Technical Support Document
EPA's 2011 National-scale Air Toxics Assessment

2011 NATATSD

December 2015

Office of Air Quality, Planning, and Standards
Research Triangle Park
North Carolina 27711


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

i v


-------
EPA's National-scale Air Toxics Assessment

Contents

List of Exhibits	viii

Common Acronyms and Abbreviations	x

1	Background and Introduction	1

1.1	The Purpose of this Document	1

1.2	What NATA Is	2

1.3	The History of NATA	3

1.4	How States and EPA Use NATA Results	4

1.5	How NATA Results Should Not Be Used	5

1.6	The Risk Assessment Framework NATA Uses	6

1.7	The Scope of NATA	7

1.7.1	Sources of Air Toxic Emissions that NATA Addresses	8

1.7.2	Stressors that NATA Evaluates	8

1.7.3	Exposure Pathways, Routes, and Time Frames for NATA	10

1.7.4	Receptors that NATA Characterizes	11

1.7.5	Endpoints and Measures: Results of NATA	11

1.8	Model Design	12

1.8.1 The Strengths and Weaknesses of the Model Design	14

2	Emissions	17

2.1	Sources of Emissions Data	17

2.1.1	Developing NATA Emissions from the 2011 NEI	19

2.1.2	Categorization of the NATA Emissions in the NATA Output Data	23

2.1.3	Modifications to NEI Emissions Data	25

2.1.4	2011 NATA Emissions: CMAQ versus HEM-3	27

2.2	Emissions Preparation for CMAQ	29

2.2.1	Emission Inventories and Approaches: CMAQ	29

2.2.2	Emissions Processing Steps and Ancillary Data	38

2.3	Emissions Preparation for HEM-3	52

2.3.1	Overview of Differences in Emissions Processing Between CMAQ and HEM-

3	52

2.3.2	HEM Run Groups	55

2.3.3	Point Excluding Airports	58

2.3.4	Point: Airports	64

2.3.5	Nonpoint HEM Run Groups: NPlOm and NPOtherLow	69

2.3.6	Nonpoint HEM Run Groups: CMVs	70

2.3.7	Nonpoint HEM Run Groups: RWC	70

2.3.8	Nonroad HEM Run Group	72

2.3.9	Onroad HEM Run Groups: Light Duty and Heavy Duty	73

2.4	Source Groups	75

2.5	Uncertainties in Emissions/Emissions Processing	77

2.6	Summary	78

3	Air Quality Modeling & Characterization	79

3.1 Hybrid Model Description	79

3.1.1	Overview	79

3.1.2	Treatment of Species	81


-------
EPA's National-scale Air Toxics Assessment

3.1.3	Meteorological Processing	81

3.1.4	Emissions Processing Overview	82

3.1.5	Initial and Boundary Conditions	82

3.1.6	Source Attribution	82

3.2	Treatment of Non-hybrid Air Toxics and Areas Outside the CONUS	83

3.2.1 Background Concentrations	83

3.3	Model Evaluation	86

3.3.1	Overview	87

3.3.2	Observations	87

3.3.3	Model Performance Statistics	88

3.3.4	Hybrid Evaluation	89

3.3.5	Non-hybrid Evaluation	103

3.4	Summary	105

4	Estimating Exposures for Populations	107

4.1	Estimating Exposure Concentrations	107

4.2	About HAPEM	107

4.3	HAPEM Inputs and Application	108

4.3.1	Data on Ambient Air Concentrations	109

4.3.2	Population Demographic Data	109

4.3.3	Data on Population Activity	109

4.3.4	Microenvironmental Data	110

4.4	Exposure Factors	112

4.5	Quality Assurance in Exposure Modeling	113

4.6	Summary	113

5	Characterizing Effects of Air Toxics	115

5.1	Toxicity Values and Their Use in NATA	115

5.2	Types of Toxicity Values	116

5.2.1	Cancer URE	116

5.2.2	Noncancer Chronic RfC	118

5.3	Data Sources for Toxicity Values	119

5.3.1	U.S. EPA Integrated Risk Information System	119

5.3.2	U.S. Department of Health and Human Services, Agency for Toxic Substances

and Disease Registry	119

5.3.3	California Environmental Protection Agency Office of Environmental Health

Hazard Assessment	120

5.3.4	U.S. EPA Health Effects Assessment Summary Tables	120

5.3.5	World Health Organization International Agency for Research on Cancer	120

5.4	Additional Toxicity Decisions for Some Chemicals	121

5.4.1	Poly cyclic Organic Matter	121

5.4.2	Glycol Ethers	121

5.4.3	Metals	122

5.4.4	Adjustment of Mutagen UREs to Account for Exposure During Childhood	122

5.4.5	Diesel Particulate Matter	123

5.5	Summary	123

6	Characterizing Risks and Hazards in NATA	125

6.1	The Risk-characterization Questions NATA Addresses	125

6.2	How Cancer Risk is Estimated	125

6.2.1 Individual Pollutant Risk	126

vi


-------
EPA's National-scale Air Toxics Assessment

6.2.2 Multiple-pollutant Risk	126

6.3	How Noncancer Hazard is Estimated	127

6.3.1	Individual Pollutant Hazard	127

6.3.2	Multiple -pollutant Hazard	128

6.4	How Risk Estimates and Hazard Quotients are Calculated for NATA at Tract,

County, and State Levels	128

6.4.1	Model Results for Point Sources: Aggregation to Tract-level Results	129

6.4.2	Background Concentrations and Secondary Pollutants: Interpolation to Tract-

level Results	129

6.4.3	Aggregation of Tract-level Results to Larger Spatial Units	129

6.5	The Risk Characterization Results that NATA Reports	130

6.6	Summary	132

7	Variability and Uncertainty Associated with NATA	133

7.1	Introduction	133

7.2	How NATA Addresses Variability	133

7.2.1	Components of Variability	134

7.2.2	Quantifying Variability	135

7.2.3	How Variability Affects Interpretation of NATA Results	137

7.3	How NATA Addresses Uncertainty	137

7.3.1	Components of Uncertainty	138

7.3.2	Components of Uncertainty Included in NATA	139

7.4	Summary of Limitations in NATA	143

8	References	147

Appendix A: Glossary	A-l

Appendix B: Air Toxics Included in Modeling for the 2011 NATA and Source Classification

Codes that Define Diesel Particulate Matter	B-l

Appendix C: Crosswalk for Air Toxics Names in NEI, the NATA Toxicity Table, NATA
Results, and the Clean Air Act; and, the NATA Toxicity Table and Metal

Speciation Factors	C-l

Appendix D: Additional Information Used to Process the 2011 NATA Inventory: Inventory
Sectors and Model Run Groups; SCC Groupings; Speciations for Mercury,

Xylenes, and Other Metals	D-l

Appendix E: Estimation of Background Concentrations for the 2011 NATA	E-l

Appendix F: Model Evaluation Summaries	F-l

Appendix G: Exposure Factors for the 2011 NATA	G-1

Appendix H: Toxicity Values Used in the 2011 NATA	H-l

Appendix I: Adjustments from the 2011 Emissions/Modeling Approach	1-1

vii


-------
EPA's National-scale Air Toxics Assessment

List of Exhibits

Exhibit 1. Summary of the Five Completed NATAs	3

Exhibit 2. The General Air Toxics Risk Assessment Process	7

Exhibit 3. Conceptual Model for NATA	9

Exhibit 4. The NATA Risk Assessment Process and Corresponding Sections of this TSD	13

Exhibit 5. NEI Data Sources for HAP Emissions	18

Exhibit 6. 2011 NEI v2 PAHs Grouped for CMAQ and HEM-3 Modeling based on URE	20

Exhibit 7. 2011 NEI Compounds or Compound Groups for which Emissions are Adjusted for CMAQ and

HEM-3 Modeling	23

Exhibit 8. Map of NEI Data Categories to NATA Categories	24

Exhibit 9. Key Emission Differences between CMAQ and HEM-3 for 2011 NATA Modeling	28

Exhibit 10. Sectors Used in Emissions Modeling for the 2011 NATA CMAQ Platform	30

Exhibit 11. Preparation of HAP Inventory for each Sector for the 2011 NATA CMAQ Platform	32

Exhibit 12. SCCs for RWC	34

Exhibit 13. SCCs for CMVs and Locomotive (clc2rail and c3marine)	35

Exhibit 14. SCCs for Agricultural-Field Burning (agfire)	35

Exhibit 15. Summary of Spatial and Temporal Allocation of Emissions for the 2011 NATA Platform.... 38

Exhibit 16. U.S. Surrogates Available for the 2011 Modeling Platform	40

Exhibit 17. Total and Toxicity-weighted Emissions of CMAQ HAPs Based on the CMAQ Surrogate

Assignments	42

Exhibit 18. Gaseous Species Produced by SMOKE for the 2011 NATA Platform	47

Exhibit 19. Particulate Species Produced by SMOKE for the 2011 NATA Platform	50

Exhibit 20. Approach for Spatial Allocation—HEM-3 versus CMAQ	52

Exhibit 21. Temporal-allocation Approach—HEM-3 versus CMAQ	54

Exhibit 22. HEM Run Groups Based on the Nonpoint and Nonroad NEI Data Categories	56

Exhibit 23. Fields in the HEM-3 Facility List Options File	60

Exhibit 24. HEM-3 Assignments of Emission Release Point Type	62

Exhibit 25. Monthly Temporal Profile for Alaska Seaplanes (Counts and Percentages)	65

Exhibit 26. Diurnal Temporal Profile for General Aviation (Counts, Zero-outs, and Final Percentages).. 66

Exhibit 27. Lead Emissions (kg/yr) at SMO in 2008, by Aircraft Operation Mode	66

Exhibit 28. Hourly Pattern of Activity for SMOKE Profile 26	69

Exhibit 29. Example of RWC Temporal-scaling Factors, January(l)-April(4) (top) and May(5)-

August(8) (bottom), for King County, Washington	72

Exhibit 30. Example of Temporal Scalars by Hour-of-day for Onroad HEM Run Groups	74

Exhibit 31. Source Groups for NATA	75

Exhibit 32. Air Toxics Utilizing the Hybrid Modeling in NATA	79

Exhibit 33. CMAQ Domain with Expanded Cell Showing Hybrid Receptors	80

Exhibit 34. Background Concentrations Added to the HEM-3 Concentrations for Non-CMAQ Air Toxics,

All Areas	84

Exhibit 35. Background Concentrations Added to the HEM-3 Concentrations for Non-CONUS Areas

Only	85

Exhibit 36. Hybrid Air Toxics Evaluated	89

Exhibit 37. 2011 Monitoring Locations for the Evaluation of Hybrid Air Toxics	90

Exhibit 38. 2011 Annual Air Toxics Performance Statistics for the Hybrid, CMAQ, and HEM-3 Models90
Exhibit 39. Acetaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-

3 Models	91

Exhibit 40. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain .... 92
Exhibit 41. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain... 93

viii


-------
EPA's National-scale Air Toxics Assessment

Exhibit 42.
Exhibit 43.
Exhibit 44.
Exhibit 45.
Exhibit 46.

Exhibit 47.
Exhibit 48.
Exhibit 49.
Exhibit 50.
Exhibit 51.
Exhibit 52.
Exhibit 53.

Exhibit 54.
Exhibit 55.
Exhibit 56.
Exhibit 57.
Exhibit 58.
Exhibit 59.
Exhibit 60.
Exhibit 61.
Exhibit 62.
Exhibit 63.
Exhibit 64.

Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain.... 93
Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain .. 94
Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain ... 94
Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain.. 95
Formaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-

3 Models	95

Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain ... 96
Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain.. 97
Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain .. 97
Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain . 98
Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain .. 98
Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain. 99
Benzene: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-

Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-

3 Models	100

Benzene: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain	101

Benzene: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain	101

Benzene: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain	102

Benzene: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain	102

Benzene: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain	103

Benzene: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain	103

Non-hybrid Air Toxics Evaluated	104

2011 Monitoring Locations for the Evaluation of Non-hybrid Air Toxics	104

Key Differences between Recent Versions of HAPEM	108

Microenvironments Used in the HAPEM Modeling for the 2011 NATA	112

NATA Drivers and Contributors of Health Effects for Risk Characterization	131

ix


-------
EPA's National-scale Air Toxics Assessment

Common Acronyms and Abbreviations

|jg/m3

microgram/cubic meter

AERMOD

atmospheric dispersion model developed by the American Meteorological Society and the



U.S. Environmental Protection Agency's Regulatory Model Improvement Committee

ASPEN

Assessment System for Population Exposure Nationwide

ATSDR

Agency for Toxic Substances and Disease Registry

CHAD

Consolidated Human Activity Database

CAP

Criteria air pollutant

CMAQ

Community Multiscale Air Quality model

CONUS

Continental United States (modeling domain for CMAQ)

EC

exposure concentration

EPA

Environmental Protection Agency

EGU

electricity generating unit

HAP

hazardous air pollutant

HAP EM

Hazardous Air Pollutant Exposure Model

HEM

Human Exposure Model

HI

hazard index

HQ

hazard quotient

IRIS

Integrated Risk Information System

ISC

Industrial Source Complex

MOVES

Motor Vehicle Emissions Simulator

NATA

National-scale Air Toxics Assessment

NEI

National Emissions Inventory

NMIM

National Mobile Inventory Model

OAQPS

Office of Air Quality Planning and Standards

PAH

polycyclic aromatic hydrocarbon

PM

particulate matter

POM

polycyclic organic matter

RfC

reference concentration

RTR

Risk and Technology Review

see

Source Classification Code

S/L/T

State, local, or tribal agency

URE

unit risk estimate

WRF

Weather Research Forecasting model

x


-------
EPA's National-scale Air Toxics Assessment

1 BACKGROUND AND INTRODUCTION

1.1 The Purpose of this Document

This document describes the data and approaches used to conduct the U.S. Environmental Protection
Agency's (EPA; referred to throughout this document as "we") National-scale Air Toxics Assessment
(NATA), an ongoing comprehensive evaluation of air toxics in the United States. It presents the
approaches EPA used to conduct NATA, including descriptions of how we

•	compiled emissions data and prepared them for use as model inputs,

•	estimated ambient concentrations of air toxics,

•	estimated exposures to air toxics for populations,

•	selected toxicity values,

•	characterized human-health risks and hazards, and

•	addressed variability and uncertainty.

This technical support document (TSD) satisfies basic documentation protocol expected of EPA products
and provides a resource for the technically oriented user community by summarizing the data sources,
methods, models, and assumptions used in the 2011 NATA. References to additional documents are
included (Section 8) to facilitate access to more detailed technical information on the emissions
inventories, dispersion modeling, photochemical modeling, exposure modeling, and toxicity values.

Appendices to this document include:

•	Appendix A—a glossary of the key terms and their definitions;

•	Appendix B—a list of air toxics included in NATA and a list of source classification codes
(SCCs) for diesel particulate matter (diesel PM);

•	Appendix C—a crosswalk of pollutant names across inventories, assessments, and regulations,
with metal speciation factors;

•	Appendix D—a crosswalk table for NEI sectors to the source groups and Human Exposure Model
(HEM-3) run groups used to present the NATA results, and additional speciation information
including for xylenes, mercury, and other metals;

•	Appendix E—procedures for estimating NATA background concentrations;

•	Appendix F—additional model evaluation summaries;

•	Appendix G—a table of average ratios of exposure concentration to ambient concentrations
applied in NATA;

•	Appendix H—a table of toxicity values applied in NATA; and

•	Appendix I—adjustments to the approach.

1


-------
EPA's National-scale Air Toxics Assessment

We also provide a "SupplementalData" folder with this document that contains the Microsoft® Access™
and Microsoft® Excel™ files referenced throughout this TSD.

This document does not provide quantitative results for NATA and thus presents no exposure or risk
estimates. Results and other specific information for NATA, including for the 2011 NATA and previous
assessments, are found on the NATA website.

1.2 What NATA Is

NATA is a screening tool intended to evaluate the human-health risks posed by air toxics across the
United States. We developed this tool so that state, local, and tribal agencies could prioritize air toxics,
emission sources, and locations of interest for further study.

NATA assembles information on air toxics, characterizes emissions, and prioritizes air toxics and
locations that merit more refined analysis and investigation. This information is used to plan, and assist
with the implementation of, national, regional, and local efforts to reduce toxic air pollution. Using
general information about sources to develop estimates of risks, NATA provides screening-level
estimates of the risk of cancer and other potentially serious health effects as a result of inhaling air toxics.
The resulting risk estimates are purposefully more likely to be overestimates of health impacts than
underestimates, and thus they are health protective.

NATA uses emissions data compiled for a single year as inputs for modeling ambient air concentrations
and estimating health risks. Results include estimates of ambient concentrations and exposure
concentrations (ECs) of air toxics and estimates of cancer risks and potential noncancer health effects
associated with chronic inhalation exposure to air toxics. The estimates are generated within each state,
at both county and census-tract levels.

NATA provides a "snapshot" of outdoor air quality and the risks to human health that might result if air
toxic emission levels were to remain at the same levels as those estimated for the assessment year. The
estimates reflect only risks associated with chronic (relatively long-term) exposures to the inhalation of
air toxics at the population level. The assumptions and methods used to complete the national-scale
assessments limit the types of questions that NATA can answer reliably. These limitations, described
throughout later sections of this document and summarized in Section 7, must be considered when
interpreting the NATA results or when using them to address questions posed outside of NATA.

NATA results are useful for prioritizing air toxics and emission sources, identifying locations of interest
that require additional investigation, providing a starting point for local-scale assessments, focusing
community efforts to reduce local emissions of air toxics, and informing the design of new monitoring
programs or the re-design of existing ones. NATA results also can provide general answers to questions
about emissions, ambient air concentrations, and exposures and risks across broad geographic areas (such
as counties, states, the nation) at a moment in time.

NATA was designed to answer questions such as the following:

•	Which air toxics pose the greatest potential risk of cancer or adverse noncancer effects across the
entire United States?

•	Which air toxics pose the greatest potential risk of cancer or adverse noncancer effects in specific
areas of the United States?

2


-------
EPA's National-scale Air Toxics Assessment

•	Which air toxics pose less, but still significant, potential risk of cancer or adverse noncancer
effects across the entire United States?

•	When risks from inhalation exposures to all outdoor air toxics are considered in combination,
how many people could experience a lifetime cancer risk greater than levels of concern (e.g., 1-
in-1 million)?

•	When potential adverse noncancer effects from long-term exposures to all outdoor air toxics are
considered in combination for a given target organ or system, how many people could experience
exposures that exceed the reference levels intended to protect against those effects (i.e., a hazard
quotient greater than 1)?

1.3 The History of NATA

As discussed on the NATA website. EPA's first national-scale air toxics study was the Cumulative
Exposure Project (Caldwell et al. 1998), which was developed based on estimates of air toxics emissions
present before the Clean Air Act (CAA) was amended in 1990. The Cumulative Exposure Project
provided estimates of outdoor air toxics concentrations in each of the more than 60,000 continental U.S.
census tracts.

For the first NATA, the Cumulative Exposure Project framework was enhanced to include estimates of
population exposure and health risk. The first NATA used a more refined inventory of air toxics
emissions developed for 1996, known at that time as the National Toxics Inventory. This assessment
was submitted for a technical peer review in January 2001 to a panel of EPA's Science Advisory Board
(EPA 2001 b). The panel provided detailed comments later that year on the validity of the overall
approach, the elements of the assessment (including the data, models, and methods used), and the manner
in which these components were integrated into a national-scale assessment (EPA 2001a). EPA
incorporated many of the Science Advisory Board's suggestions into the assessment and published the
results of that assessment in 2002. Since then, four assessments have been completed, based on national
emission inventories that are updated significantly on a tri-annual basis, representative of air toxic
emissions in 1999, 2002, 2005, and 2011, respectively. In general, the scope of NATA has progressively
expanded with subsequent versions, and some methods have been refined and improved. Exhibit 1
summarizes the five NATAs EPA has conducted to date.

Exhibit 1. Summary of the Five Completed NATAs

Inventory
Year

Year
Completed/
Published

Air Toxics Modeled a b

Key Attributes

1996

2002

33—32 HAPs, focusing on
those of concern in urban
areas; plus diesel PM

•	ASPEN used to model ambient concentrations

•	HAPEM4 used to model inhalation exposures

1999

2006

177—176 HAPs, including all
those with chronic-health
toxicity values at the time; plus
diesel PM

•	ASPEN used to model ambient concentrations

•	HAPEM5 used to model inhalation exposures

•	Doubled the number of emission sources covered
compared to 1996 NATA

2002

2009

181—180 HAPs, including 4
with additional health
information; plus diesel PM

•	ASPEN and HEM (with ISC) used to model ambient
concentrations

•	HAPEM5 used to model inhalation exposures

3


-------
EPA's National-scale Air Toxics Assessment

Inventory
Year

Year
Completed/
Published

Air Toxics Modeled a b

Key Attributes

2005

2010

179—178 HAPs, for which
emissions data and chronic-
health toxicity values are
available; plus diesel PM

•	Emissions inventory updated to include recent
information on industrial sources, residual-risk
assessments, lead emissions from airports, and other
sources

•	ASPEN and HEM-3 (with AERMOD. a more refined
dispersion model) used to model ambient
concentrations; HEM used for more source types than
in 2002

•	Exposure factors derived from 2002 NATA used to
estimate inhalation exposures

•	CMAQ model (EPA 2015a) used to estimate
secondary formation of acetaldehyde, acrolein,
formaldehyde, and decay of 1,3-butadiene to acrolein

2011

2015

180—179 HAPs for which
emissions data are; available
plus diesel PM

•	CMAQ and HEM-3 more fully integrated as a hybrid
modeling system for about 40 HAPS and diesel PM to
improve mass conservation.

•	HEM-3 with background for remaining HAPs (also for
areas outside the U.S. continental CMAQ modeling
domain) not covered by the hybrid approach

•	HAPEM7 to model inhalation exposures for a subset
of air toxics and used to provide exposure factors for
the remaining air toxics

a Note that "air toxics" and "HAPs" are sometimes used interchangeably. In this document, however, "air toxics" refers to
HAPs plus diesel PM. HAPs are those air toxics which we are required to control under Section 112 of the 1990 CAA
Amendments (EPA 2015n). Diesel PM is not a HAP but is carcinogenic to humans, although we have not yet developed a
unit risk estimate for it. Given these concerns, the adverse noncancer effects of diesel PM are estimated in NATA (using
an Integrated Risk Information System reference concentration) but its cancer risks are not estimated.
b The number of air toxics included in a NATA emission inventory can be slightly larger than the number of air toxics
actually modeled. Some air toxics are not modeled because of uncertainty in the emissions numbers or in the ability to
model air concentrations or health risk accurately. For example, asbestos is included in the inventory but not modeled and
they are not included in the counts presented in this table.

Notes:

HAPs = hazardous air pollutants; diesel PM = diesel particulate matter; ASPEN = Assessment System for Population
Exposure Nationwide; HAPEM4, HAPEM5, HAPEM7 = Hazardous Air Pollutant Exposure Model, version 4, 5, and 7; HEM
= Human Exposure Model; CMAQ = Community Multiscale Air Quality model. ISC and AERMOD are Gaussian dispersion
models.

1.4 How States and EPA Use NATA Results

NATA was designed as a screening assessment and functions as a tool to inform both national and more
localized efforts to collect air toxics information, to characterize emissions, and to help prioritize air
toxics and geographic areas of interest for more refined data collection and analyses.

Ultimately, NATA results are intended to focus resources on air toxics, locations, or populations that are
associated with the greatest potential health risks. Thus, the goal of NATA is to identify those air toxics
of greatest potential concern with regard to their contribution to population risk. The results are used to
set priorities for the collection of additional air toxics information, including emissions and monitoring
data. NATA was designed to help guide efforts to reduce toxic air pollution and to provide information
that can be used to further the already significant emissions reductions achieved in the United States since
1990.

4


-------
EPA's National-scale Air Toxics Assessment

We use NATA to identify those air toxics and source sectors (e.g., stationary sources, mobile sources)
having the highest exposures and health risks. The assessment results also help to identify geographic
patterns and ranges of risks across the country. Specifically, we use NATA results to

•	identify pollutants and industrial source categories of greatest concern,

•	improve understanding of health risks posed by air toxics,

•	help set priorities for the collection of additional information,

•	set priorities for improving emission inventories,

•	expand and prioritize EPA's network of air-toxics monitors,

•	support communities in designing their own local assessments,

•	enhance targeted risk-reduction activities, and

•	provide a multiple-pollutant modeling framework linking air toxics to the Criteria Pollutant
Program (EPA 2015d).

1.5 How NATA Results Should Not Be Used

As described in Section 1.2, NATA is a screening-level assessment that was designed to answer specific
types of questions. The underlying assumptions of NATA and the methods limit the range of questions
that can be answered reliably. NATA results should not be used independently to characterize or compare
risk at local levels (e.g., between neighborhoods), nor should they be used to estimate exposure or health
risks for individuals or groups within small geographic areas such as census blocks or to design control
measures for specific emissions sources or pollutants.

NATA evaluations use emissions data for a single year as inputs to models that yield concentration and
risk estimates. These estimates reflect chronic exposures. Given these characteristics, NATA results
should not be used for the following:

•	as a definitive means to pinpoint specific risk values within a census tract,

•	to characterize or compare risks at local levels such as among neighborhoods,

•	to characterize or compare risk among states,

•	to examine trends from one NATA year to another,

•	as the sole basis for developing risk reduction plans or regulations,

•	as the sole basis for determining appropriate controls on specific sources or air toxics, or

•	as the sole basis to quantify benefits of reduced air toxic emissions.

The limitations of the assessment methods prevent NATA from serving as a stand-alone tool.
Furthermore, although results are reported at the census tract level, average risk estimates are far more
uncertain at this level of spatial resolution than at the county or state level. For analysis of air toxics in
smaller areas, such as census blocks or in a suspected "hotspot," other tools such as site-specific
monitoring and local-scale assessments coupled with refined and localized data should be used.

5


-------
EPA's National-scale Air Toxics Assessment

These caveats are integral to the proper interpretation of NATA results. NATA results should be used
to address only those questions for which the assessment methods are suited. Moreover, as noted above,
NATA results from different assessment years generally should not be compared to each other. From one
assessment to the next, EPA has improved its methodology and incorporated additional data that enhance
the utility of the results, but compromise the ability to compare across periods. Specifically, each
subsequent assessment has offered the following relative to the previous NATA:

•	a better and more complete inventory of emission sources,

•	an overall increase in the number of air toxics evaluated1, and

•	updated health data for use in risk characterization.

Successive improvements in methodology and improved data make comparing earlier assessments with
later assessments inappropriate. Differences in emissions, ambient concentrations, or risks observed in the
results of two assessments might be due either to improvement in the assessment methodology or to
actual changes in emissions, populations, or other "real-life" characteristics.

NATA is not used solely as the source of information leading to regulations or guiding the enforcement of
existing rules. Thus, even though some of the methods used to conduct NATA are similar to those used in
air-related risk assessments conducted under the CAA mandate (such as residual risk assessments of HAP
emissions from point sources, or assessments of exposures to criteria air pollutants (CAPs) for evaluations
of National Ambient Air Quality Standards), NATA fundamentally differs from such assessments in that
it is not a regulatory program.

1.6 The Risk Assessment Framework NATA Uses

The methods applied in conducting NATA are consistent with the general risk assessment framework
used throughout EPA. This section provides background information on EPA's risk assessment
framework and summarizes the NATA process. The analytical components of this process are then
described in detail in subsequent sections.

EPA has published a series of guidelines (EPA 2015e) that establishes and explains the recommended
methods for assessing human-health risks from environmental pollution. Included in this series are
recommendations for carcinogen risk assessment, exposure assessment, chemical mixtures risk
assessment, and other major EPA-wide risk assessment guidelines. In addition, EPA developed the three-
volume Air Toxics Risk Assessment (ATRA) Reference Library (EPA 2004a,b; EPA 2006a) as a
reference for those conducting air toxics risk assessments. This library provides information on the
fundamental principles of risk-based assessment for air toxics, how to apply those principles in various
settings, and strategies for reducing risk at the local level. EPA's guidelines and methods are consistent
with the National Research Council's recommendations on conducting risk assessments (NRC 1983,
1994).

As described in more detail in these guidelines and documents, EPA's risk assessment process has three
phases (Exhibit 2), the second of which has two parts.

• The first phase (problem formulation) comprises the initial planning and scoping activities and
definition of the problem, which results in the development of a conceptual model.

1 Since the 1999 NATA, the number of pollutants has depended largely on the emissions inventory.

6


-------
EPA's National-scale Air Toxics Assessment

•	The second phase (analysis) includes two components:

-	Exposure assessment; and

-	Toxicity assessment.

•	The third phase is risk characterization, a synthesis of the outputs of the exposure and toxicity
assessments to characterize health risks for the scenario described in the initial phase.

Exhibit 2. The General Air Toxics Risk Assessment Process

Source: Adapted from EPA (2004a)

An air toxics risk assessment starts with problem formulation. This initial step begins with the systematic
planning and scoping that should be conducted before any analyses are begun to ensure that the objectives
of the assessment are met, resources are used efficiently, and the overall effort is successful. One
important product of the problem formulation for a risk assessment of air toxics is a conceptual model
that describes how releases of air toxics might pose risks to people. The conceptual model serves as a
guide or "road map" to the assessment. It defines the physical boundaries, potential sources and emitted
air toxics, potentially exposed populations, chemical fate and transport processes, expected routes of
exposure, and potential health effects.

This document is concerned primarily with describing the analysis phase of the general air toxics risk
assessment process (and specifically with describing the analyses conducted for NATA). The analysis
phase is the stage at which the risk assessment processes are used to evaluate the problem at hand. The
planning and scoping activities and problem formulation we conduct before carrying out the analyses,
however, are critical in that they set the course for the assessment and inform EPA's decisions regarding
specific methods, models, and data sources to use. The conceptual model developed for NATA—which is
the product of the first phase—is described in the following section. An overview of the analytical steps
then follows in Section 1.8. Detailed descriptions of each step are presented in the other sections of this
document.

1.7 The Scope of NATA

The national-scale assessment described in this document is consistent with EPA's definition of a
cumulative risk assessment, as stated in EPA's Framework for Cumulative Risk Assessment (EPA 2003,
p. 6), as "an analysis, characterization, and possible quantification of the combined risks to health or the

7


-------
EPA's National-scale Air Toxics Assessment

environment from multiple agents or stressors." The Framework emphasizes that a conceptual model is an
important output of the problem formulation phase of a cumulative risk assessment. The conceptual
model defines the actual or predicted relationships among exposed individuals, populations, or
ecosystems and the chemicals or stressors to which they might be exposed. Specifically, the conceptual
model lays out the sources, stressors, environmental media, routes of exposure, receptors, and endpoints
(i.e., measures of effects) relevant to the problem or situation that is being evaluated. This model takes the
form of a written description and a visual representation of the relationships among these components.
The conceptual model sometimes can include components that are not addressed specifically or
quantitatively by an assessment, but that are nevertheless important to consider.

Section 2.4 of the report for the 1996 NATA presented to EPA's Science Advisory Board for review
(EPA 2001b) included a conceptual model. Some of the specifics included in that conceptual model have
since evolved as sequential assessments have been completed (for example, the number of air toxics
evaluated has increased substantially since the 1996 NATA). The fundamental components included in
NATA and the relationships among them, however, have been generally consistent for all five NATAs
completed to date. Moreover, the conceptual model described in this document is very similar to the one
presented in the documentation for the 1996 NATA.

NATA is national in scope, covering the United States, Puerto Rico, and the U.S. Virgin Islands. It
focuses on long-term inhalation exposures to air toxics. In general, NATA is intended to provide EPA
with the best possible national-scale population-level estimates of exposure to and risks associated with
air toxics, taking into account data availability, technical capabilities, and other potentially limiting
factors. The conceptual model for the 2011 NATA is presented in Exhibit 3. Each component included in
the model is described briefly in the sections that follow.

1.7.1	Sources of Air Toxic Emissions that NATA Addresses

Sources of primary air toxic emissions included in NATA (i.e., the NATA categories) are point,
nonpoint, mobile onroad and nonroad, biogenics, and fires in the continental United States, and all
these except biogenics and fires in Alaska, Hawaii, Puerto Rico and the U.S. Virgin Islands. Examples of
point sources are large waste incinerators and factories. Nonpoint sources include residential wood
combustion (RWC), commercial cooking, and consumer and commercial solvents. Mobile sources
include vehicles found on roads and highways, such as cars and trucks, and nonroad equipment such as
lawn mowers and construction equipment. Nonroad sources also include marine vessels, trains, and
aircraft. Background sources, also included in NATA, can include natural sources and anthropogenic air
toxics emitted in prior years that persist in the environment, or air toxics emitted from distant sources,
including (for those HAPs modeled in HEM-3 but not the Community Multiscale Air Quality [CMAQ])
air toxics transported farther than 50 kilometers. Certain HAPs (i.e., formaldehyde, acetaldehyde, and
acrolein) are formed in the atmosphere through photochemical reactions, and these "secondary"
contributions are included in NATA through the photochemical air quality modeling platform. For the
2011 NATA, results are presented by broad categories and the more detailed NATA source groups
through source attribution included in the air quality characterization. Details on the emission sources are
presented in Section 2; details on air quality modeling and characterization are presented in Section 3.

1.7.2	Stressors that NATA Evaluates

The stressors evaluated through NATA can include any of the 187 HAPs defined in the 1990 CAA (190
HAPs were included originally but 3 have since been removed from the list). The set of air toxics
included in NATA is determined by the emission and toxicity data available at the time of the assessment.
Diesel PM, an indicator of diesel exhaust, is included in the set of stressors for NATA.

8


-------
EPA's National-scale Air Toxics Assessment

Exhibit 3. Conceptual Model for NATA

Sources

Stressors

Pathways/
Media

Routes

Major
stationary

Nonpoint

Mobile
(onroad &
nonroad)

Fires

Bio-
genics

Secondary

Background
in ambient
air

Indoor air
sources

Background in
other media

Clean Air Act HAPs
(plus DPM)

Outdoor air
microenvironments

Indoor air
microenvironments

In-vehicle
microenvironments

Water

Food

Inhalation

Soil

Ingestion

Dermal

IT"

General
Population

Subpopulations

Male



Female

Endpoints

(Specific noncancer

target organ or
system endpoints
shown)

Measures

Pollutant-specific, by tract,
and cumulative for cancer
risk (e.g., by cancer type,
weight of evidence) and
for respiratory hazard
index

Age
0-1

~TI

Age
2-4

Age
5-15

Age
16-17

Age
18-64

Age
65+

Hispanic

I

White

African



Asian

American



American

Cancers
(leukemia, lung, others)

Respiratory

Neurological

Blood (including
marrow & spleen)

	1	

Liver &
kidney

Cardio-
vascular

I

Suggestive Evidence of Carcinogenic Potential

Likely to be Carcinogenic to Humans

Carcinogenic to Humans

Distribution of
high-end cancer
risk estimates

Estimated percent of
population within specified
cancer risk ranges

Estimated
number of
cancer cases

Other'health
effects

Cardiovascular Hazard Quotient

Liver & Kidney Hazard Quotient

Blood Hazard Quotient

CNS Hazard Quotient

Distribution of
estimated

values
(HQ or HI)

Respiratory System Hazard Index

Estimated percent of
population within specified

ranges of quotient or
	index values	

Blue boxes indicate elements included in the 2Q11 NATA; clear boxes indicate elements that could be included in future assessments. In the "Sources" included here, "Major
stationary" includes both major and area sources as defined for regulatory purposes in the CAA. "Nonpoint" refers to smaller (and sometimes less discrete) sources that are typically
estimated on a top-down basis (e.g., by county). Additional explanation of source types included in NATA is presented in Section 2. DPM refers to diesel PM. PBTs refers to chemicals
that are persistent, bioaccumulative, and toxic. HQ and HI refer to hazard quotient and hazard index, respectively.

9


-------
EPA's National-scale Air Toxics Assessment

The 2011 NATA assesses the pollutants shown in Exhibit B-l of Appendix B. Exhibit B-2 lists the CAA
pollutants that are not included in the 2011 NATA and the reason. A spreadsheet file with more detailed
information on the NEI and NATA pollutants is provided in the SupplementalData folder accompanying
this TSD.

This exposure and risk assessment does not include the classes of compounds known as dioxins,
asbestos, and radionuclides. We did not evaluate exposure and risk related to dioxins and radionuclides
in the 2011 NATA because we did not evaluate the completeness or accuracy of the State, Local, and
Tribal (S/L/T) agency data for these groups. Also, the most significant exposure route for dioxin is
ingestion, not inhalation, so dioxin's relative contribution to NATA's inhalation risk estimates likely
would not be large. Although the 2011 NATA emissions inventory includes asbestos, it also was not
modeled for NATA because, like radionuclides, their ambient concentrations and inhalation exposures
used in risk assessments typically are not expressed using mass-based concentrations, given methods used
to develop the toxicity values that match each material's specific toxicological characteristics. Health
risks of radionuclides are estimated using specific activity (a measure of radioactivity, which occurs as
energy is emitted in the form of radiation from unstable atoms), and air concentrations of asbestos often
are measured in terms of numbers of fibers per unit volume. The NEI currently is not compatible with
emissions reported in units other than mass, and therefore suitable emissions data have not been compiled
for these substances on a national scale.

1.7.3 Exposure Pathways, Routes, and Time Frames for NATA

Exposure to air toxics from all sources is determined by multiple interactions among complex factors,
including the locations and nature of the emissions, the emission-release conditions, local meteorology,
locations of receptor populations, and the specific behaviors and physiology of individuals in those
populations. The particular combination of air toxics that people inhale, and the chemical interactions
among those air toxics, influence the risks associated with these exposures. This high level of complexity
makes aggregating risk across both substances and sources useful for depicting the magnitude of risks
associated with inhalation of air toxics.

The air quality modeling step of NATA includes evaluating the transport of emitted particles and gases
through the air to receptors within 50 kilometers of sources. Transformation of substances in the
atmosphere (also referred to as secondary formation) and losses of substances from the air by deposition
are included in the modeling, where data are available and the modeling approach supports it. For air
toxics with sufficient ambient-monitoring data, or with emissions data primarily due to point sources,
background concentrations are estimated. Taking into account fate and transport of emissions and the
presence of some background concentrations, NATA estimates outdoor ambient concentrations across the
nation.

NATA focuses on exposures due to inhalation of ambient air. Human receptors are modeled to account
for an individual's movement among microenvironments such as residences, offices, schools, exterior
work sites, and automobiles, where concentration levels can be quite different from general outdoor
concentrations. The exposure assessment estimates air concentrations for each substance within each
modeled microenvironment. The exposure assessment also accounts for human activities that can affect
the magnitude of exposure (e.g., exercising, sleeping). This component of NATA accounts for the
difference between ambient outdoor concentrations and the ECs (i.e., long-term-average concentrations to
which people are actually exposed after taking into account human activities).

To date, NATA has not estimated air toxic concentrations in water, soil, or food associated with
deposition from air, or the bioaccumulation of air toxics in tissues. Similarly, NATA has not estimated

10


-------
EPA's National-scale Air Toxics Assessment

human exposures to chemicals via ingestion or dermal contact. EPA considers these pathways important
but refined tools and data required to model multipathway concentrations and human exposures on the
national scale are not yet readily available for use for many air toxics.

NATA estimates average annual outdoor concentrations that are used to develop long-term inhalation
exposures for each of the air toxics. For cancer and chronic (long-term) health effects, the exposure
duration is assumed as lifetime (i.e., 70 years for the purposes of this analysis). Subchronic and acute
(lasting less than 24 hours) exposures are not estimated in NATA because the emissions database contains
only annual-total emissions. If the emission inventories are later expanded to cover short-term (e.g.,
hourly, daily) emission rates, we would consider incorporating shorter exposure times into NATA.

1.7.4	Receptors that NATA Characterizes

NATA characterizes average risks to people belonging to distinct human subpopulations. The population
as a whole is divided into cohorts based on residential location, life stage (age), and daily-activity pattern.
A cohort is generally defined as a group of people within a population who are assumed to have identical
exposures during a specified exposure period. Residential locations are specified according to U.S.

Census tracts, which are geographic subdivisions of counties that vary in size but typically contain about
4,000 residents each. Life stages are stratified into six age groups: 0-1, 2-4, 5-15, 16-17, 18-64, and 65
and older. Daily-activity patterns specify time spent in various microenvironments (e.g., indoors at home,
in vehicles, outdoors) at various times of day. For each combination of residential census tract and age, 30
sets of age-appropriate daily activity patterns are selected to represent the range of exposure conditions
for residents of the tract. A population-weighted typical exposure estimate is calculated for each cohort,
and this value is used to estimate representative risks, as well as the range, for a "typical" individual
residing in that tract. Risk results for individual cohorts are not included in the outputs of NATA.

To date, NATA evaluations have not included non-human receptors (e.g., wildlife and native plants).
The complexity of the varied ecosystems across the vast geographic area that is the scope of NATA
precludes considering potential adverse ecological impacts at this time. Local- and urban-scale
assessments could be developed to include non-human receptors, contingent on the availability of
necessary resources, data, and methodologies. We currently, however, have no plans to include non-
human receptors in NATA.

1.7.5	Endpoints and Measures: Results of NATA

NATA reports estimated cancer risks and noncancer hazards attributed to modeled sources. Key measures
of cancer risk developed for the 2011 NATA include:

•	upper-bound estimated lifetime individual cancer risk, and

•	estimated numbers of people within specified risk ranges (e.g., number of individuals with
estimated long-term cancer risk of 1-in-l million or greater or less than 10-in-l million).

For noncancer effects, the key measures presented in the 2011 NATA are hazard indices summed
across all air toxics modeled for the respiratory system. Individual pollutant hazard quotients are
provided for other target organs and systems.

NATA characterizes cancer risk and potential noncancer effects based on estimates of inhalation ECs
determined at the census-tract level. This approach is used only to determine geographic patterns of
risks within counties, and not to pinpoint specific risk values for each census tract. We are reasonably
confident that the patterns (i.e., relatively higher levels of risk within a county) represent actual

11


-------
EPA's National-scale Air Toxics Assessment

differences in overall average population risks within the county. EPA is less confident that the
assessment pinpoints the exact locations where higher risks exist, or that the assessment captures the
highest risks in a county. EPA provides the risk information at the census-tract level rather than just the
county level, however, because the county results are less informative (in that they show a single risk
number to represent each county). Information on variability of risk within each county would be lost if
tract-level estimates were not provided. This approach is consistent with the purpose of NATA, which is
to provide a means to inform both national and more localized efforts to collect air toxics information and
to characterize emissions (e.g., to help prioritize air toxics and geographic areas of interest for more
refined data collection such as monitoring). Nevertheless, the assumptions made in allocating mobile- and
nonpoint source emissions within counties can result in significant uncertainty in estimating risk levels,
even though general spatial patterns are reasonably accurate.

1.8 Model Design

Consistent with the general approach for air toxics risk assessment illustrated in Exhibit 2, the analysis
phase of NATA includes two main components: estimating exposure and estimating toxicity. The outputs
of these analyses are used in the third phase, risk characterization, which produces health-risk estimates
that can be used to inform research or risk management. These two phases (analysis and risk
characterization) represent the "core" of EPA's assessment activities associated with NATA. This set of
activities is referred to here as the "NATA risk assessment process."

The NATA process can be characterized by four sequential components:

1.	compiling the nationwide inventory of emissions from outdoor sources;

2.	estimating ambient outdoor concentrations of the emitted air toxics across the nation;

3.	estimating population exposures to these air toxics via inhalation; and

4.	characterizing potential health risks associated with these inhalation exposures.

The fourth component (risk characterization) also requires that quantitative dose-response or other
toxicity values be identified for each air toxic included in the assessment. These values are taken from
those developed by other EPA and non-EPA programs. Although this step does not require a "new"
quantitative dose-response assessment to be conducted as part of NATA, it does require that we make
important scientific and policy decisions regarding the appropriate values to be used in NATA. Because
these decisions are critical to the risk results, the identification of appropriate dose-response values is also
described in this TSD as a fifth assessment component.

Collectively, these five components make up the NATA risk assessment process illustrated in Exhibit 4.
The development of the emission inventory, air quality modeling, inhalation exposure modeling, and risk
characterization must be conducted sequentially—the completion of each step requires outputs from the
previous step, and toxicity values are required to carry out the risk-characterization calculations. Cancer
risks and the potential for noncancer health effects are estimated using available information on health
effects of air toxics, risk-assessment and risk-characterization guidelines, and estimated population
exposures.

Each of these five components is described briefly here and explained in detail in the remainder of this
document.

12


-------
EPA's National-scale Air Toxics Assessment

Exhibit 4. The NATA Risk Assessment Process and Corresponding Sections of this TSD

Compile Nationwide	Identify Toxicity

Emission Inventory	Values

(Section 2)	(Section 5)

T



Conduct Air
National Air Quality Modeling
Emissions	(Section 3)

Inventory

1

Model Inhalation
Ambient	Exposures

Concentrations	(Section 4)

T



1

Conduct Risk
Exposures	Characterization

(Section 6)

Cancer Risks, Chronic
Noncancer Hazards

•	Section 2 contains an explanation of the source types and air toxics included in the NATA
emissions inventory. It also describes the processes we carried out to prepare the emissions for
the air quality models.

•	Section 3 contains a discussion of the models and procedures used to estimate ambient
concentrations of air toxics, with links and references to technical manuals and other detailed
documentation for the models used for NATA.

•	Section 4 contains explanations of the processes used to estimate population-level exposure to
outdoor ambient levels of air toxics, taking into account information on activities and other
characteristics that can affect inhalation exposures.

•	Section 5 contains descriptions of the dose-response values used for NATA, the sources from
which these values are obtained, and assumptions made specific to NATA.

•	Section 6 contains an overview of the calculations used to estimate cancer risk and potential
noncancer hazard.

•	Section 7 contains explanations of the uncertainties and limitations associated with the NATA
process that must be considered when interpreting NATA results.

As noted at the beginning of this section, this document is intended to serve as a resource accompanying
the most recent national-scale assessment—the 2011 NATA. Accordingly, although the following
sections contain information on the NATA process that are generally applicable to all previous NATAs,

13


-------
EPA's National-scale Air Toxics Assessment

references to specific technical processes and supporting details typically emphasize what was done for
the 2011 NATA.

1.8.1 The Strengths and Weaknesses of the Model Design

EPA developed NATA to inform both national and more localized efforts to collect information and to
characterize air toxics emissions (e.g., prioritize air toxics or geographic areas of interest for monitoring
and community assessments). Because of this targeted objective, tools other than NATA might be more
appropriate for assessing health risks outside the specific purpose of NATA (e.g., for evaluating risks
from either a broader or more specific perspective). To further define and clarify what NATA should not
be used for, this section contains descriptions of some of the important data and results that are not
included in NATA.

•	NATA does not include information that applies to specific locations. The assessment focuses on
variations in air concentration, exposure, and risk among geographic areas such as census tracts,
counties, and states. All questions asked, therefore, must focus on the variations among these
geographic areas (census tracts, counties, etc.). Moreover, as previously mentioned, results are far
more uncertain at the census-tract level than for larger geographic areas such as states or regions.
(Section 7 contains discussions on the higher uncertainty at small geographic scales such as
census tracts.) Additionally, NATA does not include data appropriate for addressing
epidemiological questions such as the relationship between asthma or cancer risk and proximity
of residences to point sources, roadways, and other sources of air toxics emissions.

•	The results do not include impacts from sources in Canada or Mexico other than from limited
pollutants and source groups. Thus, the results for states bordering these countries do not
comprehensively reflect sources of transported emissions that could be significant.

•	NATA does not include results for individuals. Within a census tract, all individuals are assigned
the same ambient air concentration, chosen to represent a typical ambient air concentration.
Similarly, the exposure assessment uses activity patterns that do not fully reflect the actual
variations among individuals.

•	The results do not include exposures and risk from all compounds. For example, of the 180 air
toxics included in the 2011 NATA (some of which encompass multiple substances), only 138 air
toxics have been assigned dose-response values. The remaining air toxics do not have adequate
data in EPA's judgment to assess their impacts on health quantitatively, and, therefore, do not
contribute to the aggregate cancer risk or target-organ-specific hazard indices. Of particular
significance is that the assessment does not quantify cancer risk from diesel PM, although EPA
has concluded that the general population is exposed to levels close to or overlapping with levels
that have been linked to increased cancer risk in epidemiology studies. NATA, however, does
model noncancer effects of diesel PM.

•	Other than lead, which is both a CAP and a HAP, the results do not include the air pollutants,
known as CAPs (particulate matter, ground-level ozone, carbon monoxide, sulfur oxides, nitrogen
oxides), for which the CAA requires EPA to set National Ambient Air Quality Standards (other
than CAP impacts on secondary formation of formaldehyde, acetaldehyde, and acrolein).

•	The results do not reflect all pathways of potential exposure. The assessment includes risks only
from direct inhalation of the emitted air toxics compounds. It does not consider air toxics
compounds that might then deposit onto soil, water, and food and subsequently enter the body
through ingestion or skin contact.

14


-------
EPA's National-scale Air Toxics Assessment

•	The results do not include multipathway exposures because sufficiently refined tools and data
required to model multipathway concentrations and human exposures for many air toxics on the
national scale are not readily available for use.

•	The assessment results reflect exposure at outdoor, indoor, and in-vehicle locations, but only to
compounds released into the outdoor air, which could subsequently penetrate into buildings and
vehicles. The assessment does not include exposure to air toxics emitted indoors, such as those
from stoves, those that out-gas from building materials, or those from evaporative benzene
emissions from cars in attached garages. The assessment also does not consider toxics released
directly to water and soil.

•	The assessment does not fully reflect variation in background ambient air concentrations.
Background ambient air concentrations are average values over broad geographic regions.

•	The assessment might not accurately capture sources that have episodic emissions (e.g., facilities
with short-term deviations in emissions resulting from startups, shutdowns, malfunctions, and
upsets). The models assume emission rates are uniform throughout the year.

•	Short-term (acute) exposures and risks are not included in NATA.

•	Atmospheric transformation and losses from the air by deposition are not accounted for in NATA
air toxics that are not modeled in CMAQ.

•	The evaluations to date have not assessed ecological effects, given the complexity of the varied
ecosystems across the vast geographic area that NATA targets.

15


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

16


-------
EPA's National-scale Air Toxics Assessment

2 EMISSIONS

The systematic compilation of a detailed, nationwide inventory of air toxics emissions is the first major
step in the NATA risk assessment process. This section contains descriptions of the emissions used for
the 2011 NATA. Section 2.1 contains summaries of the sources of emissions data included in NATA.
Section 2.2 contains summaries of the processing of emissions for input into CMAO (EPA 2015g), and
Section 2.3 contains summaries of the processing for input into HEM-3 (see also the HEM-3 User's
Guides. EPA 2014e).

For simplicity and consistency throughout this TSD, all aspects or details of the HEM-3 model are
referred to overall as "HEM-3," although most often the AERMOD component of HEM-3 is pertinent to
the discussion. EPA designed and maintains AERMOD separate and apart from HEM-3; HEM-3 merely
incorporates AERMOD.

2.1 Sources of Emissions Data

NATA is intended to address outdoor emissions of all HAPs and diesel PM (together called "air toxics" in
this document). To model air
toxics, emissions of both air
toxics and CAPs are used so
that the chemical interactions
that occur across all
pollutants are addressed.

The 2011 NATA combines
modeling from CMAQ and
HEM-3 for the continental
United States. CMAQ
multipollutant modeling

addresses all sources in the NEI for CAPs and about 40 HAPs. Emissions from outside the United States
are represented by CMAQ boundary conditions for benzene, formaldehyde, and acetaldehyde. For the
remaining "non-CMAQ" HAPs and non-CMAQ parts of the modeling domain (i.e., Alaska, Hawaii,
Puerto Rico and the U.S. Virgin Islands), only HEM-3 is used. For these pollutants and geographic
regions, spatially uniform background concentrations based on remote concentrations are added to the
HEM-3-modeled data to represent influences from transport and emissions outside the modeling domain.
Similar to previous NATAs, HEM-3 modeling addresses the 180 NATA HAPs and diesel PM included in
NATA and all anthropogenic sources except prescribed and agricultural burning.

The main source of the emissions data for the CAPs and HAPs modeled for NATA is the 2011 NEI v2.
The NEI is a comprehensive and detailed estimate of air emissions of CAPs and HAPs from all air
emissions sources in the United States, including the territories of Puerto Rico and the U.S. Virgin
Islands, and offshore sources and commercial marine vessels (CMVs) in Federal Waters. The NEI is
prepared every three years by the EPA based primarily upon emission estimates and emission model
inputs provided by S/L/T air agencies for sources in their jurisdictions, and supplemented by data
developed by the EPA. These data are submitted electronically to the Emissions Inventory System (EIS).
CAPs must be submitted under the EPA's Air Emissions Reporting Requirements (AERR). HAPs are
submitted voluntarily. Lead is both a HAP and a CAP, so it must be submitted under the AERR. For the
2011 NEI, facilities with potential to emit greater than 5 tons per year (TPY) were required to report lead.

Sometimes "air toxics" and "HAPs" are used interchangeably. In this
document, however, "air toxics" refers to the HAPs that EPA is required to
control under Section 112 of the 1990 Clean Air Act (EPA 2015n) plus diesel
PM. The 1990 Clean Air Act Amendments required EPA to control 190 HAPs
(EPA 2008b) and provided for revisions to be made to that list. Currently, the
list includes 187 HAPs. Diesel PM is not a HAP, and EPA currently does not
have sufficient evidence to develop a unit risk estimate for it. Some evidence
does indicate that localized high lifetime cancer risks are, however,
associated with exposure to diesel PM. Given such concern, the potential
adverse noncancer effects associated with diesel PM are estimated in NATA
(using an Integrated Risk Information System reference concentration) but its
cancer risks are not.

17


-------
EPA's National-scale Air Toxics Assessment

To build as complete an NEI as possible, and to ensure use of up-to-date emission factors from test
programs resulting from regulatory development, we gap-filled emissions using various sources of
information including the Mercury and Air Toxics Rule (MATS) test data, the Toxics Release Inventory
(TRI; EPA 2015j), and the application of HAP-to-CAP emission-factor ratios to CAP emissions reported
by S/L/T.

Exhibit 5 contains a summary of the sources of emissions data in the NEI. More information on these data
sources can be found in the 2011 NEI documentation.

Exhibit 5. NEI Data Sources for HAP Emissions

Stationary Point

Most stationary point source HAP data were submitted voluntarily by S/L/T. For electric
generating units (EGUs), we estimated emissions using test-based or average emission
factors from the 2010 test program conducted in support of MATS for metal HAPs,
hydrochloric acid, and hydrogen fluoride (except where S/L/T data were from testing or the
configuration of the units changed such that the MATS test results would no longer be
applicable for 2011 emissions).

For some point sources, EPA gap-filled HAPs. Sources of data included: rule-based
emission factors (e.g., mercury for electric arc furnaces), TRI data for 2011, augmentation of
HAPs using emission-factor ratios (of HAP to CAP) applied to S/L/T-reported CAP
emissions, and 2008 emissions data for selected categories.

The data sources for point-source data are provided in the NATA facility-level data emission
summaries provided on the NATA website.

Point Airports

EPA estimates used the Federal Aviation Administration (FAA) Emission Dispersion Modeling
System using landing and takeoff (LTO) information from FAA databases and updated with
S/L/T inputs. For some airports (general aviation) without detailed aircraft-specific activity
data, straight emission factors were used. Lead emissions were estimated based on per-LTO
emissions factors, assumptions about lead content in the fuel, and lead-retention rates in the
piston engines and oil. For some airports, estimates were provided by S/L/T. NEI has over
19,800 airports (including heliports and seaplanes).

Point Rail yards

EPA estimates were grown from the 2008 emissions that were developed by the Eastern
Regional Technical Advisory Committee (ERTAC) to 2011 estimates. Locations were
identified using a database from the Federal Railroad Administration. CAP emissions were
estimated by applying emission factors to the total amount of distillate fuel used by
locomotives. Each railroad company provided fleet mix information that allowed ERTAC to
calculate railroad-specific emission factors. The company-specific, system wide fleet mix was
used to calculate weighted average emissions factors for switchers operated by each Class I
railroad. EPA emission factors were used for PM2.5, SO2, and NH3. HAP emissions were
estimated by applying toxic fractions to the VOC or PM estimates. For some rail yards,
estimates were provided by S/L/T. The NEI has about 750 rail yards.

Stationary Nonpoint

Developed by EPA and/or submitted by S/L/T. Where S/L/T submitted CAPs but not HAPs,
missing HAP emissions were augmented.

Biogenics

Based on Biogenic Emission Inventory System (BEIS3.60), using 2011 meteorology from the
Weather Research Forecasting Model (WRF). Gridded emissions were used in NATA and
summed to annual county-level estimates for the NEI. Includes VOC, NOx, and 3 HAPs:
formaldehyde, acetaldehyde, and methanol.

Locomotives

EPA estimates developed by applying growth factors to the 2008 NEI values based on
railroad-freight-traffic data from the 2008 and 2011 R-1 reports submitted by all Class I rail
lines to the Surface Transportation Board and employment statistics from the American Short
Lines and Regional Railroad Association for Classes II and III. The emissions were allocated
to line-haul-shape IDs and yard locations based on 2008 allocations. HAP emissions were
estimated by applying toxic fractions to the VOC or PM estimates. For some areas, estimates
were provided by S/L/T.

18


-------
EPA's National-scale Air Toxics Assessment

CMVs

Emissions from category 1 and category 2 (C1/C2) and category 3 (C3) marine vessels at
ports or underway. C1/C2 includes fishing boats, ferries, tugboats, and vessels on the Great
Lakes; C3 includes ocean going vessels and large ships. For C1/C2 marine diesel engines,
the emission estimates were consistent with the 2011 Locomotive and Marine federal rule
making. We derived HAP estimates by applying toxic fractions to VOC or PM estimates.
These national emissions estimates were geographically allocated based on the available
port and underway activity (e.g., Army Corps of Engineers Waterborne Commerce, National
Marine Fisheries Service, etc.)

C3 commercial marine inventories were developed for a base year of 2002 from gridded
Emissions Control Area model data and then projected to 2011 by applying regional
adjustment factors to account for growth.

For some states, estimates developed by Lake Michigan Air Directors Consortium estimates
replaced EPA's (these data include HAP emissions).

Onroad

We generated emissions using the October 2014 version of MOVES2014 (database version
movesdb20141021: MotorVehicle Emissions Simulator: EPA2015k). then usina SMOKE-
MOVES to generate data for a detailed set of new source classification codes (SCCs),
designed around emissions modes (SMOKE = Sparse Matrix Operator Kernel Emissions
modeling system; Houyoux et al. 2000). These models use state- or EPA-provided input
details, specific to each county. California's emissions were developed via their EMFAC
onroad model, but VOC HAPs were speciated from California-reported VOC consistent with
the MOVES2014 speciation, and SCCs were modified to match the rest of the country.

Nonroad

Except for California and Texas, data are from the National Mobile Inventory Model (NMIM:
EPA 2015p), which uses the NONROAD model with 2011 state-submitted and/or default
inputs. All metals are modeled in NMIM using emission factors, and all the other HAPs are
estimated from VOC or PM by applying toxic fractions. California data are from the California
Air Resources Board, which uses its own model, and Texas data are from the Texas
Commission on Environmental Quality, which runs NONROAD (exception: Hg and arsenic
are from NMIM).

Fires

We estimated agricultural burning (included in stationary nonpoint) using remote-sensing
data, crop-usage maps, and emission factors. State data received from numerous states
were used ahead of EPA estimates. Inventoried at the county level.

Day- and location-specific prescribed burning and wildfires estimated via the SMARTFIRE2
system (which includes the BlueSky modeling framework) with inputs from State agencies
where available. Georgia and North Carolina submitted estimates, Florida estimates were
scaled to conform to Florida's summaries, and Delaware fires were modified (some fires
zeroed out) per state comments.

2.1.1 Developing NATA Emissions from the 2011 NEI

Two modeling platforms were developed for the two air quality models run for NATA—CMAQ and
HEM-3. The starting-point emission files for both were based primarily on "flat file" formats of the 2011
NEI produced by the EIS for the SMOKE modeling system. Onroad emissions were generated by
SMOKE-MOVES (Motor Vehicle Emissions Simulator; EPA 2015k), and an FF10 summary of the data
was developed for input into HEM-3.

The grouping/speciation of NEI pollutants for the purposes of NATA produced diesel PM from PM and
produced various grouped pollutants from individual compounds reported in the NEI, such as grouping
individual glycol ethers into the single NATA HAP "glycol ethers." Appendices B, C, D, and H, along
with the spreadsheet file "NATA_Pollutants_AppendixB_AppendixC.xlsx" within the
"SupplementalData" folder accompanying this TSD, show additional information on the NATA
pollutants. All pollutants that were grouped for purposes of NATA are included in emission summaries as
both the ungrouped NEI pollutant and the group sum. The group sum is called "Sum of' concatenated
with the group name. All groups are listed below:

19


-------
EPA's National-scale Air Toxics Assessment

•	Sum of Chromium VI (hexavalent) Compounds

•	Sum of Cyanides

•	Sum of Cresol/Cresylic Acid (Mixed Isomers)

•	Sum of Glycol Ethers

•	Sum of Nickel Compounds

•	Sum of Polychlorinated Biphenyls (Aroclors)

•	Sum of POMP AH

•	Sum of Xylenes

The below subsections contain additional descriptions of these pollutants groupings.

2.1.1.1	Diesel PM

Diesel PM is neither a CAP nor HAP as defined by Section 112 of the CAA, and it is not a separate
pollutant in the 2011 NEI. For NATA, we generated emissions of diesel PM using PMio in the NEI from
mobile-source engine-exhaust emissions for engines burning diesel or residual-oil fuels. Diesel PM
emissions were set equal to PMio emissions for these onroad and nonroad engines. Although stationary
engines also can burn diesel fuel, only mobile-related diesel-engine SCCs were used. A list of the SCCs
for which PMio emissions were assigned to diesel PM and the corresponding NEI data category is
provided in Exhibit B-3 of Appendix B.

2.1.1.2	PAH/POM

The PAH/POM results are presented as a group. The 2011 NEI v2, however, contains dozens of specific
PAH/POM compounds with different unit risk estimates (UREs; i.e., the concentration that yields 1-in-l
million lifetime risk of cancer). For NATA, we grouped the individual PAH/POM compounds for
modeling in CMAQ and HEM-3 based on the URE. These groups are shown in Exhibit 6 along with the
specific NEI compounds (note: CAS = Chemical Abstracts Service). In NATA, the risk results are
provided in the most aggregated form: PAHPOM. A spreadsheet version of this crosswalk is available in
the SupplementalData folder ("NATA Pollutants AppendixB AppendixC.xlsx").

Exhibit 6. 2011 NEI v2 PAHs Grouped for CMAQ and HEM-3 Modeling based on URE







NEI Category



CMAQ/
HEM-3 PAH
Group

NEI Pollutant Code
(CAS No.)

NEI Pollutant Description

Event

Nonpoint

Nonroad

Onroad

Point

URE 1/(|jg/m3)

PAH_000E0

120127

Anthracene

~

~

~

~

~

0

PAH_000E0

129000

Pyrene

~

~

~

~

~

0

PAH_000E0

85018

Phenanthrene

~

~

~

~

~

0

PAH_176E5

86748

Carbazole



~





~

1.76E-05

PAH_176E5

218019

Chrysene

~

~

~

~

~

1.76E-05

PAH_880E5

130498292

PAH, total



~

~

~

~

0.000088

20


-------
EPA's National-scale Air Toxics Assessment

CM AO/
HEM-3 PAH
Group

NEI Pollutant Code
(CAS No.)

NEI Pollutant Description

NEI Category

URE 1/(|jg/m3)

Event

Nonpoint

Nonroad

Onroad

Point

PAH_880E5

191242

Benzo[g,h,i,]Perylene

~

~

~

~

~

0.000088

PAH_880E5

192972

Benzo[e]Pyrene

~

~





~

0.000088

PAH_880E5

195197

Benzo(c)phenanthrene

~









0.000088

PAH_880E5

198550

Perylene

~

~





~

0.000088

PAH_880E5

206440

Fluoranthene

~

~

~

~

~

0.000088

PAH_880E5

208968

Acenaphthylene



~

~

~

~

0.000088

PAH_880E5

2381217

1-Methylpyrene

~









0.000088

PAH_880E5

2422799

12-Methylbenz(a)Anthracene



~







0.000088

PAH_880E5

250

PAH/POM - Unspecified



~





~

0.000088

PAH_880E5

26914181

Methylanthracene

~







~

0.000088

PAH_880E5

65357699

Methylbenzopyrene

~









0.000088

PAH_880E5

8007452

Coal Tar









~

0.000088

PAH_880E5

832699

1-Methylphenanthrene



~







0.000088

PAH_880E5

83329

Acenaphthene



~

~

~

~

0.000088

PAH_880E5

86737

Fluorene



~

~

~

~

0.000088

PAH_880E5

90120

1-Methylnaphthalene









~

0.000088

PAH_880E5

91576

2-Methylnaphthalene



~



~

~

0.000088

PAH_880E5

91587

2-Chloronaphthalene



~





~

0.000088

PAH_176E4

193395

lndeno[1,2,3-c,d]Pyrene

~

~

~

~

~

0.000176

PAH_176E4

203123

Benzo(g,h,i)Fluoranthene



~





~

0.000176

PAH_176E4

203338

Benzo(a)Fluoranthene

~

~





~

0.000176

PAH_880E5

284

Extractable Organic Matter (EOM)









~

0.000088

PAH_176E4

205823

Benzo[j]fluoranthene









~

0.000176

PAH_176E4

205992

Benzo[b]Fluoranthene



~

~

~

~

0.000176

PAH_176E4

207089

Benzo[k]Fluoranthene

~

~

~

~

~

0.000176

PAH_176E4

224420

Dibenzo[a,j]Acridine









~

0.000176

PAH_176E4

226368

Dibenz[a,h]Acridine









~

0.000176

PAH_176E4

5522430

1-Nitropyrene









~

0.000176

PAH_176E4

56553

Benz[a]Anthracene

~

~

~

~

~

0.000176

PAH_176E4

56832736

Benzofluoranthenes

~

~





~

0.000176

PAH_176E3

192654

Dibenzo[a,e]Pyrene









~

0.00176

21


-------
EPA's National-scale Air Toxics Assessment

CMAQ/
HEM-3 PAH
Group

NEI Pollutant Code
(CAS No.)

NEI Pollutant Description

NEI Category

URE 1/(|jg/m3)

Event

Nonpoint

Nonroad

Onroad

Point

PAH_176E3

194592

7H-Dibenzo[c,g]carbazole









~

0.00176

PAH_176E3

3697243

5-Methylchrysene



~





~

0.00176

PAH_176E3

41637905

Methylchrysene

~









0.00176

PAH_176E3

50328

Benzo[a]Pyrene

~

~

~

~

~

0.00176

PAH_192E3

53703

Dibenzo[a,h]Anthracene



~

~

~

~

0.00192

PAH_101E2

56495

3-Methylcholanthrene



~





~

0.01008

PAH_176E2

189559

Dibenzo[a,i]Pyrene









~

0.0176

PAH_176E2

189640

Dibenzo[a,h]Pyrene









~

0.0176

PAH_176E2

191300

Dibenzo[a,l]Pyrene









~

0.0176

PAH_114E1

57976

7,12-Dimethylbenz[a]Anthracene



~





~

0.1136

PAH_880E5

779022

9-Methyl Anthracene



~







0.000088

2.1.1.3 Metals

Metal emissions in the 2011 NEI
represent only the mass of the metal or
cyanide with a few exceptions for
specific compounds of hexavalent
chromium (chromium VI) and nickel
of known composition (Exhibit 7). This
is different from previous NATAs
whereby the NEI included hundreds of specific metal compound (e.g., arsenic oxide). In such previous
NATAs, after grouping or renaming the air toxics, emissions reported in NEI for each metal compound of
known composition are adjusted so that the emissions rate used for NATA modeling corresponds to the
mass of the elemental metal (or cyanide) only, and not the entire mass of the metal compound (see the
adjacent text box for an example calculation). Thus, for the 2011 NEI these types of adjustments were
made by S/L/T before submitting the emissions.

The three nickel compounds and three chromium VI compounds in the 2011 NEI are shown in the table
below with the corresponding adjustment factors to compute the emissions that account for just the metal
portion of the compound. Note that after applying the adjustments, the chromium VI compounds are
grouped into chromium VI and the nickel compounds are grouped into nickel. Although the different
nickel compounds have different UREs, they are combined in CMAQ and hence a single URE needs to be
used. We chose the URE for nickel subsulfide. The vast majority of nickel in the NEI is ""nickel"
(pollutant code 7440020).

While hydrogen cyanide and cyanide may both be reported to the NEI, neither is adjusted in this way.
Calcium cyanamide is adjusted to cyanide to allow the cyanide URE to be applied to only the cyanide
portion of calcium cyanamide.

Example: Adjusting Emissions for Chromium VI Compounds

Chromic Acid (VI) (hhCrCM) has a molecular weight of about
118.01. Chromium, with an atomic mass of 52, is the toxic
element of interest in this metal compound. Emissions reported in
NEI are therefore multiplied by 0.4406 (i.e., 52 /118.01), and the
resulting emission rate is used in NATA modeling.

22


-------
EPA's National-scale Air Toxics Assessment

Exhibit 7. 2011 NEI Compounds or Compound Groups for which Emissions are Adjusted for
CMAQ and HEM-3 Modeling





NEI Category





NEI
Pollutant

Code
(CAS No.)

NEI Pollutant
Description

Event

Nonpoint

Nonroad

Onroad

Point

NATA Website Pollutant Name

Metal/CN
Speciation
Factor

18540299

Chromium (VI)



~

~

~

¦/

CHROMIUM VI (HEXAVALENT)

1

7738945

Chromic Acid (VI)









¦/

CHROMIUM VI (HEXAVALENT)

0.4406

1333820

Chromium Trioxide









¦/

CHROMIUM VI (HEXAVALENT)

0.52

7440020

Nickel



~

~

~

¦/

NICKEL COMPOUNDS

1

1313991

Nickel Oxide









¦/

NICKEL COMPOUNDS

0.7412

604

Nickel Refinery Dust









¦/

NICKEL COMPOUNDS

1

156627

Calcium cyanamide











CALCIUM CYANAMIDE

0.4406

2.1.1.4 Other HAP Pollutant Groups: Xylenes, Cresols, and Glycol Ethers

Other HAPs may be reported to the NEI as compounds but are grouped together for purposes of NATA.
These are glycol ethers, xylenes, cyanides, polychlorinated biphenyls, and cresols. The pre-grouped PAHs
are further summed into the group PAHPOM. No multiplication is used to convert any individual
compound in one of these groups; the mass is simply summed. Appendix C and a spreadsheet file
("NATAPollutantsAppendixBAppendixC.xlsx") provided in the SupplementalData folder shows the
specific NEI pollutants that constitute the groups.

2.1.2 Categorization of the NATA Emissions in the NATA Output Data

As explained on the NEI website, the 2011 NEI includes five data categories: point, nonpoint (formerly
called "stationary area"), nonroad mobile, onroad mobile, and events consisting of wild and prescribed
fires. NEI summaries are generally provided by sectors and tiers, which describe the type of emission
source (e.g., industrial processes - oil and gas production). Some sectors and tiers cut across data
categories since stationary sources are inventoried as both point and nonpoint. For example, the category
"Fuel Comb - Comm/Institutional - Oil" results from large institutions inventoried as point sources (e.g.,
large universities with onsite steam plants) as well as commercial/institutional entities that are small and
ubiquitous in nature, so their emissions are inventoried as county sums.

NATA summaries are provided by NATA broad summary categories and by more detailed source groups.
The broad NATA summary categories are point, nonpoint, onroad, nonroad, fires, biogenics, and
secondary. Some of these categories are named the same as the NEI data categories but they are not
identical. For example, the NATA nonpoint category is not the same as the NEI nonpoint category
because the NEI nonpoint category includes CMVs and locomotives, while the NATA nonpoint category
does not. As another example, the NEI nonroad category is not the same as the NATA nonroad category
because the NATA nonroad category includes airports, CMVs, and locomotives, while the NEI Nonroad
category does not. Exhibit 8 contains comparisons between the NEI data categories and the NATA
categories. Secondary is not included in Exhibit 8 since it not a primary emissions category covered in the
NEI, but rather a result of atmospheric chemistry from the modeled emissions of CAPS and HAPs.

23


-------
EPA's National-scale Air Toxics Assessment

Exhibit 8. Map of NEI Data Categories to NATA Categories

NEI Data Category

NATA Category (Reflecting NATA Summary Results)

Point

Pointa

Emissions estimates for sources that are individually
inventoried and usually located at a fixed, stationary
location, although portable sources such as some
asphalt- or rock-crushing operations are also included.
Point sources include large industrial facilities and
electric power plants, but also increasingly include many
smaller industrial and commercial facilities, such as dry
cleaners and gas stations, which had traditionally been
included as nonpoint sources. The choice of whether
these smaller sources are estimated individually and
included as point sources or inventoried as a nonpoint
source aggregated to county or tribal areas is
determined by the separate S/L/T air agency.

Same as NEI point except:

1.	Excludes portable sources, which are not modeled in
either CMAQ or HEM-3 because no geographic
information other than the state code is included.

2.	Excludes airports and railyards, which are nonroad
mobile.

The 2011 NEI v2 contains over 96,000 facilities
(excluding about 1500 portable facilities that are not
used in modeling due to a lack of geographic
coordinates or county location); About 19,800 of these
are airports.



Nonpoint

Nonpoint

Sources which individually are too small in magnitude or
too numerous to inventory as individual point sources,
and which can often be estimated more accurately as a
single aggregate source for a county or tribal area.
Examples are residential heating and consumer-solvent
use. Agricultural, CMVs, and locomotive emissions are
included. Biogenic emissions, which come from
vegetation are also included but are estimated solely
through EPA models.

Same as NEI nonpoint except excludes locomotives,
CMVs, biogenic emissions, and agricultural fires

On road

On road

Estimates for mobile sources such as cars, trucks, and
buses which are estimated via EPA models (other than
in California which uses different models)—currently
MOVES2014.

Same as NEI onroad.

Nonroad

Nonroad

Estimates for nonroad equipment such as lawn and
garden equipment, and construction and recreational
equipment which are typically estimated via EPA models
(other than California which uses different models)—
currently the NONROAD model which is run through
NMIM.

Same as NEI nonroad but also including CMVs,
locomotives and aircraft engine emissions occurring
during LTOs, and the ground support equipment and
auxiliary power units associated with the aircraft

Note that emissions data for aircraft, locomotives, and
CMVs are not included in NEI nonroad starting with the
2008 NEI.



24


-------
EPA's National-scale Air Toxics Assessment

NEI Data Category

NATA Category (Reflecting NATA Summary Results)

Event

Fires

Prescribed and wildfire emissions computed as day- and
location-specific events

Wildfires, prescribed burning, and agricultural burning.
These are modeled in CMAQ but not HEM-3.

Wildfires and prescribed burning are generated via the
SMARTFIRE2 model at specific geographic coordinates
for each day, and are assigned to 12-km grid cells for
input into CMAQ.

Agricultural burning is inventoried at the county level and
allocated to 12-km grid cells for input into CMAQ.



Biogenic Emissions

Emissions of formaldehyde, acetaldehyde, and methanol
from vegetation (trees, plants, and soils) computed from
the Biogenic Emission Inventory System within CMAQ.

They are gridded to 12-km cells for CMAQ and are not
modeled in HEM-3.

a In results presented online for assessments for the 2002 and earlier NATA inventories, point sources were divided into
major sources and area sources and were sometimes referred to as stationary sources. Major sources are defined in the
CAA as stationary sources that have the potential to emit either at least 10 TPY of a HAP or at least 25 TPY of any
combination of HAPs. Area sources are stationary sources for which the locations are known but that emit at levels below
the major source emissions thresholds. This terminology is not used in the 2011 NATA, and stationary-source emissions are
referred to only as point-source or nonpoint-source emissions. Point sources in the NATA results refer to those sources,
including smaller sources, for which a specific location for their emissions is identified by latitude and longitude descriptions,
and nonpoint sources are those stationary sources that are not point sources.

2.1.3 Modifications to NEI Emissions Data

Although the 2011 NEI v2 is the main basis of the emissions fed into the air quality models, there were
differences between the 2011 NEI v2 and emissions used for the NATA modeling. There were also
differences between the emissions used for CMAQ and the emissions used for HEM-3 (see Section
2.1.4). Because CMAQ could not be rerun before the final NATA, all emissions changes resulting from
the 2011 NEI v2 review were corrected via adjustments to HEM-3 and their impact on risk or
adjustments to modeled concentrations and/or risks based on scaling. The resultant NATA emissions
summarized with the results or provided with the maps reflects the adjustments made to HEM-3 modeling
(except biogenics and fire emissions in the Continental United States, which were only run in CMAQ2).

The review of the 2011 NEI v2 data for NATA resulted in changes to emissions values and, for point
sources, changes to geographic coordinates and release-point parameters. Nonpoint and onroad changes
resulting from comments occurring after CMAQ modeling are provided in Exhibit 9, which also
documents changes between the HEM-3 and CMAQ emissions. Other differences that result from
differences in emissions processing (which reflect the specific role and function of the resulting
inventory within the context of the NATA risk assessment process) are more accurately described as post-
processing procedures rather than substantive changes. Examples of these types of changes include:

• For onroad emissions (CMAQ and HEM-3 used the same emissions although temporal allocation
differed somewhat), changes were due to post-processing. Differences are provided in the
spreadsheet file "201 leg NATA onroad versus NEIv2.xlsx" in the SupplementalData folder. The
most significant is that manganese was higher (23.4 TPY in NATA versus 5 TPY in the NEI)

2 Biogenic and fire emission summaries on the NATA website reflect only the emissions input into CMAQ.

25


-------
EPA's National-scale Air Toxics Assessment

because NATA includes manganese from brake and tire wear whereas the NEI does not.
Manganese from brake and tire wear was computed from speciation of PM2.5. There were also
small differences in the HAP VOCs and PAHs in California due to changes in the post-processing
approach to adjust California-submitted pollutants consistent with the MOVES2014 speciation.
While both the NEI and NATA applied these adjustments, NATA used updated temporal profiles
for California (which are included in the approach), resulting in slightly different emissions.
Finally, the NATA inventory includes a more refined set of SCCs that includes road type to
support spatial allocation of county-level emissions to finer scales.

•	Emissions from the 2011 NEI for wildfires, prescribed burning, and agricultural-field burning are
not used in NATA for Alaska, Hawaii and Puerto Rico (the U.S. Virgin Islands have none in the
NEI) because these areas are not part of the CMAQ domain and these sources were only modeled
in CMAQ.

•	FIPS ending in 777 (inflight lead) were removed from the nonpoint inventory.

•	Nonpoint tribal data (FIPS beginning in 88) were not used in the modeling because no surrogates
are available and possible double counting would introduce uncertainty.

•	For the residential wood-combustion sector, we removed emissions of 7,12-
dibenzo(a,h)anthracene due to inconsistencies in estimates of this HAP between controlled and
uncontrolled stoves (other than in the state of Minnesota in which 7,12- dibenzo(a,h)anthracene
was retained in HEM-3 but not in CMAQ).

•	For the residential wood-combustion sector, HAP-outlier issues were discovered with the data
Clark County, Nevada submitted. The corrections made for the NATA emissions dropped some
key pollutants. As a result, we replaced the NEI data with a complete set of CAPs and HAPs
based on the EPA residential wood-combustion data set for Clark County.

•	To minimize overstatement of fire emissions in single grid cells, we spatially allocated fires (from
the event category, modeled only in CMAQ) that were larger than 20,000 acres on a single day.
Those fires were projected as a circular area over the overlapping CMAQ grid cells. Each fire
was then allocated to the grid cells it overlapped based on the area of overlap with that grid cell.
In the emission inventories, these grid-cell ""subfires" have names that end in _a, _b, etc. These
are the identifiers of the 2011 fires that were split across grid cells:

State-County FIPS

Fire ID

56013

SF11C1791126

46065

SF11C1503125

48003

SF11C1718109

48243

SF11C1738273

48081

SF11C1742329

48415

SF11C1742358

48243

SF11C1747162

48125

SF11C1749358

48371

SF11C1750272

48353

SF11C1759082

35027

SF11C1760072

35027

SF11C1760460

32007

SF11C1774898

32013

SF11C1774993

32007

SF11C1775252

26


-------
EPA's National-scale Air Toxics Assessment

•	Air toxic name conversions, placing individual air toxics into groups, and similar transcription
and phraseology conversions (e.g., for the purpose of crosswalking the identity of an emitted air
toxic to a substance with a quantitative dose-response value);

•	Adjustments to emission rates of metal compounds based on the toxic-metal proportion of the
compound's molecular weight (e.g., only the mass fraction of chromic acid that consists of

chromium VI). In the emission summaries, pollutant groups entitled "Sum of	" includes the

adjustments made, but emissions provided for the specific pollutants are presented pre-adjusted.

In addition, background concentrations for some air toxics are estimated for NATA based on
monitoring and other data (no national inventory for emissions from background sources exists), and the
secondary formation of a few air toxics is addressed in NATA but is not included in NEI.

2.1.4 2011 NATA Emissions: CMAQ versus HEM-3

Differences in the emissions inputs to CMAQ and HEM-3 were due to: (1) design differences in how the
models were run and (2) differences due to timing of the model runs that did not allow for NATA review
comments from the S/L/T agency reviews to be incorporated into the CMAQ modeling.

By design, there were differences in the sources of emissions used by the two models. The emissions
input into HEM-3 excluded NATA categories more appropriately addressed by CMAQ: biogenics and
three types of fires—wildfires, prescribed burning, and agricultural-field burning. Biogenic emissions
were generated by running the Biogenic Emission Inventory System (BEIS) model in SMOKE using
hourly meteorological inputs to generate hourly gridded (12 km xl2 km) emissions of several
photochemical-model species including three HAPs: formaldehyde, acetaldehyde, and methanol. This
category is routinely part of CMAQ runs and is more appropriately modeled in CMAQ due to its broad
spatial and refined temporal resolution and meteorological dependence. Wildfires and prescribed and
agricultural burning were also run in CMAQ but not HEM-3 because CMAQ provides in-line plume rise
to higher vertical layers based on the acres burned. Agricultural burning does not use these algorithms.
We chose, however, to include agricultural burning with the other two types of fires as the spatial
resolution for these estimates is more appropriate for CMAQ than the local-scale resolution provided by
HEM-3. Also, grouping agricultural burning with the other fires enabled us to retain source attribution
from the CMAQ zero-out runs (although not between the different fire types).

Also, CMAQ and HEM-3 treated emissions from outside the domain differently. CMAQ used boundary
conditions for formaldehyde, benzene, and acetaldehyde, while other CMAQ pollutants used zero
boundary conditions. For HEM-3, a spatially uniform remote concentration was added for non-CMAQ
HAPs to all census-block centroids to account for transport and emissions coming from outside the
domain. The secondary contribution (resulting from emissions from all categories that participate in
photochemical reactions) was generated only in CMAQ, as HEM-3 does not account for secondary
transformation.

In addition to differences in the sources of emissions used for in the two models, there were also
differences in the way the emissions are processed. The processing of emissions for CMAQ and HEM-3
are described in Sections 2.2 and 2.3, respectively. Here we point out two differences in the resolutions of
spatial and temporal allocation. For CMAQ, gridded (12 km x 12 km) and vertically allocated emissions
were used for each modeled species for each hour of the year. Different temporal schemes were used for
different categories to generate the hourly emissions, including continuous-emissions-monitoring data and
hour- and pollutant-specific emissions for mobile sources, based on meteorologically dependent emission
factors. For HEM-3, spatial and temporal approaches varied for different categories. Spatially, emissions
were provided as point or HEM-3 "area" sources, where an area source could be (for example) a fugitive

27


-------
EPA's National-scale Air Toxics Assessment

area within a facility, a runway at an airport, a port or underway water shape, or a census tract. This
approach supports better resolution of air-concentration for sources with known locations (i.e., the sources
in the NEI point category). Temporally, allocation schemes varied for different source categories. A
summary of the spatial differences is provided in Exhibit 20 in Section 2.3.1.1.

For most categories, the resulting hourly emissions for HEM-3 and CMAQ used the same level of
specificity, but some differences occurred in the nonpoint, onroad, and nonroad categories for which
temporal profiles were aggregated from individual categories to a broader "HEM run group" (described in
2.3.2) and cannot vary by specific pollutant. Exhibit 21 in Section 2.3.1.2 contains descriptions of the
temporal approach for each HEM run group.

In addition to design differences, there were also emission differences resulting from the timing of the
runs. The emissions input to CMAQ did not include adjustments resulting from the review/comment
periods. Below is a list of key differences in the emissions between CMAQ and HEM-3 due to comments
during the NATA review/preview periods

Exhibit 9. Key Emission Differences between CMAQ and HEM-3 for 2011 NATA Modeling

Emissions category

CMAQ

HEM-3

Point

2011 NEI v2 with very small
updates.

Post-NATA review and NATA-preview
comments resulted in emission changes for
about 200 facilities.

Diesel PM

Diesel PM was included in Federal
Waters outside the U.S.
boundaries (i.e., Gulf of Mexico)
for C1/C2 marine but not for C3
vessels, Canada, or Mexico.

Diesel PM was included only in the United
States.

Two very small diesel PM sources in California
were dropped because they had SCCs for
railyards but not the facility type of the railyards
(facility type was used for point-source attribution
of airports and railyards).

Non-U.S. sources

Benzene, formaldehyde,
acetaldehyde, and methanol are
included from Canada, Mexico,
and offshore sources.

Not included.

Onroad: Extended-idle
emissions—California and
Maricopa County

Used emissions consistent with
2011 NEI v2/v6.2 platform.

For California—extended-idle emissions were
changed to match the California Air Resources
Board (CARB)-provided extended-idle emissions
(RPH) by county/pollutant for CAPs, and split
into extended-idle and APU emissions from v2.
For HAPs, which CARB did not provide for RPH,
we used CAP ratios to calculate HAP emissions.
For example, if RPH VOC = 5% of total 220280
(heavy-duty diesel) VOC in a given county, then
RPH benzene is set to 5% of total 220280
benzene in that county. All VOC HAPs (e.g.,
benzene, toluene) used VOC ratios. All PAHs
(e.g., fluorene, benzo[a]pyrene) used PM2.5
ratios. Pollutants with zero RPH emissions in
SMOKE-MOVES, including all metals and
dioxins/furans, were kept at zero.

Maricopa extended-idle and APU emissions
were cut in half consistent with the revised
hoteling hours computed based on revised 2011
VMT by the Maricopa Association of
Governments

28


-------
EPA's National-scale Air Toxics Assessment

Emissions category

CMAQ

HEM-3

Ethylene oxide (EO) from
EO sterilizers

Used emissions consistent with
2011 NEI v2 (this pollutant is not in
the v6.2 platform).

Removed EO sterilizer emissions submitted by
the state of Maryland, which were based on
1999 methodology (prior to EO sterilization
regulations).

Note that this change was also made in Puerto
Rico (we had carried forward older emissions in
the 2011 NEI v2, and so we removed these for
NATA).

Changes to trichloroethylene
emissions in Clark County,
Nevada

Used emissions consistent with
2011 NEI v2 (this pollutant is not in
the v6.2 platform).

Replaced Clark County-submitted emissions
with EPA estimates due to use of old EPA
methodology.

Benzene from Utah
counties—oil and gas

Used emissions consistent with
2011 NEI v2/v6.2 platform.

Replaced benzene based on data provided by
Utah (lower benzene to VOC).

Portable-fuel-container
speciation impacting
benzene and other HAPs in
NY

Used emissions consistent with
2011 NEI v2/v6.2 platform.

Replaced New York state emissions (all
counties) with the EPA estimates that account
for the benzene fuel limits from the MSAT rule.

7,12-dibenzo(a,h)anthracene
emissions in MN from
residential wood combustion

Removed from 2011 NEI v2 for
purposes of v6.2 platform

Inadvertently did not remove this pollutant from
the state of MN.

2.2 Emissions Preparation for CMAQ

EPA routinely prepares emissions for photochemical grid models through the development of an
emissions modeling platform, and the SMOKE modeling system is used as the primary emissions
modeling tool. An emissions modeling platform includes the emission inventories, the ancillary data files,
and the approaches used to transform inventories for use in air quality modeling. Several platforms have
been developed for 2011 NEI emissions. For NATA, EPA developed a multipollutant emissions modeling
platform ("201 leg_nata_v6_l lg 2011\ 2"). referred to here as the "NATA CMAQ platform," to
generate the emission inputs for the version of CMAQ used for NATA (version MPv5.0.2). This version
of CMAQ includes more air toxics than any other version—approximately 50 HAPs and diesel PM.

The NATA CMAQ platform is largely the same as was prepared for the 2011 NEI v2-based modeling
platform (201 lv6.2) with respect to the modeling domain (i.e., lower 48 states, parts of Canada and
Mexico), grid resolution (12 km), and temporalization approaches. The platform differs in terms of
speciation—it adds numerous air toxics model species required by CMAQ version MPv5.0.2.

2.2.1 Emission Inventories and Approaches: CMAQ

For the purposes of preparing the air quality model-ready emissions, the 201 1NEIv2 was split into finer-
grained sectors used for emissions modeling. The significance of an emissions modeling or "platform
sector" is that the data are run through all of the SMOKE programs except the final merge (Mrggrid)
independently from the other sectors. The sectors used for the NATA CMAQ platform were the same as
used for the 2011 NEI v2 platform except that the point-source fires (prescribed and wild) were included
as a single sector (ptfire). Exhibit 10 contains descriptions of the sectors used for the SMOKE/CMAQ
modeling for NATA, and Exhibit 11 contains information on whether the sector contains HAP emissions.

29


-------
EPA's National-scale Air Toxics Assessment

Exhibit 10. Sectors Used in Emissions Modeling for the 2011 NATA CMAQ Platform

Platform Sector
and Abbreviation

2011 NEI Data
Category

Description and Resolution of the Data Input to SMOKE

EGU sector: ptegu

Point

2011 NEI v2 point-source EGUs. The 2011 NEI v2 emissions were replaced
with hourly 2011 CEMS values for NOx and SO2, where the units were
matched to the NEI. Other pollutants were scaled from 2011 NEI v2 using
CEMS heat input. Emissions for all sources not matched to CEMS data came
from 2011 NEI v2. Non-CEMS sources used daily resolution created using
average fuel/region temporal files.

Point source oil
and gas: pt_oilgas

Point

2011 NEI v2 point sources related to emissions from processes of oil and gas
production based on the following North American Industry Classification
System (NAICS) codes, though some individual facilities were moved to
ptnonipm due to conflicting facility source types.

NAICS

NAICS Description

2111

Oil and Gas Extraction

2212

Natural Gas Distribution

4862

Pipeline Transportation of Natural Gas

21111

Oil and Gas Extraction

22121

Natural Gas Distribution

48611

Pipeline Transportation of Crude Oil

48621

Pipeline Transportation of Natural Gas

211111

Crude Petroleum and Natural Gas Extraction

211112

Natural Gas Liquid Extraction

213111

Drilling Oil and Gas Wells

213112

Support Activities for Oil and Gas Operations

221210

Natural Gas Distribution

486110

Pipeline Transportation of Crude Oil

486210

Pipeline Transportation of Natural Gas

Annual resolution.

Remaining Non-
EGU point:
ptnonipm

Point

All 2011 NEI v2 point-source records not matched to the ptegu or pt_oilgas
sectors, annual resolution. Includes all emissions from aircraft and ground-
support equipment, which were inventoried at airports (point sources in the
NEI), and some railyard emissions.

Annual resolution.

Agricultural: ag

Nonpoint

NH3 emissions from NEI nonpoint livestock and fertilizer application.
County and annual resolution.

Area fugitive dust:
afdust

Nonpoint

PM10 and PM2.5 from fugitive-dust sources from the 2011 NEI v2 nonpoint
inventory, including building construction, road construction, agricultural dust,
and road dust. However, emissions from unpaved and paved road dust differ
from the NEI in that the NEI data do not have a precipitation adjustment.
Instead, the emissions modeling adjustment applies a transport fraction and a
meteorology-based (precipitation and snow/ice cover) zero-out.

County and annual resolution.

Nonpoint source
oil and gas:
np_oilgas

Nonpoint

2011 NEI v2 nonpoint sources from oil and gas-related processes.
County and annual resolution

Residential wood
combustion: rwc

Nonpoint

2011 NEI v2 NEI nonpoint sources with RWC processes.
County and annual resolution.

Agricultural fires:
agfire

Nonpoint

Agricultural burning from the 2011 NEI v2 nonpoint inventory.
County and monthly resolution.

30


-------
EPA's National-scale Air Toxics Assessment

Platform Sector
and Abbreviation

2011 NEI Data
Category

Description and Resolution of the Data Input to SMOKE

Class 1 & 2 CMV
and locomotives:
c1c2rail

Nonpoint

Locomotives and primarily category 1 (C1) and category 2 (C2) sources of
CMV emissions from the 2011 NEI v2 nonpoint inventory.

County and annual resolution.

Commercial
marine: c3marine

Nonpoint

Category 3 (C3) sources of CMV emissions from the 2011 NEI v2 nonpoint
inventory.

County and annual resolution.

Remaining
nonpoint: nonpt

Nonpoint

2011 NEI v2 nonpoint sources not otherwise included in other platform
sectors.

County and annual resolution.

Nonroad: nonroad

Nonroad

2011 NEI v2 nonroad equipment emissions developed with NMIM using
NONROAD2008 version NR08a. NMIM was used for all states except
California and Texas, which submitted their own emissions to the 2011 NEI
v2.

County and monthly resolution.





On road: onroad

Onroad

2011 emissions of gasoline and diesel vehicles from parking lots and
roadways. Includes the following modes: exhaust, extended idle, auxiliary-
power units, evaporative, permeation, refueling, and brake and tire wear. For
all states except California, based on monthly MOVES emissions tables from
MOVES2014. California emissions are based on EMFAC. MOVES-based
emissions computed for each hour and model grid cell using monthly and
annual activity data (e.g., VMT, vehicle population).

County and hourly resolution.

Onroad California:
onroad_ca_adj

Onroad

2011 emissions of gasoline and diesel vehicles from parking lots and
roadways, plus refueling, generated from SMOKE-MOVES, California only.
Non-refueling California onroad emissions were adjusted so that they match
emissions values provided by CARB, by county, by fuel type (non-diesel and
diesel), and by the following vehicle types: motorcycles, passenger cars, and
all other vehicles.

County and annual resolution.

Point source fires:
ptfire

Fires

Point-source day-specific wild and prescribed fires for 2011 computed using
SMARTFIRE2 using State inputs where available, except for Georgia- and
North Carolina-submitted emissions and corrections (scaling and zero-outs for
certain fires) for Florida and Delaware. Consistent with 2011 NEI v2.

Point and daily resolution.

Other point
sources not from
the NEI: othpt

N/A

Point sources from Canada's 2010 inventory and Mexico's 2008 INEM
inventory. Also includes annual U.S. offshore oil 2011 NEI v2 NEI point-source
emissions, and non-United States, non-Canada C3 CMV emissions.

Annual resolution.

Other nonpoint
and nonroad not
from the NEI: othar

N/A

Annual year 2010 Canada (province resolution) and year 2008 Mexico INEM
(municipio resolution) nonpoint and nonroad mobile inventories. Does not
include Canadian afdust emissions.

Annual resolution.

Other onroad
sources not from
the NEI: othon

N/A

Year 2010 Canada (province resolution) and year 2008 Mexico INEM
(municipio resolution) onroad mobile inventories.

Annual and province or municipio resolution.

Other area fugitive
dust not from the
NEI: othafdust

N/A

PM10 and PM2.5 from fugitive dust sources from Canada's 2010 inventory.
Emissions adjustments include a transport fraction and a meteorology-based
(precipitation and snow/ice cover) zero-out.

Annual and province or muncipio resolution.

31


-------
EPA's National-scale Air Toxics Assessment

Platform Sector
and Abbreviation

2011 NEI Data
Category

Description and Resolution of the Data Input to SMOKE

Biogenic: beis

N/A

Year 2011, hour-specific, grid cell-specific emissions generated from the
BEIS3.6 model; includes emissions in Canada and Mexico.

Hourly and grid-cell resolution.

Exhibit 11. Preparation of HAP Inventory for each Sector for the 2011 NATA CMAQ Platform

Platform Sector
and Abbreviation

2011 NEI Data
Category

Approach/Adjustments for HAPs

EGU sector: ptegu

Point

Used explicit HAPs from inventory. Did not speciate VOC to get primary HAP
emissions.

Point source oil
and gas: pt_oilgas

Point

Used explicit HAPs from inventory. Did not speciate VOC to get primary HAP
emissions.

Remaining Non-
EGU point:
ptnonipm

Point

Used explicit HAPs from ptegu inventory. Did not speciate VOC to get primary
HAP emissions. Generated diesel PM from PM10 emissions from diesel
ground-support equipment and rail-yard emissions.

Agricultural: ag

Nonpoint

No HAPs in this sector.

Area fugitive dust:
afdust

Nonpoint

No HAPs in this sector.

Nonpoint source
oil and gas:
np_oilgas

Nonpoint

Used explicit HAPs from inventory. Did not speciate VOC to get primary HAP
emissions.

Benzene overestimated in Utah in the 2011 NEI. Did not change CMAQ
results but adjusted HEM-3 (and therefore hybrid).

Residential wood
combustion: rwc

Nonpoint

Used explicit HAPs from inventory. Removed 7,12-dibenzo(a,h)anthracene
due to inconsistency in different types of wood stoves.

Agricultural fire:
agHre

Nonpoint

Used explicit HAPs from inventory.

Class 1 & 2 CMV
and locomotives:
c1c2rail

Nonpoint

Used explicit HAPs from inventory. Generated diesel PM from PM emissions
of residual oil and diesel-fueled CMVs and locomotives.

Commercial
marine: c3marine

Nonpoint

Used explicit HAPs from inventory. Generated diesel PM from PM emissions
of residual oil and diesel-fueled CMVs.

Remaining
nonpoint: nonpt

Nonpoint

Used explicit HAPs from inventory.

Nonroad: nonroad

Nonroad

Used explicit HAPs from inventory. Generated diesel PM from PM emissions
of diesel-fueled engine-exhaust processes. Certain SCCs have no HAPs:
national inventory does not have HAPs for liquefied petroleum gas and
compressed natural gas (2267* and 2268*) and some records in the California
inventory have VOCs but no HAPs. We did not add HAPs via speciation for
situations in which there were no HAPs in the NEI.

32


-------
EPA's National-scale Air Toxics Assessment

Platform Sector
and Abbreviation

2011 NEI Data
Category

Approach/Adjustments for HAPs

On road: onroad

Onroad

Used explicit HAPs from inventory.

MOVES integrates emissions of the following onroad-emitted species in
development of the chemical-mechanism species such that the emissions of
the explicit HAPs and chemical-mechanism species are consistent.

Pollutant ID

5

Pollutant Name

CMAQ HAP?

n

20

Benzene

Y

21

Ethanol

n

22

MTBE

n

24

1,3-Butadiene

Y

25

Formaldehyde

Y

26

Acetaldehvde

Y

27

Acrolein

Y

40

2.2.4-TrimethvlDentane

n

41

Ethvl Benzene

n

42

Hexane

n

43

Propionaldehvde

n

44

Stvrene

n

45

Toluene

Y

46

Xvlene

Y

185

Naphthalene qas

Y

Metal-HAP emissions were also included in this sector. Manganese, the only
HAP included in PM2.5 speciation, was estimated using a grams/mile emission
factor for exhaust and from speciation of PM2.5 for brake and tire wear.
Generated diesel PM from PM emissions of diesel-fueled engine-exhaust
processes.

Onroad California:
onroad ca

Onroad

HAPs were not exactly what California submitted to NEI. NEI used California's
HAPs and total PAH. In the platform, we used California's VOCs as a starting
point and speciated based on MOVES. We also speciated total PAH using
specific-PAH-to-total-PAH ratios based on MOVES.

Point source fires:
ptfire

Fires

Used explicit HAPs from the inventory. Corrected CMAQ results for two PAH
groups—PAH_176E3 was missing emissions (in some states) of
methylchrysene due to use of incorrect pollutant code 248, and PAH_880E5
was missing emissions of methylbenzopyrene due us of incorrect pollutant
code of 247.

Other point
sources not from
the NEI: othpt

N/A

One of the Canada point inventories had pre-speciated VOCs, which included
ALD2 (treated as acetaldehyde), FORM (formaldehyde), MEOH (methanol),
but not BENZENE. This ALD2/FORM was mapped to

ALD2_PRIMARY/FORM_PRIMARY in addition to itself, thus providing explicit
HAP emissions for formaldehyde and acetaldehyde. In the other Canada point
inventories and the Mexico point inventory, ALD2, FORM, ALD2_PRIMARY,
FORM_PRIMARY, BENZENE, and MEOH were all created via speciation.

Other nonpoint
and nonroad not
from the NEI: othar

N/A

No explicit HAPs. ALD2, FORM, ALD2_PRIMARY, FORM_PRIMARY, BENZENE,
and MEOH were all created via VOC speciation.

Other onroad
sources not from
the NEI: othon

N/A

No explicit HAPs. ALD2, FORM, ALD2_PRIMARY, FORM_PRIMARY, BENZENE,
and MEOH were all created via VOC speciation.

33


-------
EPA's National-scale Air Toxics Assessment

Platform Sector
and Abbreviation

2011 NEI Data
Category

Approach/Adjustments for HAPs

Other area fugitive
dust not from the
NEI: othafdust



No HAPs in this sector.

Biogenic: biog

N/A

HAPs generated by BEIS included acetaldehyde (ALD2 and
ALD2_PRIMARY), formaldehyde (FORM and FORM_PRIMARY), and
methanol (MEOH).

2.2.1.1	Point Sources

The point-source components of the platform were derived from the SMOKE-formatted FF10 files
exported from the emissions inventory system from September 2014. These data were supplemented with
ethanol-plant emissions provided by EPA's Office of Transportation and Air Quality (OTAQ); these
ethanol-plant emissions were included in 2011 NEI v2 but some had different names or EIS identifiers
that were corrected in the HEM-3 data and NATA geoplatform. Point sources were separated into three
sectors: ptegu, ptnonipm and pt_oilgas. The ptegu were separated due to the use of CEMs NOx, SO2, and
heat input data for temporalization of NOx, SO2, and other pollutants to hourly. Other pollutants,
including PM, VOCs, and HAPs, used hourly heat input. Airports were included in the ptnonipm sector.

2.2.1.2	Nonpoint Sources

The nonpoint-source components of the platform were derived from the SMOKE-formatted FF10 files
exported from EIS. Biogenic emissions were removed since that sector is estimated from the BEIS model
within SMOKE (see Section 2.2.1.6). The file was then split into rwc, clc2rail, c3marine, np_oilgas,
nonpt, afdust, ag, and agfire based on SCCs. Sectors afdust and ag had no HAPs.

The rwc sector included the SCCs shown in Exhibit 12; these are the same for the rwc modeling sector in
the NATA CMAQ platform and the "RWC" HEM run group.

Exhibit 12. SCCs for RWC

scca

SCC Level 3

SCC Level 4

2104008100

Wood

Fireplace: general

2104008210

Wood

Woodstove: fireplace inserts; non-EPA certified

2104008220

Wood

Woodstove: fireplace inserts; EPA certified; non-catalytic

2104008230

Wood

Woodstove: fireplace inserts; EPA certified; catalytic

2104008310

Wood

Woodstove: freestanding, non-EPA certified

2104008320

Wood

Woodstove: freestanding, EPA certified, non-catalytic

2104008330

Wood

Woodstove: freestanding, EPA certified, catalytic

2104008400

Wood

Woodstove: pellet-fired, general (freestanding or FP insert)

2104008420

Wood

Woodstove: pellet-fired, EPA certified (freestanding or FP insert)

2104008510

Wood

Furnace: Indoor, cordwood-fired, non-EPA certified

2104008610

Wood

Hydronic heater: outdoor

34


-------
EPA's National-scale Air Toxics Assessment

scca

SCC Level 3

SCC Level 4

2104008700

Wood

Outdoor wood burning device, NEC (fire-pits, chimenas, etc.)

2104009000

Firelog

Total: All Combustor Types

a SCC levels 1 and 2 are Stationary Source Fuel Combustion and Residential.

The rwc temporalization was based on daily temperature (for day-specific emissions); different diurnal
profiles were applied based on the SCC. More details are provided in the Technical Support document for
the 2011 NEI v2-based Platform.

The clc2rail and c3marine SCCs are shown in Exhibit 13, and the ag fire SCCs are shown in Exhibit 14.
Exhibit 13. SCCs for CMVs and Locomotive (c1c2rail and c3marine)

Sector

SCC a

SCC Level 2

SCC Level 3

SCC Level 4

c1c2rail

2280002100

Marine Vessels, Commercial

Diesel

Port emissions

c1c2rail

2280002200

Marine Vessels, Commercial

Diesel

Underway emissions

c1c2rail

2285002006

Railroad Equipment

Diesel

Line Haul Locomotives: Class I
Operations

c1c2rail

2285002007

Railroad Equipment

Diesel

Line Haul Locomotives: Class II / III
Operations

c1c2rail

2285002009

Railroad Equipment

Diesel

Line Haul Locomotives: Commuter Lines

c1c2rail

2285002008

Railroad Equipment

Diesel

Line Haul Locomotives: Passenger
Trains (Amtrak)

c1c2rail

2285002010

Railroad Equipment

Diesel

Yard Locomotives

c3marine

2280003100

Marine Vessels, Commercial

Residual

Port emissions

c3marine

2280003200

Marine Vessels, Commercial

Residual

Underway emissions

c3marine

2280004000 b

Marine Vessels, Commercial

Gasoline

Total, All Vessel Types

a SCC level 1 for all of these is Mobile Sources.

b This SCC does not have any HAPs associated with it. It was reported by only Washington State (county level, not shape
level) in the NEI.

Exhibit 14. SCCs for Agricultural-Field Burning (agfire)

SCC

Description

2801500000 a

* - whole field set on fire; Unspecified crop type and Burn Method

2801500600

* - whole field set on fire; Forest Residues Unspecified (see also 28-10-015-000)

2801500100

* - whole field set on fire; Field Crops Unspecified

2801500141

* - whole field set on fire; Field Crop is Bean (red): Headfire Burning

2801500170

* - whole field set on fire; Field Crop is Grasses: Burning Techniques Not Important

2801500181

* - whole field set on fire; Field Crop is Hay (wild): Headfire Burning

35


-------
EPA's National-scale Air Toxics Assessment

SCC

Description

2801500261

* - whole field set on fire; Field Crop is Wheat: Headfire Burning

2801500320

* - whole field set on fire; Orchard Crop is Apple

2801500330

* - whole field set on fire; Orchard Crop is Apricot

2801500350

* - whole field set on fire; Orchard Crop is Cherry

2801500390

* - whole field set on fire; Orchard Crop is Nectarine

2801500410

* - whole field set on fire; Orchard Crop is Peach

2801500420

* - whole field set on fire; Orchard Crop is Pear

2801500430

* - whole field set on fire; Orchard Crop is Prune

2801500500

* - whole field set on fire; Vine Crop Unspecified

2801500150

* - whole field set on fire; Field Crop is Corn: Burning Techniques Not Important

2801500220

* - whole field set on fire; Field Crop is Rice: Burning Techniques Not Significant

2801500250

* - whole field set on fire; Field Crop is Sugar Cane: Burning Techniques Not Significant

2801500262

* - whole field set on fire; Field Crop is Wheat: Backfire Burning

2801500300

* - whole field set on fire; Orchard Crop Unspecified

2801500440

* - whole field set on fire; Orchard Crop is Walnut

2801500450

* - whole field set on fire; Orchard Crop is Filbert (Hazelnut)

*=Miscellaneous Area Sources; Agriculture Production - Crops - as nonpoint; Agricultural Field Burning.
a This is the only SCC used for the EPA estimates; all other SCCs were used by state data submitters.

2.2.1.3 Onroad Sources

Highway-vehicle emissions data for NATA were largely based directly on the 2011 NEI and were
generated using MOVES2Q14 (EPA 2015k) using Carbon Bond 05 (CB05) speciation.

SMOKE-MOVES uses the emission factors along with activity and meteorology data to produce
hourly gridded emissions. This is explained in more detail in the Technical Support document for the
2011 NEI v2-based Platform.

For NATA, MOVES2014 was used everywhere except California. In California, we use the CARB-
submitted data mapped to the MOVES2014 SCCs (new set of SCCs for onroad), except the VOC HAPs
for which we used CARB VOCs speciated with MOVES2014-based profiles. These HAP VOCs are
benzene, 1,3-butadiene, formaldehyde, acetaldehyde, naphthalene, acrolein, ethyl benzene, 2,2,4-
trimethylpentane, hexane, propionaldehyde, styrene, toluene, xylene, and methyl-tert butyl ether. We
chose this approach to achieve consistency in speciation and to use the current MOVES2014-based
speciation data.

36


-------
EPA's National-scale Air Toxics Assessment

2.2.1.4	Nonroad Sources

The inventory estimates for nonroad engines were developed using the National Mobile Inventory Model
(NMIM; EPA 2015p) for all sources except CMVs, locomotives, and aircraft, which are in different data
categories of the NEI and are generated using different tools from NMIM. NMIM produces, in a
consistent and automated way, county-level mobile-source emissions inventories nationwide for the NEI
and for EPA rulemaking. NMIM is a consolidation of two EPA models: the Mobile Source Emission
Factor model (MOBILE; EPA 2015o) and the NONROAD (EPA 2015q) model; but only the NONROAD
portion was used for the 2011 NEI. NMIM estimates toxic emissions for nonroad sources using toxic-to-
VOC ratios for gaseous air toxics, toxic-to-PM ratios for PAHs, and mass-per-mile emission factors for
metals (EPA 2005b). MOVES2014a estimates toxic emissions from nonroad engines using updated data
(EPA 2015b); however, this version of MOVES was not available at the time modeling for NATA 2011
was done.

EPA did not use NMIM for two states. California and Texas submitted emissions data that were used in
place of EPA's NMIM run. Monthly emissions for these states were computed from the NMIM data.
These states' data were further supplemented by EPA—for Texas, we added mercury and arsenic
emissions from EPA's run of NMIM since they were missing from the Texas inventory; and, for
California, missing VOC emissions from some SCCs were added as the sum of benzene, acetaldehyde,
and formaldehyde.

The same data were used in 2011 NEI v2 as the 2011 NEI vl, other than for Delaware, California, and
Texas. Delaware submitted updated inputs used for the 2011 NEI v2 and NATA.

2.2.1.5	Fires Sources: agfire and ptfire

Agricultural burning was pulled from the nonpoint FF10 file based on SCC codes. Prescribed fires and
wildfires were already in their own sector. Corrections to ptfire emissions for two PAH groups were made
after the CMAQ model was run, and so adjustments were applied to the CMAQ model concentrations.

The ptfire corrections were needed because we dropped pollutant codes 247 (methylbenzo(a)pyrene;
assigned to PAH_880E5) and 248 (methylchrysene; assigned to PAH_176E3) from ptfire because these
were incorrect codes in the ptfire modeling file for some states and we did not map that erroneous code to
the PAH groups. The correct codes for these to HAPs are 65357699 (methylbenzo(a)pyrene) and
41637905 (methylchrysene). Delaware, Georgia, and North Carolina had correct codes and as did some
fires in Nevada, New Mexico, South Dakota, Texas, and Wyoming. Correct codes were used in the EIS.
Because other PAHs in ptfire are mapped to PAH 880E5 and PAH176E3, we corrected concentrations
for these PAH groups by multiplying the concentration by the ratio of the corrected PAH group's
emissions to the erroneous PAH group's emissions. The ratios were computed at an annual state-specific
resolution and applied to the grid cells based on an area-weighted average of state factors (for grid cells
that were in more than one state).

A zero-out run of CMAQ provided source attribution from fires. In this zero-out run, emissions from both
the agfires and ptfire sectors were set to zero.

2.2.1.6	Biogenics

Biogenic emissions were computed by running the BEIS3.60 model in SMOKE. BEIS creates gridded,
hourly, model-species emissions from vegetation and soils. It estimates CO, speciated VOC, and NO
emissions for the contiguous United States and for portions of Mexico and Canada. The speciated VOCs
included isoprene, terpene, sesquiterpene, and three HAPs: formaldehyde, acetaldehyde, and methanol.

37


-------
EPA's National-scale Air Toxics Assessment

One of the updates we made was to be able to distinguish primary formaldehyde from secondary
formaldehyde by assigning the formaldehyde to both FORM PRIMARY and FORM species. This, along
with a CMAQ zero-out run, provided a way to determine the source attribution of primary-emitted
biogenic emissions. In this zero-out run, emissions from biogenic sources were set to zero.

In the United States, primary biogenic formaldehyde constitutes 71 percent of the total emissions of
primary formaldehyde, primary biogenic acetaldehyde constitutes 86 percent of the total, and biogenic
methanol constitutes 95 percent of the total.

2.2.2 Emissions Processing Steps and Ancillary Data

The processing steps and ancillary data associated with the spatial and temporal allocation were the same
for the NATA platform as for the 2011 NEI v2 platform (used for other non-NATA modeling) and are
documented at the 2011-based Modeling Platform at EPA's Clearinghouse for Inventories & Emissions
Factors website. All sources were horizontally allocated to 12-km grid cells through either spatial
surrogates or spatial coordinates. Sources were also vertically allocated to layer 1 or distributed vertically
based on plume rise. A summary of these allocation methods is shown in Exhibit 15, and the Sections
2.2.2.1 and 2.2.2.2 expand further on this information.

Exhibit 15. Summary of Spatial and Temporal Allocation of Emissions for the 2011 NATA Platform

Platform Sector

Spatial-allocation Method

Speciation?

Temporal Resolution

Plume Rise

afdust

Surrogates

Yes

Annual



ag

Surrogates

Yes

Annual



agfire

Surrogates

Yes

monthly



beis

Pre-gridded land use

in BEIS 3.60

computed hourly



c1c2rail

Surrogates

Yes

annual



c3marine

Surrogates

Yes

annual



nonpt

Surrogates & area-to-point

Yes

annual



nonroad

Surrogates & area-to-point

Yes

monthly



np_oilgas

Surrogates

Yes

annual



onroad

Surrogates

Yes

monthly activity,
computed hourly



onroad_ca_adj

Surrogates

Yes

monthly activity,
computed hourly



rwc

Surrogates

Yes

annual



oth afdust

Surrogates

Yes

annual



othar

Surrogates

Yes

annual



oth on

Surrogates

Yes

annual



othpt

Point

Yes

annual

in-line

pt_oilgas

Point

Yes

annual

in-line

ptegu

Point

Yes

daily & hourly

in-line

ptprescfire

Point

Yes

Daily

in-line

38


-------
EPA's National-scale Air Toxics Assessment

Platform Sector

Spatial-allocation Method

Speciation?

Temporal Resolution

Plume Rise

ptwildfire

Point

Yes

Daily

in-line

ptnonipm

Point

Yes

annual

in-line

2.2.2.1 Spatial Allocation

Sectors with county-level resolution were allocated to 12-km grid cells using spatial surrogates. Where
data for a particular county were not available, a secondary or tertiary surrogate was used. Exhibit 16
contains the spatial surrogates available for the Continental United States (CONUS) domain used by
CMAQ. These surrogates were assigned to sources based on SCC. Some county-specific SCC-to-
surrogate assignments were made, as it was determined that at the census-tract level, the assignments of
certain surrogates (particularly for RWC) were improperly concentrating emissions in some urban-county
tracts. County-specific-surrogate assignments can be discerned from the first column of the cross-
reference file noted below. The following files are available in the SupplementalData folder and provide
more information on the surrogate assignments and underlying surrogate data:

•	Spatial-surrogate cross-references by SCC ("SCC	spatialsurrogatesxref.xlsx")

•	Spatial-surrogate definitions/sources of data ("US_SpatialSurrogate_Workbook_v072115.xlsx")

•	"Technical Memorandum oil and gas surrogates and modeling data 2014-2-18.pdf' which
describes the development of the oil and gas surrogates, surrogate codes 681-698

The 12-km spatial surrogate data are posted under the data for the 2011v6.2 Platform. Generally, the same
spatial surrogate data (i.e., shapefiles of surrogate activity weights) were used for HEM-3 but they were
computed separately from the underlying shapefiles or underlying raw data, as in the case of the updated
oil and gas surrogates. As discussed in Section 2.3.1.1, the HEM-3 surrogates were allocated from
counties to tracts instead of 12-km grid cells. Also, because the HEM-3 domain includes Alaska, Hawaii,
Puerto Rico, and the U.S. Virgin Islands, some of the CONUS surrogates were not available and
secondary surrogates had to be used. Furthermore, a few surrogate changes were made to HEM-3 after
CMAQ was run—in particular, assignments from SCC to surrogate were made for specific counties, and
three new county-specific surrogates were developed and used. These changes resulted from comments
received during the NATA review, which revealed that, for some situations, that the surrogates were
unreasonably concentrating emissions arbitrarily in one or two tracts in the county. Any county-specific
surrogate can be identified using the first column of the surrogates-assignment file in the
SupplementalData folder.

39


-------
EPA's National-scale Air Toxics Assessment

Exhibit 16. U.S. Surrogates Available for the 2011 Modeling Platform

Code

Surrogate Description

100

Population

110

Housing

120

Urban Population

130

Rural Population

137

Housing Change

140

Housing Change and Population

150

Residential Heating - Natural Gas

160

Residential Heating - Wood

165

0.5 Residential Heating - Wood plus 0.5
Low Intensity Residential

170

Residential Heating - Distillate Oil

180

Residential Heating - Coal

190

Residential Heating - LP Gas

200

Urban Primary Road Miles

210

Rural Primary Road Miles

220

Urban Secondary Road Miles

230

Rural Secondary Road Miles

240

Total Road Miles

250

Urban Primary plus Rural Primary

255

0.75 Total Roadway Miles plus 0.25
Population

260

Total Railroad Miles

270

Class 1 Railroad Miles

261

NTAD Total Railroad Density

271

NTAD Class 1, 2, 3 Railroad Density

280

Class 2 and 3 Railroad Miles

300

Low Intensity Residential

310

Total Agriculture

312

Orchards/Vineyards

320

Forest Land

330

Strip Mines/Quarries

340

Land

Code

Surrogate Description

520

Commercial plus Industrial plus Institutional

525

Golf Courses + Institutional +lndustrial +
Commercial

527

Single Family Residential

530

Residential - High Density

540

Retail Trade

545

Personal Repair

550

Retail Trade plus Personal Repair

555

Professional/Technical plus General
Government

560

Hospital

565

Medical Office/Clinic

570

Heavy and High Tech Industrial

575

Light and High Tech Industrial

580

Food, Drug, Chemical Industrial

585

Metals and Minerals Industrial

590

Heavy Industrial

595

Light Industrial

596

Industrial plus Institutional plus Hospitals

600

Gas Stations

650

Refineries and Tank Farms

675

Refineries and Tank Farms and Gas Stations

680

Oil & Gas Wells, IHS Energy, Inc. and USGS

681-
698

New set of Oil and Gas Surrogate Codes
consistent with Oil and Gas Toola

710

Airport Points

711

Airport Areas

720

Military Airports

800

Marine Ports

801

NEI Ports

802

NEI Shipping Lanes

807

Navigable Waterway Miles

808

Gulf Tug Zone Area

40


-------
EPA's National-scale Air Toxics Assessment

Code

Surrogate Description



Code

Surrogate Description

350

Water



810

Navigable Waterway Activity

400

Rural Land Area



812

Midwest Shipping Lanes

500

Commercial Land



850

Golf Courses

505

Industrial Land



860

Mines

510

Commercial plus Industrial



870

Wastewater Treatment Facilities

515

Commercial plus Institutional Land



880

Drycleaners

535

Residential + Commercial + Industrial +
Institutional + Government



890

Commercial Timber

a See additional information in Exhibit 17 and "Technical Memorandum oil and gas surrogates and modeling data 2014-2-
18.pdf" in the SupplementalData Folder.

Some of the surrogates listed in Exhibit 16 were not used in CMAQ and/or HEM-3. For example, the
"Airport Areas" surrogate was used in HEM-3 but not CMAQ; most airport-related emissions were in the
point inventory and did not need to be spatially allocated.3 To look at the relative importance of the
surrogates within the platform sectors, we computed the toxicity-weighted emissions for the CMAQ
HAPs for the surrogates used in CMAQ (i.e., based on the SCC-to-surrogate assignments for CMAQ);
these are shown in Exhibit 17.

3 SCCs for airport aviation-gas distribution (2501080050, 2501080100, 25080201), which were in the nonpoint NEI
category, uses code 711 ("airport areas") for HEM-3 but not CMAQ. For CMAQ, SMOKE used the area-to-point
algorithm, which assigned these emissions to the geographic coordinates of airports using the ARTOPNT ancillary
file, which included the geographic coordinates of major airports and allocation fractions to assign county-level
emissions to multiple airports in the county.

41


-------
EPA's National-scale Air Toxics Assessment

Exhibit 17. Total and Toxicity-weighted Emissions of CMAQ HAPs Based on the CMAQ Surrogate Assignments

Surrogate
Code

Surrogate Description

Total CMAQ Emissions (HAP and Diesel PM):
Fraction of Sector and Total

Cancer-weighted CMAQ Emissions:
Fraction of Sector and Total

Respiratory-weighted CMAQ Emissions:
Fraction of Sector and Total

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

100

Population







0.99

0.01







216,700







0.92

0.08







18,074







0.57

0.43







22,562

140

Housing Change and
Population







0.11

0.89







60,448







0.07

0.93







16,629







0.00

1.00







170,238

150

Residential Heating -
Natural Gas







1.00









591







1.00









2,960







1.00









1,543

165

0.5 Residential Heating
- Wood plus 0.5 Low
Intensity Residential















1.00

58,529















1.00

263,784















1.00

107,990

170

Residential Heating -
Distillate Oil







1.00









99







1.00









5,490







1.00









315

180

Residential Heating -
Coal







1.00









148







1.00









17







1.00









533

190

Residential Heating -
LP Gas







1.00









49







1.00









248







1.00









173

200

Urban Primary Road
Miles













1.00



59,697













1.00



63,561













1.00



123,133

205

Extended Idle
Locations













1.00



21,888













1.00



59,215













1.00



70,100

210

Rural Primary Road
Miles













1.00



37,604













1.00



34,492













1.00



93,523

221

Urban Unrestricted
Roads













1.00



133,013













1.00



138,931













1.00



211,287

231

Rural Unrestricted
Roads













1.00



81,752













1.00



83,453













1.00



153,654

240

Total Road Miles







1.00









2,557







1.00









261







1.00









133

250

Urban Primary plus
Rural Primary







1.00









2,306







1.00









942







1.00









1

256

Off-Network Short-
Haul Trucks













1.00



3,651













1.00



5,057













1.00



2,841

257

Off-Network Long-
Haul Trucks













1.00



317













1.00



817













1.00



686

258

Intercity Bus Terminals













1.00



7













1.00



22













1.00



20

259

Transit Bus Terminals













1.00



24













1.00



70













1.00



63

260

Total Railroad Miles







1.00









58







1.00









24







0.00









0

261

NTAD Total Railroad
Density



0.59





0.41







916



0.82





0.18







556



0.60





0.40







3,083

42


-------
EPA's National-scale Air Toxics Assessment

Surrogate
Code

Surrogate Description

Total CMAQ Emissions (HAP and Diesel PM):
Fraction of Sector and Total

Cancer-weighted CMAQ Emissions:
Fraction of Sector and Total

Respiratory-weighted CMAQ Emissions:
Fraction of Sector and Total

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

rwc

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

rwc

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

rwc

Total
(TPY)

271

NTAD Class 1 2 3
Railroad Density



1.00













28,137



1.00













15,144



1.00













98,881

280

Class 2 and 3 Railroad
Miles



1.00













1,155



1.00













541



1.00













4,074

300

Low Intensity
Residential







0.31

0.65





0.03

36,870







0.53

0.39





0.08

71,144







0.74

0.13





0.12

21,011

310

Total Agriculture

0.53





0.02

0.46







101,453

0.93





0.01

0.06







226,969

0.48





0.02

0.50







305,616

312

OrchardsA/ineyards

0.97





0.03









539

0.61





0.39









3,502

1.00





0.00









1,424

320

Forest Land

0.99





0.01









97

1.00





0.00









391

0.99





0.01









264

330

Strip Mines/Quarries







1.00









9







1.00









302







1.00









6

340

Land









1.00







643









1.00







641









1.00







759

350

Water









1.00







87,373









1.00







53,031









1.00







8,205

400

Rural Land Area







0

1.00

0





119,240







0.00

1.00

0.00





43,368







0.00

1.00

0.00





7,442

500

Commercial Land







1.00









4,292







1.00









14,162







1.00









7,080

505

Industrial Land







0.74

0.26







21,496







0.84

0.16







15,594







0.35

0.65







25,782

506

Education













1.00



229













1.00



424













1.00



301

507

Heavy Light
Construction Industrial
Land













1.00



21













1.00



40













1.00



30

510

Commercial plus
Industrial







0.11

0.31



0.59



82,646







0.02

0.30



0.67



86,727







0.17

0.49



0.34



61,363

515

Commercial plus
Institutional Land







1.00









1,144







1.00









9,169







1.00









2,249

520

Commercial plus
Industrial plus
Institutional







0.04

0.96







44,805







0.00

1.00







42,735







0.00

1.00







13,253

526

Residential - Non-
Institutional













1.00



473













1.00



352













1.00



128

527

Single Family
Residential







1.00









9,681







1.00









2,103







1.00









1

535

Residential +
Commercial +

Industrial + Institutional
+ Government







0.13





0.87



345,828







0.00





1.00



319,891







0.05





0.95



112,380

540

Retail Trade (COM1)







1.00









48







1.00









15







1.00









29

545

Personal Repair
(COM3)







1.00









11,879







1.00









1,019







1.00









780

43


-------
EPA's National-scale Air Toxics Assessment

Surrogate
Code

Surrogate Description

Total CMAQ Emissions (HAP and Diesel PM):
Fraction of Sector and Total

Cancer-weighted CMAQ Emissions:
Fraction of Sector and Total

Respiratory-weighted CMAQ Emissions:
Fraction of Sector and Total

agfire

c1c2rail

c3marine

nonpt

nonroad

npoilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

555

Professional/Technical
(COM4) plus General
Government (GOV1)







1.00









90







1.00









67







1.00









63

560

Hospital (COM6)







1.00









10







1.00









337







0.00









0

575

Light and High Tech
Industrial (IND2 +
IND5)







1.00









239







1.00









28







1.00









50

580

Food, Drug, Chemical
Industrial (IND3)







1.00









554







1.00









1,777







1.00









490

585

Metals and Minerals
Industrial (IND4)







1.00









10







1.00









4







1.00









1

590

Heavy Industrial (IND1)







1.00









25,345







1.00









22,024







1.00









291

595

Light Industrial (IND2)







1.00









21,569







1.00









885







1.00









987

596

Industrial plus
Institutional plus
Hospitals







1.00









0







0.00









0







0









0

600

Gas Stations







0.23





0.77



51,562







0.84





0.16



10,963







1.00





0.00



5

650

Refineries and Tank
Farms







1.00









3,087







1.00









1,660







1.00









1

675

Refineries and Tank
Farms and Gas
Stations







1.00









16







1.00









9







0









0

680

Oil and Gas Wells











1.00





0











1.00





1











1.00





0

681

Spud count - Oil Wells











1.00





14











1.00





24











0





0

682

Spud count -

Horizontally-drilled

wells











1.00





70











1.00





202











1.00





201

683

Produced Water at all
wells











1.00





107











1.00





202











0.00





0

684

Completions at Gas
and CBM Wells











1.00





212











1.00





597











1.00





256

685

Completions at Oil
Wells











1.00





309











1.00





835











1.00





328

686

Completions at all wells











1.00





1,053











1.00





2,434











1.00





1,321

687

Feet drilled at all wells











1.00





627











1.00





1,935











1.00





1,747

688

Spud count - Gas and
CBM Wells











1.00





35











1.00





42











0.00





0

44


-------
EPA's National-scale Air Toxics Assessment

Surrogate
Code

Surrogate Description

Total CMAQ Emissions (HAP and Diesel PM):
Fraction of Sector and Total

Cancer-weighted CMAQ Emissions:
Fraction of Sector and Total

Respiratory-weighted CMAQ Emissions:
Fraction of Sector and Total

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

agfire

c1c2rail

c3marine

nonpt

nonroad

np_oilgas

onroad

i

o

Total
(TPY)

689

Gas production at all
wells











1.00





36,433











1.00





31,775











1.00





1,131

692

Spud count - all wells











1.00





254











1.00





709











1.00





707

693

Well count - all wells











1.00





835











1.00





1,895











1.00





663

694

Oil production at oil
wells











1.00





8,720











1.00





15,982











1.00





1,648

695

Well count - oil wells











1.00





3,518











1.00





8,951











1.00





4,431

697

Oil production at gas
and CBM wells











1.00





4,666











1.00





5,980











1.00





1,042

698

Well count - gas and
CBM wells











1.00





13,023











1.00





40,438











1.00





28,683

700

Airport area







1.00









54







1.00









72







1.00









3

801

Port Areas







1.00









44







1.00









31







1.00









3

806

Offshore Shipping
NEI2011 NOx



0.76

0.24











25,173



0.56

0.44











22,225



0.76

0.24











89,752

820

Ports NEI2011 NOx



0.34

0.66











6,620



0.08

0.92











17,240



0.34

0.66











23,643

850

Golf Courses









1.00







1,135









1.00







1,674









1.00







200

860

Mines









1.00







414









1.00







104









1.00







1,388

870

Wastewater Treatment
Facilities







1.00









692







1.00









357







1.00









257

880

Drycleaners







1.00









8,300







1.00









830







1.00









0

890

Commercial Timber









1.00







2,263









1.00







1,313









1.00







3,233

Notes: Point sources including fires do not need to be spatially allocated using surrogates so are excluded from this table. Shading in the "Total" columns corresponds to the emission
value, with warmer colors corresponding to higher emissions.

45


-------
EPA's National-scale Air Toxics Assessment

2.2.2.2 Speciation

Speciation converts the inventory species to the species needed by the model (model species). To generate
the appropriate model species from the inventory species, inventory species need to be speciated and/or
aggregated. These are done as a part of Smkinven and Spcmat SMOKE modules.

During the reading of the inventory, Smkinven uses the inventory table (ancillary file input to SMOKE)
to subset the pollutants to only those that will be used in CMAQ. In addition, the inventory table provides
the metal conversion factor for inventory compounds that contain additional non-metal components, to
adjust the mass emissions to just the metal portion. Most metal-compound emissions in the NEI
correspond to only the metal portion, so only a limited number of compounds require the metal
conversion factor. Starting with the 2008 NEI and continuing for the 2011 NEI, most metal compounds
(i.e., selenium oxide, lead nitrate) were retired (i.e., no longer allowed to be reported) and S/L/Ts were
provided a set of factors to convert to just the metal portion. The few compounds reported for the 2011
NEI for which the SMOKE inventory table applies a metal conversion factor are nickel oxide (factor =
0.74 1 24), chromium trioxide (factor = 0.52), chromic acid (VI) (factor = 0.4406).

Also during the reading of the inventory, SMOKE computes NONHAPVOC by subtracting benzene,
acetaldehyde, formaldehyde, and methanol (BAFM) from VOC for sources within sectors in which
integration of CAP and HAP will occur (other than onroad since speciation is done within the
MOVES2014 model). Integration allows the emissions of BAFM in the inventory to be used directly for
speciation in place of the speciation fractions provided in the speciation profiles. This in turn provides
consistency between the inventory and the CMAQ-model species for these explicit CMAQ HAPs. To
implement HAP integration, the speciation profiles were revised to remove BAFM and were
renormalized. The resultant non-BAFM profiles were renamed NONHAPTOG profiles. (TOG is total
organic gases, and is VOC plus species of nonreactive organic gases such as methane.)

The remainder of the conversion of inventory species to model species occurs within Spcmat. Spcmat
converts VOC and NONHAPVOC into model species using TOG and NONHAPTOG speciation profiles
based on the inventory SCC. Spmat converts PM2 5 into model species using PM speciation profiles also
based on the SCC. Most inventory HAPs are mapped to themselves, except metals are speciated into
coarse and fine particulates, and xylenes (mixed isomers) are speciated into m-, o- and p-xylenes. In
addition, mercury is speciated into elemental, divalent, and particulate forms. We used unit-specific (i.e.,
specific to particular boiler unit at a power plant) profiles to speciate mercury from electricity generating
units (EGUs) based on EGU speciation data. For new units since 2005, profiles were mapped to units
based on the fuel, configuration, and technology. Profiles for other mercury-emitting categories are based
on SCC, and were the same as those used in the 2005 platform (for mercury). Speciation profiles for
mercury and other HAPs are in Appendix D.

Speciation with HAP integration is further described in detail in the 201 lv6.2 platform documentation.
Sources in nonpoint and nonroad data categories have partial integration. Sources need to have at least
one BAFM compound to be integrated. For example, nonroad sources fueled with liquefied petroleum gas
or compressed natural gas were not integrated because NMIM does not estimate any BAFM.

The one key difference between the 201 lv6.2 platform and the NATA platform is the speciation of the
non-integrated U.S. sources (i.e., point, fires, and any sources within nonpoint or nonroad that are not

4 This factor should have been 0.7858 because the molecular weight for nickel is 58.6934 and for nickel oxide is
74.69. This occurred due possibly to an incorrect CAS for this compound.

46


-------
EPA's National-scale Air Toxics Assessment

integrated). For NATA, for non-integrated sources, we did not use explicit BAFM from the profiles, but
rather we used these HAPs from the inventory. In this case, we created un-normalized NONHAPTOG
profiles that remove BAFM, and we used inventory BAFM for the model species. In other platforms, the
BAFM are dropped from non-integrated sources because these species are created from the inventory

voc.

The chemical mechanism used for the 2011 NATA platform was the CB05 mechanism (Yarwood 2005).
The assignment of compounds to model species was based on a version 1 mapping of CB05 that assigned
numerous compounds to "FORM" and "ALD2" (which were meant, in CB05, to be explicit formaldehyde
and acetaldehyde). It was believed that these compounds reacted quickly in the atmosphere to form
formaldehyde and acetaldehyde. However, subsequent to the NATA platform, these assignments were
redone so that only formaldehyde and paraformaldehyde are assigned to FORM and only acetaldehyde is
assigned to ALD2.

Exhibit 18 and Exhibit 19 contain the model species provided by SMOKE. The last column indicates
whether the model species was added specifically for the NATA CMAQ Platform case. Note that some of
the model species came from directly from the inventory and others were generated via speciation of
inventory pollutants. As mentioned earlier, FORM, which is formaldehyde, was made up of inventory
formaldehyde and some NONHAPVOC species (from speciation) that were mapped to FORM but were
not explicit formaldehyde. Some inventory HAPs were mapped to multiple model species or were
duplicated. For example, inventory formaldehyde was mapped to both FORM and FORMPRIMARY,
which allowed the secondary formaldehyde to be estimated (FORM - FORM PRIMARY). Note
FORM PRIMARY was generated solely from inventory formaldehyde, and ALD2 PRIMARY was
generated solely from inventory acetaldehyde. Inventory benzene was mapped to BENZENE, PAR, and
UNR. Other than in Canada and Mexico, we did not create HAPs by speciating VOCs.

Exhibit 18. Gaseous Species Produced by SMOKE for the 2011 NATA Platform

Inventory Pollutant

Model Species

Description of Model
Species

NATA

Air
Toxic?

Added

for
CMAQ
NATA?

Cl2

CL2

Atomic gas-phase chlorine

Y

N

HCI

HCL

Hydrogen Chloride
(hydrochloric acid) gas

Y

N

CO

CO

Carbon monoxide

N

N

NOx

NO

Nitrogen oxide

N

N

N02

Nitrogen dioxide

N

N

HONO

Nitrous acid

N

N

SO2

S02

Sulfur dioxide

N

N

SULF

Sulfuric acid vapor

N

N

NHs

NH3

Ammonia

N

N

NH3_FERT

Fertilizer ammonia

N

N

Benzene

BENZENE

Benzene

Y

N

Acetaldehyde

ALD2

Acetaldehyde

Y

N

47


-------
EPA's National-scale Air Toxics Assessment

Inventory Pollutant

Model Species

Description of Model
Species

NATA

Air
Toxic?

Added

for
CMAQ
NATA?

Acetaldehyde

ALD2_PRIMARY

Acetaldehyde-primary
emissions

Y

Y

Acrolein

ACROLEIN

Acrolein

Y

N

Acrylonitrile

ACRYLONITRILE

Acrylonitrile

Y

Y

1,3-Butadiene

BUTADIENE13

1,3-Butadiene

Y

Y

Carbon tetrachloride15

CARBONTETb

Carbon tetrachloride15

Y

Y

Chloroform

CHCL3

Chloroform

Y

Y

1,4-Dichlorobenzene(p)

DICHLOROBENZENE

1,4-Dichlorobenzene(p)

Y

Y

1,3-Dichloropropene

DICHLORPROPENE

1,3-Dichloropropene

Y

Y

Ethylene dibromide (Dibromoethane)

BR2_C2_12

Ethylene dibromide

Y

Y

Ethylene dichloride (1,2-Dichloroethane)

CL2_C2_12

Ethylene dichloride

Y

Y

Ethylene oxide

ETOX

Ethylene oxide

Y

Y

Formaldehyde

FORM

Formaldehyde

Y

N

Formaldehyde

FORM_PRIMARY

Formaldehyde-primary
emissions

Y

Y

Hexamethylene-1,6-diisocyanate

HEXAMETH_DIIS

Hexamethylene-
1,6diisocyanate

Y

Y

Hydrazine

HYDRAZINE

Hydrazine

Y

Y

Maleic Anyhydride

MAL_ANYHYDRIDE

Maleic Anyhydride

Y

Y

Methanol

MEOH

Methanol

Y

Y

Methylene chloride (Dichloromethane)

CL2_ME

Methylene chloride
(Dichloromethane)

Y

Y

Naphthalene

NAPHTHALENE

Naphthalene

Y

Y

Specific PAHs assigned with URE = 0

PAH_000E0

Specific PAHs assigned with
URE = 0

Y

Y

Specific PAHs assigned with URE =
1.76E-5

PAH_176E5

Specific PAHs assigned with
URE = 1.76E-5

Y

Y

Specific PAHs assigned with URE =
8.80E-5

PAH_880E5

Specific PAHs assigned with
URE = 8.80E-5

Y

Y

Specific PAHs assigned with URE =
1.76E-4

PAH_176E4

Specific PAHs assigned with
URE = 1.76E-4

Y

Y

Specific PAHs assigned with URE =
1.76E-3

PAH_176E3

Specific PAHs assigned with
URE = 1.76E-3

Y

Y

Specific PAHs assigned with URE =
1.76E-2

PAH_176E2

Specific PAHs assigned with
URE = 1.76E-2

Y

Y

48


-------
EPA's National-scale Air Toxics Assessment

Inventory Pollutant

Model Species

Description of Model
Species

NATA

Air
Toxic?

Added

for
CMAQ
NATA?

Specific PAHs assigned with URE =
1.01E-2

PAH_101E2

Specific PAHs assigned with
URE = 1.01E-2

Y

Y

Specific PAHs assigned with URE =
1.14E-1

PAH_114E1

Specific PAHs assigned with
URE = 1.14E-1

Y

Y

Specific PAHs assigned with URE =
1.92E-3

PAH_192E3

Specific PAHs assigned with
URE = 1.92E-3

Y

Y

Propylene dichloride
(1,2Dichloropropane)

PROPDICHLORIDE

Propylene dichloride
(1,2Dichloropropane)

Y

Y

Quinoline

QUINOLINE

Quinoline

Y

Y

1,1,2,2-Tetrachloroethane

CL4_ETHANE1122

1,1,2,2-Tetrachloroethane

Y

Y

Tetrachloroethylene (Perchloroethylene)

CL4_ETHE

Tetrachloroethylene
(Perchloroethylene)

Y

Y

Toluene

TOLU

Toluene

Y

Y

2,4-Toluene diisocyanate

TOL_DIIS

2,4-Toluene diisocyanate

Y

Y

Trichloroethylene

CL3_ETHE

Trichloroethylene

Y

Y

Triethylamine

TRIETHYLAMINE

Triethylamine

Y

Y

m-xylene, xylene (mixed isomers)

MXYL

m-xylene, xylene (mixed
isomers)

Y

Y

o-xylene, xylene (mixed isomers)

OXYL

o-xylene, xylene (mixed
isomers)

Y

Y

p-xylene, xylene (mixed isomers)

PXYL

p-xylene, xylene (mixed
isomers)

Y

Y

Vinyl chloride

CL_ETHE

Vinyl chloride

Y

Y

Mercury

HGNRVA

Elemental mercury

Y

Y



HGIIGAS

Divalent gaseous mercury

Y

Y

VOC

ALD2

Acetaldehyde



N



ALDX

Propionaldehyde and higher
aldehydes



N



CH4

Methane a



N



ETH

Ethene



N



ETHA

Ethane



N



ETOH

Ethanol



N



FORM

Formaldehyde



N



IOLE

Internal olefin carbon bond
(R-C=C-R)



N



ISOP

Isoprene



N

49


-------
EPA's National-scale Air Toxics Assessment

Inventory Pollutant

Model Species

Description of Model
Species

NATA

Air
Toxic?

Added

for
CMAQ
NATA?



MEOH

Methanol



N

NVOL

Non-volatile



N

OLE

Terminal olefin carbon bond
(R-C=C)



N

PAR

Paraffin carbon bond



N

TERP

Terpenes



N

TOL

Toluene and other monoalkyl
aromatics



N

UNK

Unknown



N

UNR

Un reactive



N

XYL

Xylene and other polyalkyl
aromatics



N

VOC species from the biogenics model
that do not map to model species above

SESQ

Sesquiterpenes



N

NR

Non-reactive



N

a Technically, CH4 is not a VOC but part of TOG.

b Carbon tetrachloride CMAQ concentrations were not used; it was dropped from the hybrid.

Exhibit 19. Particulate Species Produced by SMOKE for the 2011 NATA Platform

Inventory
Pollutant

Model Species

Model species description

NATA

Air
Toxic?

Added
Special

for
NATA
Platform

PM10

PMC

Coarse PM > 2.5 microns and < 10 microns

N

N



DIESEL_PMC

Coarse PM > 2.5 microns and < 10 microns, diesel sources

Y

Y

PM2.5

PEC

Particulate elemental carbon < 2.5 microns

N

N



PN03

Particulate nitrate <2.5 microns

N

N



POC

Particulate organic carbon (carbon only) <2.5 microns

N

N



PS04

Particulate Sulfate < 2.5 microns

N

N



PAL

Particulate aluminums 2.5 microns

N

N



PC A

Particulate calcium < 2.5 microns

N

N



PCL

Particulate chloride <2.5 microns

N

N



PFE

Particulate iron < 2.5 microns

N

N



PH20

Particulate water < 2.5 microns

N

N



PK

Particulate potassium < 2.5 microns

N

N

50


-------
EPA's National-scale Air Toxics Assessment

Inventory
Pollutant

Model Species

Model species description

NATA

Air
Toxic?

Added
Special

for
NATA
Platform



PMG

Particulate magnesium < 2.5 microns

N

N

PMN

Particulate manganese < 2.5 microns

N

N

PMOTHR

Other particulate matter < 2.5 microns

N

N

PNA

Particulate sodium < 2.5 microns

N

N

PNCOM

Particulate non-carbon organic matter < 2.5 microns

N

N

PNH4

Particulate ammonium < 2.5 microns

N

N

PSI

Particulate silica <2.5 microns

N

N

PTI

Particulate titanium < 2.5 microns

N

N

DIESEL_PMEC

Particulate elemental carbon < 2.5 microns, diesel sources

Y

Y

DIESEL_PMFINE

Other particulate matter <2.5 microns, diesel sources

Y

Y

DIESEL_PMN03

Particulate nitrate <2.5 microns, diesel sources

Y

Y

DIESEL_PMOC

Particulate organic carbon (carbon only) < 2.5 microns,
diesel sources

Y

Y

DIESEL_PMS04

Particulate Sulfate < 2.5 microns, diesel sources

Y

Y

Nickel, nickel
oxide, nickel
refinery dust

NICKEL_C

Coarse particulate nickel

Y

Y

NICKEL_F

Fine particulate nickel

Y

Y

Chromium VI,
chromium
(VI) acid,
chromium
trioxide

CHROMHEX_C

Coarse particulate chromium VI

Y

Y

CHROMHEX_F

Fine particulate chromium VI

Y

Y

Chromium III

CHROMTRI_C

Coarse particulate chromium III

Y

Y

CHROMTRI_F

Fine particulate chromium III

Y

Y

Arsenic

ARSENIC_C

Coarse particulate arsenic

Y

Y

ARSENIC_F

Fine particulate arsenic

Y

Y

Beryllium

BERYLLIUM_C

Coarse particulate beryllium

Y

Y

BERYLLIUM_F

Fine particulate beryllium

Y

Y

Cadmium

CADMIUM_C

Coarse particulate cadmium

Y

Y

CADMIUM _F

Fine particulate cadmium

Y

Y

Manganese

MANGANESE_C

Coarse particulate manganese

Y

Y

MANGANESE_F

Fine particulate manganese

Y

Y

Lead

LEAD_C

Coarse particulate lead

Y

Y

LEAD_F

Fine particulate lead

Y

Y

51


-------
EPA's National-scale Air Toxics Assessment

Inventory
Pollutant

Model Species

Model species description

NATA

Air
Toxic?

Added
Special

for
NATA
Platform

Mercury

PHGI

Particulate divalent mercury

Y

Y

2.3 Emissions Preparation for HEM-3

For the 2011 NATA, we used HEM-3 to run AERMOD. HEM-3 does not perform the emission-
processing steps of temporal and spatial allocation, nor does it provide defaulted release characteristics, so
there were a number of processing steps that needed to take place.

The key processing steps for preparing emissions for HEM-3 (i.e., for AERMOD) were source
characterization temporal and spatial allocation. We developed "HEM run groups" to organize the
modeling by these processing steps. Different HEM-3 runs were made for each grouping due to spatial,
temporal, and release-parameter (height/building) differences.

It should be noted that the following emission sources were not modeled in HEM-3 (only modeled in
CMAQ): agricultural burning, prescribed fires and wildfires (which were combined as "fires"), and
biogenic emissions.

2.3.1 Overview of Differences in Emissions Processing Between CMAQ and HEM-3

Sections 2.3.1.1 and 2.3.1.2 below contain discussions on the spatial and temporal allocation used in the
HEM-3 modeling and how they differ from those used in the CMAQ modeling.

2.3.1.1 Spatial Allocation

Exhibit 20 contains the different geometries used for inputting emissions into HEM-3 depending on the
types of sources in the inventory. For CMAQ, all emissions for the 2011 NATA were gridded
horizontally at 12-km resolution, regardless of the category. For HEM-3, different sources used different
treatment. Point sources were modeled using the geographic coordinates provided in the inventory. For
some facilities, multiple release points were given different coordinates to characterize the specific release
points at a facility. The release-point-specific coordinates were used directly by HEM-3. For other
facilities, there may be multiple release points provided, but only a single latitude and longitude. In this
situation, all release points were modeled at that single location. Fugitive-release points at facilities were
also associated with geographic coordinates that were used for modeling. Airports were similar; however,
a separate dataset of runway information was assigned to NEI airports and used (details are provided in
Section 2.3.4).

Exhibit 20. Approach for Spatial Allocation—HEM-3 versus CMAQ

Category

NEI Resolution

Spatial Approach for HEM-3

Spatial Approach for CMAQ

Point (excluding
airports)

Point

Point—vertical stack and
fugitive based on NEI
information on emission-release
point

12-km grid cells,
vertical based on plume
calculations

Airports

Point

Point—runways & 10-m-square
areas consistent with NEI
geographic coordinates

12-km grid cells

52


-------
EPA's National-scale Air Toxics Assessment

Category

NEI Resolution

Spatial Approach for HEM-3

Spatial Approach for CMAQ

Locomotives

Point (railyards)
and County/Shape

Nonpoint—tracts
Point—point fugitives

12-km grid cells

CMVs, ports, and
underway

County/Shape

Shapes from the NEI; separate
shapes used for CMV at ports
versus underway

12-km grid cells

Onroad, nonroad
equipment, and other
nonpoint

County

Census tracts

12-km grid cells

Agricultural burning and
biogenic emissions

County

Not Modeled

12-km grid cells

Fires (prescribed and
wild)

Point

Not Modeled

12-kmgrid cells, vertical based on
plume calculations

Three different approaches for spatial allocation were used to produce emission inputs for HEM-3: point,
shape, and tract, where fugitives, shapes, and tracts were treated as HEM-3 "area" sources and point
sources were run as HEM-3 point sources. Point sources were run at a specific latitude and longitude.
Area sources were run as a flux over a specific polygon. For fugitives, the polygons are generally small
(i.e., smaller than facility dimensions) and well-defined rectangular polygons based on the NEI point-
source inventory and were be modeled at the specific geographic location and dimensions provided by the
release-point parameters in the NEI. Shape-level emissions were new to NATA, introduced to the NEI in
2008. Shapes provide sub-county-resolution emissions data estimated by S/L/T or EPA, accounting for
the fact that the emissions are limited to particular areas of the county. These were available for CMVs at
ports and underway and for locomotives. For NATA, the port and underway shapes were simplified into
polygons that can be input into HEM-3. The locomotive shapes were not used due to the large number of
them; instead, they were allocated to tracts like the other county-level emissions.

For onroad, nonroad, and nonpoint data categories other than locomotives and CMVs, the NEI reported
emissions at the county level. The NEI reported locomotives and CMVs as shapes. In the 2011 NATA,
HEM-3 was run at the tract level for locomotives and sources reported at the county level, and HEM-3
was run at the NEI shapes for CMVs. Census tracts are land areas defined by the U.S. Census Bureau that
vary in size and typically contain about 4,000 residents each. Census tracts are typically smaller than 2
square miles in cities, but are much larger in rural areas. Similar to previous NATAs, we spatially
allocated the county-level emissions reported in NEI to the census tracts within the county. To make the
county-to-tract emissions assignments, we used spatial-allocation factors derived from the distributions of
various "spatial surrogates" that have geographic patterns expected to be similar to the geographic
patterns of the source of the emissions. The spatial-surrogate underlying data were the same as those used
for CMAQ except that (see Section 2.2), for areas outside the CMAQ domain (i.e., Alaska, Hawaii,

Puerto Rico and the U.S. Virgin Islands), some of the surrogates were unavailable. In such cases, a
secondary or tertiary surrogate was used.

The workbook of surrogate documentation provided in the SupplementalData folder includes the
geographic extent of the spatial surrogates. We added three county-specific county-to-tract surrogates
(Maricopa truck stops for extended idling, Maricopa golf courses, and Hawaii commercial lawn) and
made some changes to spatial-allocation assignments as a result of the S/L/T agency comments received
during the preview (which were not utilized for the CMAQ modeling).

The following data related to the census-tract surrogates can be found in the SupplementalData folder:

53


-------
EPA's National-scale Air Toxics Assessment

•	Cross-references of spatial surrogates by SCC ("SCC	spatialsurrogatcs_xrcf.xlsx")

•	Definitions and sources of spatial-surrogate data
("US_SpatialSurrogate_Workbook_v072115. xlsx")

•	Database of census-tract spatial-surrogate fractions
(""SpatialSurrogatc_CcnsusTract_FRACTIONS_finalNATA.zip")

•	County-specific census-tract fractions for commercial lawn equipment and garden equipment for
Maricopa County, AZ and Honolulu, HI, and for truck stops for Maricopa County
(""countyspccific_ccnsustractsurrogatcs.zip").

Spatial-allocation factors for county-to-tract were generated by the Spatial Surrogate Tool, which was the
same tool used to generate surrogates for county-to-grid-cells. This tool had to be updated to produce
surrogates based on census tracts for NATA.

2.3.1.2 Temporal Allocation

Exhibit 21 contains descriptions of the differences between HEM-3 and CMAQ in the temporal variation
of emissions used for NATA. While CMAQ read in hourly emissions for each pollutant within a 12-km
grid cell, HEM-3 used different temporal keywords along with scalars that provided the variation in
emissions at seasonal, monthly, day-of-week, or hourly time steps. That does not mean the temporal
approach is more refined in CMAQ, as hourly emissions were not available for all sources in the
inventory and temporal profiles were used to produce the hourly data. In particular, the level of detail for
temporalization for point sources was the same in HEM-3 and CMAQ. For other categories, CMAQ had a
more refined approach because HEM-3 was not temporalized by pollutant (other than onroad, which
retained season seasonal variations at the pollutant level) and because all sources within a HEM run group
(see Section 2.3.2) used the same temporal profiles (with the exception of onroad sources, which use
county-specific, but not SCC-specific, temporalization across pollutants and sources).

Exhibit 21. Temporal-allocation Approach—HEM-3 versus CMAQ

Category

Resolution Available for
NEI Modeling a

Temporal Approach for HEM-3

Temporal
Approach for
CMAQ

Point (including
airports)

Annual

Monthly/day-of-week/hourly profiles
applied to sources consistent with
NATA CMAQ platform

Hourly by pollutant

Point—EGU
sources

Hourly emissions for NOx,
SO2 and hourly heat inputb

Hourly (HOUREMIS) by facility and unit
using emissions from CMAQ

Hourly by pollutant

RWC

Annual

Hourly (HOUREMIS) based on CMAQ
hourly emissions (summed across
SCCs) of VOCs and PM2.5

Hourly by pollutant

Nonpoint and
locomotives

Annual

U n ifo rm mo nth ly/d ay-of-wee k/h 0 u rly
profiles based on the most-used profile
across these SCCs from CMAQ
platform (HROFDY)

Hourly by pollutant

CMV

Annual

U n ifo rm mo nth ly/d ay-of-wee k/h 0 u rly
profiles based on monthly pattern from
CMAQ platform (MONTH)

Hourly by pollutant

Nonroad

Monthly

Pollutant-specific seasonal variation.
Uniform seasonal/monthly/day-of-week
profiles. Hourly profile based on the
most-used profile across these SCCs
from the CMAQ platform.

Hourly by pollutant

54


-------
EPA's National-scale Air Toxics Assessment

Category

Resolution Available for
NEI Modeling a

Temporal Approach for HEM-3

Temporal
Approach for
CMAQ

Onroad

Hourly

Pollutant-specific seasonal variation.
Monthly/weekday-Saturday-
Sunday/hourly profiles based on single
pollutant

Hourly by pollutant

Agricultural
burning

County-monthly

Not Modeled

Hourly by pollutant

Biogenic
emissions

Hourly

Not Modeled

Hourly by pollutant

Fires (prescribed
and wild)

Daily

Not Modeled

Hourly by pollutant

a NEI has annual resolution but some of the data that was used to create the NEI (or was available prior to inputting the
data to SMOKE or the process for HEM-3) was sub-annual.

b From continuous emissions-monitoring data reported to EPA's Clean Air Markets Division (EPA 2015h).

2.3.2 HEM Run Groups

Exhibit 22 contains descriptions of the HEM run groups. HEM run groups provided a way to organize the
sources that shared similar approaches to emission characterization, such as the release characteristics,
spatial allocations, and temporal allocations. HEM run groups were further divided into source groups for
purposes of providing risk results. For all but the point HEM run groups, all sources within the same
HEM run group were modeled with the same release characteristics and spatial and temporal profiles. For
the point HEM run groups, sources can have different temporal profiles for different facilities or sources
within the facility.

55


-------
EPA's National-scale Air Toxics Assessment

Exhibit 22. HEM Run Groups Based on the Nonpoint and Nonroad NEI Data Categories

HEM
Run
Group

NEI Category and
NATA CMAQ Platform
Modeling Sector

HEM-3 Modeling Features: Release Height
(RH; meters), Initial Vertical Dispersion (cz;
meters), and Spatial and Temporal Approach

Description of Sources

NP—
10 meters

NEI: nonpoint

Platform: some of
nonpt, np_oilgas

RH=10
CTZ =4.7
Spatial: tract

Temporal: uniform monthly/day-of-week/hourly
profile 26 (smooth curve with midday peak -
see Exhibit 28).

Sources: industrial processes
(e.g., chemical plants, oil and
gas, refineries, mines,
metals); solvents (industrial
surface coating;, graphic
arts); fuel combustion ICI;
bulk gas terminals; waste
disposal

RWC

NEI: nonpoint
Platform: rwc

RH = 6.4
CTZ = 3.2
Spatial: tract

Temporal: hourly by county: sum PM2.5 and
VOC by hour and county based on the 2011
NEIv6.1 platform (the 2011 NEI v1 emissions)

Sources: fireplaces,
woodstoves, hydronic
heaters used for residential
heating

NP—
OtherLow

NEI: nonpoint

Platform: part of
c1c2rail, partofnonpot

RH = 3.9
az = 3.6
Spatial: tract

Temporal: same as NP—10meters

Solvents (consumer,
commercial); nonindustrial
surface coating (architectural
coating); dry cleaning;
solvent degreasing,
commercial cooking; gas
stations (stage 1);
miscellaneous non-industrial
NEC (portable gas cans, auto
repair shops, structure fires,
and nonpoint mercury
categories such as human
cremation, dental amalgam,
residential fuel combustion
except wood, locomotives).
Note locomotive release
height based on web
searches.

Nonroad

NEI: nonroad
Platform: nonroad

RH = 2

CTz = 1

Spatial: tract

Temporal: seasonal, pollutant specific. Monthly
emissions were uniform within each season.
Diurnal use profile 26 (it was determined to
apply to 77% of risk- weighted HAP emissions
and 93% of diesel PM)

Nonroad equipment such as
lawn mowers, turf equipment,
construction equipment,
commercial generators,
power-washing equipment,
pleasure craft

56


-------
EPA's National-scale Air Toxics Assessment

HEM
Run
Group

NEI Category and
NATA CMAQ Platform
Modeling Sector

HEM-3 Modeling Features: Release Height
(RH; meters), Initial Vertical Dispersion (ctz;
meters), and Spatial and Temporal Approach

Description of Sources

CMV with
port and
underway
shapes

NEI: nonpoint

Platform: part of
c1c2rail, c3marine

RH = 8 (based on range of 5-10 m for c1/c2
and was chosen with input from OTAQ)

ctz = 7.4

Spatial: port and underway shapes in the NEI

Temporal: Uniform monthly/day-of-week/hourly
profiles based on monthly pattern from CMAQ
platform (MONTH)

c1/c2 and c3 marine vessels,
excluding: rail (locomotives)
which is in MP-other low, and
emissions in Federal Waters
(FIPS=85)

Onroad

Light

Duty

NEI: onroad

Platform: onroad,
onroad_ca

RH = 1.3

CTz = 1.2

Spatial: tract

Temporal: seasonal temporal variation is
pollutant-specific and county-specific. County-
specific seasonal/monthly/day-of-week/hourly
profiles were the same across all pollutants and
were based on benzene hourly emissions from
SMOKE-MOVES.

Passenger cars, motorcycles,
light-duty trucks, and
refueling of all sources (light-
and heavy-duty vehicles)

Onroad

Heavy

Duty

NEI: onroad

Platform: onroad,
onroad_ca

RH = 3.4
CTZ = 3.2
Spatial: tract

Temporal: same as above but the profiles were
based on hourly emissions of PM2.5

Heavy-duty diesel, heavy-
duty gas, buses

Point,

excluding

airports

NEI: point

Platform: part of
ptnonipm, ,pt_oilgas,
ptegu

RH and ctz based on stack parameters for point
sources. For area sources, RH based on
release height and cz was 0.

Spatial: point = coordinates; area = coordinates
+ dimensions

Temporal:

For ptnonimpm and pt_oilgasj. monthly, day-of-
week, diurnal based on SCC (same approach
was used in 2011 modeling platform)

For ptegu: hourly profiles based on sum of PM,
CO, and VOC emissions

Facilities in the point
inventory—for all facilities
except those with facility
source code = 100,
emissions used at facility-
unit-process-release point
level. Also excluding asphalt
plants with no geographic
coordinates (those that move
around) and facilities with no
HAP emissions.

57


-------
EPA's National-scale Air Toxics Assessment

HEM
Run
Group

NEI Category and
NATA CMAQ Platform
Modeling Sector

HEM-3 Modeling Features: Release Height
(RH; meters), Initial Vertical Dispersion (cz;
meters), and Spatial and Temporal Approach

Description of Sources

Airports

NEI: point

Platform: part of
ptnonipm

RH = 3

az = 3
Spatial:

For runway-area (line) sources: length based on
NTAD or OTAQ runway endpoint coordinates;
50-m width for the major airports, 25-m width for
the OTAQ-provided (smaller) airports. All facility
emissions (NEI) spread equally over the
runway(s).

For non-runway sources. 10-m-square area
centered on NEI coordinates.

Temporal: same as used in CMAQ—
monthly/day-of-week/hourly profiles. Monthly
and hourly profiles different for commercial
versus general-aviation airports; monthly also
different for Alaska seaplanes.

Facilities in the point
inventory—all emissions
where facility source type
code = 100 (airports).
Emissions used at the facility
unit's process release point.

2.3.3 Point Excluding Airports

Point sources in the ptnonipm sector of the NATA platform were modeled differently from those in the
ptegu sector with respect to the temporalization of the emissions. The ptegu sectors were temporalized
allowing for hourly variation at the unit level, whereas the ptnonipm (including ptoilgas) used the
monthly, day-of-week, and diurnal profiles used by SMOKE. Within the run, each ptegu unit was
temporalized using hourly emission values as discussed in Section 2.3.3.2. Non-EGU units were modeled
in HEM-3 using temporal-allocation factors derived from the temporal profiles used in SMOKE for
CMAQ. Many facilities included a mixture of EGU and non-EGU processes. In such cases, all sources at
a given facility were modeled in the same HEM-3 run.5 This ensured that ambient impacts were
calculated for a consistent set of receptor locations for all sources at the facility.

2.3.3.1 Point: Non-EGU

Sources in the ptnonipm sector were modeled as point sources or area sources in HEM-3, with temporal
variations addressed using the variable-emission (EMISFACT) feature of HEM-3. This allows the model
to read emission scalars, which adjust the annual-average emissions based on month, day-of-week, and
hour-of-day. Different options were used, depending on how the emissions vary (hour-of-day only, hour-
of-day and day-of-week, etc.). The actual profiles applied were the same as those applied for the
SMOKE/CMAQ processing (see bullet 9d below for more details).

The following processing steps were used:

1. Temporal profiles to be used for each emission point were read from the SMOKE ptnonipm
temporal-profiles report. Key data fields were the facility ID, unit ID, release point ID, process
ID, monthly temporal profile code, daily temporal profile code, and hourly temporal profile code.

5 AERMOD temporalization is perfonned at the level of source IDs, so using different temporalization schemes at
one facility is possible.

58


-------
EPA's National-scale Air Toxics Assessment

2.	The annual-emission file (SMOKE FF, ptnonipm) was read. Key fields were the facility ID, unit
ID, release point ID, process ID, the emission release type code, SCC, pollutant code, annual
emissions, latitude, longitude, stack release point parameters, and fugitive release point emission
parameters.

3.	Annual emission file records with a facility source code of "100" (airports) were excluded.
Airport emission records were processed separately.

4.	The annual-emission file is matched to the temporal file using a concatenation of facility ID, unit
ID, release point ID, and process ID. The monthly, daily, and hourly temporal profile codes were
then copied into the annual file.

5.	The annual file was matched to a pollutant cross-reference file, which links the pollutant codes
(primarily CAS numbers) used in the NEI to the pollutant library used in HEM-3. The cross-
reference file, developed for the 2005 NATA and Risk and Technology Review (RTR; EPA
2015i) modeling efforts, was updated for the 2011 NATA relying on the valid codes in the
pollutant-code table in the EIS. HEM-3 HAP identifiers were copied to the annual-emissions file,
along with factors that will be used to adjust emissions of certain HAP compounds to reflect the
fraction of HAP content. For instance, chromic acid (ftCrO/O emissions were multiplied by a
factor of 0.4406 so that only the chromium portion of the molecule mass will be compared with
the dose-response value. In this step, different NEI HAP species may be linked to the same HEM-
3 pollutant, so that emissions will be combined in the modeling step. For example: glycol ether
species were put in the lumped pollutant category called "glycol ethers," specific polychlorinated
biphenyls were put into the category "Polychlorinated biphenyls," and hydrogen cyanide and
cyanide were lumped into "cyanides."

6.	Missing source parameters were defaulted for fugitive sources (emission release type code = 01).
Length and width values less than one meter were also replaced. The following defaults were
applied:

a)	If width or length was missing, the parameter was assigned a value of 10 m.

b)	If width or length was less than 1 m, the parameter was set to 1 m.

c)	If width, length, and height were all missing, height was set to 3.05 m, and length and
width were each set to 10 m.

d)	If height was missing but length and width were populated with nonzero values, height
was left at 0.

e)	If angle was missing, it was left at 0.

7.	The NEI had no missing parameters for vertical stacks (i.e., emission release type code = 02). For
emission release types of 03-06 (i.e., non-fugitive releases), there may be missing parameters. In
those cases, missing vertical stack parameters were defaulted as follows:

a)	Exit-gas velocity: computed from flow rate and diameter if those parameters were
available, otherwise used SCC-specific6 or global SMOKE default (4 m/s) value.

b)	Exit-gas temperature: used SCC-specific or global SMOKE default 295.4 K) value.

6 The SCC defaults, which are in metric units (i.e., m, m/s, and K) are in the "PSTK" ancillary file
(pstk_20nov2006_v0.txt) which is available from the 201 lv6.2 platform ancillary data (specifically here).

59


-------
EPA's National-scale Air Toxics Assessment

c)	Inside release-point diameter: used SCC-specific or global SMOKE default (0.2 m)
value.

d)	Release-point height: used SCC-specific or global SMOKE default (3 m) value.

8.	Within each facility, an alphanumeric source ID that was no more than eight characters in length
was assigned to each unique combination of unit ID, process ID, and emission release point ID.
The source ID sequence began with S0000001 for each facility. The linkage of source ID to
inventory IDs (i.e., unit ID, release Point ID, process ID, and emission release type code) was
archived. (Source IDs were unique within a particular facility, but not among facilities.)

9.	An intermediate file was written with a separate record for each source ID and for each HEM-3
pollutant (consolidating some inventory pollutants such as glycol ethers). This was used to create
four separate files used by HEM-3, as follows:

a) Facility list options file, one record per facility. This file contained the facility ID, along
with model settings to be used in HEM-3, such as the overall radius of the modeling
domain, the cutoff distance for discrete-receptor modeling, and the specifications of the
polar grid to be used for interpolation calculations in the region beyond the discrete
modeling cutoff. Exhibit 23 contains a description of the fields in the facility list options
file.

Exhibit 23. Fields in the HEM-3 Facility List Options File

Field

Default Setting
(if field left blank)

Description

Facility ID



Alphanumeric string identifying the facility being modeled; up to 30
characters long.

Met station

Met station selected by
model as closest to the
facility

The name of the meteorological surface station to be used by HEM-3
when modeling each facility; up to 20 characters long; generally
chosen by model but you have the option of specifying.

Rural/Urban

D for default

Used to set the type of dispersion environment for HEM-3. "R"
indicates rural land use surrounding the facility; "U" indicates urban
land use; and "D" indicates the default setting under which the model
will find the nearest Census block to the facility center and determine
whether that Census block is located in an urbanized area as
designated by the 2010 Census. [Note: The default setting when
using the 2000 Census is always rural.]

Max distance

50,000 m

The outside maximum radius of the modeling domain (< 50 km).

Modeling
distance

3,000 m

The cutoff distance for individual modeling of ambient impacts at
census blocks; beyond this distance, ambient impacts were
interpolated rather than explicitly modeled. [Note: For polygon source
types, set the modeling distance > the largest distance across the
polygon.]

Radials

16

The number of radials in the polar-receptor network emanating from
the facility center.

Circles

13

The number of concentric circles in the polar receptor network,
centered on the facility center.

Overlap distance

30 m

The distance, measured from each emission source at a facility, at
and below which a source and receptor are considered to be
overlapping. Must be < 500 m.

60


-------
EPA's National-scale Air Toxics Assessment

Field

Default Setting
(if field left blank)

Description

Acute

N

Selecting "Y" directs the model to include short-term (acute)
concentration calculations and hazard predictions.

Hours

1 hour

The short-term (acute) averaging period that HEM-3 should use for
ambient concentrations. Four averaging period options are available:
1, 6, 8, and 26 hours.

Elevations

Y

Elevations of receptors were accounted for by default; selecting "N"
excludes elevations from the model run.

Multiplier

10

The acute multiplier applied to the average emission rate and used to
approximate the short-term emission rate (e.g., 10 times the rate
entered in the HAP Emissions input file). Multi-facility HEM-3
assumed that this short-term rate could occur at the same time as the
worst-case meteorological conditions, making the acute results
conservative estimates.

First ring distance
(ring 1)

Calculated by model to
be just outside the
source locations, but not
less than 100 m from
facility center

The distance to the first ring (circle) of the polar network as measured
from the facility center. You can override the default distance
calculated by multi-facility HEM-3 to fit the size and shape of the
facility properties to be modeled.

Deposition
(dep)

N

Deposition was not modeled by default. Selecting "Y" directs the
model to calculate deposition in the model run (particle, vapor, or both
as designated below). Note: if not modeling deposition, ignore the
depletion, phase, and particle and vapor deposition fields (below).

Depletion
(depl)

[depletion modeled
automatically with
deposition]

The current model automatically depletes the calculated deposition
flux from the ambient concentrations if you opt to calculate deposition;
therefore no entry necessary.

Phase

B

The default value "B" directs the model that both particles and vapor
deposition will be modeled; use "P" for particle-only deposition
modeling; use "V" for vapor-only deposition modeling. Value must be
consistent with emissions (e.g., do not use "B" if emissions are 100%

„p„ or..v»)

Particle

Deposition

(pdep)

WD for wet and dry
particle deposition

The default value "WD" directs the model to incorporate both wet and
dry deposition for particles. Use "WO" for wet only; use "DO" for dry
only; use "NO" if not modeling deposition of particles.

Particle Depletion
(pdepl)

[particle depletion
modeled automatically
with particle deposition]

The current model automatically depletes the calculated deposition
flux for particles from the ambient concentrations if you opt to
calculate particle deposition; therefore, you need not enter anything in
this column.

Vapor Deposition
(vdep)

WD

The default value '"WD" directs the model to incorporate both wet and
dry deposition for vapor pollutants; use "WO" for wet only; use "DO"
for dry only; use "NO" if not modeling deposition of vapor pollutants.

Vapor Depletion
(vdepl)

[vapor depletion
modeled automatically
with vapor deposition]

The current model automatically depletes the calculated deposition
flux for vapor pollutants from the ambient concentrations if you opt to
calculate vapor deposition; therefore, you need not enter anything in
this column.

All Receptors

Y

"Y" directs model to calculate results for all receptors by pollutant and
source. Select "N" to receive pollutant and source contributions for the
maximum-populated and maximum off-site receptors only.

User receptors

N

Select "Y" to include user receptors in a separate input file.

61


-------
EPA's National-scale Air Toxics Assessment

Field

Default Setting
(if field left blank)

Description

Building
Down wash
(bldg_dw)

N

Selecting "Y" directs the model to include building-downwash
calculations in the model run. Note: if you are modeling building
downwash, building-dimension information is required in a separate
input file.

Urban Population

None; only needed if "U"
specified in Rural/Urban
field

If you indicate "U" for urban land use (in Rural/Urban field above),
then you must provide model with the urban population size,
otherwise leave blank. Note: if you specify "U" in the Rural/Urban field
but provide no urban population value in this field, the model will re-
set your"U" to default.

FASTALL

N

FASTALL was not used by default. Selecting "Y" directs the model to
use the control option FASTALL, which conserves model run time by
simplifying dispersion algorithms.

b) Stack parameter file, with one record for each facility and source ID (as defined in step
8). This file specifies the source latitude and longitude, the source type (A = area, P =
point), and stack parameters for point sources or fugitive-release parameters for area
sources. Source types were assigned based on the emission release point type code in the
inventory, as shown in Exhibit 24. Note that the stack- and area-source parameters were
converted from English units (used in the NEI) to metric units (used in HEM-3; e.g.,
meters, meters per second, and Kelvin rather than feet, feet per second, and Fahrenheit).

Exhibit 24. HEM-3 Assignments of Emission Release Point Type

Emission Release Point Type Code

Emission Release Point Type Description

HEM-3 Source Type code

01

Fugitive

A

02

Vertical

P

03

Horizontal

P

04

Goose Neck

P

05

Vertical with Rain Cap

P

06

Downward-facing vent

P

99

Unknown

P

c)	Pollutant emissions file, with one record per combination of facility ID, source ID, and
pollutant, giving annual emissions in TPY.

d)	Temporal allocation file, with records for each facility ID and source ID. These records
give scalar factors that should be applied to the annual-average emission rate to compute
hourly emissions. (The scalar factors are dimensionless.) HEM-3 has a number of options
for the temporal-allocation records, depending on how the emissions vary. We checked
the SMOKE temporal profiles to see which HEM-3 keyword should be used. The
following keyword options were used for ptnonipm depending upon value of profile
codes:

62


-------
EPA's National-scale Air Toxics Assessment

•	MHRDOW: emissions vary by month, day type, and hour. Scalar = (monthly
factor/average monthly factor) x (daily factor/average daily factor) x (hourly
factor/average hourly factor)

. HRDOW: emissions vary by day type and hour (monthly profile code 262,
uniform through the year). Scalar = (daily factor/average daily factor) x (hourly
factor/average hourly factor)

•	HROFDAY: emissions vary by hour only (monthly profile code 262, daily
profile code 7, both uniform). Scalar = (hourly factor/average hourly factor)

•	MONTH: emissions vary by month only (daily profile code 7, hourly profile
code 24, uniform). Scalar = (monthly factor/average monthly factor)

2.3.3.2	Point: EGUs

EGUs were treated similarly to the ptnonipm sector other than for temporalization (see bullet 9d from the
previous section). Ptegu sources were modeled as point sources or area sources (fugitives) in HEM-3,
with temporal variations addressed using the hourly-emission (HOUREMIS) feature of HEM-3. The same
processing steps as for ptnonipm were followed, up until step 9d. For temporalization, the following steps
were applied:

1.	Hourly-emissions data for CAPs were read from 365 SMOKE hourly-emissions reports, one per
day. Each daily file contained the hourly-emission values for that day for all CAPs. This covered
a large regional data set, but only the records matching the batch filter (from step 1) were read.
The following fields were read: date, hour, data source ID, region code (FIPS), state, county,
SCC, SIC, facility ID, unit ID (char 1), release point ID (char 2), process ID (char 3), plant name,
CO tons/hour, NOx tons/hour, SO2 tons/hour, PM2 5 tons/hour, and VOC tons/hour.

2.	Hours in the SMOKE hourly-emission reports were in Greenwich Mean Time (GMT). The hours
were shifted from GMT to local time using the time zone of the county.

3.	A separate facility temporal file was created for each source location and stack height covered in
the hourly-emissions data files, and data from all 365 daily files were copied to this file. Sources
with the same location and stack parameters were lumped together for this algorithm. For each
hour of the year, an hourly emission scalar value was computed, as follows:

r .	_ (VOC + CO + PM2.s)houri

ca arhour t ^ h
-------
EPA's National-scale Air Toxics Assessment

of the coke oven stacks modeled in 2002 and earlier NATAs had stacks shorter than 126 ft (heights
overall ranged from 10 ft to 315 ft).

2.3.4 Point: Airports

Airports were inventoried in the NEI as point sources. Their emissions were part of the ptnonipm sector
of the NATA modeling platform and were provided with other sources in that sector. They were modeled
in HEM-3 as line sources where runway endpoint data were available, and as small area sources in all
other cases. Where line sources were modeled, the line-source option in HEM-3 was used, which creates
an area source using line endpoints, source width, and other source parameters. In all cases, temporal
variations were addressed using the variable-emission (EMISFACT) feature of HEM-3. This allowed the
model to read emissions scalars, which adjust the annual-average emissions based on month, day-of-
week, and hour-of-day. Airport-emission records were extracted from the annual ptnonipm emission file
based on the facility source code. In the NEI, a facility source code of "100" indicated an airport. All
sources of emissions contained within an airport facility (i.e., aircraft, ground-support equipment,
auxiliary-power units, and any other source reported by S/L/T agencies at an airport facility) were
summed and modeled the same way.

For airports modeled as runway line sources, the NEI geographic coordinates were not used directly in the
modeling of the airport emissions, but instead they were used to ensure the runway location data were
assigned correctly to EIS facilities. The runway-location data were from two sources. One source was the
public-use-airports dataset from the 2012 National Transportation Atlas Database (NTAD), developed by
the Bureau of Transportation Statistics of the U.S. Department of Transportation.7 The NTAD is a set of
nationwide geographic databases of transportation facilities, transportation networks, and associated
infrastructure. The NTAD shapefile for public-use airports was derived using textual (non-spatial) data
from the Federal Aviation Administration (FAA) National Airspace System Resource Aeronautical Data.
The NTAD airport dataset contained data on approximately 6,600 runways at 4,600 airports. Using GIS
software, EPA's Office of Air Quality Planning and Standards (OAQPS) converted these lines to
endpoints, which were the source location inputs for the line-source option in HEM-3. The EIS IDs were
assigned to these airports by comparing identification data in the EIS to airport-facility data in FAA Form
5010 records (FAA 2015) and other FAA databases, the FAA's Emissions and Dispersion Modeling
System, state-supplied data, and online tools (e.g., Great Circle Search8). Where there was no match, we
used location coordinates to determine if airports were geographically close enough to be the same
facility. The typical runway width in the NTAD data was 50 m, and this value was used as the width for
all runways for the modeling of the NTAD runways.

The second source of runway location data used to derive line-source inputs was a dataset developed by
OTAQ. For airports not included in the NTAD dataset, OTAQ used the same FAA textual data that were
used to derive the NTAD data to create runway endpoints for the smaller airports that constitute the
OTAQ dataset. The OTAQ airport dataset contained data on approximately 9,000 airports, and in almost
all cases, there was one runway per airport. For the smaller airports, the FAA data typically included two
runway endpoints, a single endpoint with a runway length and heading, or a single location (presumed to
be the runway center) with a runway length and heading. These data were used by OTAQ to derive
runway endpoints, which were used as the source-location inputs for the line-source option in HEM-3.
The EIS IDs were assigned to these airports in the same way as the airports in the NTAD dataset. The
widths of the runways in the OTAQ dataset were smaller than those in the NTAD data, and a width of
25 m was used for all runways for the modeling of the OTAQ runways.

7	See this site.

8	See this site.

64


-------
EPA's National-scale Air Toxics Assessment

Airports without runways (e.g., heliports) or without sufficient data to generate runway endpoints were
modeled as small area sources (10-m square) with the NEI location coordinates as the southwest corner.
During the NATA review, it was discovered that the seaplane runways were often over land, so seaplanes
with runway endpoints were all re-modeled as small area sources. While the small area source may
characterize a helipad fairly well, it likely would not for a runway. However, without good data on
runways it was difficult to characterize such sources. Modeling a larger area source (or line source) could
result in the source overlapping nearby population receptors, resulting in overestimates of exposure.
Further, the emissions for the smaller airports are likely much lower. Therefore, the small area source was
used for all airports not included in the NTAD or OTAQ datasets. There were some airports in the NTAD
and OTAQ datasets with runway geographic coordinates significantly different from the coordinates in
the NEI for the same airports. Coordinate differences of 2-to-3 km were expected because airports are
generally large and the runway coordinates may be far from the single coordinate set that represented the
airport in the NEI. There were 112 airports in the NTAD and OTAQ datasets with coordinates more than
2,500 m away from the NEI coordinates, and we modeled these airports the same way we modeled
airports without runways or without sufficient data to generate runway endpoints.

The file "Airport List.xlsx", provided in the SupplementalData folder, includes all the airports modeled
and indicates which airports were modeled using runway endpoints (NTAD and OTAQ) and which were
modeled as area sources (EIS). The list of seaplanes is in "Airport List_seaplaneispoint.xlsx."

For some airports, census block receptors fell on or near the runway or within or near the small area
source. However, people do not live within the airport boundaries or close to runways. Thus, blocks that
fell either within 30 m of the geographic coordinates of the area source or within 50 m of the runway are
assigned the next-highest receptor concentration of a receptor that lies outside these distances. This
approach was the same taken for other point sources and ports.

2.3.4.1 Temporal Profiles Assigned to Airports

Special care was taken to assign realistic operating conditions to airports. For Alaska seaplanes, it was
found (Meredith Pedde, personal communication) that they operate daily other than in winter (November
thru March), when they run two days per week. Thus, we assigned the monthly profile in Exhibit 25 to all
airport facilities in Alaska with a description of "seaplane." A database of EIS facilities with facility
descriptions, "EISAirportwDescription.accdb, is provided in the SupplementalData folder.

Exhibit 25. Monthly Temporal Profile for Alaska Seaplanes (Counts and Percentages)

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sept

Oct

Nov

Dec

Sum

20
3.4%

20
3.4%

20
3.4%

70
11.9%

70
11.9%

70
11.9%

70
11.9%

70
11.9%

70
11.9%

70
11.9%

20
3.4%

20
3.4%

590
100%

We also looked at the diurnal profiles. Meredith suggested that for general aviation we use a diurnal
profile that has no activity between 10 p.m. and 6 a.m. (due no tower operation). We used this profile for
airports that were: 1) not commercial (based on list from Meredith Pedde) and 2) not heliports. A
complete list is in "general aviation airports for 6amtol0pm profile.xlsx" in the SupplementalData folder.
It was developed by taking all airports from the FF10 (facility type = 100), merging in the list of
commercial airports provided by OTAQ (Meredith Pedde), removing them, and removing seaplanes
(using the facility description file, EISAirportwDescription.accdb, discussed above).

65


-------
EPA's National-scale Air Toxics Assessment

This new profile (shown in Exhibit 26) was developed by using the diurnal profile weights (1st row in
below table), setting hours to 0 between 10 p.m. and 6 a.m. (2nd row), and then renormalizing (3rd row)

Exhibit 26. Diurnal Temporal Profile for General Aviation (Counts, Zero-outs, and Final
Percentages)

HrO

1

2

3

4

5

6

7

8

9

10

11

198

186

182

187

210

250

311

388

467

528

571

604

0

0

0

0

0

0

311

388

467

528

571

607

0%

0%

0%

0%

0%

0%

3.741%

4.667%

5.618%

6.351%

6.869%

7.266%

12

13

14

15

16

17

18

19

20

21

22

23

620

631

635

624

594

548

531

509

425

327

257

218

650

631

635

624

594

548

531

509

425

327

0

0

7.458%

7.591%

7.639%

7.506%

7.145%

6.592%

6.388%

6.123%

5.112%

3.934%

0%

0%

2.3.4.2 Lead Adjustment for Piston Aircraft

The NEI estimated that lead emissions from piston aircraft totaled 486 TPY, nationally. Of these
emissions, the NEI provides estimates of lead emitted during several modes of operation at and near
airports, which total 248 TPY. These estimates were used in NATA. The NEI also estimated in-flight lead
emissions at the state level (238 TPY) which was not included in NATA. Lead emissions near airports
included lead emitted during the climb-out and approach modes, which occur at altitudes and are not
included in NATA. To account for this, we adjusted down by 50 percent the NEI-specific emissions
estimates used in the HEM-3 modeling, based on previous modeling conducted at the Santa Monica
(SMO) airport indicating that nearly 50 percent of emissions occurred in these higher-altitude modes (see
Exhibit 27).

Exhibit 27. Lead Emissions (kg/yr) at SMO in 2008, by Aircraft Operation Mode

Mode

Emissions (% of Total)

Taxi To Runway

20.4 (17.6%)

Run-up

13.5 (11.4%)

Takeoff Roll

10.0 (8.4%)

Climb-out

37.9 (32.7%)

Approach

17.9 (15.8%)

Landing

9.4 (7.9%)

Taxi to Apron

9.5 (8.4%)

The processing of data for each type of airport source for HEM-3 is described below.

Line Source Airports

1. Within each airport facility, an alphanumeric source ID that was no more than eight characters in
length was assigned to each unique combination of category name (an identifier of the source
type used in HEM-3, e.g., APL for airport line) and runway ID. For each facility, the source ID
sequence began with APL00001. Source IDs were unique within a particular facility, but not
among facilities.

66


-------
EPA's National-scale Air Toxics Assessment

2.	For each airport facility, airport emission records were linked to the airports in the runway data
files by the facility ID, and the annual emissions were apportioned to each runway-by-runway
area.

3.	Temporal profiles to be used for each emissions source were read from the SMOKE ptnonipm
temporal-profiles report. Key data fields were the facility ID, unit ID, release point ID, process
ID, monthly temporal profile code, daily temporal profile code, and hourly temporal profile code.

4.	Key fields from the annual airport file were the facility ID, runway ID, unit ID, release point ID,
process ID, lat/long of the beginning of the runway, lat/long of the end of the runway, pollutant
code, and annual emissions.

5.	The annual airport emission file was matched to the temporal file using a concatenation of facility
ID, unit ID, release Point ID, and process ID. The monthly, daily, and hourly temporal profile
codes were then copied into the annual file.

6.	The annual airport file was matched to a pollutant cross-reference file, which linked the pollutant
codes (primarily CAS numbers) used in the NEI to the pollutant library used in HEM-3. The
cross-reference file was developed for the 2005 NATA and RTR modeling efforts, and updated
for the 2011 NATA relying on the valid codes in the pollutant-code table in the EIS. HEM-3 HAP
identifiers were copied to the annual-emissions file, along with factors, which will be used to
adjust emissions of certain HAP compounds to reflect the fraction of HAP content.

7.	Line-source release parameters were assigned to each record as follows: release height = 3 m, cz
= 3 m, and runway width = 50 m for NTAD runways and 25 m for OTAQ runways.

8.	An intermediate file as written with a separate record for each facility ID and source ID and for
each HEM-3 pollutant (consolidating some inventory pollutants such as glycol ethers). This was
used to create four separate files used by HEM-3, as follows:

a)	Facility list file, with one record per facility. This file contained the facility ID, along
with model settings to be used in HEM-3, such as the overall radius of the modeling
domain, the cutoff distance for discrete-receptor modeling, and the specifications of the
polar grid to be used for interpolation calculations in the region beyond the discrete
modeling cutoff.

b)	Stack parameter file, with one record for each facility ID and source ID. This file
specified the source type (N = line), beginning and ending lat/long of the line (runway),
and release parameters for line sources (release height, cz, and width).

c)	Pollutant emissions file, with one record per combination of facility ID, source ID, and
pollutant, giving annual emissions in TPY.

d)	Temporal allocation file, with one record for each facility ID and source ID. These
records gave dimensionless scalar factors, which should be applied to the annual-average
emission rate to compute hourly emissions. HEM-3 had a number of options for the
temporal allocation records, depending on how the emissions varied. We checked the
SMOKE temporal profiles to see which HEM-3 keyword should be used. The following
keyword options were used for ptnonipm:

• MHRDOW: emissions vary by month, day-type, and hour: Scalar = (monthly
factor/average monthly factor) x (daily factor/average daily factor) x (hourly
factor/average hourly factor)

67


-------
EPA's National-scale Air Toxics Assessment

. HRDOW: emissions vary by day-type and hour (monthly profile code 262,
uniform through the year). Scalar = (daily factor/average daily factor) x (hourly
factor/average hourly factor)

•	HROFDAY: emissions vary by hour only (monthly profile code 262, daily
profile code 7, both uniform). Scalar = (hourly factor/average hourly factor)

•	MONTH: emissions vary by month only (daily profile code 7, hourly profile
code 24, uniform). Scalar = (monthly factor/average monthly factor)

Small Area Source Airports

1.	Within each airport facility, an alphanumeric source ID that was no more than eight characters in
length was assigned to each unique combination of unit ID, process ID, and emission release
point ID. The source ID sequence began with APP00001 for each facility. Source IDs were
unique within a particular facility, but not among facilities.

2.	Temporal profiles to be used for each emissions source were read from the SMOKE ptnonipm
temporal-profiles report. Key data fields were the facility ID, unit ID, release point ID, process
ID, monthly temporal profile code, daily temporal profile code, and hourly temporal profile code.

3.	Key fields from the annual airport file were the facility ID, unit ID, release point ID, process ID,
pollutant code, annual emissions, latitude, and longitude.

4.	The annual-airport-emission file was matched to the temporal file using a concatenation of
facility ID, unit ID, release point ID, and process ID. The monthly, daily, and hourly temporal-
profile codes were then copied into the annual file.

5.	The annual airport file was matched to a pollutant cross-reference file, which linked the pollutant
codes (primarily CAS numbers) used in the NEI to the pollutant library used in HEM-3. The
cross-reference file was developed for the 2005 NATA and RTR modeling efforts, and it was
updated for the 2011 NATA relying on the valid codes in the pollutant code table in the EIS.
HEM-3 HAP identifiers were copied to the annual-emissions file, along with factors, which will
be used to adjust emissions of certain HAP compounds to reflect the fraction of HAP content.

6.	An intermediate file was written with a separate record for each facility ID and source ID and for
each HEM-3 pollutant (consolidating some inventory pollutants such as glycol ethers). This was
used to create four separate files used by HEM-3, as follows:

a)	Facility list file, with one record per facility. This file contained the facility ID, along
with model settings to be used in HEM-3, such as the overall radius of the modeling
domain, the cutoff distance for discrete-receptor modeling, and the specifications of the
polar grid to be used for interpolation calculations in the region beyond the discrete
modeling cutoff.

b)	Stack parameter file, with one record for each facility ID and source ID. This file
specified the source type (A = area), lat/long of the southwest corner of the area source,
and release parameters for area sources (length of the sides in the x and y directions,
angle, release height, cz).

c)	Pollutant emissions file, with one record per combination of facility ID, source ID, and
pollutant, giving annual emissions in TPY.

68


-------
EPA's National-scale Air Toxics Assessment

d) Temporal allocation file, with one record for each facility ID and source ID. These

records gave dimensionless scalar factors, which should be applied to the annual-average
emission rate to compute hourly emissions. HEM-3 had a number of options for the
temporal-allocation records, depending on how the emissions varied. We checked the
SMOKE temporal profiles to see which HEM-3 keyword should be used. The following
keyword options were used for ptnonipm:

•	MHRDOW: emissions vary by month, day-type, and hour. Scalar = (monthly
factor/average monthly factor) x (daily factor/average daily factor) x (hourly
factor/average hourly factor)

. HRDOW: emissions vary by day-type and hour (monthly profile code 262,
uniform through the year). Scalar = (daily factor/average daily factor) x (hourly
factor/average hourly factor)

•	HROFDAY: emissions vary by hour only (monthly profile code 262, daily
profile code 7, both uniform). Scalar = (hourly factor/average hourly factor)

•	MONTH: emissions vary by month only (daily profile code 7, hourly profile
code 24, uniform). Scalar = (monthly factor/average monthly factor)

2.3.5 Nonpoint HEM Run Groups: NP10m and NPOtherLow

The NPlOm and NPOtherLow HEM run groups constituted most of the anthropogenic sources in the NEI
nonpoint data category. Note that the nonroad source of locomotives was included in NPOtherLow. These
were run as separate run groups due to their different release characteristics. NPlOm used a 10-m release
height whereas NPOtherLow used a 3.9-m release height.

The emissions were allocated to census tracts such that the sources were modeled as tract areas, with
emissions based on the fraction of emissions assigned from the county to the tract based on the spatial
surrogate. These two HEM run groups used the same diurnal temporal profile (SMOKE profile code 26,
which was also used for nonroad sources and is shown in Exhibit 28).

Exhibit 28. Hourly Pattern of Activity for SMOKE Profile 26

7

Profile 26



_ 6

5?

>

t> 4
ro

4—

° 3

























































c
O

t5 2

ro

1
0









































4

4

12 16 20 2
Hourofday

69


-------
EPA's National-scale Air Toxics Assessment

2.3.6	Nonpoint HEM Run Groups: CMVs

CMVs consist of two sources groups, which are also the HEM run groups: ports and underway. Both
groups were modeled with an 8-m release height, and both used a monthly temporal profile derived from
SMOKE profile 19531.

The majority of the emissions from these groups were modeled at the port or underway shapes (GIS
polygons) that they had been assigned to in the NEI. To reduce computational requirements for HEM-3,
GIS was used to smooth and sometimes split the shapes, thereby reducing the number of vertices of each
shape. For shapes that were split into multiple parts, the emissions for the shape were allocated to each
part according to area.

A small amount of county-level CMV emissions was not assigned to port or underway shapes in the NEI;
we assigned them to water-body shapes such as large lakes and rivers within the county. These water
body shapes were modeled in the same way as the port and underway shapes.

To gap-fill missing 2011 CMV emissions in the Puerto Rico municipos San Juan, Ponce, and Guaynabo,
the corresponding 2005 tract-level CMV emissions from the 2005 NATA were used. Guaynabo's 2011
emissions resulted from a change of census-tract boundaries between 2005 and 2011. Emissions from
2005 were divided up into CMV diesel, CMV residual fuel, and diesel pleasure craft, and they were
already allocated to tracts from the 2000 Census. All of the 2005 CMV emissions were assigned to the
ports source group, and the 2000 Census tracts were mapped to 2010 Census tracts by using GIS to
determine the area percentage of the 2000 tracts in the 2010 tracts. Also, 2005 CMV POM air toxics were
assigned to "PAH, total" (NEI pollutant code 130498292). The modeling results ("chai/Q") for Puerto
Rico for the NPlOm HEM run group were used to compute the CMV HEM-3 concentrations for 2011 for
the gap-filled municipos.

The HEM-3 CMV outputs (ports and underway) were checked to see if any receptor overlapped a port or
underway shape. The concentration at any overlapped receptor was assigned the concentration from the
maximum non-overlapped receptor.

2.3.7	Nonpoint HEM Run Groups: RWC

RWC was both a HEM run group and source group, allowing the tract-level risks to be apportioned out to
this group (but not to individual sources within the group). It was consistent with the RWC CMAQ
platform sector, and it included the sources listed in Exhibit 12.

The HEM-3 release height and initial vertical dispersion parameter cz were computed based on a 50/50
split of 1- and 2-story houses in a tract. Release heights were set to 50 percent of the initial plume height
from the chimneys, with plume being based on the sum of the chimney height plus plume rise. The
vertical dispersion, cz, was set equal to the plume height divided by 4.3, consistent with guidance for area
sources in the AERMOD User's Guide. Plume-rise estimates were based on a series of AERMOD
simulations for 1- and 2-story houses with different chimney-to-house orientations (chimney on long edge
of house, chimney on short edge of house, etc.) and chimney temperatures (394 and 588 K). The
dimensions of the houses are:

Number of stories

Length (m)

Width (m)

Roof height (m)

Chimney height (m)

1

15.24

9.14

6.1

7.0

2

12.2

7.3

10.1

11.0

70


-------
EPA's National-scale Air Toxics Assessment

The resulting release height and cz for the RWC emissions were 6.4 m and 3.2 m, respectively.

This HEM run group was spatially allocated from the county to the tract using the spatial surrogates 165
and 300, described below.

Surrogate ID

Surrogate

Description

Source of Data

Vintage

165

0.5 Residential
Heating-
Wood, plus 0.5
Low Intensity
Residential

Combination of 50% Residential
Heating-Wood and 50% Low Intensity
Residential

American Community
Survey (U.S. Census
Bureau) and National
Land Cover Database

2005-2010

300

Low Intensity
Residential

2006 NLCD 30-m data resampled to
250-m resolution for land-use class 22
(Developed, Low Intensity); areas with
a mixture of constructed materials and
vegetation. Impervious surfaces
account for 20% to 49% percent of total
cover. These areas most commonly
include single-family housing units

National Land Cover
Database

2006 Landsat
Imagery

All SCCs were allocated the using the same surrogate (either 300 or 165)9; the national default was 165
but for some counties it was found that surrogate 165 concentrated emissions to small tracts within urban
counties. For these counties, a county-specific surrogate of 300 was used. Additional urban counties were
assigned the 300 surrogate to HEM-3 after CMAQ was already run.

Annual emissions were allocated using an hourly profile that was created for each county based on the
sum of the hourly emissions of PM2.5 and VOCs across all RWC SCCs, based on the approach used for
the 201 lv6.1 platform (processing of the 2011 NEI vl. All SCCs for the HEM-3 runs used the same
profile, a weighted average profile based on the summed PM and VOC emissions.

Hourly emissions were estimated from (1) an annual-to-day profile based on the daily-minimum
temperature and (2) a diurnal profile putting more of the emissions in the evening and morning when
people are typically using these sources. The meteorological-based approach is documented on pages 57-
61 of this document.

This temporalization changed slightly between vl and v2 in CMAQ due to the assignment of some RWC
SCCs to a uniform diurnal profile and due to a fix in the SMOKE code that shifted the day-specific
profile (created by SMOKE based on the daily-minimum temperature) and the hourly profile (based on
the diurnal variation) to a consistent time basis (GMT). This change was not implemented for HEM-3,
however. To avoid rerunning the model, we instead applied the new platform emissions to the ""chai/Q"
values output by HEM-3 based on the vl temporalization. An example of this hourly, day-specific
temporalization for King County, WA is provided in Exhibit 29 for January-April (months 1-4) and
May-August (months 5-8).

9 We inadvertently assigned fireplaces to 165, but they should have used use 300 for all counties.

71


-------
EPA's National-scale Air Toxics Assessment

Exhibit 29. Example of RWC Temporal-scaling Factors, January(1 )-April(4) (top) and May(5)-
August(8) (bottom), for King County, Washington















1









T



n













n

(1 fl

n n

J#









Jt



Jt

Jt

1W



Jil

J Ml

J1#



ii



2









fl

J



J hp

In

JlJjlJ-











iTI







T



jt

Aj

Jt

JMl



in

i















fl

n fi

3







fl \



fl „ n

n





T

Jt

Jt



Jsr

A



Jt

Jsr

Jt

Jt



JW

lW

J

4



> S,

J t

Jt

Jt

Jt

jy

\ST

Jt

s ^



x L

At

JW

j My







u U

il tJ

y IP



400

hour_in_rnonth

\l

MM



lAJ

nJ









i





i

M

"•J



M







\j

^ Wjv v ^ I ^

ifi



k

w

\



M

\_rUk_j^

juj

M

\	Ik.

VJk

\

400

hour_in_rnonth

2.3.8 Nonroad HEM Run Group

Nonroad emissions were ran as a single HEM ran group. The sources in this group were the same as the
sources in the nonroad data sector in the NEI and the nonroad platform sector. For temporalization, we

72


-------
EPA's National-scale Air Toxics Assessment

used diurnal profile 26 (see Exhibit 28) along with monthly factors based on toxicity-weighted emissions
from the FF10 nonroad file.

2.3.9 Onroad HEM Run Groups: Light Duty and Heavy Duty

The onroad emissions included light- and heavy-duty-vehicle emissions for on- and off-network and
refueling, consistent with the onroad emissions used for CMAQ. The emissions data came from a
MOVES2014 and SMOKE-MOVES run done for the NATA platform for CMAQ. As part of that run, an
FF10 dataset of monthly and annual emissions was produced with all CAPs and HAPs, and sufficient
SCC specificity to support spatial allocation using the same surrogates as used for the NATA platform for
CMAQ. Diesel PM was taken as all-PMio from the diesel-exhaust-related SCCs (see Exhibit B-3 of
Appendix B).

For the HEM-3 runs, onroad emissions were temporalized separately for light- and heavy-duty vehicles to
account for monthly, day-of-week, and hourly variations using the HEM-3 MHRDOW (monthly/day-of-
week/hourly) option. Although seasonal variations were specific to each pollutant and profiles also varied
by county, season-to-month, day-of-week, and hourly variations were the same for all pollutants within
the HEM run group.

All refueling (from light or heavy) was put into light-duty vehicles because refueling is a source group
and we did not want to have source groups that were in multiple HEM run groups. In addition, heavy-
duty refueling was very small compared to other onroad sources. Thus, all pollutants received the same
monthly, day-of-week, and hourly temporal variations. However, we split the runs into four seasons (i.e.,
December-February, March-May, June-August, and September-November) to allow pollutant-specific
seasonal variation at the seasonal level.

MHRDOW factors were created from both the FF10 file (for the monthly factor only) and a specially
created file of county/SCC/hour totals (in tons/hour) generated from the SMOKE-MOVES model
(running MOVES2014) based on the NATA platform. The hourly emissions data were created for one
week per month and converted to local time (taking into account daylight saving where appropriate). For
each month, the period was late evening on the 21st through late evening on the 28th, local time. (In
GMT, the timeframe covers the 22nd 0:00 through 28th 23:00.)

Benzene was used for light duty and PM2 5 for heavy duty. Emissions are aggregated to the HEM run
groups via a crosswalk of SCCs to HEM run group (see Appendix D or the spreadsheet file
"NP_NR_OR_SourceGroup_to_SCC_CrossReference.xlsx" in the SupplementalData folder). The
following calculations were made to develop the scalar inputs to HEM-3, using keyword MHRDOW to
provide county-specific, monthly/day-of-week/hourly scalars.

^	monthly factor	daily factor	hourly factor

average monthly factor average daily factor average hourly factor

= (12 x monthly factor) x (3 x daily factor) x (24 x hourly factor)
Where the factors were computed as follows:

Monthly factors computed as:

monthly emissions

monthly factor =

annual emissions

73


-------
EPA's National-scale Air Toxics Assessment

Daily factors computed as:

weekday factor =
Saturday factor =
Sunday factor =¦

average of weekday emissions for all 12 months
sum of 7-day emissions for all 12 months

average of Saturday emissions for all 12 months
sum of 7-day emissions for all 12 months

average of Sunday emissions for all 12 months
sum of 7-day emissions for all 12 months

Hourly factors computed as:

weekday hour-1 factor =

Saturday hour-1 factor =

Sunday hour-1 factor =
(etc.)

sum of hour-1 for all weekdays
sum of 24-hour emissions for all weekdays

sum of hour-1 for all Saturdays
sum of 24-hour emissions for all Saturdays

sum of hour-1 for all Sundays
sum of 24-hour emissions for all Sundays

Exhibit 30 contains plots of temporal scalars for three counties, for January and August and a weekday
versus a Saturday.

Exhibit 30. Example of Temporal Scalars by Hour-of-day for Onroad HEM Run Groups

Light Duty (Weekday-left, Saturday-right)

JAN

Heavy Duty (Weekday-left, Saturday-right)

JAN	JAN



county



Cook County



— HarttortCT



— Waka County









I

\

r\



74


-------
EPA's National-scale Air Toxics Assessment

2.4 Source Groups

Source attribution is a key feature of NATA because it allows users to prioritize sources and pollutants of
interest. The source groupings for each NATA are a little different, in part due to methods that have
increased the number of source groups allowable, and also due to the results of previous NATAs. For the
2011 NATA, we considered the NEI sectors, source groups developed for previous NATAs, and sources
whose impacts were generated solely through CMAQ. Other than secondary formation and background,
source groups originated by aggregating sources in the emission inventory based on attributes such as
SCC and facility source type. The secondary-formation source group was based on the CMAQ estimates
of the concentration of HAPs (formaldehyde, acetaldehyde, and acrolein) formed from the atmosphere
due to photochemical reactions of anthropogenic and biogenic VOCs and NOx. Background is the sum of
two components:

•	Impact of the remote-concentration estimates added to the HEM-3 runs for non-CMAQ HAPs
(such as carbon tetrachloride) and non-CMAQ areas (i.e., outside the CONUS CMAQ domain)—
see Section 3.2.1.

•	Impact of the CMAQ concentration estimates in areas in which all HEM-3 receptors were zero
but CMAQ were nonzero.

The source groups are provided in Exhibit 31.

Exhibit 31. Source Groups for NATA

Broad
Group

NEI Data
Category

NATA Source Group

Description

HEM Run Group

Based On

Point

Point

Point (PT)

Point sources excluding
airports and railyards

Point—no airports

Point NEI
data category

Onroad

Onroad

OR-LD_Gas

Onroad light-duty gasoline

Light Duty

SCC





OR-HD_Gas

Onroad heavy-duty gasoline

Heavy Duty







OR-LD_Diesel

Onroad light-duty diesel

Light Duty







OR-HD_Diesel

Onroad heavy-duty diesel

Heavy Duty







OR-Refueling

Onroad refueling (including
heavy- and light-duty
gasoline and diesel
refueling)

Light Duty



Nonroad

Point

NR-Airport (PT)



Point—airports

Facility
source type =
100





NR-Railyard (PT)



Point—no airports

Facility
source type =
151



Nonpoint

NR-CMV Underway

CMVs Underway

CMVs

SCC





NR-CMV Ports

CMVs at ports









NR-Locomotives



Nonpoint—10-m
release height





Nonroad

NR-Pleasurecraft

Pleasurecraft (nonroad
equipment)

Nonroad

SCC





NR-Construction

Construction equipment





75


-------
EPA's National-scale Air Toxics Assessment

Broad
Group

NEI Data
Category

NATA Source Group

Description

HEM Run Group

Based On





NR-Gas/Other

Nonroad gasoline equipment
other than pleasurecraft and
construction









NR-Diesel/Other

Nonroad diesel equipment
other than pleasurecraft and
construction





Nonpoint

Nonpoint

N P-B u 1 k_g as_te rm

Nonpoint bulk gasoline
terminals

Nonpoint—10-m
release height

see





NP-Chemical_Mfg

Nonpoint chemical
manufacturing









NP-Mining

Nonpoint mining









NP-lndustrial_NEC

Nonpoint industrial
processes not elsewhere
classified









NP-Nonferrous_metals

Nonpoint nonferrous metals









NP-Oi I/Gas

Nonpoint oil and gas
production









NP-Refineries

Nonpoint refineries









NP-Storage_Transfer

Nonpoint storage and
transfer









NP-ICI_fuel_comb

Nonpoint industrial,
commercial, and institutional
emissions









NP-Landfills

Nonpoint landfills a









NP-

SfcCoating_lndSolvent

Nonpoint surface coating
and industrial solvent use









NP-

WasteDisposal_Other

Nonpoint other waste
disposal









NP-Gas_stations

Nonpoint gas stations b

Nonpoint—low







NP-Comm_cooking

Nonpoint commercial
cooking

release height







NP-Misc_non-ind

Nonpoint miscellaneous
nonindustrial sources









NP-Non-

RWC_ResFuelComb

Nonpoint residential fuel
combustion excluding wood









RWC

Nonpoint RWC









NP-

Consumer comm solve
nt

Nonpoint consumer and
commercial solvents









NP-Solvent_degreasing

Nonpoint solvent degreasing









NP-Dry_cleaning

Nonpoint dry cleaning









NP-Non-ind_sfc_coating

Nonpoint non-industrial
surface coating





Biogenics

Nonpoint

Biogenics



Not run in HEM-3

Zero out of
CMAQ run

76


-------
EPA's National-scale Air Toxics Assessment

Broad
Group

NEI Data
Category

NATA Source Group

Description

HEM Run Group

Based On

Fires

Event

Fires (ag, prescribed and
wild)

Fires - includes agricultural
burning, prescribed burning
and wildfires



Zero out of
CMAQ run

Secondary

N/A

Secondary

Secondary transformation
from anthropogenic and
natural (i.e. all) sources



Zero out of
CMAQ run

Background

N/A

Background





C

a Most landfills were in the point inventory in the 2011 NEI.
b Excluding Stage 2, which was covered in refueling.

c Non-CMAQ pollutants/areas: remote concentrations (e.g., carbon tetrachloride)—See Appendix E. For CMAQ
pollutants/areas, background was only computed as the CMAQ concentration for grid cells with no HEM-3
contribution.

2.5 Uncertainties in Emissions/Emissions Processing

Uncertainties in emissions result from uncertainties in locations and release characteristics of sources,
emission estimation techniques such as emission factors and models, inputs to emission models such as
NMIM or MOVES, speciation factors, and activity data. For nonpoint, onroad, and nonroad categories,
additional uncertainty lies with the spatial resolution of the activity data. For example, MOVES and
NMIM estimated inventories using combined data for specific vehicles, activities, and fuels from states
and/or EPA and other government agencies along with vehicle- and engine-emissions data. Activity data
for vehicles and nonroad equipment were typically available at the levels of national, state, or
metropolitan statistical area, and thus must be allocated to counties using surrogates such as population
and land use. This allocation introduces significant uncertainty to county-level estimates of emissions.

RWC data were also estimated at the county level for all appliance types. For fireplaces and wood stoves,
these allocations and burn rates were primarily based on American Housing Survey (AHS) data where
available. AHS data was available for 47 select metropolitan areas every 6 years and assumptions were
made based on survey-response rate, fraction of households that burn wood versus gas for primary and
secondary heating, urban versus suburban and rural representation of wood-burning device-type use and
burn rates. All of these characteristics have uncertainty and EPA used more local state and regional-level
survey data where available. For other devices such as outdoor wood boilers (OWB) and indoor furnaces,
national sales data were extrapolated from growth estimates to estimate total appliances. Spatial allocation
utilized inverse population density with thresholds to prevent assigning OWBs to highly populated urban
counties. Similar burn-rate zero-outs were applied for high-population-density counties for primary
heating from most types of RWC devices. Each assumption in burn rate and appliance profile contained a
varying level of uncertainty because of the sparse availability of survey data at the county level for each
RWC device type.

Canada and Mexico did not have HAP emissions in the inventories except where VOC was speciated into
benzene, formaldehyde, acetaldehyde, and methanol, which were model species for CB05. For Mexico,
onroad VOC emissions tended to be overestimated, which caused very high benzene estimates at the
border with Texas. This resulted in unreasonably high tract concentrations in Maverick County. To
address this, we used the non-hybrid approach for the onroad HEM run groups for this county.

We did not include mercury emissions from Canada or Mexico (both had been included in the 2005
platform modeling).

77


-------
EPA's National-scale Air Toxics Assessment

2.6 Summary

•	The 2011 NEI v2 was the primary source of emissions data for NATA, although some data were
modified based on: comments received during the NATA review period, the requirements of the
air quality models, and the available data on pollutant toxicity.

•	Emissions were grouped into various categories of sources to track source contributions and to
conform to the requirements of the air quality modeling methods.

•	Emissions were processed separately for CMAQ and HEM-3 which have different temporal,
spatial and speciation requirements for the input emissions.

•	Emissions were allocated spatially based on various demographic, activity, and land-use
surrogates.

•	Emissions were allocated temporally primarily using established temporal factors.

78


-------
EPA's National-scale Air Toxics Assessment

3 AIR QUALITY MODELING & CHARACTERIZATION

The NATA emission estimates described in Section 2 were used as inputs to EPA air quality models to
estimate ambient concentrations of emitted air toxics. An air quality model is a set of mathematical
equations that uses emissions, meteorological data, and other information to simulate the behavior and
movement of air toxics in the atmosphere. The air quality models used for NATA estimated outdoor
concentrations of air toxics at specified locations. The NATA approach included the development and
application of a new hybrid approach blending a chemical transport model (CMAQ: EPA 2015g)
with a dispersion model (HEM-3 running AERMOD: see also the HEM-3 User's Guides. EPA 2014e)
to estimate ambient concentrations of 40 of the more prevalent and higher risk HAPs as described in
Section 3.1.1. The air toxics modeled in the hybrid approach captured approximately 99 percent of the
total risk nationally. The remaining "non-hybrid" air toxics were treated similarly to the NATA 2005
approach, which merged HEM-3 model estimates with observations, as described in Section 3.1.2.

For simplicity and consistency throughout this TSD, all aspects or details of the HEM-3 model are
referred to overall as "HEM-3," although most often the AERMOD component of HEM-3 is pertinent to
the discussion. EPA designed and maintains AERMOD separate and apart from HEM-3; HEM-3 merely
incorporates AERMOD.

3.1 Hybrid Model Description

The subsections below contain discussions on the hybrid air modeling approach developed for the 2011
NATA.

3.1.1 Overview

The air quality modeling structure for 40 of the most prevalent and highest risk air toxics (see Exhibit 32)
utilized a hybrid method combining the fine spatial scale and source attributions of AERMOD in HEM-3
(Cimorelli et al. 2005; EPA 2015f) with the full treatment of chemistry and transport afforded by CMAQ
version 5.02 with CB05 (Byun and Schere 2006; Brown et al. 2011). The CMAQ model is a
comprehensive, three-dimensional grid-based Eulerian air quality model designed to simulate the
formation and fate of gaseous and particulate species, including ozone, oxidant precursors, primary and
secondary PM concentrations, and sulfur and nitrogen deposition over urban and regional spatial scales.
In this application, HEM-3 treated all species as chemically non-reactive. The emissions and
meteorological data sets used in CMAQ were processed further to generate HEM-3 inputs consistent with
CMAQ. HEM-3 receptor locations were based on the centroids of populated census blocks, monitoring -
site positions, and 5 evenly distributed points within each 12-km horizontal CMAQ grid cell in the
CONUS (see Exhibit 33), resulting in at least 5, and sometimes more than 10,000, receptors per cell and
6.5 million receptors nationwide.

Exhibit 32. Air Toxics Utilizing the Hybrid Modeling in NATA

1,1,2,2-Tetrachloroethane

1,3-Butadiene

1,3-Dichloropropene

1,4-Dichlorobenzene(p)

2,4-Toluene diisocyanate

Benzene

Beryllium

Cadmium

Chlorine

Chloroform

Formaldehyde

Hexamethylene

Hydrochloric acid

Lead Compounds

Maleic anhydride

Nickel Compounds

Nickel Compounds

Propylene dichloride

Quinoline

Tetrachloroethylene

79


-------
EPA's National-scale Air Toxics Assessment

Acetaldehyde

Acetonitrile

Acrolein

Acrylonitrile

Arsenic

Chromium (VI)

Diesel PM

Ethylene dibromide

Ethylene dichloride

Ethylene oxide

Manganese Compounds

Mercury Compounds

Methanol

Methylene chloride

Naphthalene

Toluene

Trichloroethylene

Triethylamine

Vinyl chloride

Xylenes

v O • Qo
o

• *

o	o

The equation below was used to calculate the 2011 annual-average estimates of air concentrations at
receptor locations, which were constrained to CMAQ-grid-average values, with HEM-3 providing sub-
grid scale spatial texture.

C = HEM-3rec X (¦

Where:

( CMAQpnfb \
HEM-3gridavg)

+ CMAQsec + CMAQPF!RES + CMAQPB!0GENICS

€

CMAOpttm

HEMSma
HEM-Sammm

CMAOs$c
CMAOpbres

concentration at a receptor,

concentration in CMAQ grid cell, contributed by primary emissions,
excluding fires and biogenics,

concentration at HEM-3 receptor,

average of all HEM-3 results within a CMAQ grid, calculated through
surface interpolation of all HEM-3 receptor locations to eliminate
concentration discontinuities,

contribution from atmospheric reactions in CMAQ grid cell,
contribution from primary emissions of fires in CMAQ grid cell, and

Exhibit 33. CMAQ Domain with Expanded Cell Showing Hybrid Receptors

80


-------
EPA's National-scale Air Toxics Assessment

CMAQpbiogenics= contribution from primary emissions of biogenics in CMAQ grid cell.

This hybrid approach, which builds on earlier area-specific applications to Philadelphia, PA (Isakov et al.
2007) and Detroit, MI (Wesson et al. 2010), reflects an evolution of national-scale modeling of HAPs that
attempts to optimize characterization of non-reactive and reactive species across multiple spatial scales.
However, the blending of two different modeling platforms challenges adherence to basic mass-
conservation principles. For example, the 2005 NATA was susceptible to duplicate counting as the
secondarily formed species generated by CMAQ were added directly to HEM-3 estimates driven by
primary emissions, in addition to an added "background" concentration based on ambient observations.
Consequently, diagnosing model behavior based on paired model-to-measurement values was
compromised by the dual use of observations and largely inconsistent model inputs driving HEM-3 and
CMAQ. CMAQ tracks primary and secondary contributions by source type, enabling the HEM-3 estimate
at each receptor location to be normalized to the CMAQ primary contribution. By anchoring
concentration averages to CMAQ, mass conservation was largely retained. The constraint to CMAQ
average grid values imposed by the above equation minimized possible redundancies and was appropriate
when combining results from vastly different model architectures.

3.1.2	Treatment of Species

In this application, the hybrid model was applied to 40 of the highest risk air toxics (shown in Exhibit 32)
among 180 air toxics included in the 2011 NATA. Although this application focuses on air toxics, it
reflects the second major application of the CMAQ multipollutant version incorporating CAPs and HAPs
following a national assessment of increased ethanol use associated with renewable fuels (Cook et al.
2011). The atmospheric chemistry treatments in chemical transport models such as CMAQ are based on
gas-phase reaction processes optimized to characterize ozone, linked with a variety of heterogeneous and
thermodynamic processes to accommodate PM formation. Consequently, the inclusion of explicit
chemical species in current chemical mechanisms is predicated by its relative importance in ozone
chemistry. Formaldehyde and acetaldehyde are high risk HAPs that generate significant amounts of
peroxy radicals leading to enhanced ozone production and secondary PM formation and exemplify
multipollutant linkages driven by atmospheric processes. Chemical species that are not incorporated as
explicit species in chemical mechanisms are added as non-reactive tracers (e.g., several halogenates) or
included in simple reaction schemes, such as 1,3-butadiene decay and subsequent acrolein generation,
decoupled from the chemical mechanism. The emissions mass of several less reactive VOCs such as the
prevalent benzene, toluene, and xylene species are tracked as non-reactive tracers and participate in
atmospheric reactions as lumped carbon bond species with the assumption that atmospheric chemistry
minimally influences air concentrations. HEM-3, which treats all pollutants as nonreactive, was applied to
the remaining air toxics not incorporated within CMAQ. Due to relatively spatially invariant
concentration distributions and uncertainty in emission estimates, carbon tetrachloride risk was based on
observations modulated spatially by HEM-3 estimates.

3.1.3	Meteorological Processing

The gridded meteorological data for 2011 at the 12-km CONUS-scale domain (see domain in Exhibit 33)
was derived from version 3.4 of WRF (Skamarock et al. 2008). The WRF meteorological outputs were
processed using the Meteorology-Chemistry Interface Processor package (version 4.1.3) to derive hourly
specific inputs to CMAQ: horizontal wind components (i.e., speed and direction), temperature, moisture,
vertical-diffusion rates, and rainfall rates for each grid cell in each vertical layer (Otte and Pleim 2010). A
performance evaluation of the meteorological model can be found in EPA (2014a). CMAQ resolved the
vertical atmosphere with 25 layers, preserving greater resolution in the planetary boundary layer. The
meteorological inputs driving CMAQ were processed for HEM-3 through the Mesoscale Model Interface
Program (MMIF; EPA 2014d) to provide representative meteorological inputs for every fourth CMAQ

81


-------
EPA's National-scale Air Toxics Assessment

grid cell and for over 700 National Weather Service station locations. Isakov et al. (2007) demonstrated
successful use of meteorological variables derived from prognostic modeling to drive dispersion models,
motivated primarily to address spatial gaps in meteorological monitoring. Additionally, MMIF outputs
have been shown to compare favorably well against observed meteorological data when used in
AERMOD (EPA 2015m). For the 2011 NATA, we took advantage of prognostic meteorological
modeling to harmonize boundary-layer inputs across both modeling platforms. The MMIF outputs were
based on the first CMAQ application using the 2011 NEI vl. The final CMAQ application, based on the
2011 NEI v2, included a new WRF simulation that was not processed further to update MMIF outputs.
The differences in these WRF simulations were insignificant with respect to affecting the MMIF results.

3.1.4 Emissions Processing Overview

See Section 2 for additional detail. The 2011 NEI provided the root emissions data for CMAQ and HEM-
3 (EPA 2014b). Emissions to HEM-3 were grouped into four broad categories (emissions-input resolution
of over 150 SCCs was retained) with similar spatial and temporal delineation: major point sources,
nonpoint sources (excluding transportation, fires, and biogenics), onroad mobile, and nonroad mobile
(including locomotive, aviation, and CMVs). Fires (combined wild and prescribed) and biogenic
emissions were handled only through CMAQ. NEI data were provided as specific point and aggregated
county-level annual estimates and were processed to hourly values distributed over 12-km horizontal
grids through SMOKE (Houyoux et al. 2000). Hourly temporal allocations were developed for HEM-3,
consistent with CMAQ, which was a departure from previous NATAs that were based on annual-average
inputs. Nonpoint, onroad, and nonroad emissions for HEM-3 typically were allocated spatially to
population census tracts using a variety of surrogates (e.g., land use classifications, population).

3.1.5 Initial and Boundary Conditions

The CMAQ lateral-boundary and initial-species concentrations for benzene, formaldehyde, and
acetaldehyde were generated by a year-201 lGEOS-Chem simulation (Yantosca et al. 2015). The 2011
GEOS-Chem simulation used a grid resolution of 2.0 degrees x 2.5 degrees (latitude x longitude). The
predictions were processed using the GEOS-2-CMAQ tool and used to provide one-way dynamic
boundary conditions at one-hour intervals (Akhtar et al., 2012). A GEOS-Chem evaluation was conducted
for the purpose of validating the 2011 GEOS-Chem simulation for predicting selected measurements
relevant to their use as boundary conditions for CMAQ. This evaluation included using satellite retrievals
paired with GEOS-Chem grid cells (Henderson, et al., 2014). Due to the scarcity of observations suitable
for establishing boundary conditions and the extended calendar year simulation, zero-value initial and
boundary conditions were used for the remaining air toxics.

3.1.6 Source Attribution

Since the HEM-3 concentration estimates were based on separate emissions-group runs, estimates of the
source contributions associated with primary emissions were generated by the following ratio technique
normalized to CMAQ concentrations for sources within the four broad categories of sources:

CMAQpnfb

Crecj = HEM-3recj X	VPWFB

HhM-3GRIDAVG

Where:

Crecj = contribution to concentration at a receptor REC from category J, excluding
secondary formation.

82


-------
EPA's National-scale Air Toxics Assessment

This ratio approach provided an estimate of primary-emission contributions only. Primary-emission
contributions from biogenics and fires were processed only through CMAQ, and all contributions from
secondary formation processes were aggregated into CMAQsecnfb.

3.2 Treatment of Non-hybrid Air Toxics and Areas Outside the CONUS

The 138 HAPs not simulated by CMAQ were estimated by adding HEM-3-modeled concentrations to
observed ambient concentrations assumed to reflect background conditions, utilizing the same emissions
and meteorological processing used for HEM-3 in the hybrid modeling. The non-CONUS locations
(Alaska, Hawaii, Puerto Rico, and U.S. Virgin Islands) were modeled with the same non-hybrid approach,
but with all NATA air toxics included.

3.2.1 Background Concentrations

Appendix E contains further details on background concentrations. For the 2011 NATA, we added
background concentrations to the HEM-3-modeled concentrations (i.e., those pollutants that were not
modeled in CMAQ). Background concentrations were added to account for (1) natural sources, (2)
emissions of persistent air toxics that occurred in previous years, and (3) long-range transport from distant
sources. The largest impact of the background concentrations on the NATA risk was carbon
tetrachloride, a ubiquitous, globally persistent HAP for which the background concentration of 0.55
|ig/m3 was 3.2 times higher than its URE of 0.17 |ig/m\ thus providing a nationally consistent background
cancer risk of 3-in-l million. Although no large sources of this pollutant exist because the Montreal
Protocol established a timetable for its phase-out, observations in national and remote networks show
fairly uniform concentrations, possibly partly due to its long residence time (30-50 years) or potentially
resulting from unknown global sources.

Various approaches have been used in previous NATAs, including use of ambient concentration data,
remote concentration data, and emissions. The approach for the 2011 NATA was simplified from
previous approaches because the available data did not support the generation of regionally varying
background concentrations. For all air toxics, we estimated a spatially uniform, remote Northern
Hemisphere air toxics concentration for the background. The remote concentrations were estimated from
measurements made at remote monitoring sites, from lower-level concentrations from the national
monitoring network, from the scientific literature, or from application of national-emissions and
residence-time ratios to a measured remote concentration.

The generalized methods hierarchy was as follows:

1.	Remote network. Measurements made at networks/sites in remote Northern Hemisphere
locations with citations in peer-reviewed literature. Examples include National Oceanic and
Atmospheric Administration Global Monitoring Division sites, the Trinidad Head Advanced
Global Atmospheric Gases Experiment site, and remote Interagency Monitoring of Protected
Visual Environments (IMPROVE) sites.

2.	Ambient national network. Estimates of background concentrations made at routine monitoring
network sites in the United States where concentrations were measurable and reliable down to the
10th percentile. Air toxics measurements were used from Phase XIII of the air toxics archive.

3.	Literature. Measurements of species at remote or regional sites during a single-measurement
study for a specific pollutant. These measurements are different from the ongoing measurements
used in Step 1 because of their "one-off nature.

83


-------
EPA's National-scale Air Toxics Assessment

4. Emissions. Emissions-based estimates of remote background concentrations. An estimate for
pollutant /' was derived from the national total emissions from the 2011 NEI (E), atmospheric
residence times (t), and a comparison to tetrachloroethylene (PCE). The below equation shows
the relationship used to derive these remote estimates.

^ _ Ej x tj x CPCE
EpCE X tpcE

For NATA, we do not use background concentrations for formaldehyde, acetaldehyde, or acrolein
because Alaska, Hawaii, Puerto Rico, and the U.S. Virgin Islands used national-average secondary
concentrations from the CMAQ run, and adding background for these HAPs would be double counting.
Also, we did not use the estimates for PAHs due to uncertainties in the residence times.

Exhibit 34 contains the background concentrations for the non-CMAQ air toxics, used for both the
CONUS and non-CONUS areas, and the method used to generate them. Residence-time data were used
only for the emissions-based approach. In addition to the background concentrations in Alaska, Hawaii,
Puerto Rico, and the U.S. Virgin Islands also used the background concentrations for the pollutants listed
in Exhibit 35. Diesel PM does not have a background concentration.

Exhibit 34. Background Concentrations Added to the HEM-3 Concentrations for Non-CMAQ Air
Toxics, All Areas

Pollutant

Residence
Time
(days)

2011 Remote
Concentration
Estimate (|jg/m3)

Method

Year

Locations

Methyl chloride
(Chloromethane)

365

1.09

Remote
Network

2011

Trinidad Head, CA

Carbon tetrachloride

10950

0.547

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

Acetonitrile

365

0.170

Literature

2004-
2008

New Hampshire

n-Hexane

2.6

0.114

Emissions

2011



2,2,4-T rimethylpentane

4

0.093

Emissions

2011



1,1,1 Trichloroethane
(Methyl chloroform)

1825

0.06

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

Methyl bromide

365

0.029

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

Ethylbenzene

1.7

0.016

Literature

2005

Jungfraujoch,
Switzerland

Bromoform

540

0.01

Literature

1994-
2004

Ocean cruises

Bis(2-ethylhexyl) phthalate

200

5.7E-03

Emissions

2011



Carbon disulfide

7

5.5E-03

Emissions

2011



Methyl isobutyl ketone

1

4.6E-03

Emissions

2011



Styrene

0.25

8.7E-04

Emissions

2011



1,1,2-Trichloroethane

49

3.9E-04

Emissions

2011



84


-------
EPA's National-scale Air Toxics Assessment

Pollutant

Residence
Time
(days)

2011 Remote
Concentration
Estimate (|jg/m3)

Method

Year

Locations

Cumene (Isopropylbenzene)

2.2

3.7E-04

Emissions

2011



Selenium

10

2.0E-04

Air Toxics
Archive

2010-
2012

All national sites

Benzyl chloride

3

1.4E-04

Emissions

2011



Propionaldehyde (Propanal)

0.1

9.8E-05

Emissions

2011



Antimony

10

6.6E-05

Emissions

2011



Cobalt

10

4.1E-05

Air Toxics
Archive

2010-
2012

All national sites

Vinyl acetate

0.25

3.5E-05

Emissions

2011



1,2-Dibromo-3-
chloropropane

36

1.3E-06

Emissions

2011



Benzidine

1

2.5E-08

Emissions

2011



Exhibit 35. Background Concentrations Added to the HEM-3 Concentrations for Non-CONUS
Areas Only

Name

Residence
Time
(days)

Best 2011 RCE
Estimate (|jg/m3)

Method

Year

Locations

Dichloromethane
(Methylene Chloride)

30

0.146

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

Benzene

3

0.116

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

Chloroform

80

0.058

Remote
Network

2011

Trinidad Head, CA

Toluene

0.5

0.041

Literature

2005

Jungfraujoch,
Switzerland

Xylenes

0.2

0.023

Literature

2002

Trinidad Head, CA

Tetrachloroethylene

6.5

0.013

Remote
Network

2011

KUM, MLO, NWR,
BRW, ALT

1,4-Dichlorobenzene

31

9.3E-3

Emissions

2011



Trichloroethylene

6

4.1E-03

Remote
Network

2011

Trinidad Head, CA

Ethylene dichloride

42

2.0E-03

Emissions

2011



1,3-Butadiene

0.08

2.0E-03

Literature

2011

Jungfraujoch,
Switzerland

1,1,2,2-Tetrachloroethane

91.3

8.4E-04

Emissions

2011



Lead

10

6.6E-04

Remote
Network

2010-
2012

DENA, KALM, PORE,
REDW, TRCR,
TUXE.HACR

1,3-Dichloropropene

1.25

6.2E-04

Emissions

2011



85


-------
EPA's National-scale Air Toxics Assessment

Name

Residence
Time
(days)

Best 2011 RCE
Estimate (|jg/m3)

Method

Year

Locations

Naphthalene

0.25

4.9E-04

Emissions

2011



Ethylene oxide

7

3.4E-04

Emissions

2011



Manganese

10

3.2E-04

Remote
Network

2010-
2012

DENA, KALM, PORE,
REDW, TRCR,
TUXE.HACR

Acrylonitrile

5.6

3.2E-04

Emissions

2011



1,2-Dichloropropane
(propylene dichloride)

30

2.9E-04

Emissions

2011



Ethylene dibromide

50

1.9E-04

Emissions

2011



Arsenic

10

1.4E-04

Air Toxics
Archive

2010-
2012

All national sites

Vinyl chloride

2

1.2E-04

Emissions

2011



Nickel

10

1.0E-04

Remote
Network

2010-
2012

DENA, KALM, PORE,
REDW, TRCR,
TUXE.HACR

Mercury (gaseous)

365

1.0E-04

Literature

2005

U.S. MDN sites

Cadmium

10

3.8E-05

Air Toxics
Archive

2010-
2012

All national sites

Beryllium

10

8.5E-06

Air Toxics
Archive

2010-
2012

All national sites

Chromium VI

3

1.5E-06

Remote
Network and
National
Measurements

2010-
2012

All national sites

Hydrazine

0.25

5.7E-8

Emissions

2011



For the 2011 NATA, two pollutants from the 2002 and 2005 NATA background lists were excluded:
quinoline and total chromium (although chromium (VI) was included in 2011 NATA). Four pollutants (or
grouped pollutants) that had been in the 1999 NATA background list were excluded: polychlorinated
biphenyls, lindane, phosgene, and hexachlorobutadiene. In contrast, some pollutants and groups that had
never previously been estimated were added—these include acetonitrile, hexane, 2,2,4-trimethylpentane,
ethylbenzene, methyl isobutyl ketone, styrene, 1,3-dichloropropene, 1,1,2-trichloroethane,
cumene(isopropylbenzene), selenium, propionaldehyde (propanal), antimony, cobalt, and vinyl acetate.

3.3 Model Evaluation

We describe below and in Appendix F our efforts to evaluate the performance of the NATA models. As
noted at the beginning of Section 3, discussions of "HEM-3" in this document often are specifically
related to the AERMOD dispersion model component of HEM-3, but we use "HEM-3" throughout for
simplicity and consistency. In this section in particular, discussions of HEM-3 model values are
specifically related to the air concentrations predicted by its AERMOD component.

86


-------
EPA's National-scale Air Toxics Assessment

3.3.1	Overview

Using the air toxics archive Phase IX for the year 2011. we conducted an operational model performance
evaluation of the air toxics simulated for the 2011 NATA (more details found in Section 3.3.2 below).
The model evaluation included both the air toxics modeled with the hybrid approach ("hybrid air toxics")
and those modeled without the hybrid approach ("non-hybrid air toxics"). The hybrid evaluation looked at
the air toxics for which there were valid ambient data (i.e., completeness criteria protocol) to compare
against the CMAQ, HEM-3, and hybrid model predictions. Likewise, the air toxics non-hybrid evaluation
used similar observational-completeness criteria constraints to compare against air toxics estimated by
adding HEM-3 to observed ambient concentrations assumed to reflect background conditions.

Spatial-scale differences exist between CMAQ, HEM-3, and the hybrid model predictions. A CMAQ
concentration represents a 12-km grid-cell volume-averaged value. The HEM-3 model concentration
represents a specific point within the modeled domain. The hybrid model concentration combines the
HEM-3 point-concentration gradients with the CMAQ 12-km grid-cell volume average. The ambient
observed measurements were made at specific spatial locations (latitude/longitude). Several annual
graphical presentations and statistics of model performance were calculated and prepared. Graphical
presentations included box and whisker plots (which show the distribution and the bias of the predicted
and observed data) and regional maps (which show the mean bias and error calculated at individual
monitoring sites).

3.3.2	Observations

Observations were extracted from the air toxics archive, Phase IX for the year 2011. While most of the
data in the archive are a snapshot of the Air Quality System (AQS) database (downloaded in July 2014),
additional data (such as from special studies) were in the archive but not reported to AQS. In the air toxics
archive, pollutant concentrations were converted to (ig/m3 in local conditions where temperature and
pressure data were available (i.e., at the vast majority of sites). In addition, any negatives and data flagged
as "non-detect" without a value were given a value of 0. Also, any data determined to have been
substituted with half the method detection limit (i.e., MDL/2) was changed to 0.

For comparing annual averages of modeled and monitored data, data from the archive were aggregated to
2011 annual averages by site and parameter code. Data below MDLs were used as-is. Data were removed
for which there were no MDLs. Naphthalene data from parameter code 45850 (canister method) were
removed because that method may not be as reliable as the method used in the National Ambient Air
Toxics Trends Program. Also, those sites were removed that reported naphthalene as code 17141 in which
it was determined to use the canister test method.

Only site-parameter pairs in which measurements from at least three seasons were 75 percent complete
(i.e., 75 percent of the scheduled days contained non-null values) were retained for developing annual
averages. First, the sub-annual data were allocated to 24-hour averages. Seventy-five-percent
completeness was required to create a daily average from sub-daily data, such that 75 percent of
scheduled sub-annual data were available. For example, hourly data required 18 of 24 hours of data,
three-hour data required six of eight three-hour periods of data, etc. For each quarter, the number of days
to meet 75% completeness depended on the sampling frequency (note that more than one monitor at the
site that measured on the same day was counted once). For example, one-in-six-day sampling required 12
days for the quarter.

For sites with multiple monitors (known as "POCS"), only the daily data with the same measurement
duration (i.e., hourly, 3-hour, 24-hour) were averaged across the POCs. That is, daily data based on

87


-------
EPA's National-scale Air Toxics Assessment

hourly measurements were not averaged with daily data based on 24-hour measurements. Where a site
met the 75% completeness for multiple durations, the 24-hour duration data were chosen.

Annual averages were created by averaging all daily measurements with the same measurement duration
for all sites that met the above completeness criteria. The only sites used were those for which 50 percent
or more of the data were above the method detection limit (MDL). A spreadsheet file
("2011monitored_data_annualmeans_PhaseIXarchive.xlsx") of the ambient annual averages (in (ig/m3) is
provided in the SupplementalData folder.

Uncertainties in the ambient data result from limited sites, data below MDL and measurement
uncertainties.

3.3.3 Model Performance Statistics

The Atmospheric Model Evaluation Tool (AMET) was used to conduct the 2011 NATA air toxics
evaluation (Appel et al. 2011). There are various statistical metrics available and used by the science
community for model performance evaluation. For a robust evaluation, the principal evaluation statistics
used to evaluate model performance are based on the following metrics: two bias metrics (mean bias and
normalized mean bias); and, three error metrics (mean error and normalized mean error, root mean square
error, and correlation coefficient).

Common variables are:

M	=	predicted concentration

O	=	observed concentration

X	=	predicted or observed concentration

o	=	standard deviation

Mean Bias (MB), Mean Error (ME), and Root Mean Square Error (RMSE) (all in ^g/m3):

71

MB

rii

i

n

ME = -Y\m-o\

nZ—i

RMSE =

M

Z?(M - Of

n

MB quantifies the tendency of the model to over- or under-estimate values while ME and RMSE measure
the magnitude of the difference between modeled and observe values regardless of whether the modeled
values are higher or lower than observations.

Normalized Mean Bias (NMB) and Normalized Mean Error (NME) (both unitless):

Zi(M - 0)

NMB = —	-

88


-------
EPA's National-scale Air Toxics Assessment

NMB is used as a normalization to facilitate a range of concentration magnitudes. This statistic averages
the difference (model - observed) over the sum of observed values. NMB is a useful model performance
indicator because it avoids over-inflating the observed range of values, especially at low concentrations.

Ei|M-0|

NME =

NME is similar to NMB, where the performance statistic is used as a normalization of the ME. NME
indicates the absolute value of the difference (model - observed) over the sum of observed values.

Correlation Coefficient (r; unitless):

r=ly /O-OWM-M

The value of r provides an indication of the strength of linear relationship and is signed positive or
negative based on the slope of the linear regression.

3.3.4 Hybrid Evaluation

We conducted an annual operational model performance evaluation for hybrid air toxics, resulting in
comparisons between CMAQ and HEM-3 predictions as well as an evaluation of the ability of the hybrid
model to replicate the 2011 observed ambient concentrations. Inclusion of all three model results was
intended to demonstrate the merged attributes of the hybrid model used for the 2011 NATA. Statistical
assessments of modeled versus observed concentrations were paired in time and space and aggregated on
an annual basis. Exhibit 36 contains a list of air toxics evaluated in the hybrid model performance
evaluation and the number of paired sites (based on completeness criteria of observations, Section 3.3.2)
used in the annual average. Exhibit 37 is a map of the 2011 monitoring locations for hybrid air toxics.
Acrolein and ethylene dibromide were excluded in the model evaluation given the data uncertainty and
sampling. Annual averages of xylene species (m-, o-, and p-) were summed together to calculate a
"Xylenes, total" air toxic group based on the individual risk for each species being the same.

Exhibit 36. Hybrid Air Toxics Evaluated

Hybrid Air Toxic

Number of Paired Sites

1,3-Butadiene

83

1,3-Dichloropropene

5

1,4-Dichlorobenzene

22

Acetaldehyde

110

Acrylonitrile

18

Arsenic PM10

34

Benzene

214

Cadmium PM10

27

Chlorine

123

Chloroform

92

Ethylene dichloride

40

Hybrid Air Toxic

Number of Paired Sites

Formaldehyde

110

Lead PM10

33

Manganese PM10

40

Methylene chloride

123

Naphthalene

36

Nickel PM10

29

Propylene dichloride

5

Tetrachloroethylene

72

Toluene

211

Trichloroethylene

13

Xylenes

163

89


-------
EPA's National-scale Air Toxics Assessment

Exhibit 37. 2011 Monitoring Locations for the Evaluation of Hybrid Air Toxics

\ ^	aRo9no	ONTARIO

^Winnipeg

*	rt		



\

-»»«"	fcoRTH DAKOTA T	%

f	* .	1	—	~

* * ~ T	sou,„	MICHIGAN	*	" i

£	>D'«HO	'	» HAko A	O	anscONSIN	>'	I'

f ORFGO*	?	^ ,	? T	f'f'	V O?	f	o	JK ?

r. .	-WYOMING	f-	!. a	i	\J\

;V' t ,	t t . ^			;4'*t

t	•.#,v t- "" * h *. % T tvWw/JkW-	

*•r ««v. Vt		 +VfcirT 	

;t t» c0u,,»»o	*-_je	/

>"*• « 1"D ,.s T,y ,l * ~ %~i' .*«

AY-

W T H „ , f . .r' J;,, '	' >% , JK«

1flr?4¥" "4$*' t . ,	"'	» 	 $ *

1 f, *$• tt£ .	4 . V c-#"

¦A-" xp"° . a .	r(l.-i t

jfeu^lin m-i ituiSlKVip T'	1 ' T» Jcictaoiwille

t- «	v

T' \	nSai

-- «/> v An'

\	1W-	*

Torreon v	o nv,ns*llle	$>,{¦"

~	ilU





In this section of evaluation of hybri d air toxics, we present annual-average model-to-monitor site
comparisons for all three models for three key air toxics: acetaldehyde, formaldehyde, and benzene.
Presentation of these comparisons includes summary statistics (Exhibit 38), boxplots containing model
distribution and bias differences as compared to ambient observations (Exhibit 39, Exhibit 46, and
Exhibit 53), and regional spatial maps with plots of the mean bias and error calculated at individual
monitoring sites (Exhibit 40-Exhibit 45, Exhibit 47-Exhibit 52, Exhibit 54-Exhibit 59). The boxplots use
boxed interquartile ranges of 25th-to-75th percentile, along with whiskers from the 5th to 95th
percentiles, and they also contain summary statistics of r, RMSE, NMB, NME, MB, and ME. More
details of the hybrid evaluation are in Appendix F, including statistical assessments of all the evaluated
hybrid air toxics. Note that HEM-3 and AERMOD are equivalent terms in these exhibits.

CMAQ and hybrid model predictions of annual formaldehyde, acetaldehyde, and benzene showed
relatively small-to-moderate bias and error percentages when compared to observations. HEM-3 showed
larger biases and errors, with underestimates for secondarily formed air toxics (e.g., -80.4 percent for
acetaldehyde and -78.8 percent for formaldehyde), as expected given HEM-3's exclusion of atmospheric
chemistry. Differences in bias and error statistics between the hybrid and CMAQ models were negligible
for formaldehyde and acetaldehyde. Technical issues in the air toxics data consisted of (1) uncertainties in
monitoring methods, (2) limited measurements in time/space to characterize ambient concentrations
("local in nature"), (3) commensurability issues between measurements and model predictions, (4)
emissions- and science-uncertainty issues potentially affecting model performance, and (5) limited data
for estimating intercontinental transport that effects the estimation of boundary conditions (i.e., boundary
estimates for some species were much higher than predicted values inside the domain).

Exhibit 38. 2011 Annual Air Toxics Performance Statistics for the Hybrid, CMAQ, and HEM-3
Models

Hybrid Air Toxic

Model

MB (pg/m3)

ME (fjg/m3)

NMB (%)

NME (%)

Acetaldehyde

Hybrid

0.5

0.7

30.9

43.9

CMAQ

0.4

0.7

27.1

41.4

90


-------
EPA's National-scale Air Toxics Assessment

Hybrid Air Toxic

Model

MB (|jg/m3)

ME (|jg/m3)

NMB (%)

NME (%)

HEM-3

-1.3

1.3

-80.4

80.6

Formaldehyde

Hybrid

-0.8

1.0

-30.8

37.3

CMAQ

-0.9

1.0

-34.2

38.8

HEM-3

-2.2

2.2

-78.8

79.3

Benzene

Hybrid

0.0

0.5

1.6

60.7

CMAQ

-0.2

0.5

-22.7

57.8

HEM-3

-0.3

0.5

-33.1

60.2

Exhibit 39. Acetaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and
Modeled-Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3
Models

2011v2eg_NATA_CMAQ_annual Acetaldehyde for 20110101 to 20110131

E

^3)

Toxics

2011 v2eg_NATA_CMAQ_an nual
2011 v2eg_NATA_AERMOD_annual
2011 v2eg NATA_Hybrid_annual

r

-0.04

0.12

RMSE

1.5

0.91

NMB

-80.4

30.9

NME

80.6

43.9

MB

-1.33

0.49

ME

1.33

0.7

—I	1	

Toxics 2011v2eg NATA CMAQ annual

T

2011 v2eg NATA Hybrid annual

91


-------
EPA's National-scale Air Toxics Assessment

2011v2eg_NATA_CMAQ annual Acetaldehyde for 20110101 to 20110131

~ 2011 v2eg_N ATA_CM AQ_an nual
¦ 2011 v2eg_NATA_AERMOD_annual
H 2011 v2eg_NATA_Hybrid_annual

e

ch

03
CO

£
©
o
<

8

r

0.12

-0.04

0.12

RMSE

0.87

1.5

0.91

NMB

27.1

-80.4

30.9

NME

41.4

80.6

43.9

MB

0t43

-1.33

0.49

ME



1.33

0.7

20l1v2eg NATA CMAQ annual

~r

2011v2eg NATA Hybrid annual

Exhibit 40. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Acetaldehyde MB (ug/m3) for ru n2011 eg_NATA_HYBRID_annuaI	allHAPs for 20111001 to 20111031

units = ug;'m3
coverage limit =

CIRCLE=Toxics:

92


-------
EPA's National-scale Air Toxics Assessment

Exhibit 41. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Acetaldehyde ME (ug,'m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit 42. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Acetaldehyde MB 
-------
EPA's National-scale Air Toxics Assessment

Exhibit 43. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Acetaldehyde ME (ug/m3) for run2011 eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit 44. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Ac*<*klBhj4»MB(u9ni3>to' ruri3011»Q NAT A AEflUOO annual allHAP* tot 30111001 to 30111031

C'flCLE«To«cs;

94


-------
EPA's National-scale Air Toxics Assessment

Exhibit 45. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Awwathyd* Mt (ugmjUo. ni(i30ll«sLWATAXrmOO..»nnmi WiKAPt fcy J011HO1 to 3)111331

CRCl

Exhibit 46. Formaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and
Modeled-Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3
Models

2011v2eg_NATA_CMAQ_annual Formaldehyde for 20110101 to 20110131

5 _ ¦	Toxics

~	2011 v2eg_NATA_CM AQ_an nual

¦	2011 v2eg_NATA_AERMOD_annual

¦	2011 v2eg_NATA_Hybrid_annual

f

0.41

-0.02

0.37

RMSE

1,21

2.37

1.16

NMB

-34.2

-78.8

-30.8

NME

38.8

79.3

37.3

MB

-0.9

-2.16

-0.81

ME

1.02

2.17

0.98

—I	1	1	1	

Toxics 2011v2eg NATA CMAQ annual	2011v2eg NATA Hybrid annual

95


-------
EPA's National-scale Air Toxics Assessment

2011v2eg_NATA_CMAQ_anriual Formaldehyde for 20110101 to 20110131

~ 2011v2eg_NATA_CMAQ_annual

¦	2011v2eg_NATA_AERMOD annual

¦	2011v2eg_NATA_Hybrid_annual

o



O

r

-0.02

0.37

RMSE

2.37

1.16

NMB

-78.8

-30.8

NME

79.3

37.3

MB

-2.16

-0.81

ME

2.17

0.98

	1	1	1	

2011v2eg_ NATA CMAQ annual	2011v2eg NATA Hybrid, annual

Exhibit 47. Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Formaldehyde MB (ug,'m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

96


-------
EPA's National-scale Air Toxics Assessment

Exhibit 48. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Formaldehyde ME 
-------
EPA's National-scale Air Toxics Assessment

Exhibit 50. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Formaldehyde ME (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit = %

CIRCLE=Toxics;

Exhibit 51. Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain



CIRCLE-Toxics;

98


-------
EPA's National-scale Air Toxics Assessment

Exhibit 52. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Formjfc**r>v6* ME [ugm3; tor fur&oiloq RATA AERMOD annual allHAP* to* 10111001 lo 301 UOSi

CiRCLE-To*k»:

99


-------
EPA's National-scale Air Toxics Assessment

Exhibit 53. Benzene: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011v2eg_NATA_CMAQ_annual Benzene for 20110101 to 20110131

-

3

¦	AQS_Daily_PM

~	2011 v2eg_NATA_CM AQ_an nual

¦	2011 v2eg_NATA_AERMOD_annual

¦	2011 v2eg_NATA_Hybrid_annual

r



0.18

0.22

FtMSE



0.83

0.8

NMB

-22.7

-33.1

1.6

NME

57.8

60.2

60.7

MB

-0.2

-0.28

0.01

ME



0.52

0.52

	1	

AOS Daily PM

	1	T

2011v2eg NATA AERMOD annual

if)

S

2011v2eg_NATA_CMAQ_annual Benzene for 20110101 to 20110131

E

d)

CD

~ 2011 v2eg_N ATA_C M AQ_an n ual

¦	2011 v2eg_N ATAAE RMODannual

¦	2011 v2eg_NATA_Hybrid_annual

O

O

o

O

o
o

o

o





r

0.18

0.22

RMSE

0.83

0.8

NMB

-33.1

1.6

NME

60.2

60.7

MB

-0.28

0.01

ME

0.52

0.52

2011v2eg NATA CMAQ annual

	1	

2011v2eg NATA Hybrid annual

100


-------
EPA's National-scale Air Toxics Assessment

Exhibit 54. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Benzene MB (ug/m3) for rur>201 leg NATAHYBRID annualallHAPs for 20111001 to 20111031

units = ug.'m3
coverage limit =

> 2
18
1,6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

-0.2
-0.4

-0.6
-0.8
-1

-1.2
-1.4
-1.6
-1.8
< -2

CIRCLE=Toxics;

Exhibit 55. Benzene: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

CIRCLE=Toxics;

101


-------
EPA's National-scale Air Toxics Assessment

Exhibit 56. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Benzene MB (ug.'m3) for run2011eg NATA_CMAQ annual allH APs for 20111001 to 20111031

Exhibit 57. Benzene: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Benzene ME (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics:

102


-------
EPA's National-scale Air Toxics Assessment

Exhibit 58. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Benzene MB (ug/m3) far run201 leg NATA AERMOD annual allHAPs for 20111001 to 20111031

Exhibit 59. Benzene: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Benzene ME (ug/m3) for run2011eg_NATA_AERMOD_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

3.3.5 Non-hybrid Evaluation

To estimate the ability of HEM-3 to replicate the 2011 observed ambient concentrations of air toxics, we
conducted an annual operational model performance evaluation for air toxics used in the non-hybrid
model calculation. Statistical assessments of modeled versus observed concentrations were paired in time
and space and aggregated on an annual basis. Exhibit 60 contains a list of air toxics evaluated m the non-
hybrid model performance evaluation and the number of paired sites (based on completeness criteria of
observations, Section 3.3.2) used in the annual average. Exhibit 61 is a map of the 2011 monitoring
locations for non-hybrid air toxics. Complete results from the non-hybrid evaluation are presented in
Appendix F; paired values of the monitored and modeled data are provided in the spreadsheet

103


-------
EPA's National-scale Air Toxics Assessment

"nonhybridpolls-modelevaluationpaired.xlsx" in the Supplemental Data folder. Data-completeness and
measurement-uncertainty issues exist for: 1,1,1-trichloroethane, 1,1,2-trichloroethane , 1,2,4-
trichlorobenzene, alpha-Chlorotoluene, hexachloro-l,3-butadiene, 1,1-dichloroethane , 1,1-
dichloroethylene, chloroethane, and 3-chloropropene; therefore, these air toxics were not included in the
non-hybrid evaluation. Also excluded were air toxics with no monitoring data available.

Exhibit 60. Non-hybrid Air Toxics Evaluated

Non-hybrid Air Toxic

Number of Paired Sites

4-Methyl-2-pentanone

35

Acetonitrile

36

Antimony (TSP) LC

11

Antimony PM-c LC

18

Bromomethane

26

Carbon disulfide

23

Carbon tetrachloride

163

Chloromethane

155

Cobalt (TSP) LC

12

Cobalt PM10 LC

15

Ethylbenzene

170

Non-hybrid Air Toxic

Number of Paired Sites

Hexane

125

llsopropylbenzene

23

Methyl tert-butyl ether

6

Propanal

68

Selenium (TSP) LC

11

Selenium PM10 LC

14

Selenium PM2.5 LC

58

Styrene

71

Tribromomethane

5

Vinyl Acetate

25

Exhibit 61. 2011 Monitoring Locations for the Evaluation of Non-hybrid Air Toxics

ONTARIO





¦	° MONONA	NOUTHOAKOTA

f

4'

¦Z-

IDAHO

"»	"''""a-iscoKsm MICHIGAN	O

WYOMING	MHv-aukeeT q Roclfeten? new ^ ** in

'"Tltt, ~ NEBRASKA	f „ —^Ekydand	O

*	~ ""N"?5 <*#***'-

If 1/1 tolORADO ?AKSAS	? C— ** Y

		 ,	•		T~	-r I < . JO Washington D C.

NFVADA	1 Missouri o	SfoUiyille	^ o

W, a	UNITED STuATES y	^Untuck,	' ^SS.'n'T

KufcIJnia	. a T ^ O

•FrSSo' ' k" .	 l-j oArtu	*V9 ,

f '	-4oio«Jpo I OKI .I&H Y plIteai;

I-	PLATEAU a T J	°	1

ARIZONA	<*»	[ARKANSAS	T	S	CAROLINA

W™ NF.W»E.,Jfo	¦&¥.	V'c"4l,

^ * y-		

°EI Paso	TEXAS	a	. •. (

' 1 I' V'

&

AnI

<

„ ••••

°"|mS	FL^RW

£

*q Timr,.i

Torreon "^.Wonkrrey ¦ ^own5vl,';
Cui,»c«n M p v , r

104


-------
EPA's National-scale Air Toxics Assessment

3.4 Summary

•	Forty of the more prevalent and higher-risk air toxics, accounting for 99 percent of the national
human-health risk of all NATA air toxics, were modeled for air transport using a hybrid approach
with CMAQ and HEM-3 (with AERMOD).

•	Redundancies and double counting were minimized in the hybrid-modeling approach by
anchoring air concentrations to those estimated by CMAQ.

•	All other air toxics were modeled solely in HEM-3 (with AERMOD), except for background
concentrations, which were estimated using monitoring and emissions data.

•	Model evaluation generally shows better agreement for air toxics with more measurement sites
and fewer measurement uncertainties, such as benzene.

•	Characterization of model performance for NATA is significantly constrained given the multiple
air toxic species assessed, limited air toxics observations and monitoring network, as well as
multiple species across multiple spatial scales of interest. There are no accepted benchmarks for
air toxics evaluation, in contrast to ozone model performance where error and bias for paired
(monitoring site and hourly resolution) comparisons typically are within 35 and 15 percent,
respectively (Russell and Dennis 2000; Seigneur and Dennis 2010). Such criteria are not realistic
for air toxics due to characterization uncertainty in air toxics data.

105


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

106


-------
EPA's National-scale Air Toxics Assessment

4 ESTIMATING EXPOSURES
FOR POPULATIONS

Estimating inhalation ECs is a critical step in determining potential health risks because ambient
concentrations do not take into account movements of individuals among geographic locations and
microenvironments where pollutant concentrations can differ. Different individuals have different daily
activities, spend different amounts of time engaged in those activities, and engage in those activities in
different locations. Most activities occur in indoor environments (e.g., the home, workplace, school, and
vehicles), where pollutant concentrations can differ from those in the outdoor environment. Therefore, the
average concentration of a pollutant that people breathe can differ significantly from the ambient
concentration at a fixed outdoor location.

Please refer to the version of this document accompanying the 2005 NATA (EPA 2011) for descriptions
of exposure estimations for previous NATAs. This section contains a discussion of how ECs were
estimated for the 2011 NATA. It begins with an overview of the hybrid approach used that included new
exposure modeling for some pollutants and applications of exposure-to-ambient concentration ratios for
the remaining NATA pollutants. This introduction is followed by a more detailed description of this
approach, a summary of the user inputs and other data required, and an overview of the quality-assurance
measures included in estimating exposures. Further details on the exposure calculations for the 2011
NATA can be found in Appendix G.

4.1	Estimating Exposure Concentrations

For the 2011 NATA, EPA used a hybrid of direct modeling and exposure factors to estimate inhalation
ECs for NATA. This approach used census-tract-level ambient concentrations estimated with air quality
models, as described in Section 3, and yielded census-tract-level exposure-concentration estimates that
were used to determine potential health risks for NATA.

Direct exposure modeling used the EPA Hazardous Air Pollutant Exposure Model (HAPEM). HAPEM,
described in detail in Section 4.2, is a screening-level exposure model that estimates inhalation ECs
corresponding to estimated ambient-pollutant concentrations. EPA used version 7 of HAPEM (i.e.,
HAPEM7) for the 2011 NATA for a selected group of pollutants. For each modeled pollutant and NATA
category (i.e., point, nonpoint, onroad mobile, and nonroad mobile), and for each census tract, EPA also
calculated the ratio of EC to ambient concentration (i.e., an exposure factor). For the remaining pollutants
not modeled with HAPEM, EPA selected one of the modeled pollutants as a surrogate, and sometimes the
selected surrogate was specific to a NATA category. Per census tract, EPA multiplied the ambient
concentration of the pollutant by the surrogate's exposure factor, resulting in estimated ECs. Section 4.4
contains additional description of this exposure-factor approach.

4.2	About HAPEM

Nearly two decades ago, EPA developed HAPEM for Mobile Sources (HAPEM-MS) to assess inhalation
exposure to air toxics from highway mobile sources. This initial version of HAPEM used carbon
monoxide as a tracer for highway mobile-source air toxic emissions. EPA has since updated and
improved HAPEM to enable the prediction of inhalation ECs for a wide range of air toxics using either
modeled ambient concentrations or measured data (without regard to source category), and the model no
longer uses carbon monoxide as a tracer. More recent versions of HAPEM incorporate a range of

107


-------
EPA's National-scale Air Toxics Assessment

enhancements, and, as a result, HAPEM version 4 and later versions can be used to predict annual
average human-exposure levels on a nationwide basis at a spatial resolution as fine as the census-tract
level (EPA 2002b. EPA 2005d. EPA 2007. EPA 2015c). The enhancements incorporated into recent
versions of HAPEM facilitate its use for regional and national inhalation risk assessments such as NATA.
Inhalation ECs for the 1996, 1999, and 2011 NATAs were estimated using HAPEM4, HAPEM5, and
HAPEM7, respectively (EPA did not use HAPEM6 for NATA). Exhibit 62 outlines some key differences
between these three versions. A complete history of HAPEM can be found in the User's Guide for
HAPEM7 (EPA 2015c), the latest version of HAPEM available at the time this document was prepared.

Exhibit 62. Key Differences between Recent Versions of HAPEM

Characteristic

HAPEM4

HAPEM5

HAPEM7

Data source for population
demographics

1990 U.S. Census

2000 U.S. Census

2010 U.S. Census

Characterization of
microenvironmental factors

Point estimates

Probability distributions

Same as HAPEM5

Method for creation of annual-
average activity patterns from
daily activity-pattern data

Resampling of daily diaries
for each of 365 days without
accounting for
autocorrelation

Sampling a limited number
of daily diaries to represent
an individual's range of
activities, accounting for
autocorrelation

Same as HAPEM5,
except now includes
commuter-status
criterion

Interpretation of exposure-
concentration range for a given
cohort/tract combination

Uncertainty for the average
annual EC for the
cohort/tract combination

Variability of annual ECs
across cohort/tract
members

Same as HAPEM5,
except now includes
adjustments based on
proximity to roadway

HAPEM uses a general approach of tracking representative individuals of specified demographic groups
as they move among indoor and outdoor microenvironments and among geographic locations. As
described in the following section, personal-activity and commuting data specific to a hypothetical
individual's demographic groups are used to determine the census tracts containing residential and work
locations and the microenvironments within each tract. Empirically based factors reflecting the
relationship between ECs within each microenvironment and the outdoor (ambient) air concentrations at
that location are selected by the model through a stochastic sampling process to estimate ECs.

To estimate long-term ECs for a hypothetical individual, the pollutant concentrations in each
microenvironment visited are first combined into a daily-average concentration. The daily averages are
then combined with proper weighting for season and day type to calculate a long-term average. Finally,
the long-term averages are stratified by demographic group and census tract to create a distribution of
ECs for each stratum. The median of each distribution represents the best estimate of exposure for a
"typical" person of that demographic group in that census tract. In this case, "typical" does not refer to a
specific individual in the population or even the average over a group of individuals. Rather, this person is
a hypothetical individual residing at the centroid of a census tract and engaging in a range of activities
(both indoor and outdoor) representative of those in which individuals of that demographic group in that
census tract might engage. Additional technical information on HAPEM can be found in the User's Guide
for HAPEM7 (EPA 2015c).

4.3 HAPEM Inputs and Application

HAPEM requires four primary types of information to estimate ECs: (1) ambient concentrations of air
toxics, (2) population data from the U.S. Census Bureau, (3) population-activity data, and (4)

108


-------
EPA's National-scale Air Toxics Assessment

microenvironmental data. The subsections below contain additional discussion on these inputs,
accompanied by descriptions of the data used for NATA and related information on how EPA configured
the model and applied it to conduct direct exposure modeling.

4.3.1	Data on Ambient Air Concentrations

HAPEM is typically applied using annual-average, diurnally distributed ambient air concentrations. Input
concentrations can be monitoring data or concentrations estimated using a dispersion model or other air
quality model.

For the 2011 NATA, EPA estimated annual-average ambient concentrations for each census tract using a
hybrid CMAQ-HEM-3 approach discussed in Section 3. EPA stratified the air quality outputs for a
selected group of pollutants by one or more of the four principal NATA categories (i.e., point, nonpoint,
onroad mobile, and nonroad mobile), and EPA used those results as surrogates for the remaining
pollutants not modeled in CMAQ-HEM-3. Thus, exposure-model results generated for NATA can be
summarized for each principal NATA category or any combination of those categories.

4.3.2	Population Demographic Data

HAPEM divides the exposed population into cohorts such that each person in the population is assigned
to one and only one cohort, and all the cohorts combined encompass the entire population. A cohort is
defined as a group of people whose exposure is expected to differ from exposures of other cohorts due to
certain characteristics shared by the people within that cohort. In HAPEM7 used for the 2011 NATA,
cohorts were defined using residential census tract and age so that the population in each census tract was
divided into six age groups 0-1, 2-4, 5-15, 16-17, 18-64, and > 65 years of age. These groups were
developed using demographic data derived from the 2010 U.S. Census. EPA aggregated the predicted
inhalation ECs across cohorts to estimate ECs for the general population.

4.3.3	Data on Population Activity

HAPEM draws on two types of data to define activities for the modeled population: activity-pattern data
(specifying the frequency, location, and duration of daily activities) and commuting-pattern data
(specifying the work tracts for people living in each home tract). HAPEM uses these data in coordination
to place a hypothetical individual who commutes to work either in the home tract or the work tract and in
a specific microenvironment at each 3-hour time step (the time step used for NATA). The
microenvironment assignments and locations derived from these data are then used to calculate ECs, as
explained in the next section. EPA discusses these two types of data in more detail in the following
paragraphs.

Data on human activity patterns are used to determine the frequency and duration of exposure within
various microenvironments such as indoors at home, in-vehicle, and outdoors. Activity-pattern data are
taken from demographic surveys of individuals' daily activities that specify the sequence, duration, and
locations of those activities. The default source of activity-pattern data used by HAPEM and for NATA is
EPA's Consolidated Human Activity Database (CHAD; EPA 2015a). To develop the version of CHAD
used in the 2011 NATA (i.e., version June 2014), data from 21 individual U.S. studies of human activities
were combined into one comprehensive data system that contains over 45,000 person-days of activity-
pattern records (previous NATAs used previous versions of CHAD containing of fewer studies and
person-days of data). Because of limitations of the study designs of the surveys from which it is derived,
CHAD might not be representative of all demographic groups, particularly ethnic minorities and low-
income populations. Another limitation of the activity-pattern data in CHAD is that most are for
individuals over a one- or two-day period only. Extrapolation of these short-term records to the annual

109


-------
EPA's National-scale Air Toxics Assessment

activity patterns required for assessments of air toxics exposure introduces some uncertainty into the
analysis.

The algorithms in HAPEM address this extrapolation uncertainty by implementing a stochastic process to
create simulated long-term (multi-day) activity patterns from daily activity-pattern data that account for
day-to-day autocorrelation. These algorithms create annual-average activity patterns from daily activity-
pattern data to represent the variability more fully among individuals within a cohort-tract combination.
For each day type and demographic group, daily-activity diaries were divided into three groups based on
similarity using a cluster analysis. To simulate the activities of an individual, one diary was selected from
each group for each day type, resulting in nine diaries in total. Then, for each day type, the sequence of
the selected diaries was determined according to the probability of transition from one cluster group to
another, as determined by analyses of the CHAD data. The simulation was repeated 30 times, resulting in
a set of 30 estimates of annual ECs for each demographic group in each census tract. Use of a limited
number of diaries and the transition probabilities is a way to account for day-to-day autocorrelation of
activities for an individual, so each exposure-concentration estimate represents an estimate for an
individual rather than an average for the group. Therefore, with this approach, the range represents the
variability of ECs across the group. These algorithms were used beginning with HAPEM5 (i.e., beginning
with the 1999 NATA).

Commuting-pattern data, the second type of population activity data used in HAPEM, are derived for
each cohort from a U.S. Census database containing information on tract-to-tract commuting patterns.
These data specify the number of residents in each tract that work in that tract and every other census tract
(i.e., the population associated with each home-tract/work-tract pair) and the distance between the
centroids of the two tracts. An important limitation is that the commuting-pattern data included in
HAPEM do not account for the movement of school-age children who travel (or commute) to a school
located outside of their home tract.

4.3.4 Microenvironmental Data

A microenvironment is a three-dimensional space in which human contact with an environmental
pollutant occurs. In HAPEM, this space is treated as a well-characterized, relatively homogenous location
with respect to pollutant concentrations for a specified period. The inhalation exposure estimate is
determined by the sequence of microenvironments visited by the individual. The concentration in each
microenvironment is estimated by using the three microenvironmental factors listed below to adjust the
ambient-concentration estimate for the census tract where it is located:

•	a penetration factor that is an estimate of the ratio of the microenvironmental concentration to
the concurrent outdoor concentration in the immediate vicinity of the microenvironment;
penetration factors are pollutant-specific estimates that are derived from reported measurement
studies;

•	a proximity factor that is an estimate of the ratio of the outdoor concentration in the immediate
vicinity of the microenvironment to the outdoor concentration represented by the ambient air
concentration input to the model; and

•	an additive factor that accounts for emission sources within or near a particular
microenvironment, such as indoor emission sources. As noted below, the additive factor is not
used for NATA.

The relationship between the estimated ECs, the input ambient concentrations, and these three factors is
demonstrated by the equation below.

110


-------
EPA's National-scale Air Toxics Assessment

C(i,k,t) = CONC^i ^ X PENk X PROXk + ADDk

Where:

Caxt) = EC predicted within census tract /' and microenvironment k for time step t. in units
of (.ig/ni3

CONG,./, = ambient concentration for census tract /' for time step t. in units of (ig/m3
PEN/, = penetration factor for microenvironment k
PROX/, = proximity factor for microenvironment k

AD Da = additive factor accounting for sources within microenvironment k, in units of
(ig/m3

Stochastic processes can be used to select work tracts, ambient air concentrations, and
microenvironmental factors. This important feature allows exposures to be characterized with probability
distributions rather than point estimates, which more accurately reflect the variability of these components
and simulate some of the variability found in measurement studies.

In HAPEM, the characteristics of each microenvironment are used to assign each microenvironment to
one of three groups: indoors, outdoors, and in-vehicle. The 2011 NATA used the 18 microenvironments
shown in Exhibit 63. The microenvironments in the indoor group were further classified as associated
with either residence or other buildings, while those in the outdoor group were categorized as either near-
road or away-from-road. Each group consists of microenvironments expected to have similar penetration
factors, thus allowing microenvironmental factors developed for one microenvironment to be applied to
other microenvironments in the same group. Within each census tract, HAPEM uses estimates of the
number of people living within each of three distance-from-road bins to stochastically vary the proximity
factor based on distance-from-road (i.e., proximity factors are higher for microenvironments near major
roadways, lower for microenvironments relatively far from major roadways). The additive factor (ADDk)
in the expression for EC, above, was set to zero for NATA because indoor-source data are currently
incomplete (recall that NATA covers only pollutants derived from outdoor sources).

An important consideration is that data to support quantitative microenvironmental factors are not well
developed for many of the air-toxic compounds and for most of the microenvironments, which introduces
uncertainty into the analysis of exposures. Section 7 contains a discussion on uncertainty and variability
with regard to this and other issues for NATA.

111


-------
EPA's National-scale Air Toxics Assessment

Exhibit 63. Microenvironments Used in the HAPEM Modeling for the 2011 NATA

Indoors

Outdoors

In Vehicle

Residence

Near-road

Car/Truck

Residential

Motorcycle/Bicycle

Public Transit

Other Building

Outdoors, Near Roadway



Air Travel

Outdoors, Parking Garage



Bar/Restaurant

Outdoors, Service Station



Hospital

Residential Garage



Office

Waiting Outdoors for Public Transit



Public Access

Away-from-road



School

Ferryboat



Waiting Inside for Public Transit

Outdoors, Other



4.4 Exposure Factors

HAPEM exposure modeling for NATA requires substantial time and resources for data collection and
processing, computing, and model processing. Due to these requirements, we conducted HAPEM
modeling for the 2011 NATA only for selected pollutants, which we present below along with how we
used them to estimate ECs for the remaining NATA pollutants.

•	Coke oven emissions (emitted by point sources and present in ambient air as either particulates
or gases) and DPM (modeled as particulates from nonpoint and mobile sources) were special
cases that EPA modeled as themselves in HAPEM and not used as surrogates for any other
pollutants not modeled in HAPEM.

•	Benzene and 1,3-butadiene are gas-phase pollutants emitted by many processes (and all four
principal NATA categories) in nearly all U.S. locations. EPA selected benzene as the surrogate
for all other gas-phase pollutants not modeled in HAPEM (EPA considers benzene modeling in
NATA to be more reliable than 1,3-butadiene modeling).

•	Unspeciated, generic PAHs ("PAH, total ), which are pollutants that can be present in either gas
phase or particulate phase in ambient air, are emitted by all four principal NATA categories and
from a wide variety of processes. EPA selected "PAH, total" as the surrogate for all other mixed-
phase pollutants not modeled by HAPEM.

•	Chromium (VI) is a highly toxic particulate-phase pollutant emitted by all four principal NATA
categories, and EPA selected it as the surrogate for all other particulate pollutants not modeled in
HAPEM and emitted by point or nonpoint sources.

•	EPA selected nickel, a particulate-phase pollutant emitted by a variety of processes spread across
the United States, as the surrogate for all other particulate pollutants not modeled in HAPEM and
emitted by mobile sources.

Exhibit G-l in Appendix G to this document contains the overall average exposure-to-ambient
concentration ratios (i.e., exposure factors) calculated from HAPEM and air quality outputs for each
pollutant. EPA presents this factor for each of the four principal NATA categories (i.e., point, nonpoint,
onroad mobile, and nonroad mobile). EPA used factors specific to each census tract, so these averages are
for summary/informational purposes only. Overall, the HAPEM exposure predictions are lower than the
corresponding predicted air quality values. This reduction likely results from the inability of many

112


-------
EPA's National-scale Air Toxics Assessment

pollutants to penetrate efficiently into an indoor environment. (Recall that indoor sources of air toxics
have not been included in any versions of NATA completed to date).

4.5	Quality Assurance in Exposure Modeling

A model-performance evaluation can provide valuable information regarding model uncertainty when
using computer-simulation models of human exposures to pollutants, and a well-conducted evaluation can
substantially increase confidence in model results for a given application or use. One type of performance
evaluation is the use of measurements and environmental data as a benchmark for comparison of
modeling estimates. EPA has worked with the Mickey Leland Center (NUATRC 2011) on past
assessments to help identify new and independent sources of personal-monitoring data for use in
comparison with the NATA results.

Extensive peer review involving independent scientific and technical advice from scientists, engineers,
and economists can be another valuable component of a model evaluation. In July 2000, HAPEM4
underwent external peer review by technical experts for both the microenvironmental factors used in the
model and the overall application of the model for NATA. A discussion of several of the issues addressed
by these reviews is included in Appendix A of the report for the 1996 NATA presented to EPA's Science
Advisory Board for review (EPA 2001b). In 2001, EPA's Scientific Advisory Board reviewed the
application of HAPEM4 as part of the 1996 NATA review (EPA 2001a). Although several limitations
were identified in the current methodology, HAPEM4 was acknowledged as an appropriate tool to help
better understand the relationship of human exposures to ambient-concentration levels.

4.6	Summary

•	Estimating inhalation ECs is a critical step in determining potential health risks because ambient
concentrations do not account for movements of individuals among geographic locations and
microenvironments where pollutant concentrations can differ.

•	We estimated inhalation ECs for each census tract for the 2011 NATA using direct exposure
modeling with HAPEM7 for some pollutants and exposure-factor surrogates for the remaining
pollutants.

•	These tract-level ECs can be used to determine potential health risks.

113


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

114


-------
EPA's National-scale Air Toxics Assessment

5 CHARACTERIZING EFFECTS
OF AIR TOXICS

Exposure to air toxics is associated with increased incidence of cancer and a variety of adverse noncancer
health effects. The type and severity of effects depends on several factors, including the identity and
nature of the chemical to which an individual is exposed, the magnitude and duration of exposure, and the
unique behaviors and sensitivities of exposed individuals. The process of identifying and quantifying the
adverse health effects associated with exposure to a chemical is accomplished with EPA risk assessment
methods by way of a toxicity assessment. As indicated in Exhibit 2 of this document and described in
more detail in Volume 1 of EPA's ATRA Reference Library (EPA 2004a), two processes constitute
toxicity assessment: hazard identification (during which the specific adverse effects are identified that can
be causally linked with exposure to a given chemical) and dose-response assessment (which characterizes
the quantitative relationship between chemical dose or concentration and adverse effects, that is, the
hazard(s) identified in the first step).10 Ultimately, the results of the toxicity assessment, referred to in this
document as "toxicity values," are used in conjunction with exposure estimates to characterize the health
risks for exposed populations as described in Section 6. Although the toxicity assessment is integral and
important to the overall air toxics risk assessment, it is usually accomplished prior to the risk assessment.
We have completed this toxicity assessment for many air toxics and have made available the resulting
toxicity information and dose-response values, which have undergone extensive peer review.

This section contains explanations of how toxicity assessments are used in the NATA risk assessment
process. Specifically, the sections that follow provide an overview of the cancer and noncancer toxicity
values used in NATA and the primary sources of these values. Several adjustments and assumptions to
toxicity values that are specific to the NATA risk assessment process are also described.

5.1 Toxicity Values and Their Use in NATA

The toxicity values used for NATA are quantitative expressions used to estimate the likelihood of adverse
health effects given an estimated level and duration of exposure. These toxicity values are based on the
results of dose-response assessments, which estimate the relationship between the dose and the frequency
or prevalence of a response in a population or the probability of a response in any individual. Because
NATA is focused on long-term exposures, the toxicity values used in NATA are based on the results of
chronic dose-response studies when such data are available. Chronic dose-response assessments can be
used to help evaluate the specific 70-year-average (i.e., "lifetime") ECs associated with cancer prevalence
rates, or, for noncancer effects, the concentrations at which noncancer adverse health effects might occur
given exposure over an extended period of time (possibly a lifetime, but the time frame also can be
shorter).

The toxicity values that are combined with ECs to conduct the risk characterization in NATA are based
on the results of quantitative dose-response assessments. The actual values used, however, are not strictly
considered dose-response or concentration-response values. To estimate cancer risks in NATA, the results
of cancer dose-response assessments for a given chemical were converted to a URE that incorporates

10 The phrase "dose-response" is used generally throughout this document to refer to the relationship between a level
of a chemical and a physical response. The values EPA uses for inhalation, however, are derived for exposure
concentration, although with consideration of dose. Consideration of the relationship between exposure
concentration, dose, and dosimetry (how the body handles a chemical once it is inhaled) is inherent in the derivation
of values. The term "toxicity values" is used here to refer to the RfCs and UREs used in inhalation risk assessment.

115


-------
EPA's National-scale Air Toxics Assessment

certain exposure assumptions. This value can be multiplied by the 70-year-average EC to obtain a lifetime
cancer risk estimate for each individual. To evaluate the potential for noncancer adverse health effects,
chronic dose-response data were used to estimate a threshold that is the EC in air at which adverse health
effects are assumed to be unlikely (i.e., the RfC). These two types of values are described in more detail
in the following section.

The toxicity values used in NATA are consistent with those OAQPS has compiled for chronic inhalation
exposures to air toxics. The full set of toxicity values (and the sources of the values) used for the 2011
NATA are found in Appendix H. Sources of chronic dose-response assessments used for the 2011 NATA
were prioritized according to OAQPS risk assessment guidelines and level of peer review, as discussed
below.

5.2 Types of Toxicity Values

Each toxicity value used in NATA is best described as an estimate within a range of possible values
appropriate for screening-level risk assessments. Of importance to note is that the uncertainty in the dose-
response assessments and toxicity values that NATA relies on is to some extent one-sided, providing a
conservative (health-protective) estimate of risk. The "true" cancer risk and potential for adverse
noncancer impacts are believed to be lower than those estimated in this assessment, although the
possibility remains that they could be greater. Uncertainty in the derivation of the dose-response values
and in other aspects of the NATA process is discussed in Section 7.

5.2.1 Cancer URE

A cancer dose-response curve is used to
demonstrate the quantitative relationship
between dose and the likelihood of
contracting cancer. If the dose-response
relationship is linear, the cancer response is
assumed to increase proportionally with the
dose (which might be expressed as an EC, a
absorbed internal dose, a dose to a specific organ or tissue, or other measure). We have proposed that
linear extrapolation of carcinogenic risk in the low-dose region of the curve is a reasonable approach for
estimating risk at relatively low exposures, such as those typically experienced by the general
population for air toxics (i.e., the true value of the risk is unknown, and could be as low as zero). An
upper-bound lifetime cancer risk represents a plausible upper limit to the true probability that an
individual will contract cancer as a result of exposure over a 70-year lifetime to a given hazard (e.g.,
exposure to an air toxic).

For an inhalation risk assessment (and for NATA), a URE can be used to calculate the estimated cancer
risk from inhalation ECs. A URE is calculated by using dose-response information for a chemical and
developing a factor in the appropriate units that can be combined directly with ECs in air to estimate
individual cancer risks, given certain assumptions regarding the exposure conditions. Specifically, the
URE represents the upper-bound of the excess cancer risk estimated to result from continuous exposure to
a concentration of 1 (ig of a substance per m3 of air, over a 70-year lifetime and assuming a daily
inhalation rate of about 20 m3/day. The risk value is derived from the slope of the dose-response curve as
estimated using a linearized multistage statistical model in the low-dose portion of the curve. The
interpretation of the URE is as follows: If the URE is 1.5 x 10~6 (ig/m3, no more than 1.5 excess tumors
would develop per 1,000,000 people if they were exposed daily for a lifetime to a concentration of 1
(ig/m3. To the extent that true dose-response relationships for some air toxics compounds are not strictly

The URE is the upper-bound excess lifetime cancer risk
estimated to result from continuous exposure to an agent
at a concentration of 1 microgram per cubic meter (|jg/m3)
in air. UREs are considered upper-bound estimates,
meaning they represent a plausible upper limit to the true
value. The true risk is likely to be less, but could be
greater.

116


-------
EPA's National-scale Air Toxics Assessment

linear, this assumption could result in overestimates of cancer risk. The upper bound is not a true
statistical confidence limit because the URE reflects unquantifiable assumptions about effects at low
doses. Thus, although the actual carcinogenic risk is likely to be lower than what is reflected in the
URE, it also might be higher.

The URE provides an estimate of toxic potency of a chemical. EPA's weight-of-evidence (WOE)
descriptors provide estimates of the level of certainty regarding a chemical's carcinogenic potential. We
evaluate three broad categories of toxicological data to make a WOE determination: (1) human data
(primarily epidemiological); (2) animal data (results of
long-term experimental animal bioassays); and (3)
supporting data, including a variety of short-term tests for
genotoxicity and other relevant properties,
pharmacokinetic and metabolic studies, and structure-
activity relationships. These data are evaluated in
combination to characterize the extent to which they
support the hypothesis that an agent or chemical causes
cancer in humans. The approach outlined in EPA's
Guidelines for Carcinogen Risk Assessment (EPA 2005a)
considers available scientific information regarding
carcinogenicity and provides a narrative approach to characterizing carcinogenicity rather than assigning
chemicals to specific categories (as was done previously by EPA according to the 1986 guidelines). To
provide some measure of clarity and consistency in an otherwise free-form, narrative characterization,
standard descriptors are used as part of the hazard narrative to express the conclusion regarding the WOE
for carcinogenic-hazard potential. The five recommended standard hazard descriptors are described
below.

Carcinogenic to Humans: This descriptor indicates strong evidence of human carcinogenicity. This
descriptor is appropriate when the epidemiologic evidence of a causal association between human
exposure and cancer is convincing. Alternatively, this descriptor might be equally appropriate with a
lesser weight of epidemiologic evidence that is strengthened by other lines of evidence. It can be used
when all the following conditions are met: (1) evidence of an association between human exposure and
either cancer or the key precursor events of the agent's mode of action is strong but insufficient for a
causal association; (2) evidence of carcinogenicity in animals is extensive; (3) the mode(s) of
carcinogenic action and associated key precursor events have been identified in animals; and (4) evidence
is strong that the key precursor events that precede the cancer response in animals are anticipated to occur
in humans and progress to tumors, based on available biological information.

Likely to Be Carcinogenic to Humans: This descriptor is appropriate when the WOE is adequate to
demonstrate carcinogenic potential to humans but does not reach the WOE for the descriptor
"Carcinogenic to Humans." Adequate evidence consistent with this descriptor covers a broad spectrum.
At one end of the spectrum is evidence for an association between human exposure to the agent and
cancer and strong experimental evidence of carcinogenicity in animals. At the other end, with no human
data, the weight of experimental evidence shows animal carcinogenicity by a mode or modes of action
that are relevant or assumed to be relevant to humans. The use of the term "likely" as a WOE descriptor
does not correspond to a quantifiable probability. Moreover, additional data, such as information on the
mode of action, might change the choice of descriptor for the illustrated examples.

Suggestive Evidence of Carcinogenic Potential: This descriptor is appropriate when the WOE is

suggestive of carcinogenicity; that is, a concern for potential carcinogenic effects in humans is raised, but
the data are judged not sufficient for a stronger conclusion. This descriptor covers a spectrum of evidence
associated with varying levels of concern for carcinogenicity, ranging from a positive cancer result in the

EPA's Weight of Evidence (WOE)
Descriptors (EPA 2005a)

•	Carcinogenic to humans

•	Likely to be carcinogenic to humans

•	Suggestive evidence of carcinogenic
potential

•	Inadequate information to assess
carcinogenic potential

•	Not likely to be carcinogenic to humans

117


-------
EPA's National-scale Air Toxics Assessment

only study on an agent to a single positive cancer result in an extensive database that includes negative
studies in other species. Depending on the extent of the database, additional studies might or might not
provide further insights.

Inadequate Information to Assess Carcinogenic Potential: This descriptor is appropriate when
available data are judged inadequate for applying one of the other descriptors. Additional studies
generally would be expected to provide further insights.

Not Likely to Be Carcinogenic to Humans: This descriptor is appropriate when the available data are
considered robust for deciding no basis for human hazard concern exists. In some instances, positive
results in experimental animals can occur when the evidence is strong and consistent that each mode of
action in experimental animals does not operate in humans. In other cases, there can be convincing
evidence in both humans and animals that the agent is not carcinogenic. A descriptor of "not likely"
applies only to the circumstances supported by the data. For example, an agent might be "Not Likely to
Be Carcinogenic" by one route but not necessarily by another. In those cases that have positive animal
experiment(s) but the results are judged to be not relevant to humans, the narrative discusses why the
results are not relevant.

Important to note is that these WOE categories express only a relative level of certainty that these
substances might cause cancer in humans. The categories do not specifically connote relative levels of
hazard or the degree of conservatism applied in developing a dose-response assessment. For example, a
substance with suggestive evidence of carcinogenic potential might impart a greater cancer risk to more
people than another substance that is carcinogenic to humans.

The process of developing UREs includes several important sources of uncertainty. Many of the air toxics
in NATA are classified as "likely" carcinogens. The term likely, as used in this instance, means that data
are not sufficient to prove these substances definitively cause cancer in humans. That some are not human
carcinogens at environmentally relevant ECs is possible, and the true cancer risk associated with these air
toxics might be zero. UREs for most of the air toxics were developed from animal data using health-
protective methods to extrapolate to humans. Actual human responses might differ from those predicted.
For more information, see EPA's Guidelines for Carcinogen Risk Assessment (EPA 2005a).

5.2.2 Noncancer Chronic RfC

The RfC is an estimate of a continuous		

inhalation exposure that is thought to be	The RfC is an estimate (with uncertainty spanning

without an appreciable risk of deleterious	Pehrh,aPs an order of magnitude) of a continuous

¦	rr j	T-i	i	inhalation exposure to the human population (including

health effects over a lifetime. The population sensitive subgroups) that is likely to be without an
considered in the derivation of RfCs includes	appreciable risk of deleterious effects during a lifetime.

sensitive subgroups (i.e., children, asthmatics, 	

and the elderly). The RfC is derived from the review of a health-effects database for a chemical, and
identification of the most sensitive and relevant endpoint, along with the principal study or studies
demonstrating that endpoint. The value is calculated by dividing the no-observed-adverse-effect level (or
an analogous exposure level obtained with an alternate approach, e.g., a lowest-observed-adverse-effect
level or a benchmark dose) by uncertainty factors reflecting the limitations of the data used.

As with UREs for cancer risk assessment, the process of developing RfCs includes several important
sources of uncertainty that span perhaps an order of magnitude. Uncertainty factors are intended to
account for (1) variation in sensitivity among the individuals in the population, (2) uncertainty in
extrapolating laboratory animal data to humans, (3) uncertainty in extrapolating from data obtained in a
study involving a less-than-lifetime exposure, (4) uncertainty in using lowest-observed-adverse-effect-

118


-------
EPA's National-scale Air Toxics Assessment

level or other data rather than no-observed-adverse-effect-level data, and (5) inability of any single study
to address all possible adverse outcomes in humans adequately. Additionally, an adjustment factor is
sometimes applied to account for scientific uncertainties in the data or study design not explicitly
captured in the uncertainty factors (e.g., a statistically inadequate sample size or poor exposure
characterization). For more information, refer to EPA's Methods for Derivation of Inhalation Reference
Concentrations and Application of Inhalation Dosimetry (EPA 1994).

Unlike linear dose-response assessments for cancer, noncancer risks generally are not expressed as a
probability that an individual will experience an adverse effect. Instead, in an air toxics risk assessment,
the potential for noncancer effects in humans typically is quantified by calculating the ratio of the
inhalation EC to the RfC. This ratio is referred to as the hazard quotient (HQ). For a given air toxic,
exposures at or below the RfC (i.e., HQs are 1 or less) are not likely to be associated with adverse health
effects. As exposures increase above the RfC (i.e., HQs are greater than 1), the potential for adverse
effects also increases. The HQ, however, should not be interpreted as a probability of adverse effects.
Additional information is provided in the description of risk characterization for NATA in Section 6 of
this document.

5.3 Data Sources for Toxicity Values

Information on dose-response assessments for evaluating chronic exposures for NATA was obtained from
multiple sources and prioritized according to OAQPS risk assessment guidelines and level of peer review.
We have an approach for selecting appropriate toxicity values and, in general, this approach places
greater weight on the EPA-derived toxicity values than those from other agencies (listed below).
Additionally, the approach of favoring EPA values (when they exist) has been endorsed by EPA's
Science Advisory Board, and it ensures the use of values most consistent with well-established and
scientifically based EPA science policy. Appendix H to this document lists the toxicity values, the source
of those values, and supporting information for both cancer and noncancer chronic effects used in the
2011 NATA. Cancer effects are characterized according to the extent to which available data support the
hypothesis that a pollutant causes cancer in humans. Additional information on individual air toxics is
included in the footnotes to the table in Appendix H.

5.3.1	U.S. EPA Integrated Risk Information System

We disseminate dose-response assessment information in several forms, depending on the level of
internal review. The Integrated Risk Information System (IRIS) is an electronic database prepared and
maintained by EPA that contains information on human-health effects that could result from exposure to
various substances in the environment. These assessments have undergone external peer review and
subsequent revision, compliant with requirements EPA instituted in 1996 for the IRIS review process.

Externally peer-reviewed assessments under development for IRIS were given first consideration for
NATA. These assessments, which reflect the most recent available toxicity information and data analysis,
were used in some cases to supersede existing values on IRIS. Current IRIS values were used for NATA
when peer-reviewed IRIS values under development were not available.

5.3.2	U.S. Department of Health and Human Services, Agency for Toxic Substances and
Disease Registry

The Agency for Toxic Substances and Disease Registry (ATSDR) publishes minimal risk levels
(MRLs) for many substances based on health effects other than cancer. The MRL is defined as an
estimate of human exposure to a substance that is likely to be without an appreciable risk of adverse

119


-------
EPA's National-scale Air Toxics Assessment

effects (other than cancer) over a specified duration of exposure. For noncancer values in the 2011
NATA, inhalation MRLs were used when IRIS RfC values were not available or when the ATSDR value
was based on more recent, peer-reviewed data and analysis methods than the IRIS value, because the
ATSDR concept, definition, and derivation are analogous to IRIS. ATSDR does not develop assessments
based on carcinogenicity. After internal and external review, MRLs are published in pollutant-specific
toxicological-profile documents. ATSDR regularly updates these toxicological-profile documents and
they are available at Toxic Substances Portal MRLs (ATSDR 2015).

5.3.3	California Environmental Protection Agency Office of Environmental Health
Hazard Assessment

California's Office of Environmental Health Hazard Assessment (OEHHA) develops UREs based on
carcinogenicity and reference exposure levels (RELs) based on health effects other than cancer. The REL
is defined as a concentration level at or below which no adverse health effects are anticipated. For cancer
and noncancer values in the 2011 NATA, OEHHA UREs and inhalation RELs were used when their
derivation was determined to be consistent with the concepts and definitions of IRIS or ATSDR. OEHHA
dose-response information is available at Air Toxicology and Epidemiology (OEHHA 2014). Technical
support documents for assessing hot spots are available on the OEHHA website at Hot Spots Guidelines
(OEHHA 2015).

5.3.4	U.S. EPA Health Effects Assessment Summary Tables

The Health Effects Assessment Summary Tables (EPA 2008a) are a comprehensive listing consisting
almost entirely of provisional UREs, RfCs, and other risk assessment information of interest that various
EPA offices have developed. The assessments, which have never been submitted for EPA consensus,
were last updated in 2001. NATA uses information from these tables only when no values from the
sources discussed in Sections 5.3.1 through 5.3.3 are available.

5.3.5	World Health Organization International Agency for Research on Cancer

The International Agency for Research on Cancer of the World Health Organization (WHO) coordinates
and conducts research on cancer and provides information on related cancer research and epidemiology.
Although the agency does not develop quantitative dose-response values, it has published a series of
monographs (WHO 2015) on the carcinogenicity of a wide range of substances. The following "degrees
of evidence" the International Agency for Research on Cancer has published are included in Appendix H
to this document as supporting information when EPA WOE determinations were not available for a
substance or are out of date:

Group 1:

Carcinogenic to humans;

Group 2A:

Probably carcinogenic to humans;

Group 2B:

Possibly carcinogenic to humans;

Group 3:

Not classifiable as to human carcinogenicity; and

Group 4:

Probably not carcinogenic to humans.

120


-------
EPA's National-scale Air Toxics Assessment

5.4 Additional Toxicity Decisions for Some Chemicals

After the dose-response information was prioritized, we made additional changes to some of the chronic
inhalation exposure values to address data gaps, increase accuracy, and avoid underestimating risk for
NATA. Important changes made for the 2011 NATA are outlined below and are reflected in Appendix H
to this document.

5.4.1	Polycyclic Organic Matter

A substantial proportion of polycyclic organic matter (POM) reported in the 2011 NEI was not speciated
into individual compounds. For example, some emissions of POM were reported in NEI as "7-PAH" or
"16-PAH," representing subsets of certain POM, or simply as "total PAH" or "polycyclic organic matter."
In other cases, individual POM compounds were reported for which no quantitative cancer dose-response
value has been published in the sources used for NATA. As a result, simplifying assumptions that
characterize emissions reported as POM were applied so that cancer risk could be quantitatively evaluated
for these species without substantially under- or overestimating risk (which can occur if all reported
emissions of POM were assigned the same URE). To accomplish this, POM emissions as reported in
NEI were grouped into categories. EPA assigns dose-response values based on the known or estimated
toxicity for POM within each group and on information for the POM speciation of emission sources, such
as wood fires and industrial processes involving combustion.

For the 2011 NATA, unspeciated POM emissions were divided into eight POM groups. The first two
groups included unspeciated POM (including "total PAH") and individual POM species with no URE
assigned. Both groups were assigned a URE equal to 5 percent of that for pure benzo[a]pyrene taking into
account toxicity and the estimated emission profile of POM compounds. Groups 3 through 7 comprised
POM compounds, the emissions for which were reported as individual compounds and for which UREs
have been estimated. Compounds in these groups were categorized based on toxicity, and an appropriate
URE was assigned to each category based on toxicity of the compounds included in the group. Category 8
was composed of unspeciated polynuclear aromatic hydrocarbons reported as 7-PAH and was assigned a
URE equal to 18 percent of that for pure benzo[a]pyrene. We discuss the POM groups used for the 2011
NEI in Section 2.1.1.2.

We concluded that three PAHs—anthracene, phenanthrene and pyrene—are not carcinogenic and
therefore no URE was assigned for the 2011 NATA. Details of the analysis that led to this conclusion can
be found in the document entitled Development of a Relative Potency Factor (RPF) Approach for
Polycyclic Aromatic Hydrocarbon (PAH) Mixtures: In Support of Summary Information of the Integrated
Risk Information System (IRIS) (EPA 2010a).

5.4.2	Glycol Ethers

Much of the emission-inventory information for the glycol ether category reported only the total mass for
the entire group without distinguishing among individual glycol ether compounds. In other cases,
emissions of individual glycol ether compounds that had not been assigned dose-response values were
reported. Individual glycol ether compounds vary substantially in toxicity. To avoid underestimating the
health hazard associated with glycol ethers, we protectively applied the RfC for ethylene glycol methyl
ether (the most toxic glycol ether for which an assessment exists) to glycol ether emissions of unspecified
composition.

121


-------
EPA's National-scale Air Toxics Assessment

5.4.3	Metals

Several decisions made for the 2011 NATA regarding the toxicity values used for metal compounds are
discussed in this section.

Chromium (VI) compounds. The IRIS RfC for particulate chromium (VI) was used instead of the RfC
for chromic acid mists and dissolved aerosols to avoid underestimating the health hazard associated with
these compounds. The RfC for particulate chromium (VI) is less than those RfCs for chromic acid mists
and dissolved aerosols.

Lead. We consider the primary National Ambient Air Quality Standard (NAAQS) for lead, which
incorporates an ample margin of safety, to be protective of all potential health effects for the most
susceptible populations. The NAAQS, developed using the EPA Integrated Exposure, Uptake, Biokinetic
Model, was preferred over the RfC for noncancer adverse effects because the NAAQS for lead was
developed using more recent toxicity and dose-response information on the noncancer adverse impacts of
lead. The NAAQS for lead was set to protect the health of the most susceptible children and other
potentially at-risk populations against an array of adverse health effects, most notably including
neurological effects, particularly neurobehavioral and neurocognitive effects (which are the effects to
which children are most sensitive). The lead NAAQS, a rolling 3-month average level of lead in total
suspended particles, was used as a long-term value in NATA.

Nickel compounds. The cancer inhalation URE for most of the emissions of nickel compounds included
in NATA (including unspecified nickel emissions reported as "nickel compounds") was derived from the
IRIS URE for insoluble nickel compounds in crystalline form. Soluble nickel species, and insoluble
species in amorphous form, do not appear to produce genotoxic effects by the same toxic mode of action
as insoluble crystalline nickel. Nickel speciation information for some of the largest nickel-emitting
sources, including oil and coal combustion, suggests that at least 35 percent of total nickel emissions
could be soluble compounds. The remaining insoluble nickel emissions, however, are not well
characterized. Consistent with this limited information, we conservatively assumed for NATA that 65
percent of emitted nickel is insoluble and that all insoluble nickel is crystalline. Because the nickel URE
listed in IRIS is based on nickel subsulfide and represents pure insoluble crystalline nickel, it was
adjusted to reflect an assumption that 65 percent of the total mass of emitted nickel might be
carcinogenic. In cases where a chemical-specific URE was identified for a reported nickel compound, it
was used without adjustment. Furthermore, the MRL in Table 2 of the ATSDR is not adjusted because the
noncancer effects of nickel are not thought to be limited to the crystalline, insoluble form.

5.4.4	Adjustment of Mutagen UREs to Account for Exposure During Childhood

For carcinogenic chemicals acting via a mutagenic mode of action (i.e., chemicals that cause cancer by
damaging genes), we recommend that estimated risks reflect the increased carcinogenicity of such
chemicals during childhood. This approach is explained in detail in the Supplemental Guidance for
Assessing Susceptibility from Early-Life Exposure to Carcinogens (EPA 2005c). Where available data do
not support a chemical-specific evaluation of differences between adults and children, the Supplemental
Guidance recommends using the following default adjustment factors for early-life exposures: increase
the carcinogenic potency by 10-fold for children up to 2 years old and by 3-fold for children 2 to 15 years
old. These adjustments have the aggregate effects of increasing by about 60 percent the estimated risk (a
1.6-fold increase) for a lifetime of constant inhalation exposure. EPA recommends that these default
adjustments be made only for carcinogens known to be mutagenic for which data to evaluate adult and
juvenile differences in toxicity are not available.

122


-------
EPA's National-scale Air Toxics Assessment

For NATA 2011, the UREs for acrylamide, benzidine, chloroprene, coke oven emissions, ethyl
carbamate, methylene chloride, nitrosodimethylamine, and PAHs were adjusted upward, by multiplying
by a factor of 1.6, to account for the increased risk during childhood exposures. Although
trichloroethylene is carcinogenic by a mutagenic mode of action, the age-dependent adjustment factor for
the URE only applies to the portion of the slope factor reflecting risk of kidney cancer. For full lifetime
exposure to a constant level of trichloroethylene exposure, the URE was adjusted upward by a factor of
1.12 (rather than 1.6 as discussed above). For more information on applying age-dependent adjustment
factors in cases where exposure varies over the lifetime, see Toxicological Review of Trichloroethylene
(EPA 2014c). These air toxics are the only ones that met the criteria described in the previous paragraph
at the time of this assessment. The overall lifetime adjustment was applied because a single, lifetime-
average EC was estimated for NATA rather than age-group-specific exposures. The URE for vinyl
chloride includes exposure from birth, although the IRIS assessment contains UREs for both exposure
from birth and exposure during adulthood. This value already accounts for childhood exposure; thus, no
additional factor was applied.

5.4.5 Diesel Particulate Matter

EPA uses an IRIS RfC for adverse noncancer effects of diesel PM. Recently, several large epidemiology
studies (Attfield. et al. 2012; Garshick. et al. 2012; Silverman, et al. 2012) have been published that
strengthen the WOE that diesel exhaust is carcinogenic to humans. Two of these studies included
quantitative estimates of exposure. Partly on the basis of these studies, the International Agency for
Research on Cancer elevated its classification of diesel exhaust to "carcinogenic to humans" (Group 1)
in 2012 (I ARC 2013). We requested the Health Effects Institute (HEI) evaluate the suitability of the new
epidemiology studies for developing a cancer potency. In November 2015, HEI published its report on
these new studies (HEI 2015) and concluded that they are sufficiently robust to estimate quantitative
cancer risks and estimate uncertainties. At this time, a URE for diesel PM, based on these current studies,
has not yet been derived and a quantitative assessment of the cancer risk has not been included in the
2011 NATA. Evidence exists, however, that the general population is exposed to levels close to or
overlapping with apparent levels that have been linked to increased cancer risk in epidemiological studies.
Based on the Health Assessment Document for Diesel Engine Exhaust (EPA 2002a), we concluded that
national-average lifetime cancer risk from exposure to diesel exhaust (which contains both gases and
particulate matter) could exceed 1 in 100,000 and could be as high as 1 in 1,000, although the lower end
of the risk range includes zero.

5.5 Summary

•	To evaluate the potential of a given air toxic to cause cancer and other adverse health effects, we
identified potential adverse effects that a particular substance causes and evaluated the specific
ECs at which these effects might occur.

•	The URE represents the upper-bound excess cancer risk estimated to result from continuous
exposure to a concentration of 1 (ig of a substance per m3 of air over a 70-year lifetime.

•	The RfC is an estimate of a continuous inhalation EC over a 70-year lifetime that is thought to be
without an appreciable risk of deleterious effects. The population considered in the derivation of
RfCs includes sensitive subgroups (i.e., children, asthmatics, and the elderly).

•	Dose-response-assessment information for chronic exposure was obtained from multiple sources
and prioritized according to conceptual consistency with OAQPS risk assessment guidelines and
level of peer review.

123


-------
EPA's National-scale Air Toxics Assessment

• After considering dose-response information, EPA adjusts some chronic-toxicity values to
increase accuracy and to avoid underestimating risk.

124


-------
EPA's National-scale Air Toxics Assessment

6 CHARACTERIZING RISKS AND HAZARDS

IN NATA

Risk characterization, the final step in our risk assessment process for air toxics, combines the
information from modeled exposure estimates with the dose-response assessment, providing a
quantitative estimate of potential cancer risk and noncancer hazard associated with real-world
exposure to air toxics. The term "risk" implies a statistical probability of developing cancer over a
lifetime. Noncancer "risks," however, are not expressed as a statistical probability of developing a
disease. Rather, noncancer "hazards" are expressed as a ratio of the EC to an RfC associated with
observable adverse health effects (i.e., an HQ).

This section contains information on the risk characterization conducted for NATA. After a brief
overview of the risk-related questions that NATA is intended to address, the methods used to conduct
characterization of cancer risk and noncancer hazards for NATA are described. A discussion of the
quantitative results included in NATA follows this description.

6.1	The Risk-characterization Questions NATA Addresses

The NATA risk characterization considers both cancer risk and the potential for noncancer effects from
inhalation of air toxics nationwide, in both urban and rural areas. The purpose of NATA is to understand
cancer risks and noncancer hazards to help EPA and others identify air toxics and source categories of
greatest potential concern and to set priorities for collecting additional information to improve future
assessments. The assessment represents a "snapshot" in time for characterizing risks from exposure
to air pollutants; it is not designed to characterize risks sufficiently for regulatory action. The risk
characterization for NATA, which was limited to inhalation risk from outdoor sources, was designed to
answer the following questions:

•	Which air toxics pose the greatest potential risk of cancer or adverse noncancer effects across the
entire United States?

•	Which air toxics pose the greatest potential risk of cancer or adverse noncancer effects in specific
areas of the United States?

•	Which air toxics pose less, but still significant, potential risk of cancer or adverse noncancer
effects across the entire United States?

•	When risks from inhalation exposures to all outdoor air toxics are considered in combination,
how many people could experience a lifetime cancer risk greater than levels of concern (e.g., 1-
in-1 million)?

•	When potential adverse noncancer effects from long-term exposures to all outdoor air toxics are
considered in combination for a given target organ or system, how many people could experience
exposures that exceed the reference levels intended to protect against those effects (i.e., a hazard
quotient greater than 1)?

6.2	How Cancer Risk is Estimated

To estimate cancer risks in NATA, the results of cancer dose-response assessments for a given chemical
were converted to a URE that is then multiplied by the estimated inhalation EC to obtain an estimate of

125


-------
EPA's National-scale Air Toxics Assessment

individual lifetime cancer risk. The approach used in NATA for characterizing cancer risk is consistent
with EPA's 2005 final Guidelines for Carcinogen Risk Assessment (EPA 2005a). When used in
conjunction with the cancer UREs described in Section 5, the approach is also consistent with EPA's
associated documentation on Supplemental Guidance for Assessing Susceptibility from Early-Life
Exposure to Carcinogens (EPA 2005c).

6.2.1	Individual Pollutant Risk

Individual lifetime cancer risk associated with exposure to a single air pollutant was estimated by
multiplying an average estimated long-term EC by the corresponding URE for that pollutant. Thus, the
below equation estimates the probability of an individual developing cancer over a lifetime due to a given
inhalation exposure.

Risk = EC x URE

Where:

Risk = estimated incremental lifetime cancer risk for an individual as a result of exposure to
a specific air toxic, unitless (expressed as a probability)

EC = estimate of long-term inhalation exposure concentration for a specific air toxic, in
units of |ig/m3

URE = the corresponding inhalation unit risk estimate for that air toxic, in units of
l/(fig/m3)

Of importance to note is that UREs are typically upper-bound estimates, so actual risks might be lower
than predicted. Also, the true value of the risk is unknown.

6.2.2	Multiple-pollutant Risk

The individual lifetime cancer risk resulting from exposure to multiple air toxics was estimated by
summing the chronic cancer risk for each air toxic that can be quantified. This estimate of risk focused on
the additional lifetime risk of cancer predicted from the exposure being analyzed, over and above that due
to any other factors. The following equation estimates the predicted cumulative individual cancer risk
from inhalation of multiple substances:

Risktot = Ris/q + Risk2 + —I- Riski

Where:

Risktot = total cumulative individual lifetime cancer risk, across /' substances

Risk = individual risk estimate for the/'th substance

For NATA, the estimated ECs were not considered upper bounds. Rather, they represented central-
tendency estimates of ECs for each demographic group at the geographic unit of analysis (e.g., the
census-tract level). Because cancer slope factors were 95-percent upper-confidence intervals (not "most
probable estimates"), summing traditional risk levels can cause the resulting sum to overestimate a 95-
percent upper-confidence-level risk for a mixture.

126


-------
EPA's National-scale Air Toxics Assessment

The NATA approach assumed an additive effect from simultaneous exposures to several carcinogens.
Summing cancer risk estimates is not appropriate when effects from multiple chemicals are synergistic
(greater than additive) or antagonistic (less than additive). Notwithstanding the statistical limitations of
summing traditional risk estimates and the implicit assumption that the toxicities will be additive (i.e., no
interactions such as synergism or antagonism occur), the numerical ease for combining risk in this way
makes this method the most popular for approximating cumulative risks in the short term, at least for a
screening level of assessment. Information on non-additive interactions is not readily available in a form
that can be used for NATA. In the absence of specific information, therefore, cancer risk from various
chemicals is conservatively assumed to be additive. Thus, the cancer risks from all air toxic compounds
listed as carcinogenic or likely carcinogenic to humans were summed to determine cumulative cancer
risks for NATA. More information on EPA's methods for conducting risk assessment of mixtures can be
found in the Framework for Cumulative Risk Assessment (EPA 2003).

6.3 How Noncancer Hazard is Estimated

To evaluate the potential for noncancer adverse health effects,
chronic dose-response data were used to estimate a threshold that
is the EC at which adverse health effects are assumed to be
unlikely (i.e., the RfC). (See Section 5.2.2 for more information
on noncancer RfCs.) Due to the wide variety of endpoints,
hazard-identification procedures for noncancer effects have not
been described as completely in EPA guidance as procedures for
the identification of carcinogens. EPA has published guidelines, however, for assessing several specific
types of chronic noncancer effects (mutagenicity, developmental toxicity, neurotoxicity, and reproductive
toxicity) that can be found at Products and Publications Relating to Risk Assessment Produced by the
Office of the Science Advisor (EPA 20151)._EPA has also published a framework for using studies of
these and other effects in inhalation risk assessment (EPA 1994).

6.3.1 Individual Pollutant Hazard

EPA's Chronic Noncancer
Guidelines

•	Mutagenicity (EPA 1986)

•	Developmental Toxicity (EPA 1991)

•	Neurotoxicity (EPA 1998)

•	Reproductive Toxicity (EPA 1996)

Chronic noncancer hazards were estimated for NATA by dividing a chemical's estimated long-term EC
by the RfC for that chemical to yield an HQ. The following equation estimates the noncancer hazard due
to a given inhalation exposure:

EC

HQ =

RfC
Where:

HQ = the hazard quotient for an individual air toxic, unitless

EC = estimate of long-term inhalation exposure concentration for a specific air toxic, in
units of mg/m3

RfC = the corresponding reference concentration for that air toxic, in units of mg/m3

An HQ value less than or equal to 1.0 indicates that the exposure is not likely to result in adverse
noncancer effects. An HQ value greater than 1.0, however, does not necessarily suggest a likelihood of
adverse health effects and cannot be interpreted to mean that adverse health effects are statistically likely

127


-------
EPA's National-scale Air Toxics Assessment

to occur. The statement is simply whether, and by how much, an EC exceeds the RfC, indicating that a
potential exists for adverse health effects.

6.3.2 Multiple-pollutant Hazard

Chronic noncancer hazards for multiple air toxics were estimated by summing chronic noncancer HQs for
individual air toxics that cause similar adverse health effects to yield a hazard index (HI). Aggregation in
this way produces a target-organ-specific HI, defined as a sum of HQs for individual air toxics that affect
the same organ or organ system. More information on chemical mixtures risk assessment methods can be
found in the EPA supplementary guidance for risk assessment of mixtures (EPA 2000).

The following equation estimates the HI from inhalation of multiple substances:

HI = HQ1 + HQ2 + - + HQi

Where:

HI = the hazard index for chronic exposure to air toxics 1 through /, unitless

HQi = the hazard quotient for the rth air toxic, where all / air toxics are assumed to affect
the same target organ or organ system, unitless

As with the HQ, an HI value less than or equal to 1.0 indicates that the exposure is not likely to result in
adverse noncancer effects. An HI value greater than 1.0, however, does not necessarily suggest a
likelihood of adverse health effects and cannot be interpreted as a statistical probability of adverse effects
occurring.

This equation assumes an additive effect from simultaneous exposures to several chemicals. Summing of
HQs is inappropriate when effects from multiple chemicals are synergistic (greater than additive) or
antagonistic (less than additive). As is the case with cancer risk, quantitative information on non-additive
interactions resulting in noncancer hazards is not readily available; consequently, the noncancer HQs are
assumed to be additive for chemicals with the same target organ or organ system. For NATA, noncancer
hazards could be combined for six target organs or systems: respiratory, cardiovascular, blood,
liver/kidney, nervous, and immune. Results from the assessment indicated that the primary noncancer
hazards for inhalation exposures to the modeled chemicals were respiratory hazards. As a result, the 2011
assessment presents noncancer results for all target organ endpoints in the form of HQs; His are
reported only for respiratory endpoints.

6.4 How Risk Estimates and Hazard Quotients are Calculated for NATA at
Tract, County, and State Levels

The cancer risk and HQs for each modeled air toxic are estimated from ECs (not ambient concentrations)
by combining them with UREs and inhalation RfCs (or their equivalents). As described previously, the
modeling conducted for NATA resulted in ambient concentrations for each air toxic emitted by modeled
sources, with the level of spatial resolution varying by source type and the corresponding modeling
approach (see Section 3). NATA point, nonpoint, mobile onroad, and mobile nonroad sources were
modeled at the census-block level in HEM-3. However, nonpoint, mobile onroad, and mobile nonroad
(except CMV) emissions were allocated from county to the census-tract level. Secondary formation, fires
(wild, prescribed and agricultural field burning) and primary biogenic concentrations were estimated at
the 12km grid level using CMAQ.

128


-------
EPA's National-scale Air Toxics Assessment

6.4.1 Model Results for Point Sources: Aggregation to Tract-level Results

HEM-3 was used to estimate ambient concentrations for point-source emissions, and model results were
generated at the block level. For risk and exposure calculations, we aggregated concentration results to
the tract level by taking a population-weighted average of all of the block-level concentrations within a
given tract, as follows:

^ P0Pblock j * C°ncblock j

LouCiraci i —	v-i n		

2j PopbiQc-k j

Where:

Conetracti = ambient concentration for census tract i

Conebiockj = ambient concentration for census block j (contained within tract /'), estimated by
HEM-3

Pop biockj = population of blocks contained in tract i
Unweighted average concentrations also were calculated at the tract level as follows:

2 Concbiock j

Conctract i

n

Where:

Cone tracti = ambient concentration for census tract i

Cone biockj = ambient concentration for census block j (contained within tract /'), estimated by
HEM-3

n	= number of census blocks contained in tract /

6.4.2 Background Concentrations and Secondary Pollutants: Interpolation to Tract-level
Results

Background concentrations, as well as estimated concentrations of secondary pollutants generated by the
CMAQ model, were estimated for levels other than census tract and thus required interpolation "down" to
the tract level. Background concentrations were estimated at the county level. To obtain tract-level
concentrations, the county-level estimate was assigned to all census tracts within that county. For
secondary pollutants, concentrations were estimated using CMAQ. The results for each grid were then
applied evenly to all tracts located within the grid.

6.4.3 Aggregation of Tract-level Results to Larger Spatial Units

Tract-level ambient concentrations were aggregated up to the county, state, regional, and national level
using a method that weights concentration according to the population within a region. For a county, for
example, a population-weighted ambient concentration was estimated by multiplying the tract-level
concentrations by the population of each tract, summing these population-weighted concentrations, and
dividing by the total county population encompassing all tracts to obtain a final population-weighted,

129


-------
EPA's National-scale Air Toxics Assessment

county-level concentration. The process for aggregating from the tract to the county level can be
expressed using the following equation:

„	_ Yi(C°nctract i * P0Ptract i)

L onccounty k —	—-

rutJcounty k

Where:

Conccountyk = population-weighted concentration for county k

Conetracti = ambient concentration in tract /' (contained within county k)

Poptracti = population in tract /' (contained within county k)

P OQcountyk = population in county k

This same method was applied when aggregating up to the state, regional, or national level, using the
appropriate concentration and population values. NATA includes ambient concentrations, ECs, cancer
risks, and noncancer HQs at the tract, county, state, regional, and national levels.

The ambient concentrations derived at the block level also were used to estimate ECs using either direct
exposure modeling with HAPEM or with the exposure factors derived from the HAPEM modeling

(i.e., ratios of EC to estimated ambient concentration). (See Section 4 for a more thorough discussion of
NATA exposure modeling and estimates.) Because the exposure factors were applied at the tract level,
each census block was assigned the tract-level EC or exposure factor and then the census-block-level ECs
are estimated. As was done with the ambient-level concentrations, the block-level ECs were used to
estimate cancer and noncancer effects and to aggregate these concentrations up to larger spatial scales. To
aggregate tract-level concentrations up to the county-, state-, regional-, or national-level concentrations,
the tract-level concentrations were population-weighted.

6.5 The Risk Characterization Results that NATA Reports

NATA provides a snapshot of the outdoor air quality and the risks to human health that would result if air
toxic emission levels remain unchanged. The assessment was based on an inventory of air toxics
emissions from 2011. Individuals were assumed to spend their entire lifetimes exposed to these air
toxics. Therefore, the reductions in emissions that have occurred since the year of the assessment, or
those that might happen in the future due to regulations for mobile and industrial sources, were not
accounted for. Each NATA represents an update and enhancement to the previous NATA. Because
improvements in methodology are made with each successive assessment, comparing assessment
results from year to year is not meaningful. Any change in emissions, ambient concentrations, or risks
might be due to either improvement of methodology or to real changes in emissions or source
characterization.

The evaluation of national-scale results and comparison of risks among chemicals make it possible to
estimate which air toxics pose the greatest potential risk to human health in the United States. NATA
reports a summary of these findings. Cancer risks are presented as lifetime risks, meaning the risk of
developing cancer as a result of inhalation exposure to each air toxic compound over a normal lifetime of
70 years. Noncancer hazards are presented in terms of the ratio between the exposure and an RfC for
inhalation exposures (i.e., the HQ). As described previously in this section, HQs are combined across
chemicals where a common target organ or system is expected to estimate HI (i.e., for respiratory).

130


-------
EPA's National-scale Air Toxics Assessment

Using these quantitative results, NATA classifies certain pollutants as drivers or contributors at the

national or regional scale based on certain criteria. Exhibit 64 contains the criteria for classifying the air
toxics included in NATA at the regional and national level. In general, drivers and contributors were
defined as air toxics showing a particular level of risk or hazard for some number of people exposed.

Exhibit 64. NATA Drivers and Contributors of Health Effects for Risk Characterization

Risk-characterization Category

Criterion

(Criteria in both columns must be met)

Individual Health Risk or
Hazard Index Exceeds...

Minimum Number of People
Exposed (in millions) is...

Cancer Risk (value in first column represents individual lifetime cancer risk, in 1 million)a

National cancer driver

10

25

Regional cancer driver
(either set of criteria can be used)

10

1

100

0.01

National cancer contributor

1

25

Regional cancer contributor

1

1

Hazard Index (value in first column represents chronic hazard index for any organ/organ system)b

National noncancer driver

1.0

25

Regional noncancer driver

1.0

0.01

a Cancer risks are upper-bound lifetime cancer risks; that is, a plausible upper limit to the true probability that an individual
will contract cancer over a 70-year lifetime as a result of a given hazard (such as exposure to a toxic chemical). This risk
can be measured or estimated in numerical terms (e.g., one chance in a hundred).

b Hazard index is the sum of the HQs for substances that affect the same target organ or organ system. Because different
pollutants can cause similar adverse health effects, combining HQs associated with different substances is often
appropriate to understand the potential health risks associated with aggregate exposures to multiple pollutants.

For example, for a pollutant to be categorized in NATA as a cancer contributor at the national level, the
individual lifetime cancer risk for that pollutant must have been shown by the assessment to be 1-in-l
million and the number of people exposed to that pollutant must have been shown to be at least 25
million. For a pollutant to be categorized in NATA as a regional driver of noncancer health effects, the
chronic hazard index for that pollutant must have been shown to exceed 1.0 and the number of people
exposed to that pollutant must have been shown to be at least 0.01 million.

The NATA results for 2011 indicated that most individuals' estimated risk was between 1-in-l million

and 100-in-l million, although a small number of localized areas showed risks of higher than 100-in-l
million. Although individuals and communities might be concerned about these results, recall that NATA
was not designed to assess specific risk values at local levels. The results are best used as a tool to
prioritize pollutants, emissions sources, and locations of interest for further investigation. Furthermore,
readers are reminded that the risks estimated by the assessment do not consider indoor sources of air
toxics or ingestion exposure to any pollutants. Also, although NATA estimates cancer and noncancer
risks for numerous pollutants, additional chemicals might exist that are not identified or for which toxicity
information is unavailable. Therefore, these risk estimates represent only a subset of the total potential
cancer and noncancer risk associated with air toxics.

Analytical results (including modeled ambient concentrations, exposure, and risks) for each NATA are
also provided at the census-tract, county, and state level for those who wish to do their own technical

131


-------
EPA's National-scale Air Toxics Assessment

analyses using the most refined output available. The results from all NATAs can be found here. In
performing such analyses, users must be extremely mindful of the purposes for which NATA was
developed. NATA was developed as a tool to inform both national and more localized efforts to collect
air toxics information and characterize emissions (e.g., prioritize pollutants or geographic areas of interest
for more refined data collection such as monitoring). The results are most meaningful when viewed at the
state or national level. Nevertheless, reported spatial patterns within a county likely represent actual
variations in overall average population risks. Less likely, however, is that the assessment pinpoints the
exact locations where higher risks exist or that the assessment captures the highest risks in a county.

Using these results alone to draw conclusions about local concentrations and risk is inappropriate.

This assessment did not focus on the identification of geographic areas or populations that have
significantly higher risks than others. Rather, it focused on characterizing geographic patterns and ranges
of risk across the country. In general, however, spending time in larger urban areas tends to pose greater
risks than spending time in smaller urban and rural areas because the emissions of air toxics tend to be
higher and more concentrated in areas with more people. This trend is not, however, universal and can
vary from pollutant to pollutant according to its sources. The trend also can be affected by exposures and
risk from non-inhalation and indoor sources of exposure.

Based on the NATA results, millions of people live in areas where air toxics pose potential health
concerns. Although air quality continues to improve, more needs to be done to meet the CAA's
requirements to reduce the potential exposure and risk from these chemicals. We will continue to
develop air toxic regulations and cost-effective pollution prevention and other control options to address
indoor and urban pollutant sources that significantly contribute to risk.

6.6 Summary

•	The purpose of NATA is to understand cancer risk and noncancer health effects to help EPA and
others identify pollutants and source categories of greatest potential concern and to set priorities
for collecting additional information to improve future assessments.

•	Cancer risk was expressed as a statistical probability that an individual will develop cancer.
Cancer risks were assumed to be additive across chemicals for NATA.

•	Noncancer hazard was expressed as an HQ, which is the ratio of the EC to an RfC associated with
observable adverse effects.

•	NATA estimated most individuals' risk to be between 1-in-l million and 100-in-l million,
although a small number of localized areas showed risk higher than 100-in-l million.

•	Air toxics data for NATA are presented at the national, regional, state, county, and census-tract
levels. The results are most meaningful when viewed at the state or national level. Using these
results in the absence of additional information to draw conclusions about local concentrations
and risk is inappropriate.

132


-------
EPA's National-scale Air Toxics Assessment

7 VARIABILITY AND UNCERTAINTY ASSOCIATED WITH NATA

7.1 Introduction

Presented in this section are discussions
on variability and uncertainty associated
with the NATA process. Clearly
understanding these two fundamental
concepts—inherent in all broad-scale
assessments that rely on models and
data—will enable the users of the NATA
results to understand which questions can
be answered appropriately and which
cannot.

As stated in Section 1, NATA results
should not be used for limited-scale or
site-focused applications. NATA results are intended to characterize broad-scale risk to help identify
those air toxics and source types associated with the highest exposures and posing the greatest potential
health risks. The results are intended to identify geographic patterns and ranges of risks across the
country. To avoid over-interpretation and misapplication of the results, users must first understand the
concepts of variability and uncertainty and then must recognize the role that these elements play in the
NATA results.

Air toxic emissions, air concentrations, and exposures are not the same throughout the United States, and
the risks associated with air toxics are not the same for all people. Some geographic areas have higher
concentrations than others. At certain times, the concentration is higher at a given location than at other
times. The risks for some individuals are below the national average, while for others the risks are above
the national average. For these reasons, understanding how the ambient (outdoor) air concentration,
exposure, and risk from air toxics vary throughout the United States is essential for understanding NATA.
This information comes from a process called variability analysis.

EPA seeks to protect health with reasonable confidence based on the best data available. Estimates of air
concentrations, exposures, and risks, however, necessarily always involve assumptions. Assumptions are
necessary to simplify the problem at hand, while also making assessment possible given available
information and resources. Assumptions introduce uncertainties into the results because confidence that
the assumptions are entirely correct is not possible. Understanding the magnitude of these uncertainties,
the level of confidence that can be placed in statements related to the assessment, and how this confidence
affects the ability to make reasoned decisions is essential. This information comes from a process called
uncertainty analysis.

7.2 How NATA Addresses Variability

The NATA process focuses on the variation in ambient air concentrations, exposures, and risks in
geographic areas of the United States, Puerto Rico, and the U.S. Virgin Islands. Included, for example,
are variations in the locations of various sources and the amounts of pollutants that these sources emit,
variations in meteorological conditions in various parts of the country, and variations in the daily
activities of people. This section presents information on the key components that drive variability in

Key Definitions for this Section

Variability represents the diversity or heterogeneity in a
population or parameter (e.g., variation in heights of people).
Variability cannot be reduced by taking more (or better)
measurements; however, it can be accounted for by a more
detailed modeling approach (e.g., modeling peoples' heights in
terms of age will reduce the unexplained variability due to
variation in heights).

Uncertainty refers to the lack of knowledge regarding the
actual values of model input variables (parameter uncertainty)
and of physical systems (model uncertainty). Uncertainty can be
reduced through improved measurements and improved model
formulation.

133


-------
EPA's National-scale Air Toxics Assessment

risks associated with air toxics and the variability components that NATA addresses. A brief explanation
is also provided on how NATA results should be interpreted in light of variability.

7.2.1 Components of Variability

The NATA results show how air concentrations, exposures, and risks vary across broad geographic
regions of the country. They do not fully characterize how concentration, exposure, and risk vary among
individuals, except to the extent these individuals live in different geographic regions and are affected by
the values typical of a census tract in that region. NATA results also do not fully characterize how
ambient air concentrations might vary temporally and they do not characterize how concentrations vary
spatially within a census tract. The following list contains explanations of some of the components of
variability that determine differences in ambient air concentrations and individual risks. Key components
driving variability in risk associated with air toxics include temporal variation, geographic variation, and
variations in where people live, their levels of activities, and their degrees of susceptibility or sensitivity,
as described below.

Temporal. Sources do not emit pollutants at constant rates. Similarly, the meteorological conditions that
affect dispersion in the atmosphere vary over time. Thus, the ambient air concentration at a given location
can vary over time.

Geographic. The influence of pollutant emissions on ambient concentrations at a particular location
depends on the degree of atmospheric dispersion of the emissions as they travel from the source to the
receptor. Dispersion depends on both meteorological conditions, which vary from place to place, and the
travel distance from source to receptor. As a result, the ambient air concentration can vary greatly among
different locations. The NATA analysis accounts for some geographic variation by using available
meteorology data representative of the location and by modeling ambient concentrations for census areas,
but the spatial resolution of model predictions is limited.

Individual location. Two individuals might live at different locations within the same census tract. The
ambient concentration estimated for the tract is only an approximation of conditions at all locations in the
tract. Different locations within that tract might have different average ambient concentrations. Therefore,
exposures and risks also can vary.

Individual activity patterns. Two individuals might live at the same location but engage in different
activities (called an "activity pattern") during each day. Concentrations of substances indoors often differ
from concentrations outdoors. If one person spends more time indoors than the other person does, the
average air concentration to which the two are exposed will differ, even though the ambient air
concentration is the same. Similarly, one person might spend more time in a car than the other person
might and be exposed to an air concentration that is typical near roads. The net effect would be that the
concentration of each pollutant in the air actually inhaled by these two individuals would differ. In other
words, the exposure differs for these two individuals.

In addition, buildings and vehicles vary with respect to the amount of outdoor pollution that penetrates
into the indoor and in-vehicle microenvironments due to differences in ventilation and building and
vehicle integrity. Thus, two people who live in the same location and spend the same amount of time
indoors can still be exposed to different pollutant concentrations.

Susceptibility. Two individuals might live at the same location and engage in the same activities, but one
person might be more susceptible than another might be. Susceptibility refers to the extent to which an
individual takes a pollutant into the body, transports it into an organ or tissue that might be adversely
affected by it, or develops an adverse effect.

134


-------
EPA's National-scale Air Toxics Assessment

An individual who is more susceptible might develop a higher concentration of a pollutant in his or her
organs or tissues, or have a higher chance of developing an adverse health effect, than another individual
even though the exposures for both individuals are the same. For example, people breathe at different
rates; two individuals placed into exactly the same air might bring different amounts of a pollutant into
their bodies. The amount of a pollutant reaching an organ or tissue also might vary from individual to
individual, even if both bring the same amount into their lungs. The amount of time the pollutant remains
in the body also might differ. Finally, the innate sensitivity to the effect might vary even at equal doses in
the tissues. The net effect of these factors is that either the dose of the pollutant delivered to the organs or
tissues of the body or the level of response, or both, can differ substantially between these two
individuals, even though the individuals are exposed to exactly the same pollutant concentrations.

The extent to which each factor described above influences variation in individual risk can depend on the
age, gender, or ethnic group to which an individual belongs, as well as on that individual's lifestyle.

These groups comprise different receptor populations, or cohorts, and the exposures and risks can differ
among them.

7.2.2 Quantifying Variability

EPA conducts NATA to understand how ambient air concentration, exposure, and risk vary
geographically and not among specific individuals. EPA calculates the ambient air concentrations for
each specific, discrete location (i.e., census-block centroid or census-tract centroid; see discussion below)
based on the emission sources and meteorological conditions affecting those specific tracts. Some
temporal variation is accounted for in NATA calculations. For example, meteorology data used for air
quality modeling is temporally dynamic. The air quality modeling therefore captures important variations
in ambient conditions on an hourly basis before the resulting modeled ambient air concentrations are
time-averaged. The ambient concentration inputs to HAPEM are stratified into eight 3-hour time blocks;
HAPEM then calculates ECs for each 3-hour time block before calculating an overall, long-term average
EC. Although this approach to air quality and exposure modeling takes into account some important
temporal variations, these time-stratified model outputs are averaged prior to the risk characterization step
and are not included in the NATA results reported by EPA.

The NATA concentrations and risks, however, do reflect a degree of geographic variation. The smallest
geographic area for which NATA results are reported is the census tract. Although results are reported at
the census-tract level, average risk estimates are far more uncertain at this level of spatial resolution than
at the county or state level. Census tracts are small, relatively permanent statistical subdivisions of a
county, typically having between 2,500 and 8,000 residents. Census tracts do not cross county boundaries.
Their areas vary widely depending on the density of settlement. Census tracts tend to be small in densely
populated areas but can be very large in sparsely populated areas. Within census tracts are census blocks,
which are areas bounded by visible or virtual features, such as streets, streams, city, or town boundaries.
Census blocks are typically small in area; for example, in an urban area, a census block might correspond
to a block bounded by city streets. In remote areas, however, census blocks might be large and irregular,
comprising many square miles.

Air concentrations are estimated in NATA at various levels of resolution depending upon the source type
modeled. Secondary formation, fires, and biogenics (modeled in the CONUS) are at 12-km grid-cell
resolution. Other sources use census-block resolution, though the emissions for some sources are at the
tract level—these tract-level emissions originate from even broader geographic scales (county and
national level) and are less certain at these finer geographies as discussed below. For a given source type
and modeling approach, variation in ambient air concentrations within a grid cell or census block is not
explicitly modeled. For estimates at the block level, a representative ambient air concentration is
estimated for a single location near the center of the block (i.e., the centroid, which is typically, but not

135


-------
EPA's National-scale Air Toxics Assessment

always, the geographic center of the block chosen by the U.S. Census Bureau as a reference point). EPA
then averages ambient concentrations estimated at the block level for the encompassing census tract, with
concentration and risk results reported at the tract level. Assessment results do not reflect variations in the
susceptibility of people within a census tract because the focus is to compare typical exposures and risks
in different tracts. As a result, individual exposures or risks might differ by as much as a factor of 10 in
either direction. Exposure or risk determined in NATA should be considered as representative of the
geographic area where an individual lives, but not necessarily be considered as that individual's personal
risk.

Thus, the results of the NATA analysis do not allow for a comparison of ambient air concentrations,
exposures, or risks between two individuals. They do, however, enable the user to understand the
variation in typical values for these quantities among counties or states and to a lesser degree among
census tracts. For an individual, however, the values might differ from the typical value for the county or
state if that individual lives in a part of the geographic area that has a higher or lower than typical value,
has an activity pattern that causes a higher or lower exposure than is typical, or is more (or less)
susceptible than a "typical" person used in this assessment.

For the purposes of estimating and reporting risk, EPA assumes that individuals within a census tract have
the same exposure and risk. This assumption allows the examination of the variation in individual
exposure among census tracts, but it does not allow the examination of the variation within a census tract.
Activity patterns are included for each of six cohorts defined by age. Even within a receptor population,
some variability in activity patterns among individuals is considered. Differences in susceptibility,
however, are not included in NATA. EPA took this approach for NATA for two primary reasons:

•	An overall purpose of NATA is to examine broad differences driven by geography. NATA
considers only geographic differences in pollutant concentration, exposure, and risk. The goal is
to understand how these three factors differ among people living in different geographic areas.
EPA assesses these differences, as mentioned above, by tracking differences in air concentration
in different census tracts, producing differences in the typical pollutant concentrations, exposures,
and risks in different tracts. Differences in susceptibility, however, can produce differences in risk
between two individuals in the same census tract, and reporting on these differences is not a
purpose of NATA.

•	The variability in susceptibility is difficult to model at the national scale. Very limited
information is available on differences in susceptibility among individuals. Even if EPA were to
choose to calculate and report differences among individuals in a census tract, scientifically
reliable information necessary to produce these calculations is not available for many of the
pollutants. Given current information, estimating variability in the rates at which people breathe
air might be possible, but this variability is only a small component of the overall variation in
susceptibility. EPA therefore has chosen not to incorporate this source of variation between
individuals.

Taking into consideration these limitations, EPA elected to incorporate differences in emissions and
meteorology (resulting in differences in ambient air concentration) and differences in location of typical
individuals (resulting in differences in exposure) among census tracts. Variation in activity patterns for
different age groups is reflected in the assessments to the degree than the age of residents varies by
location. Variability in susceptibility is not included for the reasons given above. Temporal variation in
inputs is addressed in the development of time-weighted averages of emissions characteristics,
meteorological conditions, and ECs. Temporal variation in the estimated ambient air concentrations,
however, is not reflected in the results (only time-weighted annual averages are presented).

136


-------
EPA's National-scale Air Toxics Assessment

7.2.3 How Variability Affects Interpretation of NATA Results

The NATA analysis illustrates how ambient air concentration, exposure, and risk vary throughout the
United States. The assessment does not focus on the variation in exposure and risk among individuals. It
focuses on variation among well-defined geographic areas, such as counties or states, based on
calculations of ambient air concentration, exposure, and risk in various census tracts. To a lesser degree,
variation among demographic groups is also addressed by NATA, in that differences in activity patterns
are taken into account in modeling ECs using HAPEM. Risk results, however, are not presented
separately for individual demographic groups.

The information contained in the maps, charts, and tables produced in NATA display predictions of
cancer risk and noncancer hazard. Cancer risk results include statements such as:

"X percent of the census tracts in a given area are characterized by a typical lifetime
excess cancer risk of less than R."

For this statement, if X is 25 percent and R is 1-in-l million, the result would be:

"25 percent of the census tracts are characterized by atypical risk of less than 1-in-l
million."

This statement does not necessarily mean that 25 percent of individuals in the specified area have a cancer
risk of less than 1-in-l million. Some people in these census tracts would be expected to have a risk above
1-in-l million. Although an individual might live in a census tract where the typical or average risk is less
than 1-in-l million, that individual might live nearer the source than the average person in the census
tract, or might have an activity pattern that leads to greater exposure, or might be more susceptible. All
these factors could cause that individual to experience a risk above the typical value for that census tract.
Conversely, the individual also could have a lower risk by living farther from the source, or having an
activity pattern that produces lower exposures, or being less susceptible.

The important point to remember when interpreting the maps and charts of the NATA analysis is that they
show variation among values of ambient air concentration, exposure, or risk in census tracts or larger
areas such as counties. This presentation allows for the identification of geographic regions (counties or
states) where these values are higher or lower than the aggregated national average for all census tracts. It
does not allow for the identification of individuals who have higher or lower values of ambient air
concentration, exposure, or risk. Nevertheless, individuals with a high risk are more likely to be located in
geographic regions characterized by a high risk than in those geographic regions characterized by a low
risk. The same can be said for exposure (i.e., individuals with a high exposure are more likely to be found
in geographic regions characterized by high exposure than in those regions characterized by low
exposure).

7.3 How NATA Addresses Uncertainty

No scientific statement (in risk assessment or other areas of science) can be made with complete
confidence. Risk estimates are always uncertain to some degree due to issues such as those discussed
below. To maintain transparency and openness in the presentation of risk results, the party conducting a
risk assessment must explain these uncertainties and how these uncertainties increase or decrease
confidence. The NATA analysis produces statements about variability in ambient air concentrations,
exposures, and risks across geographic regions for typical individuals, as described in Section 7.2. In this
section, the discussion of uncertainty is intended to address the confidence with which these statements

137


-------
EPA's National-scale Air Toxics Assessment

regarding variability can be made. Of importance to note is that uncertainty does not prevent EPA from
making a statement of risk, nor does it prevent EPA from taking reasonable actions. Uncertainty does
require, however, that the nature of the uncertainty, and the implications for decisions, be understood so
the degree of support for the statement can be correctly and properly interpreted.

7.3.1 Components of Uncertainty

Uncertainty arises from a variety of sources. To understand the sources of uncertainty affecting a risk
assessment, considering the process by which a study such as NATA is performed is instructive, as
described in the following sections.

Problem formulation. The problem to be addressed must first be defined. For example, a question that
might help define the problem could include, "Is the occurrence of adverse human health effects
correlated with emissions from industrial facilities?" What the study is intended to address and how the
results will be used should be clear at the outset. This initial step in the analysis introduces problem-
formulation uncertainty. The purpose of NATA is described in Section 1 of this document, where the
question addressed in the assessment is defined as precisely as possible (e.g., that the study is limited to
estimates of health effects in human populations), along with information about the limitations of the
assessment. The issue of problem-formulation uncertainty is not considered further in this document.

Defining the analysis components. This step describes what can influence the answer to the problem. In
NATA, the multiple influences include emissions from a variety of sources (e.g., mobile, stationary,
biogenic); atmospheric dispersion and chemistry; activity patterns for different cohorts; UREs and RfCs;
and other considerations. Where the science is poorly developed, the factors that must be included might
not be clear. Resources also might be limited, making the inclusion of all factors in the study infeasible.
This step in the analysis, which results in the conceptual model for the assessment, introduces conceptual
uncertainty. This issue is also addressed in the discussion of the limitations of NATA in Section 1, where
the aspects of the problem that are (and are not) included in the study are addressed (e.g., that the study
addresses inhalation of air toxics only). The issue of conceptual uncertainty is not considered further here.

Selecting models. All risk assessments use models. The NATA analysis uses a series of mathematical
models. Models are used in NATA to produce the emissions inventory; to calculate ambient air
concentration; to calculate exposure; and to calculate risk (for cancer and noncancer effects). All
scientific models involve uncertainties because a model reduces a (potentially very complex) set of
chemical, biological, physical, social, or other processes to manageable algorithms that can be used to
perform calculations and make forecasts. The simplifications that are inherent in the development of a
model introduce uncertainties.

Typically, more than one model is available for application to a problem and those models can produce
different results. Thus, uncertainty is introduced as to which model, and which model results, should be
used. As a simple example, NATA uses a linear statistical model to relate EC and cancer risk: cancer risk
equals the exposure (air concentration) multiplied by a URE. Uncertainty analysis involves asking a series
of questions: Are we certain this linear relationship is correct? Could the relationship be quadratic (i.e.,
risk equals exposure multiplied by the square of the dose)? Could the relationship have a threshold (i.e.,
no risk is apparent until the exposure becomes sufficiently large)? What are the implications for estimates
of risk if these different models are used? What are the implications for decisions if a clear choice among
the models cannot be made?

This step in the analysis introduces model uncertainty. Judging model uncertainty can be both quantitative
and qualitative. Qualitative issues involve the scientific plausibility of the model. Does the model include
all important processes? Does it explain the phenomenon (e.g., atmospheric dispersion) well? Is the

138


-------
EPA's National-scale Air Toxics Assessment

model well accepted in the scientific community—has it passed critical tests and been subject to rigorous
peer review?

Quantitative issues involve comparing model results against sets of data (although this also involves
issues of parameter uncertainty discussed in the next bullet). Does the model generally predict these data
accurately? Are the predictions accurate to within a factor of 2; a factor of 4? What is the effect of any
approximation methods used in the model?

Applying models. The models used in the NATA analysis require parameter inputs such as emission
rates, stack heights, fractions of time spent indoors, and UREs. Although models describe general
relationships among properties of the real world (e.g., the linear relationship between exposure and cancer
risk), parameters quantify these properties for specific cases (e.g., the numerical value of the URE for
benzene). Parameters provide the numbers needed in the models. Various databases are available from
which these parameters can be estimated, and the methods used to collect the data and to compile the
databases introduce uncertainties. All of these factors introduce parameter uncertainty.

Although parameter uncertainty has both quantitative and qualitative aspects, common practice is to
characterize this source of uncertainty quantitatively, with some qualitative caveats. For example,
parameter uncertainty might be characterized by a confidence interval, which states that the true value of
the parameter (such as the stack height for a facility) probably lies somewhere between 40 and 60 meters
or that the stack height is "known to be within" a factor of 1.2, or that the stack height is "accurate to
within" 20 percent. Attached to this quantitative characterization of uncertainty will be a qualitative
caveat such as "the estimate of this uncertainty is based on measurements made in 1990 at facilities
similar to the one considered in this study, but a change in the design of stacks might have been made
since 1990." This qualitative statement provides some idea of the confidence with which the quantitative
assessment of uncertainty can be applied.

7.3.2 Components of Uncertainty Included in NATA

For this discussion, the uncertainties in NATA have been
divided into three sources, based on the three steps leading
from the estimate of emissions to the calculations of risk.

Uncertainty in ambient air concentrations is due to uncertainty
in the emissions estimates and in the air quality models.

Uncertainty in exposure is due to uncertainty in the activity
patterns, the locations of individuals within a census tract, and
the microenvironmental concentrations as reflected in the exposure model. Finally, uncertainty in risk is
due to uncertainty in the shape of the relationship between exposure and effects, the URE, and the RfC.
These three sources of uncertainty are discussed below.

Ambient air concentration. Considering first the predictions of ambient air concentration, the specific
sources of uncertainty derive from the parameters for the following: emissions, the stack, particle sizes
and reactivity, chemical speciation, terrain, boundary conditions, background concentration, meteorology,
and model equations. These sources of uncertainty are discussed briefly in this section.

Emissions parameters, including emission rates and locations of sources, are taken from the NEI
database, which is a composite of estimates produced by state and local regulatory agencies, industry, and
EPA. Some of these data were further modified during the NATA review. The quality of specific
emissions rates and locations in the NEI and resultant NATA emissions (e.g., industrial emissions from a
specific census tract) has not been fully assessed, although reviews have been conducted. Some of the
parameter values could be out of date, errors might have been introduced in transcribing raw data to a

NATA Components that Include
Uncertainty

•	Ambient concentrations

•	Exposure estimates

•	Risk estimates

139


-------
EPA's National-scale Air Toxics Assessment

computer file, and other data-quality issues might be present. Emission estimates use a variety of methods
such as emission factors, material balances, engineering judgement and source testing. Some release point
locations use an average facility location instead of the location of each specific unit within the facility.
Release point parameters may be defaulted for some situations. Fugitive release parameters are not
required and are defaulted where missing. In addition, TRI data does not provide release point parameters
other than identifying sources as "stack" or "fugitive"; the release parameters used historical defaults
from previous inventories or new defaults.

Uncertainty also is inherent in the emission models used to develop inventory estimates. For example,
county-level air toxic emissions from nonroad equipment are estimated by applying fractions of toxic
total hydrocarbons to estimates of county-level hydrocarbons for gaseous air toxics and fractions of toxic
particulate matter to estimates of county-level particulate matter for PAHs; emission factors based on
milligrams per mile are used for metals. The toxic fractions are derived from speciation data, based on
limited testing of a few equipment types. The estimates of county-level total organic gases and
particulates are derived from the EPA NONROAD model. In the NONROAD model, uncertainties are
associated with emission factors, activity, and spatial-allocation surrogates. National-level emissions in
NONROAD are allocated to the county level using surrogates, such as construction costs (to allocate
emissions of construction equipment) and employees in manufacturing (to allocate industrial equipment).
Availability of more specific local data on equipment populations and usage will result in more accurate
inventory estimates. For mobile and nonpoint sources, population is used to allocate vehicle miles
traveled from state or metropolitan statistical area to county, which is a source of considerable
uncertainty.

For mobile and nonpoint sources, the emissions rates are typically allocated from the county level to
census-tract levels through a surrogate such as population or land use. This allocation introduces
additional uncertainty because the data on the surrogates also have uncertainty, and the correlations
between the surrogates and the emissions are imperfect.

The health effects of a pollutant depend on its chemical form when inhaled. For many sources, the NEI
database does not include information on chemical speciation of the pollutants of interest, but instead
contains the total rate of pollutant emitted in all its forms. Assumptions about chemical speciation are
made based on values estimated to be representative at such sources, taking into account information on
source type, typical feedstock materials, knowledge of the process involved, or other relevant factors. Any
one source, however, might actually have different values than the ones assumed.

The dispersion, or movement, of pollutants in the atmosphere is influenced by the topography of the area
surrounding a source, which is characterized by terrain parameters. Although the CMAQ model
estimates include consideration of topography, the HEM-3 model estimates as implemented for NATA do
not in all cases. The HEM-3 model estimates for point sources include consideration of topography, but
the estimates for the emissions sources modeled as census tract area sources do not because considering
topography in the model requires a single source elevation, which is not always possible for large census
tracts. Not accounting for terrain introduces uncertainty into predictions of ambient air concentrations,
particularly in areas with hills or mountains.

Another source of uncertainty in the modeling of ambient air concentrations is the values used for the
boundary conditions used in CMAQ and background concentration estimates that are added to
AERMOD concentrations from the non-CMAQ HAPs. These sources might include, for example,
contributions from long-range transport of compounds from other counties and states. For more details on
background concentrations, refer to the discussion in Section 3.

140


-------
EPA's National-scale Air Toxics Assessment

The representation of meteorological parameters in the CMAQ model is advanced, as the parameters
are derived using WRF. HEM-3 requires less complex representation of meteorological parameters,
primarily the direction and speed of airflow and the stability of the atmosphere (which affects how high
gases rise once they are emitted). For HEM-3, NATA uses meteorological data from the nearest available
monitoring station or grid cell. Uncertainties arise from the fact that the data typically are not measured at
the precise location of a given source and sometimes are not for the same year, and therefore might not
represent the meteorological conditions accurately.

The model equations used in the air quality models represent another source of uncertainty. The version
of HEM-3 used for NATA uses the Gaussian equations implemented in the AERMOD computer model
that has been studied extensively. The CMAQ model is more complex in its treatment of pollutant
dispersion and atmospheric dynamics; nevertheless, many assumptions underlie its Eulerian approach to
dispersion, which are outlined further in the science documentation for the CMAQ model.

While the hybrid approach of combining the CMAQ and HEM-3 models results in improved treatment of
chemistry and transport, there are uncertainties in the implementation. The approach requires consistent
emissions and meteorological inputs to be used in both models. While emissions were as consistent as
possible, some simplifications were necessary. CMAQ was not re-run after all of the emissions changes
made during the NATA review; instead, the CMAQ results were adjusted based on HEM-3 adjustments,
which could have resulted in some uncertainty. Differences also existed in the spatial and temporal
treatment of the emissions. Emissions were allocated from county to tract for HEM-3 and from county to
grid cell for CMAQ. While the same underlying data were used for the allocation, there may have been
differences (introduced by the irregularly shaped census boundaries) in developing the county-to-tract
surrogate fractions and in simplifying the tract boundaries for modeling tract-level emissions. The
temporal allocation used in HEM-3 was not exactly the same as in CMAQ for the county-level sources,
though average profiles based on the CMAQ temporal approach were developed for use in HEM-3. The
HEM-3 meteorology data used the MMIF at every fourth grid cell (as opposed to every grid cell);
additionally, the HEM-3 meteorology data also used the non-gridded National Weather Service station
data, which were not used in CMAQ. In addition to inconsistencies in model inputs, the hybrid approach
uses a HEM-3 grid-cell average for normalizing the individual HEM-3 concentrations within the grid cell.
The HEM-3 surface values are less representative of the true HEM-3 average in grid cells where there are
fewer census-block receptors and where the block receptors are clustered unevenly within the grid cells.

To help characterize the aggregate uncertainty of the predictions of the air quality models, EPA compared
modeled concentrations to available monitoring data on ambient air quality. For each monitor-pollutant
combination, EPA compared the predicted annual-average concentrations at the monitor location to the
sampled annual-average concentrations. These comparisons showed reasonably good agreement.
Measured concentrations were taken from EPA's Ambient Monitoring Archive which includes National
Air Toxics Trends Stations and state and local monitors reported to the Air Quality System. For the 2011
NATA, the exact locations of the monitors were used for the model-to-monitor comparison, an approach
that increases accuracy over previous assessments. For more details about the model-to-monitor analyses
for previous assessments, see Comparison of 1996 ASPEN Modeling System Results to Monitored
Concentrations (EPA 2002c), Comparison of 1999 Model-Predicted Concentrations to Monitored Data
(EPA 2006b), Comparison of 2002 Model-Predicted Concentrations to Monitored Data (EPA 2009), and
Comparison of 2005 Model-Predicted Concentrations to Monitored Data (EPA 2010b).

Discrepancies between model predictions and concentration measurements can be attributed to five
sources of uncertainty:

• emission characterization (e.g., specification of source location, emission rates, and release
characterization);

141


-------
EPA's National-scale Air Toxics Assessment

•	meteorological characterization (e.g., representativeness);

•	model formulation and methodology (e.g., characterization of dispersion, plume rise, deposition,
chemical reactivity);

•	monitoring; and

•	boundary conditions/background concentrations.

Underestimates for some pollutants could be a result of the following:

•	The NEI might be missing specific emission sources (some of the emissions parameters are
missing for many of the sources in the NEI).

•	The emission rates could be underestimated or overestimated due to emission-estimation
techniques and/or spatial allocation of national estimates to county, and county estimates to tracts.

•	The accuracy of the monitor averages is uncertain; the monitors, in turn, have their own sources
of uncertainty. Sampling and analytical uncertainty, measurement bias, and temporal variation all
can cause the ambient concentrations to be inaccurate or imprecise representations of the true
atmospheric averages.

•	Model-to-model spatial comparisons are imprecise. The results suggest that the model estimates
are uncertain on a local scale (i.e., at the census-tract level). EPA believes that the model
estimates are more reliably interpreted as being a value likely to be found within 30 km of the
census-tract location.

Exposure. Sources of uncertainty in the relationship between ambient air concentrations and ECs include
those associated with microenvironmental factors and activity patterns. HAPEM calculates the EC in
various microenvironments (e.g., indoors at home, in a car) based on inputs of predicted ambient air
concentrations and microenvironmental factors. The factors are characterized as probability
distributions to reflect the variability found in air-toxics measurements more fully. For many air toxics,
the measurement studies needed to estimate microenvironmental factors are not available, so the values
used are based on measurement studies of similar compounds in similar situations. This practice
introduces uncertainty into the estimation of ECs for such compounds. In addition, even for air toxics
with measurement studies, the estimated microenvironmental factors have some uncertainty because the
number of such studies is limited. Furthermore, the uniform application of the microenvironmental factors
to all census tracts introduces uncertainty by not accounting for possible geographic differences among
tracts (e.g., different window-opening behavior, different levels of building integrity).

The activity-pattern sequences for individuals used in HAPEM are based on CHAD. As explained in
Section 4.3.3, the algorithms in HAPEM consider the variability in activity patterns among individuals
within a cohort-tract combination, largely by addressing correlation between subsequent activity patterns
assumed to occur for each cohort-tract combination. The representativeness of the daily diaries in CHAD
is uncertain because they are a compilation of many studies, including some that are not recent and some
for which the data are based on non-random sampling. How well the model algorithms represent actual
daily autocorrelation between types of activity also is uncertain. This latter issue, however, pertains only
to the variability of the ECs across the demographic group and not the median EC, which is the
concentration reported by NATA.

The commuting data used in HAPEM are based on an EPA analysis of information from a special study
by the U.S. Census. HAPEM uses this information, reflecting 2010 data, in coordination with the activity-
pattern data to place an individual either in the home tract or the work tract at each time step. These data

142


-------
EPA's National-scale Air Toxics Assessment

introduce some uncertainty because they simplify commuting patterns to a pair of home and work census
tracts and might not reflect certain details of some commutes (e.g., the additional census tracts
encountered by commuters who travel to non-adjacent tracts; more complex commuting patterns that are
not point to point). An additional important consideration is that the commuting-pattern data included in
HAPEM do not account for the movement of school-age children who travel (or commute) to a school
located outside the tracts in which they reside.

Risk. Concerning the predictions of risk, the specific sources of uncertainty in dose-response
relationships (in addition to those considered for ambient air concentration and exposure) are hazard
identification, dose-response models for carcinogens, UREs, and RfCs.

One component of predicting risk is hazard identification. Cancer-risk estimates are based on the
assumption that a compound either is a carcinogen or produces a noncancer effect. This judgment is based
on the results of a hazard-identification stage in which the evidence that an air toxic produces either
cancer or a noncancer effect is assessed. Because the evidence for either judgment is never unequivocal, a
compound labeled as a carcinogen or one deemed to produce noncancer effects, in fact, might produce no
such effect in humans. This possibility introduces uncertainty into the calculation of risk because the risk,
in fact, could be zero. As the evidence for the original conclusion (i.e., that the compound produces the
effect) increases, this uncertainty decreases.

Cancer-risk estimates are based on the assumption that the relationship between exposure and probability
of cancer is linear. In other words, the probability of developing cancer is assumed proportional to the
exposure (equal to the exposure multiplied by a URE). This type of dose-response model is used
routinely in regulatory risk assessment because it is believed to be conservative; that is, if the model is
incorrect, it is more likely to lead to an overestimate of the risk than to an underestimate. Other
scientifically valid, biologically based models are available, which produce estimates of cancer risk that
differ from those obtained from the linear model. Uncertainty in risk estimates therefore, is, introduced by
the inability to justify completely the use of one model or the other (because each model has some
scientific support). An essential consideration is that this uncertainty is, to some extent, one-sided. In
other words, conservatism when uncertainty exists allows more confidence in the conclusion that the true
risk is less than that predicted than in the conclusion that the risk is greater than that predicted.

URE parameters have associated uncertainty. In some cases, the UREs are based on maximum-
likelihood estimates of the slope of the dose-response relationship derived from reliable data. In other
cases, the UREs are based on "upper-bound" estimates (i.e., the slope is not the best estimate, but is a
conservative value that is likely to lead to overestimates of risk) derived from less reliable data. For some
compounds, the UREs are derived from human-exposure studies, but for others they are from animal
exposures. These considerations introduce uncertainty into the URE values, and the amount of uncertainty
varies among pollutants.

Another source of uncertainty in estimating risk derives from the values chosen for the RfC parameters
used to calculate an HQ for noncancer health risk. The RfC, which (like the URE) is based on limited
information, is uncertain, and as a result, the value of HQ is uncertain. As is the case for UREs, the
uncertainty in the RfC is generally one-sided and the risk is unlikely to be greater than predicted.

7.4 Summary of Limitations in NATA

EPA developed this assessment to inform both national and more localized efforts to collect information
and characterize or reduce air-toxics emissions (e.g., to prioritize pollutants or geographic areas of interest
for monitoring and community assessments). As described above, many of the elements in the assessment

143


-------
EPA's National-scale Air Toxics Assessment

process for NATA, as in other assessments that derive results from environmental data and modeling of
environmental data, are characterized by uncertainty and variability. Because of this, EPA suggests
exercising caution when using the results of these assessments, as the overall quality and uncertainty of
each assessment vary from location to location and from pollutant to pollutant. In many cases assessments
that are more localized, incorporating appropriately scaled local monitoring and modeling, could be
necessary to better characterize local-level risk.

Recognizing the specific limitations in NATA results is critical to their proper interpretation and utility,
including that the results:

•	apply to geographic areas, not specific locations,

•	do not include comprehensive impacts from sources in Canada or Mexico,

•	are restricted to the year to which the assessment pertains (because the assessment uses emissions
data from that year),

•	do not reflect exposures and risk from all compounds,

•	do not reflect all pathways of exposure,

•	reflect only compounds released into the outdoor air,

•	do not fully capture variations in background ambient air concentrations,

•	might underestimate or overestimate ambient air concentrations for some compounds due to
spatial uncertainties,

•	are based on default, or simplifying, assumptions where data are missing or of poor quality, and

•	might not accurately capture sources that have episodic emissions, and contain uncertainty.

The results apply to geographic areas, not specific locations. The assessment focuses on variations in air
concentration, exposure, and risk among geographic areas such as census tracts, counties, and states. All
questions asked, therefore, must focus on the variations among different areas. They cannot be used to
identify "hot spots" where the air concentration, exposure, or risk might be significantly higher than other
locations. Furthermore, this type of modeling assessment cannot address the kinds of questions an
epidemiology study might, such as the relationship between asthma or cancer risk or proximity of
residences to point sources, roadways, and other sources of pollutant emissions.

The results do not include comprehensive impacts from sources in Canada or Mexico. The NATA results
for states that border these countries do not thoroughly reflect these potentially significant sources of
transported emissions.

The results apply to groups, not to specific individuals. Within a census tract, all individuals are assigned
the same ambient air concentration, which is chosen to represent a typical ambient air concentration.
Similarly, the exposure assessment uses activity patterns that do not fully reflect variations among
individuals. As a result, the exposures and risks in a census tract should be interpreted as typical values
rather than as means, medians, or some other statistical average. The values are likely to be in the
midrange of values for all individuals in the census tract.

The results for the 2011 NATA are restricted to 2011 because the assessment used emissions data from
2011. Also, the assumption regarding emissions in the assessment is that the levels remain constant
throughout one's lifetime (the emissions are not today's levels nor are they projected levels). Emissions

144


-------
EPA's National-scale Air Toxics Assessment

continue to decrease, however, as (1) mobile-source regulations are phased in overtime, (2) EPA-issued
air-toxics regulations for major industrial sources reach compliance due dates, (3) state and industry
initiatives to reduce air pollutants continue, and (4) some facilities are closed or have made process
changes or other changes that have significantly reduced their emissions since 2011.

The results do not reflect exposures and risk from all compounds. Only 138 of the 181 air toxics (i.e., 180
CAA HAPs plus diesel PM) modeled in NATA have dose-response values. The remaining 43 air toxics
do not and therefore are not considered in the aggregate cancer risk or target-organ-specific hazard
indices. Of particular significance is that the assessment does not quantify cancer risk from diesel PM,
although EPA has concluded that the general population is exposed to levels close to or overlapping with
apparent levels that have been linked to increased cancer risk in epidemiology studies. Currently, a URE
for diesel PM has not yet been derived; therefore, a quantitative estimate of the cancer risks has not been
included in the 2011 NATA. An IRIS RfC for diesel PM has allowed a quantitative estimate of the
noncancer effects.

The results do not reflect all pathways of exposure. The assessment includes only risks from direct
inhalation of the emitted pollutants. It does not consider pollutants that might then deposit onto soil and
into water and food, and therefore enter the body through ingestion or skin contact. Consideration of these
routes of exposure could increase estimates of exposure and risk.

The assessment results reflect only compounds released into the outdoor air. The assessment does not
include exposure to pollutants produced indoors, such as from stoves or out-gassing from building
materials, or evaporative benzene emissions from cars in attached garages. For some compounds such as
formaldehyde, these indoor sources can contribute significantly to the total exposure for an individual,
even if only inhalation exposures are considered. In addition, the assessment does not consider pollutants
released directly to water and soil. It does take into account transformation of one pollutant into another
(i.e., secondary formation) in the atmosphere.

The assessment does not utilize CMAQ in all areas (i.e., not in Alaska, Hawaii, Puerto Rico, and the U.S.
Virgin Islands) and therefore does not estimate fires, biogenics, and secondary formation based on
location-specific data in these areas. It also does not utilize CMAQ for all pollutants and hence may not
appropriately estimate the long-range transport for these non-CMAQ pollutants. For pollutants not
estimated in CMAQ, the assessment uses background ambient air concentrations that are based on remote
concentration estimates, but these would not account for variations due to the regional transport of these
pollutants.

The assessment might underestimate or overestimate ambient air concentrations for some compounds in
some locations due to spatial uncertainty in mobile and nonpoint emissions, which are more uncertain at
finer geographic scales.

The assessment uses default, or simplifying, assumptions where data are missing or of poor quality. Data
for some variables used in the modeling for emissions and dispersion of pollutants (such as stack height
and facility location) are not always available or are flawed. In such instances, these values are replaced
by default assumptions. For example, a stack height for a facility might be set equal to stack heights at
comparable facilities or the location of the release points within a facility might be placed at the center of
the facility. These substitutions introduce uncertainty into the final predictions of ambient concentration,
exposure, and risk.

The assessment might not accurately capture sources that have episodic emissions. Some facilities might
experience short-term (a few days or weeks) deviations from their typical emissions patterns, such

145


-------
EPA's National-scale Air Toxics Assessment

as during startups, shutdowns, malfunctions, and upsets. NATA modeling assumes that emission rates
are uniform throughout the year.

146


-------
EPA's National-scale Air Toxics Assessment

8 REFERENCES

Akhtar, F., Henderson, B., Appel, W., Napelenok, S., Hutzell, B., Pye, H., and Foley, K. 2012. Multiyear
Boundary Conditions for CMAQ 5.0 from GEOS-Chem with Secondary Organic Aerosol Extensions.
11th Annual Community Modeling and Analysis System Conference, Chapel Hill, NC, October 2012.

ATSDR (Agency for Toxic Substances and Disease Registry). 2015. Toxic Substances Portal Minimal
Risk Levels (MRLs) for Hazardous Substances. Available online at

http://www.atsdr.cdc.gov/mrls/index.asp. Last updated 28 October 2015. Last accessed 10 December
2015.

Appel, K.W., Gilliam, R.C., Davis, N., Zubrow, A., and Howard, S.C. 2011. Overview of the
Atmospheric Model Evaluation Tool (AMET) vl.l for Evaluating Meteorological and Air Quality
Models. Environ. Modell. Softw., 26(4): 434-443.

Attfield, M.D., Schleiff, P.L., Lubin, J.H., Blair, A., Stewart, P.A., Vermeulen, R., Coble, J.B., and
Silverman, D.T. 2012. The Diesel Exhaust in Miners Study: A Cohort Mortality Study with Emphasis on
Lung Cancer. Journal of the National Cancer Institute, 104: 1-15. Available online
at http://inci.oxfordiournals.org/content/104/11/855. Last accessed 10 December 2015.

Brown, N., Allen, D., Amar, P., Kallos, G., McNider, R., Russell,, A., and Stockwell, W. 2011. Final
Report: Fourth Peer Review of the CMAQ Model. EPA/ORD/NERL, Research Triangle Park, NC.
Available online at http://cfpub.epa.gov/si/si public file download.cfm?p download id=525232. Last
accessed 11 December 2015.

Byun, D., and Schere, K.L. 2006. Review of the Governing Equations, Computational Algorithms, and
Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System.

Applied Mechanics Reviews, 59(2): 51-77.

Caldwell, J.C., Woodruff, T.J., Morello-Frosch, R., and Axelrad, D.A. 1998. Application of Health
Information to Hazardous Air Pollutants Modeled in EPA's Cumulative Exposure Project. Toxicology
and Industrial Health, 14(3): 429-454.

Cimorelli, A.J., Perry, S.G., Venkatram, A., Weil, J.C., Paine, R.J., Wilson, R.B., Lee, R.F., Peters, W.D.,
and Brode, R.W. 2005. AERMOD: A Dispersion Model for Industrial Source Applications. Part I:
General Model Formulation and Boundary Layer Characterization. Journal of Applied Meteorology, 44:
682-693.

Cook, R., Phillips, S., Houyoux, M., Dolwick, P., Mason, R., Yanca, C., Zawacki, M., Davidson, K.,
Michaels, H., Harvey, C., Somers, J., and Luecken, D. 2011. Air Quality Impacts of Increased Use of
Ethanol under the United States' Energy Independence and Security Act. Atmospheric Environment, 45:
7714-7724.

EPA (U.S. Environmental Protection Agency). 1986. Guidelines for Mutagenicity Risk Assessment.
EPA/630/R-98/003. EPA, Washington, DC. Available online at http://www2.epa.gov/risk/guidelines-
mutagenicitv-risk assessment. Last accessed 10 December 2015.

EPA. 1991. Guidelines for Developmental Toxicity Risk Assessment. EPA/600/R-91/001. EPA,
Washington, DC. Available online at http://www2.epa.gov/risk/guidelines-developmental-toxicitv-risk
assessment. Last accessed 26 October 2015.

147


-------
EPA's National-scale Air Toxics Assessment

EPA. 1994. Methods for Derivation of Inhalation Reference Concentrations and Application of Inhalation
Dosimetry. EPA/600/8-90/066F. EPA Office of Research and Development (ORD), Washington, DC.
Available online at http://www2.epa.gov/risk/methods-derivation-inhalation-reference-concentrations-
and-application-inhalation-dosimetrv. Last accessed 27 October 2015.

EPA. 1996. Guidelines for Reproductive Toxicity Risk Assessment. EPA/630/R-96/009. EPA,
Washington, DC. Available online at http://www2.epa.gov/risk/guidelines-reproductive-toxicitv-risk
assessment. Last accessed 10 December 2015.

EPA. 1998. Guidelines for Neurotoxicity Risk Assessment. EPA/630/R-97/0. EPA, Washington, DC.
Available online at http://www2.epa.gov/risk/guidelines-neurotoxicitv-risk assessment. Last accessed 10
December 2015.

EPA. 2000. Supplementary Guidance for Conducting Health Risk Assessment of Chemical Mixtures.
EPA/630/R-00/002. Risk Assessment Forum, Washington, DC. Available online at
http://ofmpub.epa.gov/eims/eimscomm.getfile7p download id=4486. Last accessed 8 December 2015.

EPA. 2001a. NATA—Evaluating the National-scale Air Toxics Assessment 1996 Data - An SAB
Advisory. EPA/SAB/EC/ADV-02/001. Science Advisory Board, Washington, DC. Available online at
http://archive.epa.gov/airtoxics/nata/web/pdf/sabreptl201 .pdf. Last accessed 29 November 2015.

EPA. 2001b. National-scale Air Toxics Assessment for 1996. Draft for EPA Science Advisory Board
Review: January 18, 2001. EPA-453/R-01-003. EPA Office of Air Quality Planning and Standards
(OAQPS), Research Triangle Park, NC. Available online at

http://archive.epa.gov/airtoxics/nata/web/html/sabrev.html. Last accessed 29 November 2015.

EPA. 2002a. Health Assessment Document for Diesel Engine Exhaust. EPA/600/8-90/057F. EPA ORD/
National Center for Environmental Assessment (NCEA), Washington, DC. Available online at
http://cfpub.epa.gov/ncea/cfm/recordisplav.cfm?deid=29060. Last accessed 4 December 2015.

EPA. 2002b. The HAPEM User's Guide Hazardous Air Pollutant Exposure Model, Version 4. EPA
OAQPS, Research Triangle Park, NC. Available online at

http://archive.epa.gov/airtoxics/nata/web/zip/hapem4guide4.zip. Last accessed 29 November 2015.

EPA. 2002c. Comparison of ASPEN Modeling System Results to Monitored Concentrations. EPA.
Available online at http://archive.epa.gov/airtoxics/nata/web/html/mtom pre.html. Last updated 22
October 2015. Last accessed 30 November 2015.

EPA. 2003. Framework for Cumulative Risk Assessment. EPA/630/P-02/001F. EPA ORD/NCEA,
Washington, DC. Available online at http://www2.epa.gov/risk/framework-cumulative-risk assessment.
Last accessed 26 October 2015.

EPA. 2004a. Air Toxics Risk Assessment Reference Library. Volume 1: Technical Resource Manual.
EPA-453/K-04-001A. EPA OAQPS, Research Triangle Park, NC. Available online at
http://www2.epa.gov/sites/production/files/2013-08/documents/volume 1 reflibrarv.pdf. Last accessed 2
December 2015.

EPA. 2004b. Air Toxics Risk Assessment Reference Library. Volume 2: Facility-Specific Assessment.
EPA-453/K-04-001B. EPA OAQPS, Research Triangle Park, NC. Available online
http://www2.epa. gov/sites/production/files/2013 -08/documents/volume 2 facilitvassess .pdf. Last
accessed 2 December 2015.

148


-------
EPA's National-scale Air Toxics Assessment

EPA. 2005a. Guidelines for Carcinogen Risk Assessment. EPA/630/P-03/001F. EPA, Washington, DC.
Available online at http://www2.epa.gov/risk/guidelines-carcinogen-risk assessment. Last accessed 26
October 2015.

EPA, 2005b. EPA's National Mobile Inventory Model (NMIM), a Consolidated Emissions Modeling
System for MOBILE6 and NONROAD. EPA-420-R-05-024. EPA Office of Transportation and Air
Quality (OTAQ) Assessment and Standards Division, Ann Arbor, MI. Available online at
http://www.epa.gov/otaq/models/nmim/420r05024.pdf. Last accessed 10 December 2015.

EPA. 2005c. Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to
Carcinogens. EPA/630/R-03/003F. EPA, Washington, DC. Available online at
http://www2.epa.gov/osa/memoranda-about-implementation-cancer-guidelines-and-accompanving-
supplemental-guidance-science. Last accessed 4 December 2015.

EPA. 2005d. The HAPEM User's Guide Hazardous Air Pollutant Exposure Model, Version 5. EPA
OAQPS, Research Triangle Park, NC. Available online at

http://www2.epa. gov/sites/production/files/2013 -08/documents/hapem5 guide .pdf. Last accessed 29
November 2015.

EPA. 2006a. Air Toxics Risk Assessment Reference Library. Volume 3: Community-Scale Assessment.
EPA-453/K-06-001C. EPA OAQPS, Research Triangle Park, NC. Available online at
http://www2.epa. gov/sites/production/files/2013 -08/documents/volume 3 communitvassess .pdf. Last
accessed 2 December 2015.

EPA. 2006b. Comparison of 1999 Model-Predicted Concentrations to Monitored Data. EPA OAQPS.
Available online at http://archive .epa. gov/airtoxics/nata 1999/web/html/99compare .html. Last updated 13
September 2015. Last accessed 30 November 2015.

EPA. 2007. The HAPEM User's Guide Hazardous Air Pollutant Exposure Model, Version 6. EPA
OAQPS, Research Triangle Park, NC. Available online at

http ://www2 .epa. gov/sites/production/files/2013 -08/documents/hapem6 guide .pdf. Last accessed 29
November 2015.

EPA. 2008a. Health Effects Assessment Summary Tables (HEAST). EPA NCEA, Washington, DC.
Available online at http://cfpub.epa.gov/ncea/cfm/recordisplav.cfm?deid=2877. Last updated 21 July
2008. Last accessed 4 December 2015.

EPA. 2008b. The Clean Air Act Amendments of 1990 List of Hazardous Air Pollutants. EPA Office of
Air and Radiation (OAR), Washington, DC. Available online at http://www.epa.gov/ttn/atw/orig 189.html.
Last updated 10 September 2015. Last accessed 10 December 2015.

EPA. 2009. Comparison of 2002 Model-Predicted Concentrations to Monitored Data. EPA OAQPS.
Available online at http://archive .epa. gov/nata2002/web/html/compare .html. Last accessed 30 November
2015.

EPA. 2010a. Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic
Hydrocarbon (PAH) Mixtures: In Support of Summary Information of the Integrated Risk Information
System (IRIS) (External Review Draft). EPA/635/R-08/012A. EPA, Washington, DC. Available online at
http://cfpub.epa.gov/ncea/iris drafts/recordisplav.cfm?deid=194584. Last accessed 19 October 2015.

149


-------
EPA's National-scale Air Toxics Assessment

EPA. 2010b. Results of the 2005 NATA Model-to-Monitor Comparison, Final Report. Prepared by
Eastern Research Group for EPA OAQPS. Available online at

http://www3.epa.gov/ttn/atw/nata2005/05pdf/nata20Q5 model2monitor.pdf. Last accessed 30 November
2015.

EPA. 2011. An Overview of Methods for EPA's National-scale Air Toxics Assessment. Prepared by ICF
International for EPA OAQPS. Available online at

http://www3.epa.gov/ttn/atw/nata2005/Q5pdf/nata tmd.pdf. Last accessed 10 December 2015.

EPA. 2014a. Meteorological Model Performance for Annual 2011 WRF v3.4 Simulation. EPA. Available
online at http://www.epa.gov/ttn/scram/reports/MET TSD 2011 final ll-26-14.pdf. Last accessed 10
December 2015.

EPA. 2014b, Profile of the 2011 National Air Emissions Inventory, EPA. Available online at
http://www3.epa.gov/ttn/chief/net/lite finalversion verlQ.pdf. Last accessed 10 December 2015.

EPA. 2014c. Toxicological Review of Trichloroethylene. EPA NCEA, Washington, DC. Available online
at http://cfpub.epa.gov/ncea/iris/search/index.cfm?kevword=trichloroethvlene. Last updated 12
September 2014. Last accessed 10 December 2015.

EPA. 2014d. Draft User's Manual for The Mesoscale Model Interface Program (MMIF) Version 3.1.
Prepared by ENVIRON International Corporation for EPA OAQPS. Available online at
http://www3.epa.gov/scram00l/models/relat/mmif/MMIFv3.1 Users Manual.pdf. Last accessed 14
December 2015.

EPA. 2014e. Human Exposure Model (HEM-3) User's Guides. Prepared by EC/R Incorporated for EPA
OAQPS. Available online at http://www.epa.gov/fera/human-exposure-model-hem-3-users-guides. Last
accessed 24 March 2015.

EPA. 2015a. Consolidated Human Activity Database (CHAD). EPA, Washington, DC. Available online
at http://www2.epa.gov/healthresearch/consolidated-human-activitv-database-chad-use-human-exposure-
and-health-studies-and. Last updated 30 September 2015. Last accessed 17 November 2015.

EPA. 2015b. MOVES 2014a. EPA OTAQ. Available online at

http://www3.epa.gov/otaq/models/moves/index.htm. Last updated 1 December 2015. Last accessed 10
December 2015.

EPA. 2015c. The HAPEM User's Guide Hazardous Air Pollutant Exposure Model, Version 7. EPA
OAQPS, Research Triangle Park, NC. Available online at http://www.epa.gov/fera/hazardous-air-
pollutant-exposure-model-hapem-users-guides. Last accessed 29 November 2015.

EPA. 2015d. What Are the Six Common Air Pollutants? EPA, Washington, DC. Available online at
http://www3.epa.gov/airqualitv/urbanair/. Last updated 18 September 2015. Last accessed 2 December
2015.

EPA. 2015e. Risk Assessment Guidance and Tools. EPA, Washington, DC. Available online at
http://www.epa.gov/risk/guidance.htm. Last updated 1 December 2015. Last accessed 2 December 2015.

EPA. 2015f. User's Guide for the AMS/EPA Regulatory Model - AERMOD. EPA-454/B-03-001.
Addendum June 2015. EPA, Research Triangle Park, NC.

150


-------
EPA's National-scale Air Toxics Assessment

EPA. 2015g. Community Multiscale Air Quality (CMAQ). EPA, Washington, DC. Available online at
http://www.epa.gov/air-research/communitv-multi-scale-air-qualitv-cmaq-modeling-svstem-air-qualitv-
management. Last updated 8 December 2015. Last accessed 10 December 2015.

EPA. 2015h. Clean Air Markets. EPA, Washington, DC. Available online at

http://www.epa. gov/airmarkt/. Last updated 17 November 2015. Last accessed 10 December 2015.

EPA. 2015i. Risk and Technology Review. EPA OAR, Washington, DC. Available online at
http://www.epa.gov/ttn/atw/rrisk/rtrpg.html. Last updated 1 December 2015. Last accessed 10 December
2015.

EPA. 2015j. Toxics Release Inventory Program. EPA, Washington, DC. Available online at
http://www.epa.gov/toxics-release-inventorv-tri-program. Last updated 13 November 2015. Last accessed
10 December 2015.

EPA. 2015k. MOVES 2014. EPA OTAQ, Washington, DC. Available online at
http://www3.epa.gov/otaq/models/moves/moves-docum.htm. Last updated 5 November 2015. Last
accessed 10 December 2015.

EPA. 20151. Products and Publications Relating to Risk Assessment Produced by the Office of the
Science Advisor (OSA). EPA OSA, Washington, DC. Available online at

http://www.epa.gov/osa/products-and-publications-relating-risk-assessment-produced-office-science-
advisor. Last updated 3 March 2015. Last accessed 8 December 2015.

EPA. 2015m. Evaluation of Prognostic Meteorological Data in AERMOD Applications. EPA-454/R-15-
004. EPA OAQPS, Research Triangle Park, NC. Available online at

http://www3.epa.gOv/ttn/scram/l lthmodconf/MMIF Evaluation TSD.pdf. Last accessed 14 December
2015.

EPA. 2015n. Overview by Section of CAA. EPA OAR, Washington, DC. Available online at

http://www.epa.gov/ttn/atw/overview.html. Last updated 10 September 2015. Last accessed 10 December

2015.

EPA. 2015o. MOBILE Model (onroad vehicles). EPA OTAQ, Washington, DC. Available online at
http://www.epa. gov/otaq/mobile .htm. Last updated 5 November 2015. Last accessed 10 December 2015.

EPA. 2015p. National Mobile Inventory Model (NMIM). EPA OTAQ, Washington, DC. Available online
at http://www.epa.gov/otaq/nmim.htm. Last updated 5 November 2015. Last accessed 10 December 2015.

EPA. 2015q. NONROAD Model (nonroad engines, equipment, and vehicles). EPA OTAQ, Washington,
DC. Available online at http://www.epa.gov/otaq/nonrdmdl.htm. Last updated 5 November 2015. Last
accessed 10 December 2015.

FAA (U.S. Federal Aviation Administration). 2015. Airport Data & Contact Information. FSS. Available
online at http://www.faa.gov/airports/airport safetv/airportdata 5010/. Last updated 3 November 2015.
Last accessed 10 December 2015.

Garshick, E., Laden, F., Hard, J.E., Davis, M.E., Eisen, E.A., and Smith, T.J. 2012. Lung Cancer and
Elemental Carbon Exposure in Trucking Industry Workers. Environmental Health Perspectives,
120:1301-1306. Available online at http://dx.doi.org/10.1289/ehp.1204989. Last accessed 10 December
2015.

151


-------
EPA's National-scale Air Toxics Assessment

HEI (Health Effects Institute). 2015. Diesel Emissions and Lung Cancer: An Evaluation of Recent
Epidemiological Evidence for Quantitative Risk Assessment. HEI, Boston, MA. Available online at
http://pubs.hcalthcffccts.org/vicw .php?id=446. Last updated 24 November 2015. Last accessed 10
December 2015.

Henderson, B.H., Akhtar, F., Pye, H.O.T., Napelenok, S.L., and Hutzell, W.T. 2014. A Database and Tool
for Boundary Conditions for Regional Air Quality Modeling: Description and Evaluation. Geosci. Model
Dev., 7:339-360.

Houyoux, M.R., Vukovich, J.M., Coats, C.J. Jr., Wheeler, N.M., and Kasibhatla, P.S. 2000. Emission
Inventory Development and Processing for the Seasonal Model for Regional Air Quality (SMRAQ)
Project. Journal of Geophysical Research, 105(D7):9079-9090.

IARC (International Agency for Research on Cancer). 2013. IARC Monographs on the Evaluation of
Carcinogenic Risks to Humans, Volume 105 (2013). Available online at

http://monographs.iarc.fr/ENG/Monographs/voll05/index.php. Last accessed 10 December 2015.

Isakov, V., Irwin., J., and Ching, J.K. 2007. Using CMAQ for Exposure Modeling and Characterizing the
Sub-grid Variability for Exposure Estimates. Journal of Applied Meteorology and Climatology, 46:1354—
1371.

NRC (National Research Council). 1983. Risk Assessment in the Federal Government: Managing the
Process. Committee on the Institutional Means for Assessments of Risk to Public Health, Commission on
Life Sciences. NRC. National Academy Press, Washington, DC.

NRC. 1994. Science and Judgment in Risk Assessment Committee on Risk Assessment of Hazardous Air
Pollutants, Board on Environmental Sciences and Technology, Commission on Life Sciences. NRC.
National Academy Press, Washington, DC.

NUATRC (Mickey Leland National Urban Air Toxics Research Center). 2011. Available online at

http://www.sph.uth.tmc.edu/mleland/. Last updated 30 December 2011. Last accessed 10 December 2015.

OEHHA (Office of Environmental Health Hazard Assessment, California). 2014. Air Toxicology and
Epidemiology. OEHHA, Sacramento, CA. Available online at http://www.oehha.ca.gov/air/allrels.html.
Values last updated June 2014. Last accessed 10 December 2015.

OEHHA. 2015. Hot Spots Guidelines. OEHHA, Sacramento, CA. Available online at
http://www.oehha.ca.gov/air/hot spots/index.html. Contents last updated 14 August 2015. Last accessed
10 December 2015.

Otte T.L., and Pleim, J.E. 2010. The Meteorology-Chemistry Interface Processor (MCIP) for the CMAQ
Modeling System: Updates through v3.4.1. GeoscientificModel Development, 3:243-256.

Russell, A.G., and Dennis, R. 2000. NARSTO Critical Review of Photochemical Models and Modeling.

Atmospheric Environment, 3:2283-2324.

Seigneur, C., and Dennis, R. 2010. Technical Challenges in Multipollutant Air Quality Management,
edited by: Hidy, G.M., Brook, J.R., Demeijian, K.L., Molina, L.T., Pennell, W.T., and Scheffe, R.D.
Springer, Dordrecht.

152


-------
EPA's National-scale Air Toxics Assessment

Silverman, D.T., Samanic, C.M., Lubin, J.H., Blair, A.E., Stewart, P.A., Vermeulen, R., Coble, J.B.,
Rothman, N., Schleiff, P.L., Travis, W.D., Ziegler, R.G., Wacholder, S., and Attfield, M.D. 2012. The
Diesel Exhaust in Miners Study: A Nested Case-Control Study of Lung Cancer and Diesel
Exhaust. Available online at http://dx.doi.org/10.1093/inci/dis034. Last accessed 10 December 2015.

Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X., Wang, W.,
and Powers, J.G. 2008. A Description of the Advanced Research WRF Version 3. Available online at
http://www2.mmm.ucar.edu/wrf/users/pub-doc.html. Last updated 5 December 2014. Last accessed 16
December 2015.

Wesson, K., Fann, N., Morris, M., Fox, T., and Hubbell, B. 2010. A Multi-pollutant, Risk-based
Approach to Air Quality Management: Case Study for Detroit. Air Pollut. Res., 1:296-304.
doi: 10.5094/APR.2010.037.

WHO (World Health Organization). 2015. Complete List of Agents Evaluated and their Classification.
WHO IARC, Lyon, France. Available online at http://monographs.iarc.fr/ENG/Classification/index.php.
Last updated 26 October 2015. Last accessed 10 December 2015.

Yantosca, B., Sulprizio, M., Yannetti, M., Lundgren, L., and Xu, J. 2015. GEOS-Chem vl0-01 Online
User's Guide, Atmospheric Chemistry Modeling Group, School of Engineering and Applied
Sciences, Harvard University, Cambridge, MA. Available online at
http://acmg.seas.harvard.edu/geos/doc/man/. Last accessed 10 December 2015.

Yarwood, G., Rao, S., and Whitten, G. 2005. Updates to the Carbon Bond Mechanism, CB05,
Final Report, RT-04-00675. Prepared by ENVIRON International Corporation for EPA.
Available online at http://www.camx.com/files/cb05 final report 120805.aspx. Last accessed 3
December 2015.

153


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

154


-------
EPA's National-scale Air Toxics Assessment

Appendix A
Glossary

"N"-in-1 million cancer risk:

A risk level of "N"-in-1 million implies a likelihood that up to "N" people, out of one million equally exposed people
would contract cancer if exposed continuously (24 hours per day) to the specific concentration over 70 years (an
assumed lifetime). This would be in addition to those cancer cases that would normally occur in an unexposed
population of one million people. Note that this assessment looks at lifetime cancer risks, which should not be
confused with or compared to annual cancer risk estimates. If you would like to compare an annual cancer risk
estimate with the results in this assessment, you would need to multiply that annual estimate by a factor of 70 or
alternatively divide the lifetime risk by a factor of 70.

Activity-pattern data:

In an inhalation exposure assessment, activity-pattern data depict both the actual physical activity (including an
associated inhalation exertion level); the physical location; and, the time of day the activity takes place (e.g., at
midnight, while sleeping at home, jogging in the park at 8 a.m., or driving in a car at 6 p.m.). The Hazardous Air
Pollution Model (HAPEM) uses activity-pattern data from EPA's Comprehensive Human Activity Database (CHAD).

AMS/EPA Regulatory Model (AERMOD):

EPA's preferred model for near-field (i.e., within 50 km) simulations of dispersion of emissions. In simulating
boundary-layer turbulence, it has the capability to model complex terrain, elevated sources, numerous discrete
receptors, and source types ranging from point to line to volume, at hourly resolution.

Air toxics:

Also known as toxic air pollutants or hazardous air pollutants*; those pollutants known to cause or suspected of
causing cancer or other serious health problems. Health concerns could be associated with both short- and long-
term exposures to these pollutants. Many are known to have respiratory, neurological, immune, or reproductive
effects, particularly for more susceptible or sensitive populations such as children. Five important air pollutants are
not included in the list of air toxics because the Clean Air Act addresses them separately as "criteria pollutants."
These are particulate matter (PM), nitrogen oxides (NOx), sulfur oxides (SOx), ozone, and carbon monoxide. Lead
is both a criteria pollutant and an air toxic. Criteria pollutants are not addressed in NATA.

*Diesel particulate matter is not a hazardous air pollutant but is included in the NATA air toxics.

Ambient:

Surrounding, as in the surrounding environment. In NATA assessments, ambient air refers to the outdoor air
surrounding a person through which pollutants can be carried. Therefore, the ambient concentrations estimated by
NATA are those concentrations estimated in the outdoor environment. NATA also estimates exposure
concentrations that result from an individual's movement through various microenvironments, including the indoor
environment.

Area and other sources:

Include sources that generally have lower emissions on an individual basis than "major sources" and are often too
small or ubiquitous to be inventoried as individual sources. "Area sources" include facilities that have air toxics
emissions below the major source threshold as defined in the air toxics sections of the Clean Air Act and thus emit
less than 10 tons of a single toxic air pollutant or less than 25 tons of multiple toxic air pollutants in any one year.
Area sources include smaller facilities, such as dry cleaners.

As a separate definition, area sources in air-quality modeling refer to those modeled in two dimensions (with length
and width), as compared to point sources modeled at a single location.

A-1


-------
EPA's National-scale Air Toxics Assessment

Assessment System for Population Exposure Nationwide (ASPEN):

A computer simulation model used to estimate toxic air pollutant concentrations. The ASPEN model takes into
account important determinants of pollutant concentrations, such as: rate of release, location of release, the height
from which the pollutants are released, wind speeds and directions from the meteorological stations nearest to
release, breakdown of the pollutants in the atmosphere after being released (i.e., reactive decay), settling of
pollutants out of the atmosphere (i.e., deposition), and transformation of one pollutant into another (i.e., secondary
formation or decay). The model estimates toxic air pollutant concentrations for every census tract in the United
States, Puerto Rico, and the Virgin Islands.

Atmospheric transformation (secondary formation):

The process by which chemicals are transformed in the air into other chemicals. When a chemical is transformed,
the original HAP no longer exists; it is replaced by one or more chemicals. Compared to the original chemical, the
newer reaction products can have more, less, or the same toxicity. Transformations and removal processes affect
both the fate of the chemical and its atmospheric persistence. Persistence is important because human exposure
to chemical is influenced by the length of time the chemical remains in the atmosphere. Note that in NATA the
terms atmospheric transformation and secondary formation are used interchangeably.

Background concentrations:

For NATA, the contributions to outdoor air toxics concentrations resulting from natural sources, persistence in the
environment of past years' emissions, and long-range transport from distant sources. Background concentrations
could be levels of pollutants that would be found in a particular year, even if there had been no recent manmade
emissions. Background concentrations are added to the AERMOD concentrations but not to the CMAQ modeled
concentrations which account for long range transport and emissions from outside the domain through boundary
conditions. The vast majority of risk from the NATA background concentrations is from carbon tetrachloride, a
ubiquitous pollutant that has few sources of emissions but is persistent due to its long half-life.

Biogenic emissions:

Emissions from natural sources, such as plants and trees. These sources emit formaldehyde, acetaldehyde, and
methanol, as well as large quantities of other non-HAP volatile organic compounds (VOCs). Formaldehyde and
acetaldehyde are key risk drivers in NATA. Biogenic emissions are typically computed using a model which utilizes
spatial information on vegetation and land use and environmental conditions of temperature and solar radiation. In
addition to being a primary source of HAPs, other VOCs emitted by biogenic sources react with anthropogenic
VOCs and NOxto produce secondary-formed HAPs. The NATA biogenics source group includes only the primary
emissions.

Cancer risk:

The probability of contracting cancer over the course of a lifetime, assuming continuous exposure (assumed to be
70 years for the purposes of NATA risk characterization).

Carcinogen:

A chemical or physical agent that can cause cancer.

Chemical Abstracts Service (CAS) Number:

A unique number assigned to a chemical by the Chemical Abstracts Service, a service of the American Chemical
Society that indexes and compiles abstracts of worldwide chemical literature called "Chemical Abstracts." The
purpose is to make database searches more convenient, as chemicals often have many names.

Census tracts:

Land areas defined by the U.S. Census Bureau. Tracts can vary in size but each typically contains about 4,000
residents. Census tracts are usually smaller than 2 square miles in cities, but are much larger in rural areas.

A-2


-------
EPA's National-scale Air Toxics Assessment

Cohort:

Generally defined as a group of people within a population who are assumed to have identical exposures during a
specified exposure period. The use of cohorts is a necessary simplifying assumption for modeling exposures of a
large population. For the exposure assessment, the population is divided into a set of cohorts such that (1) each
person is assigned to one and only one cohort, and (2) all the cohorts combined encompass the entire population.

Community Multi-scale Air Quality (CMAQ) modeling system:

A multi-pollutant air quality modeling system using a three-dimensional gridded simulation environment with
atmospheric chemistry to model transport of emissions across local to long-range scales.

Consolidated Human Activity Database (CHAD):

The Consolidated Human Activity Database (CHAD) is an EPA comprehensive human-activity database consisting
of data from numerous activity studies since 1982 and supporting assessments of human exposure, intake dose,
and risk.

Diesel particulate matter (diesel PM):

A mixture of particles that is a component of diesel exhaust. EPA lists diesel exhaust as a mobile-source air toxic
due to the cancer and non-cancer health effects associated with exposure to whole diesel exhaust. Diesel PM
(expressed as grams diesel PM/m3) has historically been used as a surrogate measure of exposure for whole
diesel exhaust. Although uncertainty exists as to whether diesel PM is the most appropriate parameter to correlate
with human health effects, it is considered a reasonable choice until more definitive information about the
mechanisms of toxicity or mode(s) of action of diesel exhaust becomes available.

Dispersion model:

A computerized set of mathematical equations that uses emissions and meteorological information to simulate the
behavior and movement of air pollutants in the atmosphere. The results of a dispersion model are estimated
outdoor concentrations of individual air pollutants at specified locations.

Emission Inventory System (EIS):

An EPA information system for storing all current and historical emission inventory data. It is used to receive and
store emissions data and generate emission inventories beginning with the 2008 National Emissions Inventory
(NEI). Partners used the EIS Exchange to submit Facility Inventory, Point, Nonpoint, Onroad and Nonroad data
categories to the EIS Production or Quality Assurance (QA) environments.

Exposure assessment:

Identifying the ways in which chemicals might reach individuals (e.g., by breathing); estimating how much of a
chemical an individual is likely to be exposed to; and, estimating the number of individuals likely to be exposed.

Hazard index (HI):

The sum of hazard quotients for substances that affect the same target organ or organ system. Because different
pollutants (air toxics) can cause similar adverse health effects, combining hazard quotients associated with
different substances is often appropriate. EPA has drafted revisions to the national guidelines on mixtures that
support combining the effects of different substances in specific and limited ways. Ideally, hazard quotients should
be combined for pollutants that cause adverse effects by the same toxic mechanism. Because detailed information
on toxic mechanisms is not available for most of the substances in NATA, however, EPA aggregates the effects
when they affect the same target organ regardless of the mechanism. The hazard index (HI) is only an
approximation of the aggregate effect on the target organ (e.g., the lungs) because some of the substances might
cause irritation by different (i.e., non-additive) mechanisms. As with the hazard quotient, aggregate exposures
below an HI of 1.0 derived using target organ specific hazard quotients likely will not result in adverse non-cancer
health effects over a lifetime of exposure and would ordinarily be considered acceptable. An HI equal to or greater
than 1.0, however, does not necessarily suggest a likelihood of adverse effects. Because of the inherent
conservatism of the reference concentration (RfC) methodology, the acceptability of exceedances must be

A-3


-------
EPA's National-scale Air Toxics Assessment

evaluated on a case-by-case basis, considering such factors as the confidence level of the assessment, the size of
the uncertainty factors used, the slope of the dose-response curve, the magnitude of the exceedance, and the
number or types of people exposed at various levels above the RfC. Furthermore, the HI cannot be translated to a
probability that adverse effects will occur, and it is not likely to be proportional to risk.

Hazard quotient (HQ):

The ratio of the potential exposure to the substance and the level at which no adverse effects are expected. A
hazard quotient less than or equal to one indicates that adverse noncancer effects are not likely to occur, and thus
can be considered to have negligible hazard. HQs greater than one are not statistical probabilities of harm
occurring. Instead, they are a simple statement of whether (and by how much) an exposure concentration exceeds
the reference concentration (RfC). Moreover, the level of concern does not increase linearly or to the same extent
as HQs increase above one for different chemicals because RfCs do not generally have equal accuracy or
precision and are generally not based on the same severity of effect. Thus, we can only say that with exposures
increasingly greater than the RfC, (i.e., HQs increasingly greater than 1), the potential for adverse effects
increases, but we do not know by how much. An HQ of 100 does not mean that the hazard is 10 times greater than
an HQ of 10. Also an HQ of 10 for one substance may not have the same meaning (in terms of hazard) as another
substance resulting in the same HQ.

Hazardous Air Pollutant Exposure Model (HAPEM):

A computer model that has been designed to estimate inhalation exposure for specified population groups and air
toxics. Through a series of calculation routines, the model makes use of census data, human-activity patterns,
ambient air quality levels, and indoor/outdoor concentration relationships to estimate an expected range of
inhalation exposure concentrations for groups of individuals.

Human Exposure Model (HEM):

The Human Exposure Model (HEM) is a computer model used primarily for conducting inhalation risk assessments
for sources emitting air toxics to ambient air. HEM-3 contains the AERMOD dispersion model for air-transport
simulations and U.S. Census data for identifying population receptors.

Inhalation:

Breathing. Once inhaled, contaminants can be deposited in the lungs, taken into the blood, or both.

Integrated Risk Information System (IRIS):

The Integrated Risk Information System (IRIS) is an EPA program that identifies and characterizes the health
hazards of chemicals found in the environment. IRIS is EPA's preferred source of toxicity information.

Lifetime cancer risk:

The probability of contracting cancer over the course of a lifetime (assumed to be 70 years for the purposes of
NATA risk characterization).

Major sources:

Defined by the Clean Air Act as those stationary facilities that emit or have the potential to emit 10 tons of any one
toxic air pollutant or 25 tons of more than one toxic air pollutant per year.

Maximum-likelihood estimate:

The most accurate maximum likelihood estimate is, by definition, the mode of a data set (i.e., the most frequent
observation). When data are too limited to identify a clear mode, the average or the median of the data is usually
substituted. For some air toxics for which adequate human data exist, EPA has based the unit risk estimate on the
maximum-likelihood estimate for response data or for fitted curves.

A-4


-------
EPA's National-scale Air Toxics Assessment

Median:

The middle value of a set of ordered values (i.e., half the numbers are less than or equal to the median value). A
median is the 50th percentile of the data.

Motor Vehicle Emission Simulator (MOVES):

A state-of-the-science emissions modeling system that estimates emissions for mobile sources at the national,
county, and project level for criteria air pollutants, air toxics, and greenhouse gases.

Microenvironment:

A small space in which human contact with a pollutant takes place. A microenvironment can be treated as a well-
characterized, relatively homogenous location with respect to pollutant concentrations for a specified period. For
NATA, the Hazardous Air Pollutant Exposure Model considers cohort activities in 18 microenvironment locations
that include (1) indoor locations (e.g., residence, office, store, school, restaurant, church, manufacturing facility,
auditorium, healthcare facility, service station, other public building, garage); (2) outdoor locations (e.g., parking
lot/garage, near road, motorcycle, service station, construction site, residential grounds, school, sports arena,
park/golf course); and (3) in-vehicle locations (e.g., car, bus, truck, other, train/subway, airplane).

Microgram:

One-millionth of a gram. One gram is about one twenty-eighth of an ounce.

National-scale Air Toxics Assessment (NATA):

EPA's ongoing comprehensive evaluation of air toxics in the United States. These activities include the expansion
of air toxics monitoring, improvement and periodic updating of emission inventories, improvement of national- and
local-scale modeling, continued research on health effects and exposures to both ambient and indoor air, and
improvement of assessment tools.

National Emissions Inventory (NEI):

EPA prepares a national database of air emissions information with input from numerous state and local air
agencies, from tribes, and from industry. This database contains information on stationary and mobile sources that
emit criteria air pollutants and their precursors, as well as hazardous air pollutants. The database includes
estimates of annual emissions, by source, of air pollutants in each area of the country, on an annual basis. The
National Emissions Inventory includes emission estimates for all 50 states, the District of Columbia, Puerto Rico,
and the U.S. Virgin Islands.

National Mobile Inventory Model (NMIM):

Computer application containing EPA's NONROAD model for estimating county level inventories of nonroad mobile
emissions.

Noncancer risk:

The risk associated with effects other than cancer, based on the reference concentration, which is an estimate,
with uncertainty spanning perhaps an order of magnitude, of an inhalation exposure to the human population
(including sensitive subgroups) that is likely to be without appreciable risks of deleterious effects during a lifetime.

Nonroad mobile sources:

Mobile sources not found on roads and highways (e.g., airplanes, trains, lawn mowers, construction vehicles, farm
machinery).

On-road mobile sources:

Vehicles found on roads and highways (e.g., cars, trucks, buses).

A-5


-------
EPA's National-scale Air Toxics Assessment

Percentile:

Any one of the points dividing a distribution of values into parts that each contain 1/100 of the values. For example,
the 75th percentile is a value such that 75 percent of the values are less than or equal to it. In this assessment, the
distribution of values represented (national, state, or county percentiles) depends on the presentation format of the
results (map, bar chart, or data table).

Polycyclic organic matter (POM):

Defines a broad class of compounds that includes polycyclic aromatic hydrocarbons. Polycyclic organic matter
(POM) compounds are formed primarily from combustion and are present in the atmosphere in particulate form.
Sources of air emissions are diverse and include vehicle exhausts, forest fires and wildfires, asphalt roads, coal,
coal tar, coke ovens, agricultural burning, residential wood burning, and hazardous waste sites. Not all POM
reported to EPA's National Emission Inventory is speciated. As a result, EPA applies some simplifying assumptions
to model and assess the risk from the individual pollutants that comprise polycyclic organic matter.

Reference concentration (RfC):

The reference concentration is an estimate (with uncertainty spanning perhaps an order of magnitude) of a
continuous inhalation exposure to the human population (including sensitive subgroups that include children,
asthmatics, and the elderly) that is likely to be without an appreciable risk of deleterious effects during a lifetime. It
can be derived from various types of human or animal data, with uncertainty factors generally applied to reflect
limitations of the data used.

Risk:

The probability that damage to life, health, or the environment will occur as a result of a given hazard (such as
exposure to a toxic chemical). Some risks can be measured or estimated in numerical terms (e.g., one chance in a
hundred).

Rural:

Consistent with the definition EPA used in the analyses to support the Integrated Urban Air Toxics Strategy, a
county is considered "rural" if it does not contain a metropolitan statistical area with a population greater than
250,000 and the U.S. Census Bureau does not designate more than 50 percent of the population as "urban." Note
that this definition does not necessarily apply for any regulatory or implementation purpose.

Sparse Matrix Operator Kernel Emissions (SMOKE):

A modeling system that processes emissions data for use in gridded air quality models. It uses the Biogenic
Emission Inventory System (BEIS) to model biogenic emissions. It also has a feature to use MOVES emission
factors, activity data and meteorological data to compute hourly gridded onroad mobile emissions.

Science Advisory Board (SAB):

A panel of scientists, engineers, and economists who provide EPA with independent scientific and technical advice.
Stationary sources:

Emission sources other than mobile sources such as large industrial sources such as power plants and refineries,
smaller industrial and commercial sources such as dry cleaners and commercial cooking, and residential sources
such as residential wood combustion and consumer products usage. Stationary sources may be characterized as
being emitted from "major" sources or "area" sources based on the 10-ton or 25-ton definitions contained in the
Clean Air Act. For presentation purposes, the NATA results are identified as "point" and "nonpoint" sources rather
than "major" and "area" sources. The point and nonpoint designations reflect the way each source of emissions is
modeled. Some smaller sources that are area sources in the inventory (based on the amount of their emissions)
are modeled as point sources because the location of their emissions was identified with latitude and longitude
coordinates.

A-6


-------
EPA's National-scale Air Toxics Assessment

Susceptibility:

An increased likelihood of an adverse effect, often discussed in terms of relationship to a factor (e.g., life stage,
demographic feature, or genetic characteristic) that can be used to describe a human subpopulation.

Toxicity weighting:

A relative risk evaluation tool that normalizes the emissions rates of each pollutant to a hypothetical substance with
an inhalation unit risk value of 1/|jg/m3 (for carcinogenic effects) or a reference concentration of 1 mg/m3 (for non-
cancer effects). It is entirely emissions-based and toxicity-based, and does not consider dispersion, fate, receptor
locations, and other exposure parameters. It may be calculated based on the emissions data for all pollutants
released from a facility or source being assessed. It is particularly useful if the number of pollutants is large and the
desire is to focus the risk analysis on a smaller subset of pollutants that contribute the most to risk.

Typical:

Describes a hypothetical person living at the census-tract centroid (defined as a reference point that is usually but
not always located at the geographic center of a census tract) and engaging in a range of activities (indoors and
outdoors) that are representative of those in which individuals residing in that tract might engage. To characterize
the risk that this person might experience, NATA divides the population as a whole into cohorts (groups who are
assumed to have identical exposures during a specified exposure period) based on where they live, how old they
are, and what their daily-activity patterns might be. For each combination of residential census tract, age, various
age-appropriate daily-activity patterns are selected to represent the range of exposure conditions for residents of
the tract. A population-weighted typical exposure estimate is calculated for each cohort, and this value is used to
estimate representative risks for a "typical" individual residing in that tract.

Upper bound:

A plausible upper limit to the true value of a quantity; usually not a true statistical confidence limit.

Upper-bound lifetime cancer risk:

A plausible upper limit to the true probability that an individual will contract cancer over a 70-year lifetime as a
result of a given hazard (such as exposure to a toxic chemical). This risk can be measured or estimated in
numerical terms (e.g., one chance in a hundred).

Unit risk estimate (URE):

The upper-bound excess lifetime cancer risk estimated to result from continuous exposure to an agent at a
concentration of 1 |jg/m3 in air. The interpretation of the unit risk estimate (URE) would be as follows: If the URE =
1.5 x 10 s per |jg/m3, 1.5 excess tumors are expected to develop per 1,000,000 people if they were exposed daily
for a lifetime to 1 |jg of the chemical in 1 m3 of air. UREs are considered upper-bound estimates, meaning they
represent a plausible upper limit to the true value. (Note that this is usually not a true statistical confidence limit.)
The true risk is likely to be less, but could be greater.

Urban:

Consistent with the definition EPA used in the analyses to support the Integrated Urban Air Toxics Strategy, a
county is considered "urban" if it either includes a metropolitan statistical area with a population greater than
250,000 or the U.S. Census Bureau designates more than 50 percent of the population as "urban." Note that this
definition does not necessarily apply for any regulatory or implementation purpose.

Weight-of-evidence (WOE) for carcinogenicity:

The weight-of-evidence (WOE) narrative for carcinogenicity is a summary that explains what is known about an
agent's human carcinogenic potential and the conditions that characterize its expression. The narrative should be
sufficiently complete to stand alone, highlighting the key issues and decisions that were the basis for the evaluation
of the agent's potential hazard. The WOE characterizes the extent to which the available data support the
hypothesis that an agent causes cancer in humans. Under EPA's 1986 risk assessment guidelines, the weight of
evidence is described by categories "A through E," with Group A for known human carcinogens through Group E

A-7


-------
EPA's National-scale Air Toxics Assessment

for agents with evidence of non-carcinogenicity. The approach outlined in EPA's guidelines for carcinogen risk
assessment (2005) considers all scientific information in determining if and under what conditions an agent can
cause cancer in humans, and provides a narrative approach to characterize carcinogenicity rather than categories.
To provide clarity and consistency in an otherwise free-form, narrative characterization, standard descriptors are
used as part of the hazard narrative to express the conclusion regarding the WOE for carcinogenic hazard
potential. Five standard hazard descriptors are recommended: (1) carcinogenic to humans, (2) likely to be
carcinogenic to humans, (3) suggestive evidence of carcinogenic potential, (4) inadequate information to assess
carcinogenic potential, and (5) not likely to be carcinogenic to humans.

Carcinogenic to humans: This descriptor indicates strong evidence of human carcinogenicity. It covers different
combinations of evidence. This descriptor is appropriate when the epidemiologic evidence of a causal association
between human exposure and cancer is convincing. An exception is that this descriptor might also be equally
appropriate with a lesser weight of epidemiologic evidence that is strengthened by other lines of evidence. This
descriptor can be used when all of the following conditions are met: (a) there is strong evidence of an association
between human exposure and either cancer or the key precursor events of the agent's mode of action but not
enough for a causal association; (b) there is extensive evidence of carcinogenicity in animals; (c) the mode(s) of
carcinogenic action and associated key precursor events have been identified in animals, (d) there is strong
evidence that the key precursor events that precede the cancer response in animals are anticipated to occur in
humans and progress to tumors, based on available biological information.

Likely to be carcinogenic to humans: This descriptor is appropriate when the weight of the evidence is adequate
to demonstrate carcinogenic potential to humans but does not reach the WOE for the descriptor "carcinogenic to
humans." Adequate evidence consistent with this descriptor covers a broad spectrum. At one end of the spectrum
is evidence for an association between human exposure to the agent and cancer and strong experimental
evidence of carcinogenicity in animals; at the other, with no human data, the weight of experimental evidence
shows animal carcinogenicity by a mode or modes of action that are relevant or assumed to be relevant to
humans. The use of the term "likely" as a WOE descriptor does not correspond to a quantifiable probability.
Moreover, additional information, for example, on mode of action, might change the choice of descriptor for the
illustrated examples.

Suggestive evidence of carcinogenic potential: This descriptor is appropriate when the WOE suggests
carcinogenicity; a concern for potential carcinogenic effects in humans is raised, but the data are judged insufficient
for a stronger conclusion. This descriptor covers a spectrum of evidence associated with varying levels of concern
for carcinogenicity, ranging from a positive cancer result in the only study on an agent to a single positive cancer
result in an extensive data base that includes negative studies in other species. Depending on the extent of the
data base, additional studies might or might not provide further insights.

Inadequate information to assess carcinogenic potential: This descriptor is appropriate when available data
are judged inadequate for applying one of the other descriptors. Additional studies generally would be expected to
provide further insights.

Not likely to be carcinogenic to humans: This descriptor is appropriate when the available data are considered
robust for deciding that there is no basis for human hazard concern. In some instances, there can be positive
results in experimental animals when the evidence is strong and consistent that each mode of action in
experimental animals does not operate in humans. In other cases, the evidence in both humans and animals that
the agent is not carcinogenic can be convincing. "Not likely" applies only to the circumstances supported by the
data. For example, an agent might be "not likely to be carcinogenic" by one route but not necessarily by another. In
cases having positive animal experiment(s) but the results are judged not to be relevant to humans, the narrative
discusses why the results are not relevant.

Weather Research and Forecasting (WRF) model:

A mesoscale numerical weather-prediction system for atmospheric research and weather forecasting. It can
generate atmospheric conditions using real input data or idealized conditions.

A-8


-------
EPA's National-scale Air Toxics Assessment

Appendix B

Air Toxics Included in Modeling for the 2011 NATA, and Source
Classification Codes that Define Diesel Particulate Matter

This appendix contains three tables. The first two are related to the air toxics included in the 2011 NATA, and the
third lists the source classification codes (SCC) for which the PM10 emissions were considered to be diesel
particulate matter (PM).

Exhibit B-1 contains the air toxics included in the 2011 NATA and indicates the inventory types(s) reporting them.
The names shown in this table match the terminology used in the 1990 Clean Air Act (CAA) Amendments; for
example, this table lists "chromium compounds" but does not indicate which individual compounds containing
chromium were modeled, and it lists four forms of xylenes (0-, m-, p- and mixed isomers) but these were grouped
and modeled as a single entity. See Appendix C for the names of the actual substances included in the 2011
NATA. Exhibit B-1 also contains indications about whether cancer risks and chronic non-cancer hazard quotients
were estimated for each air toxic. Appendix H provides the toxicity values used in NATA.

Exhibit B-2 contains the air toxics that were not modeled for the 2011 NATA and why. Note that although diesel PM
was modeled for NATA and is included in Exhibit B-1, it is not categorized as a HAP in the CAA. Diesel PM
emissions were computed based on PM10 emissions from onroad and nonroad mobile sources burning diesel or
residual fuels (see Exhibit B-3).

The excel file "NATA_Pollutants_AppendixB_AppendixC.xlsx" in the SupplementalData folder provides the data in
spreadsheet format and includes additional fields such as the CMAQ model species names.

Note that NEI = National Emissions Inventory.

B-1


-------
EPA's National-scale Air Toxics Assessment

Exhibit B-1. Air Toxics Included in NATA

Air Toxic (Clean Air Act
Name)

NEI Pollutant
Code(CAS
Number)a

Data Category in the NEI

Background'

Assessed for
Cancer

Assessed for
Noncancer

CMAQ

Secondary

Eventb

Nonpointc

Nonroad

Onroad

Point d

Ag burning e

Rail yards'

Airports 9

Locomotives h

o
s
<

1,1,2,2-Tetrachloroethane

79345

~





~





~











NC





1,1,2-Trichloroethane

79005







~





~











Y

~

~

1,1-Dimethyl hydrazine

57147













~

















1,2,4-Trichlorobenzene

120821







~





~















~

1,2-Dibromo-3-chloropropane

96128













~











Y

~

~

1,2-Diphenylhydrazine k

122667













~













~



1,2-Epoxybutane

106887







~





~















~

1,2-Propylenimine (2-methyl
aziridine)

75558













~

















1,3-Butadiene

106990

~



~

~

~

~

~

~

~

~

~

~

NC

~

~

1,3-Dichloropropene

542756

~





~





~











NC

~

~

1,3-Propane sultone

1120714













~













~



1,4-Dichlorobenzene(p)

106467

~





~





~











NC

~

~

1,4-Dioxane

123911







~





~













~

~

2,2,4-Trimethylpentane

540841







~

~

~

~



~

~

~

~

Y





2,4,5-Trichlorophenol

95954













~

















2,4,6-Trichlorophenol

88062







~





~













~



2,4-D, salts and esters

94757







~





~

















2,4-Dinitrophenol

51285







~





~

















2,4-Dinitrotoluene

121142







~





~













~

~

2,4-Toluene diamine

95807













~













~



2,4-Toluene diisocyanate

584849

~





~





~













~

~

2- Acetylaminofluorene

53963













~













~



2-Chloroacetophenone

532274







~





~















~

2-Nitropropane

79469







~





~













~

~

3,3'-Dichlorobenzidine

91941













~













~



3,3'-Dimethoxybenzidine

119904













~

















3,3'-Dimethylbenzidine

119937













~

















4,4'-Methylene
bis(2-chloroaniline)

101144













~













~



4,4'-Methylenedianiline

101779













~













~

~

4,6-Dinitro-o-cresol, and salts

534521













~

















4-Aminobiphenyl

92671













~

















4-Nitrobiphenyl

92933













~

















4-Nitrophenol

100027







~





~

















Acetaldehyde

75070

~

~

~

~

~

~

~

~

~

~

~

~



~

~

Acetamide

60355







~





~













~



Acetonitrile

75058







~





~











Y



~

Acetophenone

98862







~





~

















Acrolein

107028

~

~

~

~

~

~

~

~

~

~

~

~





~

Acrylamide

79061







~





~













~

~

Acrylic acid

79107







~





~















~

Acrylonitrile

107131

~





~





~











NC

~

~

B-2


-------
EPA's National-scale Air Toxics Assessment

Air Toxic (Clean Air Act
Name)

NEI Pollutant
Code(CAS
Number)a

Data Category in the NEI

Backgroundj

Assessed for
Cancer

Assessed for
Noncancer

CMAQ

Secondary

Eventb

Nonpointc

Nonroad

Onroad

Pointd

Ag burning e

Rail yards'

Airports 9

Locomotives h

o
s,
<

Allyl chloride

107051







~





~













~

~

Aniline

62533













~













~

~

Antimony Compounds

7440360







~





~







~

y

Y



~

Arsenic Compounds (inorganic
including arsine)

7440382

~





~

~

~

~

~

~



~

y

NC

~

~

Benzene (including benzene
from gasoline)

71432

~



~

~

~

~

~

~

~

~

~

y

NC

~

~

Benzidine

92875













~











Y

~

~

Benzotrichloride

98077













~

















Benzyl chloride

100447







~





~











Y

~



Beryllium Compounds

7440417

~





~





~



~



~

y

NC

~

~

Beta-Propiolactone k

57578













~

















Biphenyl

92524







~





~

















Bis(2-ethylhexyl)phthalate
(DEHP)

117817







~





~











Y

~

~

Bis(chloromethyl)ether

542881













~













~



Bromoform

75252







~





~











Y

~



Cadmium Compounds

7440439

~





~





~

~

~



~

y

NC

~

~

Calcium cyanamide

156627













~















~

Captan

133062







~





~

















Carbaryl

63252







~





~

















Carbon disulfide

75150







~





~











Y



~

Carbon tetrachloride

56235

~





~





~











Y

~

~

Carbonyl sulfide

463581





~

~





~















~

Catechol

120809













~

















Chloramben k

133904













~

















Chlordane

57749













~













~

~

Chlorine

7782505

~





~





~

~





~

y





~

Chloroacetic acid

79118













~

















Chlorobenzene

108907







~





~















~

Chlorobenzilate

510156













~













~



Chloroform

67663

~





~





~











NC



~

Chloromethyl methyl ether

107302













~

















Chloroprene

126998







~





~













~

~

Chromium Compounds 1

multiple

~





~

~

~

~











NC





Cobalt Compounds

7440484







~





~



~



~

y

Y



~

Coke Oven Emissions

140













~













~



Cresols/Cresylic acid (isomers
and mixture) m

1319773







~





~















~

Cumene

98828







~





~



~

~

~

y

Y



~

Cyanide Compounds

multiple







~





~















~

Diazomethane

334883































Dibenzofurans

132649







~





~

















Dibutylphthalate

84742







~





~

















B-3


-------
EPA's National-scale Air Toxics Assessment

Air Toxic (Clean Air Act
Name)

NEI Pollutant
Code(CAS
Number)a

Data Category in the NEI

Backgroundj

Assessed for
Cancer

Assessed for
Noncancer

CMAQ

Secondary

Eventb

Nonpointc

Nonroad

Onroad

Pointd

Ag burning e

Rail yards'

Airports 9

Locomotives h

o
s,
<

Dichloroethyl ether
(Bis(2-chloroethyl)ether)

111444













~













~



Dichlorvos

62737













~















~

Diethanolamine

111422







~





~















~

Diethyl sulfate

64675













~

















Dimethyl aminoazobenzene

60117













~













~



Dimethyl carbamoyl chloride

79447













~

















Dimethyl formamide

68122







~





~















~

Dimethyl phthalate

131113







~





~

















Dimethyl sulfate

77781







~





~

















Epichlorohydrin
(l-Chloro-2,3-epoxypropane)

106898







~





~













~

~

Ethyl acrylate

140885







~





~

















Ethyl benzene

100414







~

~

~

~



~

~

~

y

Y

~

~

Ethyl carbamate (Urethane)

51796













~













~



Ethyl chloride (Chloroethane)

75003







~





~















~

Ethylene dibromide
(Dibromoethane)

106934

~





~





~



~







NC

~

~

Ethylene dichloride
(1,2-Dichloroethane)

107062

~





~





~



~







NC

~

~

Ethylene glycol

107211







~





~















~

Ethylene imine (Aziridine)

151564













~

















Ethylene oxide

75218

~





~





~











NC

~

~

Ethylene thiourea

96457













~













~

~

Ethylidene dichloride
(1,1-Dichloroethane)

75343







~





~













~

~

Formaldehyde

50000

~

~

~

~

~

~

~

~

~

~

~

y



~

~

Glycol Ethers

N/A







~





~



~











~

Heptachlor

76448













~













~



Hexachlorobenzene

118741







~





~









y



~

~

Hexachlorobutadiene

87683







~





~













~

~

Hexachlorocyclopentadiene

77474







~





~















~

Hexachloroethane

67721













~















~

Hexamethylene-
1,6-diisocyanate

822060

~





~





~















~

Hexamethylphosphoramide k

680319































Hexane

110543





~

~

~

~

~



~

~

~

y

Y



~

Hydrazine

302012

~











~













~

~

Hydrochloric acid

7647010

~





~





~















~

Hydrogen fluoride (Hydrofluoric
acid)

7664393







~





~















~

Hydroquinone

123319







~





~

















Isophorone

78591







~





~















~

Lead Compounds

7439921

~





~





~

~

~

~

~

y

NC



~

Lindane (all isomers)

58899







~





~













~

~

B-4


-------
EPA's National-scale Air Toxics Assessment

Air Toxic (Clean Air Act
Name)

NEI Pollutant
Code(CAS
Number)a

Data Category in the NEI

Backgroundj

Assessed for
Cancer

Assessed for
Noncancer

CMAQ

Secondary

Eventb

Nonpointc

Nonroad

Onroad

Pointd

Ag burning e

Rail yards'

Airports 9

Locomotives h

o
s,
<

Maleic anhydride

108316

~





~





~















~

Manganese Compounds

7439965

~





~

~

~

~

~

~



~

y

NC



~

m-Cresol m

108394













~















~

Mercury Compounds

7439976

~





~

~

~

~

~

~

~

~

y

NC



~

Methanol

67561

~





~





~

~

~

~

~

y





~

Methoxychlor

72435













~

















Methyl bromide
(Bromomethane)

74839







~





~











Y



~

Methyl chloride
(Chloromethane)

74873





~

~





~











Y



~

Methyl chloroform
(1,1,1 -T richloroethane)

71556







~





~











Y



~

Methyl hydrazine

60344







~





~

















Methyl iodide (lodomethane)

74884







~





~

















Methyl isobutyl ketone (Hexone)

108101







~





~



~







Y



~

Methyl isocyanate

624839













~















~

Methyl methacrylate

80626







~





~















~

Methyl tert butyl ether

1634044







~





~













~

~

Methylene chloride
(Dichloromethane)

75092

~





~





~











NC

~

~

Methylene diphenyl
diisocyanate (MDI)

101688







~





~















~

m-Xylenes "

108383

~



~

~

~

~

~



~

~

~

y

NC



~

N,N-Dimethylaniline

121697







~





~

















Naphthalene

91203

~





~

~

~

~



~

~

~

y

NC

~

~

Nickel Compounds

7440020

~





~

~

~

~

~

~



~

y

NC

~

~

Nitrobenzene

98953







~





~













~

~

N-Nitrosodimethylamine

62759













~













~



N-Nitrosomorpholine

59892













~













~



N-Nitroso-N-Methylurea k

684935













~

















o-Anisidine

90040













~

















o-Cresol m

95487







~





~















~

o-Toluidine

95534







~





~













~



o-Xylenes "

95476

~



~

~

~

~

~



~

~

~

y

NC



~

Parathion k

56382













~

















p-Cresol m

106445







~





~















~

Pentachloronitrobenzene
(Quintobenzene)

82688







~





~

















Pentachlorophenol

87865







~





~













~

~

Phenol

108952







~





~





~









~

Phosgene

75445













~















~

Phosphine

7803512













~















~

Phosphorus

7723140







~





~







~

y







Phthalic anhydride

85449







~





~















~

B-5


-------
EPA's National-scale Air Toxics Assessment

Air Toxic (Clean Air Act
Name)

NEI Pollutant
Code(CAS
Number)a

Data Category in the NEI

Backgroundj

Assessed for
Cancer

Assessed for
Noncancer

CMAQ

Secondary

Eventb

Nonpointc

Nonroad

Onroad

Pointd

Ag burning e

Rail yards'

Airports 9

Locomotives h

o
s,
<

Polychlorinated biphenyls
(Aroclors)

1336363







~





~









y



~



Polycyclic Organic Matter °

N/A

~



~

~

~

~

~

~

~

~

~

y



~



p-Phenylenediamine

106503













~

















Propionaldehyde

123386







~

~

~

~



~

~

~

y

Y



~

Propoxur (Baygon)

114261













~

















Propylene dichloride
(1,2-Dichloropropane)

78875

~





~





~











NC



~

Propylene oxide

75569







~





~













~

~

p-Xylenes "

106423

~



~

~

~

~

~



~



~

y

NC



~

Quinoline

91225

~











~

















Quinone

106514













~

















Selenium Compounds

7782492







~





~



~



~

y

Y



~

Styrene

100425







~

~

~

~



~

~

~

y

Y



~

Styrene oxide

96093







~





~















~

Tetrachloroethylene
(Perchloroethylene)

127184

~





~





~











NC

~

~

Titanium tetrachloride

7550450













~















~

Toluene

108883

~



~

~

~

~

~

~

~

~

~

y

NC



~

Toxaphene (chlorinated
camphene)

8001352













~













~



Trichloroethylene

79016

~





~





~











NC

~

~

Triethylamine

121448

~





~





~















~

Trifluralin

1582098







~





~

















Vinyl acetate

108054







~





~



~







Y



~

Vinyl bromide

593602













~













~

~

Vinyl chloride

75014

~





~





~



~







NC

~

~

Vinylidene chloride
(1,1-Dichloroethylene)

75354







~





~















~

Xylenes (isomers and mixture)"

1330207

~



~

~

~

~

~

~

~

~

~

y

NC



~

Diesel PM p



~















~

~

~

y





~

a In most cases, the NEI pollutant code is the same as the CAS number. In a few cases (e.g., coke oven emissions) a CAS number has not been
assigned, and NEI uses a unique pollutant code.

Note: Actual categories in the NEI are: point, nonpoint, onroad, nonroad, and event. The above categories break out point and nonpoint into additional
groups. See footnotes for more details

b Event category has prescribed and wildfires (day-specific)
c Excluding ag fires, locomotives, and commercial marine vessels
d Excluding airports and rail yards

e Ag burning is agricultural field burning and is a part of the nonpoint data category in the NEI
f Railyards are part of the point data category in the NEI
9 Airports are part of the point data category in the NEI
h CMV = commercial marine vessels, part of the nonpoint category in the NEI
' Locomotives are part of the nonpoint category in the NEI

j Remote concentration estimate added: NC="non-CONUS" (concentration added only to non-continental U.S. areas: Alaska, Hawaii, Puerto
Rico, and U.S. Virgin Islands), Y=non-CMAQ air toxic remote concentration estimate added everywhere
k Not in 2011 NATA because there were no emissions
1 NATA includes only hexavalent chromium
m Modeled as cresols
n Modeled as xylenes

0 About 50 specific compounds are in the NEI. They were modeled as 9 discrete PAH groups representing different URE "bins" since specific

compounds have a wide range of UREs.
p Diesel PM is not a HAP and not on the Clean Air Act list but it is modeled in NATA.

B-6


-------
EPA's National-scale Air Toxics Assessment

Exhibit B-2. Pollutants Excluded from NATA

Pollutant

NEI Pollutant
Code(CAS
Number)a

Reason for Exclusion

In Previous
NATAs?

2,3,7,8-Tetrachlorodibenzo-p-
dioxin

1746016

Dioxins and furans are not in the 2011 NEI due to
uncertainty in the completeness or accuracy of the
S/L/T agency data for this group of pollutants. In
addition, the most significant exposure route for
dioxin is ingestion, not inhalation, so dioxin's
relative contribution to NATA's inhalation risk
estimates likely would not be large.

n

Other dioxins/furans

multiple

n

Radionuclides



Radionuclides are not in the 2011 NEI due to
uncertainty in the completeness or accuracy of the
S/L/T agency data for this group of pollutants. In
addition, the NEI currently is not compatible with
emissions reported in units other than mass, and
therefore suitable emissions data have not been
compiled for these substances on a national
scale.

n

DDE

72559
incorrectly
referred to in the
Section 112(b)
list as 3547-04-
4

This pollutant was not reported to the 2011 NEI.

y

Fine mineral fibers (including
rockwool and slag wool and fine
mineral fibers)

Fine mineral
fibers: 383
Rockwool:617
Slagwool:616

Rockwool has 0 emissions and slagwool and fine
mineral fibers are excluded from previous
assessments

n

Asbestos

1332214

Inhalation exposures not typically expressed in
mass units

n

Diazomethane

334883

This pollutant has 0 emissions in the 2011 NEI

y

Hexamethylphosphoramide

680319

This pollutant has 0 emissions in the 2011 NEI

n

a In most cases, the NEI pollutant code is the same as the CAS number. In a few cases (e.g., coke oven emissions) a CAS
number has not been assigned, and NEI uses a unique pollutant code.

B-7


-------
EPA's National-scale Air Toxics Assessment

Exhibit B-3. Source Classification Codes For which PM10 Emissions were assigned to Diesel Particulate Matter

NEI

Category

see

Description

Point

28500201

Internal Combustion Engines;Railroad Equipment;Diesel;Yard Locomotives

2270008005

*M;Off-highway Vehicle Diesel;Airport Ground Support Equipment;Airport Ground Support Equipment

Nonpoint

2280002100

*M;Marine Vessels, Commercial;Diesel;Port emissions

2280002200

*M;Marine Vessels, Commercial;Diesel;Underway emissions

2285002006

*M;Railroad Equipment;Diesel

Line Haul Locomotives: Class I Operations

2285002007

*M;Railroad Equipment;Diesel

Line Haul Locomotives: Class II / III Operations

2285002008

*M;Railroad Equipment;Diesel

Line Haul Locomotives: Passenger Trains (Amtrak)

2285002009

*M;Railroad Equipment;Diesel

Line Haul Locomotives: Commuter Lines

2285002010

*M;Railroad Equipment;Diesel

Yard Locomotives

2280003100

*M;Marine Vessels, Commercial;Residual;Port emissions

2280003200

*M;Marine Vessels, Commercial;Residual;Underway emissions

Nonroad

2270001060

*M; Off-highway Veh

cle Diesel

Recreational Equipment;Specialty Vehicles/Carts

2270002003

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Pavers

2270002006

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Tampers/Rammers

2270002009

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Plate Compactors

2270002015

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Rollers

2270002018

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Scrapers

2270002021

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Paving Equipment

2270002024

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Surfacing Equipment

2270002027

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Signal Boards/Light Plants

2270002030

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Trenchers

2270002033

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Bore/Drill Rigs

2270002036

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Excavators

2270002039

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Concrete/Industrial Saws

2270002042

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Cement and Mortar Mixers

2270002045

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Cranes

2270002048

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Graders

2270002051

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Off-highway T rucks

2270002054

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Crushing/Processing Equipment

2270002057

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Rough Terrain Forklifts

2270002060

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment

Rubber Tire Loaders

B-8


-------
EPA's National-scale Air Toxics Assessment

NEI

Category

see

Description



2270002066

*M; Off-highway Veh

cle Diesel

Construction and Mining Equipment;Tractors/Loaders/Backhoes

2270002069

*M;Off-highway Veh

cle Diesel

Construction and Mining Equipment;Crawler Tractor/Dozers

2270002072

*M;Off-highway Veh

cle Diesel

Construction and Mining Equipment;Skid Steer Loaders

2270002075

*M;Off-highway Veh

cle Diesel

Construction and Mining Equipment;Off-highway Tractors

2270002078

*M;Off-highway Veh

cle Diesel

Construction and Mining Equipment;Dumpers/Tenders

2270002081

*M;Off-highway Veh

cle Diesel

Construction and Mining Equipment;Other Construction Equipment

2270003010

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Aerial Lifts

2270003020

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Forklifts

2270003030

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Sweepers/Scrubbers

2270003040

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Other General Industrial Equipment

2270003050

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Other Material Handling Equipment

2270003060

*M;Off-highway Veh

cle Diesel

Industrial Equipment

ACRefrigeration

2270003070

*M;Off-highway Veh

cle Diesel

Industrial Equipment

Terminal Tractors

2270004031

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

LeafblowersA/acuums (Commercial)

2270004036

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Snowblowers (Commercial)

2270004046

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Front Mowers (Commercial)

2270004056

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Lawn and Garden Tractors (Commercial)

2270004066

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Chippers/Stump Grinders (Commercial)

2270004071

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Turf Equipment (Commercial)

2270004076

*M;Off-highway Veh

cle Diesel

Lawn and Garden Equipment

Other Lawn and Garden Equipment (Commercial)

2270005010

*M; Off-highway Veh

cle Diesel

Agricultural Equipment;2-Wheel Tractors

2270005015

*M;Off-highway Veh

cle Diesel

Agricultural Equipment;Agricultural Tractors

2270005020

*M; Off-highway Veh

cle Diesel

Agricultural Equipment;Combines

2270005025

*M;Off-highway Veh

cle Diesel

Agricultural Equipment;Balers

2270005030

*M; Off-highway Veh

cle Diesel

Agricultural Equipment;Agricultural Mowers

2270005035

*M;Off-highway Veh

cle Diesel

Agricultural Equipment;Sprayers

2270005040

*M; Off-highway Veh

cle Diesel

Agricultural Equipment;Tillers > 6 HP

2270005045

*M;Off-highway Veh

cle Diesel

Agricultural Equipment;Swathers

2270005055

*M; Off-highway Veh

cle Diesel

Agricultural Equipment;Other Agricultural Equipment

2270005060

*M;Off-highway Veh

cle Diesel

Agricultural Equipment;lrrigation Sets

2270006005

*M; Off-highway Veh

cle Diesel

Commercial Equipment;Generator Sets

2270006010

*M;Off-highway Veh

cle Diesel

Commercial Equipment;Pumps

2270006015

*M; Off-highway Veh

cle Diesel

Commercial Equipment;Air Compressors

B-9


-------
EPA's National-scale Air Toxics Assessment

NEI

Category

see

Description



2270006020

*M;Off-highway Vehicle Diesel

Commercial Equipment;Gas Compressors

2270006025

*M;Off-highway Vehicle Diesel

Commercial Equipment;Welders

2270006030

*M;Off-highway Vehicle Diesel

Commercial Equipment;Pressure Washers

2270006035

*M;Off-highway Vehicle Diesel

Commercial Equipment;Hydro-power Units! new SCC in 2002v2

2270007010

*M;Off-highway Vehicle Diesel

Logging Equipment;Shredders > 6 HP

2270007015

*M;Off-highway Vehicle Diesel

Logging Equipment;Forest Eqp - Feller/Bunch/Skidder

2270009010

*M;Off-highway Vehicle Diesel

Underground Mining Equipment;Other Underground Mining Equipment

2270010010

*M;Off-highway Vehicle Diesel

Industrial Equipment;Other Oil Field Equipment

2282020005

*M;Pleasure Craft;Diesel;Inboard/Sterndrive

2282020010

*M;Pleasure Craft;Diesel;Outboard

2285002015

*M;Railroad Equipment;Diesel;Railway Maintenance

Onroad

2202210181

*D;Passenger Cars;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202210281

*D;Passenger Cars;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202210381

*D;Passenger Cars;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202210481

*D;Passenger Cars;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202210581

*D;Passenger Cars;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202310181

*D;Passenger Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202310281

*D;Passenger Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202310381

*D;Passenger Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202310481

*D;Passenger Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202310581

*D;Passenger Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202320181

*D;Light Commercial Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202320281

*D;Light Commercial Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202320381

*D;Light Commercial Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202320481

*D;Light Commercial Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202320581

*D;Light Commercial Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202410181

*D; Intercity Buses;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202410281

*D;Intercity Buses;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202410381

*D; I ntercity Buses;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202410481

*D; I ntercity Buses;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202410581

*D; I ntercity Buses;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202420181

*D;Transit Buses;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202420281

*D;Transit Buses;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

B-10


-------
EPA's National-scale Air Toxics Assessment

NEI

Category

see

Description



2202420381

*D;Transit Buses;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202420481

*D;Transit Buses;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202420581

*D;Transit Buses;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202430181

*D;School Buses;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202430281

*D;School Buses;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202430381

*D;School Buses;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202430481

*D;School Buses;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202430581

*D;School Buses;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202510181

*D;Refuse Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202510281

*D;Refuse Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202510381

*D;Refuse Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202510481

*D;Refuse Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202510581

*D;Refuse Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202520181

*D;Single Unit Short-haul Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202520281

*D;Single Unit Short-haul Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202520381

*D;Single Unit Short-haul Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202520481

*D;Single Unit Short-haul Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202520581

*D;Single Unit Short-haul Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202530181

*D;Single Unit Long-haul Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202530281

*D;Single Unit Long-haul Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202530381

*D;Single Unit Long-haul Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202530481

*D;Single Unit Long-haul Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202530581

*D;Single Unit Long-haul Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202540181

*D;Motor Homes;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202540281

*D;Motor Homes;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202540381

*D;Motor Homes;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202540481

*D;Motor Homes;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202540581

*D;Motor Homes;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202610181

*D;Combination Short-haul Trucks;Off-network: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202610281

*D;Combination Short-haul Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

B-11


-------
EPA's National-scale Air Toxics Assessment

NEI

Category

see

Description



2202610381

*D;Combination Short-haul Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202610481

*D;Combination Short-haul Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202610581

*D;Combination Short-haul Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202620153

*D;Combination Long-haul Trucks;Off-network

Extended Idle Exhaust

2202620181

*D;Combination Long-haul Trucks;Off-network

All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202620191

*D;Combination Long-haul Trucks;Off-network

Auxiliary Power Exhaust

2202620281

*D;Combination Long-haul Trucks;Rural Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and Hoteling

2202620381

*D;Combination Long-haul Trucks;Rural Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202620481

*D;Combination Long-haul Trucks;Urban Restricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

2202620581

*D;Combination Long-haul Trucks;Urban Unrestricted Access: All Exhaust, Evaporative, Brake, and Tire Except Refueling and
Hoteling

*M= Mobile Sources. *D=Highway Vehicles-Diesel

B-12


-------
EPA's National-scale Air Toxics Assessment

Appendix C

Crosswalk for Air Toxics Names in the NEI and Metal Speciation

Factors

Exhibit C-1 contains the air toxic name crosswalk and metal speciation factors used to conduct the modeling of
emissions for the 2011 NATA. This crosswalk contains a link between lists of air toxic names in two data bases
used for NATA:

•	the names used in the National Emissions Inventory (NEI), and

•	the names used for NATA.

This table also contains the corresponding names for each air toxic as used in the 1990 Clean Air Act
Amendments. In addition, Exhibit C-1 contains the speciation of metal chemicals based on their metal mass
fractions.

The metal speciation factor was used to adjust modeled mass emissions prior to modeling and conducting risk
calculations, because metal toxicity is usually evaluated relative to the amount of metal ion present rather than the
total mass of the metal compound. Most metal and cyanide compounds are reported in the 2011 NEI as just the
metal or cyanide parts; consequently, most fractions are 1, including the two cyanide compounds. If the NEI data
reporters did not adjust the emissions downward to account for just the metal part, a more health-protective (higher
risk) result would be obtained.

A master pollutant list for NATA in spreadsheet format, "NATA_Pollutants_AppendixB_AppendixC.xlsx", is
provided in the SupplementalData folder. The second sheet in the workbook is an electronic form of the PAHPOM
groupings shown in Section 2.1.1.2 of the TSD.

C-1


-------
EPA's National-scale Air Toxics Assessment

Exhibit C-1. Crosswalk for Air Toxics Names in NEI, NATA Results, and the Clean Air Act, with Metal Speciation Factors

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Glycol Ethers

112072

Glycol Ethers

2-Butoxyethyl Acetate

GLYCOL ETHERS



Glycol Ethers

112152

Glycol Ethers

Carbitol Acetate

GLYCOL ETHERS



Glycol Ethers

112254

Glycol Ethers

2-(Hexyloxy)Ethanol

GLYCOL ETHERS



Glycol Ethers

112276

Glycol Ethers

Triethylene glycol

GLYCOL ETHERS



Glycol Ethers

112345

Glycol Ethers

Diethylene Glycol
Monobutyl Ether

GLYCOL ETHERS



Glycol Ethers

112356

Glycol Ethers

Methoxytriglycol

GLYCOL ETHERS



Glycol Ethers

112367

Glycol Ethers

Diethylene Glycol
Diethyl Ether

GLYCOL ETHERS



Glycol Ethers

112492

Glycol Ethers

Triethylene Glycol
Dimethyl Ether

GLYCOL ETHERS



Glycol Ethers

112594

Glycol Ethers

N-Hexyl Carbitol

GLYCOL ETHERS



Propoxur (Baygon)

114261

Propoxur

Propoxur

PROPOXUR (BAYGON)



Bis(2-

ethylhexyl)phthalate
(DEHP)

117817

Bis(2-Ethylhexyl)Phthalate

Bis(2-

Ethylhexyl)Phthalate

BIS(2-ETHYLHEXYL)PHTHALATE (DEHP)



Hexachlorobenzene

118741

Hexachlorobenzene

Hexachlorobenzene

HEXACHLOROBENZENE



3,3'-

Dimethoxybenzidine

119904

3,3'-Dimethoxybenzidine

3,3'-

Dimethoxybenzidine

3,3'-DIMETHOXYBENZIDINE



3,3'-

Dimethylbenzidine

119937

3,3'-Dimethylbenzidine

3,3'-Dimethylbenzidine

3,3'-DIMETHYLYBENZIDINE



Polycyclic Organic
Matter

120127

Polycyclic Organic Matter

Anthracene

PAHPOM



Catechol

120809

Catechol

Catechol

CATECHOL



1,2,4-

Trichlorobenzene

120821

1,2,4-T richlorobenzene

1,2,4-

Trichlorobenzene

1,2,4-TRICHLOROBENZENE



2,4-Dinitrotoluene

121142

2,4-Dinitrotoluene

2,4-Dinitrotoluene

2,4-DINITROTOLUENE



Triethylamine

121448

Triethylamine

Triethylamine

TRIETHYLAMINE



N,N-Dimethylaniline

121697

N,N-Dimethylaniline

N,N-Dimethylaniline

N.N-DIMETHYLANILINE



1,2-

Diphenylhydrazine

122667

1,2-Diphenylhydrazine

1,2-Diphenylhydrazine

1,2-DIPHENYLHYDRAZINE



Glycol Ethers

122996

Glycol Ethers

Phenyl Cellosolve

GLYCOL ETHERS



4-Nitrophenol

100027

4-Nitrophenol

4-Nitrophenol

4-NITROPHENOL



Ethyl benzene

100414

Ethylbenzene

Ethyl Benzene

ETHYLBENZENE



Styrene

100425

Styrene

Styrene

STYRENE



C-2


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Benzyl chloride

100447

Benzyl Chloride

Benzyl Chloride

BENZYL CHLORIDE



4,4'-Methylene
bis(2-chloroaniline)

101144

4,4'-Methylenebis(2-
Chloroaniline)

4,4'-Methylenebis(2-
Chloraniline)

4,4'-METHYLENE BIS(2-CHLOROANILINE)



Methylene diphenyl
diisocyanate (MDI)

101688

4,4'-Methylenediphenyl
Diisocyanate

4,4'-Methylenediphenyl
Diisocyanate

4,4'-METHYLENEDIPHENYL DIISOCYANATE (MDI)



4,4'-

Methylenedianiline

101779

4,4'-Methylenedianiline

4,4'-Methylenedianiline

4,4-METHYLENEDI ANILINE



p-Xylenes

106423

Xylenes (Mixed Isomers)

p-Xylene

XYLENES (MIXED ISOMERS)



p-Cresol

106445

Cresol/Cresylic Acid (Mixed
Isomers)

p-Cresol

CRESOL_CRESYLIC ACID (MIXED ISOMERS)



1,4-

Dichlorobenzene(p)

106467

1,4-Dichlorobenzene

1,4-Dichlorobenzene

1,4-DICHLOROBENZENE



p-Phenylenediamine

106503

p-Phenylenediamine

p-Phenylenediamine

P-PHENYLENEDIAMINE



Quinone

106514

Quinone

Quinone

QUINONE (P-BENZOQUINONE)



1,2-Epoxybutane

106887

1,2-Epoxybutane

1,2-Epoxybutane

1,2-EPOXYBUTANE



Epichlorohydrin

(l-Chloro-2,3-epoxypr

opane)

106898

Epichlorohydrin

Epichlorohydrin

EPICHLOROHYDRIN



Ethylene dibromide
(Dibromoethane)

106934

Ethylene Dibromide

Ethylene Dibromide

ETHYLENE DIBROMIDE (DIBROMOETHANE)



1,3-Butadiene

106990

1,3-Butadiene

1,3-Butadiene

1,3-BUTADIENE



Acrolein

107028

Acrolein

Acrolein

ACROLEIN



Allyl chloride

107051

Allyl Chloride

Allyl Chloride

ALLYL CHLORIDE



Ethylene dichloride
(1,2-Dichloroethane)

107062

Ethylene Dichloride

Ethylene Dichloride

ETHYLENE DICHLORIDE (1,2-
DICHLOROETHANE)



Acrylonitrile

107131

Acrylonitrile

Acrylonitrile

ACRYLONITRILE



Ethylene glycol

107211

Ethylene Glycol

Ethylene Glycol

ETHYLENE GLYCOL



Chloromethyl methyl
ether

107302

Chloromethyl Methyl Ether

Chloromethyl Methyl
Ether

CHLOROMETHYL METHYL ETHER



Vinyl acetate

108054

Vinyl Acetate

Vinyl Acetate

VINYL ACETATE



Methyl isobutyl
ketone (Hexone)

108101

Methyl Isobutyl Ketone

Methyl Isobutyl Ketone

METHYL ISOBUTYL KETONE (HEXONE)



Maleic anhydride

108316

Maleic Anhydride

Maleic Anhydride

MALEIC ANHYDRIDE



m-Xylenes

108383

Xylenes (Mixed Isomers)

m-Xylene

XYLENES (MIXED ISOMERS)



m-Cresol

108394

Cresol/Cresylic Acid (Mixed
Isomers)

m-Cresol

CRESOL_CRESYLIC ACID (MIXED ISOMERS)



Toluene

108883

Toluene

Toluene

TOLUENE



C-3


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Chlorobenzene

108907

Chlorobenzene

Chlorobenzene

CHLOROBENZENE



Phenol

108952

Phenol

Phenol

PHENOL



Glycol Ethers

109864

Glycol Ethers

Ethylene Glycol Methyl
Ether

GLYCOL ETHERS



Glycol Ethers

110496

Glycol Ethers

Ethylene Glycol
Monomethyl Ether
Acetate

GLYCOL ETHERS



Hexane

110543

Hexane

Hexane

HEXANE



Glycol Ethers

110714

Glycol Ethers

1,2-Dimethoxyethane

GLYCOL ETHERS



Glycol Ethers

110805

Glycol Ethers

Cellosolve Solvent

GLYCOL ETHERS



Glycol Ethers

111159

Glycol Ethers

Cellosolve Acetate

GLYCOL ETHERS



Diethanolamine

111422

Diethanolamine

Diethanolamine

DIETHANOLAMINE



Dichloroethyl ether

(Bis(2-chloroethyl)eth

er)

111444

Dichloroethyl Ether

Dichloroethyl Ether

DICHLOROETHYL ETHER (BIS[2-
CHLOROETHYLJETHER)



Glycol Ethers

111773

Glycol Ethers

Diethylene Glycol
Monomethyl Ether

GLYCOL ETHERS



Glycol Ethers

111900

Glycol Ethers

Diethylene Glycol
Monoethyl Ether

GLYCOL ETHERS



Glycol Ethers

111966

Glycol Ethers

Diethylene Glycol
Dimethyl Ether

GLYCOL ETHERS



1,3-Propane sultone

1120714

1,3-Propane Sultone

1,3-Propanesultone

1,3-PROPANE SULTONE



Hydroquinone

123319

Hydroquinone

Hydroquinone

HYDROQUINONE



Propionaldehyde

123386

Propionaldehyde

Propionaldehyde

PROPIONALDEHYDE



1,4-Dioxane

123911

p-Dioxane

p-Dioxane

1,4-DIOXANE



Glycol Ethers

124174

Glycol Ethers

Butyl Carbitol Acetate

GLYCOL ETHERS



Chloroprene

126998

Chloroprene

Chloroprene

CHLOROPRENE



Tetrachloroethylene
(Perchloroethylene)

127184

Tetrachloroethylene

Tetrachloroethylene

TETRACHLOROETHYLENE



Polycyclic Organic
Matter

129000

Polycyclic Organic Matter

Pyrene

PAHPOM



Polycyclic Organic
Matter

85018

Polycyclic Organic Matter

Phenanthrene

PAHPOM



Dimethyl phthalate

131113

Dimethyl Phthalate

Dimethyl Phthalate

DIMETHYL PHTHALATE



Nickel Compounds

1313991

Nickel Compounds

Nickel Oxide

NICKEL COMPOUNDS

0.7412

Cresols/Cresylic acid
(isomers and mixture)

1319773

Cresol/Cresylic Acid (Mixed
Isomers)

Cresol/Cresylic Acid
(Mixed Isomers)

CRESOL_CRESYLIC ACID (MIXED ISOMERS)

1

C-4


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Dibenzofurans

132649

Dibenzofuran

Dibenzofuran

DIBENZOFURAN



Xylenes (isomers and
mixture)

1330207

Xylenes (Mixed Isomers)

Xylenes (Mixed
Isomers)

XYLENES (MIXED ISOMERS)



Captan

133062

Captan

Captan

CAPTAN



Asbestos

1332214

Asbestos

Asbestos

Not used in NATA



Chromium
Compounds

1333820

Chromium Compounds

Chromium Trioxide

CHROMIUM VI (HEXAVALENT)

0.52

Polychlorinated
biphenyls (Aroclors)

1336363

Polychlorinated Biphenyls

Polychlorinated
Biphenyls

POLYCHLORINATED BIPHENYLS (AROCLORS)



Chloramben

133904

Chloramben

Chloramben

Chloramben



Coke Oven
Emissions

140

Coke Oven Emissions

Coke Oven Emissions

COKE OVEN EMISSIONS



Ethyl acrylate

140885

Ethyl Acrylate

Ethyl Acrylate

ETHYL ACRYLATE



Glycol Ethers

143226

Glycol Ethers

Triglycol Monobutyl
Ether

GLYCOL ETHERS



Ethylene imine
(Aziridine)

151564

Ethyleneimine (Aziridine)

Ethyleneimine

ETHYLENEIMINE (AZIRIDINE)



Calcium cyanamide

156627

Calcium Cyanamide

Calcium Cyanamide

CALCIUM CYANAMIDE

0.5

Trifluralin

1582098

Trifluralin

Trifluralin

TRIFLURALIN



Chromium
Compounds

16065831

Chromium Compounds

Chromium III

Not used in NATA



Methyl tert butyl ether

1634044

Methyl Tert-Butyl Ether

Methyl Tert-Butyl Ether

METHYL TERT-BUTYL ETHER



Glycol Ethers

16672392

Glycol Ethers

Di(Ethylene Glycol
Monobutyl Ether)
Phthalate

GLYCOL ETHERS



Glycol Ethers

171

Glycol Ethers

Glycol Ethers

GLYCOL ETHERS



Chromium
Compounds

18540299

Chromium Compounds

Chromium (VI)

CHROMIUM VI (HEXAVALENT)



Polycyclic Organic
Matter

86748

Polycyclic Organic Matter

Carbazole

PAHPOM



Polycyclic Organic
Matter

218019

Polycyclic Organic Matter

Chrysene

PAHPOM



Polycyclic Organic
Matter

130498292

Polycyclic Organic Matter

PAH, total

PAHPOM



Polycyclic Organic
Matter

191242

Polycyclic Organic Matter

Benzo[g,h,i,]Perylene

PAHPOM



C-5


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Polycyclic Organic
Matter

192972

Polycyclic Organic Matter

Benzo[e]Pyrene

PAHPOM



Polycyclic Organic
Matter

195197

Polycyclic Organic Matter

Benzo(c)phenanthrene

PAHPOM



Polycyclic Organic
Matter

198550

Polycyclic Organic Matter

Perylene

PAHPOM



Polycyclic Organic
Matter

206440

Polycyclic Organic Matter

Fluoranthene

PAHPOM



Polycyclic Organic
Matter

208968

Polycyclic Organic Matter

Acenaphthylene

PAHPOM



Polycyclic Organic
Matter

2381217

Polycyclic Organic Matter

1-Methylpyrene

PAHPOM



Polycyclic Organic
Matter

2422799

Polycyclic Organic Matter

12-

Methylbenz(a)Anthrac
ene

PAHPOM



Polycyclic Organic
Matter

250

Polycyclic Organic Matter

PAH/POM -
Unspecified

PAHPOM



Polychlorinated
Biphenyls

2050682

Polychlorinated Biphenyls

4,4'-Dichlorobiphenyl
(PCB-15)

POLYCHLORINATED BIPHENYLS (AROCLORS)



Polychlorinated
Biphenyls

2051243

Polychlorinated Biphenyls

Decachlorobiphenyl
(PCB-209)

POLYCHLORINATED BIPHENYLS (AROCLORS)



Polychlorinated
Biphenyls

2051607

Polychlorinated Biphenyls

2-Chlorobiphenyl
(PCB-1)

POLYCHLORINATED BIPHENYLS (AROCLORS)



Polycyclic Organic
Matter

26914181

Polycyclic Organic Matter

Methylanthracene

PAHPOM



Polycyclic Organic
Matter

65357699

Polycyclic Organic Matter

Methylbenzopyrene

PAHPOM



Polycyclic Organic
Matter

8007452

Polycyclic Organic Matter

Coal Tar

PAHPOM



Glycol Ethers

20706256

Glycol Ethers

2-Propoxyethyl
Acetate

GLYCOL ETHERS



Polycyclic Organic
Matter

832699

Polycyclic Organic Matter

1-Methylphenanthrene

PAHPOM



Polycyclic Organic
Matter

83329

Polycyclic Organic Matter

Acenaphthene

PAHPOM



Polycyclic Organic
Matter

86737

Polycyclic Organic Matter

Fluorene

PAHPOM



C-6


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Polycyclic Organic
Matter

90120

Polycyclic Organic Matter

1-Methylnaphthalene

PAHPOM



Polycyclic Organic
Matter

91576

Polycyclic Organic Matter

2-Methylnaphthalene

PAHPOM



Polycyclic Organic
Matter

91587

Polycyclic Organic Matter

2-Chloronaphthalene

PAHPOM



Polycyclic Organic
Matter

193395

Polycyclic Organic Matter

lndeno[1,2,3-
c,d]Pyrene

PAHPOM



Polycyclic Organic
Matter

203123

Polycyclic Organic Matter

Benzo(g,h,i)Fluoranthe
ne

PAHPOM



Polychlorinated
Biphenyls

25429292

Polychlorinated Biphenyls

Pentachlorobiphenyl

POLYCHLORINATED BIPHENYLS (AROCLORS)



Polychlorinated
Biphenyls

26601649

Polychlorinated Biphenyls

Hexachlorobiphenyl

POLYCHLORINATED BIPHENYLS (AROCLORS)



Polycyclic Organic
Matter

203338

Polycyclic Organic Matter

Benzo(a)Fluoranthene

PAHPOM



Polychlorinated
Biphenyls

26914330

Polychlorinated Biphenyls

Tetrachlorobiphenyl

POLYCHLORINATED BIPHENYLS (AROCLORS)



Glycol Ethers

2807309

Glycol Ethers

Propyl Cellosolve

GLYCOL ETHERS



Polycyclic Organic
Matter

284

POM as non-15 PAH

Extractable Organic
Matter (EOM)

PAHPOM



Polychlorinated
Biphenyls

28655712

Polychlorinated Biphenyls

Heptachlorobiphenyl

POLYCHLORINATED BIPHENYLS (AROCLORS)



Hydrazine

302012

Hydrazine

Hydrazine

HYDRAZINE



Diazomethane

334883

Diazomethane

Diazomethane

No emissions in 2011, so not in 2011 NATA)



Polycyclic Organic
Matter

205823

Polycyclic Organic Matter

Benzo[j]fluoranthene

PAHPOM



Fine Mineral Fibers

383

Fine Mineral Fibers

Fine Mineral Fibers

Not used in NATA



Polycyclic Organic
Matter

205992

Polycyclic Organic Matter

Benzo[b]Fluoranthene

PAHPOM



Carbonyl sulfide

463581

Carbonyl Sulfide

Carbonyl Sulfide

CARBONYL SULFIDE



Formaldehyde

50000

Formaldehyde

Formaldehyde

FORMALDEHYDE



Polycyclic Organic
Matter

207089

Polycyclic Organic Matter

Benzo[k]Fluoranthene

PAHPOM



Chlorobenzilate

510156

Chlorobenzilate

Chlorobenzilate

CHLOROBENZILATE



2,4-Dinitrophenol

51285

2,4-Dinitrophenol

2,4-Dinitrophenol

2,4-DINITROPHENOL



C-7


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Ethyl carbamate
(Urethane)

51796

Ethyl Carbamate

Ethyl Carbamate

ETHYL CARBAMATE (URETHANE) CHLORIDE
(CHLOROETHANE)



2-

Chloroacetophenone

532274

2-Chloroacetophenone

2-Chloroacetophenone

2-CHLOROACETOPHENONE



4,6-Dinitro-o-cresol,
and salts

534521

4,6-Dinitro-o-Cresol

4,6-Dinitro-o-Cresol

4,6-DINITRO-O-CRESOL (INCLUDING SALTS)



Polycyclic Organic
Matter

224420

Polycyclic Organic Matter

Dibenzo[a,j]Acridine

PAHPOM



2-

Acetylaminofluorene

53963

2-Acetylaminofluorene

2-Acetylaminofluorene

2-ACETYLAMINOFLUORENE



2,2,4-

Trimethylpentane

540841

2,2,4-T rimethylpentane

2,2,4-

Trimethylpentane

2,2,4-TRIMETHYLPENTANE



1,3-Dichloropropene

542756

1,3-Dichloropropene

1,3-Dichloropropene

1,3-DICHLOROPROPENE



Bis(chloromethyl)ethe
r

542881

Bis(Chloromethyl) Ether

Bis(Chloromethyl)Ethe
r

BIS(CHLOROMETHYL) ETHER



Polycyclic Organic
Matter

226368

Polycyclic Organic Matter

Dibenz[a,h]acridine

PAHPOM



Carbon tetrachloride

56235

Carbon Tetrachloride

Carbon Tetrachloride

CARBON TETRACHLORIDE



Parathion

56382

Parathion

Parathion

Parathion



Polycyclic Organic
Matter

5522430

Polycyclic Organic Matter

1-Nitropyrene

PAHPOM



Polycyclic Organic
Matter

56553

Polycyclic Organic Matter

Benz[a]Anthracene

PAHPOM



Polycyclic Organic
Matter

56832736

Polycyclic Organic Matter

Benzofluoranthenes

PAHPOM



Cyanide Compounds

57125

Cyanide Compounds

Cyanide

CYANIDE COMPOUNDS



1,1-Dimethyl
hydrazine

57147

1,1-Dimethylhydrazine

1,1-Dimethyl
Hydrazine

1,1-DIMETHYLHYDRAZINE



Beta-Propiolactone

57578

Beta-Propiolactone

Beta-Propiolactone

Beta-Propiolactone



Chlordane

57749

Chlordane

Chlordane

CHLORDANE



Polycyclic Organic
Matter

192654

Polycyclic Organic Matter

Dibenzo[a,e]Pyrene

PAHPOM



2,4-Toluene
diisocyanate

584849

2,4-Toluene Diisocyanate

2,4-Toluene
Diisocyanate

2,4-TOLUENE DIISOCYANATE



Lindane (all isomers)

58899

Lindane (All isomers)

1,2,3,4,5,6-

Hexachlorocyclohexan

e

1,2,3,4,5,6-HEXACHLOROCYCLYHEXANE



C-8


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Vinyl bromide

593602

Vinyl Bromide

Vinyl Bromide

VINYL BROMIDE



N-Nitrosomorpholine

59892

N-Nitrosomorpholine

N-Nitrosomorpholine

N-NITROSOMORPHOLINE



4-

Dimethylaminoazobe
nzene

60117

4-Dimethylaminoazobenzene

4-

Dimethylaminoazoben
zene

4-DIMETHYLAMINOAZOBENZENE



Methyl hydrazine

60344

Methylhydrazine

Methylhydrazine

METHYLHYDRAZINE



Acetamide

60355

Acetamide

Acetamide

ACETAMIDE



Nickel Compounds

604

Nickel Compounds

Nickel Refinery Dust

NICKEL COMPOUNDS



Fine Mineral Fibers

616

Fine Mineral Fibers

Slagwool (Man-Made
Fibers)

Not used in NATA



Fine Mineral Fibers

617

Fine Mineral Fibers

Rockwool (Man-Made
Fibers)

Not used in NATA



Methyl isocyanate

624839

Methyl Isocyanate

Methyl Isocyanate

METHYL ISOCYANATE



Aniline

62533

Aniline

Aniline

ANILINE



Dichlorvos

62737

Dichlorvos

Dichlorvos

DICHLORVOS



N-

Nitrosodimethylamine

62759

N-Nitrosodimethylamine

N-

Nitrosodimethylamine

N-NITROSODIMETHYLAMINE



Carbaryl

63252

Carbaryl

Carbaryl

CARBARYL



Diethyl sulfate

64675

Diethyl Sulfate

Diethyl Sulfate

DIETHYL SULFATE



Polycyclic Organic
Matter

194592

Polycyclic Organic Matter

7H-

Dibenzo[c,g]carbazole

PAHPOM



Glycol Ethers

67425

Glycol Ethers

(Ethylenebis(Oxyethyl
enenitrilo)) Tetraacetic
Acid

GLYCOL ETHERS



Methanol

67561

Methanol

Methanol

METHANOL



Chloroform

67663

Chloroform

Chloroform

CHLOROFORM



Hexachloroethane

67721

Hexachloroethane

Hexachloroethane

HEXACHLOROETHANE



Hexamethylphosphor
amide

680319

Hexamethylphosphoramide

Hexamethylphosphora
mide

no emissions in 2011, not in 2011 NATA



Dimethyl formamide

68122

N,N-Dimethylformamide

N,N-

Dimethylformamide

DIMETHYL FORMAMIDE



N-Nitroso-N-
Methylurea

684935

N-Nitroso-N-Methylurea

N-Nitroso-N-
Methylurea

N-Nitroso-N-Methylurea



Polychlorinated
Biphenyls

7012375

Polychlorinated Biphenyls

2,4,4'-

Trichlorobiphenyl
(PCB-28)

POLYCHLORINATED BIPHENYLS (AROCLORS)



C-9


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Benzene (including
benzene from
gasoline)

71432

Benzene

Benzene

BENZENE



Methyl chloroform
(1,1,1-Trichloroethan

e)

71556

Methyl Chloroform

Methyl Chloroform

1,1,1-TRICHLOROETHANE



Methoxychlor

72435

Methoxychlor

Methoxychlor

METHOXYCHLOR



Manganese
Compounds

7439965

Manganese Compounds

Manganese

MANGANESE COMPOUNDS



Mercury Compounds

7439976

Mercury Compounds

Mercury

MERCURY COMPOUNDS



Nickel Compounds

7440020

Nickel Compounds

Nickel

NICKEL COMPOUNDS



Antimony

7440360

Antimony Compounds

Antimony

ANTIMONY COMPOUNDS



Arsenic

7440382

Arsenic Compounds

Arsenic

ARSENIC COMPOUNDS(INORGANIC INCLUDING
ARSINE)



Beryllium

7440417

Beryllium Compounds

Beryllium

BERYLLIUM COMPOUNDS



Cadmium

7440439

Cadmium Compounds

Cadmium

CADMIUM COMPOUNDS



Cobalt

7440484

Cobalt Compounds

Cobalt

COBALT COMPOUNDS



Methyl bromide
(Bromomethane)

74839

Methyl Bromide

Methyl Bromide

METHYL BROMIDE (BROMOMETHANE)



Methyl chloride
(Chloromethane)

74873

Methyl Chloride

Methyl Chloride

METHYL CHLORIDE (CHLOROMETHANE)



Methyl iodide
(lodomethane)

74884

Methyl Iodide

Methyl Iodide

METHYL IODIDE (IODOMETHANE)



Cyanide Compounds

74908

Cyanide Compounds

Hydrogen Cyanide

CYANIDE COMPOUNDS



Ethyl chloride
(Chloroethane)

75003

Ethyl Chloride

Ethyl Chloride

ETHYL CHLORIDE



Vinyl chloride

75014

Vinyl Chloride

Vinyl Chloride

VINYL CHLORIDE



Acetonitrile

75058

Acetonitrile

Acetonitrile

ACETONITRILE



Acetaldehyde

75070

Acetaldehyde

Acetaldehyde

ACETALDEHYDE



Methylene chloride
(Dichloromethane)

75092

Methylene Chloride

Methylene Chloride

METHYLENE CHLORIDE



Carbon disulfide

75150

Carbon Disulfide

Carbon Disulfide

CARBON DISULFIDE



Ethylene oxide

75218

Ethylene Oxide

Ethylene Oxide

ETHYLENE OXIDE



Bromoform

75252

Bromoform

Bromoform

BROMOFORM



Ethylidene dichloride
(1,1-Dichloroethane)

75343

Ethylidene Dichloride

Ethylidene Dichloride

ETHYLIDENE DICHLORIDE (1,1-
DICHLOROETHANE)



C-10


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Vinylidene chloride
(1,1-Dichloroethylene

)

75354

Vinylidene Chloride

Vinylidene Chloride

VINYLIDENE CHLORIDE

1

Phosgene

75445

Phosgene

Phosgene

PHOSGENE



Titanium tetrachloride

7550450

Titanium Tetrachloride

Titanium Tetrachloride

TITANIUM TETRACHLORIDE



1,2-Propylenimine (2-
methyl aziridine)

75558

1,2-Propylenimine

1,2-Propylenimine

1,2-PROPYLENEIMINE



Propylene oxide

75569

Propylene Oxide

Propylene Oxide

PROPYLENE OXIDE



Heptachlor

76448

Heptachlor

Heptachlor

HEPTACHLOR



Hydrochloric acid

7647010

Hydrochloric Acid

Hydrochloric Acid

HYDROCHLORIC ACID (HYDROGEN CHLORIDE
[GAS ONLY])



Hydrogen fluoride

7664393

Hydrogen Fluoride

Hydrogen Fluoride

HYDROGEN FLUORIDE (HYDROFLUORIC ACID)



Phosphorus

7723140

Phosphorus

Phosphorus

PHOSPHORUS



Chromium
Compounds

7738945

Chromium Compounds

Chromic Acid (VI)

CHROMIUM VI (HEXAVALENT)

0.4406

Hexachlorocyclopent
adiene

77474

Hexachlorocyclopentadiene

Hexachlorocyclopenta
diene

HEXACHLOROCYCLOPENTADIENE



Dimethyl sulfate

77781

Dimethyl Sulfate

Dimethyl Sulfate

DIMETHYL SULFATE



Selenium
Compounds

7782492

Selenium Compounds

Selenium

SELENIUM COMPOUNDS



Chlorine

7782505

Chlorine

Chlorine

CHLORINE



Glycol Ethers

7795917

Glycol Ethers

Ethylene Glycol Mono-
Sec-Butyl Ether

GLYCOL ETHERS



Phosphine

7803512

Phosphine

Phosphine

PHOSPHINE



Isophorone

78591

Isophorone

Isophorone

ISOPHORONE



Propylene dichloride
(1,2-Dichloropropane)

78875

Propylene Dichloride

Propylene Dichloride

PROPYLENE DICHLORIDE (1,2-
DICHLOROPROPANE)



1,1,2-Trichloroethane

79005

1,1,2-Trichloroethane

1,1,2-Trichloroethane

1,1,2-TRICHLOROETHANE



Trichloroethylene

79016

Trichloroethylene

Trichloroethylene

TRICHLOROETHYLENE



Acrylamide

79061

Acrylamide

Acrylamide

ACRYLAMIDE



Acrylic acid

79107

Acrylic Acid

Acrylic Acid

ACRYLIC ACID



Chloroacetic acid

79118

Chloroacetic Acid

Chloroacetic Acid

CHLOROACETIC ACID



1,1,2,2-

Tetrachloroethane

79345

1,1,2,2-T etrachloroethane

1,1,2,2-

Tetrachloroethane

1,1,2,2-TETRACHLOROETHANE



Dimethyl carbamoyl
chloride

79447

Dimethylcarbamoyl Chloride

Dimethylcarbamoyl
Chloride

DIMETHYLCARBAMOYL CHLORIDE



2-Nitropropane

79469

2-Nitropropane

2-Nitropropane

2-NITROPROPANE



C-11


-------
EPA's National-scale Air Toxics Assessment

Air Toxic
(Clean Air Act
Name)

NEI Pollutant
Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Metal
Speciation
Factor

Toxaphene

8001352

Toxaphene

Toxaphene

TOXAPHENE (CHLORINATED CAMPHENE)



Polycyclic Organic
Matter

3697243

Polycyclic Organic Matter

5-Methylchrysene

PAHPOM



Methyl methacrylate

80626

Methyl Methacrylate

Methyl Methacrylate

METHYL METHACRYLATE



Hexamethylene-
1,6-diisocyanate

822060

Hexamethylene Diisocyanate

Hexamethylene
Diisocyanate

HEXAMETHYLENE DIISOCYANATE



Pentachloronitrobenz
ene (Quintobenzene)

82688

Pentachloronitrobenzene

Pentachloronitrobenze
ne

PENTACHLORONITROBENZENE
(QUINTOBENZENE)



Polycyclic Organic
Matter

41637905

Polycyclic Organic Matter

Methylchrysene

PAHPOM



Polycyclic Organic
Matter

50328

Polycyclic Organic Matter

Benzo[a]Pyrene

PAHPOM



Dibutylphthalate

84742

Dibutyl Phthalate

Dibutyl Phthalate

DIBUTYLPHTHALATE



Polycyclic Organic
Matter

53703

Polycyclic Organic Matter

Dibenzo[a,h]Anthracen
e

PAHPOM



Phthalic anhydride

85449

Phthalic Anhydride

Phthalic Anhydride

PHTHALIC ANHYDRIDE



Polycyclic Organic
Matter

56495

Polycyclic Organic Matter

3-Methylcholanthrene

PAHPOM



Polycyclic Organic
Matter

189559

Polycyclic Organic Matter

Dibenzo[a,i]Pyrene

PAHPOM



Hexachlorobutadiene

87683

Hexachlorobutadiene

Hexachlorobutadiene

HEXACHLOROBUTADIENE



Pentachlorophenol

87865

Pentachlorophenol

Pentachlorophenol

PENTACHLOROPHENOL



2,4,6-Trichlorophenol

88062

2,4,6-T richlorophenol

2,4,6-T richlorophenol

2,4,6-TRICHLOROPHENOL



o-Anisidine

90040

o-Anisidine

o-Anisidine

ANISIDINE



Polycyclic Organic
Matter

189640

Polycyclic Organic Matter

Dibenzo[a,h]Pyrene

PAHPOM



Naphthalene

91203

Naphthalene

Naphthalene

NAPHTHALENE



Quinoline

91225

Quinoline

Quinoline

QUINOLINE



Polycyclic Organic
Matter

191300

Polycyclic Organic Matter

Dibenzo[a,l]Pyrene

PAHPOM



Polycyclic Organic
Matter

57976

Polycyclic Organic Matter

7,12-

Dimethylbenz[a]Anthra
cene

PAHPOM



3,3'-

Dichlorobenzidine

91941

3,3'-Dichlorobenzidine

3,3'-Dichlorobenzidine

3,3'-DICHLOROBENZIDINE



Biphenyl

92524

Biphenyl

Biphenyl

BIPHENYL



4-Aminobiphenyl

92671

4-Aminobiphenyl

4-Aminobiphenyl

4-AMINOBIPHENYL



C-12


-------
EPA's National-scale Air Toxics Assessment

Air Toxic

NEI Pollutant







Metal

(Clean Air Act
Name)

Code
(CAS Number)a

Pollutant Category Name

Pollutant Description

NATA Website Pollutant Name

Speciation
Factor

Benzidine

92875

Benzidine

Benzidine

BENZIDINE



4-Nitrobiphenyl

92933

4-Nitrobiphenyl

4-Nitrobiphenyl

4-NITROBIPHENYL



2,4-D, salts and
esters

94757

2,4-Dichlorophenoxy Acetic
Acid

2,4-Dichlorophenoxy
Acetic Acid

2,4-D, SALTS AND ESTERS



o-Xylenes

95476

Xylenes (Mixed Isomers)

o-Xylene

XYLENES (MIXED ISOMERS)



o-Cresol

95487

Cresol/Cresylic Acid (Mixed
Isomers)

o-Cresol

CRESOL_CRESYLIC ACID (MIXED ISOMERS)



o-Toluidine

95534

o-Toluidine

o-Toluidine

O-TOLUIDINE



2,4-Toluene diamine

95807

Toluene-2,4-Diamine

Toluene-2,4-Diamine

2,4-TOLUENE DIAMINE



2,4,5-Trichlorophenol

95954

2,4,5-T richlorophenol

2,4,5-Trichlorophenol

2,4,5-TRICHLOROPHENOL



Styrene oxide

96093

Styrene Oxide

Styrene Oxide

STYRENE OXIDE



1,2-Dibromo-3-
chloropropane

96128

1,2-Dibromo-3-Chloropropane

1,2-Dibromo-3-
Chloropropane

1.2-DIBROMO-3-CHLOROPROPANE



Ethylene thiourea

96457

Ethylene Thiourea

Ethylene Thiourea

ETHYLENE THIOUREA



Benzotrichloride

98077

Benzotrichloride

Benzotrichloride

BENZOTRICHLORIDE



Cumene

98828

Cumene

Cumene

CUMENE



Acetophenone

98862

Acetophenone

Acetophenone

ACETOPHENONE



Nitrobenzene

98953

Nitrobenzene

Nitrobenzene

NITROBENZENE



Lead Compounds

7439921

Lead Compounds

Lead

LEAD COMPOUNDS



Polycyclic Organic
Matter

779022

Polycyclic Organic Matter

9-Methyl Anthracene

PAHPOM



Diesel PM b





Diesel PM

DIESEL PM



a In most cases, the NEI pollutant code is the same as the CAS number. In a few cases (e.g., coke oven emissions) a CAS number has not been assigned, and NEI uses a unique
pollutant code.

b Diesel PM is not a Clean Air Act HAP.

C-13


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

C-14


-------
EPA's National-scale Air Toxics Assessment

Appendix D

Additional Information Used to Process the 2011 NATA Inventory:
Inventory Sectors and Model Run Groups; SCC Groupings;
Speciations for Mercury, Xylenes, and Other Metals

This appendix contains additional information related to the emissions processing and categorization of the results.
As described in Section 2 of the TSD, emission sources were grouped into Human Exposure Model (HEM) run
groups and then disaggregated (using source classification code [SCC] information) into source groups. Both
source groups and HEM run groups were categories used to group the results for the 2011 NATA.

Exhibit D-1 contains indications of how the source groups related to National Emissions Inventory (NEI) and
Emission Inventory System (EIS) sectors.

Exhibit D-2 contains the SCCs for each source group. A spreadsheet file

("NP_NR_OR_SourceGroup_to_SCC_CrossReference.xlsx") containing a cross-reference file with SCC
descriptions is provided in the SupplementalData folder. The point-source groups (point, airports, rail yards) were
created based on the facility source type (100 for airports, 151 for rail yards).

Mercury and other metals and xylenes from the inventory were speciated for use in modeling. Mercury in the
inventory was reported as pollutant code 7439976 and needs to be speciated into the three forms for CMAQ:
elemental, divalent gaseous, and divalent particulate. Xylenes (mixed isomers) were speciated into m-, o- and p-
forms, and metals (other than mercury) were speciated into coarse and fine particulate, which were needed by
CMAQ. Exhibit D-3 and D-4 contain summaries of the profiles. Most were applied across an entire sector or
multiple sectors (i.e., the nonroad profiles were applied to the nonroad-related sector and the stationary profile was
applied to the stationary-related sectors). The "other mercury" profiles were SCC-specific. The spreadsheet file
"nata_metals_split.xlxs" in the SupplementalData Folder contains information on how the profiles for mercury were
assigned to SCCs "other mercury" categories listed in Exhibit D-4.

Also included in this appendix (not related to the source groups) are mercury speciation factors used for specific
units at electricity generating units (EGUs) and for non-EGU categories (based on SCC). The same data were
used as was used for the "2005 Platform -CAP-BAFM 2005-Based Platform, Version 4.1 (use for Mercury)"
documented here. For EGUs, which are in the ptegu CMAQ NATA platform modeling sector, we used unit-specific
speciation factors based on those developed for the Clean Air Mercury Rule (CAMR) development and
documented for the Utility MACT here. These are provided in the file spreadsheet file "nata_metals_split.xlsx" in
the SupplementalData folder, and the methodology used relied on matching 2011 NEI units to identifiers used in
CAMR in order to use the same speciation data. New units were mapped to mercury speciation bins based on
configuration. The methodology and supporting files are at "Hgunit-specific-speciation bins2011nei.zip" in the
SupplementalData folder.

D-1


-------
EPA's National-scale Air Toxics Assessment

Exhibit D-1. Relationship of NEI Sectors with HEM Run Groups and Source Groups

NEI Data
Category

EIS Sector

HEM Run
Group

HEM
Group
Abbrev.

Source Group

Source Group Abbrev.

Point

[Multiple]

Point, excluding
airports

Point

Point stationary (PT)

Point stationary (PT)

Mobile-aircraft

Airports

Airports

NR-Railyard (PT)

NR-Railyard (PT)

Mobile-locomotives

Point, excluding
airports

Point

NR-Airport (PT)

NR-Airport (PT)

Nonpoint

Fuel Comb - Industrial
Boilers, ICEs - Coal

Nonpoint 10m
ReleaseHeight

NP10m

Industrial
Commercial
Institutional Fuel
Combustion

NP-ICI_fuel_comb

Fuel Comb - Industrial
Boilers, ICEs - Oil

Fuel Comb - Industrial
Boilers, ICEs - Natural Gas

Fuel Comb - Industrial
Boilers, ICEs - Other

Fuel Comb - Industrial
Boilers, ICEs - Biomass

Fuel Comb -

Comm/lnstitutional - Coal

Fuel Comb -
Comm/lnstitutional - Oil

Fuel Comb -
Comm/lnstitutional -
Natural Gas

Fuel Comb -

Comm/lnstitutional - Other

Fuel Comb -
Comm/lnstitutional -
Biomass

Fuel Comb - Residential -
Other

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint Residential
Fuel Combustion -
Except Wood

NP-Non-

RWC_ResFuelComb

Fuel Comb - Residential -
Oil

Fuel Comb - Residential -
Natural Gas

Fuel Comb - Residential -
Wood

Nonpoint

Residential

Wood

Combustion

RWC

Nonpoint Residential
Wood Combustion

RWC

Onroad

Gas Stations

Onroad
Lightduty
(includes
refueling)

OR_LD

Onroad Refueling

OR-Refueling

Mobile - On-Road non-
Diesel Light Duty Vehicles

Onroad Lightduty
Gas

OR-LightDuty_Gas

Mobile - On-Road non-
Diesel Heavy Duty Vehicles

Onroad
Heavyduty

OR_HD

Onroad Heavyduty
Gas

OR-HeavyDuty_Gas

Mobile - On-Road Diesel
Light Duty Vehicles

Onroad
Lightduty
(includes
refueling)

OR_LD

Onroad Lightduty
Diesel

OR-LightDuty_Diesel

Mobile - On-Road Diesel
Heavy Duty Vehicles

Onroad
Heavyduty

OR_HD

Onroad Heavyduty
Diesel

OR-HeavyDuty_Diesel

D-2


-------
EPA's National-scale Air Toxics Assessment

NEI Data
Category

EIS Sector

HEM Run
Group

HEM
Group
Abbrev.

Source Group

Source Group Abbrev.

Nonroad *
(*excludes
airports,
CMV and
locomotives)

Mobile - Non-Road
Equipment - Gasoline

Nonroad *
(*excludes
airports, CMV
and

locomotives)

nonroad

Nonroad Gas Other

NR-Gas/Other

Nonroad

Nonroad
Construction

NR-Construction

Mobile - Non-Road
Equipment - Other

Nonroad

Nonroad Gas Other

NR-Gas/Other

Mobile - Non-Road
Equipment - Diesel

Nonroad

Nonroad Diesel
Other

NR-Diesel/Other

Nonroad
Construction

NR-Construction

Nonpoint

Mobile - Commercial
Marine Vessels

Commercial
Marine Vessels
(CMV)

CMV_P

Nonroad CMV Ports
(shapes)

NR-CMV_ports

CMV_UW

Nonroad CMV
Underway (shapes)

NR-CMV_underway

Nonroad

Mobile - Non-Road
Equipment - Gasoline

Nonroad

nonroad

Nonroad
Pleasurecraft

NR-Pleasurecraft

Mobile - Non-Road
Equipment - Diesel

Nonpoint

Mobile - Locomotives

Nonpoint Low
ReleaseHeight

NPlow

Nonroad
Locomotives

NR-Locomotives

Industrial Processes -
Chemical Manuf

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Chemical
Manufacturing

NP-Chemical_Mfg

Industrial Processes - NEC

Nonpoint Industrial
Not Elsewhere
Classified

NP-lndustrial_NEC

Commercial Cooking

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint Commercial
Cooking

NP-Comm_cooking

Industrial Processes - Non-
ferrous Metals

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Nonferrous
Metals

NP-Nonferrous_metals

Industrial Processes -
Petroleum Refineries

Nonpoint Refineries

NP-Refineries

Industrial Processes - Oil &
Gas Production

Nonpoint Oil and Gas

NP-Oil/Gas

Industrial Processes -
Mining

Nonpoint Mining

NP-Mining

Solvent - Non-Industrial
Surface Coating

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint

Nonindustrial Surface
Coating

NP-Non-ind_sfc_coating

Solvent - Industrial Surface
Coating & Solvent Use

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Surface
Coating and
Industrial Solvent

NP-

SfcCoatingJndSolvent

Solvent - Degreasing

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint Degreasing

NP-Solvent_degreasing

Solvent - Dry Cleaning

NP-Dry_cleaning

Solvent - Graphic Arts

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Surface
Coating and
Industrial Solvent

NP-

SfcCoatingJndSolvent

Solvent - Consumer &
Commercial Solvent Use

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint Consumer
Commercial Solvent

NP-

Consumer comm solvent

Industrial Processes -
Storage and Transfer

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Storage
and Transfer

NP-Storage_Transfer

D-3


-------
EPA's National-scale Air Toxics Assessment

NEI Data
Category

EIS Sector

HEM Run
Group

HEM
Group
Abbrev.

Source Group

Source Group Abbrev.



Miscellaneous Non-
Industrial NEC

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint

Miscellaneous

Nonindustrial

NP-Misc_non-ind

Bulk Gasoline Terminals

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Bulk
Gasoline Terminals

NP-Bulk_gas_term

Gas Stations
Gas Stations

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint

GasStations - Stage I

NP-Gas_stations
NP-Gas_stations

Waste Disposal

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint

Wastedisposal Other

NP-WasteDisposal_Other

Waste Disposal

Nonpoint Landfills

NP-Landfills

ag burning





agburning-modeled
only in CMAQ

agburning-modeled only
in CMAQ

Biogenics - Vegetation and
Soil





Biogenics-modeled
only in CMAQ

Biogenics-modeled only
in CMAQ

D-4


-------
EPA's National-scale Air Toxics Assessment

Exhibit D-2 Source Group and HEM Run Group Cross-reference to Inventory SCCs

NEI Data
Category

HEM Ru
Group

HEM
Run
Group
Abb rev.

Source
Group

Source Group
Abbrev.

SCCs

Nonpoint

Nonpoint 10m
Re lease Height

NP10m

Industrial
Commercial
Institutional
Fuel

Combustion

NP-ICI fuel comb

2102001000,
2102004002,
2102007000,
2103001000,
2103004002,
2103008000,
2103010000

2102002000, 2102004000,
2102005000, 2102006000,
2102008000, 2102011000,
2103002000, 2103004000,
2103005000, 2103006000,
2103011000, 2801520000,

2102004001,
2102006002,
2102012000,
2103004001,
2103007000,
2801520004,

Nonpoint Low
Re lease Height

NPlow

Nonpoint

Residential

Fuel

Combustion -
Except Wood

NP-Non-

RWC ResFuelComb

2104001000, 2104002000, 2104004000, 2104005000,
2104006000, 2104006010, 2104007000, 2104011000,

Nonpoint

Residential

Wood

Combustion

RWC

Nonpoint

Residential

Wood

Combustion

RWC

2104008100, 2104008210, 2104008220, 2104008230,
2104008310, 2104008320, 2104008330, 2104008400,
2104008420, 2104008510, 2104008610, 2104008700,
2104009000,

On road

On road
Lightduty
(includes
refueling)

OR LD

Onroad
Refueling

OR-Refueling

2201110162
2201110562
2201210462
2201310362
2201320262
2201420162
2201420562
2201430462
2201510362
2201520262
2201530162
2201530562
2201540462
2201610362
2202210262
2202310162
2202310562
2202320462
2202410362
2202420262
2202430162
2202430562
2202510462
202520362.
2202530162
2202530562
2202540162
2202540562
2202610462
2202620362
2205210262
2205310162
2205310562
2205320462

2201110262, 2201110362,
2201210162, 2201210262,
2201210562, 2201310162,
2201310462, 2201310562,
2201320362, 2201320462,
2201420262, 2201420362,
2201430162, 2201430262,
2201430562, 2201510162,
2201510462, 2201510562,
2201520362, 2201520462,
2201530262, 2201530362,
2201540162, 2201540262,
2201540562, 2201610162,
2201610462, 2201610562,
2202210362, 2202210462,
2202310262, 2202310362,
2202320162, 2202320262,
2202320562, 2202410162,
2202410462, 2202410562,
2202420362, 2202420462,
2202430262, 2202430362,
2202510162, 2202510262,
2202510562, 2202520162,
2202520462, 2202520562,
2202530262, 2202530362',

Onroad
Lightduty
(includes
refueling)

OR LD

Onroad
Lightduty Gas

OR-LightDuty_Gas

2201110181
2201110581
2201210481
2201310381
2201320281
2205210181
2205210581
2205310481
2205320381

Onroad
Heavyduty

OR HD

Onroad

Heavyduty

Gas

OR-HeavyDuty_Gas

2201420181
2201420581
2201430481
2201510381
2201520281
2201530181
2201530581
2201540481
2201610381
2203420281

Onroad
Lightduty
(includes
refueling)

OR LD

Onroad

Lightduty

Diesel

OR-LightDuty_Diesel

2202210181
2202210581
2202310481
2202320381

2202540262,
2202610162,
2202610562,
2202620462,
2205210362,
2205310262,
2205320162,
2205320562

2202540362,
2202610262,
2202620162,
2202620562,
2205210462,
2205310362,
2205320262,

2201110462,
2201210362,
2201310262,
2201320162,
2201320562,
2201420462,
2201430362,
2201510262,
2201520162,
2201520562,
2201530462,
2201540362,
2201610262,
2202210162,
2202210562,
2202310462,
2202320362,
2202410262,
2202420162,
2202420562,
2202430462,
2202510362,
2202520262,

2202530462,

2202540462,
2202610362,
2202620262,
2205210162,
2205210562,
2205310462,
2205320362,

2201110281
2201210181
2201210581
2201310481
2201320381
2205210281
2205310181
2205310581
2205320481

2201420281
2201430181
2201430581
2201510481
2201520381
2201530281
2201540181
2201540581
2201610481
2203420381

2202210281
2202310181
2202310581
2202320481

2201110381
2201210281
2201310181
2201310581
2201320481
2205210381
2205310281
2205320181
2205320581

2201110481
2201210381
2201310281
2201320181
2201320581
2205210481
2205310381
2205320281

2201420381
2201430281
2201510181
2201510581
2201520481
2201530381
2201540281
2201610181
2201610581
2203420481

2202210381
2202310281
2202320181
2202320581

2201420481
2201430381
2201510281
2201520181
2201520581
2201530481
2201540381
2201610281
2203420181
2203420581

2202210481,
2202310381,
2202320281,

D-5


-------
EPA's National-scale Air Toxics Assessment

NEI Data
Category

HEM Ru
Group

HEM
Run
Group
Abb rev.

Source
Group

Source Group
Abbrev.

SCCs

On road
Heavyduty

OR HD

Onroad

Heavyduty

Diesel

OR-Heavy Duty_Diesel

2202410181
2202410581
2202420481
2202430381
2202510281
2202520181
2202520581
2202530481
2202540381
2202610281
2202620153
2202620381

2202410281
2202420181
2202420581
2202430481
2202510381
2202520281
2202530181
2202530581
2202540481
2202610381
2202620181
2202620481

2202410381,
2202420281,
2202430181,
2202430581,
2202510481,
2202520381,
2202530281,
2202540181,
2202540581,
2202610481,
2202620191,
2202620581

2202410481
2202420381
2202430281
2202510181
2202510581
2202520481
2202530381
2202540281
2202610181
2202610581
2202620281

Nonroad

Nonroad
(excludes
airports, CMV
and

locomotives)

nonroad

Nonroad Gas
Other

NR-Gas/Other

2260001010

2260001020

22600030302, 260003040

2260004016
2260004021
2260004031
2260005035
2260006035
2265001050
2265003030
2265003070
2265004016
2265004026
2265004036
2265004050
2265004066
2265005010
2265005030
2265005055
2265006015
2265007010
2267002003
2267002030
2267002054
2267002072
2267003030
2267004066
2267006010
2267006035
2268003040
2268005060
2268006020
2285006015

2260004020,
2260004025,
2260004035,
2260006005,
2260007005,
2265001060,
2265003040,
2265004010,
2265004025,
2265004030,
2265004040,
2265004051,
2265004071,
2265005015,
2265005035,
2265005060,
2265006025,
2265007015,
2267002015,
2267002033,
2267002057,
2267002081,
2267003040,
2267005055',
2267006015,
2268002081,
2268003060,
2268006005,
2268006035,

2260001030, 2260001060,
2260004000, 2260004015,

2260004026, 2260004030,
, 2260004036, 2260004071,
2260006010, 2260006015,
2265001010, 2265001030,
2265003010, 2265003020,
2265003050, 2265003060,
2265004011, 2265004015,

2265004031,
2265004041,
2265004055,
2265004075,
2265005020,
2265005040,
2265006005,
2265006030,
2265010010,
2267002021,
2267002039,
2267002060,
2267003010,
2267003050,
2267005060,
2267006025,
2268003020,
2268003070,
2268006010,
2268010010,

2265004035,
2265004046,
2265004056,
2265004076,
2265005025,
2265005045,
2265006010,
2265006035,
2267001060,
2267002024,
2267002045,
2267002066,
2267003020,
2267003070,
2267006005,
2267006030,
2268003030,
2268005055,
2268006015,
2285004015,

Nonroad
(excludes
airports, CMV
and

locomotives)

nonroad

Nonroad
Construction

NR-Construction

2260002000,
2260002027,
2265002006,
2265002024,
2265002039,
2265002057,
2265002078,
2270002009,
2270002024,
2270002036,
2270002048,
2270002060',
2270002075,

2260002006,
2260002039,
2265002009,
2265002027,
2265002042,
2265002060,
2265002081,
2270002015,
2270002027,
2270002039,
2270002051,
2270002066,
2270002078,

2260002009,
2260002054,
2265002015,
2265002030,
2265002045,
2265002066,
2270002003,
2270002018,
2270002030,
2270002042,
2270002054,
2270002069,
2270002081,

2260002021,
2265002003,
2265002021,
2265002033,
2265002054,
2265002072,
2270002006,
2270002021,
2270002033,
2270002045,
2270002057,
2270002072,
2270009010

Nonroad
(excludes
airports, CMV
and

locomotives)

nonroad

Nonroad
Diesel Other

NR-Diesel/Other

2270001060,
2270003040,
2270004031,
2270004066,
2270005015,
2270005035,
2270005060,
2270006020,
2270007010,

2270003010,
2270003050,
2270004036,
2270004071,
2270005020,
2270005040,
2270006005,
2270006025,
2270007015,

2270003020,
2270003060,
2270004046,
2270004076,
2270005025,
2270005045,
2270006010,
2270006030,
2270010010,

2270003030,

2270003070,

2270004056,

2270005010, .

2270005030,

2270005055,

2270006015,

2270006035,

2285002015

Nonpoint

Commercial
Marine Vessels
(CMV)

CMV P

Nonroad CMV
Ports (shapes)

NP-CMV_ports

2280002100, 2280003100

CMV UW

Nonroad CMV

Underway

(shapes)

NP-CMV_underway

2280002200, 2280003200

Nonroad

Nonroad
(excludes
airports, CMV
and

locomotives)

nonroad

Nonroad
Pleasurecraft

NR-Pleasurecraft

2282005010, 2282005015, 2282010005,
2282020005, 2282020010

D-6


-------
EPA's National-scale Air Toxics Assessment

NEI Data
Category

HEM Ru
Group

HEM
Run
Group
Abb rev.

Source
Group

Source Group
Abbrev.

SCCs

Nonpoint

Nonpoint Low
Re lease Height

NPlow

Nonroad
Locomotives

NP-Locomotives

2285002006, 2285002007, 2285002008, 2285002009,
2285002010

Nonpoint 10m
Release Height

NP10m

Nonpoint
Chemical
Manufacturing

NP-Chemical_Mfg

2301000000, 2301020000,

Nonpoint
Industrial Not
Elsewhere
Classified

NP-lndustrial NEC

2302000000, 2302080000, 2305000000, 2305070000,
2305080000, 2307000000, 2308000000, 2309000000,
2309100010, 2309100030, 2309100050, 2312000000,
2399000000

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint

Commercial

Cooking

NP-Comm_cooking

2302002000, 2302002100, 2302002200, 2302003000,
2302003100, 2302003200

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint

Nonferrous

Metals

NP-Nonferrous metals

2304000000, 2303000000

Nonpoint
Refineries

NP-Refineries

2306000000, 2306010000

Nonpoint Oil
and Gas

NP-Oil/Gas

2310000000
2310000550
2310010200
2310011501
2310020000

2310021100
2310021300
2310021351
2310021502
2310021509
2310111100
2310121401
2310002421
2310011100
2310011506
2310012512
2310012522

2310021101
2310021203
2310021600
2310021605
2310022420
2310022506
2310023102
2310023302
2310023509
2310023515
2310023602
2310030300

2310000220,
2310000660,
2310010300,
2310011502,
2310020600,
2310021202,
2310021302,
2310021400,
2310021503,
2310021603,
, 2310111401,
', 2310121700,
, 2310010700,
2310011450,
2310011600,
2310012515,
2310012526,
2310021102,
2310021301,
2310021601,
2310022010,
2310022501,
2310023010,
2310023202,
2310023310',
2310023511,
2310023516,
2310023603,
2310030401,

2310000230,
2310010000,
2310011000,
2310011503,
2310021010,
2310021209,
2310021309,
2310021500,
2310021505,
2310021700,
2310111700,
2310002401
2310010800,
2310011500,
2310012020,
2310012516,
2310020700,
2310021103,
2310021303,
2310021602,
2310022090,
2310022502,
2310023030,
2310023251,
2310023351
2310023512,
2310023600,
2310023606,
2310112401,

2310000330,

2310010100,

2310011201,

2310011505, ,

2310021030,

2310021251,

2310021310,

2310021501,

2310021506,

2310030000,

2310121100,

2310002411,

2310011020,

2310011504,

2310012511,

2310012521,

2310020800, ,

2310021201,

2310021504,

2310021604,

2310022105,

2310022505,

2310023100,

2310023300,

2310023400,

2310023513,

2310023601,

2310030210,

2310122100

Nonpoint
Mining

NP-Mining

2325030000, 2325060000

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint
Nonindustrial
Surface
Coating

NP-Non-ind_sfc_coating

2401001000, 2401002000, 2401003000

Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint
Surface
Coating and
Industrial
Solvent

NP-

SfcCoatingJnd Sol vent

2401005000,
2401005800,
2401020000,
2401040000,
2401060000,
2401080000,
2401200000,
2425030000,
2402000000

2401005500,
2401008000,
2401025000,
2401045000,
2401065000,
2401085000,
2425000000,
2425040000,

2401005600,
2401010000,
2401030000,
2401050000,
2401070000,
2401090000,
2425010000,
2440000000,

2401005700,

2401015000,

2401035000,

2401055000, ;

2401075000,

2401100000,

2425020000,

2440020000,

Nonpoint Low
ReleaseHeight

NPlow

Nonpoint
Degreasing

NP-Solvent_degreasing

2415000000, 2415005000, 2415010000, 2415020000,
2415025000, 2415030000, 2415035000, 2415040000,
2415045000, 2415050000, 2415055000, 2415060000,
2415065000, 2415100000, 2415130000, 2415230000, ;
2415245000, 2415300000, 2415345000, 2415360000

D-7


-------
EPA's National-scale Air Toxics Assessment

NEI Data
Category

HEM Ru
Group

HEM
Run
Group
Abbrev.

Source
Group

Source Group
Abbrev.

SCCs







Nonpoint
Drycleaning

NP-Dry_cleaning

2420000000, 2420000055, 2420010000, 2420010055,
2420010370, 2420020000







Nonpoint
Consumer
Commercial
Solvent

NP-

Consumer_comm_solvent

2460000000, 2460100000, 2460110000, 2460120000,
2460130000, 2460150000, 2460160000, 2460170000,
2460180000, 2460190000, 2460200000, 2460210000,
2460220000, 2460230000, 2460250000, 2460270000, ,
2460290000, 2460400000, 2460410000, 2460420000,
2460500000, 2460510000, 2460520000, 2460600000,
2460610000, 2460800000, 2460810000, 2460820000,
2460900000, 2461021000, 2461022000, 2461023000,
2461800000, 2461850000, 2461850001, 2461850004,
2461850005, 2461850006, 2461850009, 2461850051,
2461850052, 2461850053, 2461850054, 2461850055,
2461850056', 2461850099, 2465000000, 2465100000,
2465200000, 2465400000, 2465800000



Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint
Storage and
Transfer

NP-Storage_T ransfer

2501000150, 2501995120, 2501995150, 2505000120,
2505010000, 2505020000, 2505020030, 2505020060,
2505020090, 2505020093, 2505020120, 2505020121,
2505020150, 2505020180, 2505030120,

2505030150, , 2505040120, 2510010000, 2520010000



Nonpoint Low
ReleaseHeight

NPlow

Nonpoint

Miscellaneous

Nonindustrial

NP-Misc_non-ind

2501011011, 2501011012, 2501011013, 2501011014,
2501011015, 2501012011, 2501012012, 2501012013,
2501012014, 2501012015, 2810025000, 2810030000,
2810035000, 2810050000, 2810060100, 2810060200, ,
2840000000, 2840010000, 2850000000, 2850000010,
2850001000, 2851001000, 2861000000, 2861000010,
2862000000



Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint Bulk

Gasoline

Terminals

NP-Bulk_gas_term

2501050120, 2501055120



Nonpoint Low
ReleaseHeight

NPlow

Nonpoint
GasStations -
Stage I

NP-Gas_stations

2501060050, 2501060051, 2501060052, 2501060053,
2501060100, 2501060101, 2501060102, 2501060103,
2501060200, 2501060201, 2501070100, 2501080050,
2501080100, 2501080201



Nonpoint 10m
ReleaseHeight

NP10m

Nonpoint

Wastedisposal

Other

NP-WasteDisposal_Other

2601000000, 2610000100, 2610000300, 2610000400,
2610000500, 2610030000, 2630000000, 2630020000,
2630020020, 2635000000, 2640000000, 2660000000,
2680001000, 2650000000, 2650000002







Nonpoint
Landfills

NP-Landfills

2620000000, 2620030000, 2620030001







agburning-
modeled only
in CMAQ

agburning-modeled only
in CMAQ

2801500000, 2801500100, 2801500141, 2801500150,
2801500170,

2801500181, 2801500220, 2801500250, 2801500261,
2801500262, 2801500300, 2801500320, 2801500330,
2801500350, 2801500390, 2801500410, , 2801500420,
2801500430, 2801500440, 2801500450,

2801500500, 2801500600







Biogenics-
modeled only
in CMAQ

Biogenics-modeled only
in CMAQ

2701200000

D-8


-------
EPA's National-scale Air Toxics Assessment

Exhibit D-3. Speciation of Xylenes and Metals

Xylenes

Source Type

Profile

Pollutant

MXYL

OXYL

PXYL

Other

0000

XYLS

0.52

0.16

0.16

Nonroad

0001

XYLS

0.68

0.32



Onroad

0002

XYLS

0.74

0.26



Metals

Source Type

Profile

Metal

Fine

Coarse

Nonroad

NOARS

ARSENIC

0.83

0.17

NONBE

BERYLLIUM

0.39

0.61

NONCD

CADMIUM

0.38

0.62

NONMN

MANGANESE

0.67

0.33

NONNI

NICKEL

0.49

0.51

NONPB

LEAD

0.88

0.12

Stationary

STAN I

NICKEL

0.59

0.41

STACD

CADMIUM

0.76

0.24

STAMN

MANGANESE

0.67

0.33

STAPB

LEAD

0.74

0.26

STABE

BERYLLIUM

0.68

0.32

CRSTA

CHROMHEX

0.71

0.29

STARS

ARSENIC

0.59

0.41

Onroad



CHROMHEX

0.86

0.14



MANGANESE

0.64

0.36



NICKEL

0.83

0.17



ARSENIC

0.95

0.05

D-9


-------
EPA's National-scale Air Toxics Assessment

Exhibit D-4. Speciation of Mercury (Other than EGUs)

Mobile Mercury

Mobile

Profile

Pollutant

HGNRVA

HGIIGAS

PHGI

Mobile Diesel

HGMD

EXH HGSUM

0.56

0.29

0.15

Mobile Gasoline

HGMG

EXH HGSUM

0.91

0.086

0.004

Other Mercury

Profile Code

Description

Elemental

Divalent Gas

Particulate

HBCMB

combustion

0.5

0.3

0.2

HGCEM

cement

0.75

0.13

0.12

HGCHL

chloralkali processes

0.95

0.05

0

HGGLD

Gold mining

1

0

0

HGINC

Incineration

0.22

0.58

0.2

HGMD

Mobile diesel

0.56

0.29

0.15

HGMG

Mobile gas

0.91

0.086

0.004

HGIND

Other Industrial

0.8

0.1

0.1

Note: EGUs use unit-specific profiles provided in the SupplementalData Folder spreadsheet file "nata_metals_split.xlsx".

D-10


-------
EPA's National-scale Air Toxics Assessment

Appendix E

Estimation of Background Concentrations for the 2011 NATA

The report in this appendix contains the methods we used to estimate background concentrations
for NATA.

E-1


-------
Methods for Estimating Background
Concentrations for the National Air
Toxics Assessment (NATA) 2011

Final Report Prepared for

U.S. Environmental Protection Agency

Research Triangle Park, NC	* m

Sonoma Technology, Inc.

August 2015

E-2


-------
This document contains blank pages to accommodate two-sided printing.

E-3


-------
Prepared by

Prepared for

Michael McCarthy, PhD	Dennis Doll

Theresa O'Brien	Madeleine Strum

Yuan Du	Ted Palma
Ashley Russell, PhD

U.S. Environmental Protection Agency

Sonoma Technology, Inc.	Office of Air Quality Planning and Standards

1455 N. McDowell Blvd., Suite D	109 T.W. Alexander Dr.

Petaluma, CA 94954-6503	Research Triangle Park, NC 27709

Ph 707.665.9900 | F 707.665.9800	919.541.5693
sonomatech.com

Final Report

STI-915110-6315

August 13, 2015

graphic illustrates the normalized emissions gradient for benzene. See Section 4.2 for details.


-------
E-5


-------
Contents

Contents

Figures	iv

Tables	iv

1.	Introduction.................................................................................................................................. 1

1.1	Overview	1

1.2	Background Definitions	1

1.3	NATA Background Approaches	2

2.	Technical Approach.....................................................................................................................5

2.1 Methods for Remote Concentration Estimates	5

2.1.1	Remote Network Method	8

2.1.2	Ambient National Network Method	9

2.1.3	Literature-Based Method	11

2.1.4	Emissions-Based Method	11

3.	Results......................................................................................................................................... 13

3.1	Remote Network Estimates	13

3.2	Ambient National Network Estimates	15

3.3	Literature-Based Remote Estimates	19

3.4	Emissions-Based Estimates	21

4.	Discussion.................................................................................................................................. 27

4.1	Cancer Risk and Noncancer Hazard	27

4.2	Spatial Estimates of Risk	29

4.3	Uncertainties	32

5.	Summary.................................................................................................................................... 33

6.	References.................................................................................................................................. 35

Appendix A: Emissions-Based Method.................................................................................... A.l

Appendix B: Hexawaient Chromium Ratio Data..................................................................... B.l

E-6


-------
Figures and Tables

Figures

1. Remote Northern Hemisphere estimates of cancer risk based on concentration estimates

from "Fable 7	28

2.	Normalized emissions-based gradient map for arsenic emissions	30

3.	Scatter plots and linear regressions of emissions-based county gradients and ambient
network concentrations for arsenic, benzene, and carbon tetrachloride	31

Tables

1. Pollutants for which background concentrations were estimated in the NATA 1996 and

1999 modeling efforts	3

2.	Hazardous air pollutants (HAPs) and methods applied to determine background
concentrations for NATA 2002 and 2005	4

3.	List of pollutants and method used to generate remote concentration estimates	7

4.	Remote network concentration estimates. Site locations are defined in Section 2.1.1	14

5.	Summary statistics for the ambient network estimates of county background
concentrations	16

6.	Literature studies that reported pollutant concentrations for air toxics of interest	20

7.	Emissions-based method calculated remote background concentrations, 2011 NEI

emissions, residence times, and best remote concentration estimates	22

E-7


-------
1, Introduction

- : "n

1.1 Overview

This document describes the methods used to estimate "background" concentrations for the U.S.
Environmental Protection Agency's (EPA) 2011 National Air Toxics Assessment (NATA). Background
concentrations were derived for the previous NATA modeling estimates in 2005, 2002, 1999, and
1996. In most previous iterations of NATA, "background" concentrations were defined as that portion
of concentrations reflecting contributions transported from farther than 50 km, emissions originating
from outside the United States, unidentified emissions sources within a 50-km buffer, and natural
emissions sources. These contributions can be significant for some air toxics. In the 2005 NATA, the
chemical transport model CMAQ (Community Multi-scale Air Quality model) was used for a subset of
pollutants; the CMAQ model eliminates the need to account for emissions originating from beyond
50 km and outside the model domain when examining background concentrations.

For the 2011 NATA, the background concentration estimates will be applied pollutant by pollutant,
and only in areas outside the contiguous states where the CMAQ model domain does not extend.
(The final NATA 2011 documentation will describe exactly which background concentrations were
applied for each pollutant in each area of the NATA domain.) In other words, many of the
background estimates described in this report will be overridden in NATA 2011 by the CMAQ
predictions. Thus, we caution that results shown here should not be considered representative of the
background concentrations applied in NATA 2011.

1.2 Background Definitions

For the 2011 NATA, we investigated two types of "background" concentration estimates:

•	Remote Northern Hemisphere (NH) background. The annual mean concentration at remote
receptor areas not impacted by local-scale (50 km) or regional-scale emissions of the
pollutant. Examples of remote locations include the summit of Mauna Loa, the Aleutian
Islands in Alaska, portions of the Pacific Coast between Oregon and California, and some
parts of the Mountain West. These estimates represent the lowest concentrations that would
be observed in the United States. Generating remote background concentrations is the goal
of this project.

•	Regional background. The annual mean concentration of air in locations uninfluenced by
local-scale (50 km) emissions sources of the pollutant. These background concentrations are
important for densely populated sections of the country, such as the industrial Midwest, the
East Coast, and portions of the Southeast. Regional background concentrations are higher
than remote NH background concentrations and capture the regional transport of emissions

1

E-8


-------
1, Introduction

over scales of hundreds of kilometers. Generating reasonable regional background
concentrations was the operational goal of previous NATA iterations.

Ultimately, our investigation did not demonstrate that regional background concentration estimates
were statistically reliable, and thus those concentrations were not applied in the 2011 NATA. See
Section 4.2 for additional details on the regional background issues.

13 NATA Background Approaches

In previous NATA iterations, different approaches have been applied to develop background
concentrations. In the 1996 effort, background concentrations were gathered in a literature search
performed as part of the Cumulative Exposure Project (CEP). The CEP literature review was originally
performed to acquire background concentrations for 1990 (Rosenbaum et al., 1999; Woodruff et al.,
1998). The result of the literature search was a single remote background value representing 12 air
toxics.

For the 1999 NATA, two approaches were used to estimate background concentrations (Bortnick et
al., 2003). The primary approach used measurements from ambient monitors to estimate background
concentrations. Estimates from individual locations were extrapolated to counties without
measurements and were based on a population regression. When ambient measurements were not
available from the ambient monitoring network, background concentrations from the CEP were used.
Table 1 lists the pollutants for which background concentrations were estimated for NATA 1996 and
1999.

For the 2002 and 2005 NATAs, background concentrations were developed using a three-pronged
approach that selected background concentrations depending on the atmospheric residence times of
the pollutants, an ambient network method, and an emissions-based method. In this approach,
background concentrations were assigned for four chemicals with known, globally averaged
concentrations (i.e., long-residence times). Background concentrations were determined for another
13 pollutants by a method that utilized routine ambient measurements. Finally, background
concentrations for another 15 pollutants were determined using a novel, emissions-based method.
Each of these methods is described in McCarthy et al. (2008). Table 2 lists the pollutants and
approach used for the NATA 2002 and 2005 results.

For the 2011 NATA, Sonoma Technology, Inc. (STI) developed spatially uniform estimates of remote
Northern Hemisphere background concentrations for each of the air toxics of interest, following
previous approaches with some modifications. In addition, STI investigated emissions-based and
ambient-based methods for estimating spatially varying background concentrations. However,
because of a lack of agreement and predictive capacity between these two methods, they were not
applied in the final analysis.

E-9

2


-------
1. Introduction

Section 2 of this report describes the technical approach used, Section 3 presents results, and
Section 4 discusses their implications for contributing to modeled cancer risk and hazard. Section 5
briefly summarizes the results, and Section 6 lists references cited in the report

Table 1. Pollutants for which background concentrations were estimated in the NATA 1996 and
1999 modeling efforts. This table is adapted from the NATA 1999 website.1

NATA 1996

NATA 1999

Benzene

Benzene

1,3-Butadiene

Carbon tetrachloride

Carbon tetrachloride

Bis(2-ethylhexyl)phthalate

Chloroform

Chloroform

Bromoform

Dichloromethane
(methylene chloride)

Dichloromethane

Carbon disulfide

Ethylene dibromide
(1,2-dibromoethane)

Ethylene dibromide

Chlordane

Ethylene dichloride
(1,2-dichloroethane)

Ethylene dichloride

Hexachlorobutadiene

Formaldehyde

Formaldehyde

Hexachloroethane

Mercury

Mercury

Lindane

Polychlorinated biphenyls

Polychlorinated biphenyls

Methyl bromide (bromomethane)

Tetrachloroethene

(perchloroethylene,

tetrachloroethylene)

Tetrachloroethene

Methyl chloride (chloromethane)

Trichloroethene
(trichloroethylene)

Trichloroethene

Methyl chloroform
(1,1,1-trichloroethane)

Hexachlorobenzene

Acetaldehyde

Phosgene



1,1,2,2-Tetrachloroethane

Vinyl chloride



1,2-Dichloropropane (propylene
dichloride)

Xylenes

1 http://www.epa.gov/ttn/atw/natal999/99pdfs/backgroundtable.pdf.

E-10

3


-------
1. Introduction

Table 2. Hazardous air pollutants (HAPs) and methods applied to determine background
concentrations for NATA 2002 and 2005. Formaldehyde and acetaldehyde concentrations (in
italics) were determined using the Community Multiscale Air Quality (CMAQ) model for the
NATA 2005 exercise.

Globally-Averaged
Concentrations (Long
Residence Time)

Ambient-Based Method

Emissions-Based Method

Carbon tetrachloride

1,3-Butadiene

Hydrazine

Chloromethane (methyl
chloride)

1,4-Dichlorobenzene
(p-dichlorobenzene)

Chromium (VI)

Bromomethane
(methyl bromide)

Acetaldehyde

Ethylene dichloride
(1,2-dichloroethane)

Methyl chloroform
(1,1,1-trichloroethane)

Arsenic

Naphthalene



Benzene

1,2-Dichloropropane (propylene
dichloride)



Chloroform

Ethylene oxide



Chromium

Acrylonitrile



Dichloromethane
(methylene chloride)

Cadmium



Formaldehyde

Beryllium



Lead

Ethylene dibromide
(1,2-dibromomethane)



Manganese

Benzidine



Nickel

Quinoline



Tetrachloroethene

(perchloroethylene,

tetrachloroethylene)

Bis(2-ethylhexyl)phthalate



Toluene

l,2-Dibromo-3-chloropropane





Trichloroethene
(trichloroethylene)





Vinyl chloride





1,1,2,2-Tetrachloroethane

E-11

4


-------
2 Technical Approach

2. Technical Approach

The project's initial goal was to develop spatially varying background concentrations appropriate to
individual county-level estimates for the air toxics of interest In the initial approach, the remote-
concentration methodology was only a step to provide a lowest-level concentration estimate for air
toxics. The lowest-level concentration would bind the lowest possible county concentrations for
remote areas of the United States uninfluenced by regional emission sources. Regional influences
would be estimated by examining emissions gradients and ambient concentrations measured at sites
across the country. Counties without measurements would be assigned background concentration
estimates according to a regression of ambient data against predicted emissions gradients.

As described in Section 4.2, using the combined emissions-based and ambient-based approach to
predict spatial variability in background concentrations showed no statistically significant relationship
between the predicted ambient and emissions-gradient background concentrations for any of the
primary pollutants of interest. Therefore, for the 2011 NATA background concentration estimates, we
have chosen to use only remote concentration estimates (RCEs).

2,1 Methods for Remote Concentration Estimates

Multiple methods were used to develop estimates of remote Northern Hemisphere background air
toxics concentrations for NATA 2011. These methods include using concentrations reported in the
scientific literature, averages of measurements made at remote monitoring sites, estimates based on
national monitoring network lower-level concentrations, and estimates based on national emissions
and atmospheric residence times. The generalized hierarchy was as follows:

1.	Remote network method (Section 2.1.1). Measurements made at networks/sites in remote
Northern Hemisphere locations with citations in peer-reviewed literature. Examples include
National Oceanic and Atmospheric Administration (NOAA) Global Monitoring Division (GMD)
sites,2 the Trinidad Head Advanced Global Atmospheric Gases Experiment (AGAGE) site,3 and
remote Interagency Monitoring of Protected Visual Environments (IMPROVE) sites.4

2.	Ambient national network method (Section 2.1.2). Estimates of background concentrations
made at routine monitoring network sites in the United States where concentrations were
measurable and reliable down to the 10th percentile.

3.	ature-based method (Section 2.13). Measurements of species at remote or regional
sites during a single measurement study for a specific pollutant. These measurements are
different from the ongoing measurements used in Step 1 because of their "one-off" nature.

. Other AGAGE sites are available, but they are not upwind of the continental U.S.

E-12


-------
2 Technical Approach

4. Emissions-based method (Section 2.1.4). Emissions-based estimates of remote background
concentrations. These estimates are derived from the 2011 National Emission Inventory,
atmospheric residence times, and a comparison to tetrachloroethene.

The first method relies on routine monitoring networks dedicated to measurements at remote
locations that are likely to have minimal influence from local emissions. When available, these
measurements were considered the best and most reliable source of remote concentrations for the
year 2011. However, these networks do not target the entire list of air toxics of concern. In addition,
some of the metals measured at the IMPROVE monitoring sites have method detection limits (MDLs)
that are too high to accurately constrain the remote concentrations for some of their target
pollutants.

The second method relies on using ambient measurements taken from 2010-2012 at routine
monitoring sites in the United States. These sites are often located in urban areas and may be
affected by local and regional emissions. However, the lower concentrations (i.e., 10th percentile)
observed at these sites may be representative of the transported regional background
concentrations. If measured reliably, these measurements were considered a viable means of
estimating background concentrations.

The third method uses literature estimates from single studies that measured a pollutant of interest.
This method was applied when ambient measurements were too high for estimating remote
concentrations.

Finally, when none of the above three measurement-based methods produced a value, an emissions-
based method was applied. Table 3 lists the pollutants for which remote concentration estimates
were developed and shows the method selected to generate the remote concentration value. For
some pollutants, multiple methods were applied; in such cases, the generalized hierarchy was used to
select the most appropriate background concentration estimate. Only two pollutants from the 2002
and 2005 NATA background lists were excluded: quinoline and total chromium (though hexavalent
chromium is included in 2011 NATA). Four pollutants (or grouped pollutants) that had been in the
1999 NATA background list were excluded: PCBs, lindane, phosgene, and hexachlorobutadiene. In
contrast, 17 pollutants and groups that had never previously been estimated were added. These
include acetonitrile, acrolein, hexane, 2,2,4-trimethylpentane, ethylbenzene, methyl isobutyl ketone,
styrene, 1,3-dichloropropene, 1,1,2-trichloroethane, isopropylbenzene, selenium, propanal, antimony,
cobalt, and vinyl acetate. As noted in the introduction, estimates developed here may not be used for
some of the pollutants or in certain locations; see the final NATA documentation for a description of
the relevant background values applied in the NATA 2011.

E-13

6


-------
2. Technical Approach

Table 3. List of pollutants and method used to generate remote concentration estimates.

Pollutant

Method3

Pollutant

Method3

1,1,2,2-Tetrachloroethane

Emissions

1,3-Butadiene

Literature

1,1,2-Trichloroethane

Emissions

Acetaldehyde

Literature

l,2-Dibromo-3-chloropropane

Emissions

Acetonitrile

Literature

1,2-Dichloropropane
(propylene dichloride)

Emissions

Acrolein

Literature

1,3-Dichloropropene

Emissions

Bromoform

Literature

1,4-Dichlorobenzene
(p-dichlorobenzene)

Emissions

Ethylbenzene

Literature

2,2,4-T ri methyl pentane
(iso-octane)

Emissions

Formaldehyde

Literature

Acrylonitrile

Emissions

Toluene

Literature

Antimony

Emissions

Xylenes

Literature

Benzidine

Emissions

Arsenic

Ambient national

Benzyl chloride

Emissions

Beryllium

Ambient national

Bis(2-ethylhexyl) phthalate

Emissions

Cadmium

Ambient national

Carbon disulfide

Emissions

Chromium VI

Ambient national

Ethylene dibromide
(1,2-dibromoethane)

Emissions

Cobalt

Ambient national

Ethylene dichloride
(1,2-dichloroethane)

Emissions

Selenium

Ambient national

Ethylene oxide

Emissions

Benzene

Remote network

Hydrazine

Emissions

Carbon tetrachloride

Remote network

Isopropylbenzene
(cumene)

Emissions

Chloroform

Remote network

Methyl isobutyl ketone

Emissions

Chloromethane
(methyl chloride)

Remote network

Naphthalene

Emissions

Dichloromethane
(methylene chloride)

Remote network

n-Hexane

Emissions

Lead

Remote network

... 7

E-14


-------
2. Technical Approach

Pollutant

Method3

Pollutant

Method3

PAHs (polycyclic organic
matter - POM)b

Emissions

Manganese

Remote network

Propanal

(propionaldehyde)

Emissions

Mercury (gaseous)

Remote network

Styrene

Emissions

Methyl bromide
(bromomethane)

Remote network

Vinyl acetate

Emissions

Methyl chloroform
(1,1,1-

trichloroethane)

Remote network

Vinyl chloride

Emissions

Nickel

Remote network





Tetrachloroethene

(perchloroethylene,

tetrachloroethylene)

Remote network





Trichloroethene
(trichloroethylene)

Remote network

" Remote network: generated by monitoring networks with sites in remote areas.

Ambient national: generated by national networks in the United States.

Literature: based on a single literature study in a remote location.

Emissions: based on emissions-based method.
b Estimates are not used in NATA because of uncertainty.

2.1.1 Remote Network Method

STI used concentrations from networks with monitoring sites in remote locations, where little
influence from regional emissions is expected, to estimate background concentrations for some of
the most important (from a risk perspective) air toxics. Remote NOAA GMD sites5 and the Trinidad
Head AGAGE site5 primarily measure gases, and remote IMPROVE sites7 measure metals.

Annual mean concentrations for 2011 were generated at five NOAA GMD sites: Cape Kumukahi, HI
(KUM); Mauna Loa, HI (MLO); Niwot Ridge, CO (NWR); Barrow, AK (BRW); and Alert, Canada (ALT).
These annual mean concentrations were cosine-weighted by latitude to generate an annual mean
background estimate for carbon tetrachloride, benzene, dichloromethane, tetrachloroethene, and
bromomethane. Measurement methods from this network have been reported in peer-reviewed
articles such as Montzka et al. (2011; 1999). Cosine-weighted latitude averaging accounts for
differences in the amount of northern hemisphere air (i.e., there is more air at the equator then at the
poles).

5	www.esrl.noaa.gov/gmd/.

6	http://agage.mit.edu/.

7	http://vista.cira.colostate.edu/improve/.

E-15


-------
2 Technical Approach

Annual mean concentrations for 2011 of chloromethane, trichloroethene, and chloroform were
measured at AGAGE network sites. While multiple AGAGE sites are available in remote locations such
as Mace Head, Ireland, and Cape Grim, Tasmania, the only measurements representative of the
eastern Pacific Ocean are made at Trinidad Head, California; data from this site were used to generate
remote concentration estimates. AGAGE data can be accessed at

http://cdiac.ornl.gov/ndps/alegage.html (DOI: 10.3334/CDIAC/atg.dbl001), and the original
reference for the network is available from Prinn et al. (2000).

Metals are measured at the IMPROVE sites across the U.S. Some of these sites are representative of
clean air coming off the Pacific Ocean and were used to generate remote background concentration
estimates for lead, manganese, and nickel. Annual mean concentrations from 2010 to 2012 were
generated for data from the Denali, Alaska (DENA); Kalmiopsis, Oregon (KALM); Point Reyes,

California (PORE); Redwoods, California (REDW); Trapper Creek, Alaska (TRCR); Tuxedni, Alaska (TUXE);
and the Haleakala, Hawaii (HACR) sites. These were cosine-latitude averaged to generate mean
concentrations for the toxics measurements made at those sites. The IMPROVE network data can be
accessed at http://vista.cira.colostate.edu/improve/default.htm, and recent work was described by
Hyslop and White (2011).

In each case, the remote concentration estimates made from these networks were corroborated
using the next three methods as well. If a reliable lower estimate could be generated using the
ambient or literature methods, it supplanted this primary network as the estimate of choice. For
example, arsenic was estimated using the IMPROVE network data, but slightly lower concentration
estimates were generated using the ambient network method described in Section 2.1.2.

2,1,2 Ambient National Network Method

Ambient air toxics data were acquired for 2010 through 2012 from the EPA's Air Toxics Monitoring
Archive (AMA)8. Data from AMA were acquired in February 2014. Air toxics measurements are
primarily collected as 24-hr duration samples. These samples are most often collected at l-in-3-,
l-in-6-, or l-in-12-day frequencies. Any samples collected with less than 24-hr duration (e.g., 1-hr or
3-hr samples) were aggregated into 24-hr averages if measurements were collected for at least 75%
of the day in the AMA. For example, at least 18 1-hr samples were required for aggregation to a
24-hr average. This criterion ensured reasonable diurnal concentration representation. In addition,
daily data were adjusted to local conditions (LC) if they were reported in units of standard
temperature and pressure (STP) using local pressure and temperature conditions in the AMA.

The following steps were initially developed with the intention of providing spatially varying
background concentrations. However, given the results discussed in Section 4, we converted this
methodology into an independent method for assessing remote background concentrations. The
chromium VI remote concentration estimate (RCE) was based on a hybrid approach in which

g

EPA, 2013. Ambient Monitoring Archive for HAPs, Phase VII. Prepared by Eastern Research Group, Inc. Delivered February 28, 2013.

9

E-16


-------
2 Technical Approach

concentrations of Chromium PM25 from the IMPROVE remote sites and the ratio of Cr VI:Total Cr was
calculated at ambient network sites. This will be discussed in more detail in Section 3.1.

Remote background concentration estimates were then developed using the following
ambient-based method. This method consists of seven general steps:

1.	Determine annual completeness for each parameter at each site to screen out those
parameters at sites with incomplete (i.e., unrepresentative) years. For NATTS program
measurements, completeness was based on completeness for a given parameter; for other
programs, completeness was based on the number of daily average samples employing the
same method. In both cases, require 11 daily average samples per calendar quarter and 3
valid calendar quarters. Require at least one valid year from 2010-2012 for inclusion.

2.	Isolate data from valid years into year-seasons based on warm (April to September) and cold
seasons (October through March).

3.	Calculate 10th percentile concentration for each valid year-season.

4.	Is the average MDL greater than the RCE (developed from the remote, literature, or emissions
methods, in preferential order)?

a.	If yes, is the 10th percentile greater than the RCE?

-	If yes, use the 10th percentile for seasonal averaging.

-	If no (which means ambient data should not be used), use RCE for seasonal
averaging.

b.	If no, is the 10th percentile greater than the MDL?

-	If no (which means ambient data must be less than RCE from other methods and are
at MDL or lower), use the MDL for seasonal averaging and add flag for RCE QC check.

-	If yes, use the 10th percentile for seasonal averaging.

•	If the 10th percentile is less than or equal to the RCE, add flag for RCE QC check.

•	If the 10th percentile is greater than the RCE, no flag is needed.

5.	Average the warm and cold season 10th percentiles for 2010-2012 to get the overall 10th
percentile estimate for each site. If there is more than one 10th percentile estimate for a site-
parameter (due to collocated measurements or method changes), then

a.	Use the estimate with the lowest average MDL (i.e., most sensitive method).

b.	If the MDLs are the same, use the estimate with the most measurements.

c.	If the sample counts are the same, then average the estimates.

6.	Select the lowest background estimate from each county for each parameter.

7.	For those parameters measured in at least 18 counties, compare the concentration estimates
from each county to the best remote concentration estimate method for the alternate
methods (remote network, literature, and emissions-based method). If at least four county
estimates are below the other remote concentration estimate, assess the average percent
difference between the ambient county estimates and the other remote concentration

10

E-17


-------
2 Technical Approach

estimates. Choose the ambient-based approach if the average percent concentration
difference is lower than alternate methods by more than 30%. Average the concentrations at
all sites below RCE to generate an ambient based RCE. The ambient network RCE is used only
when it is lower than other methods; the ambient network RCE is not used as the primary
estimate when it is higher, since it is more likely to be influenced by regional emissions.

2,13 Literature-Based Method

A literature search for remote concentration estimates was performed for air toxics on the target list.
Two citation-based methods were applied. In the first method, a primary publication (e.g.,
Rosenbaum et al., 1999; Woodruff et al., 1998; McCarthy et al., 2006) was investigated for follow-up
citations. Any citations that cited these primary documents were then followed to examine whether
other references in their bibliography provided useful, updated remote concentration estimates for
any hazardous air pollutants of concern. In the second method, keyword searches were performed
for each of the key target air toxics that were expected to have potential contributions to risk or
hazard based on NATA 2005 risk driver classifications.

eel Method

Almost half of the air toxics listed in Table 3 were not measured in remote monitoring networks, had
inadequate ambient data for the ambient-based method, and were not identified in literature
searches for remote background concentration estimates. Remote background estimates based on
the available ambient data for these pollutants would either be represented by too few sites from
which to extrapolate data or represent poor quality measurements (i.e., mostly below MDL).

The minimum ambient concentration represents a geographically remote concentration estimate.
Remote concentration estimates were based on (1) the sum of 2011 v2.0 National Emissions
Inventory (NEI) emissions9, (2) atmospheric residence times gleaned from the literature, and
(3) comparison to a long-lived pollutant with measured remote concentrations and substantial U.S.
emissions. In this and previous studies, that pollutant is tetrachloroethene (C2CI4). Equation 1 shows
the relationship used to derive these remote estimates:

e *t *rr 1

j 	 	i i L tetrachloioethene-1

1 E	^ t

tetrach loioeth en e tetrach loioeth en ei

where [C] is the remote concentration, E is the 2011 NEI value in tons per year, t is the residence time
in years, and / is the pollutant of interest. Most residence time estimates were developed for NATA
2005 and were directly used in this work.

9 NEI v2.0 was a pre-released version from September 22, 2014 for all emissions categories other than onroad mobile. Onroad
mobile was not available; vl.O onroad mobile emissions were used in its place.

11

E-18


-------
12

E-19


-------
3. Results

3. Results

Sections 3.1-3.4 present background concentrations for all the pollutants listed in Table 3.

3.1 Remote Network Estimates

Estimates of Northern Hemisphere concentrations from the remote network are presented in Table 4.
For the IMPROVE sites, annual mean concentrations were generated for each parameter for 2010-
2012. Each site was then averaged across all three years. All sites were then averaged using a cosine-
latitude weighting scheme. Arsenic, chromium, and nickel annual mean concentrations at these sites
were all below IMPROVE method detection limits; the estimates of RCE were thus considered upper
limits for these pollutants. For chromium VI, the total chromium estimate was multiplied by the
average ratio of Chromium VI:Chromium TSP (0.0125) seen in air toxics archive measurements (see
Appendix B).

E-20


-------
3. Results

Table 4. Remote network concentration estimates. Site locations are defined in Section 2.1.1.

Pollutant

RCE
(|ig/m3)

Remote Network

Year(s)

Location(s)

Chloroform

0.058

AG AGE

2011

Trinidad Head

Methyl chloride
(chloromethane)

1.09

AG AGE

2011

Trinidad Head

Chromium VI

1.5E-06

IMPROVE Crand
NATTS CrVI:Cr ratio

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Arsenic

<2.0E-4

IMPROVE

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Chromium

<1.2E-4

IMPROVE

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Lead

6.6E-04

IMPROVE

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Manganese

3.2E-04

IMPROVE

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Nickel

<1.0E-4

IMPROVE

2010-2012

DENA, KALM, PORE, REDW,
TRCR, TUXE, HACR

Benzene

0.116

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

Carbon tetrachloride

0.547

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

Methyl bromide
(bromomethane)

0.0294

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

Methyl chloroform (1,1,1-
trichloroethane)

0.06

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

Dichloromethane
(methylene chloride)

0.146

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

Tetrachloroethene

(perchloroethylene,

tetrachloroethylene)

0.0131

NOAACMDL

2011

KUM, MLO, NWR, BRW, ALT

E-21


-------
3. Results

3.2 Ambient National Network Estimates

The ambient-based method was applied to 36 HAPs. The results of the ambient-based method
provide county-level background concentration estimates for counties in the United States and
associated territories. Table 5 provides summary statistics for the pollutants to which this method
was applied. These summary statistics include the number of counties with ambient measurements
between 2010 and 2012, and the minimum, mean, maximum, and 10th, 25th, and 50th percentile
background concentrations estimated across these counties. The RCE from the ambient method is
the value in the last column of the table; if null, the ambient method was not used. This new RCE is
the mean value of the subset of counties below the initial RCE and is unlikely to match any of the
summary statistics in the other fields of the table.

In addition to the summary statistics for the background estimates, the table lists the number of
counties with "reliable" background estimates that were lower than the RCE from the best of the
remote network, literature, or emissions-based methods. If more than three counties were lower than
the RCE, we characterized whether these background estimates were within measurement
uncertainty (-30%) of the other RCEs from other methods. For carbon tetrachloride, chloromethane,
chromium VI, chloroform, and acetonitrile, the background estimates from the ambient method were
within this range and were therefore considered consistent with the RCE. In contrast, estimates for
the metals of arsenic, cadmium, beryllium, selenium, and cobalt were all lower than the RCEs from
other methods by more than 30%. The RCE from the ambient method was considered a more reliable
estimate for these pollutants. Because we did not override the literature- or emissions-based
estimates if the ambient network estimates were higher, some estimates of remote background
concentrations are lower than ambient network estimates would suggest. However, given that the
ambient network is primarily in urban areas, it is likely that even the lowest concentrations generated
with this method are influenced by local and regional emissions.

E-22


-------
3. Results

Table 5. Summary statistics for the ambient network estimates of county background concentrations. The number of counties with lower
RCE estimates indicates that the ambient method generated lower RCE values than those generated from the emissions, literature, or
remote network method; if these values were outside of a 30% range of the other RCE value, the new RCE was generated based on the
ambient national network method. The "Within 30% of RCE" column was filled only for sites with at least four counties below RCE.

Pollutant

Minimum
(|ig/m3)

Pet 10
(|ig/m3)

Pet 25
(|ig/m3)

Pet 50
(|ig/m3)

Mean
(|ig/m3)

Number of
Counties

No. of
Counties

with
Lower RCE

Within
30% of
RCE

New
RCE
(|ig/m3)

Carbon tetrachloride

7.0E-02

4.4E-01

5.0E-01

5.5E-01

5.1E-01

76

24

Yes



Beryllium (PMi0)

1.8E-06

3.5E-06

8.6E-06

1.2E-05

1.1E-05

32

19

No

8.5E-06

Chloromethane
(methyl chloride)

8.8E-01

9.7E-01

1.0E+00

1.1E+00

1.1E+00

47

19

Yes



Cadmium (PM10)

1.2E-06

2.6E-05

3.5E-05

4.4E-05

4.9E-05

32

17

No

3.8E-05

Arsenic (PMi0)

2.5E-05

1.1E-04

1.7E-04

2.0E-04

2.2E-04

35

15

No

1.4E-04

Chromium VI

1.5E-06

1.5E-06

1.5E-06

1.5E-06

5.1E-06

30

13

Yes



Selenium (PMi0)

1.1E-04

1.2E-04

1.5E-04

2.4E-04

3.2E-04

18

13

No

2.0E-04

Cobalt (PM10)

2.5E-07

2.1E-05

3.8E-05

5.9E-05

1.2E-04

18

11

No

4.1E-05

Chloroform

5.0E-02

5.8E-02

5.8E-02

5.8E-02

6.2E-02

105

7

Yes



Acetonitrile

1.2E-01

1.7E-01

2.1E-01

2.8E-01

1.1E+00

28

6

Yes



Lead (PM10)

2.5E-04

6.6E-04

6.6E-04

1.0E-03

1.3E-03

46

3

NA



Antimony (PMi0)

5.2E-05

6.2E-05

2.5E-04

3.6E-04

6.0E-04

24

2

NA



Formaldehyde

2.9E-01

7.2E-01

9.1E-01

1.2E+00

1.2E+00

79

2

NA



Dichloromethane
(methylene chloride)

1.4E-01

1.5E-01

1.5E-01

1.7E-01

2.0E-01

112

2

NA



Nickel (PM10)

8.2E-06

1.0E-04

1.0E-04

4.7E-04

6.4E-04

37

2

NA



E-23

16


-------
Acetaldehyde

Manganese (PM10)

Trichloroethene
(trichloroethylene)

1.3-Butadiene

2,2,4-Trimethylpentane
(iso-octane)

4-Methyl-2-pentanone

Acrylonitrile

Benzene

Carbon disulfide

Ethylbenzene

Ethylene dichloride
(1,2-dichloroethane)

Hexane

Isopropylbenzene (cumene)
Naphthalene (total tsp &

1.4-Dichlorobenzene
(p-dichlorobenzene)

Propanal (propionaldehyde)

Styrene

1.4E-01	3.9E-01	5.0E-01

7.8E-05	5.7E-04	1.1E-03

4.1E-03	4.1E-03	4.1E-03

2.0E-03	2.0E-03	2.0E-03

9.2E-02	9.2E-02	1.3E-01

4.6E-03	4.6E-03	4.6E-03

3.6E-04	3.6E-04	3.6E-04

1.1E-01	1.8E-01	2.4E-01

5.4E-03	5.4E-03	5.4E-03

1.6E-02	1.6E-02	1.6E-02

2.0E-03	2.0E-03	2.0E-03

1.1E-01	1.1E-01	1.4E-01

3.7E-04	3.7E-04	3.7E-04

1.9E-04	6.6E-03	1.0E-02

9.2E-03	9.2E-03	9.2E-03

9.8E-05	9.8E-05	5.3E-02

8.6E-04	8.6E-04	8.6E-04

3. Results

7.5E-01	7.5E-01	81	1	NA

1.7E-03	2.3E-03	36	1	NA

4.1E-03	4.2E-03	114	1	NA

2.0E-03	6.3E-03	121	0	NA

1.6E-01	1.8E-01	40	0	NA

4.6E-03	1.8E-02	48	0	NA

3.6E-04	1.7E-03	40	0	NA

3.2E-01	3.3E-01	126	0	NA

9.7E-03	4.9E-02	55	0	NA

4.9E-02	6.4E-02	116	0	NA

2.0E-03	1.2E-02	105	0	NA

1.9E-01	2.5E-01	60	0	NA

3.7E-04	2.4E-03	57	0	NA

2.4E-02	2.8E-02	33	0	NA

9.2E-03	1.5E-02	81	0	NA

1.0E-01	1.0E-01	56	0	NA

8.6E-04	8.3E-03	115	0	NA

E-24

17


-------
Pollutant

Minimum
(|ig/m3)

Tetrachloroethene

(perchloroethylene,	1.3E-02	1.3E-02 1.3E-02
tetrachloroethylene)

Toluene	4.1E-02	1.5E-01 2.6E-01

Vinyl acetate	3.5E-05	3.5E-05 3.5E-05

Xylenes	2.3E-02	2.3E-02 6.6E-02

3. Results

1.3E-02	2.5E-02	115	0	NA

4.2E-01	4.4E-01	119	0	NA

2.0E-01	2.9E-01	25	0	NA

1.9E-01	2.2E-01	114	0	NA

E-25

18


-------
3. Results

3.3 Literature-Based Remote Estimates

A literature survey was performed to obtain remote Northern Hemisphere background
concentrations that are most likely to represent annual average concentrations at sites not impacted
by local or regional emissions of that pollutant. Numerous monitoring studies are available that
report short-term or long-term average air toxic pollutant concentrations. We focused on obtaining
remote concentrations for the pollutants likely to be of highest risk based on NATA 2005 modeling
results. Table 6 outlines the literature survey results. When multiple literature sources were available,
the best estimate was selected according to criteria including

•	Year of measurement (2011 being the most appropriate)

•	Monitoring locations upwind or within the continental U.S. (e.g., Pacific Ocean)

•	Satellite-based modeling efforts

Pollutants for which remote concentration estimates were found in the literature are listed in Table 6.
This table also provides the location of the measurements, the year(s) of the measurements, and the
remote concentration measured.

E-26

19


-------
3. Results

Table 6. Literature studies that reported pollutant concentrations for air toxics of interest.

Pollutant

RCE
(|ig/m3)

Year(s)

Location(s)

First Author, Year
of Publication

Citation

1,3-butadiene

0.002

2005

Jungfraujoch, Switzerland

Loov, 2008

DOI: 10.1029/2007JD009751

Acetaldehyde

0.14

2004

Pacific Ocean modeled

Millet, 2010

D01:10.5194/acp-10-3405-2010

Acrolein

0.016

2005

Jungfraujoch, Switzerland

Loov, 2008

DOI: 10.1029/2007JD009751

Bromoform

0.01

1994-2004

Ocean cruises

Butler, 2007

DOI: 10.1029/2006GB002732

Ethylbenzene

0.016

2005

Jungfraujoch, Switzerland

Legreid, 2008

DOI: 10.1029/2007JD009751

Formaldehyde

0.43

2006

Pacific Ocean satellite,
flights, model

Boeke, 2011

DOI: 10.1029/2010J D014870

Toluene

0.041

2005

Jungfraujoch, Switzerland

Loov, 2008

DOI: 10.1029/2007JD009751

Xylenes

0.023

2002

Trinidad Head, California

Millet, 2004

DOI: 10.1029/2003J D004026

Mercury (gaseous)

0.0001

2006

Mercury Deposition
network

Butler, 2007

www.arl.noaa.gov/documents/
reports/M DN_report.pdf

Acetonitrile

0.17

2004-2008

New Hampshire

Jordan, 2009

DOI: 10.5194/acp-9-4677-2009

Gaseous mercury measurements made in the Mercury Deposition Network are not available in the air toxics monitoring archive and are thus considered "Literature" for the purpose of
this report. If data had been in the air toxics monitoring archive, it would have been considered an ambient network pollutant.

E-27

20


-------
3. Results

3.4 Emissions-Based Estimates

Table 7 provides the emissions, residence times, and estimated remote concentrations for the air
toxics included in this study. Measured remote concentration estimates were used for
comparison/validation of the method and are also shown in Table 7.

The emissions-based method is not an appropriate method of estimating background concentrations
for pollutants with very long residence times in the atmosphere (>350 days) and/or secondary
production in the atmosphere (e.g., formaldehyde, acetaldehyde, acrolein), and may be inaccurate for
pollutants that are emitted in Asia at very different rates than in the U.S. Long residence time
pollutants that last multiple years in the atmosphere include carryover from previous year's emissions
and thus build up over time relative to pollutants with residence times of days to months.

E-28

21


-------
3. Results

Table 7. Emissions-based method calculated remote background concentrations, 2011 NEI emissions, residence times, and best remote
concentration estimates. RCE is an acronym for Remote concentration estimates. Best 2011 RCE estimate is the final background estimate.
The table is sorted from highest to lowest Best 2011 RCE.

Name

Residence
Time

(days)

2011 NEI
Emissions
v2 (tons
per year)

Emissions x
Residence
Time (tons)

Fraction
of C2CI4

Measured
Remote
Cone 2011
(|jg/m3)

Estimated
Remote
Cone 2011
(|jg/m3)

Best
2011 RCE
estimate
(|ig/m3)

Chloromethane
(methyl chloride)

365

13,349

4872385

61.07

1.09

0.80

1.09

Carbon tetrachloride

10950

107

1171650

14.68

0.547

0.192

0.55

Formaldehyde

0.13

1371230

178260

2.23

0.43

0.03

0.43

Acetonitrile

365

433

158045

1.98

0.17

0.026

0.170

Acrolein

0.5

52,038

26019

0.33

0.016

0.004

0.0160

Dichloromethane
(methylene chloride)

30

8,727

261810

3.28

0.146

0.043

0.146

Acetaldehyde

1

826915

826915

10.36

0.14

0.14

0.14

Benzene

3

279,718

839154

10.52

0.116

0.138

0.12

n-Hexane

2.6

266,516

692942

8.68



0.114

0.11

2,2,4-T ri methyl pentane
(iso-octane)

4

141,463

565852

7.09



0.093

0.093

Methyl chloroform (1,1,1
trichloroethane)

1825

22,690

41409250

518.99

0.06

6.80

0.06

Chloroform

80

783

62640

0.79

0.058

0.010

0.058

Toluene

0.5

650,831

325416

4.08

0.041

0.053

0.041

E-29

22


-------
3. Results

Name

Residence
Time

(days)

2011 NEI
Emissions
v2 (tons
per year)

Emissions x
Residence
Time (tons)

Fraction
of C2CI4

Measured
Remote
Cone 2011
(|jg/m3)

Estimated
Remote
Cone 2011
(|jg/m3)

Best
2011 RCE
estimate
(|ig/m3)

Methyl bromide
(bromomethane)

365

6,167

2250955

28.21

0.0294

0.37

0.03

Xylenes

0.2

376,110

75222

0.94

0.023

0.012

0.023

Ethylbenzene

1.7

76,774

130516

1.64

0.016

0.021

0.016

Tetrachloroethene

(perchloroethylene,

Tetrachloroethylene)

6.5

12,275

79788

1.00

0.0131

0.013

0.013

PAH_880 E5a

10

6284

62837

0.79



1.0E-02

1.0E-02

Bromoform

540

34

18349

0.23

0.01

0.0030

1.0E-02

1,4-Dichlorobenzene
(p-dichlorobenzene)

31

1,821

56451

0.71



0.009

0.009

Bis(2-ethylhexyl)
phthalate

200

175

35000

0.44



0.0057

5.7E-03

Carbon disulfide

7

4,752

33264

0.42



0.0055

5.5E-03

Methyl isobutyl ketone

1

27,977

27977

0.35



0.0046

4.6E-03

Trichloroethene
(trichloroethylene)

6

3,374

20244

0.25

0.0041

0.0033

4.1E-03

PAHJL76 E4a

10

1680

16803

0.21



2.8E-03

2.8E-03

Ethylene dichloride
(1,2-dichloroethane)

42

295

12390

0.16



0.0020

2.0E-03

1,3-Butadiene

0.08

61,576

4926

0.06

0.002

0.0008

2.0E-03

PAH_176 E3a

10

984

9844

0.12



1.6E-03

1.6E-03

E-30

23


-------
3. Results

Name

Residence
Time

(days)

2011 NEI
Emissions
v2 (tons
per year)

Emissions x
Residence
Time (tons)

Fraction
of C2CI4

Measured
Remote
Cone 2011
(|jg/m3)

Estimated
Remote
Cone 2011
(|jg/m3)

Best
2011 RCE
estimate
(|ig/m3)

PAHJL76 E5a

10

683

6830

0.09



1.1E-03

1.1E-03

Styrene

0.25

21,102

5276

0.07



8.7E-04

8.7E-04

1,1,2,2-

Tetrachloroethane

91.3

56

5113

0.06



8.4E-04

8.4E-04

Lead

10

3,105

31050

0.39

6.60E-04

0.0051

6.6E-04

1,3-Dichloropropene

1.25

3,036

3795

0.05



6.2E-04

6.2E-04

Naphthalene

0.25

11,881

2970

0.04



4.9E-04

4.9E-04

1,1,2-Trichloroethane

49

48

2352

0.03



3.9E-04

3.9E-04

Isopropylbenzene
(cumene)

2.2

1,035

2277

0.03



3.7E-04

3.7E-04

Ethylene oxide

7

298

2086

0.03



3.4E-04

3.4E-04

Manganese

10

999

9990

0.13

0.000323

0.0016

3.2E-04

Acrylonitrile

5.6

351

1966

0.02



3.2E-04

3.2E-04

1,2-Dichloropropane
(propylene dichloride)

30

58

1740

0.02



2.9E-04

2.9E-04

Selenium

10

287

2870

0.04

2.00E-04

4.7E-04

2.0E-04

Ethylene dibromide
(1,2-dibromomethane)

50

23

1150

0.01



1.9E-04

1.9E-04

Benzyl chloride

3

291

873

0.01



1.4E-04

1.4E-04

Arsenic

10

126

1260

0.02

1.40E-04

2.1E-04

1.4E-04

Vinyl chloride

2

354

708

0.01



1.2E-04

1.2E-04

E-31	24


-------
3. Results

Name

Residence
Time

(days)

2011 NEI
Emissions
v2 (tons
per year)

Emissions x
Residence
Time (tons)

Fraction
of C2CI4

Measured
Remote
Cone 2011
(|jg/m3)

Estimated
Remote
Cone 2011
(|jg/m3)

Best
2011 RCE
estimate
(|ig/m3)

Mercury (gaseous)

365

56.0

20440

0.26

1.00E-04

3.4E-03

1.0E-04

Nickel

10

943

9430

0.12

1.00E-04

0.0015

1.0E-04

Propanal

(propionaldehyde)

0.1

5,960

596

0.01



9.8E-05

9.8E-05

Antimony

10

40.0

400

0.01



6.6E-05

6.6E-05

Cobalt

10

57

570

0.01

4.10E-05

9.4E-05

4.1E-05

Cadmium

10

29

290

0.00

3.80E-05

4.8E-05

3.8E-05

Vinyl acetate

0.25

857

214

0.00



3.5E-05

3.5E-05

Beryllium

10

8

79

0.00

8.50E-06

1.3E-05

8.5E-06

PAHJL92 E3a

10

3

32

0.00



5.2E-06

5.2E-06

Chromium VI

3

76

229

0.00

1.50E-06

3.8E-05

1.5E-06

l,2-Dibromo-3-
chloropropane

36

0.22

8

0.00



1.3E-06

1.3E-06

PAH_114 Ela

10

1

7

0.00



1.1E-06

1.1E-06

PAH_101 E2a

10

0

1

0.00



1.3E-07

1.3E-07

PAHJL76 E2a

10

0

1

0.00



9.7E-08

9.7E-08

Hydrazine

0.25

1

0

0.00



5.7E-08

5.7E-08

Benzidine

1

0.15

0

0.00



2.5E-08

2.5E-08

" Background concentrations for PAHs are not used because of the uncertainty - the residence time of 10 days is based on a PM2.5 residence time and is likely an overestimate.

E-32

25


-------
E-33


-------
4. Discussion

4. Discussion

4.1 Cancer Risk and Noncancer Hazard

The best 2011 RCEs displayed in Table 7 were used to estimate Northern Hemisphere cancer risk
levels from background concentrations. Cancer risk levels were obtained from the EPA Office of Air
Quality Planning and Standards (OAQPS) dose-response assessment value and a mutagenicity
adjustment factor for cancer risk applied in the HAPEM model in NATA.10,11 Total remote background
cancer risk is approximately 16-in-a-million for all pollutants examined; those shown in Figure 1
account for about 95% of the total. Of the pollutants listed in Table 7, only four had estimated
background cancer risk values above 1-in-a-million. Of these, formaldehyde, carbon tetrachloride,
and the polycyclic aromatic hydrocarbon (PAH) group PAH_176 E3 dominated the total cancer risk, as
shown in Figure 1. However, it is important to note that acetaldehyde, formaldehyde, and PAH RCEs
generated in this work will not be used in NATA 2011. Acetaldehyde and formaldehyde are covered
by the CMAQ model, while the PAH RCEs were based on unreliable residence time (10 days, which is
the same as PM2.5). Thus the actual NATA 2011 risk from background will likely be lower than those
estimated here.

Formaldehyde and acetaldehyde are both photochemically produced from precursor volatile organic
compounds (VOC) throughout the atmosphere. These pollutants are not transported across the
United States; carbonyls are constantly being created and destroyed through atmospheric photo-
oxidation processes. The RCE values for these pollutants are representative of the concentrations in
areas remote from local and regional VOC emissions. However, since these pollutants are used in
CMAQ, and an average secondary production estimate is being applied to non-CMAQ areas (Alaska,
Hawaii, Puerto Rico, and the Virgin Islands) it was decided not to apply these background estimates
to avoid double counting.

Carbon tetrachloride is a globally distributed pollutant that has been phased out as a result of the
Montreal Protocol to reduce chlorofluorocarbons and their impact on the stratospheric ozone layer.
Its multi-decade-long atmospheric residence time means that concentrations will decline only slowly
over time.

PAH remote concentration estimates are based on emissions from the 2011 NEI and an atmospheric
residence time of ten days. There is significant uncertainty in the residence time estimate, as this
assumes that the PAHs are in the particulate phase in particles of less than 2.5 micrometer
aerodynamic diameter. The emissions-based estimates were applied to 48 individual PAH species;
these were summed to the PAH risk group level for use in NATA 2011. Within the PAH_176 E3 group,

10	v^w,?,eD/iqcv/r€:ia/dc;e--'ej:x.:e;ax:ated--exocr:;r>a.:>:arciur:-.;i;r-::>c.fi—ts.

11	vvwvv/jnvn^iov/fex/dovv'skjnrldi;,;-!!.!'"!- c-xoosi,'e- mode!-' era

E-34

27


-------
4. Discussion

which has a total RCE risk of 2.8-in-a-million, methylchrysene is contributing about 77% of the
background risk, and benzo[a]pyrene is responsible for the other 23%. For the PAH_880 E5 group, 20
PAHs are included, of which fluoranthene, acenaphthylene, benzo[g,h,i]perylene, and
benzo[c]phenanthrene each contribute more than 0.1-in-a-million risk to the total background risk.
Due to the uncertainty in the approach, the emissions-based background was not used; instead, a
value of 0 was used. This may result in an underestimated risk from transported and background
PAHs.

Benzene has a background risk of 0.9-in-a-million. This estimate is based on annual mean
measurements at a remote network and is consistent with previous remote concentration estimates.
Arsenic has a background risk of about 0.6-in-a-million. This estimate is based on ambient
measurements from National Air Toxics Trends Stations (NATTS). Since most of the NATTS locations
are urban, this RCE may be skewed high.

Figure 1. Remote Northern Hemisphere estimates of cancer risk based on concentration
estimates from Table 7. PAH categories are consistent with groupings used in NATA 2011. Note
that these estimates are not directly applied to final NATA 2011 background estimates.

Noncancer hazard quotients (HQs) were also calculated for the RCEs. Acrolein dominates remote
concentration hazards, with a HQ of 0.8. This estimate is based on a literature estimate; emissions-

E-35

28


-------
4. Discussion

based estimates are far lower but are unable to capture secondary formation of acrolein from
1,3-butadiene photo-oxidation.

Noncancer hazard quotients for all other pollutants were below 0.05. Formaldehyde, acetaldehyde,
and chloromethane all have HQs between 0.01 and 0.05.

4.2 Spatial Estimates of Risk

In the initial approach to estimating background concentrations, two methods were used to estimate
the spatial gradients in background concentrations that are expected to result from regional
transport and emissions of pollutants. In the first approach, ambient-based measurements were used
to estimate spatial variability in counties with monitoring stations (see Section 2.1.2). In the second
approach, the 2011 NEI v2.0 was used to generate emissions-based gradients in expected
background concentrations. This approach is described in detail in Appendix A. This emissions-based
approach summed emissions from counties within a predetermined buffer distance (<500 km) to
estimate the relative impact of nearby emissions on that county for every pollutant. An example of
the resulting emissions-based gradient map is shown in Figure 2.

The ambient-based approach covers only a very small fraction of U.S. counties due to the limited
number of ambient measurement sites (<200 out of -3200). To extrapolate the results to other
counties, we attempted to use the ambient-based county measurements in a multipoint regression
with county-based normalized emissions gradients. These two data sets could be used to infer what
background concentrations for the counties without measurements should be.

E-36

29


-------
4. Discussion

Figure 2 Normalized emissions-based gradient map for arsenic emissions. Counties colored
red are expected to have the highest average regional background concentrations; blue
counties have the lowest expected regional impacts.

Figure 3 shows regression examples for benzene, arsenic, and carbon tetrachloride, three of the most
important cancer risk pollutants. The x-axis (normalized emissions) shows the county emissions-
based estimates on a scale of 0 to 1. The y-axis (average concentration background) shows the
ambient national network county estimates in units of fxg/rrr. A regression line is fit to each data set,
anchored so that the y-intercept must cross at the best remote concentration estimate value from
Table 7. In each of these three cases, and in most cases overall, there appears to be no statistically
significant relationship between the emissions-based and ambient-based county estimates. For
benzene, one of the best measured and characterized air toxics in the United States, Figure 3 shows
that low emissions-based method counties have a huge range of background concentrations and the
high emissions-based counties do not have high background concentrations. In other words, there is
no relationship between the two methods. This poor result could be because of the measurement
uncertainty and variability associated with 10th percentile concentrations, or because the emissions-
based method does not account for prevailing winds or unrealistic transport distances. Regardless, it
is clear that the two methods were incompatible and that predicting spatial variability in regional
background concentrations would be based on a method with no statistical backing.

E-37

30


-------
4. Discussion

After reviewing these results, the EPA project team decided that a method that attempted only to
characterize the remote concentration estimates would be more scientifically and statistically justified
than a method that also attempted to predict spatial variability within regional background
concentrations. Thus, the approach used in Section 2 was adopted.

Arsenic (PM10) STF/LC

y = 0.00 04348157x+2e-04

Benzene

y = 1.419779x+0.12

d^o	o

o°°J° *o
6b«5b °°o8
°/oc °

Normalized Emissions

Normalized Emissions

Carbon tetrachloride

y=-0.1391613x+0.55

0.04 0.06 0.08
Normalized Emissions

Figure 3. Scatter plots and linear regressions of emissions-based county gradients and
ambient network concentrations for arsenic (top left), benzene (top right), and carbon
tetrachloride (bottom). The y-intercepts were forced through the best available RCE from the
remote network approach.

E-38

31


-------
U	;

4. Discussion

Each of the methods for estimating background concentrations has different levels of
uncertainty. The most certain estimates are those from the remote measurement networks, followed
by the ambient measurement networks, and then by literature values. The emissions estimates are
the most uncertain. Using round numbers, our best estimates for the relative uncertainties are:

•	Remote network estimates - highly certain ±25%

•	Ambient network estimates - moderate certainty ±50%

•	Literature estimates - moderate to low certainty ±50 to 75%

•	Emissions estimates - very low certainty ±100%

E-39


-------
5. Summary

5. Summary

Remote concentration estimates were determined for 62 pollutants (with PAHs in groups of
pollutants). Remote concentration estimates were generated using four distinct technical approaches:
remote networks, ambient national network, literature-based, and emissions-based. Each of these
approaches was applied to the target pollutants to the extent possible.

Key pollutants with remote concentration estimates exceeding the 1-in-a-million risk level include
formaldehyde, carbon tetrachloride, and two groups of PAHs. Remote concentration risk levels for
benzene and arsenic were just below 1-in-a-million. Of the 62 pollutants, none had remote
concentrations that resulted in a hazard quotient greater than 1.

Spatially varying regional background estimates were generated but did not appear statistically
justified, as indicated by regressions between the emissions-based and ambient-based background
approaches. Thus, spatially invariant background concentrations were chosen as a more reasonable
approach for NATA 2011.

E-40

33


-------
E-41


-------
6. References

6. References

Bortnick S.M., Coutant B.W., and Biddle B.M. (2003) Estimate background concentrations for the national-
scale air toxics assessment. Final technical report prepared for the U.S. Environmental Protection
Agency, Research Triangle Park, NC, by Battelle, Columbus, OH, Contract No. 68-D-02-061, Work
Assignment 1-03, June.

Hyslop N.P. and White W.H. (2011) Identifying sources of uncertainty from the inter-species covariance of
measurement errors. Environ. Sci. Technoi, 45(9), 4030-4037, doi: 10.1021/esl02605x. Available at

McCarthy M.C., Hafner H.R., and Montzka S.A. (2006) Background concentrations of 18 air toxics for North
America. J. Air and Waste Manag. Assoc., 56, 3-11, (STI-903550-2589), January. Available at

McCarthy M.C., Rubin J.I., Penfold B.M., and Hafner H.R. (2008) Estimation of background concentrations
for NATA 2002. Draft final report prepared for the U.S. Environmental Protection Agency, Research
Triangle Park, NC, by Sonoma Technology, Inc., Petaluma, CA, STI-906206.05-3291-DFR, January.

Montzka S.A., Butler J.H., Elkins J.W., Thompson T.M., Clarke A.D., and Lock L.T. (1999) Present and future
trends in the atmospheric burden of ozone-depleting halogens. Nature, 398, 690-694.

Montzka S.A., Dlugokencky E.J., and Butler J.H. (2011) Non-C02 greenhouse gases and climate change.
Nature, 476(7358), 43-50, doi: 10.1038/naturel0322, August 3.

Prinn R.G., Weiss R.F., Fraser P.J., Simmonds P.G., Cunnold D.M., Alyea F.N., O'Doherty S., Salameh P., Miller
B.R., Huang J., Wang R.H.J., Hartley D.E., Harth C., Steele L.P., Sturrock G., Midgley P.M., and McCulloch
A. (2000) A history of chemically and radiatively important gases in air deduced from
ALE/GAGE/AGAGE. J. Geophys. Res, 105,17,751-717,792.

Rosenbaum A.S., Axelrad D.A., Woodruff T.J., Wei Y.H., Ligocki M.P., and Cohen J.P. (1999) National
estimates of outdoor air toxics concentrations. J. Air Waste Manage., 49,1138-1152, (10), Oct.

Woodruff T.J., Axelrad D.A., Caldwell J., Morello-Frosch R., and Rosenbaum A. (1998) Public health
implications of 1990 air toxics concentrations across the United States. Environ. Heaith Persp., 106,
245-251, (5), May.

E-42

35


-------
E-43


-------
Appendix A

Appendix A: Emissions-Based Method

The emissions-based method was developed to estimate the spatial variability in regional
background concentrations on the basis of spatial differences in county-level emissions. This
approach is best applied to pollutants that are emitted directly by a few large sources and that have
short residence times in the atmosphere. The emissions-based method consists of four general steps:

1.	Import emissions inventory data into a geographic information system (GIS) and create
emissions density maps.

2.	Apply a spatial weighting scheme for deriving emissions gradients.

3.	Normalize the emissions gradients.

4.	Convert emissions gradient values to background concentration values.

The emissions-based method uses GIS technology to spatially weight and distribute county-level
emissions estimates for each pollutant based on its residence time and air parcel transport potential.
These county-level emissions gradient values are then post-processed using lower- and upper-
bound anchor points to convert emissions values to background concentrations.

Import Emission Inventory Data into a GIS and Create

The 2011 county-level NEI data were imported into a GIS, and county-level emissions density maps
were generated. Because the NEI data consist of a single emissions value for each county by
pollutant, it is necessary to spatially distribute the emissions values across county boundaries to
account for pollutant transport. To address this, emissions inventory data were spatially weighted and
distributed across county boundaries using a distance-residence time weighting scheme for each
pollutant. To account for differences in pollutant lifetimes or residence times (i.e., some pollutants
remain in the air longer than others), a weighting function was derived and applied within the GIS to
create emissions gradients for each pollutant. As an example, Figure A-l shows the countywide 2011
NEI data for ethylene dibromide. The methodology figures are based on the previous report and
have not been altered for this report.

Development of Spatial Weighting Scheme for Deriving

The dispersion and dilution assumptions in a Gaussian plume dynamics model lead to concentration
dilution of multiple orders of magnitude within a few kilometers. This approach is appropriate for
modeling plume movement away from a discrete point source; however, it is less useful for modeling

E-44	A.l


-------
Appendix A

county-level transport Based on an average wind speed of 3 m/s, air parcel transport is
approximately 250 km per day. Consequently, significant transport can occur over two days for
pollutants with long residence times. While pollution can be transported farther distances, it is likely
that emissions contributions from counties at distances greater than 500 km will be relatively small.

Figure A-l. Countywide ethylene dibromide emissions (tons/year) as reported in the 2011
NEI. Each county is colored according to the magnitude of its total emissions, with tan
indicating no reported emissions.

Residence time is another factor contributing to pollutant concentrations over time. Chemical or
physical removal competes with dilution if the residence time is on the same order of magnitude as
the transport time. If pollutants are removed at rates much slower than they are diluted, they can be
treated as inert on the timescale of a few days. In contrast, if pollutants are removed on the timescale
of a few hours, the removal processes compete with dilution, and the observed gradient in
concentrations is sharper.

For each pollutant of interest, buffer distances based on the residence time and dilution factors were
calculated. For the dilution factor of a completely inert pollutant with no deposition, a maximum
buffer distance of 500 km was assumed to be the range of influence. While pollution can be
transported around the globe, most point source emissions of pollution are fully diluted well within



Normalized Emissions

E-45

A. 2


-------
Appendix A

500 km. This initial 500-km distance was then reduced as a function of the pollutant residence time.
Equation A-l defines the drop-off as a function of distance:

1.5 1

where Bx is buffer distance and t is residence time in days. The exponential equation 1.5A(0.5/t) was
empirically selected to provide buffer distances that reflect our expectations. Table A-l summarizes
the buffer distances computed using Equation A-l. Metals in particulate matter were assigned a 10-
day residence time, based on estimated residence times of PM2.5 in the atmosphere. Because
emissions are not broken out by particle size fractions in the NEI, these estimates likely overestimate
the range of influence of particulate metals. This approach was chosen because it is more
conservative and protective of human health.

Table A-l. Calculated buffer distances for example HAPs of interest.

Pollutants

Buffer Distance (km)

Hydrazine

222

Chromium (VI)

498

Ethylene dichloride (1,2-dichloroethane)

498

Naphthalene

222

1,2-Dichloropropane (propylene dichloride)

496

Ethylene oxide

485

Acrylonitrile

482

Cadmium

490

Beryllium

490

Ethylene dibromide (1,2-dibromomethane)

498

Benzidine

409

Quinoline

499

Bis(2-ethylhexyl)phthalate

500

l,2-Dibromo-3-chloropropane

497

Trichloroethene (trichloroethylene)

483

1,1,2,2-Tetrachloroethane

499

Vinyl chloride

451

Chloroprene

40

Acrolein

333

1,3-Dichloropropene

425

E-46

A. 3


-------
Appendix A

To form a conceptual model of how the buffer distances are applied, consider chloroprene and
cadmium. Chloroprene has a relatively short residence time and a resulting buffer distance of 40 km.
Assume that the emissions point source for chloroprene is located at the county centroid. As the
distance from the county centroid increases, the concentration of chloroprene rapidly decreases due
to dilution and chemical reaction. When the distance from the county centroid equals 40 km, it is
assumed that the concentration of chloroprene equals zero. Therefore, the contribution of
chloroprene from one county to another is likely to be small, because this pollutant has a relatively
short residence time. In contrast, cadmium has a much longer residence time and a buffer distance
of 490 km. The concentration of cadmium does not reach zero until the distance from the county
centroid is 490 km; therefore, the contribution or influence of cadmium from one county to an
adjacent one could be relatively high.

For each pollutant, the buffer distance (Bx) was used in Equation A-2 to estimate the fraction of
emissions contribution from a particular county as the distance from the county centroid increases:

f1 = [(Bx-r)/Bx)]2	(A-2)

where r is the distance between county centroids, Bx is the distance from the county centroid where
the pollutant concentration equals zero, and fa is the fraction of emissions contribution from a
specific county. The resultant value, fh is the fraction of the total emissions of a particular county that
are transported to a nearby county.

Calculation Example

Contribution of chloroprene from County 1, assuming a distance from the centroid of 30 km
(r = 30 km):

fi = [(40 km - 30 km)/40 km )]2 = (0.25)2 = 0.063

Contribution of cadmium from County 1, assuming a distance from the centroid of 30 km
(r = 30 km):

fi = [(490 km - 30 km)/490 km )]2 = (0.94)2 = 0.882

Figure A-2 illustrates the process used to develop and apply the spatial weighting scheme.

E-47

A.4


-------
Appendix A

(1)

(2)

Calculate buffer distances for each pollutant
and create buffers centered on county centroids.

Calculate the distance(s) between all county
centroids within the buffer. Each county centroid
has an associated emissions value representing
total county emissions for a specific pollutant.

(3)

Use the following distance weighting
equation to calculate the fraction of
influence that each adjacent county has on
the center county :

ft = [(Bx - r)/Bx )]2

(4)

Use the following summation equation to
compute the additive influence of each
emission value within the buffer:

(5)

Z f.E»

county

max(ZAO

Spatially distributed emissions values based on the
spatial weighting scheme. Note that red indicates
areas of high emissions influence and blue represents
areas of low influence. Also note that emissions are
higher in the center of the buffer zone because as the
distance from the county centroid increases the pollutant
emissions value decreases as a function of the pollutant
buffer distance (listed in Table 5 by pollutant).

Figure A-2. Illustration of the process used to apply the weighting scheme to spatially
distribute county-level emissions.

Normalize the Emissions Gradients

Circular buffers centered on a county centroid were created within the GIS. The /i values for all
counties were calculated within the GIS, and the combined contribution of each county was summed

E-48

A. 5


-------
Appendix A

for a given buffer region. Equation A-3 was then used to normalize the emissions contributions from
all counties that influence a single county within the buffer zone:

±f,A

Fcounty = 	4		(A"3:

max(X./;/-;)

1

where Fcounty is the county of interest, n is the number of counties with emissions that influence that
county, fn is the fraction emissions value calculated using Equation A-2, £,. is the county emissions
value from the 2011 NEI, x is the number of counties that influence the highest emissions county in
the country, and max indicates the county with the highest emissions in the country for a given
pollutant This calculation is repeated for all counties with reported emissions by pollutant The
weighted emissions values for individual counties were summed and normalized using the county
with the maximum emissions contribution (post-calculation). The resulting Fcounty is a unitless value
between 0 and 1 representing the lowest and highest transport values in the country, respectively.
The normalized Fcounty values were mapped to display the resulting emissions gradient by pollutant
The emissions gradient for each pollutant represents a unitless number corresponding to a range of
emissions values. Figure A-3 shows an example of a normalized emissions gradient field for ethylene
dibromide.

Figure A-3. Final normalized emissions-based gradient map for ethylene dibromide using the
2011 NEIvl.5.

E-49

A. 6


-------
Appendix B

Appendix B: Hexavalent Chromium Ratio
Data

The following data were used to determine the ratio of hexavalent chromium to total chromium. The
ratio was taken as the average of the mean and the median of the last column of the table, and
rounded to the nearest 0.25, so that the value of 1.25% was obtained.

Table 8. Data used to generate the hexavalent chromium to total suspended particulate
chromium ratio.

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

010730023

15-Jul-05

0.00204

4.07E-05

2.00%

010730023

21-Jul-05

0.0032

7.23E-05

2.26%

010730023

27-Jul-05

0.00276

9.97E-05

3.61%

010730023

08-Aug-05

0.00365

7.93E-05

2.17%

010730023

20-Aug-05

0.00257

1.55E-05

0.60%

010730023

13-Sep-05

0.00327

2.99E-05

0.91%

010730023

07-0ct-05

0.00174

1.63E-05

0.94%

010730023

19-Oct-05

0.00576

8.17E-05

1.42%

010730023

12-Nov-05

0.00463

5.12E-05

1.11%

010730023

06-Dec-05

0.00269

1.81E-05

0.67%

010730023

30-Dec-05

0.00436

6.24E-05

1.43%

010730023

ll-Jan-06

0.00489

5.2E-05

1.06%

010730023

23-Jan-06

0.00407

4.855E-05

1.19%

010730023

16-Feb-06

0.00456

3.04E-05

0.67%

010730023

28-Feb-06

0.00528

4.04E-05

0.77%

010730023

24-Mar-06

0.00452

1.59E-05

0.35%

010730023

05-Apr-06

0.0053

0.000192

3.62%

010730023

29-Apr-06

0.00968

0.000166

1.71%

010730023

ll-May-06

0.00456

2.06E-05

0.45%

010730023

23-May-06

0.00485

0.000125

2.58%

E-50

B.l


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

010730023

04-Jun-06

0.00432

2.5E-05

0.58%

010730023

16-Jun-06

0.00685

9.3E-05

1.36%

010730023

28-Jun-06

0.00369

4.58E-05

1.24%

010730028

15-Jul-05

0.00336

2.96E-05

0.88%

010730028

21-Jul-05

0.00417

8.13E-05

1.95%

010730028

27-Jul-05

0.00502

3.8E-05

0.76%

010730028

08-Aug-05

0.00342

6.18E-05

1.81%

010730028

20-Aug-05

0.00504

3.47E-05

0.69%

010730028

13-Sep-05

0.00426

7.61E-05

1.79%

010730028

07-0ct-05

0.00402

3.48E-05

0.87%

010730028

12-Nov-05

0.00294

6.86E-05

2.33%

010730028

24-Nov-05

0.0027

1.76E-05

0.65%

010730028

06-Dec-05

0.00521

5.57E-05

1.07%

010730028

18-Dec-05

0.00324

4.14E-05

1.28%

010730028

ll-Jan-06

0.00568

6.38E-05

1.12%

010730028

04-Feb-06

0.00454

4.6E-06

0.10%

010730028

16-Feb-06

0.00501

3.75E-05

0.75%

010730028

28-Feb-06

0.00764

6.41E-05

0.84%

010730028

24-Mar-06

0.00586

2.4E-05

0.41%

010730028

05-Apr-06

0.00778

8.71E-05

1.12%

010730028

17-Apr-06

0.00654

5.82E-05

0.89%

010730028

29-Apr-06

0.00569

2.15E-05

0.38%

010730028

ll-May-06

0.00594

2.61E-05

0.44%

010730028

23-May-06

0.00577

8.88E-05

1.54%

010730028

04-Jun-06

0.00552

2.31E-05

0.42%

010730028

16-Jun-06

0.00532

5.96E-05

1.12%

010730028

28-Jun-06

0.00637

0.0002

3.14%

010731009

21-Jul-05

0.00144

2.56E-05

1.78%

010731009

08-Aug-05

0.00125

2.26E-05

1.81%

010731009

20-Aug-05

0.00143

1.92E-05

1.34%

010731009

25-Sep-05

0.00128

2.43E-05

1.90%

E-51

B.2


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

010731009

12-Nov-05

0.00144

1.02E-05

0.71%

010731009

06-Dec-05

0.00165

3.9E-06

0.24%

010731009

30-Dec-05

0.00182

3.7E-06

0.20%

010731009

23-Jan-06

0.00311

5.5E-06

0.18%

010731009

16-Feb-06

0.00346

2.54E-05

0.73%

010731009

05-Apr-06

0.00337

1.56E-05

0.46%

010731009

17-Apr-06

0.00284

1.05E-05

0.37%

010731009

29-Apr-06

0.00425

2.57E-05

0.60%

010731009

ll-May-06

0.00365

1.26E-05

0.35%

010731009

04-Jun-06

0.00383

8.8E-06

0.23%

010731009

16-Jun-06

0.00315

5.9E-05

1.87%

010731009

28-Jun-06

0.00269

3.18E-05

1.18%

010736004

21-Jul-05

0.00513

4.5E-05

0.88%

010736004

27-Jul-05

0.00432

9.16E-05

2.12%

010736004

08-Aug-05

0.00199

4.37E-05

2.20%

010736004

20-Aug-05

0.00297

3.29E-05

1.11%

010736004

13-Sep-05

0.00356

4.73E-05

1.33%

010736004

25-Sep-05

0.0025

2.86E-05

1.14%

010736004

12-Nov-05

0.00334

4.25E-05

1.27%

010736004

06-Dec-05

0.00302

0.000104

3.44%

010736004

30-Dec-05

0.00434

3.43E-05

0.79%

010736004

23-Jan-06

0.00247

1.7E-06

0.07%

010736004

16-Feb-06

0.00531

2.52E-05

0.47%

010736004

28-Feb-06

0.0074

6.73E-05

0.91%

010736004

24-Mar-06

0.0109

5.79E-05

0.53%

010736004

05-Apr-06

0.00475

0.000125

2.63%

010736004

17-Apr-06

0.00567

5.2E-05

0.92%

010736004

29-Apr-06

0.00573

0.000198

3.46%

010736004

ll-May-06

0.00446

4.185E-05

0.94%

010736004

23-May-06

0.00533

0.000123

2.31%

010736004

04-Jun-06

0.00998

1.58E-05

0.16%

E-52

B.3


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

010736004

16-Jun-06

0.00551

0.000107

1.94%

010736004

28-Jun-06

0.0133

0.000213

1.60%

060371103

12-Jan-07

0.0015

0.000118

7.87%

060371103

01-Mar-07

0.0042

0.000139

3.31%

060371103

25-Mar-07

0.0038

0.000129

3.39%

060371103

12-May-07

0.0036

0.000137

3.81%

060371103

24-May-07

0.0041

0.000066

1.61%

060371103

05-Jun-07

0.0036

0.000108

3.00%

060371103

17-Jun-07

0.0039

0.000032

0.82%

060371103

ll-Jul-07

0.0039

0.000057

1.46%

060371103

23-Jul-07

0.0049

0.000165

3.37%

060371103

04-Aug-07

0.0036

0.000134

3.72%

060371103

16-Aug-07

0.0057

0.000173

3.04%

060371103

28-Aug-07

0.0057

0.0003235

5.68%

060371103

09-Sep-07

0.0033

0.000043

1.30%

060371103

21-Sep-07

0.0045

0.000194

4.31%

060371103

03-0ct-07

0.0051

0.000103

2.02%

060371103

15-Oct-07

0.0034

0.000198

5.82%

060371103

08-Nov-07

0.0038

0.000074

1.95%

060371103

20-Nov-07

0.0047

0.000029

0.62%

060371103

02-Dec-07

0.0036

0.000087

2.42%

060371103

14-Dec-07

0.0032

0.000196

6.13%

060371103

26-Dec-07

0.0036

0.00013

3.61%

060371103

01-Jan-09

0.0048

0.000106

2.21%

060371103

13-Jan-09

0.0079

0.000297

3.76%

060371103

18-Feb-09

0.0035

0.000097

2.77%

060371103

02-Mar-09

0.0054

0.000188

3.48%

060371103

26-Mar-09

0.0041

0.000063

1.54%

060371103

07-Apr-09

0.0034

0.00008

2.35%

060371103

19-Apr-09

0.0036

0.000094

2.61%

060371103

01-May-09

0.006

0.000057

0.95%

E-53

B.4


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

060371103

13-May-09

0.0051

0.000059

1.16%

060371103

18-Jun-09

0.0044

0.00004

0.91%

060371103

30-Jun-09

0.0033

0.000139

4.21%

060371103

12-Jul-09

0.0033

0.000089

2.70%

060371103

24-Jul-09

0.0056

0.000096

1.71%

060371103

22-Sep-09

0.0059

0.000125

2.12%

060371103

04-0ct-09

0.0037

0.000074

2.00%

060371103

16-Oct-09

0.0077

0.000122

1.58%

060371103

09-Nov-09

0.0059

0.000108

1.83%

060371103

03-Dec-09

0.0055

0.000157

2.85%

060371103

15-Dec-09

0.0034

0.000194

5.71%

060371103

21-Dec-09

0.0032

0.000154

4.81%

060371103

14-Jan-10

0.0056

0.00018

3.21%

060371103

20-Jan-10

0.0015

0.00009

6.00%

060371103

01-Feb-10

0.0052

0.00003

0.58%

060371103

25-Feb-10

0.0034

0.0001

2.94%

060371103

09-Mar-10

0.0015

0.00011

7.33%

060371103

21-Mar-10

0.0046

0.00007

1.52%

060371103

02-Apr-10

0.0037

0.00007

1.89%

060371103

14-Apr-10

0.0038

0.00007

1.84%

060371103

26-Apr-10

0.0032

0.00005

1.56%

060371103

08-May-10

0.0044

0.00005

1.14%

060371103

20-May-10

0.0038

0.00011

2.89%

060371103

01-Jun-10

0.0045

0.00011

2.44%

060371103

13-Jun-10

0.0041

0.00002

0.49%

060371103

25-Jun-10

0.0049

0.00004

0.82%

060371103

07-Jul-10

0.044

0.0001

0.23%

060371103

19-Jul-10

0.0043

0.00011

2.56%

060658001

01-Mar-07

0.0067

0.000145

2.16%

060658001

25-Mar-07

0.0053

0.000185

3.49%

060658001

18-Apr-07

0.0047

0.000132

2.81%

E-54

B.5


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

060658001

16-Aug-07

0.0067

0.00017

2.54%

060658001

22-Aug-07

0.0057

0.000241

4.23%

060658001

28-Aug-07

0.0049

0.0004515

9.21%

060658001

09-Sep-07

0.0038

0.000053

1.39%

060658001

03-0ct-07

0.0069

0.001039

15.06%

060658001

15-Oct-07

0.0015

0.000052

3.47%

060658001

26-Nov-07

0.0065

0.001307

20.11%

060658001

02-Dec-07

0.0015

0.000385

25.67%

060658001

14-Dec-07

0.0015

0.000988

65.87%

060658001

26-Dec-07

0.0033

0.000688

20.85%

060658001

01-Jan-09

0.0043

0.000405

9.42%

060658001

13-Jan-09

0.0015

0.000043

2.87%

060658001

25-Jan-09

0.0015

0.000047

3.13%

060658001

18-Feb-09

0.0034

0.000173

5.09%

060658001

02-Mar-09

0.0047

0.00039

8.30%

060658001

08-Mar-09

0.0015

0.000066

4.40%

060658001

14-Mar-09

0.0031

0.000037

1.19%

060658001

26-Mar-09

0.0039

0.000086

2.21%

060658001

07-Apr-09

0.0049

0.00012

2.45%

060658001

19-Apr-09

0.0051

0.00021

4.12%

060658001

01-May-09

0.0059

0.000066

1.12%

060658001

13-May-09

0.0049

0.000037

0.76%

060658001

25-May-09

0.0042

0.000038

0.90%

060658001

06-Jun-09

0.0035

0.000088

2.51%

060658001

18-Jun-09

0.0045

0.000076

1.69%

060658001

30-Jun-09

0.0055

0.000115

2.09%

060658001

12-Jul-09

0.0036

0.000047

1.31%

060658001

24-Jul-09

0.0053

0.0000785

1.48%

060658001

05-Aug-09

0.0015

0.000223

14.87%

060658001

17-Aug-09

0.0015

0.000046

3.07%

060658001

29-Aug-09

0.0015

0.000163

10.87%

E-55

B.6


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

060658001

10-Sep-09

0.0052

0.00016

3.08%

060658001

22-Sep-09

0.0034

0.000253

7.44%

060658001

04-0ct-09

0.0035

0.000054

1.54%

060658001

16-Oct-09

0.0062

0.000394

6.35%

060658001

28-Oct-09

0.0015

0.000034

2.27%

060658001

09-Nov-09

0.0056

0.000225

4.02%

060658001

21-Nov-09

0.0042

0.000087

2.07%

060658001

03-Dec-09

0.0041

0.000128

3.12%

060658001

15-Dec-09

0.0037

0.000147

3.97%

060658001

27-Dec-09

0.0032

0.000297

9.28%

060658001

08-Jan-10

0.0036

0.00026

7.22%

060658001

20-Jan-10

0.0015

0.00011

7.33%

060658001

01-Feb-10

0.0045

0.0001

2.22%

060658001

13-Feb-10

0.0035

0.0001

2.86%

060658001

25-Feb-10

0.0042

0.00012

2.86%

060658001

09-Mar-10

0.0035

0.00008

2.29%

060658001

21-Mar-10

0.0035

0.00006

1.71%

060658001

02-Apr-10

0.0049

0.00008

1.63%

060658001

14-Apr-10

0.0044

0.00006

1.36%

060658001

26-Apr-10

0.0053

0.00006

1.13%

060658001

08-May-10

0.0057

0.00004

0.70%

060658001

20-May-10

0.0051

0.00009

1.76%

060658001

01-Jun-10

0.0048

0.00004

0.83%

060658001

13-Jun-10

0.0037

0.00006

1.62%

060658001

25-Jun-10

0.0076

0.00015

1.97%

060658001

07-Jul-10

0.0046

0.00007

1.52%

060658001

19-Jul-10

0.0043

0.00007

1.63%

060658001

31-Jul-10

0.0047

0.00006

1.28%

060658001

05-Sep-10

0.0044

0.00004

0.91%

060658001

17-Sep-10

0.0034

0.000035

1.03%

060658001

29-Sep-10

0.0053

0.00005

0.94%

E-56

B.7


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

060658001

10-Dec-10

0.0037

0.00003

0.81%

060658001

22-Dec-10

0.0015

0.00003

2.00%

170314201

28-Jan-05

0.00348

0.0000282

0.81%

170314201

27-Feb-05

0.00281

0.000112

3.99%

170314201

29-Mar-05

0.00341

0.000029

0.85%

170314201

10-Apr-05

0.00254

0.0000227

0.89%

170314201

16-Apr-05

0.00247

0.0000601

2.43%

170314201

22-Apr-05

0.00171

0.0000504

2.95%

170314201

10-May-05

0.00182

0.0000626

3.44%

170314201

16-May-05

0.00159

0.0000423

2.66%

170314201

22-May-05

0.00024

0.000009

3.75%

170314201

15-Jun-05

0.00219

0.0000558

2.55%

170314201

27-Jun-05

0.0033

0.0000507

1.54%

170314201

03-Jul-05

0.00307

0.0000829

2.70%

170314201

15-Jul-05

0.00126

0.0000346

2.75%

170314201

21-Jul-05

0.00127

0.0000456

3.59%

170314201

27-Jul-05

0.0011

0.0000145

1.32%

170314201

02-Aug-05

0.00186

0.0000315

1.69%

170314201

08-Aug-05

0.00218

0.0000312

1.43%

170314201

14-Aug-05

0.00289

0.0000225

0.78%

170314201

20-Aug-05

0.00263

0.0000651

2.48%

170314201

26-Aug-05

0.0043

0.0000229

0.53%

170314201

07-Sep-05

0.00379

0.0000273

0.72%

170314201

25-Sep-05

0.00367

0.000034

0.93%

170314201

ll-Jan-06

0.003

0.0000402

1.34%

170314201

17-Jan-06

0.004

0.0000216

0.54%

170314201

23-Jan-06

0.003

0.00002325

0.77%

170314201

17-May-06

0.004

0.0000522

1.30%

170314201

07-Nov-06

0.004

0.0000495

1.24%

170314201

19-Dec-06

0.004

0.0000397

0.99%

170314201

25-Mar-07

0.003

0.0000055

0.18%

E-57

B.8


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

170314201

12-Apr-07

0.003

0.0000046

0.15%

170314201

24-Apr-07

0.003

0.0000088

0.29%

170314201

18-May-07

0.003

0.0000442

1.47%

170314201

24-May-07

0.003

0.0000494

1.65%

170314201

ll-Jun-07

0.003

0.0000153

0.51%

170314201

05-Jul-07

0.007

0.000307

4.39%

170314201

17-Jul-07

0.003

0.0000122

0.41%

170314201

04-Aug-07

0.003

0.0000168

0.56%

170314201

03-Sep-07

0.002

0.0000097

0.49%

170314201

09-Sep-07

0.002

0.0000234

1.17%

170314201

15-Sep-07

0.002

0.00001675

0.84%

170314201

15-Oct-07

0.003

0.0000285

0.95%

170314201

20-Dec-07

0.005

0.0000272

0.54%

170314201

26-Dec-07

0.004

0.0000102

0.26%

170314201

13-Jan-08

0.003

0.0000079

0.26%

170314201

06-Apr-08

0.004

0.0000226

0.57%

170314201

18-Apr-08

0.003

0.0000193

0.64%

170314201

24-Apr-08

0.005

0.0000558

1.12%

170314201

30-Apr-08

0.004

0.0000204

0.51%

170314201

06-May-08

0.005

0.0000476

0.95%

170314201

30-May-08

0.003

0.0000356

1.19%

170314201

05-Jun-08

0.004

0.0000159

0.40%

170314201

29-Jul-08

0.003

0.0000123

0.41%

170314201

28-Aug-08

0.006

0.0000248

0.41%

170314201

21-Sep-08

0.006

0.0000292

0.49%

170314201

27-Sep-08

0.004

0.0000174

0.44%

170314201

08-Dec-08

0.003

0.0000302

1.01%

170314201

14-Mar-09

0.003

0.0000243

0.81%

170314201

18-Jun-09

0.003

0.0000337

1.12%

170314201

24-Jun-09

0.003

0.0000629

2.10%

170314201

30-Jul-09

0.003

0.0000343

1.14%

E-58

B.9


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

10-Jan-05

0.007575

0.000036

0.48%

261630033

28-Jan-05

0.006205

0.0000055

0.09%

261630033

03-Feb-05

0.0110876

0.0000309

0.28%

261630033

15-Feb-05

0.0115975

0.0000752

0.65%

261630033

21-Feb-05

0.0066257

0.0000165

0.25%

261630033

ll-Mar-05

0.008995

0.0000334

0.37%

261630033

23-Mar-05

0.03338

0.0000805

0.24%

261630033

29-Mar-05

0.015265

0.0000742

0.49%

261630033

04-Apr-05

0.009915

0.0000587

0.59%

261630033

10-Apr-05

0.00548

0.0000464

0.85%

261630033

16-Apr-05

0.0073

0.000146

2.00%

261630033

22-Apr-05

0.006525

0.000102

1.56%

261630033

04-May-05

0.007195

0.0000714

0.99%

261630033

10-May-05

0.014895

0.000126

0.85%

261630033

22-May-05

0.00567

0.0000854

1.51%

261630033

28-May-05

0.005535

0.0000792

1.43%

261630033

03-Jun-05

0.00683

0.0000659

0.96%

261630033

21-Jun-05

0.008405

0.000136

1.62%

261630033

27-Jun-05

0.0155

0.0000902

0.58%

261630033

03-Jul-05

0.034815001

0.0000891

0.26%

261630033

15-Jul-05

0.005995

0.0000418

0.70%

261630033

21-Jul-05

0.00559

0.0000739

1.32%

261630033

27-Jul-05

0.004675

0.0000265

0.57%

261630033

02-Aug-05

0.00579

0.0000514

0.89%

261630033

08-Aug-05

0.008825

0.0000889

1.01%

261630033

26-Aug-05

0.00842

0.0000665

0.79%

261630033

07-Sep-05

0.009725

0.000105

1.08%

261630033

13-Sep-05

0.01208

0.0000619

0.51%

261630033

19-Sep-05

0.00866

0.0000616

0.71%

261630033

25-Sep-05

0.0069

0.0000776

1.12%

261630033

01-Oct-05

0.008396

0.0000861

1.03%

E-59

B.10


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

07-0ct-05

0.005262

0.0000545

1.04%

261630033

13-Oct-05

0.0072485

0.0000787

1.09%

261630033

19-Oct-05

0.0096345

0.000068

0.71%

261630033

31-Oct-05

0.0108525

0.0000604

0.56%

261630033

06-Nov-05

0.008167

0.0000581

0.71%

261630033

12-Nov-05

0.0070885

0.0000765

1.08%

261630033

18-Nov-05

0.012625

0.0000271

0.21%

261630033

24-Nov-05

0.005605

0.00002215

0.40%

261630033

30-Nov-05

0.0062765

0.0000268

0.43%

261630033

06-Dec-05

0.005948

0.0000338

0.57%

261630033

12-Dec-05

0.005207

0.0000387

0.74%

261630033

18-Dec-05

0.004663

0.000058

1.24%

261630033

24-Dec-05

0.005546

0.0000882

1.59%

261630033

05-Jan-06

0.0031204

0.0000604

1.94%

261630033

ll-Jan-06

0.0067323

0.0000415

0.62%

261630033

17-Jan-06

0.0050784

0.00022

4.33%

261630033

23-Jan-06

0.0100253

0.0000197

0.20%

261630033

29-Jan-06

0.0050225

0.0000559

1.11%

261630033

04-Feb-06

0.0031199

0.000064

2.05%

261630033

10-Feb-06

0.0062883

0.0000482

0.77%

261630033

22-Feb-06

0.0109229

0.0000704

0.64%

261630033

28-Feb-06

0.0037052

0.0000242

0.65%

261630033

06-Mar-06

0.0042686

0.0000236

0.55%

261630033

18-Mar-06

0.0057351

0.00003025

0.53%

261630033

24-Mar-06

0.0048841

0.000232

4.75%

261630033

30-Mar-06

0.0086551

0.0000697

0.81%

261630033

05-Apr-06

0.0050755

0.0000344

0.68%

261630033

ll-Apr-06

0.01128215

0.000105

0.93%

261630033

17-Apr-06

0.00471765

0.0000189

0.40%

261630033

23-Apr-06

0.0025276

0.0000578

2.29%

261630033

29-Apr-06

0.0030684

0.0000152

0.50%

E-60

B.ll


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

05-May-06

0.0066617

0.0000333

0.50%

261630033

ll-May-06

0.0048568

0.0000288

0.59%

261630033

17-May-06

0.0057822

0.0000336

0.58%

261630033

23-May-06

0.0064621

0.0000777

1.20%

261630033

29-May-06

0.00468725

0.0000388

0.83%

261630033

04-Jun-06

0.0029205

0.0000259

0.89%

261630033

10-Jun-06

0.0033129

0.0000146

0.44%

261630033

16-Jun-06

0.0138529

0.000116

0.84%

261630033

22-Jun-06

0.004676

0.0000687

1.47%

261630033

28-Jun-06

0.0070246

0.0000789

1.12%

261630033

04-Jul-06

0.00638965

0.000496

7.76%

261630033

10-Jul-06

0.0052803

0.0000636

1.20%

261630033

16-Jul-06

0.00700115

0.00005615

0.80%

261630033

22-Jul-06

0.00404065

0.0000236

0.58%

261630033

28-Jul-06

0.00578725

0.0000518

0.90%

261630033

03-Aug-06

0.0042248

0.00012

2.84%

261630033

09-Aug-06

0.00894825

0.00012

1.34%

261630033

21-Aug-06

0.0084533

0.0000761

0.90%

261630033

27-Aug-06

0.00342715

0.0000333

0.97%

261630033

02-Sep-06

0.00376825

0.000103

2.73%

261630033

08-Sep-06

0.0093528

0.0000609

0.65%

261630033

14-Sep-06

0.00366095

0.0000349

0.95%

261630033

20-Sep-06

0.00569815

0.0000396

0.69%

261630033

02-0ct-06

0.0084389

0.000254

3.01%

261630033

08-0ct-06

0.00659315

0.000108

1.64%

261630033

20-0ct-06

0.0059855

0.00006525

1.09%

261630033

26-Oct-06

0.0103236

0.00016

1.55%

261630033

07-Nov-06

0.00494715

0.00011515

2.33%

261630033

13-Nov-06

0.00494715

0.00001565

0.32%

261630033

25-Nov-06

0.00971735

0.0000556

0.57%

261630033

01-Dec-06

0.00413425

0.0000205

0.50%

E-61

B.12


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

13-Dec-06

0.0070503

0.00002335

0.33%

261630033

19-Dec-06

0.0056269

0.0000125

0.22%

261630033

25-Dec-06

0.0031296

0.00003685

1.18%

261630033

31-Dec-06

0.00572405

0.0000235

0.41%

261630033

06-Jan-07

0.00262085

0.0000043

0.16%

261630033

12-Jan-07

0.0082493

0.0000532

0.64%

261630033

18-Jan-07

0.00732745

0.0000319

0.44%

261630033

24-Jan-07

0.0045273

0.00001565

0.35%

261630033

30-Jan-07

0.0049467

0.0000105

0.21%

261630033

ll-Feb-07

0.0080771

0.0000173

0.21%

261630033

17-Feb-07

0.0035706

0.0000193

0.54%

261630033

23-Feb-07

0.0039646

0.0000105

0.26%

261630033

01-Mar-07

0.0022323

0.0000151

0.68%

261630033

07-Mar-07

0.00509755

0.0000158

0.31%

261630033

13-Mar-07

0.0122883

0.000133

1.08%

261630033

19-Mar-07

0.00958605

0.00002665

0.28%

261630033

25-Mar-07

0.0036816

0.0000263

0.71%

261630033

31-Mar-07

0.00320865

0.0000182

0.57%

261630033

06-Apr-07

0.0037542

0.0000118

0.31%

261630033

12-Apr-07

0.0068328

0.0000315

0.46%

261630033

18-Apr-07

0.00597985

0.0000196

0.33%

261630033

24-Apr-07

0.0082121

0.0000511

0.62%

261630033

30-Apr-07

0.0050975

0.0000188

0.37%

261630033

06-May-07

0.0032916

0.0000071

0.22%

261630033

12-May-07

0.00392465

0.000012

0.31%

261630033

18-May-07

0.0061486

0.0000356

0.58%

261630033

24-May-07

0.0087943

0.0000929

1.06%

261630033

30-May-07

0.01143405

0.000113

0.99%

261630033

05-Jun-07

0.0031619

0.0000174

0.55%

261630033

ll-Jun-07

0.0075505

0.000037

0.49%

261630033

17-Jun-07

0.0037399

0.0000123

0.33%

E-62

B.13


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

23-Jun-07

0.00633665

0.0000506

0.80%

261630033

29-Jun-07

0.0050638

0.000092

1.82%

261630033

05-Jul-07

0.0099178

0.000208

2.10%

261630033

ll-Jul-07

0.0089198

0.00001785

0.20%

261630033

17-Jul-07

0.0053044

0.0000369

0.70%

261630033

23-Jul-07

0.0095315

0.0000733

0.77%

261630033

29-Jul-07

0.0028393

0.0000218

0.77%

261630033

04-Aug-07

0.0036665

0.0000122

0.33%

261630033

10-Aug-07

0.004089

0.0000192

0.47%

261630033

16-Aug-07

0.0047761

0.0000143

0.30%

261630033

03-Sep-07

0.0039197

0.00001

0.26%

261630033

09-Sep-07

0.003146

0.0000459

1.46%

261630033

15-Sep-07

0.0026065

0.0000111

0.43%

261630033

21-Sep-07

0.0091525

0.0000933

1.02%

261630033

27-Sep-07

0.0046416

0.0000289

0.62%

261630033

03-0ct-07

0.005981

0.0000272

0.45%

261630033

06-0ct-07

0.005018

0.0000261

0.52%

261630033

09-0ct-07

0.006514

0.0000452

0.69%

261630033

21-Oct-07

0.0064791

0.0000363

0.56%

261630033

27-Oct-07

0.0036747

0.0000286

0.78%

261630033

02-Nov-07

0.011796

0.000104

0.88%

261630033

08-Nov-07

0.0073626

0.00006955

0.94%

261630033

14-Nov-07

0.00491865

0.0000085

0.17%

261630033

26-Nov-07

0.0087624

0.0000771

0.88%

261630033

02-Dec-07

0.00757165

0.000114

1.51%

261630033

08-Dec-07

0.00290345

0.0000052

0.18%

261630033

14-Dec-07

0.0058518

0.0000094

0.16%

261630033

20-Dec-07

0.0035523

0.0000265

0.75%

261630033

26-Dec-07

0.0074522

0.0000269

0.36%

261630033

01-Jan-08

0.0021103

0.0000207

0.98%

261630033

07-Jan-08

0.00776675

0.0000895

1.15%

E-63

B.14


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

13-Jan-08

0.00263115

0.0000218

0.83%

261630033

19-Jan-08

0.0069021

0.0000154

0.22%

261630033

25-Jan-08

0.00689135

0.00002345

0.34%

261630033

31-Jan-08

0.0056087

0.0000118

0.21%

261630033

06-Feb-08

0.0020398

0.0000577

2.83%

261630033

18-Feb-08

0.0071664

0.0000163

0.23%

261630033

24-Feb-08

0.0068614

0.0000405

0.59%

261630033

07-Mar-08

0.00454905

0.0000129

0.28%

261630033

13-Mar-08

0.00700795

0.0000171

0.24%

261630033

19-Mar-08

0.0036055

0.0000262

0.73%

261630033

25-Mar-08

0.01249485

0.0000499

0.40%

261630033

06-Apr-08

0.00341975

0.0000068

0.20%

261630033

12-Apr-08

0.0036005

0.0000106

0.29%

261630033

18-Apr-08

0.01058655

0.000116

1.10%

261630033

24-Apr-08

0.0134431

0.0000972

0.72%

261630033

30-Apr-08

0.0082923

0.0000658

0.79%

261630033

06-May-08

0.00720835

0.0000643

0.89%

261630033

12-May-08

0.0039805

0.0000364

0.91%

261630033

18-May-08

0.0041587

0.0000177

0.43%

261630033

24-May-08

0.00435555

0.0000306

0.70%

261630033

30-May-08

0.01394445

0.000145

1.04%

261630033

05-Jun-08

0.01139835

0.000046

0.40%

261630033

ll-Jun-08

0.00839205

0.0000337

0.40%

261630033

17-Jun-08

0.0060467

0.0000164

0.27%

261630033

23-Jun-08

0.007937

0.000105

1.32%

261630033

05-Jul-08

0.00944635

0.000392

4.15%

261630033

ll-Jul-08

0.00784415

0.0000328

0.42%

261630033

17-Jul-08

0.01200845

0.0000669

0.56%

261630033

29-Jul-08

0.00836735

0.0000683

0.82%

261630033

10-Aug-08

0.00291315

0.0000049

0.17%

261630033

22-Aug-08

0.0073331

0.000075

1.02%

E-64

B.15


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

28-Aug-08

0.00407345

0.0000306

0.75%

261630033

03-Sep-08

0.01224205

0.0000838

0.68%

261630033

09-Sep-08

0.0042144

0.000039

0.93%

261630033

15-Sep-08

0.00446255

0.0000181

0.41%

261630033

21-Sep-08

0.0030254

0.0000065

0.21%

261630033

27-Sep-08

0.00515685

0.0000353

0.68%

261630033

03-0ct-08

0.0052431

0.0000406

0.77%

261630033

09-0ct-08

0.0074004

0.0000188

0.25%

261630033

15-Oct-08

0.0133567

0.000132

0.99%

261630033

21-Oct-08

0.00618275

0.0000139

0.22%

261630033

27-Oct-08

0.00618555

0.0000099

0.16%

261630033

02-Nov-08

0.0022856

0.0000207

0.91%

261630033

08-Nov-08

0.0065656

0.0000225

0.34%

261630033

14-Nov-08

0.0060115

0.000111

1.85%

261630033

26-Nov-08

0.0037806

0.0000033

0.09%

261630033

02-Dec-08

0.0063334

0.0000084

0.13%

261630033

08-Dec-08

0.00391805

0.0000312

0.80%

261630033

26-Dec-08

0.00228905

0.0000216

0.94%

261630033

01-Jan-09

0.00302505

0.000372

12.30%

261630033

07-Jan-09

0.00194745

0.0000103

0.53%

261630033

13-Jan-09

0.0025347

0.0000142

0.56%

261630033

25-Jan-09

0.0037742

0.00001915

0.51%

261630033

31-Jan-09

0.00513625

0.0000219

0.43%

261630033

06-Feb-09

0.006904

0.0000278

0.40%

261630033

24-Feb-09

0.0040371

0.0000126

0.31%

261630033

08-Mar-09

0.0023407

0.0000288

1.23%

261630033

14-Mar-09

0.0053647

0.0000262

0.49%

261630033

20-Mar-09

0.0086397

0.0000885

1.02%

261630033

26-Mar-09

0.00506635

0.0000183

0.36%

261630033

01-Apr-09

0.0089369

0.0000405

0.45%

261630033

19-Apr-09

0.0020641

0.0000088

0.43%

E-65

B.16


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

25-Apr-09

0.0110231

0.0000758

0.69%

261630033

07-May-09

0.0062342

0.000036

0.58%

261630033

13-May-09

0.0046832

0.000317

6.77%

261630033

19-May-09

0.0071426

0.0000865

1.21%

261630033

31-May-09

0.002204

0.00001925

0.87%

261630033

24-Jun-09

0.00577255

0.0000577

1.00%

261630033

30-Jun-09

0.0020965

0.0000181

0.86%

261630033

06-Jul-09

0.00457115

0.0000211

0.46%

261630033

12-Jul-09

0.0018438

0.0000082

0.44%

261630033

24-Jul-09

0.004156

0.0000392

0.94%

261630033

30-Jul-09

0.00377575

0.000048

1.27%

261630033

05-Aug-09

0.0058714

0.0000224

0.38%

261630033

ll-Aug-09

0.0058233

0.0000173

0.30%

261630033

17-Aug-09

0.01014465

0.0000402

0.40%

261630033

04-Sep-09

0.00984245

0.000026

0.26%

261630033

10-Sep-09

0.0039165

0.0000054

0.14%

261630033

16-Sep-09

0.00372635

0.000024

0.64%

261630033

22-Sep-09

0.00403935

0.0000596

1.48%

261630033

28-Sep-09

0.0037259

0.0000374

1.00%

261630033

22-Oct-09

0.0089921

0.0000705

0.78%

261630033

28-Oct-09

0.0064514

0.0000317

0.49%

261630033

03-Nov-09

0.00428915

0.0000113

0.26%

261630033

09-Nov-09

0.00741965

0.0000516

0.70%

261630033

15-Nov-09

0.0033398

0.0000141

0.42%

261630033

21-Nov-09

0.00323275

0.000126

3.90%

261630033

27-Nov-09

0.00284575

0.0000145

0.51%

261630033

03-Dec-09

0.0023493

0.0000189

0.80%

261630033

09-Dec-09

0.0055543

0.0000711

1.28%

261630033

21-Dec-09

0.0028519

0.0000182

0.64%

261630033

14-Jan-10

0.0134654

0.000081

0.60%

261630033

20-Jan-10

0.0030915

0.0000177

0.57%

E-66

B.17


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

26-Jan-10

0.0066768

0.00002165

0.32%

261630033

01-Feb-10

0.0064505

0.00005

0.78%

261630033

19-Feb-10

0.0037339

0.0000145

0.39%

261630033

25-Feb-10

0.0025884

0.0000187

0.72%

261630033

03-Mar-10

0.003534

0.0000192

0.54%

261630033

09-Mar-10

0.0115973

0.000138

1.19%

261630033

15-Mar-10

0.00270175

0.0000262

0.97%

261630033

21-Mar-10

0.0021123

0.0000091

0.43%

261630033

27-Mar-10

0.0024709

0.000015

0.61%

261630033

02-Apr-10

0.0092247

0.000125

1.36%

261630033

08-Apr-10

0.00361325

0.0000307

0.85%

261630033

14-Apr-10

0.00529515

0.0000546

1.03%

261630033

20-Apr-10

0.009515

0.000112

1.18%

261630033

26-Apr-10

0.00283225

0.0000313

1.11%

261630033

02-May-10

0.00503465

0.0000799

1.59%

261630033

14-May-10

0.0042193

0.0000438

1.04%

261630033

20-May-10

0.00542165

0.0000712

1.31%

261630033

26-May-10

0.0084684

0.0000535

0.63%

261630033

07-Jun-10

0.0041909

0.0000261

0.62%

261630033

13-Jun-10

0.00230345

0.0000477

2.07%

261630033

19-Jun-10

0.0042031

0.0000349

0.83%

261630033

25-Jun-10

0.00648495

0.0000512

0.79%

261630033

01-Jul-10

0.00425045

0.0000425

1.00%

261630033

07-Jul-10

0.00618485

0.0000499

0.81%

261630033

13-Jul-10

0.00563975

0.0000647

1.15%

261630033

19-Jul-10

0.0033244

0.000032

0.96%

261630033

25-Jul-10

0.0021857

0.00003195

1.46%

261630033

31-Jul-10

0.0045473

0.0000423

0.93%

261630033

06-Aug-10

0.0074914

0.0000206

0.27%

261630033

12-Aug-10

0.00444175

0.0000367

0.83%

261630033

18-Aug-10

0.0044524

0.0000289

0.65%

E-67

B.18


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

261630033

24-Aug-10

0.00345765

0.0000323

0.93%

261630033

05-Sep-10

0.0045117

0.0000312

0.69%

261630033

ll-Sep-10

0.003195

0.0000537

1.68%

261630033

17-Sep-10

0.00462125

0.000049

1.06%

261630033

29-Sep-10

0.0086121

0.0000878

1.02%

261630033

05-Oct-10

0.00424295

0.0000245

0.58%

261630033

ll-Oct-10

0.0082004

0.0000446

0.54%

261630033

23-Oct-lO

0.0102699

0.000154

1.50%

261630033

04-Nov-10

0.0058438

0.0000116

0.20%

261630033

10-Nov-lO

0.0029787

0.0000343

1.15%

261630033

16-Nov-10

0.0072548

0.000099

1.36%

261630033

22-Nov-10

0.00786985

0.000124

1.58%

261630033

28-Nov-10

0.0046147

0.0000537

1.16%

261630033

04-Dec-10

0.002488

0.0000146

0.59%

261630033

10-Dec-10

0.00705425

0.000061

0.86%

261630033

16-Dec-10

0.0035897

0.0000415

1.16%

261630033

22-Dec-10

0.0018619

0.0000209

1.12%

261630033

28-Dec-10

0.00493515

0.0000324

0.66%

450250001

19-Jan-08

0.001

0.000018

1.80%

450250001

12-Feb-08

0.0005

0.0000039

0.78%

450250001

13-Mar-08

0.0015

0.0000064

0.43%

450250001

24-Apr-08

0.002

0.0000025

0.13%

450250001

30-Apr-08

0.0015

0.0000079

0.53%

450250001

18-May-08

0.0025

0.0000036

0.14%

450250001

30-May-08

0.003

0.0000051

0.17%

450250001

05-Jul-08

0.008

0.0000133

0.17%

450250001

23-Jul-08

0.0055

0.0000156

0.28%

450250001

29-Jul-08

0.003

0.000003

0.10%

450250001

10-Aug-08

0.001

0.0000046

0.46%

450250001

09-Sep-08

0.003

0.0000127

0.42%

450250001

15-Sep-08

0.002

0.0000098

0.49%

E-68

B.19


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

510870014

03-0ct-08

0.00221

0.0000046

0.21%

510870014

14-Nov-08

0.00233

0.000008

0.34%

510870014

13-Jan-09

0.00312

0.000013

0.42%

510870014

20-Mar-09

0.00176

0.0000192

1.09%

510870014

06-Jul-09

0.00171

0.0000134

0.78%

510870014

12-Jul-09

0.0015

0.0000144

0.96%

510870014

24-Jul-09

0.00169

0.00001565

0.93%

510870014

16-Sep-09

0.00195

0.00000425

0.22%

510870014

21-Nov-09

0.00209

0.0000111

0.53%

510870014

03-Dec-09

0.00196

0.000008

0.41%

510870014

09-Dec-09

0.00226

0.000015

0.66%

510870014

20-Jan-10

0.00225

0.000026

1.16%

510870014

19-Feb-10

0.00276

0.000017

0.62%

510870014

09-Mar-10

0.00314

0.0000183

0.58%

510870014

21-Mar-10

0.00216

0.00000345

0.16%

510870014

02-Apr-10

0.00223

0.0000136

0.61%

510870014

08-Apr-10

0.00256

0.000019

0.74%

510870014

20-Apr-10

0.00242

0.0000197

0.81%

510870014

26-Apr-10

0.00198

0.0000229

1.16%

510870014

20-May-10

0.00205

0.0000236

1.15%

510870014

26-May-10

0.00208

0.0000267

1.28%

510870014

01-Jun-10

0.00175

0.0000209

1.19%

510870014

13-Jun-10

0.0017

0.0000363

2.14%

510870014

25-Jun-10

0.00156

0.00002

1.28%

510870014

07-Jul-10

0.0019

0.0000201

1.06%

510870014

13-Jul-10

0.00214

0.0000146

0.68%

510870014

19-Jul-10

0.00177

0.0000111

0.63%

510870014

25-Jul-10

0.00195

0.00001165

0.60%

510870014

31-Jul-10

0.00168

0.0000171

1.02%

510870014

06-Aug-10

0.00205

0.0000282

1.38%

510870014

12-Aug-10

0.00154

0.0000399

2.59%

E-69

B.20


-------
Appendix B

AQS Site
Code

Sample
Date

Chromium
TSP (|ig/m3)

Chromium
VI (ng/m3)

Chromium VI:Chromium
TSP (percentage)

510870014

18-Aug-10

0.00142

0.0000266

1.87%

510870014

30-Aug-10

0.00178

0.0000178

1.00%

510870014

ll-Sep-10

0.001626

0.0000114

0.70%

510870014

17-Sep-10

0.001835

0.000021

1.14%

510870014

23-Sep-10

0.002045

0.0000183

0.89%

510870014

ll-Oct-10

0.002208

0.0000147

0.67%

510870014

10-Nov-lO

0.001874

0.0000154

0.82%

510870014

16-Nov-10

0.001565

0.0000117

0.75%

510870014

22-Nov-10

0.002089

0.0000099

0.47%

510870014

04-Dec-10

0.001555

0.0000136

0.87%

510870014

10-Dec-10

0.00269

0.0000146

0.54%

510870014

16-Dec-10

0.001957

0.0000171

0.87%

510870014

22-Dec-10

0.001965

0.000017

0.87%

510870014

28-Dec-10

0.001719

0.0000153

0.89%

550270007

13-Oct-05

0.00155

0.00003645

2.35%

550270007

12-Nov-05

0.00136

0.0000117

0.86%

E-70

B.21


-------
EPA's National-scale Air Toxics Assessment

Appendix F
Model Evaluation Summaries

This appendix provides results of the model evaluation. For the pollutants modeled using the hybrid approach, we
include here the information in Section 3.3 of the TSD and provide additional model performance statistics. The
modeled and monitored values are provided in comma-separated value files in the folder"hybrid-polls-
model_evaluation_paired" within the SupplementalData folder.

We describe here our efforts to evaluate the performance of the NATA models. Discussions of "HEM-3" in this
document often are specifically related to the AERMOD dispersion model component of HEM-3, but we use "HEM-
S'' throughout for simplicity and consistency. In this section in particular, discussions of HEM-3 model values are
specifically related to the air concentrations predicted by its AERMOD component.

F.1 Overview

Using the air toxics archive Phase IX for the year 2011. we conducted an operational model performance
evaluation of the air toxics simulated for the 2011 NATA (more details found in Section F.2 below). The model
evaluation included both the air toxics modeled with the hybrid approach ("hybrid air toxics") and those modeled
without the hybrid approach ("non-hybrid air toxics"). The hybrid evaluation looked at the air toxics for which there
were valid ambient data (i.e., completeness criteria protocol) to compare against the CMAQ, HEM-3, and hybrid
model predictions. Likewise, the air toxics non-hybrid evaluation used similar observational-completeness criteria
constraints to compare against air toxics estimated by adding HEM-3 to observed ambient concentrations assumed
to reflect background conditions.

Spatial-scale differences exist between CMAQ, HEM-3, and the hybrid model predictions. A CMAQ concentration
represents a 12-km grid-cell volume-averaged value. The HEM-3 model concentration represents a specific point
within the modeled domain. The hybrid model concentration combines the HEM-3 point-concentration gradients
with the CMAQ 12-km grid-cell volume average. The ambient observed measurements were made at specific
spatial locations (latitude/longitude). Several annual graphical presentations and statistics of model performance
were calculated and prepared. Graphical presentations included box and whisker plots (which show the distribution
and the bias of the predicted and observed data) and regional maps (which show the mean bias and error
calculated at individual monitoring sites).

F.2 Observations

Observations were extracted from the air toxics archive, Phase IX for the year 2011. While most of the data in the
archive are a snapshot of the Air Quality System (AQS) database (downloaded in July 2014), additional data (such
as from special studies) were in the archive but not reported to AQS. In the air toxics archive, pollutant
concentrations were converted to |jg/m3 in local conditions where temperature and pressure data were available
(i.e., at the vast majority of sites). In addition, any negatives and data flagged as "non-detect" without a value were
given a value of 0. Also, any data determined to have been substituted with half the method detection limit (i.e.,
MDL/2) was changed to 0.

For comparing annual averages of modeled and monitored data, data from the archive were aggregated to 2011
annual averages by site and parameter code. Data below MDLs were used as-is. Data were removed for which
there were no MDLs. Naphthalene data from parameter code 45850 (canister method) were removed because that
method may not be as reliable as the method used in the National Ambient Air Toxics Trends Program. Also, those
sites were removed that reported naphthalene as code 17141 in which it was determined to use the canister test
method.

Only site-parameter pairs in which measurements from at least three seasons were 75 percent complete (i.e., 75
percent of the scheduled days contained non-null values) were retained for developing annual averages. First, the
sub-annual data were allocated to 24-hour averages. Seventy-five-percent completeness was required to create a
daily average from sub-daily data, such that 75 percent of scheduled sub-annual data were available. For example,
hourly data required 18 of 24 hours of data, three-hour data required six of eight three-hour periods of data, etc.
For each quarter, the number of days to meet 75% completeness depended on the sampling frequency (note that

F-1


-------
EPA's National-scale Air Toxics Assessment

more than one monitor at the site that measured on the same day was counted once). For example, one-in-six-day
sampling required 12 days forthe quarter.

For sites with multiple monitors (known as "POCS"), only the daily data with the same measurement duration (i.e.,
hourly, 3-hour, 24-hour) were averaged across the POCs. That is, daily data based on hourly measurements were
not averaged with daily data based on 24-hour measurements. Where a site met the 75% completeness for
multiple durations, the 24-hour duration data were chosen.

Annual averages were created by averaging all daily measurements with the same measurement duration for all
sites that met the above completeness criteria. The only sites used were those for which 50 percent or more of the
data were above the method detection limit (MDL). A spreadsheet file

("2011monitored_data_annualmeans_PhaselXarchive.xlsx") of the ambient annual averages (in |jg/m3) is provided
in the SupplementalData folder.

Uncertainties in the ambient data result from limited sites, data below MDL and measurement uncertainties.

F.3 Model Performance Statistics

The Atmospheric Model Evaluation Tool (AMET) was used to conduct the 2011 NATA air toxics evaluation (Appel
et al. 20111). There are various statistical metrics available and used by the science community for model
performance evaluation. For a robust evaluation, the principal evaluation statistics used to evaluate model
performance are based on the following metrics: two bias metrics (mean bias and normalized mean bias); and,
three error metrics (mean error and normalized mean error, root mean square error, and correlation coefficient).

Common variables are:

M	=	predicted concentration

O	=	observed concentration

X	=	predicted or observed concentration

o	=	standard deviation

Mean Bias (MB), Mean Error (ME), and Root Mean Square Error (RMSE) (all in |jg/m3):

MB =

i

ME =

1

n

SM-01

E?(m - oy

RMSE =

N

MB quantifies the tendency of the model to over- or under-estimate values while ME and RMSE measure the
magnitude of the difference between modeled and observe values regardless of whether the modeled values are
higher or lower than observations.

Normalized Mean Bias (NMB) and Normalized Mean Error (NME) (both unitless):

£?(M - 0)

NMB~ Wo

1 Appel, K.W., Gilliam, R.C., Davis, N., Zubrow, A., and Howard, S.C. 2011. Overview of the Atmospheric Model
Evaluation Tool (AMET) vl.l for Evaluating Meteorological and Air Quality Models. Environ. Modell. Softw.,
26(4): 434-443.

F-2


-------
EPA's National-scale Air Toxics Assessment

NMB is used as a normalization to facilitate a range of concentration magnitudes. This statistic averages the
difference (model - observed) over the sum of observed values. NMB is a useful model performance indicator
because it avoids over-inflating the observed range of values, especially at low concentrations.

NME is similar to NMB, where the performance statistic is used as a normalization of the ME. NME indicates the
absolute value of the difference (model - observed) over the sum of observed values.

Correlation Coefficient (r; unitless):

The value of r provides an indication of the strength of linear relationship and is signed positive or negative based
on the slope of the linear regression.

Fractional Bias (FB) and Fractional Error (FE) (both unitless):

FB is a useful model performance indicator because it has the advantage of equally weighting positive and
negative bias estimates. The single largest disadvantage in this estimate of model performance is that the
estimated concentration (i.e., M) is found in both the numerator and denominator.

FE is similar to FB except the absolute value of the difference is used to that the error is always positive.
Standard Deviation (o, ppb):

a is a measure of the amount of variation of the observed and predicted values.

Coefficient of Variation (CoV, unitless):

a

CoV is the ratio of a to the mean and shows the extent of variation in relation to the mean.

Index of Agreement (unitless):

Index of Agreement = 1

E?(0 - M)2

.£?(|M-0| + |0-0|)2

F-3


-------
EPA's National-scale Air Toxics Assessment

Index of Agreement provides a sense of the strength ofthe relationship between model estimates and observations
that have been paired in time and space.

Systematic RMSE (RMSEs) and Unsystematic RMSE (RMSEu) (both ppb):

RMSEs= E^V-CJ2

rmse»= Sc*-cp)2

Where:

C* = a + bC0

a = least squares regression coefficient of Cp

b = least squares regression coefficient of C0

Cp = predicted (modeled) concentration

C0 = observed concentration

RMSEs measures the difference between the regression line ofthe observed and predicted values, while RMSEu
measures the random error about the regression line of the predicted values.

Skewness (unitless):

Measures the asymmetry of the probability distribution of a random value about its mean. For this assessment,
skewness was calculated as simply median/mean.

F.4 Hybrid Evaluation

We conducted an annual operational model performance evaluation for hybrid air toxics, resulting in comparisons
between CMAQ and HEM-3 predictions as well as an evaluation ofthe ability ofthe hybrid model to replicate the
2011 observed ambient concentrations. Inclusion of all three model results was intended to demonstrate the
merged attributes ofthe hybrid model used for the 2011 NATA. Statistical assessments of modeled versus
observed concentrations were paired in time and space and aggregated on an annual basis. Exhibit F-1 contains a
list of air toxics evaluated in the hybrid model performance evaluation and the number of paired sites (based on
completeness criteria of observations, Section F-2) used in the annual average. Exhibit F-2 is a map ofthe 2011
monitoring locations for hybrid air toxics. Acrolein and ethylene dibromide were excluded in the model evaluation
given the data uncertainty and sampling. Annual averages of xylene species (m-, o-, and p-) were summed
together to calculate a "Xylenes, total" air toxic group based on the individual risk for each species being the same.

Exhibit F-1. Hybrid Air Toxics Evaluated

Hybrid Air Toxic

Number of Paired Sites

1,3-Butadiene

83

1,3-Dichloropropene

5

1,4-Dichlorobenzene

22

Acetaldehyde

110

Acrylonitrile

18

Hybrid Air Toxic

Number of Paired Sites

Formaldehyde

110

Lead PM10

33

Manganese PM10

40

Methylene chloride

123

Naphthalene

36

F-4


-------
EPA's National-scale Air Toxics Assessment

Hybrid Air Toxic

Number of Paired Sites

Arsenic PMio

34

Benzene

214

Cadmium PM10

27

Chlorine

123

Chloroform

92

Ethylene dichloride

40

Hybrid Air Toxic

Number of Paired Sites

Nickel PM10

29

Propylene dichloride

5

Tetrachloroethylene

72

Toluene

211

Trichloroethylene

13

Xylenes

163

Exhibit F-2. 2011 Monitoring Locations for the Evaluation of Hybrid Air Toxics

\ *	qRo»m	ONTARIO

\	jWmnpeg

_ ^		J\v



MONIANA

t

4 * ~ T

IDAHO

OREGON	f

I «-		*

VlORTH DAKOTA ?	%

MINNESOTA	?,	.. ^

9,	9	- V>v"

fe.	Ollflwa;.	o Y-

t ^	Isconsu, MICHIGAN	i

T.	1 T f'	V Tt-^T " "«» *	?

' WYOMING	T'	~ «	RoflBslero HEW V

V T '	? t . „v

"¦"W ?• V-f % T- t-	^ r	"T'

-^EtPa,o	TEXAS	o	V t-

^	%l nuiM ?' '' A T A"T' oJjcloon»llle

Hwm Monterey-3*owntv,lle	pliant

r'..i.-rAr. XF	°	7$,	W	.

The annual model performance results for seven of these key hybrid air toxics are presented below in Exhibit F-3.
Exhibit F-3. 2011 Annual Air Toxics Performance Statistics for the Hybrid, CMAQ, and HEM-3 Models

Hybrid Air Toxic

Model

MB (|jg/m3)

ME (|jg/m3)

NMB (%)

NME (%)

Acetaldehyde

Hybrid

0.5

0.7

30.9

43.9

CMAQ

0.4

0.7

27.1

41.4

HEM-3

-1.3

1.3

-80.4

80.6

Formaldehyde

Hybrid

-0.8

1.0

-30.8

37.3

CMAQ

-0.9

1.0

-34.2

38.8

HEM-3

-2.2

2.2

-78.8

79.3

Benzene

Hybrid

0.0

0.5

1.6

60.7

CMAQ

-0.2

0.5

-22.7

57.8

HEM-3

-0.3

0.5

-33.1

60.2


-------
EPA's National-scale Air Toxics Assessment

Hybrid Air Toxic

Model

MB (|jg/m3)

ME (|jg/m3)

NMB (%)

NME (%)

1,3-butadiene

Hybrid

0.0

0.1

1.6

78.5

CMAQ

0.0

0.1

-21.2

77.2

HEM-3

0.0

0.1

5.4

77.3

Toluene

Hybrid

1.4

2.0

91.9

128.0

CMAQ

0.8

1.6

52.8

103.0

HEM-3

1.2

1.8

74.9

116.0

Lead PM10

Hybrid

0.0

0.0

48.1

208.0

CMAQ

0.0

0.0

-10.4

152.0

HEM-3

0.0

0.0

-11.2

168.0

Arsenic PM10

Hybrid

0.0

0.0

-74.9

79.0

CMAQ

0.0

0.0

-80.2

81.8

HEM-3

0.0

0.0

-81.8

85.6

Boxplots showing model distribution (units of |jg/m3) and bias differences (units of |jg/m3) as compared to ambient
observations are presented below. The boxplots use boxed interquartile ranges of 25th-to-75th percentile, along with
whiskers from the 5th to 95th percentiles, and they also contain summary statistics of r, RMSE, NMB, NME, MB, and
ME. Likewise, regional spatial maps which show the mean bias and error calculated at individual

As evidenced by Exhibits F-4 through F-24, CMAQ and hybrid model predictions of annual formaldehyde,
acetaldehyde, and benzene (three key air toxics in NATA) showed relatively small-to-moderate bias and error
percentages when compared to observations. HEM-3 showed larger biases and errors, with underestimates for
secondarily formed air toxics (e.g., -80.4 percent for acetaldehyde and -78.8 percent for formaldehyde), as expected
given HEM-3's exclusion of atmospheric chemistry. Differences in bias and error statistics between the hybrid and
CMAQ models were negligible for formaldehyde and acetaldehyde. Technical issues in the air toxics data consisted
of (1) uncertainties in monitoring methods, (2) limited measurements in time/space to characterize ambient
concentrations ("local in nature"), (3) commensurability issues between measurements and model predictions, (4)
emissions- and science-uncertainty issues potentially affecting model performance, and (5) limited data for estimating
intercontinental transport that effects the estimation of boundary conditions (i.e., boundary estimates for some
species were much higher than predicted values inside the domain).

Exhibits F-25 through F-53 contain the box plots and regional spatial maps for the remaining evaluated hybrid air
toxics.

F-6


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-4. Acetaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011v2eg_NATA_CMAQ_annual Acetaldehyde for 20110101 to 20110131

e

8
<

¦	Toxics

~	2011v2eg_NATA_CMAQ_annual

¦	2011v2eg_NATA_AERMOD_annual

¦	2011v2eg_NATA_Hybrid_annual

r

0.12

-0.04

0.12

RMSE

0.67

1.5

0.91

NMB

27.1

-80.4

30.9

NME

41.4

80.6

43.9

MB

0.43

-1.33

0.49

ME

0.66

1.33

0.7

—I	1	

Toxics 2011v2eg NATA CMAQ annual

T

2011v2eg_NATAHybrid_an nual

2011v2eg_NATA_CMAQ_annual Acetaldehyde for 20110101 to 20110131

~ 2011 v2eg_NATA_CM AQ_an nual

¦	2011 v2eg_NATA_AERMOD_an nual

¦	2011 v2eg_NATA_Hybrid_annual

E

<9

CO

0

<

8

r

0.12

-0.04

0.12

RMSE

0.87

1.5

0.91

NMB

27.1

-80.4

30.9

NME

41.4

80.6

43.9

MB

0.43

-1.33

0.49

ME



1.33

0.7

2011v2eg NATA CMAQ annual

T

2011v2eg NATA Hybrid annual

F-7


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-5. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Acetaldehyde MB (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit F-6. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

CIRCLE=Toxics;

F-8


-------
EPA's National-scale Air Toxics Assessment

units = ug/m3
coverage limit =

>2
1.8
1.6
1.4
12
1

0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1

-1.2
-1.4
-1.6
-1.8

<-2

Exhibit F-7. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

CIRCLE=Toxics;

Exhibit F-8. Acetaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Acetaldehyde ME (ug/m3) for run201 leg NATA CMAQ annual allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit =

CIRCLE=Toxics;

F-9


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-9. Acetaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Ac*<«kfehr<»» MB (ugffl3)fcx iun2011*
-------
EPA's National-scale Air Toxics Assessment

Exhibit F-11. Formaldehyde: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011v2eg NATACMAQ annual Formaldehyde for 20110101 to 20110131

5 _ ¦	Toxics

~	2011 v2eg_NATA_CMAQ_annual

¦	2011 v2eg_NATA AERMODannual

¦	2011 v2eg NATA Hybrid annual

r

-0.02

0.37

RMSE

2.37

1.16

NMB

-78.8

-30.8

NME

79.3

37.3

MB

-2.16

-0.81

ME

2.17

0.98

Toxics 2011v2eg NATA CMAQ annual	20l1v2eg NATA Hybrid annual

2011v2eg_NATA_CMAQ_annual Formaldehyde for 20110101 to 20110131

2 -

CO

E

O)

3

0

w
ca
CO
0)

"O

0)

¦a

Li-

8

X

_4 -

-6 -

2011v2eg NATA CMAQ annual	20l1v2eg NATAHybrid annual

~ 2011 v2eg_N ATA_CM AQ_an nual

¦	2011 v2eg_NATA_AE RMOD_annual

¦	2011 v2eg_NATA_Hybrid_annual

O



O

r

-0.02

0.37

RMSE

2.37

1.16

NMB

-78.8

-30.8

NME

79.3

37.3

MB

-2.16

-0.81

ME

2.17

0.98

F-11


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-12. Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Formaldehyde MB (ug,'m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

Exhibit F-13. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Formaldehyde ME 
-------
EPA's National-scale Air Toxics Assessment

Exhibit F-14. Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

units = ug/m3
coverage limit =

> 2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1

-1.2
-1.4
-1.6
-1.8
< -2

CIRCLE=Toxics;

Formaldehyde MB (ug.'m3) tor run2011 eg NATA CMAQ anriual allHAPs tor 20111001 to 20111031

Exhibit F-15. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Formaldehyde ME (ug/m3) for run2011eg NATA CMAQ annual allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit = %



2

-

1.8

-

1,



1.4



,2

-

<

-

0.8

.

0.6

-

0.4

J

0.2



0

CIRCLE=Toxics;

F-13


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-16. Formaldehyde: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Fonmtdaftyd* MB (up Till «Q» Iun3011«g NATA AERMOO annual allHAPt tot 20111001 lo 10111031

CiRCLE-toiuc8

Exhibit F-17. Formaldehyde: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

FomuMlMlvd* ME luQffU: tor fia\2011«g KATA AERMOO annual allnAP* to< SOU 1001 to 30111031

CiRClE-Tokics:

F-14


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-18. Benzene: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-Observed
Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011 v2eg_NATA_CMAQ_annual Benzene for 20110101 to 20110131

¦	AQS_Daily_PM

~	2011 v2eg_N ATA_C M AQ_an n ual

¦	2011 v2eg_NATA_AERMOD_annual
2.0 - ¦	2011v2eg NATA Hybrid annual

co 1.5 -
E

O)

r

0.18

0.22

RMSE

0.83

0.8

NMB

-33,1

1.6

NME

60.2

60.7

MB

-0.28

0.01

ME

0.52

0.52

-0.5 -

AOS Daily PM	2011v2eg NATA AERMOD annual

2011 v2eg NATA CMAQ annual Benzene for 20110101 to 20110131

4 - ~ 2011v2eg_NATA_CMAQ_annual

¦	2011 v2eg_NATA_AERMOD_annual

¦	2011 v2eg_NATA_Hybrid_annual

o	o

r

0.06

0.18

0.22

RMSE

0.81

0.83

0.8

NMB

-22-7

-33.1

1.6

NME

57.8

60.2

60.7

MB

-02

-0.28

0.01

ME



0.52

0.52

	1	1	1	

2011 v2eg NATA CMAQ annual	2011v2eg NATA Hybrid annual

F-15


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-19. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Benzene MB (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit F-20. Benzene: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Benzene ME 
-------
EPA's National-scale Air Toxics Assessment

Exhibit F-21. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

units = ug/'m3
coverage limit

>2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1

-1.2
-1.4
-1.6
-1.8
I < -2

units - ug/m
coverage lirr

CIRCLE=Toxics:

CIRCLE=Toxics;

Exhibit F-22. Benzene: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Benzene MB (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

F-17


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-23. Benzene: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Benzene MB (ug/m3)for run2011eg_NATA_AERMOD_annual_allHAPs for 20111001 to 20111031

units = ug/m:
coverage lim

1

>2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

-0.2
-0.4
-0.6
-0.8
-1

-1.2
-1.4
-1.6
-1.8
<-2

CIRCLE=Toxics:

Exhibit F-24. Benzene: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Benzene ME (ug/m3) for run2011eg_NATA_AERMOD annual allHAPs for 20111001 to 20111031

units = ug/m
coverage lirr

I

> 2
1.8
1.6
1.4

1.2
1

0.8
0.6
0.4
0.2
0

CIRCLE=Toxics;

F-18


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-25.1,3-butadiene: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011v2eg_NATA_CMAQ annual Butadienel 3 for 20110101 to 20110131

w
o
<

¦	AQS_Daily_PM

~	2011 v2eg_NATA_CMAQ_annual

¦	2011 v2eg_N ATAAE RMODannual

¦	2011 v2eg_NATA_Hybrid annual

f

026

0.63

0.6

RMSE

0.16

0.13

0.13

NMB

-21.2

5.4

1.6

NME

77.2

77.3

78.5

MB

-0.02

0

0

ME

0.07

0.07

0.07

AOS Daily PM

2011v2eg NATA AERMOD annual

2011 v2eg NATA CMAQ annual Butadienel 3 for 20110101 to 20110131

~ 2011 v2eg_N ATA_C M AQ_an n ual

¦	2011 v2eg_NATA_AERMOD_annual

¦	2011 v2eg_NATA Hybrid annual



X

ra
bo

CO

c/)
?

r

0.25

0.63

0.6

RMSE

0.16

0.13

0.13

NMB

-21.2

5.4

1.6

NME

772

77.3

78.5

MB

-0.02

0

0

ME



0.07

0.07

2011 v2eg NATA CM AQ annual

2011v2eg NATA Hybrid annual

F-19


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-26.1,3-butadiene: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

units = ug/m3
coverage limit

>2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4

CIRCLE=Toxics;

Exhibit F-27.1,3-butadiene: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Butadiene"! 3 ME (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Butadiene13 MB (ug/m3) for run201 leg NATA HYBRID annual allHAPs for 20111001 to 20111031

F-20


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-28.1,3-butadiene: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Butadiene13 MB (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit F-29.1,3-butadiene: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

CIRCLE=Toxics;

F-21


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-3G. 1,3-butadiene: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Butadiene13 MB (ug/m3) for run2011eg_NATA_AERMOD_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit F-31.1,3-butadiene: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Butadiene13 ME (ug'm3) for run2011eg NATA AERMOD annuaLallHAPs for 20111001 to 20111031

CIRCLE=Toxics;

F-22


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-32. Toluene: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-Observed
Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011v2eg_NATA_CMAQ_annual Toluene for 20110101 to 20110131

¦	Toxics

~	2011 v2eg_NATA_CMAQ_annual

¦	2011 v2eg_N ATAAE RMODannual

¦	2011 v2eg_NATA_Hybrid annual

r



0.11

0.08

RMSE



3.6

3.74

NMB

52-8

64.2

91,9

NME

103

105

128

MB

0.81

1.04

1.41

ME



1.69

1.97

NATA CMAQ annual

2011v2eg NATA Hybrid annual

2011 v2eg_NATA_CMAQ annual Toluene for 20110101 to 20110131

~ 2011 v2eg_NATA_CM AQ_an nual

¦	2011 v2eg_NATA_AERMOD_annual

¦	2011 v2eg_NATA_Hybrid_annual

E

D>

_8_

©

r

0.11

0.08

RMSE

3.6

3.74

NMB

64.2

91.9

NME

105

128

MB

1.04

1.41

ME

1.69

1.97

2011 v2eg NATA CM AQ annual

2011v2eg NATA Hybrid annual

F-23


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-33. Toluene: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Toluene MB (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics:

Exhibit F-34. Toluene: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Toluene ME (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPsfor 20111001 to 20111031

units = Lig/rr
coverage lirr

CIRCLE=Toxics;

>2
1.8
1.6
1.4
1.2
1

0.8
0.6
0.4
0.2
0

F-24


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-35. Toluene: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Toluene MB (ugm3) for ruri2011eg_N ATA_CMAQ_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics:

Exhibit F-36. Toluene: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Toluene ME (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

F-25


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-37. Toluene: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Toluene MB (ug,'m3) for ru n2011 eg_N ATAAE RM O Dan nua l a 11HAPs for 20111001 to 20111031

CIRCLE=Toxics;

Exhibit F-38. Toluene: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

Toluene ME (ug/m3) for run2011eg_NATA_AERWIOD_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

F-26


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-39. Lead PM10: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

2011 eg NATA CMAQ annual allHAPs Lead PM10 for 20111001 to 20111031

£ 0.004

¦	Toxics

Q	2011 eg_NATA_CMAQ_annual_allHAPs

¦	201 leg NATA AERMOD annual allHAPs

¦	2011 eg NATA HYBRID annuaLallHAPs

I

f

-0.07

-0.11

-0.1

RMSE

0

0

0

NMB

-10.4

-11.2

48,1

NME

152

168

208

MB

0

0

0

ME



0

0

	1	r

201 leg NATA AERMOD annual allHAPs

2011eg_NATA_CMAQ_annual_allHAPs Lead_PM10 for 20111001 to 20111031

E

CO

bo

I o.oo

~ 2011 eg_NATA_CMAQ_annual_allHAPs

¦	2011 eg_NATA_AERMOD_annual_allHAPs

¦	2011eg_NATA HYBRID_annual_allHAPs

r

-0.07

-0.11

-0.1

RMSE



0

0

NMB



-11.2

48.1

NME

152

168

208

MB

0

0

0

ME



0

0

201 leg^NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual_ allHAPs

F-27


-------
EPA's National-scale Air Toxics Assessment

CIRCLE=Toxics;

Exhibit F-41. Lead PM10: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

units = ug/m3
coverage limit =

>0.02
0.018

0.016

0.014

0.012

0.01

0.008

0.006

0.004

0,002

0

units = ug/m3
coverage limit = 7:

> 0.02

0.015

0.01

0.005

0

-0.005
-0.01
-0.015
<-0.02

Exhibit F-40. Lead PMio: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

CIRCLE=Toxics;

F-28


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-42. Lead PMio: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Lead_PM10 MB (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit = %

CIRCLE=Toxics;

Exhibit F-43. Lead PM10: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Lead PM10 ME (ug/m3) for run2011 eg_NATA _CMAQ_ annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit =

CIRCLE=Toxics;

F-29


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-44. Lead PMio: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Lead PM10 MB (uq/m3) for run2011eq NATA AERMOD annual allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit =

>0.02
0.018
0.016
0.014
0.012
0.01
0.008
0.006
0.004
0.002
0

units = ug/m3
coverage limit =

> 0.02

0.015

0.01

0.005

0

-0.005
-0.01
-0.015
< -0.02

CIRCLE=Toxics;

Exhibit F-45. Lead PM10: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

CIRCLE=Toxics:

F-30


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-46. Arsenic PM10: 2011 Boxplots of Observed and Modeled Concentrations (top) and Modeled-
Observed Bias Difference in Concentrations (bottom) for the Hybrid, CMAQ, and HEM-3 Models

201 leg NATACMAQ annuaLallHAPs Arsenic_PM10 for 20111001 to 20111031

¦	Toxics

D	2011 eg_ NATACM AQannual allHAPs

¦	2011 eg NATA AERMOD annual allHAPs

¦	2011 eg NATA HYBRID annual allHAPs

e

^3)







wm













—¦—

r

0.45

0.32

0.42

RMSE

0

0

0

NMB

-80.2

-81.8

-74.9

NME

81.8

85.6

79

MB

0

0

0

ME



0

0

	1	r

201 leg NATA AERMOD annual allHAPs

2011eg_NATA_CMAQ_annual_allHAPs Arsenic_PM10 for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs

¦	2011 eg_NATA_AERMOD_annual_allHAPs

¦	2011 eg NATA HYBRID_annual_allHAPs

8

o

O

o

r

0.32

0.42

RMSE

0

0

NMB

-81.8

-74.9

NME

85.6

79

MB

0

0

ME

0

0

	1	1	1	

201 teg NATA_CMAQ annual allHAPs	201 leg NATA HYBRID^annual_ allHAPs

F-31


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-47. Arsenic PMio: 2011 Mean Bias (%) at Monitoring Sites in the Hybrid Modeling Domain

Arsen!c_PM10 MB (ug/m3) tor run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit = 75

CIRCLE=Toxics;

> 0.002

0.0015

0.001

5e-04

0

-5e-04
-0.001
-0.0015
< -0.002

Exhibit F-48. Arsenic PM10: 2011 Mean Error (%) at Monitoring Sites in the Hybrid Modeling Domain

Arsenic_PM10 ME (ug/m3) for run2011eg_NATA_HYBRID_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit =

CIRCLE=Toxics;

B

> 0.002

0.0018

0.0016

0.0014

0.0012

0.001

8e-04

6e-04

4e-04

2e-04

0

F-32


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-49. Arsenic PMio: 2011 Mean Bias (%) at Monitoring Sites in the CMAQ Modeling Domain

Arsenic_PM10 MB (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit = 75*

CIRCLE=Toxics;

Exhibit F-50. Arsenic PM10: 2011 Mean Error (%) at Monitoring Sites in the CMAQ Modeling Domain

Arsenic_PM10 ME (ug/m3) for run2011eg_NATA_CMAQ_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit =

CIRCLE=Toxics;

F-33


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-51. Arsenic PMio: 2011 Mean Bias (%) at Monitoring Sites in the HEM-3 Modeling Domain

Arsenic_PM10 MB (ug/m3) for rim2011eg_NATA_AERMOD_annual_allHAPs for 20111001 to 20111031

units = ug/m3
coverage limit - 75

> 0.002

0.0015

0.001

5e-04

5e-04

-0.001

-0.0015

< -0.002

CIRCLE=Toxics;

Exhibit F-52. Arsenic PMio: 2011 Mean Error (%) at Monitoring Sites in the HEM-3 Modeling Domain

= ug/m3
rage limit «

>0.002
0.0018
0.0016
0.0014
0.0012
0.001
8e-04
6e-04
4e-04
2e-04
0

Arsenic_PM10 ME (ug/m3) tor run2011 eg_NATA_AERMOD_annual_allHAPs for 20111001 to 20111031

CIRCLE=Toxics;

F-34


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-53. Manganese PM10 (a), Cadmium PM10 (b), Nickel PM10 (c), Naphthalene (d), Dichlorproprene [1,3-
dichloropropene] (e), Dichlorobenzene [1,4-dichlorobenzene] (f), Tetrachloroethylene (g), Trichloroethylene
(h), Methylene Chloride (i), 1,2-dichloroethane [ethylene dichloride] (j), Chlorine (k), Chloroform (I),
Acrylonitrile (m), Propdichloride [propylene dichloride] (n), and Xylenes (o): 2011 Boxplots of Modeled-
Observed Bias Difference in Concentrations for the Hybrid, CMAQ, and HEM-3 Models

(a) Manganese PM10:

2011eg_NATA_CMAQ annual allHAPs Manganese_PM10 for 20111001 to 2011103

~ 2011 eg_NATA_CMAQ_annual_allHAPs

¦	2011eg_NATA_AERMOD_annual_allHAPs

¦	2011 eg_NATA_HYBRID_annual_allHAPs

—8—

r

-0.11

-0.14

RMSE

0.01

0.01

NMB

-19.2

-8.5

NME

171

177

MB

0

0

ME

0

0

201 leg NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

F-35


-------
EPA's National-scale Air Toxics Assessment

(b) Cadmium PM10:

201 leg NATA CMAO annual alIHAPs Cadmium PM10 for 20111001 to 20111031

2011eg„NATA_CMAG_annual_aIIHAPs
2011 eg_N ATA_AERMOD annual_a!IHAPs
2011eg NATA. HYBRID,annuaLallHAPs



30,0005 ¦

E

NMB

N

201 leg NATA CMAO annual alSHAPs

201 teg NATA HYBRID annual allHAPs

(c) Nickel PM10:
2011 eg_NATA_CMAQ_annuaLaHHAPs Nlckel_PM10 for 20111001 to 20111031

2011 eg NATA CMAQ annual allHAPs
2011 eg_NATA_AERMOD_annual_ailHAPs
2011 eg^NATA HYBRiD^annual _allHAPs

H -0.06 '

m.V-T

-iVi 1
118

0

8

201 leg NATA. CMAQ annual allHAPs

201 teg NATA HYBRID annual allHAPs

F-36


-------
EPA's National-scale Air Toxics Assessment

(d) Naphthalene:
2011eg_NATA_CMAQ_annual_allHAPs Naphthalene for 20111001 to 20111031

£

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
B 2011 eg_NATA_HYBRID_annual_allHAPs

r

-0.35

-0.31

RMSE

0.06

0.07

NMB

1940

2210

NME

2050

2280

MB

0.04

0.05

ME

0.05

0.05

	1	

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

(e) Dichloroproprene:
2011eg_NATA_CMAQ_annual_allHAPs Dlchloropropene for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
n 2011 eg_NATA_HYBRID_annual_allHAPs

E

53
CQ

r

-0.06

-0.07

RMSE

0.18

0.18

NMB

-38.1

-36.8

NME

156

156

MB

-0,01

-0.01

ME

0.06

0.06

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

F-37


-------
EPA's National-scale Air Toxics Assessment

(f) Dichlorobenzene:
2011eg_NATA_CMAQ_annual_allHAPs Dichlorobenzene for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
B 2011 eg_NATA_HYBRID_annual_allHAPs

	1	

2011eg_NATA CMAQ annual allHAPs

o
©

o
©

O
§

r

-0.14

-0.13

RMSE

0.33

0.33

NMB

-91.6

-90.3

NME

101

101

MB

-0,16

-0.16

ME

0.18

0.18

201 leg NATA HYBRID annual allHAPs

(g) Tetrachloroethylene:
2011eg_NATA_CMAQ_annual_allHAPs CL4ETHE for 20111001 to 20111031

frj -0.5 "

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
n 2011 eg_NATA_HYBRID_annual_allHAPs



T

T

T



8

8

0



o

o

©



o







8

o

o



i

0



o

o

o

r



0.2

0.2

RMSE



0.28

0.28

NMB



-44.5

-38.8

NME



90.1

90.6

MB



-0.08

-0.07

ME



0.16

0.16

	1	

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

F-38


-------
EPA's National-scale Air Toxics Assessment

(h) Trichloroethylene:
2011eg_NATA_CMAQ_annual_allHAPs CL3ETHE for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
B 2011 eg_NATA_HYBRID_annual_allHAPs

i

CO
LU

o

O
x
.0

r

0.23

0.28

RMSE

0.19

0.19

NMB

-75.8

-70.6

NME

88.4

86.3

MB

-0.06

-0.05

ME

0.07

0.07

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

(i) Methylene Chloride:
2011eg_NATA_CMAQ_annual_allHAPs CL2_ME lor 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
n 2011 eg_NATA_HYBRID_annual_allHAPs

CD
LU

o
8

o

o

o

r

0

0

RMSE

4.36

4.36

NMB

-92.6

-90.8

NME

93.8

92.5

MB

-0.9

-0.88

ME

0.91

0.9

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

F-39


-------
EPA's National-scale Air Toxics Assessment

(j)	1,2-dichloroethane:

2011eg_NATA_CMAQ_annual_allHAPs CL2_C2_12 for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs

¦	2011 eg_NATA_AERMOD_annual_allHAPs

¦	2011 eg_NATA_HYBRID_annual_allHAPs

o

o

o

o

o

o

f

0.26

0.27

RMSE

0.16

0.15

NMB

-97.4

-94.8

NME

97.5

95.1

MB

-0.06

-0.06

ME

0.06

0.06

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

(k) Chlorine:
2011eg_NATA_CMAQ_annual_allHAPs CL2 tor 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
IB 2011 eg NATA_HYBRID_annual_allHAPs

<9

CD
C\J

O -0.4

3

T

O

o

o

r

0.05

0.08

RMSE

0.06

0.06

NMB

-90.3

-90.8

NME

98.4

98.2

MB

-0.02

-0.02

ME

0.02

0.02

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

F-40


-------
EPA's National-scale Air Toxics Assessment

(I)	Chloroform:

2011eg_NATA_CMAQ_annual_allHAPs CHCL3for 20111001 to 20111031

~ 2011 eg_NATA_CMAQ_annual_allHAPs
¦ 2011 eg_NATA_AERMOD_annual_allHAPs
B 2011 eg_NATA_HYBRID_annual_allHAPs

TO

in

0

1

o

o

o

o

r

-0.01

-0.01

RMSE

0.5

0.5

NMB

-95.3

-94

NME

95.8

95

MB

-0.17

-0.17

ME

0.17

0.17

2011eg_NATA CMAQ annual allHAPs

201 leg NATA HYBRID annual allHAPs

(m) Acrylonitrile:
2011eg_NATA_CMAQ_annual_allHAPs Acrylonitrile for 20111001 to 20111031

£

03
CQ

-------
EPA's National-scale Air Toxics Assessment

(n) Propdichloride:
2011eg_NATA_CMAQ_annual_allHAPs Propdichloride for 20111001 to 20111031

°-2 ~ 201 leg NATA CMAQ_annual_allHAPs

¦	2011 eg_NATA_AERMOD_annual_allHAPs

¦	2011 eg_NATA_HYBRID_annual_allHAPs

o

O

o

o

o

o

f

0.01

0.01

RMSE

0.17

0.17

NMB

-99.7

-99.3

NME

99.7

99.4

MB

-0.05

-0.05

ME

0.05

0.05

	1	l	1	

2011eg_NATA_CMAQ_annual allHAPs	2011eg_NATA_ HYBRID annual allHAPs

(o) Xylenes:

2011eg_NATA_CMAQ_annual_allHAPs Xylenes for 20111001 to 20111031

~ 2011eg_NATA_CMAQ_annual_allHAPs

¦	2011eg_NATA AERMOD_annual allHAPs

¦	2011 eg_NATA_H YBRID_annual_allHAPs

E

O)

O

O

O

r

0.1

0.04

RMSE

1.85

1.88

NMB

15.7

14,8

NME

73.3

76.6

MB

0.18

0.17

ME

0.83

0.86

2011 eg_NATA_CMAQ_annual_allHAPs

2011 eg_N ATA H YB RI D an nual a 11H A Ps

F-42


-------
EPA's National-scale Air Toxics Assessment

F.5 Non-hybrid Evaluation

To estimate the ability of HEM-3 to replicate the 2011 observed ambient concentrations of air toxics, we conducted
an annual operational model performance evaluation for air toxics used in the non-hybrid model calculation.
Statistical assessments of modeled versus observed concentrations were paired in time and space and aggregated
on an annual basis. Exhibit F-54 contains a list of air toxics evaluated in the non-hybrid model performance
evaluation and the number of paired sites (based on completeness criteria of observations, Section F-20) used in
the annual average. Exhibit F-55 is a map of the 2011 monitoring locations for non-hybrid air toxics. Paired values
of the monitored and modeled data are provided in the spreadsheet "nonhybrid_polls-
model_evaluation_paired.xlsx" in the SupplementalData folder.

Exhibit F-54. Non-hybrid Air Toxics Evaluated

Non-hybrid Air Toxic

Number of Paired Sites

4-Methyl-2-pentanone

35

Acetonitrile

36

Antimony (TSP) LC

11

Antimony PM10 LC

18

Bromomethane

26

Carbon disulfide

23

Carbon tetrachloride

163

Chloromethane

155

Cobalt (TSP) LC

12

Cobalt PM10 LC

15

Ethylbenzene

170

Non-hybrid Air Toxic

Number of Paired Sites

Hexane

125

Isopropylbenzene

23

Methyl tert-butyl ether

6

Propanal

68

Selenium (TSP) LC

11

Selenium PM10 LC

14

Selenium PM2.5 LC

58

Styrene

71

Tribromomethane

5

Vinyl Acetate

25

Exhibit F-55. 2011 Monitoring Locations for the Evaluation of Non-hybrid Air Toxics

0Reglna	ONTARIO

-tfr

4^	

NORTH DAKOTA

MINNESOTA

TA -







q	l^Piwidence

GREAT
S IN
NEVADA



-a		

° ^ Columbus V dn~ '

CALI F C^LnI A

T"

""""s	Tr ^oiumous y	off'

COLORADO	I'amac ?	„S50U„, ffif.	^	«»'

h

UNITED S T?A T H S

. '¦¦COLOR ADO
PL ATE^U
ARIZONA

Kentucky

^ ?

NEW MEXiqO

V-

~ ~°EI Paso

9	.. • y

OK,Aia»IA-J ^Tibau	"»*"'«<.

*»£¦	c^:

Birmingham

A LA BA Mj

TEXAS

Kbslin V : 1
o„

SSan

Torreon > .Monterrey-^ov'

Tlanta *	It!

9 CAHoq^NA

OR^ ^

Ia ^ i"4 1 * ^	^Jacksonville

jffL >%»'«

^sir^rKlo

rv

C: V4 F VirO"

The exhibits below (Exhibits F-54 through F-59) are boxplots containing ratio comparisons of model-to-monitor
(ambient observations) concentrations for the evaluated non-hybrid air toxics. All air toxics shown below (except

F-43


-------
EPA's National-scale Air Toxics Assessment

hexane) showed model underpredictions compared to ambient measurements. The modeled and monitored data
are provided in the SupplementalData folder in "nonhybrid_polls-model_evaluation_paired.xlsx"

Exhibit F-56. Metal HAPs (Antimony PM10 LC, Antimony TSP LC, Cobalt PM10 LC, Cobalt TSP LC, Selenium
PM10 LC, Selenium PM2.5 LC, and Selenium TSP LC): 2011 Model/Monitor Ratios

Model-to-Monitor metal

=4j8=

14

15

12



11

Antimony Pm1D Lc Antimony (Tsp) Lc Cobalt PmID Lc	Cobalt (Tsp) Lc Selenium Pm10 Lc Selenium Pm2.5 Lc Selenium (Tsp) Lc

AQ S_PARA M ETE R_N AM E

F-44


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-57. Carbon Tetrachloride and Chloromethane: 2011 Model/Monitor Ratios

Model-to-Monitor



1

i

¦

1



















»

*

I

1

1
t

L		



' 1

	1 t		

i

r	1

•	1

•

•

Carbon tetrachloride	Chloromethane

AQS_PARAMETER_NAME

F-45


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-58. Set #1 of Gaseous Air Toxics (Ethylbenzene, Hexane, Isopropylbenzene, Methyl Tert-butyl Ether,
Propanal, and Styrene): 2011 Model/Monitor Ratios

Model-to-Monitor commonVOC















•

•

• •

•

*











!



















125







i

>

170













9	1

























	2













Ethylbenzene

Hexane

IsopropylbenzerMethyl tert-butyl ether

Propanal

Styrene

AQS_PARAM ETER_NAM E

F-46


-------
EPA's National-scale Air Toxics Assessment

Exhibit F-59. Set #2 of Gaseous Air Toxics (4-methyl-2-pentanone, Acetonitrile, Bromomethane, Carbon
Disulfide, Tribromomethane, and Vinyl Acetate): 2011 Model/Monitor Ratios

Model-to-Monitor othervoc

.9
"S

35





2

6

36

23

-26-

ethyl-2-pentanone

Acetonitrile

Bromomethane Carbon disulfide Tribromomethane

AQS_PARAMETE R_N AM E

Vinyl Acetate

F-47


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

F-48


-------
EPA's National-scale Air Toxics Assessment

Appendix G
Exposure Factors for the 2011 NATA

As noted in the memorandum contained within this Appendix (after Table G-1 below), ratios comparing exposure
concentrations (ECs) predicted in HAPEM to air concentrations predicted in HEM-3 or CMAQ were developed for
seven ofthe airtoxic modeled for the 2011 NATA and applied to the remaining NATA air toxic s based on phase in
ambient air (i.e., particulate, gaseous, or both; see Table 1 ofthe embedded memorandum in this appendix) and
prevalence in emissions by NATA category. The ratios (or exposure factors) varied by airtoxic and census tract,
and the values were capped at maximum values determined as median plus one standard deviation (across all
census tracts), with values 100 or larger treated as outliers and not part ofthe cap determinations (see Table 5 of
the embedded memorandum in this appendix). Exhibit G-1 contains the factors (averaged across census tract) for
each airtoxic and each emission source sector (i.e., point, nonpoint, onroad mobile, nonroad mobile, and
background), and the larger memorandum describing the HAPEM modeling for NATA follows Exhibit G-1.

Although these averaged factors were not actually used in NATA, they provide a general summary ofthe tract-level
ratios that were used. These ratios account for the difference between the ambient outdoor concentration at a
location and the EC that individuals were assumed to actually inhale in the risk assessment. Most of these
averaged factors were less than 1, meaning that ECs tended to be lower than air concentrations. From among
these averaged factors, predictions of EC ranged from 57 percent smaller than predictions of air concentration (for
chromium (VI) from point sources) to 6 percent larger (for 1,3-butadiene from onroad mobile sources; note that
exposure factors for 1,3-butadiene were not used as surrogates for any other NATA pollutants). The overall
averaged exposure factor was 0.73 (i.e., ECs 27 percent smaller than air concentrations), likely due to the inability
of many chemicals to penetrate efficiently into indoor environments.

A proximity term was required to adjust the predicted ambient air concentration (which was assumed to be
representative ofthe census-tract centroid) to the level that we would expect immediately outside ofthe
microenvironment. This proximity term was set to unity (i.e., 1) for most microenvironments. For the transportation-
related microenvironments, however, ambient concentrations immediately outside the vehicle (i.e., very close to
the pollutant source) were assumed to be considerably higher than at the predicted value at the census-tract
centroid. Thus, we developed default proximity factors for HAPEM and used them for NATA. Separate factors also
adjusted concentrations based on proximity to major roadways, as air concentrations will generally be higher near
roadways than not near roadways.

G-1


-------
EPA's National-scale Air Toxics Assessment

Exhibit G-1. Averages of the Tract-level Exposure Factors Used in the 2011 NATA

Pollutant

Average Exposure Factor, by NATA
Categoryab

Overall
Average
Across
Categories
at Left

Used as Surrogate For

Point

Nonpoint

On road
Mobile

Nonroad
Mobile

Benzene

0.88

0.87

1.04

0.88

0.92

All gaseous pollutants except 1,3-
butadiene

1,3-butadiene

0.88

0.87

1.06

0.88

0.92

None

Coke oven
emissions

1.00

-

-

-

1.00

None

Chromium
(VI)

0.43

0.45

-

-

0.44

All particulate pollutants from point and
nonpoint categories, except diesel PM

Diesel PM

—

0.67

0.56

0.46

0.56

None

Nickel

-

-

0.53

0.45

0.49

All particulate pollutants from mobile
sources, except diesel PM

PAH, total

0.66

0.65

0.77

0.64

0.68

All pollutants that can be gaseous and
particulate, except coke oven
emissions

a Background and event sources not modeled in HAPEM

b Gray shading indicates a combination of pollutant and NATA category whose exposure factors were not applied as surrogates for
other NATA pollutants, as noted in the "Used as Surrogate For" column.

G-2


-------
ICF

INTERNATIONAL

MEMORANDUM

To: Ted Palma and Terri Hollingsworth

U.S. EPA, Office of Air Quality Planning and Standards

From: Chris Holder, Chris Stevens, Isaac Warren, Autumn Bordner, and Heidi Hubbard
ICF International

Date: 04/08/2015

Re: Running HAPEM7 for the 2011 National-scale Air Toxics Assessment (NATA)

The Hazardous Air Pollutant Exposure Model (HAPEM) is a U.S. Environmental Protection Agency (EPA)
model used to perform screening-level assessments of long-term inhalation exposures to hazardous air
pollutants (HAPs). The National-scale Air Toxics Assessment (NATA) is a nationwide EPA modeling
assessment of the air concentrations, exposure concentrations, and potential human health cancer and
non-cancer risks and hazards related to HAPs emitted by manmade and natural sources. For the
purposes of the 2011 NATA, ICF ("we") used Version 7 of HAPEM (HAPEM7) with its default files and air-
concentration outputs provided by EPA to model exposure concentrations for seven surrogate HAPs,
stratified by census tract and source category. We used the modeled annual-exposure concentrations to
estimate lifetime-exposure concentrations and divided those values by the corresponding annualized air
concentrations (creating "exposure factors"). EPA can then use the exposure factors along with the
NATA air concentrations to estimate exposure to each NATA HAP in each census tract.

In this memorandum, we discuss HAPEM7, how we identified the gas or particulate phase of the NATA
HAPs, how EPA selected the seven HAPs to be modeled in HAPEM, how we set up the HAPEM runs
(including linking to proximity and penetration factors), and how we developed the exposure factors. A
tab-delimited text file ("NATA 2011 Exposure Factors_20150330") provided with this memorandum
contains the exposure factors, and the Microsoft® Excel™ file "NATA 2011 Exposure Factors_Addl
lnformation_20150330" contains additional information used to develop those factors.

2635 Meridian Pkwy., Suite 200 ¦ Durham, NC 27713 ¦ 919.293.1620 ¦ 919.293.1645 fax ¦ icfi.com

G-3


-------
Page 2

1,	Introduction to HAPEM and its Use in NATA

HAPEM is a model used by EPA to perform screening-level assessments of long-term inhalation
exposures to HAPs. We completed updating HAPEM and its default, ancillary files in early 2015, as
discussed in the ICF Memorandum "Updating the Hazardous Air Pollutant Exposure Model (HAPEM) for
Use in the 2011 National-scale Air Toxics Assessment (NATA)" (from April 8, 2015, addressed to Ted
Palma and Terri Hollingsworth of EPA's Office of Air Quality Planning and Standards [OAQPS]). This latest
version of HAPEM (HAPEM7)1 estimates exposure concentrations using demographic and behavior data
from the 2010 U.S. Census (covering all 50 states in the US, the District of Columbia, Puerto Rico, and
the U.S. Virgin Islands), compiled activity data from a recent version of EPA's Consolidated Human
Activity Database (CHAD), and other updated spatial data. The exposure concentrations are stratified by
location (i.e., U.S. Census tract), time of day, age group, and the individual emission source categories
and HAPs being modeled.

NATA is a nationwide modeling assessment of air concentrations, exposure concentrations, and
potential, chronic human health risks and hazards associated with HAP emissions from man-made and
naturally occurring sources. As described in this memorandum, we used HAPEM7 with its default files
and with modeled air concentrations to model exposure concentrations for the 2011 NATA, for every
census tract in the US, Puerto Rico, and the U.S. Virgin Islands.

2.	Air Quality Inputs to HAPEM7

•s Assessed for the 2011 NATA

For the 2011 NATA, EPA compiled an inventory of the annual mass emitted of 273 HAPs from point, non-
point, on-road mobile, and non-road mobile sources nationwide, typically at spatial resolutions of
counties down to specific points. These HAPs are shown in Table 1, along with other information
discussed later in this memorandum. Using appropriate hourly meteorology data and temporal emission
profiles based on source category, EPA modeled these emissions in AERMOD (the atmospheric
dispersion model developed by the American Meteorological Society and the EPA Regulatory Model
Improvement Committee) and in CMAQ (EPA's Community Multiscale Air Quality model). The air-
modeling results were annual-average air concentrations at the level of census tracts, stratified by HAP,
source type, and hour of day.

2.2. Specifying Chemical Phases for HAPEM Modeling

For all source types, HAPEM7 models microenvironment (ME) concentrations for three chemical phases.
The model uses phase-specific penetration and proximity factors to estimate the ME chemical
concentration for HAPs present in the gaseous ("G") or particulate ("P") phase as well as HAPs for which
the phase can vary for typical atmospheric conditions ("G/P"). In addition, for on-road mobile sources of
three HAPs (benzene, 1,3-butadiene, and diesel particulate matter [DPM]) and a fourth category

•1

As of January 20, 2015, HAPEM6 is available for download from http://vvww2.epa.qov/fera/download-hazardous-air-
pollutant-exposure-model-hapem. We anticipate HAPEM7 and its User's Guide will be made available by EPA
online in Spring 2015.	G-4


-------
Page 3

representing all other HAPs, HAPEM7 uses chemical-specific penetration and proximity factors to
estimate ME chemical concentrations.

Consequently, to prepare for NATA exposure modeling, we categorized each of the 273 NATA HAPs as G,
P, or G/P based on available boiling-point data, as defined in Table 2. We provide each HAP's boiling
point and assigned HAPEM7 HAP phase in Table 1. We obtained the vast majority of boiling-point values
from either the Centers for Disease Control (CDC), the National Institutes of Health (NIH), or the Royal
Society of Chemistry using their ChemSpider web site. These were judged to be the most reputable,
comprehensive, and user-friendly sources of chemical boiling-point data readily available to us. Each
allows the user to search by chemical name or Chemical Abstract Service number. For HAPs whose
boiling points we could not identify using these three sources, we searched a variety of additional data
sources. The source of each chemical's boiling-point value is provided in the "Source" column of Table 1.

We could not identify empirical boiling-point data for some of the HAPs. In many of these cases, we
identified predictive boiling points from ChemSpider, which generates estimated boiling point using
three software modules: EPA's EPIsuite, ACD/Labs Percepta Platform - PhysChem Module, and
ChemAxon's predictive software platform. We typically selected the ACD/Labs values when available
because these values were presented with confidence intervals and the conditions under which the
boiling-point values were predicted (typically standard temperature and pressure); the other two
platforms did not provide such information. If an ACD prediction was not available, we used the EPA
EPIsuite value. Those boiling points that are predictive rather than empirical are flagged with a "P" in
Table 2.

Note that the boiling point ranges in Table 1 have imprecise endpoints (e.g., the high end of boiling
points for G HAPs covers a range of 240 to 260 °C). A relatively small number (i.e., 41) of NATA HAPs
have boiling points within these imprecise endpoints, depending on the source of the data, meaning
there was some uncertainty associated with assigning the phases for these HAPs. In order to make
accurate designations, we conducted a literature review for each of these HAPs to identify relevant
information regarding its typical physical state. For example, 1-nitropyrene has a boiling point of 445 °C,
within the overlap of G/P and P boiling points. A review of the literature yielded several studies and
reports identifying 1-nitropyrene as a particulate at typical atmospheric conditions, leading us to assign
a designation of "P" to this HAP with a high degree of confidence. Where literature searches were
uninformative, we assigned HAP phase based on the categorizations used for HAPEM5 to support the
1999 NATA. The combination of the additional literature review and consultation of the HAPEM5
designations allowed us to make a reasonable phase designation for these HAPs. Nineteen HAPs have
boiling points within the 240-260 °C range; based on the literature review and HAPEM5 designations,
we categorized 15 as G and the remaining four as G/P. Twenty-two HAPs have boiling points within the
400-480 °C range; we categorized 16 as P and the remaining six as G/P.

In addition to the above 41 HAPs, boiling-point data were widely varying for three HAPs (see the "V"
designations in the boiling-point-value column in Table 1). We categorized two of these HAPs, coke oven
emissions and cyanide, as G/P. We categorized coke oven emissions based on an EPA characterization of

o

The HAP categorizations for HAPEM5 for the purposes of the 1999 NATA were discussed in an ICF and TRJ
Memorandum "Development of Penetration and Proximity Microenvironment Factor Distributions for the HAPEM5 in
Support of the 1999 National-Scale Air Toxics Assessment (NATA)." from April 5, 2004, addressed to Ted Palma of
EPA-OAQPS.	G-5


-------
Page 4

this pollutant as consisting of a mixture of particulates, volatiles, and semi-volatiles
(http://www.epa.gov/ttnatw01/hlthef/cokeoven.html). We characterized cyanide based on the fact that
cyanide is not typically found in isolation in nature, but rather in a variety of compounds, some of which
are typically solid (e.g., calcium cyanide, sodium cyanide) and some of which are typically gaseous (e.g.,
hydrogen cyanide) (http://www.atsdr.cdc.gov/). The third HAP with widely-varying boiling-point data
was diesel particulate matter and was assumed to be largely present as particulate.

For eight HAPs, boiling-point data were either unavailable or were ill-defined (see the "NA", "D", and "S"
designations in the boiling-point-value column in Table 1); three were fibers, which we categorized as P,
and we left the remaining five uncategorized pending potential resolution by EPA. The five HAPS
currently without phase designations are as follows and are likely not emitted in large amounts:

(Ethylenebis(Oxyethylenenitrilo)) Tetraacetic Acid

Extractable Organic Matter (EOM)

Propoxur

Quinone

Toxaphene

As noted previously, HAPEM7 does not use penetration and proximity factors specific to each NATA
HAP, and the temporal emission profiles used in NATA air-concentration modeling vary only by the four
source categories. Therefore, the level of effort to conduct exposure modeling on all 273 NATA HAPs is
not justified. EPA identified a small subset of NATA HAPs for which to conduct HAPEM exposure
modeling. NATA will use the HAPEM results of this modeled subset as-is, and these results will be used
as surrogates for the remaining NATA HAPs not modeled in HAPEM. EPA used a subjective combination
of decision points in identifying this subset, including

1.	the subset must include at least one HAP per phase (i.e., at least one G HAP, one P HAP, and one
G/P HAP);

2.	collectively among the HAP(s) representing a phase, each emitting source category must be
represented;

3.	it is preferred that the selected HAPs pose high potential, relative risks to human health
nationwide (using comparisons of air concentrations to health benchmarks, in a screening way
without accounting for factors affecting exposure); and

4.	it is preferred that the selected HAPs be emitted in many spatially-diverse locations across the
US.

Using the above general criteria, EPA selected the seven HAPs listed below (and shown in Table 3) for
exposure modeling.

Benzene and 1,3-butadiene, which are emitted by many processes (and all four modeled source
categories) in nearly all U.S. locations. Benzene was selected to be the surrogate for all other G
HAPs (EPA considers benzene modeling in NATA to be more reliable than 1,3-butadiene
modeling).

G-6


-------
Page 5

Unspeciated, generic PAHs ("PAH, total") are emitted by all four source categories and from a
wide variety of processes, so it was selected to be the surrogate for all other G/P HAPs, except
coke oven emissions which is a special case that was modeled by itself for point sources.

Chromium (VI) is a highly toxic HAP that was selected as the surrogate for all other P HAPs
emitted by point or non-point sources except for DPM, which was modeled as itself for non-
point and mobile sources. Note that the NATA air-concentration modeling included chromium
(VI) emissions from all four source categories, but its use as an exposure surrogate only included
point and non-point sources because those are its major emitters.

For P HAPs, besides DPM modeled as itself for non-point and mobile sources, and besides
chromium (VI) being a surrogate for all other point and non-point P HAPs, nickel was selected as
the surrogate for all other mobile-source P HAPs. Nickel is emitted by a variety of processes
spread across the US. Note that NATA air-concentration modeling included nickel emissions
from all four source categories, but its use as an exposure surrogate only included mobile
sources because chromium (VI) was designated as the surrogate for point and non-point
sources.

Whether a given HAP was modeled explicitly in HAPEM or is matched to a surrogate is indicated in Table
1 (final four columns). We used the air-concentration modeling outputs for these seven HAPs, stratified
by source type, hour of day, and census tract, as the air-quality input files for seven HAPEM7 runs for
NATA.

3. HAPEM7 Runs

3.1.	Design

For each of the seven HAPEM7 runs (corresponding to each of the seven HAPs assessed for human
exposure), we used the HAPEM7 default census- and CHAD-based files.3 Each run assessed the 18
HAPEM7 MEs and all populated census tracts in the US, Puerto Rico, and the U.S. Virgin Islands. Though
the air-quality inputs were by hour of day (i.e., 24 values per HAP, tract, and source category), HAPEM7
evaluated exposure in three-hour periods (i.e., 8 values per HAP, tract, and source category). We used
the six default HAPEM7 age groups4 and three day types.5 We linked each HAP to its appropriate
HAPEM7 penetration- and proximity-factors files, and we used the recommended setting of 30
replicates evaluated per HAP and tract.

3.2.	Quality Control and Quality Assurance

We reviewed the HAPEM7 control files (i.e., "parameters" files) for accuracy, and then we reviewed the
log, "counter," and "mistract" HAPEM7 output files to identify any potential errors in the modeling. We
identified no errors in the inputs or outputs. We present below, and in Table 4, some statistics gleaned
from the HAPEM7 log, counter, and mistract output files.

3

The HAPEM7 default input files are described in the ICF Memorandum "Updating the Hazardous Air Pollutant
Exposure Model (HAPEM) for Use in the 2011 National-scale Air Toxics Assessment (NATA)" from April 8, 2015,
addressed to Ted Palma and Terri Hollingsworth of EPA-OAQPS.

4	The HAPEM7 default age groups: 0-1, 2-4, 5-15, 16-17, 18-64, and 65 and older

5	The HAPEM7 default day types: summer weekday, non-summer weekday, and weekend.

G-7


-------
Page 6

202 tracts (i.e., less than 1 percent of U.S. tracts) were not modeled for air concentrations
because the population data EPA was using in air-concentration modeling indicated zero
residents (the HAPEM7 population file had two to three residents for two of these tracts).

An additional 377 tracts were not modeled in HAPEM7 because HAPEM7's population data
indicated zero residents.

1,027 areas modeled for air concentrations were not modeled in HAPEM7 because they were
not census tracts (in addition to census tracts, EPA modeled air concentrations in some areas
that corresponded to CMAQ grids; we did not model these areas for exposure).

In total, 1,404 of the areas modeled for air concentrations were not modeled for exposure
concentrations; 73,832 tracts were modeled for exposure concentrations for the 2011 NATA.

3.3. Post-processing into Exposure Factors

As has been done in previous NATAs, we utilized the HAPEM7 outputs for the seven assessed HAPs to
estimate exposure factors that EPA will then apply to all HAPs assessed in NATA, based on HAP phase
and source category. For each HAPEM7 run, and within that for each tract and source category, we
calculated the estimated lifetime-average exposure concentration for each modeled replicate. We
calculated these 70-year-average concentrations as the time-weighted average of exposures for the six
HAPEM7 age groups, as shown below.

Lifetime average

expo

sure cone

=











[age

group

0

- 1

exposure

cone.

X

2

/

70

+

[age

group

2

- 4

exposure

cone.

X

3

/

70

+

[age

group

5

- 15

exposure

cone.

X

11

/

70

+

[age

group

16

- 17

exposure

cone.

X

2

/

70

+

[age

group

18

- 64

exposure

cone.

X

47

/

70

+

[age

group

65 +



exposure

cone.

X

5

/

70

We then calculated the median lifetime-exposure concentration from the set of 30 replicates for each
tract and source category for a given HAP. The sum of these medians across source categories yields the
cumulative (i.e., from all modeled sources) "typical" lifetime-average exposure concentrations per HAP
and tract.

For each assessed HAP, and then for each tract and source category (including the cumulative from all
modeled sources), we divided these median lifetime-exposure concentrations by the corresponding
annual air concentrations, resulting in an exposure factor. EPA can then multiply these exposure factors
by the air concentrations of any appropriate HAP, resulting in estimated lifefime-exposure
concentrations for that HAP. For example, for a given census tract, to estimate the exposure
concentrations of a particular G/P HAP emitted by non-point sources, EPA will multiply the HAP's non-
point-source air concentrations by the non-point-source exposure factors for "PAH, total."

The median and average exposure factors were between approximately 0.4 and 1.1 (larger factors

typically for on-road mobile sources and gases; smaller factors typically for the other source categories

and particulates). However, for a relatively small number of tracts, exposure factors were larger than 10

and, for approximately 100 tracts, exposure factors were larger than 100. Such large exposure factors

are likely due to modeled people working in tracts with much larger air concentrations than their home

G-8


-------
Page 7

tracts, so that their exposure factors account for home- and work-tract air quality but the air-
concentration denominator in the exposure-factor calculation only accounts for home-tract air quality.

EPA considers these larger exposure factors to not reasonably represent average exposure scenarios
across individual tracts. To ensure representative exposure factors, we have limited exposure factors to
the maximum values shown in Table 5. These "caps", specified per HAP and source category, correspond
to the median exposure factor plus one standard deviation (taken across all tracts). The calculations for
medians and standard deviations did not consider exposure factors 100 or larger, which we considered
to be outliers. All applications of the exposure factors for the 2011 NATA use these caps, including for
the HAPs explicitly modeled in HAPEM7.

A tab-delimited text file ("NATA 2011 Exposure Factors_20150330") provided with this memorandum
contains the exposure factors. The Microsoft® Excel™ file "NATA 2011 Exposure Factors_Addl
lnformation_20150330" contains additional useful information such as the exposure and air
concentrations as well as the calculations used to cap the exposure factors. The latter file includes
warning flags for any situations where we did not calculate exposure factors. These situations
correspond to air concentrations of 0, or exposure concentrations of 0 (indicating zero residents), or
exposure concentrations not calculated (the 1,027 CMAQ grids). In all these flagged situations, we
forced the exposure factor to be a value of 1, indicating that the air concentration equals the exposure
concentration.

We quality-assured this post-processing by scrutinizing the SAS code used to accomplish it, spot-
checking its calculations manually, and other broad checks to ensure all records were properly read in
and the flagged records were properly processed.

G-9


-------
Page 8

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

(CT

Source0

Phased

P

NP

OR

NR

147

(Ethylenebis(Oxyethylenenitrilo))
Tetraacetic Acid

V







NA

NA

NA

NA







255

1,1,2,2-Tetrachloroethane

V

V





147

CDC

G

Benz

Benz





266

1,1,2-Trichloroethane

V

V





114

CDC

G

Benz

Benz





119

1,1-Dimethyl Hydrazine

V







64

CDC

G

Benz







176

1,2,3,4,5,6-

Hexachlorocyclohexane

V

V





323

CDC

G/P

PAH

PAH





263

1,2,4-Trichlorobenzene

V

V





213

CDC

G

Benz

Benz





92

l,2-Dibromo-3-Chloropropane

V







196

CDC

G

Benz







110

1,2-Dimethoxyethane

V







82

NIH

G

Benz







126

1,2-Diphenylhydrazine

V







293

NIH

G/P

PAH







128

1,2-Epoxybutane

V

V





63

NIH

G

Benz

Benz





246

1,2-Propylenimine

V







66

NIH

G

Benz







41

1,3-Butadiene

V

V

V

V

138

NIH

G

V

V

V

V

98

1,3-Dichloropropene

V

V





108

NIH

G

Benz

Benz





240

1,3-Propanesultone

V







180

NIH

G

Benz







94

1,4-Dichlorobenzene

V

V





173

CDC

G

Benz

Benz





195

12-Methylbenz(a)Anthracene



V





410 P

CS

P



Cr6





203

1-Methylnaphthalene

V







240

NIH

G

Benz







205

1-Methylphenanthrene



V





359

http://www.nature.nps.gov/hazardssafety/toxi
c/phenlmet.pdf

G/P



PAH





206

1-Methylpyrene









372

http://www.chemicalbook.com/ChemicalProdu
ctProperty EN CB7421679.htm

G/P









219

1-Nitropyrene

V







445 P

CS

P

Cr6







166

2-(Hexyloxy)Ethanol

V







258

NIH

G

Benz







274

2,2,4-Trimethylpentane

V

V

V

V

99

NIH

G

Benz

Benz

Benz

Benz

264

2,4,4'-Trichlorobiphenyl (PCB-28)

V

V





164

CS

G

Benz

Benz





268

2,4,5-Trichlorophenol

V







247

NIH

G

Benz







269

2,4,6-Trichlorophenol

V

V





246

NIH

G

Benz

Benz





G-10


-------
Page 9

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases

HAP
Num.
for
NATA

HAP Name

Emission Source
Modeled for NATA
Air Concentrations3

Boiling Point

HAPEM7

HAP
Phased

Exposure Factors Developed
for This HAP ("~"), or
Surrogate Used Instead
(Surrogate HAP Name)e

P

NP

M-
OR

M-
NR

Value

(CT

Source0

P

NP

M-
OR

M-
NR

78

2,4-Dichlorophenoxy Acetic Acid

V

V





345 P

CS

G/P

PAH

PAH





121

2,4-Dinitrophenol

V

V





312

CS

G/P

PAH

PAH





124

2,4-Dinitrotoluene

V

V





300

NIH

G/P

PAH

PAH





260

2,4-Toluene Diisocyanate

V

V





251

NIH

G

Benz

Benz





7

2-Acetylaminofluorene

V







400 P

CS

G/P

PAH







42

2-Butoxyethyl Acetate

V

V





192

CDC

G

Benz

Benz





58

2-Chloroacetophenone

V

V





244

CDC

G

Benz

Benz





238

2-Chlorobiphenyl (PCB-1)

V

V





290

NIH

G/P

PAH

PAH





63

2-Chloronaphthalene

V

V





256

http://www.chemicalbook.com/ChemicalProdu
ctProperty_EN_CB8854627.htm

G

Benz

Benz





204

2-Methylnaphthalene

V

V

V



241

http://www.speclab.com/compound/c91576.ht
m

G

Benz

Benz

Benz



218

2-Nitropropane

V

V





121

CDC

G

Benz

Benz





154

2-Propoxyethyl Acetate

V







184

CS

G

Benz







95

3,3'-Dichlorobenzidine

V







400

NIH

G/P

PAH







109

3,3'-Dimethoxybenzidine

V







391

CS

G/P

PAH







117

3,3'-Dimethylbenzidine

V







300

CDC

G/P

PAH







197

3-Methylcholanthrene

V

V





178

http://www.speclab.com/compound/c50328.ht
m

G

Benz

Benz





96

4,4'-Dichlorobiphenyl (PCB-15)

V

V





144

CS

G

Benz

Benz





199

4,4'-Methylenebis(2-
Chloraniline)

V







209

NIH

G

Benz







202

4,4'-Methylenedianiline

V

V





397

CDC

G/P

PAH

PAH





201

4,4'-Methylenediphenyl
Diisocyanate

V

V





313

CS

G/P

PAH

PAH





120

4,6-Dinitro-o-Cresol

V







312

CDC

G/P

PAH







13

4-Aminobiphenyl

V







302

CDC

G/P

PAH







114

4-Dimethylaminoazobenzene

V







371

CS

G/P

PAH







214

4-Nitrobiphenyl

V







340

CDC

G/P

PAH







217

4-Nitrophenol

V

V





279

NIH

G/P

PAH

PAH





G-11


-------
Page 10

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

(CT

Source0

Phased

P

NP

OR

NR

198

5-Methylchrysene

V

V





449 P

CS

P

Cr6

Cr6





116

7,12-Dimethylbenz[a]Anthracene

V

V





122

http://www.sigmaaldrich.com/catalog/product
/supelco/442425?lang=en®ion=US

G

Benz

Benz





90

7H-Dibenzo[c,g]carbazole

V







544 P

CS

P

Cr6







184

9-Methyl Anthracene



V





196

CS

G









1

Acenaphthene

V

V

V

V

279

NIH

G/P

PAH

PAH

PAH

PAH

2

Acenaphthylene

V

V

V

V

265

NIH

G/P

PAH

PAH

PAH

PAH

3

Acetaldehyde

V

V

V

V

20

CDC

G

Benz

Benz

Benz

Benz

4

Acetamide

V

V





165

CDC

G

Benz

Benz





5

Acetonitrile

V

V





82

CDC

G

Benz

Benz





6

Acetophenone

V

V





202

NIH

G

Benz

Benz





8

Acrolein

V

V

V

V

53

CDC

G

Benz

Benz

Benz

Benz

9

Acrylamide

V

V





175

CDC

G

Benz

Benz





10

Acrylic Acid

V

V





141

CDC

G

Benz

Benz





11

Acrylonitrile

V

V





77

CDC

G

Benz

Benz





12

Allyl Chloride

V

V





45

CDC

G

Benz

Benz





14

Aniline

V

V





184

CDC

G

Benz

Benz





16

Anthracene

V

V

V

V

342

NIH

G/P

PAH

PAH

PAH

PAH

17

Antimony

V

V





1,587

CDC

P

Cr6

Cr6





18

Arsenic

V

V

V

V

612

CDC

P

Cr6

Cr6

Ni

Ni

19

Asbestos

V

V





600

CDC

P

Cr6

Cr6





20

Benz[a]Anthracene

V

V

V

V

438

NIH

P

Cr6

Cr6

Ni

Ni

21

Benzene

V

V

V

V

80

CDC

G

V

V

V

V

22

Benzidine

V







400

CDC

G/P

PAH







23

Benzo(a)Fluoranthene

V

V





295

NIH

G/P

PAH

PAH





24

Benzo(c)phenanthrene









430 P

CS

P









26

Benzo(g,h,i)Fluoranthene

V

V





406 P

CS

P

Cr6

Cr6





28

Benzo[a]Pyrene

V

V

V

V

360

http://www.speclab.com/compound/c50328.ht
m

G/P

PAH

PAH

PAH

PAH

G-12


-------
Page 11

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases

HAP
Num.
for
NATA

HAP Name

Emission Source
Modeled for NATA
Air Concentrations3

Boiling Point

HAPEM7

HAP
Phased

Exposure Factors Developed
for This HAP ("~"), or
Surrogate Used Instead
(Surrogate HAP Name)e

P

NP

M-
OR

M-
NR

Value

(CT

Source0

P

NP

M-
OR

M-
NR

29

Benzo[b]Fluoranthene

V

V

V

V

4,665 P

CS

P

Cr6

Cr6

Ni

Ni

25

Benzo[e]Pyrene

V

V





465 P

CS

P

Cr6

Cr6





27

Benzo[g,h,i,]Perylene

V

V

V

V

550

NIH

P

Cr6

Cr6

Ni

Ni

30

Benzo[j]fluoranthene

V







480 E

CS

P

Cr6







31

Benzo[k]Fluoranthene

V

V

V

V

480

http://www.speclab.com/compound/c207089.
htm

P

Cr6

Cr6

Ni

Ni

32

Benzofluoranthenes

V

V





406 P

CS

P

Cr6

Cr6





33

Benzotrichloride

V







221

NIH

G

Benz







34

Benzyl Chloride

V

V





179

NIH

G

Benz

Benz





35

Beryllium

V

V





2,500

NIH

P

Cr6

Cr6





36

Beta-Propiolactone

V







162

http://www.cdc.gov/niosh/docs/81-
123/pdfs/0528.pdf

G

Benz







37

Biphenyl

V

V





256

NIH

G

Benz

Benz





38

Bis(2-Ethylhexyl)Phthalate

V

V





386

CDC

G/P

PAH

PAH





39

Bis(Chloromethyl) Ether

V







106

CDC

G

Benz







40

Bromoform

V

V





149

CDC

G

Benz

Benz





43

Butyl Carbitol Acetate

V

V





245

NIH

G

Benz

Benz





44

Cadmium

V

V





765

CDC

P

Cr6

Cr6





45

Calcium Cyanamide

V

V





>2,444

CDC

P

Cr6

Cr6





46

Captan

V

V





314

CS

G/P

PAH

PAH





47

Carbaryl

V

V





315

CS

G/P

PAH

PAH





48

Carbazole

V

V





355

http://www.sigmaaldrich.com/catalog/product
/sigma/c5132?lang=en®ion=US

G/P

PAH

PAH





49

Carbitol Acetate

V







219

NIH

G

Benz







50

Carbon Disulfide

V

V





47

CDC

G

Benz

Benz





51

Carbon Tetrachloride

V

V





77

CDC

G

Benz

Benz





52

Carbonyl Sulfide

V

V





-50

NIH

G

Benz

Benz





53

Catechol

V







245

CDC

G

Benz







139

Cellosolve Acetate

V

V





145

CDC

G

Benz

Benz





138

Cellosolve Solvent

V

V





124

CDC

G

Benz

Benz





G-13


-------
Page 12

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases

HAP
Num.
for
NATA

HAP Name

Emission Source
Modeled for NATA
Air Concentrations3

Boiling Point

HAPEM7

HAP
Phased

Exposure Factors Developed
for This HAP ("~"), or
Surrogate Used Instead
(Surrogate HAP Name)e

P

NP

M-
OR

M-
NR

Value

(CT

Source0

P

NP

M-
OR

M-
NR

54

Chloramben

V







312

CS

G/P

PAH







55

Chlordane

V







175

NIH

G

Benz







56

Chlorine

V

V





-33

CDC

G

Benz

Benz





57

Chloroacetic Acid

V







106

CDC

G

Benz







59

Chlorobenzene

V

V





132

CDC

G

Benz

Benz





60

Chlorobenzilate

V







146

NIH

G

Benz







61

Chloroform

V

V





62

CDC

G

Benz

Benz





62

Chloromethyl Methyl Ether

V







59

CDC

G

Benz







64

Chloroprene

V

V





59

CDC

G

Benz

Benz





65

Chromic Acid (VI)

V







250

CDC

G/P

PAH







67

Chromium (VI)

V

V

V

V

2,642

CDC

P

V

V

Ni

Ni

66

Chromium III

V

V

V

V

2,672

http://boo ks. google, com/boo ks?id=SFD30BvPB

hoC&pg=PA123&lpg=PA123&dq=chromium+lll

+melting+point&source=bl&ots=upHljDrKMy&s

ig=dlSMKFL5z0sVI0z8Z4NhlsFHggE&hl=en&sa=

X&ei=4nklVPLvJ4LS8AGbiYD4DA&ved=0CFkQ6A

EwCQ#v=onepage&q=chromium%20lll%20melt

ing%20point&f=false

P

Cr6

Cr6

Ni

Ni

68

Chromium Trioxide

V







250

CDC

G/P

PAH







69

Chrysene

V

V

V

V

448

http://www.speclab.com/compound/c218019.
htm

P

Cr6

Cr6

Ni

Ni

70

Coal Tar

V







>250

http://www.inchem.org/documents/icsc/icsc/ei
csl415.htm

G/P

PAH







71

Cobalt

V

V





3,100

CDC

P

Cr6

Cr6





72

Coke Oven Emissions

V







V

CDC

G/P

V







76

Cresol/Cresylic Acid (Mixed
Isomers)

V

V





202

CDC

G

Benz

Benz





77

Cumene

V

V





152

CDC

G

Benz

Benz





283

Cyanide

V

V





V

CDC

G/P

PAH

PAH





80

Decachlorobiphenyl (PCB-209)

V

V





460 P

CS

P

Cr6

Cr6





G-14


-------
Page 13

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases





Emission Source







Exposure Factors Developed
for This HAP ("~"), or

HAP
Num.



Modeled for NATA
Air Concentrations3



Boiling Point

HAPEM7

Surrogate Used Instead
(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

[C)b

Source0

Phased

P

NP

OR

NR

81

Di(Ethylene Glycol Monobutyl
Ether) Phthalate

V







283

CDC

G/P

PAH







82

Diazomethane

V







-23

CDC

G

Benz







83

Dibenz[a,h]acridine

V







534 P

CS

P

Cr6







85

Dibenzo[a,e]Pyrene

V







552 P

CS

P

Cr6







86

Dibenzo[a,h]Anthracene

V

V

V

V

262

http://www.sigmaaldrich.com/catalog/product
/supelco/48574?lang=en®ion=US

G/P

PAH

PAH

PAH

PAH

87

Dibenzo[a,h]Pyrene

V







308 E

CS

G/P

PAH







88

Dibenzo[a,i]Pyrene

V







552 P

CS

P

Cr6







84

Dibenzo[a,j]Acridine

V







534 P

CS

P

Cr6







89

Dibenzo[a,l]Pyrene

V







552 P

CS

P

Cr6







91

Dibenzofuran

V

V





287

NIH

G/P

PAH

PAH





93

Dibutyl Phthalate

V

V





340

CDC

G/P

PAH

PAH





97

Dichloroethyl Ether

V







177

CDC

G

Benz







99

Dichlorvos

V







140 at

40
mmHG

NIH

G

Benz































284

Diesel PM



V

V

V

V

http://www.epa.gov/regionl/eco/airtox/diesel.
html

P



V

V

V

100

Diethanolamine

V

V





268

NIH

G/P

PAH

PAH





101

Diethyl Sulfate

V







210

NIH

G

Benz







103

Diethylene Glycol Diethyl Ether

V







189 E

CS

G

Benz







104

Diethylene Glycol Dimethyl Ether

V







161 E

CS

G

Benz







106

Diethylene Glycol Monobutyl
Ether

V

V





230

NIH

G

Benz

Benz





107

Diethylene Glycol Monoethyl
Ether

V

V





196

NIH

G

Benz

Benz





108

Diethylene Glycol Monomethyl
Ether

V

V





194 E

CS

G

Benz

Benz





112

Dimethyl Phthalate

V

V





284

NIH

G/P

PAH

PAH





G-15


-------
Page 14

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

(CT

Source0

Phased

P

NP

OR

NR

113

Dimethyl Sulfate

V

V





188

NIH

G

Benz

Benz





118

Dimethylcarbamoyl Chloride

V







167

NIH

G

Benz







127

Epichlorohydrin

V

V





118

NIH

G

Benz

Benz





130

Ethyl Acrylate

V

V





99

CDC

G

Benz

Benz





131

Ethyl Benzene

V

V

V

V

136

CDC

G

Benz

Benz

Benz

Benz

132

Ethyl Carbamate

V







185

NIH

G

Benz







133

Ethyl Chloride

V

V





-139

NIH

G

Benz

Benz





134

Ethylene Dibromide

V

V





131

CDC

G

Benz

Benz





135

Ethylene Dichloride

V

V





83

CDC

G

Benz

Benz





136

Ethylene Glycol

V

V





197

CDC

G

Benz

Benz





140

Ethylene Glycol Methyl Ether

V

V





124

CDC

G

Benz

Benz





141

Ethylene Glycol Monomethyl
Ether Acetate

V







145

CDC

G

Benz







142

Ethylene Glycol Mono-Sec-Butyl
Ether

V







192

CS

G

Benz







145

Ethylene Oxide

V

V





11

CDC

G

Benz

Benz





146

Ethylene Thiourea

V







230

CDC

G

Benz







144

Ethyleneimine

V







56

CDC

G

Benz







148

Ethylidene Dichloride

V

V





-17

CDC

G

Benz

Benz





149

Extractable Organic Matter
(EOM)

V







NA

NA

NA

NA







150

Fine Mineral Fibers

V







NA

http://www.usg.com/content/dam/USG_Mark
eting_Communications/united_states/product_
promotional_materials/finished_assets/usg-
mineral-wool-300a-msds-en-75850002.pdf

P

Cr6







151

Fluoranthene

V

V

V

V

384

NIH

G/P

PAH

PAH

PAH

PAH

152

Fluorene

V

V

V

V

295

NIH

G/P

PAH

PAH

PAH

PAH

153

Formaldehyde

V

V

V

V

-21

CDC

G

Benz

Benz

Benz

Benz

G-16


-------
Page 15

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases

HAP
Num.



Emission Source
Modeled for NATA
Air Concentrations3

Boiling Point

HAPEM7

Exposure Factors Developed
for This HAP ("~"), or
Surrogate Used Instead
(Surrogate HAP Name)e

for
NATA

HAP Name

P

NP

M-
OR

M-
NR

Value

(CT

Source0

HAP
Phased

P

NP

M-
OR

M-
NR

154

Glycol Ethers

V

V





120-240

http://msdssearch.dow.com/PublishedLiteratur
eDOWCOM/dh_012d/0901b8038012d976.pdf?
filepath=oxysolvents/pdfs/noreg/110-
00977. pdf&fromPage=Get Doc

G

Benz

Benz





155

Heptachlor

V







392

cs

G/P

PAH







156

Heptachlorobiphenyl

V

V





415 P

cs

P

Cr6

Cr6





157

Hexachlorobenzene

V

V





325

NIH

G/P

PAH

PAH





158

Hexachlorobiphenyl

V

V





396 P

CS

G/P

PAH

PAH





159

Hexachlorobutadiene

V

V





215

CDC

G

Benz

Benz





160

Hexachlorocyclopentadiene

V

V





238

CDC

G

Benz

Benz





161

Hexachloroethane

V







187

CDC

G

Benz







162

Hexamethylene Diisocyanate

V

V





212

NIH

G

Benz

Benz





163

Hexamethylphosphoramide

V







233

NIH

G

Benz







164

Hexane

V

V

V

V

69

CDC

G

Benz

Benz

Benz

Benz

167

Hydrazine

V

V





113

CDC

G

Benz

Benz





168

Hydrochloric Acid

V

V





-85

CDC

G

Benz

Benz





170

Hydrogen Cyanide

V

V





26

CDC

G

Benz

Benz





169

Hydrogen Fluoride

V

V





19

CDC

G

Benz

Benz





172

Hydroquinone

V

V





285

CDC

G/P

PAH

PAH





173

lndeno[l,2,3-c,d]Pyrene

V

V

V

V

530

http://www.speclab.com/compound/cl93395.
htm

P

Cr6

Cr6

Ni

Ni

174

Isophorone

V

V





215

CDC

G

Benz

Benz





175

Lead

V

V





1,740

CDC

P

Cr6

Cr6





177

Maleic Anhydride

V

V





202

CDC

G

Benz

Benz





178

Manganese

V

V

V

V

1,962

CDC

P

Cr6

Cr6

Ni

Ni

74

m-Cresol

V

V





202

CDC

G

Benz

Benz





179

Mercury

V

V

V

V

356

CDC

G/P

PAH

PAH

PAH

PAH

180

Methanol

V

V





64

CDC

G

Benz

Benz





182

Methoxychlor

V







89

NIH

G

Benz







G-17


-------
Page 16

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

[C)b

Source0

Phased

P

NP

OR

NR

183

Methoxytriglycol

V







249

http://msdssearch.dow.com/PublishedLiteratur
eDOWCOM/dh_012d/0901b8038012d976.pdf?
filepath=oxysolvents/pdfs/noreg/110-
00977. pdf&fromPage=Get Doc

G

Benz







185

Methyl Bromide

V

V





3

CDC

G

Benz

Benz





187

Methyl Chloride

V

V





-98

CDC

G

Benz

Benz





265

Methyl Chloroform

V

V





74

CDC

G

Benz

Benz





189

Methyl Iodide

V

V





43

CDC

G

Benz

Benz





190

Methyl Isobutyl Ketone

V

V





116

CDC

G

Benz

Benz





191

Methyl Isocyanate

V







39

CDC

G

Benz







192

Methyl Methacrylate

V

V





101

CDC

G

Benz

Benz





193

Methyl Tert-Butyl Ether

V

V





55

NIH

G

Benz

Benz





194

Methylanthracene

V







360 P

CS

G/P

PAH







196

Methylbenzopyrene









479 P

CS

G/P









198

Methylchrysene









449 P

CS

P









200

Methylene Chloride

V

V





39

CDC

G

Benz

Benz





188

Methylhydrazine

V

V





88

CDC

G

Benz

Benz





279

m-Xylene

V

V

V

V

139

CDC

G

Benz

Benz

Benz

Benz

115

N,N-Dimethylaniline

V

V





192

CDC

G

Benz

Benz





111

N,N-Dimethylformamide

V

V





153

CDC

G

Benz

Benz





207

Naphthalene

V

V

V

V

260

CDC

G

Benz

Benz

Benz

Benz

165

N-Hexyl Carbitol

V







260 E

CS

G

Benz







208

Nickel

V

V

V

V

2,913

CDC

P

Cr6

Cr6

V

V

209

Nickel Oxide

V







1,955

NIH

P

Cr6







210

Nickel Refinery Dust

V







2,730

http://www.cdc.gov/niosh/docs/81-
123/pdfs/0445.pdf

P

Cr6







213

Nitrobenzene

V

V





211

CDC

G

Benz

Benz





222

N-Nitrosodimethylamine

V







152

CDC

G

Benz







223

N-Nitrosomorpholine

V







224

NIH

G

Benz







221

N-Nitroso-N-Methylurea

V







164 P

CS

G

Benz







G-18


-------
Page 17

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

[C)b

Source0

Phased

P

NP

OR

NR

15

o-Anisidine

V







225

CDC

G

Benz







73

o-Cresol

V

V





191

CDC

G

Benz

Benz





261

o-Toluidine

V

V





200

CDC

G

Benz

Benz





280

o-Xylene

V

V

V

V

144

CDC

G

Benz

Benz

Benz

Benz

224

PAH, total

V

V

V

V

240-400

http://www.epa.gov/reg3hwmd/bf-
Ir/regional/analytical/semi-volatile.htm

G/P

•/

•/

•/

•/

239

PAH/POM - Unspecified

V

V





100-450

http://www.epa.gov/reg3hwmd/bf-
Ir/regional/analytical/semi-volatile.htm

G/P

PAH

PAH





225

Parathion

V







375

CDC

G/P

PAH







75

p-Cresol

V

V





202

CDC

G

Benz

Benz





125

p-Dioxane

V

V





101

CDC

G

Benz

Benz





226

Pentachlorobiphenyl

V

V





365 E

CS

G/P

PAH

PAH





227

Pentachloronitrobenzene

V

V





328

NIH

G/P

PAH

PAH





228

Pentachlorophenol

V

V





309

CDC

G/P

PAH

PAH





229

Perylene

V

V





276

http://www.sigmaaldrich.com/catalog/product
/aldrich/394475?lang=en®ion=US

G/P

PAH

PAH





230

Phenanthrene

V

V

V

V

340

NIH

G/P

PAH

PAH

PAH

PAH

231

Phenol

V

V





182

CDC

G

Benz

Benz





232

Phenyl Cellosolve

V

V





245 E

CS

G

Benz

Benz





234

Phosgene

V

V





8

CDC

G

Benz

Benz





235

Phosphine

V

V





88

CDC

G

Benz

Benz





236

Phosphorus

V

V





280

CDC

G/P

PAH

PAH





237

Phthalic Anhydride

V

V





295

CDC

G/P

PAH

PAH





238

Polychlorinated Biphenyls

V

V





365 E

CS

G/P

PAH

PAH





233

p-Phenylenediamine

V







267

CDC

G/P

PAH







241

Propionaldehyde

V

V

V

V

48

NIH

G

Benz

Benz

Benz

Benz

242

Propoxur

V







D

CDC

NA

NA







243

Propyl Cellosolve

V

V





150

http://msdssearch.dow.com/PublishedLiteratur
eDOWCOM/dh_012d/0901b8038012d976.pdf?
filepath=oxysolvents/pdfs/noreg/110-
00977. pdf&fromPage=Get Doc

G

Benz

Benz





G-19


-------
Page 18

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases



















Exposure Factors Developed





Emission Source







for This HAP ("~"),

or

HAP



Modeled for NATA







Surrogate Used Instead

Num.



Air Concentrations3



Boiling Point

HAPEM7

(Surrogate HAP Name)e

for







M-

M-

Value



HAP





M-

M-

NATA

HAP Name

P

NP

OR

NR

[C)b

Source0

Phased

P

NP

OR

NR

244

Propylene Dichloride

V

V





97

CDC

G

Benz

Benz





245

Propylene Oxide

V

V





34

CDC

G

Benz

Benz





281

p-Xylene

V

V

V

V

138

CDC

G

Benz

Benz

Benz

Benz

247

Pyrene

V

V

V

V

404

NIH

P

Cr6

Cr6

Ni

Ni

248

Quinoline

V

V





238

NIH

G

Benz

Benz





249

Quinone

V







S

CDC

NA

NA







150

Rockwool (Man-Made Fibers)

V







NA

http://www.usg.com/content/dam/USG_Mark
eting_Communications/united_states/product_
promotional_materials/finished_assets/usg-
mineral-wool-300a-msds-en-75850002.pdf

P

Cr6







250

Selenium

V

V





685

CDC

P

Cr6

Cr6





150

Slagwool (Man-Made Fibers)

V







NA

http://www.usg.com/content/dam/USG_Mark
eting_Communications/united_states/product_
promotional_materials/finished_assets/usg-
mineral-wool-300a-msds-en-75850002.pdf

P

Cr6







251

Styrene

V

V

V

V

145

CDC

G

Benz

Benz

Benz

Benz

252

Styrene Oxide

V

V





194

http://www.sigmaaldrich.com/catalog/product
/aldrich/s5006?lang=en®ion=US

G

Benz

Benz





254

Tetrachlorobiphenyl

V

V





360 P

CS

G/P

PAH

PAH





256

Tetrachloroethylene

V

V





121

CDC

G

Benz

Benz





257

Titanium Tetrachloride

V

V





136

http://www.sigmaaldrich.com/catalog/product
/aldrich/697079?lang=en®ion=US

G

Benz

Benz





258

Toluene

V

V

V

V

111

CDC

G

Benz

Benz

Benz

Benz

259

Toluene-2,4-Diamine

V







292

CDC

G/P

PAH







262

Toxaphene

V







D

CDC

NA

NA







267

Trichloroethylene

V

V





87

CDC

G

Benz

Benz





270

Triethylamine

V

V





89

CDC

G

Benz

Benz





271

Triethylene glycol

V

V





285

NIH

G/P

PAH

PAH





154

Triethylene Glycol Dimethyl
Ether

V







215 E

CS

G

Benz







272

Trifluralin

V

V





140

http://www.speclab.com/compound/cl582098
.htm

G

Benz

Benz





G-20


-------
Page 19

Table 1. HAPs Assessed in the 2011 NATA, with their HAPEM7 HAP Phases

HAP
Num.
for
NATA

HAP Name

Emission Source
Modeled for NATA
Air Concentrations3

Boiling Point

HAPEM7

HAP
Phased

Exposure Factors Developed
for This HAP ("~"), or
Surrogate Used Instead
(Surrogate HAP Name)e

P

NP

M-
OR

M-
NR

Value

(CT

Source0

P

NP

M-
OR

M-
NR

273

Triglycol Monobutyl Ether

V







278

NIH

G/P

PAH







275

Vinyl Acetate

V

V





72

CDC

G

Benz

Benz





276

Vinyl Bromide

V







16

CDC

G

Benz







277

Vinyl Chloride

V

V





-14

CDC

G

Benz

Benz





278

Vinylidene Chloride

V

V





32

CDC

G

Benz

Benz





282

Xylenes (Mixed Isomers)

V

V

V

V

139

NIH

G

Benz

Benz

Benz

Benz

aThe emission sources modeled for air concentrations for each HAP in NATA are shown here for informational purposes. P =point; NP=non-point; M-OR=mobile on-road; M-NR=mobile
non-road.

b D=decomposes; E=experimental; NA=not available; P=predicted; S=sublimes; V=varies depending on compound.
cCDC=http://www.cdc.eov/niosh/npe: CS=http://www.chemspider.com: NIH=http://pubchem.ncbi.nlm.nih.eov/.
d G=gaseous; G/P=gaseous or particulate depending on conditions; P=particulate; NA=unknown.
e Benz=benzene; PAH=PAH, total; Ni=Nickel; Cr6=Chromium (VI).

G-21


-------
Page 20

Table 2. Boiling-point Defintions Used to Classify HAPs for HAPEM7 Modeling for the

2011 NATA

HAPEM7 HAP Phase

Boiling-Point Range (°C)

G (Gaseous)

< 240-260

G/P (Either gaseous or particulate depending on conditions)

240-260 to 400-480

P (Particulate)

> 400-480

Source: Adapted from the "Classification of Inorganic Organic Pollutants" table at EPA's Volatile
Organic Compound page (available as of February 12, 2015 at

http://www.epa.gov/iaq/voc2.html). as adapted from: World Health Organization, 1989.
"Indoor air quality: organic pollutants." Report on a WHO Meeting, Berlin, 23-27 August 1987.
EURO Reports and Studies 111. Copenhagen, World Health Organization Regional Office for
Europe.

Table 3. HAPs Modeled in HAPEM7 for the 2011 NATA





Emission Source Modeled for





NATA Exposure Concentrations3

NATA HAP

HAPEM7 HAP Phase"

P

NP

M-OR

M-NR

Benzene

G

V

V

V

V

1,3-butadiene

G

V

V

V

V

Coke oven emissions

G/P

V







PAH, total

G/P

V

V

V

V

(i.e., aggregate mass of polycyclic aromatic











hydrocarbons, where congeners were not specified)











Chromium (VI)

P

V

V





(i.e., compounds of hexavalent chromium)











Diesel PM

P



V

V

V

(i.e., Diesel particulate matter, or DPM)











Nickel

P





V

V

a For PAH total, chromium (VI), and nickel, we did not model exposure concentrations for the full set of source
categories they were modeled with for air concentrations. As discussed in the text, EPA selected these seven HAPs
to model and these specific source categories per HAP. P=point; NP=non-point; M-OR=mobile on-road; M-
NR=mobile non-road.
b G=gaseous; G/P=gaseous or particulate depending on conditions; P=particulate.

G-22


-------
Page 21

Table 4. Modeling Statistics for the 2011 NATA HAPs Modeled in HAPEM7









1,3-

Coke oven

Chromium

Diesel



PAH,







Benzene

butadiene

emissions

(VI)

PM

Nickel

total

In

Num. Counties

3,224

HAPEM7:

Num. Tracts

74,034



Num. Tracts with 0 Population (i.e., not modeled)3

579

In 2011

Num.

Counties

3,224

NATA:

Modeled:

"Tracts" For Air Concentrations'3

74,859





"Tracts" For Air Concentrations but not Exposure13

1,027





Tracts For Exposure

73,832



Num. Not

Tracts3

202 for air concentrations, an additional 377 for exposure



Modeled:

Instances of a Work Tractc

3,202

3,202

3,149

3,149

3,149

3,149

3,149

a EPA did not model air concentrations for 202 tracts which had zero residents according to the population data EPA was using at that time. In the HAPEM7 population data, two of
these tracts have two to three residents, but they were not modeled in HAPEM7 because they were not modeled in AERMOD and CMAQ; the other 200 tracts had zero residents
in HAPEM7. The HAPEM7 population data indicate that another 379 tracts also have zero residents; though EPA modeled air concentrations for these tracts, HAPEM7 did not
model these tracts.

b Air-concentration modeling included census tracts and some areas unrelated to census tracts. These non-tract areas were not modeled for exposure.

c Each home tract's collection of work tracts were randomly sampled with each run of HAPEM. A tract can be a work tract for multiple home tracts, and thus it can be sampled
multiple times as a work tract. Work tracts were not modeled for exposure if they had no air concentrations; tracts had no air concentrations if they had no people in them
according to the 2010 Census.

Table 5. "Caps" Applied to Exposure Factors for the 2011 NATA

HAP

Point

Non-point

Mobile On-road

Mobile Non-road

Total

Benzene

1.00

0.98

1.28

0.97

0.98

1,3-butadiene

1.09

0.97

1.30

0.99

1.00

Coke oven emissions

1.02

NA

NA

NA

1.02

PAH, total

0.93

0.71

0.89

0.73

0.73

Chromium (VI)

0.53

0.55

NA

NA

0.52

Diesel PM

NA

1.94

0.66

0.57

0.57

Nickel

NA

NA

0.64

0.54

0.58

G-23


-------
EPA's National-scale Air Toxics Assessment

This page intentionally left blank.

G-24


-------
EPA's National-scale Air Toxics Assessment

Appendix H
Toxicity Values Used in the 2011 NATA

Exhibit H-1 contains the toxicity values and supporting information for cancer and noncancer effects used in the
2011 NATA. The "target organ" column contains the organs or organ systems adversely affected at the lowest
dose in human or animal studies of noncancer effects. Hazard indices were calculated only for the respiratory
system (see Sections 5.2.2 and 6.3 of this document for the definitions of hazard quotients and hazard indices and
an explanation of how they are used in NATA). Other information on individual substances is shown in footnotes.
Abbreviations used for the sources of the unit risk estimates (UREs) and reference concentrations (RfCs) are as
follows:

IRIS	= Integrated Risk Information System

ATSDR = Agency for Toxic Substances and Disease Registry
CAL	= California Office of Environmental Health Hazard Assessment

HEAST = EPA Health Effects Assessment Tables
OAQPS = EPA Office of Air Quality Planning and Standards

H-1


-------
EPA's National-scale Air Toxics Assessment

Exhibit H-1. Toxicity Values Used in the 2011 NATA

NATA Pollutant

CAS
Number

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer
Impacts a

Value

Source

Value

Source

1,1,1-Trichloroethane

71556





5

IRIS

neurological

1,1,2,2-Tetrachloroethane

79345











1,1,2-Trichloroethane

79005

0.000016

IRIS

0.4

CAL

liver

1,1 -Dimethylhydrazine

57147











1,2,3,4,5,6-

Hexachlorocyclyhexane b

58899

0.00053

IRIS

0.002

CAL

liver

reproductive
kidney

1,2,4-Trichlorobenzene

120821





0.2

HEAST

liver

1,2-Dibromo-3-Chloropropane

96128

0.002

CAL

0.0002

IRIS

reproductive

1,2-Diphenylhydrazine

122667

0.00022

IRIS







1,2-Epoxybutane

106887





0.02

IRIS

respiratory

1,2-Propyleneimine

75558











1,3-Butadiene

106990

0.00003

IRIS

0.002

IRIS

reproductive

1,3-Dichloropropene

542756

0.000004

IRIS

0.02

IRIS

respiratory

1,3-Propane Sultone

1120714

0.00069

CAL







1,4-Dichlorobenzene

106467

0.000011

CAL

0.8

IRIS

liver

1,4-Dioxane

123911

0.000005

IRIS

0.03

IRIS

respiratory
liver

2,2,4-Trimethylpentane

540841











2,4,5-Trichlorophenol

95954











2,4,6-Trichlorophenol

88062

0.0000031

IRIS







2,4-D, salts and esters

94757











2,4-Dinitrophenol

51285











2,4-Dinitrotoluene

121142

0.000089

CAL

0.007

CAL

liver

neurological

2,4-Toluene Diamine

95807

0.0011

CAL







2,4-Toluene Diisocyanate

584849

0.000011

CAL

0.00007

IRIS

respiratory

2-Acetylaminofluorene

53963

0.00208

CAL







2-Chloroacetophenone

532274





0.00003

IRIS

respiratory

2-Nitropropane

79469

0.0000056 c

EPA
OAQPS

0.02

IRIS

liver

3,3'-Dichlorobenzidine

91941

0.00034

CAL







3,3'-Dimethoxybenzidine

119904











3,3'-Dimethylybenzidine

119937











4,4'-Methylene Bis(2-
Chloroaniline)

101144

0.00043

CAL







4,4'-Methylenedianiline

101779

0.00046

CAL

0.02

CAL

ocular

4,4'-Methylenediphenyl
Diisocyanate (MDI)

101688





0.0006

IRIS

respiratory

4,6-Dinitro-o-Cresol (Including
Salts)

534521











4-Aminobiphenyl

92671











4-Dimethylaminoazobenzene

60117

0.0013

CAL







4-Nitrobiphenyl

92933











4-Nitrophenol

100027











Acetaldehyde

75070

0.0000022

IRIS

0.009

IRIS

respiratory

Acetamide

60355

0.00002

CAL







Acetonitrile

75058





0.06

IRIS

whole body

Acetophenone

98862











H-2


-------
EPA's National-scale Air Toxics Assessment

NATA Pollutant

CAS
Number

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer
Impacts a

Value

Source

Value

Source

Acrolein

107028





0.00002

IRIS

respiratory

Acrylamide

79061

0.00016 d

IRIS

0.006

IRIS

neurological

Acrylic Acid

79107





0.001

IRIS

respiratory

Acrylonitrile

107131

0.000068

IRIS

0.002

IRIS

respiratory

Allyl Chloride

107051

0.000006

CAL

0.001

IRIS

neurological

Aniline

62533

0.0000016

CAL

0.001

IRIS

spleen

Anisidine

90040











Antimony Compounds

7440360





0.0002

IRIS

respiratory

Arsenic Compounds(inorganic
including Arsine)

7440382

0.0043

IRIS

0.000015

CAL

developmental

Benzene

71432

0.0000078 e

IRIS

0.03

IRIS

immune

Benzidine

92875

0.1072 d

IRIS

0.01

CAL

liver

neurological

Benzotrichloride

98077











Benzyl Chloride

100447

0.000049

CAL







Beryllium Compounds

7440417

0.0024

IRIS

0.00002

IRIS

respiratory

Beta-Propiolactone

57578











Biphenyl

92524











Bis(2-Ethylhexyl)Phthalate
(DEHP)

117817

0.0000024

CAL

0.01

CAL

respiratory
liver

Bis(Chloromethyl) Ether

542881

0.062

IRIS







Bromoform

75252

0.0000011

IRIS







Cadmium Compounds

7440439

0.0018

IRIS

0.00001

ATSDR

kidney

Calcium Cyanamide

156627





0.0008

IRIS

neurological
thyroid

Captan

133062











Carbaryl

63252











Carbon Disulfide

75150





0.7

IRIS

neurological

Carbon Tetrachloride

56235

0.000006



0.1

IRIS

liver

Carbonyl Sulfide

463581





0.163

EPA ORD

f

neurological

Catechol

120809











Chloramben

133904











Chlordane

57749

0.0001

IRIS

0.0007

IRIS

liver

Chlorine

7782505





0.00015

ATSDR

respiratory

Chloroacetic Acid

79118











Chlorobenzene

108907





1

CAL

liver

reproductive
kidney

Chlorobenzilate

510156

0.000078

HEAST







Chloroform

67663





0.098

ATSDR

liver

Chloromethyl Methyl Ether

107302











Chloroprene

126998

0.00048 d

IRIS

0.02

IRIS

respiratory

Chromium VI (Hexavalent)g

Multiple

0.012

IRIS

0.0001

IRIS

respiratory

Cobalt Compounds

7440484





0.0001

ATSDR

respiratory

Coke Oven Emissions

NA

0.00099 d

IRIS







Cresol/Cresylic Acid (Mixed
Isomers)h

Multiple





0.6

CAL

neurological
whole body

Cumene

98828





0.4

IRIS

kidney
endocrine

H-3


-------
EPA's National-scale Air Toxics Assessment

NATA Pollutant

CAS
Number

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer
Impacts a

Value

Source

Value

Source

Cyanide Compounds

57125





0.0008

IRIS

neurological
thyroid

Dibenzofuran

132649











Dibutylphthalate

84742











Dichloroethyl Ether (Bis[2-
Chloroethyl]Ether)

111444

0.00033

IRIS







Dichlorvos

62737





0.0005

IRIS

neurological

Diesel Particulate Matter







0.005

IRIS

respiratory

Diethanolamine

111422





0.003

CAL

respiratory

Diethyl Sulfate

64675











Dimethyl Formamide

68122





0.03

IRIS

liver

Dimethyl Phthalate

131113











Dimethyl Sulfate

77781











Dimethylcarbamoyl Chloride

79447











Epichlorohydrin

106898

0.0000012



0.001

IRIS

respiratory

Ethyl Acrylate

140885











Ethyl Carbamate (Urethane)
Chloride (Chloroethane)

51796

0.000464 d









Ethyl Chloride

75003





10

IRIS

developmental

Ethylbenzene

100414

0.0000025

CAL

1

IRIS

developmental

Ethylene Dibromide
(Dibromoethane)

106934

0.0006

IRIS

0.009

IRIS

respiratory
reproductive

Ethylene Dichloride (1,2-
Dichloroethane)

107062

0.000026

IRIS

2.4

ATSDR

liver

Ethylene Glycol

107211





0.4

CAL

respiratory

Ethylene Oxide

75218

0.000088

CAL

0.03

CAL

neurological

Ethylene Thiourea

96457

0.000013

CAL

0.003

CAL

endocrine

Ethyleneimine (Aziridine)

151564











Ethylidene Dichloride (1,1-
Dichloroethane)

75343

0.0000016

CAL

0.5

HEAST

kidney

Formaldehyde

50000

0.000013

IRIS

0.0098

ATSDR

respiratory

Glycol Ethers '

Multiple





0.02

IRIS

reproductive

Heptachlor

76448

0.0013

IRIS







Hexachlorobenzene

118741

0.00046

IRIS

0.003

CAL

liver

Hexachlorobutadiene

87683

0.000022

IRIS

0.09

CAL

reproductive

Hexachlorocyclopentadiene

77474





0.0002

IRIS

respiratory

Hexachloroethane

67721





0.03

IRIS

liver

neurological
kidney

Hexamethylene Diisocyanate

822060





0.00001

IRIS

respiratory

Hexane

110543





0.7

IRIS

neurological

Hydrazine

302012

0.0049

IRIS

0.0002

CAL

liver
thyroid

Hydrochloric Acid (Hydrogen
Chloride [Gas Only])

7647010





0.02

IRIS

respiratory

Hydrogen Fluoride (Hydrofluoric
Acid)

7664393





0.014

CAL

skeletal

Hydroquinone

123319











Isophorone

78591





2

CAL

liver

developmental

H-4


-------
EPA's National-scale Air Toxics Assessment

NATA Pollutant

CAS
Number

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer
Impacts a

Value

Source

Value

Source

Lead Compoundsj

7439921





0.00015

EPA
OAQPS

neurological
developmental

Maleic Anhydride

108316





0.0007

CAL

respiratory

Manganese Compounds

7439965





0.0003

ATSDR

neurological

Mercury Compounds

7439976





0.0003 k

IRIS

neurological

Methanol

67561





20

IRIS

developmental

Methoxychlor

72435











Methyl Bromide
(Bromomethane)

74839





0.005

IRIS

respiratory

Methyl Chloride
(Chloromethane)

74873





0.09

IRIS

neurological

Methyl Iodide (lodomethane)

74884











Methyl Isobutyl Ketone
(Hexone)

108101





3

IRIS

developmental

Methyl Isocyanate

624839





0.001

CAL

respiratory
whole body

Methyl Methacrylate

80626





0.7

IRIS

respiratory

Methyl Tert-Butyl Ether

1634044

0.00000026

CAL

3

IRIS

liver

kidney

ocular

Methylene Chloride

75092

0.000000016 d

IRIS

0.6

IRIS

respiratory
liver

Methylhydrazine

60344











N,N-Dimethylaniline

121697











Naphthalene

91203

0.000034

CAL

0.003

IRIS

respiratory

Nickel Compounds 1

1313991

0.00048

EPA
OAQPS

0.00009

ATSDR

respiratory
immune

Nitrobenzene

98953

0.00004

IRIS

0.009

IRIS

respiratory

N-Nitrosodimethylamine

62759

0.022 d

IRIS







N-Nitrosomorpholine

59892

0.0019

CAL







N-Nitroso-N-Methylurea

684935











o-Toluidine

95534

0.000051

CAL







PAH_000E0 (PAHPOM) m

Multiple











PAH_176E5 (PAHPOM)

Multiple

0.0000176 d

EPA
OAQPS







PAH_880E5 (PAHPOM)

Multiple

0.000088 d

EPA
OAQPS







PAH_176E4 (PAHPOM)

Multiple

0.000176 d

EPA
OAQPS







PAH_176E3 (PAHPOM)

Multiple

0.00176 d

EPA
OAQPS







PAH_192E3 (PAHPOM)

Multiple

0.00192 d

EPA
OAQPS







PAH_101E2 (PAHPOM)

Multiple

0.01008 d

EPA
OAQPS







PAH_176E2 (PAHPOM)

Multiple

0.0176 d

EPA
OAQPS







PAH_114E1 (PAHPOM)

Multiple

0.1136 d

EPA
OAQPS







Parathion

56382











H-5


-------
EPA's National-scale Air Toxics Assessment



CAS

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer

NATA Pollutant

Number

Value

Source

Value

Source

Impacts a

Pentachloronitrobenzene
(Quintobenzene)

82688











Pentachlorophenol

87865

0.0000051

CAL

0.1

CAL

liver
kidney

Phenol

108952





0.2

CAL

liver

Phosgene

75445





0.0003

IRIS

respiratory

Phosphine

7803512





0.0003

IRIS

whole bod

Phosphorus

7723140











Phthalic Anhydride

85449





0.02

CAL

respiratory
ocular

Polychlorinated Biphenyls
(Aroclors)

1336363

0.0001

IRIS







p-Phenylenediamine

106503











Propionaldehyde

123386





0.008

IRIS

respiratory

Propoxur (Baygon)

114261











Propylene Dichloride (1,2-
Dichloropropane)

78875





0.004

IRIS

respiratory

Propylene Oxide

75569

0.0000037

IRIS

0.03

IRIS

respiratory

Quinoline

91225











Quinone (P-Benzoquinone)

106514











Selenium Compounds

7782492





0.02

CAL

liver

neurological
hematologic

Styrene

100425





1

IRIS

neurological

Styrene Oxide

96093





0.006

CAL

respiratory

Tetrachloroethylene

127184

0.00000026

IRIS

0.04

IRIS

neurological

Titanium Tetrachloride

7550450





0.0001

ATSDR

respiratory

Toluene

108883





5

IRIS

neurological

Toxaphene (Chlorinated
Camphene)

8001352

0.00032

IRIS



















liver

neurological

Trichloroethylene

79016

0.0000048 "

IRIS

0.002

IRIS

developmental
reproductive
kidney
immune

Triethylamine

121448





0.007

IRIS

respiratory

Trifluralin

1582098











Vinyl Acetate

108054





0.2

IRIS

respiratory

Vinyl Bromide

593602

0.000032

HEAST

0.003

IRIS

liver

Vinyl Chloride

75014

0.0000088

IRIS

0.1

IRIS

liver

Vinylidene Chloride

75354





0.2

IRIS

liver

Xylenes °

Multiple





0.1

IRIS

neurological

a For pollutants with more than one target organ or system listed, the order presented in this table does not represent priority or

significance of the noncancer impact.
b Includes all 4 lindane isomers. The modeling used the toxicity values of the most toxic isomer for cancer (CAS 319857) to estimate
risk.

0 The URE for 2-nitropropane derived by the Health Council of the Netherlands in 1999 was used in preference to the value in the

Health Effects Assessment Summary Tables, which does not reflect the most recent studies and analysis methods.
d This carcinogen acts via a mutagenic mode of action; therefore, the URE was adjusted by factor of 1.6 to account for the increased
risk during childhood exposures.

H-6


-------
EPA's National-scale Air Toxics Assessment

NATA Pollutant

CAS
Number

Inhalation Unit Risk
Estimate (URE), 1/(|jg/m3)

Reference
Concentration (RfC),
mg/m3

Target Organ(s) or
System(s)
Noncancer
Impacts a

Value

Source

Value

Source

e The IRIS assessment for benzene contains a range of UREs for inhalation exposure. The values that bracket this range are based
on different interpretations of the human-exposure information. As a health-protective national screening assessment, NATA used
the upper end of the range.

f A chronic screening level of 0.163 mg/m3 was developed for carbonyl sulfide by EPA ORD from a No Observed Adverse Effects
Level of 200 ppm based on brain lesions and neurophysiological alteration in rodents.

9 All hexavalent chromium compounds (including chromium (IV) trioxide) were modeled using the toxicity values for hexavalent
chromium.

h The individual cresol isomers were combined and noncancer impacts were estimated using the RfC for their mixture.

' The RfC for ethylene glycol methyl ether was used for all glycol eithers.

' The RfC for lead compounds is equivalent to the lead NAAQS.

k The RfC for mercury compounds is the value derived by IRIS for elemental mercury.

' The IRIS assessments for nickel compounds provided a range of plausible UREs. NATA used the highest value in that range which
is equal to the URE for nickel subsulfide. The low end of the range is equal to 50% of the URE for nickel subsulfide. The RfC value
for nickel subsulfide was also used all nickel compounds (including nickel oxide).

m See Section 2.1.1.2 of the TSD for a description of the PAH/POM grouping.

n Although trichloroethylene is carcinogenic by a mutagenic mode of action, the age-dependent adjust factor for the URE only
applies to the portion of the slope factor reflecting risk of kidney cancer. As such, the URE is adjusted by a factor of 1.12 (rather
than the typical factor of 1.6).

0 The individual xylene isomers were combined and noncancer impacts were estimated using the RfC for their mixture.

H-7


-------
EPA's National-scale Air Toxics Assessment

Final Review Draft - October 20,2010

This page intentionally left blank.

H-8


-------
EPA's National-scale Air Toxics Assessment

Appendix I

Adjustments from the 2011 Emissions/Modeling Approach

In a small number of situations, tract modeling results were adjusted due to errors or anomalies that had impacts
on the resultant tract risks.

For a few of these tracts, the modelled data were adjusted due to uncertainty with respect to the surrogate used to
allocate the county-level off-network (parking) emissions to the tract. These few tracts were each in a highly urban
core and were allocated based on square footage of industrial, commercial, institutional, and residential as an
indicator of parked cars. However, the surrounding tracts appeared very similar with respect to parking areas.

Given the uncertainty at this resolution, we chose to substitute the onroad light-duty values from a nearby tract. We
chose the next-highest onroad light-duty risk and associated concentrations and exposures.

Exhibit 1-1 contains the adjustments and the rationale.

Exhibit 1-1. Adjustments to Tract-level data

County,
State

Tract

HEM
Run
Groups

Pollut-
ants

Data to be
Adjusted

Adjustment

Reason

Kern, CA

06029001600

OR-LD
OR-HD

all

Cone.,

exposures,

poll.-

specific

risks

(cancer and
noncancer)
by HEM run
group and
source
group

Recompute as
the county mean
using all tracts in
the county
except for
06029001600

Faulty Surrogate 200
(urban primary road miles)
puts 100% of the
emissions in this tract, yet
there appears to be no
primary roads in the tract

Jefferson,
IL

17081051000,
17081050900

OR-LD
OR-HD

all

Same as
above

Recompute as
the county mean
using all tracts in
the county
except for
1708105100 and
17081050900

Faulty Surrogate 200
(urban primary road miles)
puts 100% of the
emissions in these two
tracts, yet there appears
to be no primary roads

King, WA

53033007402,
53033007401

OR-HD

NONRO

AD

all

Same as
above

Recompute as
the county mean
using all tracts in
the county
except for
53033007402
and

53033007401

Unreasonable emissions
density in high-population
tracts from nonroad due to
surrogates 140 and 100
(used for 520 due to gap
fill issue) and from
surrogate 221 in onroad.
These two tracts were
split up since last NATA.

San

Francisco,
CA

06075011700,
06075061500

NR-

Gas/Oth
er

Cancer

all

Same as
above

Recompute as
the county mean
using all tracts in
the county
except for
06075011700
and

06075061500

Surrogate 520 created
large emission densities
for commercial lawn and
garden emissions that are
likely not prevalent in this
tract

1-1


-------
EPA's National-scale Air Toxics Assessment

County,
State

Tract

HEM
Run
Groups

Pollut-
ants

Data to be
Adjusted

Adjustment

Reason

Du Page
County, IL

17043843900

OR-

HD_Die

sel

(source
group)

all

Same as
above

Recompute as
the county mean
using all tracts in
the county
except for
17043843900

The risk is due to
surrogate 205 (truck
stops). The underlying
truck-stop data shapefile
shows the weigh station to
be no longer in operation.
The satellite data do not
show any truck stops in
this tract.

St. Louis

County,

MO

2918922142
2

OR-

HD_Die

sel

(source
group)

all

Same as
above

Recompute as
the county mean
using all tracts in
the county
except for
29189221422

The risk is due to
surrogate 205 (truck
stops). The underlying
truck stop data shapefile
shows the major truck
stop that caused 71% of
the county emissions to
be allocated into this tract
is actually in the
neighboring tract to the
east, and thus this tract
should not have gotten the
emissions.

Orange
County,
CA

06059075514

NR-

Gas/Oth
er

Cancer
Risk

all

same as
above

Recompute as
the county mean
using all tracts in
the county
except for
06059075514

Very high emission
densities caused by two
surrogates: 520
(commercial + industrial +
institutional) and 510
(commercial + industrial)
used for allocating
commercial lawn and
garden equipment and
commercial equipment
that do not appear
consistent with the land
use in that tract

Lehigh

County,

PA

42077001000

OR-

Light

Duty

all

Total

Set onroad-light-
duty risk to next-
highest

neighboring tract
in the county
(42077000800)

This is the only tract with
risk > 100-in-1 million in
an urban area due to
onroad risk from parking-
area emissions. It appears
to have similar
characteristics (with
respect to parking areas)
as neighboring tracts
which are about 10-in-1
million or so lower risk.

Lancaster

County,

PA

42071000100

OR-

Light

Duty

all

Total

Set onroad-light-
duty risk to next-
highest

neighboring tract
in the county
(42071000700)

Same as above

Hennepin,
MN

27053104400

OR-

Light

Duty

all

Total

Set onroad-light-
duty risk to next-
highest

neighboring tract
in the county
(27053126100)

Same as above

1-2


-------
EPA's National-scale Air Toxics Assessment

County,
State

Tract

HEM
Run
Groups

Pollut-
ants

Data to be
Adjusted

Adjustment

Reason

Hamilton,
OH

39061000700

OR-

Light

Duty

all

Total

Set onroad-light-
duty risk to next-
highest

neighboring tract
in the county
(39061000900)

Same as above

Tulsa, OK

40143002500

OR-

Light

Duty

all

Total

Set onroad-light-
duty risk to next-
highest

neighboring tract
in the county
(40143003300)

Same as above.
Additionally, the primary
road on the perimeter of
the tract boundary may
also be in partly-adjacent
tract.

Puerto
Rico: 2
Municipios
: San Juan
72127 and
Ponce
72113.

T racts
impacted by
CMV

CMV -
ports

all

Emissions,
tract

concentrati
ons

Use same
emissions and
concentration as
2005 NATA,
recompute risks
based on the
concentrations

2011 NEI did not have
port emissions, so gap-fill
with 2005 NATA

1-3


-------