index 0.2 3.0 3.0 0.5 7.0 0.0 0.0 0.0 2.0 2.0 1.0 0.05 0.0 0.0 Negative values indicate "irrigated" land use Site Characterization and Meteorological Data 2-5 Report, doc ------- Table 2-4. MESOPUFF II Land Use and Land Cover Classification System MESOPUFF II 1 Cropland & Pasture 21 2 Crop, Woodland, & Grazing 23 Land 24 3 Irrigated Crops -21 4 Grazed Forest & Woodlands 22 5 Ungrazed Forest & Woodland 41 42 43 6 Semi-arid Grazing 71 72 73 74 75 77 81 82 83 84 85 91 92 7 Open Woodland Grazed 31 32 33 8 Desert Shrubland 76 9 Swamp 62 10 Marshland 61 11 Metropolitan City 11 12 13 14 15 16 17 12 Lake or Ocean 51 52 53 54 55 Mapped USGS Level II Cropland and Pasture Confined Feeding Operations Other Agricultural Land Irrigated Cropland and Pasture Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultural Areas Deciduous Forest Land Evergreen Forest Land Mixed Forest Land Dry Salt Flats Beaches Sandy Areas Other than Beaches Bare Exposed Rock Strip Mines, Quarries, and Gravel Pits Mixed Barren Land Shrub and Brush Tundra Herbaceous Tundra Bare Ground Wet Tundra Mixed Tundra Perennial Snowfields Glaciers Herbaceous Rangeland Shrub and Brush Rangeland Mixed Rangeland Transitional Areas Non-forested Wetland Forested Wetland Residential Commercial and Services Industrial Transportation, Communications and Utilities Industrial and Commercial Complexes Mixed Urban or Built-up Land Other Urban or Built-up Land Streams and Canals Lakes Reservoirs Bays and Estuaries Oceans and Seas Site Characterization and Meteorological Data 2-6 Report.doc ------- Dominant Land Use Categories in Modeling Domain 100 ,qj- Snow h & Ice -90 "85 Tundra -80 . 75 Barren Land |-70 " Wetland -60 "55 Water 50 -45 Forest 40 ^ Range I-30 25 Agricul -ture |-20 15 Urban ¦10 4300- 4250- H 4200- 4150- 700 750 800 850 UTM-17 East (km) Modeling Domain: X: 580 - 892 km; Y: 4100 - 4340 km Grid Size: 4km; Grid Cells: 78x60 Class I Area 4100 Figure 2-2. Dominant land use categories for 4 km resolution on the 78 x 60 computational domain. The Class I areas and the hypothetical facility are also shown. Site Characterization and Meteorological Data 2-7 Report.doc ------- In addition to the optional MM4 data, CALMET requires hourly surface observations of wind speed, wind direction, temperature, cloud cover, ceiling height, surface pressure, relative humidity, and precipitation type (e.g., snow, rain, etc.). These variables are routinely measured at National Weather Service (NWS) surface stations. The upper air data required include twice-daily observations of vertical profiles of wind speed, wind direction, temperature, and pressure. In addition, hourly precipitation measurements are required for wet deposition calculations in CALPUFF. Table 2-5 is a list of the observational and modeled meteorological data available for the analysis. There are seven surface meteorological stations within or near the modeling domain (Table 2-6): Lynchburg, VA, Richmond, VA, Roanoke, VA, Quantico, VA, Raleigh-Durham, NC, Greensboro, NC, and Elkin, WV. The available upper air site on the southern side of the domain is the Greensboro, NC station. The upper air site on the northeastern side of the domain is the Sterling, VA station (Table 2-7). A total of 81 hourly precipitation stations are used in the modeling (Table 2-8). These data were available from NCDC in TD3240 format. Figure 2-3 shows the locations and spatial coverage of all of these stations. 3.4 Air Quality Monitoring Data CALPUFF uses hourly ozone concentration measurements in the chemical transformation rates. Here, the ambient ozone measurements are used in determining S02 loss rates due to chemical transformation to sulfate. Ambient ozone monitoring data for 1990 from the U.S. EPA AIRS and CASTNET networks are used to develop the hourly ozone monitoring data file (OZONE.DAT) for the modeling analysis. The AIRS data covers the time period from April through October while the CASTNET dataset includes data for all 12 months. A total of 58 ozone monitoring stations, listed in Table 2-9, are used in the modeling (see Figure 2-4). Site Characterization and Meteorological Data 2-8 Report.doc ------- Locations of Surface, Upper Air, and Precipitation Stations and MM4 Grid Points Used in CALMET UTM-17 East (km) ~ o Modeling Domain: X: 580 - 892 km; Y: 4100 - 4340 km Grid Size: 4 km; Grid Cells: 78X60 A Surface Station O Upper Air Station 0 Precipitation Station + MM4 Grid Figure 2-3. Locations of meteorological observation sites and MM4 grid points used in the CALMET modeling. Site Characterization and Meteorological Data 2-9 Report.doc ------- Ozone Stations Used in CALPUFF 4400- 4300J E -c 4200- o 4100- + ^ »* ¦ Point Source 400(H A? * A A 400 ~ 500 CALMET Domain: X: 580 - 890 km; Y: 4100 - 4340 km Grid Size: 2 km; Grid Numbers: 156X121=18876 "1 I | I I I I | I I I I | I T 600 700 800 UTM-17 East (km) A AIRS Ozone Station CASTNET Ozone Station 900 Figure 2-4. Locations of ozone monitoring stations. Site Characterization and Meteorological Data 2-10 Report.doc ------- Table 2-5. Meteorological Data Sources and Parameters Available Type of Dataset Frequency Source Parameters Surface obs. Hourly NWS Wind speed, wind direction, temperature, ceiling height, cloud cover, relative humidity, surface pressure, precipitation type Upper Air Twice-daily NWS Soundings of wind speed, wind direction, temperature, and pressure Precipitation Hourly NWS Hourly precipitation amounts Modeled Profiles Hourly (MM4) US EPA CD-ROM Hourly, gridded fields of winds, temperature, pressure, and humidity on an 80-km grid for the year 1990. Table 2-6. NWS Hourly Surface Stations # Station Name UTM-17 X UTM-17 Y Latitude Longitude WBAN# Elevation (km) (km) (deg) (deg) (m) 1 Lynchburg Municipal Arp 659.466 4133.166 37.3333 79.2000 13733 94 2 Richmond R E Byrd Int'l 824.09 4158.306 37.5167 77.3333 13740 16.4 3 Roanoke Woodrum Arpt 591.562 4130.299 37.3167 79.9667 13741 114.9 4 Quantico Mcas 822.691 4267.578 38.5000 77.3000 13773 1.3 5 Raleigh-Durham 700.141 3971.229 35.8667 78.7833 13722 41.6 6 Greensboro-High Pt-Wins 594.539 3993.501 36.0833 79.9500 13723 89.7 7 Elkins-Randolph, WV 599.748 4304.251 38.8833 79.85 13729 194.8 Table 2-7. Upper Air Stations # Station Name UTM-17 X UTM-17 Y Latitude Longitude WBAN# Elevation (km) (km) (deg) (deg) (m) 1 Greensboro, NC 594.543 3993.131 36.0800 79.9500 13723 277 2 Sterling (Wash Dulles), VA 805.804 4320.279 38.9800 77.4700 93734 85 Site Characterization and Meteorological Data 2-11 Report.doc ------- Table 2-8. Hourly NWS Precipitation Stations # Station Name UTM-17 X UTM-17 Y Latitude Longitude Station ID Elevation (km) (km) (deg) (deg) (m) 1 ALTAVISTA, VA 651.071 4107.114 37.1 79.3 166 155.4 2 BREMO BLUFF, VA 738.044 4175.757 37.7 78.3 993 68.6 3 CAMP PICKETT, VA 771.301 4102.718 37.0333 77.95 1322 100.6 4 CHATHAM, VA 642.713 4075.526 36.8167 79.4 1614 195.1 5 COVINGTON FILTER PLT, VA 588.039 4183.891 37.8 80 2044 374.9 6 CULPEPER RIVRSIDE CG, VA 766.541 4248.847 38.35 77.95 2159 79.2 7 DALE ENTERPRISE, VA 680.347 4257.562 38.45 78.9333 2208 426.7 8 FREDERICKSBURG 2, VA 809.002 4244.805 38.3 77.4667 3200 36.6 9 GALAX WATER PLANT, VA 507.449 4055.848 36.65 80.9167 3272 719.3 10 GATHRIGHT DAM, VA 592.254 4200.581 37.95 79.95 3310 539.5 11 HOT SPRINGS, VA 602.434 4206.252 38 79.8333 4128 681.5 12 HURLEY, VA 538.608 4083.664 36.9 80.5667 4180 301.8 13 INDIAN VALLEY, VA 743.012 4053.735 36.6 78.2833 4246 823 14 JOHN FLANNAGAN LAKE, VA 659.466 4133.166 37.3333 79.2 4410 445 15 JOHN H KERR DAM, VA 612.14 4245.222 38.35 79.7167 4414 76.2 16 LYNCHBURG MUNI AP, VA 664.234 4190.609 37.85 79.1333 5120 286.5 17 MILLGAP 2 NNW, VA 618.022 4241.606 38.3167 79.65 5595 767.8 18 MONTEBELLO FISH NURS, VA 707.948 4202.704 37.95 78.6333 5690 807.1 19 MUSTOE 1 SW, VA 586.258 4071.07 36.7833 80.0333 5880 725.3 20 NORFOLK INTL ARPT, VA 752.434 4233.581 38.2167 78.1167 6139 7.3 21 NORTH GARDEN, VA 519.263 4102.086 37.0667 80.7833 6178 209 22 PAINTER 2 W, VA 824.09 4158.306 37.5167 77.3333 6475 9.1 23 PHILPOTT DAM 2, VA 591.562 4130.299 37.3167 79.9667 6692 342.3 24 PIEDMONT RESEARCH ST, VA 597.879 4095.235 37 79.9 6712 158.5 25 PULASKI, VA 525.122 4124.289 37.2667 80.7167 6955 563.9 26 RICHMOND BYRD AP, VA 722.012 4328.952 39.0833 78.4333 7201 50 27 ROANOKE WOODRUM AP, VA 668.099 4216.59 38.0833 79.0833 7285 350.2 28 ROCKY MOUNT, VA 781.859 4310.495 38.9 77.75 7338 375.5 29 STAFFORDSVILLE 3 ENE, VA 856.072 4100.305 36.9833 77 8022 594.4 30 STAR TANNERY, VA 844.273 4307.406 38.85 77.0333 8046 289.6 31 STAUNTON SEWAGE PLAN, VA 516.274 4115.023 37.1833 80.8167 8062 423.4 32 THE PLAINS 2 NNE, VA 881.194 4136.626 37.3 76.7 8396 161.5 33 TROUT DALE 3 SSE, VA 624.103 4225.049 38.1667 79.5833 8547 859.5 34 WAKEFIELD 2, VA 546.062 4078.154 36.85 80.4833 8800 27.4 35 WALLOPS FLIGHT FAC, VA 565.522 4059.793 36.6833 80.2667 8849 10 36 WASHINGTN DC NATL AP, VA 492.578 4087.277 36.9333 81.0833 8906 3 37 WHITE GATE, VA 675.029 3946.652 35.65 79.0667 9060 563.9 38 WILLIAMSBURG 2 N, VA 643.971 3999.722 36.1333 79.4 9151 21.3 39 WILLIAMSVILLE 2 S, VA 553.873 4017.189 36.3 80.4 9159 499.9 40 WILLIS, VA 523.912 4028.147 36.4 80.7333 9169 883.9 41 WISE 2 E, VA 611.926 4041.781 36.5167 79.75 9215 776.9 Site Characterization and Meteorological Data 2-12 Report.doc ------- Table 2-8. Hourly NWS Precipitation Stations (Cont'd) # Station Name UTM-17 X UTM-17 Y Latitude Longitude Station ID Elevation (km) (km) (deg) (deg) (m) 42 WOOLWINE 4 S, VA 728.063 3997.811 36.1 78.4667 9272 463.3 43 WYTHEVILLE 1 S, VA 594.539 3993.501 36.0833 79.95 9301 746.8 44 B EVERETT JORDAN DAM, NC 826.033 3949.054 35.6333 77.4 750 94.5 45 BURLINGTON 3 NNE, NC 566.222 3967.359 35.85 80.2667 1241 195.1 46 DALTON, NC 515.096 3939.397 35.6 80.8333 2230 307.8 47 DOBSON, NC 501.501 3992.991 36.0833 80.9833 2388 381 48 EDEN, NC 700.141 3971.229 35.8667 78.7833 2631 190.5 49 FRANKLINTON, NC 707.883 3962.158 35.7833 78.7 3232 114.3 50 GRNSBR,HGH PT,W-S AP, NC 798.64 4042.527 36.4833 77.6667 3630 273.4 51 GREENVILLE, NC 500 4028.114 36.4 81 3638 9.8 52 LEXINGTON, NC 775.976 3954.764 35.7 77.95 4970 231.6 53 MOORESVILLE 2 WNW, NC 543.491 3998.645 36.1333 80.5167 5814 265.2 54 N WILKESBORO 11 SE, NC 609.971 4296.987 38.8167 79.7333 6261 320 55 RALEIGH DURHAM AP, NC 567.848 4315.011 38.9833 80.2167 7069 126.7 56 RALEIGH STATE UNIV, NC 732.166 4375.537 39.5 78.3 7079 121.9 57 ROANOKE RAPIDS, NC 637.015 4323.31 39.05 79.4167 7319 64 58 ROARING GAP 1 NW, NC 556.075 4346.362 39.2667 80.35 7324 859.2 59 WILSON 3 SW, NC 604.337 4393.109 39.6833 79.7833 9476 33.5 60 YADKINVILLE 6 E, NC 599.748 4304.251 38.8833 79.85 9675 262.1 61 BEMIS, WV 646.453 4280.925 38.6667 79.3167 664 785.7 62 BUCKHANNON, WV 547.538 4331.509 39.1333 80.45 1220 443.5 63 CACAPON STATE PARK, WV 520.301 4279.606 38.6667 80.7667 1323 289.6 64 CANAAN VALLEY, WV 515.891 4309.187 38.9333 80.8167 1393 990.3 65 CLARKSBURG 1, WV 731.944 4382.937 39.5667 78.3 1677 301.8 66 COOPERS ROCK ST FOR, WV 576.438 4322.488 39.05 80.1167 1900 694.6 67 ELKINS RNDLPH CO AP, WV 545.725 4394.388 39.7 80.4667 2718 593.8 68 FRANKLIN 2 NE, WV 768.449 4363.743 39.3833 77.8833 3215 579.1 69 FREEMANSBURG 5 NE, WV 598.572 4396.733 39.7167 79.85 3238 310.9 70 GASSAWAY, WV 529.484 4144.643 37.45 80.6667 3361 256 71 GLENVILLE 1 ENE, WV 502.892 4299.924 38.85 80.9667 3544 219.5 72 GREAT CACAPON, WV 580.246 4230.046 38.2167 80.0833 3669 825.1 73 HALL 1 WSW, WV 685.089 4303.936 38.8667 78.8667 3820 512.1 74 HUNDRED, WV 676 4322.234 39.0333 78.9667 4369 304.8 75 KEARNEYSVILLE, WV 692.492 4355.938 39.3333 78.7667 4763 167.6 76 LAKE LYNN, WV 775.43 4369.545 39.4333 77.8 5002 274.3 77 LINDSIDE, WV 624.764 4367.51 39.45 79.55 5284 609.6 78 LOCKNEY, WV 583.335 4352.155 39.3167 80.0333 5341 219.5 79 MARLINTON, WV 541.224 4155.786 37.55 80.5333 5672 655.3 80 MATHIAS, WV 584.237 4267.078 38.55 80.0333 5739 495.3 81 MOOREFIELD 2 SSE, WV 520.121 4349.886 39.3 80.7667 6163 253 Site Characterization and Meteorological Data 2-13 Report.doc ------- Table 2-9. Ozone Stations # Station Name UTM-17 UTM-17 Latitude Longitude Station ID (km) (km) (deg) (deg) 1 NOT IN A CITY 508.682 4297.71 38.83 -80.9 540218001 2 MOUNDS VILLE 522.695 4418.24 39.916 -80.734 540511002 3 SHADYSIDE 522.775 4424.067 39.968 -80.733 390133002 4 BLACKSBURG 539.199 4131.493 37.331 -80.558 511218001 5 NOT IN A CITY 542.908 4185.689 37.819 -80.512 540250001 6 WINSTON-SALEM 564.521 3993.537 36.086 -80.283 370670019 7 WINSTON-SALEM 566.792 3991.304 36.066 -80.258 370670023 8 WINSTON-SALEM 568.039 3994.858 36.098 -80.244 370670018 9 NOT IN A CITY 568.63 4002.38 36.166 -80.237 370670007 10 WINSTON-SALEM 569.601 3996.288 36.111 -80.227 370670022 11 NOT IN A CITY 577.111 3989.726 36.051 -80.144 370671008 12 NOT IN A CITY 582.393 4008.138 36.216 -80.083 370670006 13 MORGANTOWN 592.588 4389.229 39.65 -79.921 540610003 14 VINTON 598.912 4126.931 37.286 -79.884 511611004 15 GREENSBORO 608.237 3994.153 36.088 -79.798 370811011 16 NOT IN A CITY 616.604 3997.065 36.113 -79.704 370810011 17 NOT IN A CITY 615.699 4327.377 39.09 -79.662 540938001 18 NOT IN A CITY 649.426 4427.164 39.983 -79.25 421118001 19 NOT IN A CITY 668.679 4157.12 37.548 -79.091 510090006 20 DURHAM 688.322 3983.917 35.983 -78.911 370630010 21 DURHAM 689.425 3985.02 35.993 -78.899 370630008 22 NOT IN A CITY 690.211 4219.575 38.106 -78.831 510150004 23 NOT IN A CITY 700.724 4001.674 36.141 -78.769 370770001 24 CUMBERLAND 691.954 4391.064 39.65 -78.763 240010006 25 RALEIGH 713.474 3961.49 35.776 -78.638 371830011 26 RALEIGH 713.729 3961.434 35.776 -78.636 371830010 27 RALEIGH 718.932 3970.504 35.856 -78.576 371830014 28 WAKE FOREST 726.253 3983.425 35.971 -78.491 371832001 29 NOT IN A CITY 723.522 4266.637 38.522 -78.436 511130003 30 NOT IN A CITY 723.52 4266.699 38.522 -78.436 511138001 31 NOT IN A CITY 739.026 4116.582 37.167 -78.308 511478001 32 NOT IN A CITY 742.898 4304.449 38.857 -78.201 511870002 33 NOT IN A CITY 755.045 3939.672 35.57 -78.186 371010099 34 NOT IN A CITY 781.98 4263.264 38.475 -77.768 510610002 35 NOT IN A CITY 801.711 4139.929 37.359 -77.594 510410004 36 NOT IN A CITY 807.741 3987.906 35.989 -77.587 370650099 37 RICHMOND 806.364 4160.165 37.539 -77.533 517600022 38 RICHMOND 812.034 4163.001 37.563 -77.468 517600021 39 NOT IN A CITY 817.992 4162.703 37.558 -77.4 510870014 Site Characterization and Meteorological Data 2-14 Report.doc ------- Table 2-9. Ozone Stations (Cont'd) # Station Name UTM-17 UTM-17 Latitude Longitude Station ID (km) (km) (deg) (deg) 40 NOT IN A CITY 825.058 4171.808 37.638 -77.316 510850001 41 FAIRFAX 820.108 4305.805 38.845 -77.312 516000005 42 NOT IN A CITY 815.472 4425.504 39.923 -77.309 420018001 43 NOT IN A CITY 831.271 4139.165 37.342 -77.261 510360002 44 HOPEWELL 831.557 4133.865 37.294 -77.26 516700007 45 MC LEAN 829.518 4315.891 38.932 -77.199 510595001 46 SEVEN CORNERS 834.663 4309.002 38.868 -77.143 510591004 47 ROCKVILLE 836.097 4329.67 39.053 -77.116 240311008 48 ROCKVILLE 836.625 4336.489 39.114 -77.107 240313001 49 NOT IN A CITY 840.951 4295.305 38.743 -77.077 510590018 50 ALEXANDRIA 842.01 4308.358 38.859 -77.059 515100009 51 WASHINGTON, D. C. 842.424 4313.289 38.904 -77.052 110010017 52 WASHINGTON, D. C. 842.88 4313.34 38.904 -77.046 110010023 53 NOT IN A CITY 843.532 4303.234 38.813 -77.044 510130020 54 NOT IN A CITY 840.666 4373.343 39.444 -77.042 240130001 55 WASHINGTON, D. C. 844.349 4314.486 38.914 -77.029 110010019 56 WASHINGTON, D. C. 844.582 4321.354 38.975 -77.023 110010025 57 Horton, CASTNET 539.132 4131.369 37.33 -80.557 VPI120 58 Prince Edward, CASTNET 739.14 4116.458 37.166 -78.307 PED108 Site Characterization and Meteorological Data 2-15 Report.doc ------- 3. AIR QUALITY MODELING METHODOLOGY 3.1 Meteorological Modeling Options CALMET is run twice, producing the "CALMET.DAT" file for use with CALPUFF, and also producing the "PACOUT.DAT" file used with MESOPUFF II. The same configuration is used in both, but each uses the appropriate "GEO.DAT" file. That for CALPUFF has the 14-class CALMET land use scheme while that for MESOPUFF II has the 12-class MESOPUFF land use scheme. The horizontal grid is uniform, and resolves terrain and land use with a resolution of 4 km. In the vertical, a stretched grid resolves the mixed layer with a fine resolution and uses a somewhat coarser resolution aloft. Ten vertical levels are centered at: 10, 30, 60, 120, 230, 450, 800, 1250, 1850, and 2600 meters. The full three-dimensional gridded field of winds and temperatures from CALMET are used directly in CALPUFF. For MESOPUFF II, the output format is equivalent to the MESOPAC.output The horizontal grid is the same, but the vertical structure is captured in two layers. CALMET winds are averaged within the surface boundary layer, and above, and the resulting fields are written in the MESOPAC format. Initial Guess Field The EPA MM4 data base is used to define the initial guess field for the CALMET simulations. Hourly MM4 data are available for the period January 6 through December 29, 1990. The MM4 dataset has a horizontal resolution of 80 km at hourly intervals. In the vertical, 20 levels of data are provided. Step 1 Field: Terrain Effects In developing the Step 1 wind field, CALMET adjusts the initial guess field to reflect kinematic effects of the terrain, slope flows and blocking effects. Slope flows are a function of the local slope and altitude of the nearest crest. The crest is defined as the highest peak within a radius TERRAD around each grid point. The value of TERRAD selected (12 km) was determined based on an analysis of the scale of the terrain. The Step 1 field produces a flow field consistent with the fine-scale CALMET terrain resolution (4km). Air Quality Modeling Methodology 3-1 Report.doc ------- Step 2 Field: Objective Analysis In Step 2, observations are incorporated into the Step 1 wind field to produce a final wind field. Each observation site influences the final wind field within a radius of influence (parameters RMAX1 at the surface and RMAX2 aloft). Observations and Step 1 field are weighted by means of parameters R1 at the surface and R2 aloft: at a distance R1 from an observation site, the Step 1 wind field and the surface observations are weighted equally. In complex terrain, channeling (blocking effects) and slope flows contribute significantly to the wind field. Therefore, relatively small values of R1 and R2 were selected (1 km and 2 km, respectively) to produce a large weight of the Step 1 field. RMAX1 and RMAX2 are set to large values (100 km). However, the large RMAX values become irrelevant as the small R1 and R2 values limit the influence of the surface observations. 3.2 CALPUFF Dispersion Modeling Options The CALPUFF simulations are conducted using the following model options: Gaussian near-field distribution Transitional plume rise Stack tip downwash PG dispersion coefficients (rural areas), McElroy-Pooler coefficients (urban areas) Transition of ay to time-dependent (Heffter) growth rates Partial plume path adjustment for terrain Wet deposition, dry deposition, and chemical transformation algorithms A second simulation is done without deposition and chemical transformation, and without the terrain adjustment. This configuration, although not recommended for most CALPUFF applications, is similar to the MESOPUFF II configuration and therefore provides a useful comparison for this analysis. The CALPUFF modeling domain includes a buffer zone south and east of the source area and north and west beyond the borders of the Class I area. This minimizes edge effects and allows pollutants involved in flow reversals to be brought back into the Class I area. Air Quality Modeling Methodology 3-2 Report.doc ------- The partial plume path adjustment option is used in CALPUFF for this analysis (MCTADJ=3). The CALMET wind field incorporates the effect of the terrain on the plume trajectories. The plume path coefficient is used to characterize the local effect on ground-level concentrations. The default plume path coefficients (PPC) are listed below: Stability Class A B C D E F PPC 0.5 0.5 0.5 0.5 0.35 0.35 Deposition and chemical transformation effects are modeled using the default dry deposition model, the scavenging coefficient wet removal module, and the default chemical transformation mechanism. Two species are modeled with CALPUFF for this analysis: S02 and S04. S02 is emitted and the chemical mechanism computes transformation rates of S02 to S04. Hourly measured ozone concentrations are provided in an external OZONE.DAT file for use with the chemical transformation module. These ozone concentrations, along with radiation intensity, are used as surrogates for the OH concentration during the day when the gas phase free radical chemistry is active. Discrete receptors are placed within Shenandoah National Park at a spacing of approximately 1 km, as depicted in Figure 3-1. 3.2 MESOPUFF II Dispersion Modeling Options The MESOPUFF II simulations are conducted using the following model options: Gaussian near-field distribution 8 puffs/hour release rate Variable sampling rate Minimum age before sampling = 300 s Default dispersion parameters (similar to PG coefficients) NO wet or dry deposition, and NO chemical transformations Discrete receptors are placed within Shenandoah National Park at a spacing of approximately 1 km. These locations are identical to those used in CALPUFF, but are translated to the MESOPUFF grid coordinate system. Air Quality Modeling Methodology Report.doc ------- Location of receptors within Shenandoah National Park (every 1 km) 4300- 4290- 4280 4270 % 4260- H 4250- 4240- 4230 4220 690 700 710 720 730 740 UTM-17 East (km) Figure 3-1. Location of discrete receptors within Shenandoah National Park. The spacing is every 1 kilometer. Air Quality Modeling Methodology 3-4 Report.doc ------- 4. RESULTS Results of the CALMET/CALPUFF and the CALMET/MESOPUFF II (with the MESOPAC output option in CALMET) simulations of the impact of a hypothetical source of S02 on concentrations in the Shenandoah National Park Class I area are presented in Table 4-1. S02 concentrations are listed for averaging times of 1 hour, 3 hours, 24 hours, and annual (nearly a full year). Both the peak concentration and the highest second-highest concentrations are listed for each averaging time. When the CALPUFF simulation is made without chemical transformation and without a terrain adjustment, its results are very similar to the MESOPUFF II results. This illustrates the degree of similarity in the approaches of the two models. Wind fields provided each are from the same source (CALMET), but they are not the same due to the way the two systems represent the vertical structure of the atmosphere. Nonetheless, the concentrations of regulatory significance are similar. Significantly different results are obtained when CALPUFF is applied with the preferred modeling options, including chemical transformation, deposition, and terrain adjustment. The larger concentrations for this simulation appear to result from peak impact episodes in which the vertical distribution of S02 is not well- mixed, and remains aloft at the travel distance to the Class I area. For this situation, the high terrain of this application will promote an adjustment that leads to the larger ground-level concentrations. Results 4-1 Report.doc ------- Table 4-1. Highest and Highest Second-Highest S02 Concentrations Simulated in the Shenandoah National Park. Averaging Type of MESOPUFF II CALPUFF CALPUFF Period Peak (no terrain, no transformation, no removal) (Ug/m3) (Ug/m3) (Ug/m3) 1 hour H 120.2 119 5 264.2 HSH 91.9 90.9 228.5 3 hours H 69.2 72.0 188.6 HSH 63.9 57.5 109.4 24 hours H 21.8 18.5 47.8 HSH 20.8 17.4 41.9 Annual H 0.48 0.60 0.76 Results 4-2 Report.doc ------- 5. REFERENCES FLAG, 2000. Federal Land Manager's Air Quality Related Values Workgroup (FLAG). Phase I Report. U.S. Forest Service, National Park Service, U.S. Fish and Wildlife Service. Scire, J.S. and E.M. Insley, 1993: A revised user's guide to MESOPUFF II (v5.1). Earth Tech, Inc., Concord, MA. Scire, J.S., D.G. Strimaitis, and R.J. Yamartino, 2000a: A User's Guide for the CALPUFF Dispersion Model (Version 5). Earth Tech, Inc., Concord, MA Scire, J.S., F.R. Robe, M.E. Fernau, and R.J. Yamartino, 2000b: A User's Guide for the CALMET Meteorological Model (Version 5). Earth Tech, Inc., Concord, MA. U.S. Environmental Protection Agency (EPA), 1992. A modeling protocol for applying MESOPUFF II to long range transport problems. EPA-454/R-92- 021, U.S. Environmental Protection Agency, Research Triangle Park, NC. U.S. Environmental Protection Agency (EPA), 1998: Interagency Workgroup on Air Quality Modeling (IWAQM), Phase 2 Report: Summary Report and Recommendation for Modeling Long Range Transport and Impacts on Regional Visibility. EPA-454/R-98-019. U.S. Environmental Protection Agency (EPA), 2000: Federal Register Notice of Proposed Rulemaking (65 FR 21506), April 21, 2000. References 5-1 Report.doc ------- APPENDIX A CALMET INPUT CONTROL FILE CALMET/CALPUFF Consequence Example, 78 x 60 grid cells @ 4 km grid Class I Area: Shenandoah National Park ZIMAX=2695m January 6, 1990 - January 31, 1990 RUn title (3 lines) CALMET MODEL CONTROL FILE INPUT GROUP: 0 -- Input and Output File Names Subgroup (a) Default Name Type File Name GEO.DAT input 1 GEODAT= ..\geo.dat SURF.DAT input 1 SRFDAT= ..\SURF.DAT CLOUD.DAT input * CLDDAT= •k PRECIP.DAT input 1 PRCDAT= ..\PRECIP.DAT MM4.DAT input 1 MM4DAT= . . \MM4 . DAT WT.DAT input * WTDAT= •k CALMET.LST output 1 METLST= jan.LST 1 CALMET.DAT output 1 METDAT= jan.DAT 1 PACOUT.DAT output * PACDAT= •k All file names will be converted to lower case if LCFILES = T Otherwise, if LCFILES = F, file names will be converted to UPPER CASE T = lower case 1 LCFILES = T 1 F = UPPER CASE NUMBER OF UPPER AIR & OVERWATER STATIONS: Number of upper air stations (NUSTA) No default 1 NUSTA = 2 1 Number of overwater met stations (NOWSTA) No default 1 NOWSTA = 0 1 I END I Subgroup (b) Upper air files (one per station) Default Name Type File Name UP1.DAT input 1 I UPDAT=. .\UPGSO.DAT! I END I UP2.DAT input 2 1 UPDAT=. .\UPIAD.DAT 1 1 END 1 Subgroup (c) Overwater station files (one per station) Default Name Type File Name Appendix A A -1 Report.doc ------- Subgroup (d) Other file names Default Name Type File Name DIAG.DAT PROG.DAT input input * DIADAT= * PRGDAT= TEST.PRT TEST.OUT TEST.KIN TEST.FRD TEST.SLP output output output output output TSTPRT= TSTOUT= TSTKIN= TSTFRD= TSTSLP= NOTES: (1) File/path names can be up to 70 characters in length (2) Subgroups (a) and (d) must have ONE 'END' (surround by delimiters) at the end of the group (3) Subgroups (b) and (c) must have an 'END' (surround by delimiters) at the end of EACH LINE I END I INPUT GROUP: 1 -- General run control parameters Starting date: Year (IBYR) - - No default I IBYR= 1990 Month (IBMO) - - No default 1 IBMO= 1 1 Day (IBDY) - - No default 1 IBDY= 6 1 Hour (IBHR) - - No default 1 IBHR= 0 1 Base time zone (IBTZ) - - No default 1 IBTZ= 5 1 PST = 08, MST = 07 CST = 06, EST = 05 Length of run (hours) (IRLG) - - No default 1 IRLG= 624 Run type (IRTYPE) Default: 1 IRTYPE= 0 = Computes wind fields only 1 = Computes wind fields and micrometeorological variables (u*, w*, L, zi, etc.) (IRTYPE must be 1 to run CALPUFF or CALGRID) Compute special data fields required by CALGRID (i.e., 3-D fields of W wind components and temperature) in additional to regular Default: fields ? (LCALGRD) (LCALGRD must be T to run CALGRID) LCALGRD = T Flag to stop run after SETUP phase (ITEST) Default: 2 1 ITEST= 2 (Used to allow checking of the model inputs, files, etc.) ITEST = 1 - STOPS program after SETUP phase ITEST = 2 - Continues with execution of COMPUTATIONAL phase after SETUP Appendix A A-2 Report.doc ------- I END I INPUT GROUP: 2 -- Grid control parameters HORIZONTAL GRID DEFINITION: No. X grid cells (NX) No. Y grid cells (NY) GRID SPACING (DGRIDKM) No default No default No default Units: km NX = 78 NY = 6 0 DGRIDKM = 4. REFERENCE COORDINATES of SOUTHWEST corner of grid cell (1,1) X coordinate (XORIGKM) Y coordinate (YORIGKM) Latitude (XLATO) Longitude (XLONO) UTM ZONE (IUTMZN) LAMBERT CONFORMAL PARAMETERS No default No default Units: km No default No default Default: 0 Rotate input winds from true north to map north using a Lambert conformal projection? (LLCONF) Default: F Latitude of 1st standard parallel Latitude of 2nd standard parallel (XLAT1 and XLAT2; + in NH, - in SH) Longitude (RLONO) (used only if LLCONF = T) (Positive = W. Hemisphere; Negative = E. Hemisphere) Origin Latitude (RLATO) (used only if IPROG > 2) (Positive = N. Hemisphere; Negative = S. Hemisphere) Vertical grid definition: No. of vertical layers (NZ) No default XORIGKM = 580.000 I YORIGKM = 4100.000 XLATO = 37.044 XLONO = 80.100 IUTMZN = 17 LLCONF = F Default: 3 0. Default: 6 0. Default = 90. Default = 4 0. XLATI = 3 0.000 XLAT2 = 6 0.000 RLONO = 90.000 RLATO = 4 0.000 NZ = 10 Cell face heights in arbitrary vertical grid (ZFACE(NZ+1)) No defaults Units: m 1 ZFACE = 0. ,20. ,40. , 80. , 160., 300., 600., 1000., 1500.,2200., 3000. I END I INPUT GROUP: 3 -- Output Options DISK OUTPUT OPTION Save met. fields in an unformatted Appendix A Report.doc ------- output file ? (LSAVE) Default: T I LSAVE = T I (F = Do not save, T = Save) Type of unformatted output file: (IFORMO) Default: 1 1 IFORMO = 1 = CALPUFF/CALGRID type file (CALMET.DAT) 2 = MESOPUFF-II type file (PACOUT.DAT) LINE PRINTER OUTPUT OPTIONS: Print met. fields ? (LPRINT) Default: F 1 LPRINT = F 1 (F = Do not print, T = Print) (NOTE: parameters below control which met. variables are printed) Print interval (IPRINF) in hours Default: 1 1 IPRINF = 1 1 (Meteorological fields are printed every 1 hours) Specify which layers of U, V wind component to print (IUVOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, l=Print) (used only if LPRINT=T) Defaults: NZ*0 1 IUVOUT = 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1 Specify which levels of the W wind component to print (NOTE: W defined at TOP cell face -- 10 values) (IWOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, l=Print) (used only if LPRINT=T & LCALGRD=T) Defaults: NZ*0 1 IWOUT =0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1 Specify which levels of the 3-D temperature field to print (ITOUT(NZ)) -- NOTE: NZ values must be entered (0=Do not print, l=Print) (used only if LPRINT=T & LCALGRD=T) Defaults: NZ*0 1 ITOUT = 0 0 , 0 , 0 o , 0 , 0 , 0 , 0 , 0 1 Specify which meteorological fields to print (used only if LPRINT= =T) Defaults: 0 (all variables) Variable Print ? (0 = do not print 1 = print) 1 STABILITY = 0 1 - PGT stability class 1 USTAR 0 1 - Friction velocity 1 MONIN 0 1 - Monin-Obukhov length 1 MIXHT 0 1 - Mixing height 1 WSTAR 0 1 - Convective velocity scale 1 PRECIP 0 1 - Precipitation rate Appendix A A-4 Report.doc ------- 0 0 1 - Sensible heat flux 1 - Convective mixing ht. Testing and debug print options for micrometeorological module Print input meteorological data and internal variables (LDB) Default: F 1 LDB = F 1 (F = Do not print, T = print) (NOTE: this option produces large amounts of output) First time step for which debug data are printed (NN1) Default: 1 1 NN1 = 1 Last time step for which debug data are printed (NN2) Default: 1 1 NN2 = 24 I END I Testing and debug print options for wind field module (all of the following print options control output to wind field module's output files: TEST.PRT, TEST.OUT, TEST.KIN, TEST.FRD, and TEST.SLP) Control variable for writing the test/debug wind fields to disk files (IOUTD) (0=Do not write, l=write) Default: 0 IOUTD = Number of levels, starting at the surface, to print (NZPRN2) Default: 1 NZPRN2 = Print the INTERPOLATED wind components ? (IPRO) (0=no, l=yes) Default: 0 IPRO = Print the TERRAIN ADJUSTED surface wind components ? (IPR1) (0=no, l=yes) Default: 0 IPR1 = Print the SMOOTHED wind components and the INITIAL DIVERGENCE fields ? (IPR2) (0=no, l=yes) Default: 0 IPR2 = Print the FINAL wind speed and direction fields ? (IPR3) (0=no, l=yes) Default: 0 IPR3 = Print the FINAL DIVERGENCE fields ? (IPR4) (0=no, l=yes) Default: 0 IPR4 = Print the winds after KINEMATIC effects are added ? (IPR5) (0=no, l=yes) Default: 0 IPR5 = Print the winds after the FROUDE NUMBER adjustment is made ? (IPR6) (0=no, l=yes) Default: 0 IPR6 = Print the winds after SLOPE FLOWS are added ? (IPR7) (0=no, l=yes) Default: 0 IPR7 = Print the FINAL wind field components ? (IPR8) (0=no, l=yes) Default: 0 IPR8 = Appendix A A-5 Report.doc ------- INPUT GROUP: 4 -- Meteorological data options NUMBER OF SURFACE & PRECIP. METEOROLOGICAL STATIONS Number of surface stations (NSSTA) No default 1 NSSTA = 7 1 Number of precipitation stations (NPSTA) No default 1 NPSTA = 59 1 CLOUD DATA OPTIONS Griddid cloud fields: (ICLOUD) Default: 0 1 ICLOUD = 0 1 ICLOUD = 0 - Gridded clouds not used ICLOUD = 1 - Gridded CLOUD.DAT generated as OUTPUT ICLOUD = 2 - Gridded CLOUD.DAT read as INPUT FILE FORMATS Surface meteorological data file format (IFORMS) Default: 2 1 IFORMS = 2 1 (1 = unformatted (e.g., SMERGE output)) (2 = formatted (free-formatted user input)) Precipitation data file format (IFORMP) Default: 2 1 IFORMP = 2 1 (1 = unformatted (e.g., PMERGE output)) (2 = formatted (free-formatted user input)) Cloud data file format (IFORMC) Default: 2 1 IFORMC = 2 1 (1 = unformatted - CALMET unformatted output) (2 = formatted - free-formatted CALMET output or user input) I END I INPUT GROUP: 5 -- Wind Field Options and Parameters WIND FIELD MODEL OPTIONS Model selection variable (IWFCOD) 0 = Objective analysis only 1 = Diagnostic wind module Compute Froude number adjustment effects ? (IFRADJ) (0 = NO, 1 = YES) Compute kinematic effects ? (IKINE) (0 = NO, 1 = YES) Default: 1 I IWFCOD = 1 I Default: 1 1 IFRADJ = 1 1 Default: 0 I IKINE = 0 I Use O'Brien procedure for adjustment of the vertical velocity ? (IOBR) Default: 0 1 IOBR = 0 1 (0 = NO, 1 = YES) Compute slope flow effects ? (ISLOPE) Default: 1 1 ISLOPE = 1 1 (0 = NO, 1 = YES) Extrapolate surface wind observations to upper layers ? (IEXTRP) Default: -4 1 IEXTRP = -4 1 Appendix A A -6 Report.doc ------- (1 = no extrapolation is done, 2 = power law extrapolation used, 3 = user input multiplicative factors for layers 2 - NZ used (see FEXTRP array) 4 = similarity theory used -1, -2, -3, -4 = same as above except layer 1 data at upper air stations are ignored Extrapolate surface winds even if calm? (ICALM) Default: 0 1 ICALM = 0 1 (0 = NO, 1 = YES) Layer-dependent biases modifying the weights of surface and upper air stations (BIAS(NZ)) -1<=BIAS<=1 Negative BIAS reduces the weight of upper air stations (e.g. BIAS=-0.1 reduces the weight of upper air stations by 10%; BIAS= -1, reduces their weight by 100 %) Positive BIAS reduces the weight of surface stations (e.g. BIAS= 0.2 reduces the weight of surface stations by 20%; BIAS=1 reduces their weight by 100%) Zero BIAS leaves weights unchanged (1/R**2 interpolation) Default: NZ*0 1 BIAS =0, 0, 0, 0, 0, 0, 0, 0, 0, 0 1 Minimum distance from nearest upper air station to surface station for which extrapolation of surface winds at surface station will be allowed (RMIN2: Set to -1 for IEXTRP = 4 or other situations where all surface stations should be extrapolated) Default: 4. I RMIN2 = -1.0 I Use gridded prognostic wind field model output fields as input to the diagnostic wind field model (IPROG) Default: 0 1 IPROG = 4 1 [IWFCOD = 0 or 1] use CSUMM prog, winds as Step 1 field, [IWFCOD = 0] use CSUMM prog, winds as initial guess field [IWFCOD = 1] use winds from MM4.DAT file as Step 1 field [IWFCOD = 0] use winds from MM4.DAT file as initial guess field [IWFCOD = 1] use winds from MM4.DAT file as observations [IWFCOD = 1] , use winds from MM5.DAT file as Step 1 field [IWFCOD = 0] , use winds from MM5.DAT file as initial guess field [IWFCOD = 1] , use winds from MM5.DAT file as observations [IWFCOD = 1] (0 = No, 1 = Yes, 2 = Yes, 3 = Yes, 4 = Yes, 5 = Yes, 13 = Yes 14 = Yes 15 = Yes RADIUS OF INFLUENCE PARAMETERS Use varying radius of influence Default: F 1 LVARY = F1 (if no stations are found within RMAX1,RMAX2, or RMAX3, then the closest station will be used) Maximum radius of influence over in the surface layer (RMAX1) Maximum radius of influence over aloft (RMAX2) Maximum radius of influence over (RMAX3) land No default 1 RMAX1 = 100. 1 Units: km land No default 1 RMAX2 = 100. 1 Units: km water No default 1 RMAX3 = 100. 1 Units: km OTHER WIND FIELD INPUT PARAMETERS Minimum radius of influence used in the wind field interpolation (RMIN) Default: 0.1 1 RMIN =0.1 1 Appendix A Report.doc ------- Radius of influence of terrain features (TERRAD) Units: km No default I TERRAD = 12. I Units: km Relative weighting of the first guess field and observations in the SURFACE layer (Rl) No default 1 R1 = 1. 1 (R1 is the distance from an Units: km observational station at which the observation and first guess field are equally weighted) Relative weighting of the first guess field and observations in the layers ALOFT (R2) (R2 is applied in the upper layers in the same manner as Rl is used in the surface layer). Relative weighting parameter of the prognostic wind field data (RPROG) (Used only if IPROG = 1) No default 1 R2 = 2. Units: km No default I RPROG = 0. Units: km Maximum acceptable divergence in the divergence minimization procedure (DIVLIM) Maximum number of iterations in the divergence min. procedure (NITER) Default: 5.E-6 I DIVLIM= 5.0E-06 I Default: 50 I NITER = 50 I Number of passes in the smoothing procedure (NSMTH(NZ)) NOTE: NZ values must be entered Default: 2,(mxnz-1)*4 1 NSMTH = 2, 4, 4, 4, 4, 4, 4, 4, 4, 4 1 Maximum number of stations used in each layer for the interpolation of data to a grid point (NINTR2(NZ)) NOTE: NZ values must be entered Default: 99. 1 NINTR2 = 99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 , 99 1 Critical Froude number (CRITFN) Default: 1.0 1 CRITFN =1. 1 Empirical factor controlling the influence of kinematic effects (ALPHA) Default: 0.1 1 ALPHA =0.1 1 Multiplicative scaling factor for extrapolation of surface observations to upper layers (FEXTR2(NZ)) Default: NZ*0.0 1 FEXTR2 = 0., 0., 0., 0., 0., 0., 0., 0., 0., 0. 1 (Used only if IEXTRP = 3 or -3) BARRIER INFORMATION Number of barriers to interpolation of the wind fields (NBAR) Default: 0 1 NBAR = 0 1 THE FOLLOWING 4 VARIABLES ARE INCLUDED ONLY IF NBAR > 0 NOTE: NBAR values must be entered No defaults for each variable Units: km Appendix A A-8 Report.doc ------- X coordinate of of each barrier Y coordinate of of each barrier X coordinate of of each barrier Y coordinate of of each barrier BEGINNING (XBBAR(NBAR)) BEGINNING (YBBAR(NBAR)) ENDING (XEBAR(NBAR)) ENDING (YEBAR(NBAR)) I XBBAR =0.1 1 YBBAR =0.1 1 XEBAR =0.1 1 YEBAR =0.1 DIAGNOSTIC MODULE DATA INPUT OPTIONS Surface temperature (IDIOPT1) Default: 0 1 IDIOPT1 = 0 1 0 = Compute internally from hourly surface observations 1 = Read preprocessed values from a data file (DIAG.DAT) Surface met. station to use for the surface temperature (ISURFT) No default 1 ISURFT = 1 1 (Must be a value from 1 to NSSTA) (Used only if IDIOPT1 = 0) Domain-averaged temperature lapse rate (IDIOPT2) Default: 0 1 IDIOPT2 = 0 1 0 = Compute internally from twice-daily upper air observations 1 = Read hourly preprocessed values from a data file (DIAG.DAT) Upper air station to use for the domain-scale lapse rate (IUPT) No default 1 IUPT = 1 1 (Must be a value from 1 to NUSTA) (Used only if IDIOPT2 = 0) Depth through which the domain-scale lapse rate is computed (ZUPT) Default: 200. 1 ZUPT = 200. 1 (Used only if IDIOPT2 = 0) Units: meters Domain-averaged wind components (IDIOPT3) Default: 0 1 IDIOPT3 = 0 1 0 = Compute internally from twice-daily upper air observations 1 = Read hourly preprocessed values a data file (DIAG.DAT) Upper air station to use for the domain-scale winds (IUPWND) Default: -1 1 IUPWND = -1 1 (Must be a value from -1 to NUSTA) (Used only if IDIOPT3 = 0) Bottom and top of layer through which the domain-scale winds are computed (ZUPWND(1), ZUPWND(2)) Defaults: 1., 1000. 1 ZUPWND= 1., 1000. 1 (Used only if IDIOPT3 = 0) Units: meters Observed surface wind components for wind field module (IDIOPT4) Default: 0 1 IDIOPT4 = 0 1 Appendix A A-9 Report.doc ------- 0 = Read WS, WD from a surface data file (SURF.DAT) 1 = Read hourly preprocessed U, V from a data file (DIAG.DAT) Observed upper air wind components for wind field module (IDI0PT5) Default: 0 0 = Read WS, WD from an upper air data file (UP1.DAT, UP2.DAT, etc.) 1 = Read hourly preprocessed U, V from a data file (DIAG.DAT) LAKE BREEZE INFORMATION Use Lake Breeze Module (LLBREZE) Default: F Number of lake breeze regions (NBOX) X Grid line 1 defining the region of interest X Grid line 2 defining the region of interest Y Grid line 1 defining the region of interest Y Grid line 2 defining the region of interest IDI0PT5 = 0 I LLBREZE = F 1 NBOX = 0 1 XG1 = 0. 1 XG2 = 0. 1 YG1 = 0. 1 YG2 = 0. I X Point defining the coastline (Straight line) (XBCST) (KM) Default: none 1 XBCST =0.1 Y Point defining the coastline (Straight line) (YBCST) (KM) Default: none 1 YBCST =0.1 X Point defining the coastline (Straight line) (XECST) (KM) Default: none 1 XECST =0.1 Y Point defining the coastline (Straight line) (YECST) (KM) Default: none 1 YECST =0.1 Number of stations in the region Default: none 1 NLB = *1 1 * (Surface stations + upper air stations) Station ID's in the region (METBXID(NLB)) (Surface stations first, then upper air stations) 1 METBXID = *0 1* 1 END 1 INPUT GROUP: 6 -- Mixing Height, Temperature and Precipitation Parameters EMPIRICAL MIXING HEIGHT CONSTANTS Neutral, mechanical equation (CONSTB) Convective mixing ht. equation (CONSTE) Stable mixing ht. equation (CONSTN) Overwater mixing ht. equation (CONSTW) Default: 1.41 Default: 0.15 Default: 2400. Default: 0.16 CONSTB = 1.41 CONSTE = 0.15 CONSTN = 2400. CONSTW = 0.16 Appendix A A-10 Report.doc ------- Absolute value of Coriolis parameter (FCORIOL) SPATIAL AVERAGING OF MIXING HEIGHTS Conduct spatial averaging (IAVEZI) (0=no, l=yes) Max. search radius in averaging process (MNMDAV) Half-angle of upwind looking cone for averaging (HAFANG) Layer of winds used in upwind averaging (ILEVZI) (must be between 1 and NZ) OTHER MIXING HEIGHT VARIABLES Minimum potential temperature lapse rate in the stable layer above the current convective mixing ht. (DPTMIN) Depth of layer above current conv. mixing height through which lapse rate is computed (DZZI) Minimum overland mixing height (ZIMIN) Maximum overland mixing height (ZIMAX) Minimum overwater mixing height (ZIMINW) -- (Not used if observed overwater mixing hts. are used) Maximum overwater mixing height (ZIMAXW) -- (Not used if observed overwater mixing hts. are used) Default: l.E-4 I FCORIOL = 1.0E-04! Units: (1/s) Default: 1 Default: 1 Units: Grid cells Default: 3 0. Units: deg. Default: 1 IAVEZI = 1 MNMDAV = 5 HAFANG = 30. ILEVZI = 1 Default: 0.001 I DPTMIN = 0.001 Units: deg. K/m Default: 200. Units: meters Default: 50. Units: meters Default: 3000. Units: meters Default: 50. Units: meters Default: 3000. Units: meters DZZI = 200. I ZIMIN =50. 1 ZIMAX = 2695. ! ZIMINW =50. 1 ZIMAXW = 2695. TEMPERATURE PARAMETERS Interpolation type (1 = 1/R ; 2 = 1/R**2) Radius of influence for temperature interpolation (TRADKM) Conduct spatial averaging of temp- eratures (IAVET) (0=no, l=yes) (will use mixing ht MNMDAV,HAFANG so make sure they are correct) Default temperature gradient below the mixing height over water (K/m) (TGDEFB) Default temperature gradient above the mixing height over water (K/m) (TGDEFA) Default:1 I IRAD = 1 I Default: 500. 1 TRADKM = 500. 1 Units: km 1 NUMTS = 5 1 Default: 1 I IAVET = 1 I Default: -.0098 I TGDEFB = -0.0098 I Default: -.0045 I TGDEFA = -0.0045 I Maximum Number of stations to include in temperature interpolation (NUMTS) Default: 5 Appendix A A-11 Report.doc ------- Beginning (JWAT1) and ending (JWAT2 land use categories for temperature interpolation over water -- Make bigger than largest land use to dis. PRECIP INTERPOLATION PARAMETERS Method of interpolation (NFLAGP) (1=1/R,2=1/R**2,3=EXP/R**2) Radius of Influence (km) (SIGMAP) (0.0 => use half dist. btwn nearest stns w & w/out precip when NFLAGP = 3) Minimum Precip. Rate Cutoff (mm/hr) (values < CUTP = 0.0 mm/hr) I END I I JWAT1 = 100 I 1 JWAT2 = 100 1 .e Default = 2 1 NFLAGP = 2 1 Default = 100.0 1 SIGMAP = 100. 1 Default =0.01 I CUTP = 0.01 I INPUT GROUP: 7 -- Surface meteorological station parameters SURFACE STATION VARIABLES (One record per station -- 7 records in all) 1 2 Name ID X coord. Y coord. Time Anem. (km) (km) zone Ht.(m) SSI ='RICH' 13740 824 . 090 4158.306 5 10 SS2 ='RALE' 13722 700.141 3971.229 5 10 SS3 ='QUAN' 13773 822 .691 4267.578 5 10 SS4 ='ROAN' 13741 591.562 4130.299 5 10 SS5 ='LYNC' 13733 659.466 4133 .166 5 10 SS6 ='GREE' 13723 594.539 3993.501 5 10 SS7 ='ELKI' 13729 599.748 4304 .251 5 10 1 Four character string for station name (MUST START IN COLUMN 9) 2 Five digit integer for station ID I END I INPUT GROUP: 8 -- Upper air meteorological station parameters UPPER AIR STATION VARIABLES (One record per station -- 2 records in all) 1 2 Name ID X coord. Y coord. Time zone (km) (km) US1 ='GSO' 13723 594.543 3993.131 5 1 US2 ='STE' 93734 805.804 4320.279 5 I Appendix A A-12 Report.doc ------- Four character string for station name (MUST START IN COLUMN 9) 2 Five digit integer for station ID I END I INPUT GROUP: 9 -- Precipitation station parameters PRECIPITATION STATION VARIABLES (One record per station -- 59 records in all) (NOT INCLUDED IF NPSTA = 0) 1 2 Name Station Code X coord. (km) Y coord. (km) 1 PS1 0001' 466163 520.121 4349.886 1 1 PS2 = 0002 ' 465739 584 .237 4267.078 1 1 PS3 = 0003 ' 465672 541.224 4155.786 1 1 PS4 = 0004 ' 465341 583 .335 4352.155 1 1 PS5 = 0005 ' 465284 624 .764 4367.510 1 1 PS6 = 0006 ' 465002 775 .430 4369.545 1 1 PS7 = 0007 ' 464763 692.492 4355.938 1 1 PS8 = 0008 ' 464369 676.000 4322.234 1 1 PS9 = 0009 ' 463820 685 . 089 4303.936 1 1 PS10 = 0010 ' 463361 529.484 4144.643 1 1 PS11 = 0011 ' 463238 598.572 4396.733 1 1 PS12 = 0012 ' 463215 768 .449 4363.743 1 1 PS13 = 0013 ' 462718 545.725 4394.388 1 1 PS14 = 0014 ' 461900 576 .438 4322.488 1 1 PS15 = 0015 ' 461677 731. 944 4382.937 1 1 PS16 = 0016 ' 461393 515.891 4309.187 1 1 PS17 = 0017 ' 461323 520.301 4279.606 1 1 PS18 = 0018 ' 460664 646.453 4280.925 1 1 PS19 = 0019 ' 319675 599.748 4304.251 1 1 PS2 0 = 0020 ' 319476 604 .337 4393.109 1 1 PS21 = 0021 ' 313638 500.000 4028.114 1 1 PS22 = 0022 ' 313630 798.640 4042.527 1 1 PS23 = 0023 ' 313232 707.883 3962.158 1 1 PS24 = 0024 ' 312631 700.141 3971.229 1 1 PS25 = 0025 ' 312388 501.501 3992.991 1 1 PS26 = 0026 ' 312230 515 . 096 3939.397 1 1 PS27 = 0027 ' 311241 566 .222 3967.359 1 1 PS28 = 0028 ' 310750 826 . 033 3949.054 1 1 PS2 9 = 0029 ' 449301 594 .539 3993.501 1 1 PS30 = 0030 ' 449272 728 . 063 3997.811 1 1 PS31 = 0031 ' 449215 611. 926 4041.781 1 1 PS32 = 0032 ' 449159 553.873 4017.189 1 1 PS33 = 0033 ' 449151 643.971 3999.722 1 1 PS34 = 0034 ' 449060 675 . 029 3946.652 1 1 PS35 = 0035 ' 448906 492 .578 4087.277 1 1 PS36 = 0036 ' 448849 565.522 4059.793 1 1 PS37 = 0037 ' 448800 546 . 062 4078.154 1 1 PS38 = 0038 ' 448547 624.103 4225.049 1 1 PS39 = 0039 ' 448396 881.194 4136.626 1 1 PS4 0 = 0040 ' 448062 516.274 4115.023 1 1 PS41 = 0041 ' 448046 844.273 4307.406 1 1 PS42 = 0042 ' 447338 781.859 4310.495 1 1 PS43 = 0043 ' 447285 668 . 099 4216.590 1 AppendixA A -13 Report.doc ------- PS44 1 0044 ' 447201 PS45 1 0045 ' 446955 PS46 1 0046 ' 446712 PS47 1 0047 ' 446692 PS48 10048 ' 446475 PS4 9 10049 ' 446178 PS50 10050 ' 446139 PS51 1 0051 ' 445880 PS52 1 0052 ' 445690 PS53 1 0053 ' 445595 PS54 1 0054 ' 445120 PS55 10055 ' 444414 PS56 1 0056 ' 444410 PS57 1 0057 ' 444246 PS58 1 0058 ' 444180 PS59 1 0059 ' 444128 722.012 4328.952 525.122 4124.289 597.879 4095.235 591.562 4130.299 824.090 4158.306 519.263 4102.086 752.434 4233.581 586.258 4071.070 707.948 4202.704 618.022 4241.606 664.234 4190.609 612.140 4245.222 659.466 4133.166 743.012 4053.735 538.608 4083.664 602.434 4206.252 1 Four character string for station name (MUST START IN COLUMN 9) 2 Six digit station code composed of state code (first 2 digits) and station ID (last 4 digits) I END I Appendix A A-14 Report.doc ------- APPENDIX B MESOPUFF II INPUT CONTROL FILE MESOPUFF II Consequence Run 90 006 0 8592 1 0 790 1 0 1 8 8 T 2 . F 300 . 1 78 1 60 1 78 1 60 1 T F F F T T F 12 F 0 0 F F F 000000 42.5 12.5 100. 8. 26.0 430. 6000.0 28.125 29.625 28.375 29.625 27.625 29.875 27.875 29.875 28.125 29.875 28.375 29.875 28.625 29.875 27.625 30.125 27.875 30.125 28.125 30.125 28.375 30.125 28.625 30.125 27.625 30.375 27.875 30.375 28.125 30.375 28.375 30.375 28.625 30.375 28.875 30.375 27.875 30.625 28.125 30.625 28.375 30.625 28.625 30.625 28.875 30.625 27.875 30.875 28.125 30.875 28.375 30.875 28.625 30.875 28.875 30.875 29.125 30.875 29.375 30.875 28.375 31.125 28.625 31.125 28.875 31.125 29.125 31.125 29.375 31.125 27.875 31.375 28.125 31.375 28.375 31.375 28.625 31.375 28.875 31.375 29.125 31.375 29.375 31.375 28.125 31.625 28.375 31.625 28.625 31.625 28.875 31.625 29.125 31.625 29.375 31.625 28.125 31.875 28.375 31.875 28.625 31.875 28.875 31.875 Appendix B B-l Report.doc ------- 29.125 29.375 28.125 28.375 28.625 28.875 29.125 28.375 28.625 28.875 29.125 28.375 28.625 28.875 29.125 29.375 30.125 28.375 28.625 28.875 29.125 29.375 29.625 29.875 30.125 30.375 28.375 28.625 28.875 29.125 29.375 29.625 29.875 30.125 30.375 27.875 28.125 28.375 28.625 28.875 29.125 29.375 29.625 29.875 30.125 30.375 28.125 28.375 28.625 28.875 29.125 29.375 29.625 29.875 30.125 30.375 30.625 30.875 28.375 28.625 28.875 29.125 29.375 29.625 29.875 30.125 Appendix B B-2 Report.doc ------- APPENDIX C CALPUFF INPUT CONTROL FILE CALMET/CALPUFF Consequence Example, 78 x 60 grid cells @ 4 km grid Class I Area: Shenandoah National Park Transformation & Removal January 6, 1990 - December 29, 1990 RUn title (3 lines) CALPUFF MODEL CONTROL FILE INPUT GROUP: 0 -- Input and Output File Names Default Name Type File Name CALMET.DAT input k METDAT = * or ISCMET.DAT input k ISCDAT = * or PLMMET.DAT input k PLMDAT = * or PROFILE.DAT input k PRFDAT = * SURFACE.DAT input k SFCDAT = * RESTARTB.DAT input k RSTARTB= * CALPUFF.LST output 1 PUFLST =calpuff3.LST CONC.DAT output 1 CONDAT =calpuff3.CON DFLX.DAT output 1 DFDAT =calpuff3.DRY WFLX.DAT output 1 WFDAT =calpuff3.WET VISB.DAT output 1 VISDAT =calpuff.VIS RESTARTE.DAT output 1 RSTARTE=calpuff.DAT Emission Files PTEMARB.DAT input k PTDAT = * VOLEMARB.DAT input k VOLDAT = * BAEMARB.DAT input k ARDAT = * LNEMARB.DAT input k LNDAT = * Other Files OZONE.DAT input , OZDAT =OZONE.DAT 1 VD.DAT input k VDDAT = * CHEM.DAT input k CHEMDAT= * H202.DAT input k H202DAT= * HILL.DAT input k HILDAT= * HILLRCT.DAT input k RCTDAT= * COASTLN.DAT input k CSTDAT= * FLUXBDY.DAT input k BDYDAT= * BCON.DAT input k BCNDAT= * DEBUG.DAT output k DEBUG = * MASSFLX.DAT output k FLXDAT= * MASSBAL.DAT output k BALDAT= * FOG.DAT output k FOGDAT= * All file names will be converted to lower case if LCFILES = T Otherwise, if LCFILES = F, file names will be converted to UPPER CASE T = lower case 1 LCFILES = F 1 F = UPPER CASE Appendix C C-l Report.doc ------- NOTE: (1) file/path names can be up to 70 characters in length Provision for multiple input files Number of CALMET.DAT files for run (NMETDAT) Default: 1 1 NMETDAT = 12 Number of PTEMARB.DAT files for run (NPTDAT) Default: 0 1 NPTDAT = 0 1 Number of BAEMARB.DAT files for run (NARDAT) Default: 0 1 NARDAT = 0 1 Number of VOLEMARB.DAT files for run (NVOLDAT) Default: 0 1 NVOLDAT = 0 1 I END I Subgroup (0a) The following CALMET.DAT filenames are processed in sequence if NMETDAT>1 Default Name Type File Name none input 1 METDAT= .\calmet\cal\JAN.DAT 1 1 END none input 1 METDAT= .\calmet\cal\FEB.DAT 1 1 END none input 1 METDAT= .\calmet\cal\MAR.DAT 1 1 END none input 1 METDAT= .\calmet\cal\APR.DAT 1 1 END none input 1 METDAT= .\calmet\cal\MAY.DAT 1 1 END none input 1 METDAT= .\calmet\cal\JUN.DAT 1 1 END none input 1 METDAT= .\calmet\cal\JUL.DAT 1 1 END none input 1 METDAT= .\calmet\cal\AUG.DAT 1 1 END none input 1 METDAT= .\calmet\cal\SEP.DAT 1 1 END none input 1 METDAT= .\calmet\cal\OCT.DAT 1 1 END none input 1 METDAT= .\calmet\cal\NOV.DAT 1 1 END none input 1 METDAT= .\calmet\cal\DEC.DAT 1 1 END INPUT GROUP: 1 -- General run control parameters Option to run all periods found in the met. file (METRUN) Default: 0 1 METRUN = 0 1 METRUN = 0 - Run period explicitly defined below METRUN = 1 - Run all periods in met. file Starting date: Year (IBYR) - - No default I IBYR = = 1990 (used only if Month (IBMO) - - No default 1 IBMO = = 1 1 METRUN = 0) Day (IBDY) - - No default 1 IBDY = = 6 1 Hour (IBHR) - - No default 1 IBHR = = 0 1 Base time zone (XBTZ) - - No default 1 XBTZ = = 5.0 PST = 8 . , MST = 7. CST = 6., EST = 5. Length of run (hours) (IRLG) - - No default 1 IRLG = = 8592 Number of chemical species (NSPEC) Default: 5 I NSPEC = 2 Number of chemical species to be emitted (NSE) Default: 3 1 NSE = 1 Flag to stop run after Appendix C C-2 Report.doc ------- SETUP phase (ITEST) Default: 2 I ITEST = 2 (Used to allow checking of the model inputs, files, etc.) ITEST = 1 - STOPS program after SETUP phase ITEST = 2 - Continues with execution of program after SETUP Restart Configuration: Control flag (MRESTART) Default: 0 1 MRESTART = 0 0 = Do not read or write a restart file 1 = Read a restart file at the beginning of the run 2 = Write a restart file during run 3 = Read a restart file at beginning of run and write a restart file during run Number of periods in Restart output cycle (NRESPD) Default: 0 1 NRESPD = 72 0 0 = File written only at last period >0 = File updated every NRESPD periods Meteorological Data Format (METFM) Default: 1 I METFM = 1 METFM = 1 - CALMET binary file (CALMET.MET) METFM = 2 - ISC ASCII file (ISCMET.MET) METFM = 3 - AUSPLUME ASCII file (PLMMET.MET) METFM = 4 - CTDM plus tower file (PROFILE.DAT) and surface parameters file (SURFACE.DAT) PG sigma-y is adjusted by the factor (AVET/PGTIME)**0.2 Averaging Time (minutes) (AVET) Default: 6 0.0 1 AVET =60. 1 PG Averaging Time (minutes) (PGTIME) Default: 6 0.0 I PGTIME = 60. I END I INPUT GROUP: 2 -- Technical options Vertical distribution used in the near field (MGAUSS) Default: 1 1 MGAUSS = 1 0 = uniform 1 = Gaussian Terrain adjustment method (MCTADJ) Default: 3 1 MCTADJ = 3 0 = no adjustment 1 = ISC-type of terrain adjustment 2 = simple, CALPUFF-type of terrain adj ustment 3 = partial plume path adjustment Subgrid-scale complex terrain flag (MCTSG) Default: 0 1 MCTSG = 0 0 = not modeled 1 = modeled Near-field puffs modeled as elongated 0 (MSLUG) Default: 0 1 MSLUG = 0 0 = no 1 = yes (slug model used) Appendix C C-3 Report.doc ------- Transitional plume rise modeled ? (MTRANS) Default: 1 1 MTRANS = 1 0 = no (i.e., final rise only) 1 = yes (i.e., transitional rise computed) Stack tip downwash? (MTIP) Default: 1 1 MTIP = 1 1 0 = no (i.e., no stack tip downwash) 1 = yes (i.e., use stack tip downwash) Vertical wind shear modeled above stack top? (MSHEAR) Default: 0 1 MSHEAR = 0 1 0 = no (i.e., vertical wind shear not modeled) 1 = yes (i.e., vertical wind shear modeled) Puff splitting allowed? (MSPLIT) Default: 0 1 MSPLIT = 0 1 0 = no (i.e., puffs not split) 1 = yes (i.e., puffs are split) Chemical mechanism flag (MCHEM) Default: 1 1 MCHEM = 1 0 = chemical transformation not modeled 1 = transformation rates computed internally (MESOPUFF II scheme) 2 = user-specified transformation rates used 3 = transformation rates computed internally (RIVAD/ARM3 scheme) 4 = secondary organic aerosol formation computed (MESOPUFF II scheme for OH) Aqueous phase transformation flag (MAQCHEM) (Used only if MCHEM = 1, or 3) Default: 0 1 MAQCHEM = 0 0 = aqueous phase transformation not modeled 1 = transformation rates adjusted for aqueous phase reactions Wet removal modeled ? (MWET) Default: 1 1 MWET = 1 1 0 = no 1 = yes Dry deposition modeled ? (MDRY) Default: 1 1 MDRY = 1 1 0 = no 1 = yes (dry deposition method specified for each species in Input Group 3) Method used to compute dispersion coefficients (MDISP) Default: 3 1 MDISP = 3 1 = dispersion coefficients computed from measured values of turbulence, sigma v, sigma w 2 = dispersion coefficients from internally calculated sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.) 3 = PG dispersion coefficients for RURAL areas (computed using the ISCST multi-segment approximation) and MP coefficients in urban areas 4 = same as 3 except PG coefficients computed using the MESOPUFF II eqns. 5 = CTDM sigmas used for stable and neutral conditions. For unstable conditions, sigmas are computed as in MDISP = 3, described above. MDISP = 5 assumes that measured values are read Sigma-v/sigma-theta, sigma-w measurements used? (MTURBVW) (Used only if MDISP = 1 or 5) Default: 3 1 MTURBVW = 3 1 1 = use sigma-v or sigma-theta measurements from PROFILE.DAT to compute sigma-y (valid for METFM = 1, 2, 3, 4) Appendix C C-4 Report.doc ------- 2 = use sigma-w measurements from PROFILE.DAT to compute sigma-z (valid for METFM = 1, 2, 3, 4) 3 = use both sigma-(v/theta) and sigma-w from PROFILE.DAT to compute sigma-y and sigma-z (valid for METFM = 1, 2, 3, 4) 4 = use sigma-theta measurements from PLMMET.DAT to compute sigma-y (valid only if METFM = 3) Back-up method used to compute dispersion when measured turbulence data are missing (MDISP2) Default: 3 1 MDISP2 = 3 1 (used only if MDISP = 1 or 5) 2 = dispersion coefficients from internally calculated sigma v, sigma w using micrometeorological variables (u*, w*, L, etc.) 3 = PG dispersion coefficients for RURAL areas (computed using the ISCST multi-segment approximation) and MP coefficients in urban areas 4 = same as 3 except PG coefficients computed using the MESOPUFF II eqns. PG sigma-y,z adj. for roughness? (MROUGH) 0 = no 1 = yes Partial plume penetration of elevated inversion? (MPARTL) 0 = no 1 = yes Default: 0 I MROUGH = 0 I Default: 1 I MPARTL = 1 I Strength of temperature inversion Default: 0 1 MTINV = 0 1 provided in PROFILE.DAT extended records? (MTINV) 0 = no (computed from measured/default gradients) 1 = yes PDF used for dispersion under convective conditions? Default: 0 1 MPDF = 0 1 (MPDF) 0 = no 1 = yes Sub-Grid TIBL module used for shore line? Default: 0 1 MSGTIBL = 0 1 (MSGTIBL) 0 = no 1 = yes Boundary conditions (concentration) modeled? Default: 0 1 MBCON = 0 1 (MBCON) 0 = no 1 = yes Analyses of fogging and icing impacts due to emissions from arrays of mechanically-forced cooling towers can be performed using CALPUFF in conjunction with a cooling tower emissions processor (CTEMISS) and its associated postprocessors. Hourly emissions of water vapor and temperature from each cooling tower cell are computed for the current cell configuration and ambient conditions by CTEMISS. CALPUFF models the dispersion of these emissions and provides cloud information in a specialized format for further analysis. Output to FOG.DAT is provided in either 'plume mode' or 'receptor mode' format. Configure for FOG Model output? Appendix C C-5 Report.doc ------- Default: 0 I MFOG = 0 (MFOG) 0 = no 1 = yes - report results in PLUME Mode format 2 = yes - report results in RECEPTOR Mode format Test options specified to see if they conform to regulatory values? (MREG) Default: 1 MREG = 0 = NO checks are made 1 = Technical options must conform to USEPA values (min) METFM 1 AVET 60 . MGAUSS 1 MCTADJ 3 MTRANS 1 MTIP 1 MCHEM 1 (i MWET 1 MDRY 1 MDISP 3 MROUGH 0 MPARTL 1 SYTDEP 550 . MHFTSZ 0 (if modeling SOx, NOx) (m) I END I INPUT GROUP: 3a, 3b -- Species list Subgroup (3a) The following species are modeled: I CSPEC = S02 I I END I 1 CSPEC = S04 1 1 END 1 •k CSPEC = NOX * *END* k CSPEC = HN03 * *END* k CSPEC = N03 * *END* Dry OUTPUT GROUP SPECIES MODELED EMITTED DEPOSITED NUMBER NAME (0=NO, 1=YES) (0=NO, 1=YES) (0=NO, (0=NONE, (Limit: 12 1=COMPUTED-GAS 1 = 1s t CGRUP Characters 2 = COMPUTED-PARTICLE 2=2nd CGRUP in length) 3=USER-SPECIFIED) 3= etc.) 1 S02 = 1, 1, 1, 0 1 S04 = 1, 0, 2, 0 •k NOX = 1, 1, 1, 0 * k HN03 = 1, 0, 1, 0 * k N03 = 1, 0, 2, 0 * I END I Subgroup (3b) The following names are used for Species-Groups in which results for certain species are combined (added) prior to output. The CGRUP name will be used as the species name in output files. Use this feature to model specific particle-size distributions Appendix C C-6 Report.doc ------- by treating each size-range as a separate species. Order must be consistent with 3(a) above. INPUT GROUP: 4 Grid control parameters METEOROLOGICAL grid: No. X grid cells (NX) No default I NX = 78 No. Y grid cells (NY) No default 1 NY = 60 No. vertical layers (NZ) No default 1 NZ = 10 Grid spacing (DGRIDKM) No default Units: km DGRIDKM = 4. Cell face heights (ZFACE (nz + 1)) ZFACE = 0., 20., 40., 80., 160. 3000. I No defaults Units: m 300., 600., 1000., 1500., 2200. Reference Coordinates of SOUTHWEST corner of grid cell (1, 1) : X coordinate (XORIGKM) Y coordinate (YORIGKM) No default No default Units: km XORIGKM = 580. YORIGKM = 4100. UTM zone (IUTMZN) Reference coordinates of CENTER of the domain (used in the calculation of solar elevation angles) No default IUTMZN = 17 Computational grid: The computational grid is identical to or a subset of the MET. grid. The lower left (LL) corner of the computational grid is at grid point (IBCOMP, JBCOMP) of the MET. grid. The upper right (UR) corner of the computational grid is at grid point (IECOMP, JECOMP) of the MET. grid. The grid spacing of the computational grid is the same as the MET. grid. X index of LL corner (IBCOMP) No default 1 IBCOMP = 1 1 (1 <= IBCOMP <= NX) Y index of LL corner (JBCOMP) No default 1 JBCOMP = 1 1 (1 <= JBCOMP <= NY) X index of UR corner (IECOMP) No default 1 IECOMP = 78 (1 <= IECOMP <= NX) Y index of UR corner (JECOMP) No default 1 JECOMP = 6 0 (1 <= JECOMP <= NY) SAMPLING GRID (GRIDDED RECEPTORS): The lower left (LL) corner of the sampling grid is at grid point (IBSAMP, JBSAMP) of the MET. grid. The upper right (UR) corner of the Appendix C C-7 Report.doc ------- sampling grid is at grid point (IESAMP, JESAMP) of the MET. grid. The sampling grid must be identical to or a subset of the computational grid. It may be a nested grid inside the computational grid. The grid spacing of the sampling grid is DGRIDKM/MESHDN. Logical flag indicating if gridded receptors are used (LSAMP) Default: T 1 LSAMP = F 1 (T=yes, F=no) X index of LL corner (IBSAMP) (IBCOMP <= IBSAMP <= IECOMP) Y index of LL corner (JBSAMP) (JBCOMP <= JBSAMP <= JECOMP) No default I IBSAMP = 0 No default I JBSAMP = 0 X index of UR corner (IESAMP) (IBCOMP <= IESAMP <= IECOMP) Y index of UR corner (JESAMP) (JBCOMP <= JESAMP <= JECOMP) No default I IESAMP = 0 No default I JESAMP = 0 Nesting factor of the sampling grid (MESHDN) Default: 1 1 MESHDN = 1 1 (MESHDN is an integer >= 1) I END I INPUT GROUP: 5 -- Output Options FILE DEFAULT VALUE VALUE THIS RUN Concentrations (ICON) 1 I ICON = 1 Dry Fluxes (IDRY) 1 1 IDRY = 0 Wet Fluxes (IWET) 1 1 IWET = 0 Relative Humidity (IVIS) 1 1 IVIS = 0 (relative humidity file is required for visibility analysis) Use data compression option in output file? (LCOMPRS) Default: T 1 LCOMPRS 0 = Do not create file, 1 = create file DIAGNOSTIC MASS FLUX OUTPUT OPTIONS: Mass flux across specified boundaries for selected species reported hourly? (IMFLX) Default: 0 1 IMFLX = 0 1 0 = no 1 = yes (FLUXBDY.DAT and MASSFLX.DAT filenames are specified in Input Group 0) Mass balance for each species reported hourly? (IMBAL) 0 = no 1 = yes (MASSBAL.DAT filename specified in Input Group Default: 0 I IMBAL = 0 I is 0) LINE PRINTER OUTPUT OPTIONS: Appendix C C-8 Report.doc ------- Units for Line Printer Output Print concentrations (ICPRT) Default Print dry fluxes (IDPRT) Default Print wet fluxes (IWPRT) Default (0 = Do not print, 1 = Print) Concentration print interval (ICFRQ) in hours Default: 1 Dry flux print interval (IDFRQ) in hours Default: 1 Wet flux print interval (IWFRQ) in hours Default: 1 (IPRTU) for Concentration g/m**3 mg/m**3 ug/m**3 ng/m**3 Odour Units Default: 1 for Deposition g/m**2/s mg/m**2/s ug/m**2/s ng/m**2/s ICPRT IDPRT IWPRT ICFRQ = IDFRQ = IWFRQ = IPRTU = Messages tracking progress of run written to the screen ? (IMESG) Default: 2 0 = no 1 = yes (advection step, puff ID) 2 = yes (YYYYJJJHH, # old puffs, # emitted puffs) IMESG = SPECIES (or GROUP for combined species) LIST FOR OUTPUT OPTIONS CONCENTRATIONS DRY FLUXES WET FLUXES -- MASS FLUX -- SPECIES /GROUP PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? PRINTED? SAVED ON DISK? SAVED ON DISK? S02 = S04 = NOX = HN03 = N03 = 1, 0, 1, 1, 1, OPTIONS FOR PRINTING "DEBUG" QUANTITIES (much output) Logical for debug output (LDEBUG) Default: F LDEBUG = F First puff to track (IPFDEB) Default: 1 IPFDEB = 1 Number of puffs to track (NPFDEB) Met. period to start output (NN1) Default: 1 Default: 1 NPFDEB = 1 NN1 = 1 Met. period to end output (NN2) Default: 10 NN2 = 10 I END I Appendix C C-9 Report.doc ------- INPUT GROUP: 6a, 6b, & 6c -- Subgrid scale complex terrain inputs Subgroup (6a) Number of terrain features (NHILL) Number of special complex terrain receptors (NCTREC) Terrain and CTSG Receptor data for CTSG hills input in CTDM format ? (MHILL) 1 = Hill and Receptor data created by CTDM processors & read from HILL.DAT and HILLRCT.DAT files 2 = Hill data created by OPTHILL & input below in Subgroup (6b); Receptor data in Subgroup (6c) Factor to convert horizontal dimensions Default: 1.0 to meters (MHILL=1) Default: 0 Default: 0 No Default Factor to convert vertical dimensions to meters (MHILL=1) Default: 1.0 X-origin of CTDM system relative to No Default CALPUFF coordinate system, in Kilometers (MHILL=1) Y-origin of CTDM system relative to No Default CALPUFF coordinate system, in Kilometers (MHILL=1) NHILL = 0 NCTREC = 0 MHILL = 0 XHILL2M = 1. ZHILL2M = 1. XCTDMKM = 0.0E0 0 YCTDMKM = 0.0E0 0 END Subgroup (6b) ]_ * * HILL information HILL AMAX1 NO. (m) AM AX 2 (m) XC YC THETAH ZGRID RELIEF EXPO 1 EXPO 2 SCALE 1 SCALE 2 2 (km) (km) (deg.) (m) (m) (m) (m) (m) (m) Subgroup (6c) COMPLEX TERRAIN RECEPTOR INFORMATION XRCT YRCT ZRCT XHH (km) (km) (m) 1 Description of Complex Terrain Variables: XC, YC = Coordinates of center of hill THETAH = Orientation of major axis of hill (clockwise from North) ZGRID = Height of the 0 of the grid above mean sea Appendix C C-10 Report.doc ------- level RELIEF = Height of the crest of the hill above the grid elevation EXPO 1 = Hill-shape exponent for the major axis EXPO 2 = Hill-shape exponent for the major axis SCALE 1 = Horizontal length scale along the major axis SCALE 2 = Horizontal length scale along the minor axis AMAX = Maximum allowed axis length for the major axis BMAX = Maximum allowed axis length for the major axis XRCT, ZRCT XHH YRCT = Coordinates of the complex terrain receptors = Height of the ground (MSL) at the complex terrain Receptor = Hill number associated with each complex terrain receptor (NOTE: MUST BE ENTERED AS A REAL NUMBER) NOTE: DATA for each hill and CTSG receptor are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUP: 7 -- Chemical parameters for dry deposition of gases SPECIES DIFFUSIVITY ALPHA STAR REACTIVITY MESOPHYLL RESISTANCE HENRY'S LAW COEFFICIENT NAME (cm**2/s) (s/cm) (dimensionless) I S02 = 0.1509, 1000., 8., 0. 0 . 04 1 * NOX = 0.1656, 1. , 8. , 5. 3.5* * HN03 = 0.1628, 1., 18., 0. 0.00000008 * ! END! INPUT GROUP: 8 -- Size parameters for dry deposition of particles For SINGLE SPECIES, the mean and standard deviation are used to compute a deposition velocity for NINT (see group 9) size-ranges, and these are then averaged to obtain a mean deposition velocity. For GROUPED SPECIES, the size distribution should be explicitly specified (by the 'species' in the group), and the standard deviation for each should be entered as 0. The model will then use the deposition velocity for the stated mean diameter. SPECIES GEOMETRIC MASS MEAN NAME DIAMETER (microns) S04 = N03 = 0.48, 0.48, GEOMETRIC STANDARD DEVIATION (microns) 2. 1 2. * ! END! INPUT GROUP: 9 -- Miscellaneous dry deposition parameters Appendix C C-ll Report.doc ------- Reference cuticle resistance (s/cm) (RCUTR) Default: 3 0 1 RCUTR = 3 0.0 Reference ground resistance (s/cm) (RGR) Default: 10 1 RGR =10.0 Reference pollutant reactivity (REACTR) Default: 8 I REACTR =8.0 I Number of particle-size intervals used to evaluate effective particle deposition velocity (NINT) Default: 9 NINT = 9 Vegetation state in unirrigated areas (IVEG) Default: 1 IVEG=1 for active and unstressed vegetation IVEG=2 for active and stressed vegetation IVEG=3 for inactive vegetation IVEG = 1 I END I INPUT GROUP: 10 -- Wet Deposition Parameters Pollutant S02 = S04 = HN03 = N03 = Scavenging Coefficient -- Units: (sec)**(-l) Liquid Precip. Frozen Precip. 3.0E-05, 1.0E-04, 6.0E-05, 1.0E-04, 0.0E00 3.0E-05 0.0E00 3.0E-05 I END I INPUT GROUP: 11 -- Chemistry Parameters Ozone data input option (MOZ) Default: 1 (Used only if MCHEM =1, 3, or 4) 0 = use a monthly background ozone value 1 = read hourly ozone concentrations from the OZONE.DAT data file MOZ = Monthly ozone concentrations (Used only if MCHEM =1, 3, or 4 and MOZ = 0 or MOZ = 1 and all hourly 03 data missing) (BCK03) in ppb Default: 12*80. 1 BCK03 = 24., 29., 32., 44., 43., 43., 38., 36., 37., 28., 32., 20. Monthly ammonia concentrations (Used only if MCHEM = 1, or 3) (BCKNH3) in ppb I BCKNH3 = 12*0.50 I Default: 12*10. Nighttime S02 loss rate (RNITE1) in percent/hour Default: 0.2 Nighttime NOx loss rate (RNITE2) in percent/hour Default: 2.0 Nighttime HN03 formation rate (RNITE3) RNITE1 = .2 RNITE2 =2.0 Appendix C C-12 Report.doc ------- in percent/hour Default: 2.0 1 RNITE3 = 2.0 1 H202 data input option (MH202) Default: 1 1 MH202 = 1 1 (Used only if MAQCHEM = 1) 0 = use a monthly background H202 value 1 = read hourly H202 concentrations from the H202.DAT data file Monthly H202 concentrations (Used only if MQACHEM = 1 and MH202 = 0 or MH202 = 1 and all hourly H202 data missing) (BCKH202) in ppb Default: 12*1. I BCKH202 = 12*1.00 I Data for SECONDARY ORGANIC AEROSOL (SOA) Option (used only if MCHEM = 4) The SOA module uses monthly values of: Fine particulate concentration in ug/mA3 (BCKPMF) Organic fraction of fine particulate (OFRAC) VOC / NOX ratio (after reaction) (VCNX) to characterize the air mass when computing the formation of SOA from VOC emissions. Typical values for several distinct air mass types are: Month 123456789 10 11 12 Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Clean Continental BCKPMF 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. OFRAC .15 .15 .20 .20 .20 .20 .20 .20 .20 .20 .20 .15 VCNX 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. Clean Marine (surface) BCKPMF .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 .5 OFRAC .25 .25 .30 .30 .30 .30 .30 .30 .30 .30 .30 .25 VCNX 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. 50. Urban - low biogenic (controls present) BCKPMF 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30. OFRAC .20 .20 .25 .25 .25 .25 .25 .25 .20 .20 .20 .20 VCNX 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. Urban - high biogenic (controls present) BCKPMF 60. 60. 60. 60. 60. 60. 60. 60. 60. 60. 60. 60. OFRAC .25 .25 .30 .30 .30 .55 .55 .55 .35 .35 .35 .25 VCNX 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. Regional Plume BCKPMF 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. OFRAC .20 .20 .25 .35 .25 .40 .40 .40 .30 .30 .30 .20 VCNX 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15. Urban - no controls present BCKPMF 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. OFRAC .30 .30 .35 .35 .35 .55 .55 .55 .35 .35 .35 .30 VCNX 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. Default: Clean Continental 1 BCKPMF = 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00, 1.00 1 1 OFRAC = 0.15, 0.15, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.20, 0.15 1 1 VCNX = 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00, 50.00 I I END I Appendix C C-13 Report.doc ------- INPUT GROUP: 12 -- Misc. Dispersion and Computational Parameters Horizontal size of puff (m) beyond which time-dependent dispersion equations (Heffter) are used to determine sigma-y and sigma-z (SYTDEP) Default: 550. SYTDEP = 5.5E02 Switch for using Heffter equation for sigma z as above (0 = Not use Heffter; 1 = use Heffter (MHFTSZ) Default: 0 MHFTSZ = Stability class used to determine plume growth rates for puffs above the boundary layer (JSUP) Default: 5 JSUP = Vertical dispersion constant for stable conditions (kl in Eqn. 2.7-3) (CONK1) Default: 0.01 CONK1 = .01 Vertical dispersion constant for neutral/ unstable conditions (k2 in Eqn. 2.7-4) (CONK2) Default: 0.1 CONK2 = .1 Factor for determining Transition-point from Schulman-Scire to Huber-Snyder Building Downwash scheme (SS used for Hs < Hb + TBD * HL) (TBD) Default: 0.5 TBD < 0 ==> always use Huber-Snyder TBD = 1.5 ==> always use Schulman-Scire TBD = 0.5 ==> ISC Transition-point TBD = .5 Range of land use categories for which urban dispersion is assumed (IURB1, IURB2) Default: 10 19 IURB1 = 10 IURB2 = 19 Site characterization parameters for single-point Met data files (needed for METFM = 2,3,4) Land use category for modeling domain (ILANDUIN) Default: 20 ILANDUIN = 2 0 Roughness length (m) for modeling domain (Z0IN) Default: 0.25 Z0IN = .25 Leaf area index for modeling domain (XLAIIN) Default: 3.0 XLAIIN =3.0 Elevation above sea level (m) (ELEVIN) Default: 0.0 ELEVIN = .0 Latitude (degrees) for met location (XLATIN) Default: XLATIN = -999.0 Longitude (degrees) for met location (XLONIN) Default: -9S XLONIN = -999.0 Specialized information for interpreting single-point Met data files Anemometer height (m) (Used only if METFM = 2,3) (ANEMHT) Default: 10. ANEMHT = 10.0 Form of lateral turbulance data in PROFILE.DAT file (Used only if METFM = 4 or MTURBVW = 1 or 3) (ISIGMAV) Default: 1 0 = read sigma-theta 1 = read sigma-v ISIGMAV = Choice of mixing heights (Used only if METFM = 4) (IMIXCTDM) Default: 0 IMIXCTDM = Appendix C C-14 Report.doc ------- 0 = read PREDICTED mixing heights 1 = read OBSERVED mixing heights Maximum length of a slug (met. grid units) (XMXLEN) Default: 1.0 1 XMXLEN =1.0 1 Maximum travel distance of a puff/slug (in grid units) during one sampling step (XSAMLEN) Default: 1.0 1 XSAMLEN =1.0 1 Maximum Number of slugs/puffs release from one source during one time step (MXNEW) Default: 99 1 MXNEW = 99 1 Maximum Number of sampling steps for one puff/slug during one time step (MXSAM) Default: 99 1 MXSAM = 99 Number of iterations used when computing the transport wind for a sampling step that includes gradual rise (for CALMET and PROFILE winds) (NCOUNT) Minimum sigma y for a new puff/slug (m) (SYMIN) Minimum sigma z for a new puff/slug (m) (SZMIN) Default minimum turbulence velocities sigma-v and sigma-w for each stability class (m/s) (SVMIN(6) and SWMIN(6)) Default SVMIN Default SWMIN Default: 2 I NCOUNT = 2 I Default: 1.0 1 SYMIN = .01 1 Default: 1.0 1 SZMIN = .01 1 : .50, .50, .50, .50, .50, .50 : .20, .12, .08, .06, .03, .016 Stability Class : 1 SVMIN = I SWMIN = BCD 0.500, 0.500, 0.500, 0.200, 0.120, 0.080, E F 0.500, 0.500, 0.5001 0.060, 0.030, 0.0161 A Divergence criterion for dw/dz across puff used to initiate adjustment for horizontal convergence (1/s) Partial adjustment starts at CDIV(l), and full adjustment is reached at CDIV(2) (CDIV(2)) Default: 0.0,0.0 1 CDIV = .0, .0 1 Minimum wind speed (m/s) allowed for non-calm conditions. Also used as minimum speed returned when using power-law extrapolation toward surface (WSCALM) Default: 0.5 1 WSCALM =.5 1 Maximum mixing height (m) (XMAXZI) Default: 3000. 1 XMAXZI = 3000.0 1 Minimum mixing height (m) (XMINZI) Default: 50. 1 XMINZI = 50.0 1 Default wind speed classes -- 5 upper bounds (m/s) are entered; the 6th class has no upper limit (WSCAT(5)) Default : ISC RURAL : 1.54, 3.09, 5.14, 8.23, 10.8 (10.8+) Wind Speed Class : 1 2 3 4 5 1 WSCAT = 1.54, 3.09, 5.14, 8.23, 10.80 Default wind speed profile power-law Appendix C C-15 Report.doc ------- exponents for stabilities 1-6 (PLXO(6)) Default ISC RURAL ISC URBAN ISC RURAL values .07, .07, .10, .15, .35, .55 .15, .15, .20, .25, .30, .30 Stability Class : A B C D E F 1 PLXO = 0.07, 0.07, 0.10, 0.15, 0.35, 0.55 Default potential temperature gradient for stable classes E, F (degK/m) (PTG0(2)) Default: 0.020, 0.035 i pTGO = 0.020, 0.035 Default plume path coefficients for each stability class (used when option for partial plume height terrain adjustment is selected -- MCTADJ=3) (PPC(6)) Stability Class : A B C D E F Default PPC : .50, .50, .50, .50, .35, .35 1 PPC = 0.50, 0.50, 0.50, 0.50, 0.35, 0.35 Slug-to-puff transition criterion factor equal to sigma-y/length of slug (SL2PF) Default: 10. 1 SL2PF = 10.0 1 Puff-splitting control variables VERTICAL SPLIT Number of puffs that result every time a puff is split - nsplit=2 means that 1 puff splits into 2 (NSPLIT) Default: 3 1 NSPLIT = 3 1 Time(s) of a day when split puffs are eligible to be split once again; this is typically set once per day, around sunset before nocturnal shear develops. 24 values: 0 is midnight (00:00) and 23 is 11 PM (23:00) 0=do not re-split l=eligible for re-split (IRESPLIT(24)) Default: Hour 17 = 1 I IRESPLIT = 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0 I Split is allowed only if last hour's mixing height (m) exceeds a minimum value (ZISPLIT) Default: 100. 1 ZISPLIT = 100.0 1 Split is allowed only if ratio of last hour's mixing ht to the maximum mixing ht experienced by the puff is less than a maximum value (this postpones a split until a nocturnal layer develops) (ROLDMAX) Default: 0.25 1 ROLDMAX = 0.25 1 HORIZONTAL SPLIT Number of puffs that result every time a puff is split - nsplith=5 means that 1 puff splits into 5 (NSPLITH) Default: 5 1 NSPLITH = 5 1 Minimum sigma-y (Grid Cells Units) of puff before it may be split (SYSPLITH) Default: 1.0 1 SYSPLITH =1.0 1 Minimum puff elongation rate (SYSPLITH/hr) due to wind shear, before it may be split (SHSPLITH) Default: 2. 1 SHSPLITH =2.0 1 Appendix C C-16 Report.doc ------- Minimum concentration (g/mA3) of each species in puff before it may be split Enter array of NSPEC values; if a single value is entered, it will be used for ALL species (CNSPLITH) Default: 1.0E-07 1 CNSPLITH = 1.0E-07 1 Integration control variables Fractional convergence criterion for numerical SLUG sampling integration (EPSSLUG) Default: 1.0e-04 EPSSLUG = 1.0E-04 Fractional convergence criterion for numerical AREA source integration (EPSAREA) Default: 1.0e-06 EPSAREA = 1.0E-06 Trajectory step-length (m) used for numerical rise integration (DSRISE) Default: 1.0 DSRISE =1.0 I END I INPUT GROUPS: 13a, 13b, 13c, 13d -- Point source parameters Subgroup (13a) Number of point sources with parameters provided below Units used for point source emissions below 1 = g/s 2 = kg/hr 3 = lb/hr 4 = tons/yr 5 = Odour Unit * m**3/s (vol. flux of odour compound) 6 = Odour Unit * m**3/min 7 = metric tons/yr (NPT1) No default I NPT1 = 1 (IPTU) Default: 1 I IPTU = 1 Number of source-species combinations with variable emissions scaling factors provided below in (13d) (NSPT1) Default: 0 1 NSPT1 = 0 1 Number of point sources with variable emission parameters provided in external file (NPT2) No default 1 NPT2 = 0 1 (If NPT2 > 0, these point source emissions are read from the file: PTEMARB.DAT) I END I Subgroup (13b) a POINT SOURCE: CONSTANT DATA b c Source X UTM Y UTM Stack Base Stack Exit Exit Bldg. Emission No. Coordinate Coordinate Height Elevation Diameter Vel. Temp. Dwash Rates Appendix C C-17 Report.doc ------- (km) (km) (m) (m) (m) (m/s) (deg. K) 1 I SRCNAM = STACK1 I 1 1 X = 750., 4150., 100., 100., 8.0, 26., 430., 0.0, 6.0E03, 0.0 1 1 I FMFAC = 1.0 1 I END I Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. SRCNAM is a 12-character name for a source (No default) X is an array holding the source data listed by the column headings (No default) SIGYZI is an array holding the initial sigma-y and sigma-z (m) (Default: 0 . ,0.) FMFAC is a vertical momentum flux factor (0. or 1.0) used to represent the effect of rain-caps or other physical configurations that reduce momentum rise associated with the actual exit velocity. (Default: 1.0 -- full momentum used) b 0. = No building downwash modeled, 1. = downwash modeled NOTE: must be entered as a REAL number (i.e., with decimal point) c An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IPTU (e.g. 1 for g/s). Subgroup (13c) BUILDING DIMENSION DATA FOR SOURCES SUBJECT TO DOWNWASH Source a No. Effective building width and height (in meters) every 10 degrees Each pair of width and height values is treated as a separate input subgroup and therefore must end with an input group terminator. Subgroup (13d) a POINT SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 13b. Factors entered multiply the rates in 13b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use PTEMARB.DAT and NPT2 > 0. IVARY determines the type of variation, and is source-specific: (IVARY) Default: 0 0 = Constant 1 = Diurnal cycle (24 scaling factors: hours 1-24) 2 = Monthly cycle (12 scaling factors: months 1-12) 3 = Hour Sc. Season (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) 4 = Speed & Stab. (6 groups of 6 scaling factors, where first group is Stability Class A, Appendix C C-18 Report.doc ------- and the speed classes have upper bounds (m/s) defined in Group 12 5 = Temperature (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUPS: 14a, 14b, 14c, 14d -- Area source parameters Subgroup (14a) Number of polygon area sources with parameters specified below (NAR1) No default 1 NAR1 = 0 1 Units used for area source emissions below (IARU) Default: 1 1 IARU = 1 1 1 = g/m**2/s 2 = kg/m**2/hr 3 = lb/m**2/hr 4 = tons/m**2/yr 5 = Odour Unit * m/s (vol. flux/m**2 of odour compound) 6 = Odour Unit * m/min 7 = metric tons/m**2/yr Number of source-species combinations with variable emissions scaling factors provided below in (14d) (NSAR1) Default: 0 1 NSAR1 = 0 1 Number of buoyant polygon area sources with variable location and emission parameters (NAR2) No default 1 NAR2 = 0 1 (If NAR2 > 0, ALL parameter data for these sources are read from the file: BAEMARB.DAT) I END I Subgroup (14b) a AREA SOURCE: CONSTANT DATA b Source Effect. Base Initial Emission No. Height Elevation Sigma z Rates (m) (m) (m) Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. ) An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are Appendix C C-19 Report.doc ------- modeled, but not emitted. Units are specified by IARU (e.g. 1 for g/m**2/s). Subgroup (14c) COORDINATES (UTM-km) FOR EACH VERTEX(4) OF EACH POLYGON Source a No. Ordered list of X followed by list of Y, grouped by source Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. Subgroup (14d) a AREA SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 14b. Factors entered multiply the rates in 14b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use BAEMARB.DAT and NAR2 > 0. IVARY determines the type of variation, and is source-specific: (IVARY) 0 = 1 = 2 = 3 = 4 = 5 = Constant Diurnal cycle Monthly cycle Hour Sc. Season Speed Sc Stab. Temperature Default: 0 (24 scaling factors: hours 1-24) (12 scaling factors: months 1-12) (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUPS: 15a, 15b, 15c -- Line source parameters Subgroup (15a) Number of buoyant line sources with variable location and emission parameters (NLN2) No default 1 NLN2 = (If NLN2 > 0, ALL parameter data for these sources are read from the file: LNEMARB.DAT) Appendix C C-20 Report.doc ------- Number of buoyant line sources (NLINES) No default NLINES = Units used for line source emissions below (ILNU) Default: 1 I LNU = 1 = g/s 2 = kg/hr 3 = lb/hr 4 = tons/yr 5 = Odour Unit * m**3/s (vol. flux of odour compound) 6 = Odour Unit * m**3/min 7 = metric tons/yr Number of source-species combinations with variable emissions scaling factors provided below in (15c) (NSLN1) Default: 0 NSLN1 = Maximum number of segments used to model each line (MXNSEG) Default: 7 MXNSEG = The following variables are required only if NLINES > 0. They are used in the buoyant line source plume rise calculations. Number of distances at which transitional rise is computed Average building length (XL) Average building height (HBL) Average building width (WBL) Average line source width (WML) Default: 6 No default (in meters) No default (in meters) No default (in meters) No default (in meters) Average separation between buildings (DXL) No default (in meters) NLRISE = XL = . 0 HBL = .0 WBL = .0 WML = .0 DXL = .0 Average buoyancy parameter (FPRIMEL) No default 1 (in m**4/s**3) FPRIMEL = .0 I END I Subgroup (15b) BUOYANT LINE SOURCE: CONSTANT DATA Source Beg. X Beg. Y End. X End. Y Release Base Emission No. Coordinate Coordinate Coordinate Coordinate Height Elevation Rates (km) (km) (km) (km) (m) (m) Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. b An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by ILNTU (e.g. 1 for g/s). Appendix C C-21 Report.doc ------- Subgroup (15c) a BUOYANT LINE SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 15b. Factors entered multiply the rates in 15b. Skip sources here that have constant emissions. IVARY determines the type of variation, and is source-specific: (IVARY) 0 1 2 3 4 = 5 = Constant Diurnal cycle Monthly cycle Hour Sc. Season Speed Sc Stab. Temperature Default: 0 (24 scaling factors: hours 1-24) (12 scaling factors: months 1-12) (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUPS: 16a, 16b, 16c -- Volume source parameters Subgroup (16a) Number of volume sources with parameters provided in 16b,c (NVL1) No default 1 NVL1 = 0 1 Units used for volume source emissions below in 16b (IVLU) Default: 1 1 IVLU = 1 1 1 = g/s 2 = kg/hr 3 = lb/hr 4 = tons/yr 5 = Odour Unit * m**3/s (vol. flux of odour compound) 6 = Odour Unit * m**3/min 7 = metric tons/yr Number of source-species combinations with variable emissions scaling factors provided below in (16c) (NSVL1) Default: 0 1 NSVL1 = 0 1 Number of volume sources with variable location and emission parameters (NVL2) No default 1 NVL2 = 0 (If NVL2 > 0, ALL parameter data for these sources are read from the VOLEMARB.DAT file(s) ) I END I Appendix C C-22 Report.doc ------- Subgroup (16b) a VOLUME SOURCE: CONSTANT DATA b Initial Emission Sigma z Rates (m) X UTM Y UTM Effect. Base Initial Coordinate Coordinate Height Elevation Sigma y (km) (km) (m) (m) (m) Data for each source are treated as a separate input subgroup and therefore must end with an input group terminator. b An emission rate must be entered for every pollutant modeled. Enter emission rate of zero for secondary pollutants that are modeled, but not emitted. Units are specified by IVLU (e.g. 1 for g/s). Subgroup (16c) a VOLUME SOURCE: VARIABLE EMISSIONS DATA Use this subgroup to describe temporal variations in the emission rates given in 16b. Factors entered multiply the rates in 16b. Skip sources here that have constant emissions. For more elaborate variation in source parameters, use VOLEMARB.DAT and NVL2 > 0. IVARY determines the type of variation, and is source-specific: (IVARY) 0 1 2 3 4 = 5 = Constant Diurnal cycle Monthly cycle Hour Sc. Season Speed Sc Stab. Temperature Default: 0 (24 scaling factors: hours 1-24) (12 scaling factors: months 1-12) (4 groups of 24 hourly scaling factors, where first group is DEC-JAN-FEB) (6 groups of 6 scaling factors, where first group is Stability Class A, and the speed classes have upper bounds (m/s) defined in Group 12 (12 scaling factors, where temperature classes have upper bounds (C) of: 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 50+) Data for each species are treated as a separate input subgroup and therefore must end with an input group terminator. INPUT GROUPS: 17a & 17b -- Non-gridded (discrete) receptor information Subgroup (17a) Number of non-gridded receptors (NREC) No default 1 NREC = 790 Appendix C C-23 Report.doc ------- I END I Subgroup (17b) a NON-GRIDDED (DISCRETE) RECEPTOR DATA X UTM Y UTM Ground Height b Receptor Coordinate Coordinate Elevation Above Ground No. (km) (km) (m) (m) 1238 X = 692.500, 4218.500, 505 . 000, 0.000 I I END I 1239 X = 693.500, 4218.500, 550 . 000, 0.000 1 1 END 1 1240 X = 690.500, 4219.500, 461. 000, 0.000 1 1 END 1 1241 X = 691.500, 4219.500, 631. 000, 0.0001 1 END 1 1242 X = 692 .500, 4219.500, 543 . 000, 0 . 000 1 1 END 1 1243 X = 693.500, 4219.500, 575.000, 0 . 000 1 1 END 1 1244 X = 694 .500, 4219.500, 670 . 000, 0.000 1 1 END 1 1245 X = 690.500, 4220.500, 500 . 000, 0.0001 1 END 1 1246 X = 691.500, 4220.500, 591. 000, 0.000 1 1 END 1 1247 X = 692.500, 4220.500, 675 . 000, 0 . 000 1 1 END 1 1248 X = 693 .500, 4220.500, 647 . 000, 0.0001 1 END 1 1249 X = 694 .500, 4220.500, 687 . 000, 0 . 000 1 1 END 1 1250 X = 690.500, 4221.500, 495 . 000, 0 . 000 1 1 END 1 1251 X = 691.500, 4221.500, 705 . 000, 0.0001 1 END 1 1252 X = 692.500, 4221.500, 771. 000, 0.000 1 1 END 1 1253 X = 693.500, 4221.500, 653 . 000, 0.000 1 1 END 1 1254 X = 694 .500, 4221.500, 653 . 000, 0.0001 1 END 1 1255 X = 695.500, 4221.500, 465 . 000, 0 . 000 1 1 END 1 1256 X = 691.500, 4222 .500, 559 . 000, 0 . 000 1 1 END 1 1257 X = 692.500, 4222 .500, 715 . 000, 0.000 1 1 END 1 1258 X = 693 .500, 4222 .500, 735 . 000, 0.0001 1 END 1 1259 X = 694.500, 4222 .500, 763 . 000, 0.000 1 1 END 1 1260 X = 695.500, 4222 .500, 626 . 000, 0 . 000 1 1 END 1 1261 X = 691.500, 4223 .500, 487 . 000, 0.0001 1 END 1 1262 X = 692.500, 4223 .500, 570 . 000, 0 . 000 1 1 END 1 1263 X = 693.500, 4223 .500, 642 . 000, 0.000 1 1 END 1 1264 X = 694.500, 4223 .500, 878.000, 0.0001 1 END 1 1265 X = 695.500, 4223 .500, 762 . 000, 0.000 1 1 END 1 1266 X = 696 .500, 4223 .500, 453.000, 0 . 000 1 1 END 1 1267 X = 697.500, 4223 .500, 305.000, 0.0001 1 END 1 1268 X = 693 .500, 4224 .500, 651. 000, 0 . 000 1 1 END 1 1269 X = 694.500, 4224 .500, 797 . 000, 0 . 000 1 1 END 1 1270 X = 695.500, 4224 .500, 785 . 000, 0.000 1 1 END 1 1271 X = 696.500, 4224 .500, 516 . 000, 0.0001 1 END 1 1272 X = 697.500, 4224 .500, 454.000, 0.000 1 1 END 1 1273 X = 691.500, 4225.500, 456 . 000, 0 . 000 1 1 END 1 1274 X = 692.500, 4225.500, 639 . 000, 0.000 1 1 END 1 1275 X = 693.500, 4225.500, 688 . 000, 0 . 000 1 1 END 1 1276 X = 694.500, 4225.500, 789 . 000, 0.000 1 1 END 1 1277 X = 695.500, 4225.500, 786 . 000, 0.0001 1 END 1 1278 X = 696.500, 4225.500, 657.000, 0.000 1 1 END 1 1279 X = 697.500, 4225.500, 514 . 000, 0 . 000 1 1 END 1 ***************** REMAINING RECEPTORS REMOVED FOR THIS LISTING *************** Data for each receptor are treated as a separate input subgroup and therefore must end with an input group terminator. b Receptor height above ground is optional. If no value is entered, the receptor is placed on the ground. Appendix C C-24 Report.doc ------- |