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1. INTRODUCTION

EPA terms groups of vehicles that fail the I/M test procedure at an
"unusually high rate" as pattern case failures. These groups may fail a
particular type of I/M test, or more generally, fail different types of
short tests for a variety of reasons The reasons range from design
defects common to the particular group, to an emission control system
component failure at excessive rates causing vehicles in that group to
fail. These "pattern case" failures cause difficulties in I/M programs
as such vehicles may not be easily repairable, or it may be appropriate
to modify the test procedure for some vehicles. In other cases, it may
require EPA to force manufacturers to recall these vehicles for

modification.

EPA has traditionally relied on information supplied by individual I/M
programs, individual car owners, or in some instances, manufacturers

to identify "pattern case" failures. Under a previous work assignment
for the EPA, EEA obtained data from three I/M programs and calculated
failure rates at the certification engine family level and at several
distinct cutpoints The failure rates were utilized by EPA to identify
engine families that were potential pattern case failures The objective
of this work assignment was to investigate methods to identify pattern

case failures using I/M data on a routine basis and to

o Minimize the complexity and time required to obtain such data

e Enhance statistical methods to better resolve pattern cases.

Accordingly, EEA organized the work effort into three separate areas
The first area is the data availability, where EEA investigated the
quality, quantity and types of data available from I/M programs on a

routine basis. The second area is the processing requirement to cal-
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culate failure rates by engine family which to some extent depends on the
type and cleanliness of data supplied by the states The third area
encompasses the statistical tools required to identify pattern case
failures, given sample size and observed failure rates We have assumed
that EPA is interested in detecting pattern case failures in vehicles
that are model year 1981 or newer, since these vehicles are covered by
the "207(b)" Emission Warranty Furthermore, our analysis is restricted

to light-duty vehicles (LDV) and light-duty trucks (LDT)

This report is organized as follows. Section 2 discusses our findings
on the type, quality, quantity and availability of data from seven I/M
programs The findings are based on contacts with I/M program managers
in seven locations. Section 3 details the processing requirements,
starting from raw data as provided by individual I/M programs, to the
final product of computed failure rates by engine family Section 4,
prepared in conjunction with a subcontractor - Analysis and Simulation,
Inc. - provides a range of statistical tools required for identification
of so-called "pattern case” failures. Although EPA used the]g test, we
believe that more sophisticated methods are required for the analysis
Section 5 summarizes our findings and recommends analyses we believe

would be of greatest value to EPA.
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2. CENTRALIZED STATE AUTOMOTIVE VEHICLE EMISSION
INSPECTION/MAINTENANCE PROGRAMS SURVEY

2.1 QVERVIEW

The difficulties associated with the rapid identification of pattern case
failures are due to the quality, quantity and availability of test data
for analysis. The choice of inspection/maintenance data to analyze
pattern case failures must seek to maximize the availability of an
adequate sample of data that is relatively error free, contains all of
the variables of interest and does not require inordinate delays.
Previous analysis for the EPA has shown that failure rates are sensitive
to test procedures, and potentially to climatic variables. It is in
EPA’s interest to obtain data from several different inspection/main-
tenance programs that represent different test procedures and are
geographically dispersed. 1In fact, failure rate differences arising
from test procedural differences or climatic/geographic differences may

be quantifiable if there is adequate data.

The requirement for large quantities of relatively clean and unbiased
data containing the Vehicle Identification Number (VIN) for each vehicle
tested resulted in narrowing the scope of our effort to encompass only
centralized I/M program data; analysis of data from decentralized I/M
programs have shown that much of the data is suspect. 1In this analysis,
we examined a variety of different centralized I/M programs that repre-
sent the range of diversity in location, test procedures and data
handling procedures. EPA has also been interested in determining
pattern case failures for California vehicles; this, of course, required
that we examine the California program even though the program is not
centralized The analysis of data from California is considered

separately in this section.
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A telephone survey was conducted to determine individual characteristics
of and differences between the vehicle inspection/maintenance programs

of seven states which use centralized (i e., state or contractor
operated) inspection facilities. The objective of the survey was to
determine which state program(s) produce emissions test data which
require little or no pre-processing cleanup or editing, and are available
on a frequent (monthly or quarterly) and timely basis. Individuals
surveyed were state I/M program engineers and technicians or private
contractors involved in the day-to-day operations of the programs The
seven programs selected were from diverse geographic regions of the
United States: Northeast, Middle Atlantic, Southeast, Midwest, Southwest
and Far West. The surveyed states include - Arizona, Connecticut,
Illinois, Kentucky, Maryland, Washington and Wisconsin. As stated

above, California is also considered but is separate from the analysis

of centralized programs.

This section discusses the general testing requirements, sample charac-
teristics, data recording and availability, and special features of each

of the seven programs surveyed

2.2 TESTING REQUIREMENTS

Although all state I/M programs ostensibly test light-duty vehicles on
the idle test, there appear to be considerable variations in the
definition of "light-duty", distinctions between cars and trucks, the
actual test procedure used, and the pass/fail requirements. EPA defini-
tions classify all cars as light-duty vehicles and all trucks up to
8,500 1b GVW as light-duty trucks (since 1979) Our survey recorded
general confusion regarding the 8,500 1lb cutpoint, with some states
covering vehicles only up to 6,000 1lb and others up to 10,000 1b GVW

To the extent EPA is interested in engine families and in light-duty
trucks between 6,000 and 8,500 1b GVW, there could be problems in

obtaining good data Test methods vary primarily in the preconditioning
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requirement, although some states now have pass/fail criteria on
emissions at high idle or loaded mode tests Cutpoint distinctions

between cars and light-trucks are more rare

The survey results are summarized in Table 2-1. The first column in
Table 2-1 lists the vehicles eligible for testing under the state
requirements. The second column is included to clarify the definition of
"light duty" as it pertains to vehicles eligible for testing (henceforth,
"vehicles" will refer to cars and trucks, unless otherwise noted) All
of the programs test all registered vehicles in the light duty category
covering at least the twelve most recent model years, which represent
approximately ninety percent of the in-use cars and trucks. Both
Illinois and Wisconsin test vehicles up to 8,000 1b (rather than 8,500
1b) GVW, but this distinction is based on registered GVW, which may not
be consistent with actual GVW. Washington and Maryland classify vehicles
only to 6,000 1b GVW as light-duty while Connecticut tests vehicles to
10,000 1b registered GVW. Complete capture of LDT's between 6,000 and

8,500 GVW is a potential problem with this variation.

The four types of emission tests for gasoline powered light duty vehicles
are listed in the third column of Table 2-1 The tests are: 1) Tl -
non-preconditioned idle, 2) T2 - loaded mode cruise on a dynamometer, 3)
T3 - final idle after preconditioning either at 2500 rpm idle or loaded
mode and 4) T4 - 2500 rpm no-load idle. Arizona and Connecticut are
unique as they use T3 test only for vehicles which failed Tl test.
Arizona, Connecticut, and Wisconsin precondition using a loaded mode
cruise on a dynamometer, while the other programs precondition at idle
Knowing the tests performed will allow for a comparison of failure rate
patterns between different testing sequences to gauge the effect of

alternate preconditioning and testing procedures
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TABLE 2-1 GENERAL TESTING REQUIREMENTS

7T

"Light Duty" Test Sequence Standards/Tests-MYR
State Vehicles Included Definitions For Gas LDV2 1981 and Newer LDV
AZ All gasoline and diesel vehicles, 0-8,500 1bs T1/T2/T3 207(b)b/T1 (T3 for
1972 and newer® failed vehicles)
CcT All gasoline powered cars and 0-8,500 1bs T1/T2/T3 207(b)/T1 (T3 for
trucks, 1968 and newer failed vehicles)
IL All gasoline powered cars and 0-8,000 1bs T1/T4/T3 207(b)/T4, T3
trucks, 1968 and newer
KY All gasoline and diesel powered 0-8,500 1bs T4/T3 207(b)/T3
vehicles, all years
MD All gasoline powered cars and 0-6,000 1bs T4/T3 207(b)/T3
trucks, last 12 years
WA All gasoline powered cars and 0-6,000 1bs T4/T3 1 5(2.0)/300/T3
trucks, last 14 years
Wl All gasoline powered cars and 0-8,000 1bs T2/T3 207(b) /T3 (4.0/400

trucks, last 15 years for LDT's 1981-86)

8 Tl = First Idle, T2 = Loaded Cruise; T3 = Final Idle. T4 = 2500 rpm preconditioning.
b co = 1.2%, HC = 220 ppm.

€ Will test all 1967+ MYR gas and diesel starting 1/87.



The fourth column of Table 2-1 lists the standards for model years 1981
and newer light duty vehicles. It can be seen that all the surveyed
I/M programs except Washington use the U.S. EPA suggested "207(b)"
standards of 1.2 percent carbon monoxide (CO) and 220 parts per million
hydrocarbon (220 ppm HC) This simplifies the task of comparing the
failure rates for all 1981 and newer light duty vehicles across test
procedures and states. Illinois is unique in this group in having 2500

rpm idle standards.

2.3 SAMPLE CHARACTERISTICS

It is preferable to have a large clean sample of data for the analysis
of pattern case failures. The cleanliness of the sample is affected by
retest/multiple test data and appearance of vehicles in the emissions

data that are difficult to track or can cause confusion.

Table 2-2 summarizes the characteristics of interest in each I/M program
data base Columns one and two pertain to all vehicles (light, medium
and heavy duty as applicable) tested, while the third column is specific
to light duty vehicles The first column lists the total number of
vehicles tested each month The greater the sample size, the more
significant any failure patterns detected will be. Sample sizes ranged
from 31,000 vehicles per month in Kentucky to 210,000 per month in

Illinois for vehicles of all model years.

The overall average failure rates (in percent) are listed in the second
column The failure rates are affectéd by the types and ages of vehicles
subject to testing as well as the pass/fail standards in effect. As
these failure rates include all classes of vehicles (except for
Maryland), they can be used as a general guideline for expected failure
rates. EPA may wish to focus analysis towards states reporting higher

than average failure rates.
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State

AZ

CT

IL

KY

Monthly Sample Size

TABLE 2-2

SAMPLE CHARACTERISTICS

Reported Average
Failure Rate (%)

110, 000

133,000

210,000

31,000

81
82
83
84

81
82
83
84

81
82
83
84

)
NN WO

N/A

[}
w &~ o

O O £ o

04

.91
.45

21

05
14

.09

43

Test Requirements

-

. New cars. first anniversary %fé*X?

Migrant out-of-state prior to

registration

Change of ownership

A) Sold by dealers prior to sale

B) Sold by individual new owner
registration renewal (will change
to sale 1/87)

. New cars: first anniversary s fe%
. Migrant out-of-state: prior to

registration
Change of ownership. VIR renewal

New cars first anniversary ;6’&?9

. Migrant out-of-state. first

anniversary c(wwj o
Change of ownership registration
renewal

New Cars first anniversary € fat

. Migrant out-of-state registration

reneval
Change of ownership registration
renewal
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TABLE 2-2 SAMPLE CHARACTERISTICS (cont’d)

Reported Average

State Monthly Sample Size Failure Rate (%) Test Requirement
MD 133,000 81-84 6.3 1 New cars: first anniversary «@ =%
2. Migrant out-of-state: prior to
registration

3. Change of ownership. VIR renewal

WA 50,000 81 - 5 86 1 New cars first anniversary .4 s
82 - 4 42 2. Migrant out-of-state: prior to
83 - 3.49 registration
84 - 5.58 3. Change of ownership registration

renewal

WI 135,000 81 - 11.9 1. New cars. registration renewal (mini-
82 - 8 4 mum 90 days)
83 - 4.9 2 Migrant out-of-state: registration
84 - 3.0 renewal

3. Change of ownership: registration
renewal









bases. Vehicle identification is entered either manually or directly
from a preexisting data base. The direct (on-line) data entry method is
preferable as fewer errors are introduced and/or propagated, particular
in recording the VIN. Direct data entry makes vehicle tracking, either
during one test year or from year to year, more accurate. Only
Connecticut relies on manual data entry while Arizona has converted to

automated entry as of July 1986.

Two methods of recording tests and retests are used. One technique is
to indicate as retests any test that is not the initial test for a
vehicle in a given year This method is preferred for analysis as it
simplifies the task of determining first test failure rates. The second
technique is to record every paid test or every third test for a vehicle
as a first test This method is not preferred due to the potential
difficulty in recognizing first tests and calculating first test failure

rates.

The third column in Table 2-3 lists tape availability frequencies

These frequencies will be the minimum time between delivery of raw data
tapes to EPA from the states involved, and will dictate the frequency
with which EPA can perform analyses Two states, Maryland and
Washington, do not produce master tapes on a schedule which lends itself

to frequent data analysis.

Also listed in the third column are the sources of the raw test data

All states will provide the raw data except Kentucky Kentucky'’s data
can be provided from the contractor which administers the tests. In all
cases, it appears that EPA’s help will be required for the data to be
released to a contractor. In addition, Connecticut requires a confiden-

tiality of data agreement
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2.5 SPECIAL FEATURES AND CONSIDERATIONS

Table 2-4 lists selected special features of each I/M program that can
affect the usefulness of its data. The first column considers the final
disposition of vehicles which failed all tests and retests during a given
year. Knowledge of waivers, when granted, can allow year to year
tracking of failed/waived vehicles. The second column lists the method
used to handle retest records. Ideally, all test and retest data for a
given vehicle would reside on one record with waivers indicated This
method lends itself to the most accurate tracking of final vehicle
results, which can be monitored year to year to determine emissions
deterioration between inspections. Earlier analysis by EEA suggests
that a population of vehicles fails at every inspection and is waived

every year.

Only Arizona, Washington and Wisconsin merge test and retest records
together. Of these three, only Arizona, and Wisconsin indicate the final
status (pass/fail/waive) of each vehicle. Illinois, Kentucky and
Maryland indicate waivers on the final test or retest record for each
vehicle Connecticut and Washington keep separate files containing
waiver information These files are not merged with the test results

files so they are of no use to the study.

2.6 DATA FROM CALIFORNIA

Since California has separate standards and different engine families
than the other 49-states, recognition of pattern case California families
requires data from the state of California’'s inspection program. The
data has two drawbacks - first, the program is decentralized and the
quality of inspections unknown, second, the data does not contain the

VIN number which is a basic requirement for identifying engine family
However, there are some possible actions that one can take to enhance

the value of the data
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State

AZ

CT

IL

KY

MD

WA

WI

TABLE 2-4 SPECIAL FEATURES AND

Waiver Record Handling

Waiver indicator

Separate waiver file; merged wi
test file when available (still
waiting for 1985 waivers)

Waiver indicator on final test

Waiver indicator on final test

Waiver indicator on final test

Waiver not indicated on tape;

physically tracked

Waiver indicator on final test

th

record

record

record

record

CONSIDERATIONS

Retest Record Handling

Merged with first test record

Any retest records are separate
entries

Any retest records are separate
entries

Separate record by vehicle visit
to inspection station

Separate record by vehicle visit
to inspection station

Merged with first test record

Results of up to 3 tests and/or
retests per record



California requires that all vehicles up to 8,500 1b GVW in seven major
metropolitan areas in California be inspected bi-annually, but this

8,500 1b GVW ljimit is based on registered GVW (as in many other states).
The test used/ in/an idle test, with 2500 rpm preconditioning. 1980 and
later vehicles—must meet standards for both the 2500 rpm test and the
idle test. Loaded-mode cruise test standards are "on the books", but
none of the regions require a loaded-mode test California is unique in
having (normal) idle test standards that vary by technology type for 1980

and later cars, as shown below.

HC co
No catalyst 150 2.5
Oxidation catalyst 150 2.5
Three-way open loop catalyst 150 1.2
Three-way closed loop catalyst 100 1.0

2500 rpm test standards are uniform at 220 ppm HC/1 2 percent CO for all
technologies. It is not clear what percent of cars are misidentified

and subjected to inspection at the wrong standards

Data entry on vehicle description is manual, and includes license plate,
vehicle type, GVW, make abbreviation, model year, number of cylinders,
engine size and odometer. EEA's examination of the records indicates
far fewer than expected records qualified as an LDT As a result, it is

possible that LDT’'s are being misclassified as far as the technology

category. On average, slightly less than 10 percent of all records are
classified as LDT's but registration records indicate that LDT pene-
tration in California is over 25 percent for newer model years. All
emission entries are automatic, with HC, CO, €05 and RPM recorded Test

records are stored in a cassette tape at each mechanic station.
Data cassettes are collected on a monthly basis by a contractor and

transcribed on to a mainframe computer by the Bureau of Automotive

Repair (BAR) and its contracts. (This may be changed to process the
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records quarterly in the near future.) The total sample size is very
large, with 600,000+ vehicles tested per month. In 1986, over 200,000 of
these vehicles are 1980 and later models One advantage of the
California data is that the Bureau of Automotive Repair already performs
extensive cleaning of the data to eliminate records of calibration data,
aborted tests, invalid tests, etc. Moreover, first test records and
retest records for a given vehicle are merged and issuance of a waiver is
noted. If vehicles have multiple first test records, these records are
not merged, especially if they are from different stations. Yet another
advantage of the California data is that the BAR utilizes SAS for doing
its analysis and this will make the data easily adaptable to the

processing system described in Section 4.

A major drawback of the California data base is the lack of the VIN

number. We are currently using the VIN to determine:

e Make

e Model year

e Model name (carline)

e Engine displacement

® Aspiration,natural/turbocharged
e Gasoline/diesel

e (VW category (for trucks)

All but two of the variables are being manually recorded for each
vehicle. The two variables not recorded are carline and aspiration.

For over 80 percent of all vehicles, knowledge of the engine displace-
ment, make and model year is sufficient to track engine family. (Of
course, neither the VIN nor the above variables reveal California/Federal
certification.) For the purpose of a general analysis that reveals

most, but not all, pattern failures, this may be sufficient EEA does
perceive a potential problem with not being able to distinguish between

cars and light trucks. If the vehicle type information is poor, it is
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conceivable that unambiguous determination of emission control technology

will be possible only in a small number of cases

The second method to overcome the data problem is by using the license
plate information and Department of Motor Vehicles records to identify
VIN. This would be expensive, as there are roughly 15 million light

duty vehicles in the state, roughly a third of which are 1980 or later.
BAR staff have contemplated this measure and believe that successful
matches of correct VIN numbers will occur in about 70 percent of the
cases. We cannot actually determine the quality of the VIN data unless a
small sample of license plates are matched to VIN records and the VIN
data examined This represents a possible area for additional

exploration by EPA in the future

A very interesting feature about the California program is that it
utilizes the 2500 rpm test for pass/fail determination and their idle
cutpoints are more stringent than the EPA "207(b)" cutpoints. Either as
a result of those factors, or due to other factors, California reports
the highest failure rate for 1980+ cars in the nation. On average the
failure rate (both tests combined) is approximately 25 percent, with even
model year 1984 vehicles reporting failure rates of over 10 percent in
1985. These failure rates are much higher than those in other
centralized I/M programs, even at the same cutpoints. In general,
decentralized programs typically display low failure rates; California's
failure rates are, therefore, surprising given that state officials have
suggested that tampering and misfueling of vehicles is lower in

California.

These factors suggest that California data could be useful to EPA,

especially if matching license plate to VIN proves feasible.
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2.7 SUMMARY

We have attempted to rank various aspects of each state’s I/M program
for its usefulness to the proposed analysis. This ranking is based on
10 categories; no weights have been placed on the categories but EPA may
wish to weight the categories differently depending on immediate objec-
tives. The categories are as below*

e Vehicles coverage to 8. 500 1b - We have awarded 2 points for

complete coverage, 1 for an intermediate point (such as 8,000
1b) and 0 for coverage up to 6,000 1b.

o Preconditioned idle test - We have awarded 2 points if all
vehicles are subject to uniform preconditioning, 0 if there is
no requirements, and 1 if it covers only failed vehicles.
Uniform preconditioning is necessary to compare idle emissions
and failure rates at cutpoints that differ from those in use

» Use of "207(b) standards - We have awarded 2 points for
standard cutpoints, making failure rate comparisons simple,
1 point for a situation where 207(b) cutpoints are applied to
only part of the 0-8,500 1b GVW fleet, and 0 for non-standard
cutpoints

e Sample size - We have awarded 2 points if the total monthly
sample is over 100,000 vehicles, 1 if it is between 50,000 and
100,000 and 0 if it is lower than 50,000.

e Data cleanliness - This refers to the presence of clean data
for all fields. In general, manual entry of data on vehicle
descriptions results in many errors, and is awarded O points.
Fully automated systems that track vehicles through their
registration records are awarded 2 points, while those are
dependent on some manual inputs, e.g., test cycle number, are
awarded 1 point

e Ability to distinguish first test - Given the fact that many
vehicles have multiple records, either due to retests or

several "first" tests, unambiguous determination of the first
test in any calendar year is valuable. If the state can make
this determination with accuracy, it simplifies processing
requirements A score of 2 is provided if the test sequence
variable is judged highly reliable, 1 if there is no on-line
tracking of vehicles and O if there are known errors in this
variable.

e Ability to gauge final outcome - This can be important if
tracking waiver rates, or the repairability of pattern failures

is an issue of interest. If all retests and the final outcome
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(pass, fail, wavier, waiver type) of a given test sequence is
available in the data, the score is 2 points Availability of
waiver data in a separate file that can be merged with the
data is given a 1 point score, and data sets that do not show
final outcome for failed vehicles are awarded 0 points.

e Data pre-sort - If the state pre-sorts all of the data to
match records of each vehicle for test and retest, as well as
for any unusual tests (e.g., change of ownership, multiple
first tests) it is awarded 2 points, 1 point if only test and
retest data is merged, and 0 if vehicle test records are
unsequenced

e Retrieval time - This factor shows how long it takes to obtain
the data after test completion. A score of 2 indicates data
availability within 3 months, a score of 1 indicates data
requiring 6 months and a score of 0 for a period longer than 6
months.

The scores for each of 7 centralized programs and California are shown
in Table 2-5. Assuming all factors are weighted equally, Illinois,
Kentucky and Wisconsin data appear to be the best, while Arizona,
Connecticut, Maryland and Washington are less preferable. (Arizona's
score is for the modernized system in use since July 1986.) Based on
our previous experience, where we found problems with the Connecticut,

Washington and (old) Arizona data to be of similar magnitude, the scores

appear to reflect well their usefulness to the analysis.
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TABLE 2-5

RANKING OF DATA USEFULNESS FOR SEVERAL I/M PROGRAMS

Distin- Distin-

Uniform Date guish  guish Data

Vehicle precondi- 207(b) Sample Clean- First Final Pre- Time
State Total wup to 8500 1lb tioning Cutpoint Size liness Test? Qutcome? Sorted Delay
AZ* 12 2 1 2 2 0 0 1 2 2
CT 10 2 1 2 2 0 0 1 0 2
IL 15 1 2 2 2 2 2 2 0 2
KY 14 2 2 2 0 2 2 2 0 2
MD 12 2 2 2 2 1 1 2 0 0
WA 11 2 2 0 1 1 2 0 2 1
WI 14 1 2 1 2 2 1 2 1 2
CA 12 2 2 0 2 0 1 2 1 2

* (revised program from July 1986)



3. DATA PROCESSING

3.1 OVERVIEW

The most resource intensive phase of the analysis is data processing.

As described in Section 2, each state processes in the neighborhood of
100,000 to 200,000 records monthly. As a rule of thumb with newer model
years, each model year accounts for 7 5 percent of all records. The
LDV/LDT split is typically between 4-1 to 6.1 for a given model year. If
we assume that EPA's interest in any calendar year is in the five model
years covered by the emissions warranty, and the processing is on every
six months of records, the data base of interest is somewhere between
225,000 to 450,000 records for each state. Analysis of such large data
bases requires enormous amounts of computer time, and the slow turnaround
of each run (usually overnight) makes it difficult to identify and

correct errors.

As a result, the data processing requirements are separated into a
number of steps, with outputs at the end of each step to allow for error
identification and correction. EEA's previous experience with I/M data
programs suggests that these intermediate outputs are very important to
the success of the project Accordingly the analysis of data has been

divided into six steps:

o Data cleaning

e Standardization of variable/format

o Sorting and sequencing

¢ VIN decoding

© Merging all data on individual vehicles

o Analysis of failure rate and output

The steps are shown schematically in Figure 3-1 and discussed below.
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3.2 STEP 1: DATA CLEANING

Any real world data tends to have errors; I/M data, especially in
certain programs, have errors related to vehicle or emission variables,
missing data fields or records generated from calibration and aborted
tests that should not be used for analysis. The cleaning step removes
such records by correcting or deleting them and also includes verifi-

cation and conversion of data into an appropriate format.

The first activity is to verify the data by reading the raw tape and
checking the values of vehicle descriptors (make, model year, type,
cylinders, odometer) and emission readings to make sure they do not
exceed the allowable range or contain blank fields Another item
included in the verification is the test result variable ("P" or "F");
this can be computed by comparing the emission readings to standards
associated with the particular model year (and, in some cases, the number
of cylinders). This step assumes that the tape copy of data received
from an I/M program is in the format agreed upon and the variables are

properly understood.

The second activity is the actual process of removing data records that
are incorrect, have missing fields or are not relevant for this analysis
In this step, tests of only light-duty vehicles (LDV) and light-duty
trucks (LDT) are retained, and an additional step of removing all diesel
LDV/LDT may be performed if there is an appropriate indicator field 1In
particular, the vehicle type indicator (absent in some states) is
retained for error checking after VIN decoding of vehicle type In
addition, aborted tests, calibration test and incomplete test records

are deleted.
The third activity involves assigning a separate computed pass/fail

variable (distinct from the one recorded) for results checking at the

end of other processing steps This is very useful in determining if
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other factors are being used in the program to pass or fail vehicles
(e.g., a tolerance on the standard that would pass vehicles very slightly
above standards or an underhood inspection that fails vehicles passing

the emission test).

Statistics on the total number of records and its breakdown by model
year, vehicle type, test month/year, make and test results before and
after processing are recommended outputs for this step. The statistics
are useful in determining what percentage of data is being rejected due
to cleaning, and any bias in record rejection (i.e., failed vehicles
having a larger percentage of records rejected than passed vehicles) A
very high record rejection rate or large bias in record rejection may
require acquisition of a new data tape or discussions with the program

managers to pinpoint the causes of the errors

Although this processing step appears routine, it has been EEA’s exper-
ience that this step is necessary but tedious. In addition, this
cleaning step cannot be "standardized" as the types of errors and
requirements for record rejection vary from program to program. As an
example, the coding of emission values can be in percent CO or hundredths
of a percent of CO, and format specifications may neglect to mention the
units Moreover, EEA has had the experience where there are unannounced
format changes in the program leading to considerable confusion
Therefore, this step cannot be automated but instead requires con-

siderable intervention on the part of both a programmer and an analyst

3.3 STEP 2: RECORD STANDARDIZATION

It is anticipated that data from several different I/M programs will be
processed through the VIN decoder and analyzed Accordingly, this step

deals with:

e Dropping unnecessary variables

e Developing a standard format for variables of interest
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e Standardizing alpha-numeric variables

e Reading into SAS

Several variables recorded in the data set at any I/M program will

be irrelevant to the analysis required in this assignment. They include
records of inspection sticker number, tax codes, safety test results,
repair cost information, etc. Moreover, since we plan to analyze only
1981 and later vehicles (or the last five model years), we can delete
all unnecessary records and fields to minimize data storage requirements

and processing costs.

The second activity in this step involves creating a standard format for
all variables of interest. While this process is relatively straight-
forward, one area of particular concern is the test procedure and the
several variables in the procedure and in pass/fail requirements. The
number of HC/CO emission records vary according to the procedures in-use
which include-

e All vehicles subjected to preconditioning, only one test at

idle

e Unpreconditioned idle test, with preconditioning and a second
idle test only for failed vehicles

e Unpreconditioned idle, high idle/loaded mode and second idle
tests for all vehicles for a total of three tests,

Pass/fail determination can be based upon any one, two or all three test
modes in some states; additionally, test and pass/fail requirements can
vary by model year. There is variation in the types of preconditioning
and states may change the test over time  These test specific emission
records must be carefully tracked and the format must allow specification
of any combination of test mode and pass/fail criteria. In previous work
efforts for EPA, EEA suggested a standard format, but we now believe this
should be enhanced by an additional variable that provides information on
which test results are used to determine pass/fail, and to distinguish

between blank, missing and "zero" fields
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Standard format specification and care in conversion of alpha-numeric
variables apply primarily to the VIN, license plate, and MAKE codes.
Problems can arise in reading such variables and field length specifi-
cations are critical to avoid truncation errors. The MAKE code is
required primarily for error checks in sorting, as detailed below.
Typically, no standard abbreviations are used for makes and multiple
alternatives are used in the same state for designating the same make.
Moreover, same abbreviations lead to confusion - a common one is the use
of "MERC" to denote both Mercury and Mercedes-Benz In the past, EEA
has utilized a dictionary that maps up to 99 percent of non-standard
abbreviations into standard abbreviations as MAKE codes. This dictionary
is constructed by printing out all variables in MAKE in the raw data
tape, and assigning non-standard formats to standard codes This time
consuming effort may not be necessary if the VIN data is clean, as

described in the following subsection.

The step 2 processing reports will generate statistics on a number of
records and statistics on each field for blanks or missing data. If
required, a MAKE code frequency table and a report on makes not mapped

into standard code can also be provided.

3.4 STEP 3: TRACKING TEST SEQUENCES

This step is required to separate first test and retest records as well
as to track multiple "first" tests. As described in Section 2 of this
report, most centralized I/M programs have a variable to indicate first
test or retest, but EEA’'s experience has been that the variable is not
completely reliable. For example, in Arizona and Connecticut, every

third test (second retest) is counted as a first test

The data base must first be sorted to match all available records as a

single vehicle. Two types of test must be distinguished

e Multiple first tests

e Multiple retests.
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Multiple first test records can occur in an I/M program if motorists

go to separate I/M stations on the same day after failing a first test
and decide the vehicle can pass on a second try at a different station.
I/M locations like Kentucky have on-line computers that will prevent
motorists from claiming a second "first test", but many I/M programs
cannot recognize such vehicles as having already completed a first test
Multiple first test records can also occur over the course of six
months or a year if vehicles are required to go through both an annual

inspection and an inspection at change-of-ownership.

Retest records are easily confused with first test records as many
owners let the allowable repair period elapse before they appear for
their retest. 1In states with change of ownership inspections, it is
sometimes difficult to exactly distinguish which tests are retests. In
addition, vehicles with multiple retests have records that are more
susceptible to incorrect data entry (especially in I/M programs with

manual data entry) Tracking of first test and retest is important for
two reasons*
e Records confusion exists pgnly for vehicles failing the first
test, and their elimination will result in biased calculations.
e In the interest of 207(b) warranty enforcement, EPA may need
to know the final outcome of test sequences
Sorting of all records by data for each vehicle is required for assigning
test sequence number. For the purposes of this work effort, we have not
pursued the algorithm for assigning the correct retest or multiple first
test number, and instead focused this effort into simply determining with
as much accuracy as possible, the first test for a given vehicle in a

given year
Sorting can be based solely on VIN, in states with manual data entry, VIN

keypunch errors may result in a poor match of records EEA has used VIN

or (MAKE and MYR and LICENSE PLATE) as a second sorting criterion All
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three variables must be matched together because license plates need not
be unique between commercial and non-commercial vehicles and, in some
states, the plates can be transferred from one vehicle to another
Contrasting the number of record matches using the two methods is a
useful check of VIN keypunch errors. This, of course, requires extra

effort in Step 2 for MAKE codes standardization

As an example, we utilized a sample of records from Connecticut,
illustrating the range of variation observed. The sorting performed was
in two different ways: first by VIN only and second by license plate
and MAKE/MODEL YEAR. Table 3-1 illustrates the results in the matrix of
record counts by the two methods. If VIN sorting produces a record

count for any particular vehicle of N, and sorting by license plate/
MAKE/MYR a record count for the same vehicle of M, ideally M should equal
N. However, a small percentage of cars sorted by the second method show
values of M lower than N, but in no case does M exceed N This indicates

that sorting by VIN is superior in all instances to sorting by license

plate/MAKE/MYR if the data is from a limited time period. Over longer

period such as two years, this may not be true.

Kentucky does not record license plate but should theoretically have a
test number variable that is very reliable Table 3-2 shows the results
of the VIN sort number N, as a function of Kentucky’s test number -- 1,
2, and S (greater than 2) Clearly, for N=1, it is possible to have
vehicles with a higher Kentucky test number if their previous records are
in an earlier data tape  Surprisingly, 12 percent of test records for
N=2 was labelled by Kentucky as a first test, indicating potential
deficiencies in the system. The table illustrates the need for the
sorting step even when we analyze data from a highly computerized I/M/

program
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KENTUCKY DATA SORTING
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3.5 STEP 4: VIN DECODING

Decoding the VIN to obtain engine family designation and emission

control system type (fuel control, catalyst, or secondary air fuel system
type) has been developed by EEA and is now available as a stand alone
program (For a description, see "VIN Decoder- User's Guide" EEA
Report to the EPA, September 1986.) The current VIN decoder is capable
of analyzing and decoding VIN for model years 1981-1984 light duty
vehicles and light-duty trucks. Another product of the VIN decoder is an
error report that allows tracking of the number of records with VIN

errors.

For this step, EEA recommends that only the license plate, make and
model year be retained with VIN in a separate data tape in TEXT format
for input to the VIN decoder thus minimizing memory requirements and
input/output processing. The operation of the VIN decoder as a unit is
straightforward, and the error analysis is output as required. A sample
of Kentucky and Connecticut calendar year 1984 data was processed to
reveal the typical percentages of record retention. Table 3-3 shows the
VIN numbers decoded for vehicles designated as MYR 1981-1984 in
Connecticut. As can be seen, only 82.8 percent of VIN's are successfully
decoded. Two major error types - 08 and 11 - account for most of the
VIN errors. Error code 08 arises from failure of the validity test, and
11 arises from non-standard VIN format, potentially as a result of

truncation of the VIN

Table 3-4 shows the results of VIN decoding for Kentucky data - 94.85
percent are successfully decoded, and the major error type (code 02)
arises from the particular engine key not being found in the table One
explanation for this is that running changes are not being incorporated
into the VIN decoder’s certification data tape at the current time. The

examples show that the VIN decoding success rate is likely to vary from
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TABLE 3-4
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80 to 95 percent. At 80 percent, some formal steps are required to check
for the high error rate. If the VIN errors are biased towards failed
vehicles, then deletion of record with VIN error could substantially
alter failure rate computations. One check method for data with high
error rates would be to tabulate the VIN error for "passed" and "failed"

vehicles separately and check the statistics for bias.

Two other administrative problems have been noted by EEA. The certifi-
cation data tape for any specific model year released by EPA (usually in
March) is based on pre-model year data, and does not contain any running
changes made by the manufacturer during the model year. Apparently, EPA
has a separate file in which running changes for all major manufacturers
except GM are maintained. The file cannot be easily merged with certifi-
cation data as the formats are not similar. At this point, the
resolution of the running change problem does not appear simple, and may

not be able to be resolved

The second administrative problem relates to vehicles whose title
specific model year, VIN decoded model year and engine family model year
are inconsistent EEA was not able to resolve why this problem exists,
but has learned informally that there may be some confusion at the

close of one model year and the beginning of the next, between VIN model
year and engine family model year. In general, this has resulted in
only a small number of vehicles (less than 1 percent of the sample)

being potentially misclassified for engine family designations.

EPA is aware that VIN decoding does not allow recognition of 49-State
versus California certification Decoding by the manufacturers has
allowed EEA to establish that even in a neighboring state to California
(like Arizona), the number of California vehicles is less than 4 percent
In other states further away from California, it is anticipated that

California vehicles are less than 1 percent of the population. Moreover,
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49-state and California cars have, in recent years, become nearly
technologically identical and differ only in calibration. As a result,
we believe this issue is not of significant concern except in the case
of California vehicles where 49-state vehicles are estimated to be 10-15

percent of the vehicle population.

Finally, EPA has been interested in failure rate by engine family and
transmission type, as certain models with automatic transmissions have
been reported as pattern case failures. We examined the VIN code and
determined that only four manufacturers - AMC, Honda, Renault and Subaru
- entered transmission type information in the VIN. As a result,

computation of failure rates at this level of detail is not possible.

3.6 STEP 5: ANALYSIS QUTPUT

After merging the VIN decoder outputs with the emissions test data, the
generation of failure rates by engine family is a straightforward step,
requiring only the cutpoints and the test results (Tl, T2, T3) com-
binations to be considered for determination of failure. One advantage
of utilizing SAS is that it can provide failure rate statistics by engine
family and by other levels of aggregation such as emission control type,
manufacturer, vehicle type, with very little additional programming The
generation of output tables in SAS is less convenient, but EEA already
has extensive programs to generate tables of failure rates at different

strata

A second advantage in utilizing SAS is that the output data file can be
directly tapped into for further statistical analysis to determine which
engine families are pattern case failures The methods, and their

availability in SAS are addressed in Section 4 of this report.
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4,  STATISTICAL ANALYSIS FOR IDENTIFYING PATTERN CASE FAILURES

4.1 INTROOUCTION

EPA is interested in identifyving engine families that may be failing at
rates significantly higher than average on the state vehicle inspection/main-
tenance test. An engine family corresponds to a unique make/model/engine
size/emission technology, and is used by ELPA to determine certification to
standards and for recall. A Failure is recognized when tail pipe HC and CU
idle emission concentrations exceed a given set of cutpoints. EPA is
interested in failure rates computed for at least two sets of cutpoints --
100 ppm HC/U.5% CO and 220 ppm HC/1.2% CO.

Unce the failure rates by cngine family at each cutpoint are computed
pased on each individual state's T/M data, there are some additional complica-
tions in comparisons between states. Fach state has a slightly different I/M
test procedure that can give rise to differences in failure rates. Tn addi-
tion, climatic variables, such as temperature, can also influence failure
rates. Given all of these effects, the guestion is what statistical test or
tests should be emploved to recognize high failure rate families? row much

data is required to recognize these families”

Given this situation, there are five topical questions of interest to the

tPA, They are:

1. Defining "high failure rate.” fPA has used 4 X? test com-
paring each family's failure rate to the fleet average failure
rate. Is this appropriate if the high failure rate families are
a significant portion of the flcet, thus biasing the average?

’. Since there are different technologies used to meet standards --
e.qg., carburetor versus fuel injection -- should the failure
rate for each family be compared to athers in the same tech-
nology ygroup?

3. tfor many of the newer model vears, the fleet average failure
rates are very low -- 1 to 72 percent. How should test methods
and sample sizes be structured in the comparisons!



4, What is the most appropriate statistical test to compare a given
engine family's failure rate across state specific data? How
can data from different states he combined to increase resolu-
tion?

5. Should the recommended statistical tests be performed separately
for each set of cutpoints?

4,72 DOESCRIPTION OF THE DATA AND UNDERLYING ASSUMPTIONS

For the purposes of this inquiry, the available processed data can be de-
scribed as a collection of distinct vehicle-test samples, each sample charac-
terized by 4 sample size (number of vehicles tested) and two test results:

(1) the nimber or percent of vehicles failing the test under criterion 207(8),
i.e., cutpoints 220 ppm HC/1.2% CU; and (?) the number or percent failing under
cutpoints TuU ppm HC/U.5% CY. The gualities that define a distinct vehicle-
test sample are: the unique engine family (as certified by EPA) to which the
vehicles belong and the state in which the tests occurred., [ngine families
are, further, classifiable by model vear, vehicle class (light-duty venhicle,
LDV or light-duty truck, LDT), manufacturer, and emission control technology
type. The plock structire for the vehicle-test samples may thus be diagrammed

4s shown below:

VEHICLE-TEST SAMPLE

TEST STATE TESTED VEHICLE
(S)
MODEL VEHICLE MANUFAC- EMISSION CONTROL
YEAR CLASS TURER TECHNOLOGY
(Y) (c) (M) (T)
| . J

ENGINE FAMILY (E)

The structure may also be expressed in a conventional algebraic notation by
Sx{{Y¥xCxMxT) - £). The x swvmbol denctes crossiny of "treatments'" while the +

symbol denotes nesting. Thus, within each (Y, C, M, T) combination there will
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be zero or more distinct engine families (E), but the individual engine
families within one (Y, C, M, T) combination bear no relation to engine

families within any other combination.*

The attached page from an LFA report illustrates the nature of the data
for state (S) = washington (Scattle), model year (Y) = 1952, vehicle class
(C) = light duty vehicle (LDV), four particular manufacturers (M) = Nissan,
etc. and the individual 1982 LUV engine families (F) of these manufacturers.
Each engine family belongs to a specific emission control technology tvpe (T),
and these are written in for most of the families on the page. Fach line thus
represents a specific vehicle-test sample and includes the three essential
numerical outputs for the inquiry: the number in the sample (N) and the
calculated failure rates P, and P, corresponding to the two designated sets

1 ?
of cutpoints, 220 ppm HC/1.2% CO and 100 ppm HC/U.5% CO.

A few preliminary observations. bSample size N varies over a tremendous
range. Although engine family entries with N < 10 are typically the result
of erroneous decoding of the vehicle identification number (VIN) and can
uysually be ignored, the differences in precision of the estimated failure rates
are still very great. [n fact, some popular domestic manufacturer engine fami-
lies have sample sizes exceeding 1U,U000 in some state programs. For example,
13 distinct emission control technology tipes (T) have been defined in the EEA
report' for characterizing all mode!l vear 1952 vehicles, but no (C, M) combina-
tion contains engine families falling into more than four technology types.
Furthermore, the number of engine families corresponding teo a particutar (Y, C,
M, T) comnination that is represented also varies. Thus, the block structure
is quite sparse and unbalanced for several reasons -- the restriction to a
small subset of all possioie (Y, C, M, T) combinations, variable numbers of
engine families per represented combination, and widelyv varying sample sizes

among the individnal families.

* There is an exception to this statement. Some engine family certifica-
tions are carried over from one model vear to the next. The possibility
of identifying some engine families across model vears therefore exists,
but will be ignured in the present analisis.

4-3



MODEL YEAR 1981 LIGHT-DUTY VEHICLES

AMERICAN MOTORS
BAM151V2BC4 BAM151V2FC1
BAM258V2HP7 BAM258V2HP?7

CHRYSLER CORP.

BCR1.7VZHJ1 BCR1.7V2ZHJ1
BCR2.2V2HAS BCR2 2V2HU8
BCR2.6V2BJ2 BCR2.6V2BL4
BCR3.7V1BAO BCR3.7V1HES
BCR5.2V2HJ4

BCRS.2V4HC1 BCRS.2VaGHC]
BCR5.2V9FAX BCR5.2V9FFé6

FORD MOTOR CO.

1.6AP 1.6APC
2. 3AHF
. 3AX 2.3AX
3GQF 3.3GQF
4.275.0AAC
4.275.0GCC/ACC
4.275.0GCC/GCF 4.275.0GCC/ACC
4.275.0GCF 4 2/5.0AAC
4.275.0MAF 4.275% 0GCCsACC
5.0CCF 5 0CCC
5 .8HBPF 5.8HAXC
GENERAL MOTORS
11C2NDM/ NN 11C2NDM/NN
11D2AC
11€£2AC
11LGAC
11LGAC)
11H2TNQZ 11H2TNQZ
12H2AD 12H2AD
12564AB 1256AB
12564ABD 1254ABD
12X2NN 12X2NN
13H2AE 13H2AE)
13Y4AR
146E2TH 16E2THM
14EGNBD
14F4AE 14FGAEJ
16T5ADB 16 T5ADBJ
16 T5ARB/ DB

6108
799
2132
10621
1111

142
2248
1743
1274

407

9595
3153
7839
4295
281
7574
1123
113
154
8068
2295
3904
14517
204
1322
1587
1745

ARIZONA

FAILURE
RATE(%)
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TABLE 4-1

: FAILURE RATE SUMMARY BY ENGINE FAMILY

INITIAL TESTS

207(B) _ 100/0.5
FAILURE FAILURE
RATE(x) RATE(X)
Pl P2
1.9 5.6 ———————————

11.6 18.5 _________
7.8 i
5.6 .

2.7 5.
5.2 8.
3.7 2.

15.5 28 4—————
1.9 3.2 e
9.4 19.5 - m e
6.3 -
83 111 O
8 9 16 .0 ——————————~
3.1 6.2 2

276 735 P ———

10.6 16.9 —— e

16 1 23.5 oo
4.8 9.0
60 P Y IR P —

13.3 T 2 —
2.9 6.7
3.4 111
3.6 11.2
5.2 14.9
“.6 16.2
15.4 32.5-~———m———
2.4 6.4
3.5 12.4
5.8 10.6
1.2 2.6
2.7 8.6
3.6 8.4
8.8 30 6~——————————
6.4 23.5
3.0 7.5
0.8 3.6-———m———mm
1.7 3.8

Technology Type

CARB/OXD/PMP
CARB/3CL/PMP

CARB/3CL/0XD/PMP
FI/3CL/OXD/PMP

CARB/3 WAY/OXD/PMP

EARR/ ICWAPBLE v

CARB/3CL/OXD/PMP
CARB/3WAY/OXD/PMP
CARB/ 3CL/0OXD/PMP

All CARB/3CL/OXD/PMP except:

CARB/3CL/PLS



Other variables may be recorded which characterize individual tested
vehicles and which could very well be correlated with measured emission levels.
Notably among these are: odometer mileage, age (calendar vear - model year),
and month of test. For purposes of the present inquiry, however, these factors
will be ignored and it will be assumed that each vehicle-test sample, i.e.,

(S, Y, C, M, T, £) combination is a sample from a homogeneous population. The
population is then fully described statistically by two parameters: Py and Pys
the probabilities of failing cutpoint sets 220/1.2% and 10U0/U.5%, respectively.
The response data P1 and P? represent estimates of these underlying parame-
ters. There is a slightly more unifying way of viewing the two responses which
derives from the fact that the 220/1.2?% failures are a subset of the 100/0.5%
failures, i.e., one criterion subsumes the other. This is the categorical re-
sponse viewpoint which sayvs that the result of a test puts the vehicle into one
of three mutually exclusive cateqgories: pass 100/U.5%, fail 100/0.5% but pass
220/1.2%, and fail 220/1.2%. The associated probabilities are 1 - P

P? - P', and Pl'

2)

we proceed, next, to consider the five guestions posed in the Statement of
work. [The focus in Wuestion 1 ("high failure rate") is on comparing engine
Families within a "flleet," without specilic reference to explanatory factors,
The details of the block stricture defined above will not be involved. Tt is
in response to Yuestion 2, which raises the issue of technology tvpe influence,
where we will introduce an approach for assessing the significance of effects
attributable to various factors represented in the block structure. Our
discussions in Yuestion 3 will consider the interplav of sample size,
diminishing failure rates, and correspondingly lowered criterion for "high
failure rate" in affecting the power with which high failure rate families can
be successfully identified. Tn dealing with Question 4 on across-state com-
parisons, we will expand on the approach suggested in Question 2 which should
also result in attaining increased explanatory power. Suggestions for handling

multiple-valued response, as requested in Yuestion 5, will be maae.
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4.3 QUESTION NO. 1: DEFINING "HIGH FAILURE RATE"

Consider a data set of k ‘ehicle-test samples (engine families) denoted
1 PI), ceey (nk,

the failure rate within the ith sample calculated with respect to a single set

py (n Pk) where n is the ith sample size and P.l is

of cutpoints. The issue of multiple sets of cutpoints is reserved for Ques-
tion 5. It is presumed that this data set is restricted to a particular state,
a particular vehicle class (LDV or LUT), and a particular model vear. Fven
though many different manufacturers are involved and they apply a variety of
emission control technologies, in principle, one might have expected a fairly
homogeneous collection of true failure rates because the test method, the
distripution of environmental conditions, statutory emission standards for
vehicle certification, and the state-of-the-art apply uniformly over this set
of engine families. Tn practice, one finds a considerable spread of estimated
rates. The problem posed is to quantify the notion of "high failure rate" and
to describe a procedure for identifving the subset of engine families which can

confidently be said to have high failure rates.

A concrete example prosides a useful framework for discussion. Tn the
accompany ing figure are plotted (in rank order) the estimated 220/1.2% failure
rates +1 standard error for 20 engine families more or less serially selected
from the first three listed manufacturers in the failure rate summary table for
model year 1982 LDV's in Arizona. No one is likely to argue about calling
families 18-72u high failure rate families. What abont families 16 and 177
Their estimates are distinctively high, but, becanse of small sample size,
comparison tests with any of the smaller-rate families are not likelv to show
any statistically significant difference. What about families 1-157 There is
no intuitively obvious wav of partitioning that group into "normal" and "high"
rate subgroups; still, statistical comparison tests wonld likely show 11-14

significantly different from | and 2.

what are some of the classical statistical methods for multiple compari-
sons among engine family "treatments" which could be applied here? Many
methods are inapplicable because of unequal sample sizes. One in particular 1s

Luncan's multiple range test, even with Kramer's extension to unequal sample
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sizes.1 The problem with the extension Is that it can't properly handle large
variations In sample size which Is what we need here. This is a shame because
the SAS statlstical software package2 has Duncan's procedure with Kramer's
extension. A very well-known method due to Scheffe and the "multiple-t" method
are both appllcable.3 For both methods, it is necessary to compute the within-

treatments mean square, MSw, which can be expressed as a pooled variance,

namely,

k
- 2
E (ni 1) s

(nj - 1) 2

il
—
W~ ox

where n = an and si2 is the estimated variance of response within the

lth treatment. Since, for the binomial samples, we have

2
Si. = Pi(1 - Pi)
it follows that
1 k
MSw = — 3;1 (ni - 1) Pi (1 - Pi)

Under Scheffe's method, we may simultaneously test for differences in
failure rate among any number of engine family pairs (i, j) at significance
level a by checking for whether the inequality

1
" +

- 1 %
|P; - le > | (k - 1)F1_a(k -1, n - k) .Msw(ﬁT ﬁ3.)]
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is satisfied, where F141(k -1, n - k) is the 1Wu(1 - o) percentile of the
F-distribution with k - 1, n - k deqrees of freedom.* Unaer the multiple-t
method, if we preset the total number of comparison tests we wish tu make at

m, then the ahbove test changes to checking for satisfaction of

lp. =P | >t (n-s<)-[r~15(i+_1Lz
i J 1-a/2m *ni N
where t1-a/2m(" - k) is the 10U(I] - a/2m) percentile of the t-distrioution

with n - k degrees of freedom. Recall, in this application, n is the total
number of vehicle tests and k is the number of different engine famillies to
which the vehicles belong. @ is at the user's discretion, but typical values

used are V.Ul and U.05. Inasmuch as n - k is expected to be quite large,

(k - 1)F1-a(k -1, n - k) and t1_a/?m(n - k)
mav be approximated by
l
X 1-a(| - 1) and 2y _a/7m’
respectively (referring, in turn, to 100(1 - a) percentile and 10u(1 - a/2m)

percentile points of the chi-square and standard normal distributions),
Finallyv, consideration of the likely ranges of interest for k and m tead to
the conclusion that the multiple-t method will invarianly have the greater
power for a fixed level of significance a. Thus, we have reduced the multiple
comparison tests of interest to that of checking for satisfaction of

1%
lPi-PJ|>z Mb(L+L)]2

1-0/2m [ w n nJ

*  Statements 4about the significance level of this and sunsequent tests are
only dpproximate because the individual vehicle responses are clearly not
normally distributed with homogeneous variance. However, the approxima-
tion is expected tu he reasonably good because of the gererally large
sample sizes.
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in order to establish that the true failure rates for the engine families in
question, P; and pJ, can be asserted to be different. As a concrete example,
suppose we have 50 engine families, each with 1000 vehicle tests (for a total

n of 50,U0V) dand that pooled mean square MSw is 0.U2 (corresponding,
roughly, to 4 mean failure rate of 2%). Select level of significance & = (.01,
ana assume that, 4t most, 50 comparison tests will be made (m = 50). Then we
need to find the 99.9Y percentile point of the standard normal distribution,
which is 3.7?, and this sets the value of the right-hand expression in the
above inegiality to 0.023. This means that anv two engine families whose
calculated failure rates differ by more then ?2.3% may be inferred to have
different true failure rates. (At most m = 5U such comparison tests are

permitted to keep the level of significance at a = 0.01.)

Incidentally, if we want to be able to assert that P; > pJ then replace

the above by the corresponding one-sided test, viz., check for satisfaction of

L
PP >z s (L Lyl
i J 1-a/m "y nj

KRememper, for significance level a to be applicaole, m must be a preset

maximum number of comparisons we are permitted to make.

The 4apbove statistical comparison test will nltimately prove to be useful,
out it first requires an externally imposed criterion or line of demarcation to
define the meaning of "high failure rate.” The following procedure is pro-
pused. Hearrange the engine families in the data set in increasing orde: of
Pi. we will have thereby generated 4 new segience (n1', P]'), ves, (', P

K k
with P.l < Pi+ Select a fraction ¢ for partitioniny of the engine families

1
into "normal” and "canaidate high rate" families. A typically recommended

valiue fFor r  is U.5. Find the smallest index &£ such that
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The set (nl' Pi'), veny (nl', Pz') constitutes the defined core set of
"normal fallure rate" engine families. The remaining m = k - L engine

families are denoted "candidate high failure rate" families.

An alternative way of establishing the core normal failure rate set might
pe to select a maximum acceptable failure rate p* and find the largest index
£  such that Pz' < p*. For evern r criterion, as defined above, there will
be an equivalent p* criterion that results in the same partition. As an
example, p* = 6% was imposed on the model vear 1987 LUV data set for Arizona
(for the 220/1.2% cutpoints failure rates). This partitioned the data set of
122,000 vehicle-tests into 4 "normal failure rate" set of 107,000 vehicle-tests
(with mean failure rate of 2.5%) and a “candidate high failure rate" set of
20,000 vehicle-tests (with mean failure rate of 12.1%). The equivalent r

criterion would have been r = U.84.

After estdablishing the core normal failure rate set, coalesce it into a

single pooled sample of size

L
= Zn,'
nU 1=1nl
and estimated failure rate
P ='l- ; n,'P.'
V) no i=1 1

The multiple-t method with the one-sided test option is now applied. Recall

that there are m = n - ¢ candidate high failure rate engine families:

' 1
the pooled normal Failure rate set 4s a single familyv or "treatment." OSelect a

(n ceeey (nk', Pk') . Compute MSW, as previously defined, using

desired level of significance. A recommended value is o = 0.05. Perform the

m one-sided comparison tests:

1 1,]®
P.' =P, >z ofhs (— + =) ; i=2 +1 ..., k
i 0 l<a/m "y oonj



If the inequality is satisfied, engine Famili\ (ni , Pi') is designated a high
failure rate familyv. TIf not, thc engine family is set aside., After all m
comparison tests are completed, the set-aside families are absorbed into the
core normal failure rate familyv and the combined collection referred to 4s
narmal failure rate families. This collection may thus include some estimated
high rate engine families which conld not ne asserted with confidence to ve
high rate families. The net result is to define a final collection of high

failure rdte engine families.

If the above method were applied to the previously illustrated example of
20 engine famil\ samples, a very plansible outcome, depending on reasonable
choice of r or p* and a, could have been that families 15 throngh 2V
would have initially been designated candidate high-failure-rate families, out
that, after application of the multiple-t method, onlyv families lo, 19, and 20

wonld retdain the high rate designation.

A comment should be made abonut the possinle rtole of cluster analysis in
finaing "natural” partitions of enginc families inte similar groups or
clusters. A comprehensive treatment of this methodulogy is given by
Hartiqan.> unfortunately, much of the emphasis is on muitidimensional
deterministic data. The usual approach is to introduce a metric from which a
"qistance"” can be derived for every pair of data points, The aim of clustering
is to minimize intra-cluster distances while maximizing inter-cluster dis-
tdances. A reasonable distance definition lor engine families could be the
closest separation hetween the +1 standard error intervals centerea anont their
est imated failime rates. Applving this aefinition to the previous example, the
distance from Family 5 to 16 would pe zero, while from 17 to 17 wonld be avout
5 percentage points. A cluster procedurc might then estanlish 1Y ana 20 as 4
single cluster and the remaining families into perhaps one, two, or three
clusters. How numper 13 fares would depend on the particular algorithm and
optimization ciiterion used, The 5AS package has a cluster algorithm which
unfortunately uses an internally generated fuclidean distance that cannot be
accommodated to provide the interval-separation aistance function describea
above. Some problems with the application of cluster danalyses to the present
probiem are that multiple clusters conla evolve that have no nuseful interpreta-

tion dand that partitioning mav expressiyv not occur in the reqgion of failure
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rate vdlues where one would like to see the distinction hetween normal and high

failure rates bheing made.

A note on EPA's use of a "xz test comparing each familv's failure rate
to the fleet average failure rate." This phrase does not precisely define the

procedure in use. We presime it is the following. UVefine,

f, = n.P
t bt Reconstituting the original numerical counts of
failures and passes within the ith family
s, =n. (1 -P.)
i i
= Lf - F
9 J i
Counts of failures and passes within all the other
families
t, =Zs - s
i J i
n =2ZIn
P o= Zri/n Fleet average failure rate
)
r
f. = n.P
i i
Lol o
i i Expected counts of failures and passes assuming
’ homogeneity
q; = (n - nI)P
tr =N n -
i " i -9
o«
tor each engine family { = 1, ..., k, form the 72 x 2 tavle

t ATL PASS
i Famin F s,
i i
All the Rest 9; t.L
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and compute the single-degree of freedom chi-square statistic

to test for homogeneity, i.e., equality of proportions. If x? > xi*} (1},
then the engine famil\'s ith true failure rate can be said to differ from the
true failure rate of all the rest, at significance level a. If, furthermore,
f. > 9 the statement may be amended to state that the ith engine familv's

i
true failure rate is greater than the failure rate of all the rest.

Several problems are seen with this presumed procedure. First, it relies
entirely on the notion of statistical significance. It is well known that,
given sufficiently large sample sizes, just about all compared populations will
be significantly different. Second, it is a multiple comparison test and the
significance level neeas to be appropriately reduced to maintain overall
level a. Third, if a particular engine family is determined to be a high
failure rate familyv at some stage of this seguential procedure, it should sub-
seguently be removed from the total class of engine families. HNevertheless a
problem would still remain in that the procediure mav then be sensitive to the

order in which the comparisons are made.

4.4 QUESTION NO. 2: GAUGING AND ADJUSTING FOR TECHNOLOGY GROUP TMPACT

The question literally asked is: should each family be compared to others
in the same technology group? We reformulate the yuestion as follows. Can the
technology group character of 4an engine family be nsed to explain some of the
variations in failure rates among families? [f so, can the failure rates be
adjusted to remove effects due to the use of different technologies so that

remaining differences among families due to other causes wotild be highlighted?
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we trust that this reformulation is sufficientiy comprehensive to cover the

intent of the original question.

The answers are, of course, ves. TIn fact, a further generalization of the
question is suggested -- why not also look to other characteristics, such as
manufacturer, model vear, and LUV/LDT class as potential contributing explana-
tory factors for failure rate variations among engine families? In particular,
a cursory examination of the data prosided suggests marked systematic in-
fluences associated with specific manufacturers. The extension to cover LUV's
and LDT's as well as multiple model yvears would help to provide a more unified

framework for interpretation of the data.

We propose dn additive linear model (with no interactions) as follows.

Let index i I denote manufacturer (M)

H

Py
-

.
-

j =1 ..., J denote emission control technology group (T)

k =1, ..., K denote LDV, LDT class, respectively (C) (K =2)

£=1, ..., L denote model year (Y)

m=1, ..., Wi, gy, k, L) denote mh engine familv within cell
(i, g, ky, ) (F)

. h - ;
vefine PiJka to be the observed failure rate of the mt engine family

within cell (i, jy, k, £,). The model is expressed as:

:p+ai+8i+Yk+6£+e

PiJKZm tykm ' €iJkQ,m

with constraints,

and

M(i.’ik,ﬂ)
4 ei,J,k,}L,m=o for all i, j, k, &
m=1
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h . i
the parameters p, @., BJ, Yk’ 62, Olezm which represent overall mean, M
effects, T effects, C effects, Y effects, and b effects, respectively,

are estimated from the observed {P, } data. The € terms represent

ijkim
residual (unexplained) effects.

The above proposed model can he readily implemented on available software
packages which provide for linedr analysis of categorical responses. In pdar-
ticular the S$AS packaqu has the FUNCAT procedure which is sufficiently compre-
hensive to handle the very unbalanced (wide sample size vaciations) and spdrse
(not all (i, 3, k, L) cells occrpied) type of problems which wonld be charac-
teristics of the {PiJklm} data set. For example, for model year 1982
vehicle-tests in Connecticut, we found that among the 9 x 10 x 72 = 18U possible
manufacturer x technology x vehicle class cells only 35 were occupied by at

least one engine family,

The output of FUNCAT, in addition to parameter estimates, pro:ides chi-
square statistics for testing hypotheses that each of the main effects is
significant, and that each of the indiyvidudal parameter estimates is signifi-
cantly different from zeco. [t also computes the chi-square statistic for
assessing the level of significance of the residual or unexplaired effects.
Unce statistical significance is establishea for main effects and indisidual
pacameters, the issue of substantive significance can be investigated. For
example, if M, T, ¢, and [ effects were all found significant, but not Y

cffects, and if

p = 3.5% (significant)
a, = 1.3% (significant)
31 = -0.7% (not significant)
Y1 = -2.U% (significant)
9111l1 = 1.4% (not significant)
6111]? = -1.4% (not significant)

one might draw the following conclusions: for both engine families 1 and 2
within the manufacturer-1, technology-1, vehicle class-1 (LDV), model yedr-1

cell, a reasonable estimate for failure rate is 3.5 + 1.3 - 2.0 = 2.6%; this
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number is explained as the sum of 3.5 - 2.0 = 1,5% (mean failure rate for all
LDV's) and 1.3% (effect due to manufacturer 1). Note that even though T
effects are found overall to be significant, the particular estimate for

B‘I

not significantly different from zero. Hence, it is treated as a zero contri-

(representing the contribution due to technology group 1) is statistically

bution. Other technology groups must have had a significant impact in order
for the overall technology effect to be significant, but apparently not

growp 1. A similar argument leads to the neglect of the +1.4% estimates

for the two engine family contributions. On the other hand suppose that
811111 and 811112 were both statistically significant but evaluated at
+0.2%. This possibility could arise if the two families in question had very
large sample sizes. 1In this instance, one could view the individual engine

family effect as substantively insignificant and again choose to ignore it,

keeping a common failure rate estimate of 2.5» for both families.

Hopefully, a non-interactive effects model will prove to be adequate, as
would be evidenced by a small or insignificant level of residual effects. Such
a result would lead to relatively simple and plausible explanations for sources
of failure rate variation. [f residual effects come out to be significant, one
might wish to explore certain interactions, but this extension will be limited
by the degrees of freedom available in the sparse experimental design for the

problem under consideration.

In summary, application of a categorical response linear model to the
vehicle-test data would help to identify the major sources for variation in
observed failme rates. Tt would, in effect, also allow each engine family to
be compared to others having common features, like same technology group or

same manufacturer.

4,5 QUESTION NU. 3: FEFFECT OF REDUCED FAILURE RATES ON METHODS

[f failure rates among all engine families follow a generally diminishing
trend with successive model vears, but the desired level of precision remains
invariant, then the situation would actually improve. Un the other hand, if

the required precision is also reduced in direct proportion to the lowered mean
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overall failure rates, then the situation would worsen. These conclusions
derive from the fundamental properties of binomial distributions. Suppose
emission tests were performed on n yvehicles belonging te an engine family
whose underlyving probability of failure is p. Then the resulting number of
failures F is a binomial random variable with mean np and standard devia-

tion Op = Ynp(1 - p). Consequently, the derived failure proportion or failure

rate P = t/n has mean = p and standard deviation o, =Y p(1 - p)/n. Onr

p = p/n. Thus, we observe that,

Op decreases with decreasing p whereas, on a relative

principal interest is in p << 1 so that ¢
on an absolute scale,

~

scale, CP/p >~ 1/Ypn increases with decreasing p.

To tllastrate, if n = 1000 and p = 3%, Op = 0.54%. A reasonable
measure of precision might be ZOP, which then yields 1.10% on an absolute
basis; on a relative basis the precision is 37% of the mean. If p were to
reduce to 1%, absolute precision would improve by dropping in value to 0.63%.

Un the other hand, relative precision would deteriorate to 63% of the mean.

As fdr as the previousiy described statistical procedures are concerned,
thev would continue to be applied in the same way. The methodology itself is
not dependent on the actual values of the underlying failure rates. However,
the power of the procedures, i.e., their ability to reach significant conclu-
sions, may be affected. T1f we assime that as indiyidual engine family failure
rates follow the downward trend, the separations of p yvalues among families
also diminish in proportion, i.e., the phenomenon is likened to a general
contraction in scale, then relative precision wonld be the proper measurce to
apply. What would then happen in the multiple-t test for hiygh rate families i3
that a particular family which is truly high rate but does not have a suffi-
ciently high sample size is more likely to be outside the rejection region of
the statistical test, i.e., he set aside and not designated a high rdate family,
Similarly, in application of the categorical response linear model, true
effects due to technology, etc. that are of marginal intensity are more likely

to be classified as not significant.
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It is not necessarily true however that downward trends in failure rates
are describable by a general scale contraction. [t is entirely possible for
some of the failure reductions to follow a simple scale translation rather than
a contraction, in which case discriminability should actually increase. How-
ever, not all rate reduction can be translations because rdates can't reduce

below zero.

The net conclusion which we draw is that the statistical procedures, them-
selves, need not-be modified, but that the power of these methods will likels
{thonugh not necessarily) be reduced. [f power does reduce, a compensators
strateqy is to increase n, i.e., accimulate more data. This could be accom-
plished by using a longer time interval; for example, waiting for six months of

data where the previous practice was to commence analysis at three months.

4.6 QUESTION NO. 4: COMBINING DATA ACROSS STATES

State-specific data are easily incorporated into the categorical response
linear model described nunder Question 2 and for which a packaged procedure is

readily available within SAS, In detail, we introduce
index n = 1, ..., N denotes state (S)
and reyvise the model as follows:

P. = o, Y $ 9, A €,

ijkmn R % ot e T Tigkam " T Tk

with the added constraint, Zln = 0. The pdrameters ln represent the effects
of indiyvidual states on failure rates. As before, onlyv a main effect is intro-
duced in the anticipation that there are no appreciable interactions with other
factors. Note that an "n" index is not added to the engine family parameters

8 becausc engine families identify across states.

ijk&m
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Assuming that noninteractive state effects will be found adeguate, the
augmentation of the model should have two significant benefits. First, it
would permit one to derive more valid measures of state influences than could
be inferred from simple comparison of overall state data set means. The
reason, obviously, is that state-to-state differences in the detailed distri-
putions of other effects (technulogies, manufacturers, etc.) introduce spurious
differences in the raw means. The second benefit is that the additional multi-
state data should add power to the determination of effects due to the other
factors. Of course if strong interactions hetween state and other factors were
to be demonstrated by a ldarge increase in the residual variation, then these
benefits mdy diminish or be vitiated. As noted before, limited exploration of

interactions can pbe conducted, if necessdry.

4.7 QUESTION NO. 5: HOW TO ANALYZE RESULTS FROM ALTERNATIVE SETS OF CUTPOINTS

Since EPA is interested in alternative sets of cutpoints, the recommended
statistical tests should be done for each set. High failure rate engine fami-
lies can be identified in each set, but not necessarily using the same external
standard or line of demarcation between "normal" and "high" rates. 1In fact,
cursory examination of some of the data suggests that the 100/0.5% criterion
results, on the average, in roughly three times the failure rate as that pro-
duced by the 22U/1.7» criterion., [f the r fraction method were used for set
partitioning, it would tend to naturally establish a higher equivalent failure
rate criterion for the 10U/0.% cutpoints. This may be an argument for using
the r fraction method rather than the direct p* criterion since the latter
requires separate designdation of p* for the two sets of cutpoints. The

results may not then he comparable in severity of the pruning achieved.

pecaise ot the substantially higher failure rates associated with the more
stringent cutpoints (which can be viewed as a scale expansion effect), we
should expect increased relative precision and therefore sharper aoility (via
the multiple-t tests) to determine that a candidate high failure rate engine

family is a high rate family when it truly is in thdt category.
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The FUNCAT proucedure in the SAS packaye readily accepts categorical re-
sponses of any multiplicity (and even dimensionality). Thus, for each vehicle-
test sample one would read in, in addition to the design effects cateqories
(i, Jy ky &, m, n), the response data as n, P1 and P2 rather than just
n, P. There is provision within FUNCAT to define a scalar response function of
the input probabilities. Une could first select P1, run the madel, then
select P? and rerun the model to get an analysis of variance and significant
effects estimation with reference to each set of cutpoints. Comparison of the
two results may shed light on the sensitivity of various effects to cutpoint
criteria. These have to do with the detailed distributions of measured HC and
CU concentrations within individual engine families. Tf these distributions
are fairly smooth and similar in shape (in the vicinity of the cutpoints) over
most engine Families, then one should not expect much difference in effects
evaluation for the two cutpoint sets. Suppose the distribution saturates
between HC cutpoints for some families but not for others, depending, say, on
technology type, then profound differences in significant effects may be found

in the two analyses.

The flexibility of FUNCAT with respect to response function also permits
running the model for such response combinations s P] - P2 or P1/P?. These
results would help Focus on effects which contribute to translational or

scaling uvissimilarities over the set of engine families.
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5. SUMMARY AND CONCLUSIONS

The identification of "pattern case" failures using emission data from
centralized I/M programs for 198l and later model year light-duty
vehicles and light-duty trucks has been investigated in this work
assignment. The objectives are to define a system that will lend itself
to rapid, periodic analysis of data. Our investigation identified
issues in three areas:

¢ Selection of I/M programs from which one can obtain relatively

clean data for the analysis with little time lag.

® A simplified processing scheme to minimize costs and turnaround
time.

o Improved statistical methods to better define pattern failures

and possibly identify effects of test procedures and/or

ambient variables.
The selection of I/M programs for data analysis depends, to some degree,
on the questions being investigated. Our analysis shows that highly
automated programs such as those in Illinois, Wisconsin and Kentucky are
best suited in terms of data cleanliness and rapid "turnaround" of test
data. It will be possible to perform analysis on a gquarterly basis if
data form these states are used. Unfortunately, these states also
utilize different test procedures, preventing easy data comparison
across states. Earlier analysis of data suggests that EPA should
examine data from states using identical test procedures and across
states using different test procedures, so that false failures related
to the test procedures can be identified. Moreover, all centralized
programs are improving their data acquisition methods. In a few years,
data from all states may be relatively similar as far as cleanliness and

turnaround time. At the current time, we would recommend the following

e Investigate the three procedures currently used - idle with no

5-1



preconditioning, idle with 2500 rpm preconditioning, and idle
with loaded-mode preconditioning.

e Investigate I/M programs such that each test procedure type is
utilized in at least two geographically distinct programs.
This will require investigation of six I/M programs, at least.

e Select the six I/M programs from the universe of I/M programs
based on a combination of sample size (at least a total sample
of 50,000 per month), automated data acquisition and rapid
turnaround. We believe that realistically, analysis of data
bi-annually will be possible from six programs.

e California engine families require California data. Although

it has several drawbacks, the California data also suggests

some interesting possibilities that may make an engine family

specific analysis feasible.
Data processing steps required after acquiring the data from the states
include cleaning, sorting, VIN decoding and failure rate calculations.
The cleaning step is a general "front-end" step that will require highly
variable efforts, depending on the relative cleanliness of the input
data. However, even the best data sources require some cleaning, if
only to eliminate calibration, aborted tests, heavy-duty vehicles, etc.
One of the problems is that each state’s program is constantly being

changed and the cleaning steps will have to reflect these changes This

step, therefore, requires programmer intervention and can be tedious

Sorting and sequencing of data is required to recognize initial tests and
retests for the same vehicle Although other elaborate schemes have

been considered, a VIN based sort may be adequate for this analysis
Sequencing is not an issue if pattern cases are to be recognized based
only on a first test failure; other issues, such as vehicle repairability
and waiver rates may be interesting to EPA but will require additional

sequencing steps.
Other steps including VIN decoding and calculation of failure rates are

straightforward. Identification of transmission type is generally not

possible. In addition, there is no easy resolution to the "running
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change in certification” problems. Problems with end of model year
(MYR) vehicles and certification family MYR versus vehicle MYR appear to
be restricted to very few cars. EPA certification staff have claimed
that proper specification of carryover engine families should be no
problem if the final version of the certification tape is used; there

may be some residual problems unknown to EPA.

Once failure rates by engine families have been calculated, a number of
statistical tools can be employed to identify pattern cases and address
several related issues. We recommend a test called Scheffe’'s multiple-t
test to both define and identify pattern failures, and this test is an
improvement over EPA’s current "X2" test. We have proposed statistical
linear models that can evaluate technology specific, manufacturer
specific, and testing procedure specific influences. In addition,

we have suggested methods to use data from two sets of cutpoints, and
methods to combine data from several states. All of the proposed
methods fit well into the processing framework, in that they are

available on SAS (Statistical Analysis System).

EPA has inquired about sample size requirements for the analysis, and
this cannot be answered in the absolute sense The sample size required

to identify any particular engine family depends on:

o The sales of that engine family

e The failure rate of that family in comparison to the fleet
average failure rate

e The statistical significance with which EPA can claim the
family is a "pattern case"

e Convoluting factors such as technology specific rates and
response to ambient conditions.
At this point, it does not serve any purpose to fix a sample size;
rather, as sample sizes are increased, one can expect pattern failures

to be recognized for low sales families with greater precision.
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Finally, EPA has requested some specific estimates on cost. We have
attempted to estimate a cost for analysis of one years’ worth of data
form a program which tests 100,000 vehicles per month, and one-third of
the vehicles are from the five newest model years. Thus a total of 1.2
million vehicle inspections (up to 1.6 ~ 1.8 million records) are
obtained, and 460,000 vehicles' data are separated, cleaned, sorted and
VIN decoded. The resulting output of failure rates by engine family are
then statistically tested for pattern cases, no other statistical
analysis is performed. Costs are summarized in Table 5-1 for one such
data source. As can be seen, computer costs, if the analysis is done on
a private time-sharing mainframe, are very high. On the other hand,
access to government computers can reduce computer costs by a factors of
3. Costs for analysis of six programs will be six times the estimate;
however, the estimate does not scale linearly with sample size. Halving

the sample size will reduce costs only by about 25 percent.

5-4



TABLE 5-1

COST OF DATA ANALYSIS

Assumptions - Initial tape has 1 2 million vehicles of which 400,000 are
1981+ light-duty. Processing on mainframe - IBM 3033 or equivalent.
CPU time (initial cleanup)? 60 minutes

CPU time (all other processing) 120 minutes

Computer Costs (government system)

CPU time @ $1/sec $10, 800

I/0 costs $1,000

Tape storage $250

Disk storage $250

Connect time $700

Total $13,000

Computer costs; Private systems "$40,000

Labor costs

Programmer 120 hours
Manager 40 hours
Analyst 40 hours

Total cost @ $45.00/hour $9,000

aMay be higher or lower depending on data source
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